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Abstract

We propose a formulation for the problem of dynamic traffic assignment in networks
with multiple origins and destinations. This problem is motivated by route guidance
issues that arise in an Intelligent Vehicle-Highway Systems (IVHS) environment. We
assume that the network is subject to known time-varying demands for travel between
its origins and destinations during a given time horizon. The objective is to assign the
vehicles to links over time so as to minimize the total travel time experienced by all
the vehicles using the network. We model the traffic network over the time horizon
as a discrete-time dynamical system. The system state at each time epoch is defined
in a way that avoids complete microscopic detail by grouping vehicles into platoons
irrespective of origin node and time of entry to network. Moreover, the formulation
contains no path enumeration. The state transition function can model link travel times
by either impedance functions or link outflow rate constraints, or by a combination of
both. Overall, the optimization problem becomes one of optimal control for a nonlinear
discrete-time dynamical system, and it is amenable to an algorithmic solution based
on dynamic programming.
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1. Introduction

We consider the problem of dynamic traffic assignment in networks with multiple trip
origins and destinations. Our approach is as follows. The traffic network, which may include
both freeway corridors and surface streets, is modeled as a directed graph. The sets of origins
and destinations are subsets of the set of nodes of the graph. The arcs of the graph are links
in the network. Some information is available about these links, in the form of impedance
functions, which express link travel times in terms of the number of vehicles on the links,
or link outflow rate functions, which constrain the departure or exit rate of vehicles from a
link in terms of the number of vehicles on this link. We assume that the network is subject
to known time-varying demands from vehicles for travel between its origins and destinations
during a given (finite) time horizon (e.g., a period of a few hburs). The objective is to assign
the vehicles to links over time in order to minimize the total travel time experienced by all
the vehicles using the network. Thus the resulting assignment will be system-optimal. We
are dealing with a dynamic as opposed to static problem because the demand is dynamic
and the routes assigned to vehicles from their origins to their destinations depend on the

entire set of demands over the whole time horizon considered.

Our motivation for studying this problem comes from route guidance issues that arise in
an Intelligent Vehicle-Highway Systems (IVHS) environment (§]. In IVHS, it is desired to
perform “anticipatory” route guidance, i.e., to route the vehicles on the network on the basis
of the future travel times that they will experience on the links that they will be traveling.
However, these future travel times depend on the routing decisions made for all the vehicles
traveling on the network, and thus they have to be forecasted using a combination of historical
and real-time information (see, e.g., [5, 4, 10]). Our objective is not to address this real-time
forecasting/assignment problem where the demand is not known a priori and the decisions
may be affected by the occurrence of incidents and other unpredictable events. By making
the simplifying assumption that the demand, although dynamic, is known beforehand, and
by considering a fixed time horizon (with no incidents occurring), we obtain an optimization
problem that may be solved completely, at least in principle. It is our thesis that the solution
of the dynamic traffic assignment problem considered in this paper, as well as the properties
of this solution, will provide considerable insight into the problem of real-time “anticipatory”

route guidance in IVHS. This thesis is the primary motivation of the work that follows.

We model the traffic network over the time horizon as a discrete-time dynamical system.
At each time epoch, the system state consists of the sizes of all platoons, each of which
represents all vehicles on a certain link with the same destination and the same earliest

possible time of departing the link. This state definition avoids complete microscopic detail



by grouping vehicles into platoons irrespective of origin node and time of entry to network,
yet it conforms to the requirement that the state should summarize all relevant past behavior
so as to contain sufficient information for the determination of the future behavior of the
system. Also, since this formulation is based on links, it contains no path enumeration. We
provide a general form for the state transition function giving the possible states at time
n + 1 as a function of the state at time n and of the feasible assignment or routing decisions
for platoons that exit a link or join the network in the time interval (n,n + 1]. Specific forms
of the state transition function can model link travel times by either impedance functions or
link outflow rate constraints. Further, the two can be combined in a way which represents
interaction between links due to recurring congestion and capacity reductions, in addition

to single link impedances.

Overall, the optimization problem becomes one of optimal control for a nonlinear integer-
valued discrete-time dynamical system. The number of control variables (i.e., the number of
routing decisions that have to be made) is eq.ual to the product of: (1) the number of links,
(2) the number of destinations, and (3) the time horizon considered. As formulated, the op-
timization problem is amenable to an algorithmic solution based on dynamic programming.
Hence, Dijkstra’s algorithm can be employed to determine the system optimal routing deci-
sions in the context of a forward dynamic programming search over the state space. Other

search techniques (optimal or heuristic) could also be employed.

Our presentation is organized as follows. We compare our approach with related work on
dynamic traffic assignment in Section 2. The dynamical system model is presented in Section
3, and the resulting optimal control problem is formulated in Section 4. This section also
presents forward and backward dynamic programming recursions for solving the problem.
The forward dynamic programming recursion is applied in Section 5 to a simple triangle
network. Finally, Section 6 discusses extensions of the model for the inclusion of background

traffic and blocking controls, and Section 7 concludes the paper.

2. Comparison with Other Work

Janson [3] has recently addressed the dynamic user-equilibrium traffic assignment prob-
lem for networks with multiple origins and destinations and known time-varying travel de-
mands. He has developed a mathematical program for dynamic user-equilibrium assignment
and proposed an algorithm for the solution of this problem. The algorithm is based on
a two-step decomposition of the problem that is then solved iteratively. His simulations
have shown that the iterative procedure exhibits good near convergence properties. Our

approach differs from Janson’s work in at least two respects. First, we are considering a
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system-optimal objective rather than a user-equilibrium one. Second, our discretization of
time is fundamentally different. In [3], the discrete time interval At must be chosen large
enough so that vehicles completely traverse any link in one time interval. Otherwise, the
links need to be broken into smaller ones resulting in an increase of the dimensionality of
the mathematical program. In our formulation, At must be chosen small enough so that
vehicles will not traverse more than one link in one time interval. The number of decision

variables in our optimization problem increases linearly in the number of time intervals.

Merchant and Nemhauser [6] formulated a mathematical program for system-optimal
dynamic traffic assignment in a network with multiple origins and a single destination.
They assume that all links are uncapacitated and that in each time interval the number
of vehicles departing a link is a function (nonlinear in general) only of the volume on that
link. Therefore, congestion caused by blocking of one link by another congested link is not
modelled. Carey [1] reformulated this model as a convex program by assuming the link
departure function to be a maximum outflow instead of an actual outflow, hence constrain-
ing by nonlinear inequality instead of equality. Thus vehicles may be held back to benefit
the system-optimality criterion, but not due to congestion on other links since the model
remains uncapacitated. Departure functions can be included in the dynamical system model
presented in this paper, and combination with impedance functions for link travel times will
prevent unreasonably short link travel times that might otherwise occur with short time

intervals At.

Papageorgiou et al. [7] have studied the general requirements of dynamic models based on
standard state space methods. While their more general remarks are applicable to our work,
our commitment to the use of specific traffic engineering tools such as impedance functions
or link outflow rates, makes our model more specialized. In their more specific comments
Papageorgiou et al. seem to represent two kinds of information in the state. They are the
number of vehicles per unit length on a link and the composition rates that represent the
proportion of vehicles on the link flowing to a particular destination. In contrast to this our
state does not explicitly represent the spatial position of vehicles beyond recognizing their
current link location. Instead the exit time of a vehicle from its current link is recorded.
Thus we substitute some measure of temporal position for spatial position. The vehicles
on a link are grouped by destination. Thus something similar to the composition rates also

exists in our model.

The work of Friesz et al. [2] on dynamic traffic assignment is also in the system theoretic
paradigm. However, they have modeled traffic flow as a real valued continuous time process.

The model that we present is discrete time and integer valued. It is developed in the hope



of providing a compact and elegant mathematical representation to which methods in areas
such as combinatorial optimization or mixed integer programming may be applied. We do

not aim at analysis on the basis of the Pontryagin principle.

3. System Description

We present in this section a dynamical system model of a traffic system having multiple
origins and destinations. Each link in the network may be described by a first order difference
equation and the network as a whole is represented by another first order difference equation
that is an aggregation of the link equations. Thus our dynamical equation possesses an

attractive and simple modular structure.

The geographical network is viewed as a finite-vertex directed graph in which every edge
is associated with one and only one ordered pair of vertices. Thus any origin or destination
must necessarily be a vertex and any highway or arterial connecting two points with no
point of interest in between is an edge on the directed graph. The structure is formalized as

follows.

(1) |X| = Number of elements of a finite set X.

(ii) V = Set of vertices of a network assumed to be arranged into a sequence < v; >::IIV1‘

(i) E = Set of directed edges or links assumed to be arranged into a sequence < ¢; >::|1E|

(iv) D = Set of destination nodes or vertices, assumed to be arranged into a sequence
< d; >=1P! This is a subset of V.

The set of origin vertices does not have to be explicitly referred to in the dynamical equations

that follow. Therefore, without loss of generality, we assume that this set is equal to V.

Since the formulation is discrete time, we define

(i) n = Discrete time index. Thus n € IN.

(ii) N, = Maximum possible number of sampling instants spent by a vehicle on the link

f’jEE.

Thus it is assumed that there exists an upper bound on the time that a vehicle may spend on
a given link. We consider such an assumption tenable if a link is never loaded in excess of a

defined capacity. This restriction will be introduced when the region of admissible behaviour



of the model is defined. Moreover, it may be noted that N, is independent of the time at
which a vehicle joins the link 4;, i.e., of prevailing traffic conditions at the time of entry. N;

is a function of highway or arterial capacity that is also time invariant.

The state of the network at any given sampling time must reflect the location of each
vehicle on the network at that time. For this purpose, we define the following state variable

that groups vehicles on a link according to their destinations and exit times from the link:

J:}f(n) = Number of vehicles on link ¢; and traveling to destination d;, present
on the link at time n and leaving the link at time (n + k)~.
Thus the above is defined for all £, € E, d; € D and 1 < k < N;. Our convention is that

traffic leaves a link at time (n + k)~ to enter the next link at time (n + k).

The state of the network is affected by vehicles entering or leaving links. The exit of
vehicles is modeled as an internal dynamic of the link and is reflected in the time evolution
of the homogeneous (zero-input) dynamical equation. However, the entry of vehicles into a

link is modeled as an input. Accordingly we define
u(n) = Number of vehicles traveling to destination d; and entering link £; at time
(n+1).

Our convention is that the input at time n will affect the state at time n + 1. A system

output is also defined. This is required for the conservation of flow.

y'(n) = number of vehicles on link ¢; which are traveling to destination d; and are on
the link at time n and leaving at time (n + 1)~.

The last prerequisite for formulating a state equation is a functional relationship between

input and state. This is where we resort to the impedance function. For all {; € E we define

fi(v) = Impedance of link £; when loaded with v vehicles

= travel time of a vehicle joining ¢; when v vehicles are traveling on this link .

The impedance function is assumed to be an integer valued staircase function that is right
continuous. A typical function is sketched in Figure 1. Formally the impedance function
may be defined as
NJ
fiv) = 3 kXfawbn (v)
k=Ng
where an, = 0, by, = 00 and by = ax41 for No < k < N; -1, and x is the usual characteristic

function.

We adopt for all z = (z;,...,2,)7 € R" the notation |[z|| = |z1| + |z2| + ... + |za|.
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Figure 1: Impedance function

3.1. The link dynamical equation

We define a dynamical equation for the vehicles on link ¢; and traveling to various des-
tinations d;. Let the link have no input (i.e., no new vehicles entering the link). We assume
that the exit time of a vehicle from link ¢; is fixed at the time of entry by the impedance
function as follows:

:cf(n+1)=miil(n) 1<k<N; -1

and
% (n+1)=0.

This will be generalized in Section 6.2 where blocking of vehicles at the end of a link will be

incorporated into the model.

Thus we obtain a linear homogenous first order difference equation
z9(n 4+ 1) = Az (n)

where

z(n) = [:L‘;J(n) ot xj{,}(n)JT



and

0100 -+ 00

00 10 0 0
o001 0 0
AV =

0000 - 01
(0000 - 00]y,n

To incorporate the input u*(n), a simple extension of the state and input is necessary.

Let

mi(n) e [x”(n)T i xlDlj(n)TmﬂDm

and
w(n) = [u(n) - ulPY(n)}T . -
Observe that
i (n+1) = Az (n)

where

A’ = diag{AY - APV} nv 1ppx(n; D))

Remark: For given matrices M? j = 1,...J, we shall use the notation diag{M"

represent the block-diagonal matrix

M 0 -+ 0
0 M:? :

0
0 0 M’

For each link and destination we define for all k£ such that 1 <k < N,

6 (£3(),w()) = { 1 if £ (1A% ()| + W (Ol = &

0 otherwise.

M7} to

The function f; computes the time spent on link ¢; by vehicles joining the link at a given

time. Therefore the appropriate state variable may be incremented. Accordingly we obtain

the first order difference equation

29 (n+1) = AYzY(n) + ¢ (27 (n), v’ (n)) - u’(n)

=



where
T

(@) = [gi () gl (o7, )]
Next let
Gi(z?,ul) = diag{g¥(a?,u’) - - g!PY(a?,u)}

which is of dimension (N;|D| x |DJ). Then it is evident that

2 (n+1) = A2 (n) + G (2’ (n), v (n))u’ (n) .

The following output equation is also defined
yi(n +1) = CVa¥i(n)

where

Ci_? - [1 O v U]lxN} .
The extension to link output is made as usual. Let

yi(n) = [y"(n) - yPY(n)]ih

and

£ s diag{C'U . ClDlj}
which is of dimension |D| x (N;|D|). Then

y'(n) =C’27(n) .

3.2. The network dynamical equation

The network dynamical equation is very easily written by exploiting the modular struc-

ture of the system. We define the following notation.
(i) X(n) = [z}(n)T - zlB(n)T]7.
Thus X(n) is a (Zﬁtl Nj|D[) x 1 dimensional vector.
(ii) U(n) = [ut(n)T .- ulBl(n)T]7T.
Thus U(n) is a (|D||E|) x 1 dimensional vector.

(iii) A = diag {A?-- AEI}.
Thus A is of dimension (T2) N;|D|) x (T2, V| D).



(iv) G(X,U) = diag{G'(z*,u})- - - GIE(zE!, ulE1)}.
Thus G(X,U) is of dimension (T2} N;|D|) x (|D||E)).

(v) C = diag{C*---CIFl}.
Thus C is of dimension (|E| |D|) x (T2} N;|D)).

The required dynamical equation is for the whole network is then
X(n+1)= AX(n) + G(X(n),U(n))U(n) .
The homogeneous system remains linear first order and the overall system is also first

order. The network output equation is

Y(n) = CX(n).

3.3. Definition of the feasible region for routing decisions

The following are the input and state constraints of the dynamical system.

(1) Flow conservation equations.

For all vertices v, € V we have the following equations for each destination d; € D:

di#vr’ = Z ul.?(n)= Z yij(n)_i_rip(n), T?,:O}l

EJESUP E]EPQP
d,’:vp = ij € Sﬁp y u*j(n)zﬂ, n=01---

where
Suw, = Set of successor links of node vp;
P,, = Set of predecessor links of node v,;
r'P(n) = Number of new vehicles entering the network at node v, at time (n + 1)

and traveling to destination d; € D .

R(n) = [r(n)r®(n)- .- riP(n)r13(n) ... rIPL VT s the (|V] |D| x 1) vector of travel
demands for all vertices v, € V and all destinations d; € D.
(i1) Headway constraints.
We define for each {; € E the quantity K; as
At

K; = e x number of lanes on (;
headway



where At is the real-time value of the sampling interval and t},, jway 1S the specified

separation time between two vehicles. The constraint equation is

D|
Szin)<K; 1<kSN;, n=0,1,
i=1

(iii) Capacity constraints.
For all {; € E we require,

Dl
S|l (m)l| S ¢, n =01
i=1

where ¢; is the capacity of link £;.

The three equations in (i)-(iii) together with a given state X(n) and demand R(n) define

a feasible region for the input U(n). We refer to this set of admissible controls by the function

Q(X(n),R(n)). Formally,

Q(X.R) = {U e INIPLIEL . {(va e V)(Vd; € D)(di # v, = LZ W= 3 CYV 4 rfpl

i ESup ¢,€Py,

Nd; = v, => [(wj € 8, )u = m

1 < k< N; = ||(A2? + G/ (27w ) i|| £ K

I3

A [(vej € E)(

A HA%j + Gj(:cj,uj)ujn L &

(The notation (z7); extracts all :t:fc components from z7.)

Remark: For simplicity of notation, we have omitted possibl_é time dependencies of certain
variables in the above presentation. In general, K, c;, and even the impedance function f;(-)

could be time-varying.

4. The Mathematical Statement of the Optimal Control Prob-
lem

From Sections 3.2 and 3.3 we obtain the equation of motion of the system and the control

constraint set function, i.e., the set of feasible in flows. These are
X(n+1)=AX(n)+G(X(n),U(n))U(n)

10



U(n) € Q(X(n), R(n)) .

(For simplicity of notation, we will abbreviate G(X(n),U(n))U(n) as GU(n) in this section.)
With respect to the boundary conditions, we define two problems. One is a fixed-endtime

free-endpoint problem and the other is a free-endtime fixed-endpoint problem.

4.1. Fixed-endtime free-endpoint problem

For obvious reasons we define a fixed integer terminal time denoted by N;. The boundary

conditions are then

X(no) = Xo
X(Ny) € INQuzv; 101 -

Jj=1

Having obtained our two point boundary value problem we proceed to define the cost. For

each state trajectory X(n;no, Ny) the associated cost J is defined as

J(X(minoy V) = 35 IXG)+ FOX(Np))
J=ng
The rationale for our definition is as follows. The norm of the state represents the number of
vehicles on the network during one sampling interval. Thus if the sampling time is one hour
then the first term of the cost function gives us the total number of vehicle-hours incurred
within the time horizon. The second term represents a penalty for not clearing the network
within the allotted time Ny, since all non-zero terms in X (/N;) represent vehicles which have

not yet reached their destinations.
The optimal cost as a function of the initial state may be defined as
J*(Xo) = min{J(X(n;no, N))) ¢ X(no) = Xo, X(j + 1) = AX(j) + GU()) ,
and U(j) € AX(j), RG)) » no < < Ny}

Pick points nj, - -, n, such that ng < ny; < --- < n, < Ny. From the definition of J it is
evident that

J(X(nyno, Ny)) = J(X(nsno,ma)) + -+ + J(X(ninp-1,7p)) + J(X (05 np, Ny))

where if ny < Ny then J(X(n;no,ni)) = IX(7)|l.- Thus J obeys the principle of opti-

_no
mality by additivity. Consequently we develop a recursive dynamic programming equation

which may be used to solve the optimization problem.

11



4.2. Dynamic programming recursion equation for the fixed-endtime free-endpoint

problem
(A) Forward recursion equation

For a given initial state Xo, we define the cost Jr to reach state X at time n along

trajectory X (j;no,n) to be

» "o X1 if n < Ny
J X)A ) ’ ] = i}, - a8 ¢ 1
P(X, X(jina,n),n) { o IXG) + FX) ifn =,

where X (7;no,n) must satiéfy X(no) = Xo and X(n) = X. Then
J(X (n;m0, Ny)) = Jr(X (Ny), X (j;m0, Ng), Ny) -
For each feasible X, at a time instant n we define the following forward value function
Vr.
Ve( X, n) = min{Jp(Xn,X(j;no,n),n) © X(n)=X,, X(no) = Xo, X(j+1) = AX(J)+ GU(),
and U(j) € QX (), R(G)), no < j<np.

Thus Vg(X,,n) represents the lowest cost to reach state X, at time n among all admissible

state trajectories. It is evident that
J*(Xo) = min {Vr(Xn,, N;) : Xn, € Xn, }

where

X, ={X + X(Np) = X, X(no) = Xo, X( +1) = AX(j) + GU() .

and U(j) € UX(), RG)) , no < j < Nf}

is the set of all feasible terminal states for this fixed endtime problem.

The initial condition on Vp(X,n) is
Vr(Xo,m0) = || Xol| -
By the principle of optimality the recursion equation is as follows.

Case ng < n < Ny:

7 ol — e . /' r _
Ve(Xa,n) = [|Xall + min  VP(Xa-1n—1)



where
Kooy ={X: X, =AX+GU , U e QX,R(n—1))} .
Case n = Ny:

VF(XNf,Nf) = F(XNf) + ||XN},|| + 3 min VF(XNf—lst -1)

Nf-1€r1’Nf-1

where X)y,_; is defined as above.

(B) Backward recursion equation

Analogous to the prior case we define the cost to complete from a given state X at a

given time n along a trajectory X(j;n,Ny) as

Ny
JB(X,X(j;n,Ns),n) = D1 X5 + F(X(Ny))

j=n

where X (7;n, Ny) must satisfy X(n) = X. Then

J(X(n;no, Ng)) = Jg(X(no), X(J; 70, Ny),n0) .

For each feasible X, at time instant n we define
Ve(X.,n) = min{JB(Xn,X(j;n,Nf),n) : X(n)=X., X(7+1) = AX(5) + GU(y)
and U(j) € Q(X(j),R(j)), n<j< Nf}
as the backward value function at state X, at time n. Accordingly
J*(Xo) = Va(Xo, X (j; o, Np)smo) -
For each X € A, ( as defined in part A) the boundary condition is
VB(X, Ny) = || X]|| + F(X) .

By the principle of optimality, for all n such that noe < n < Ny¢, the backward recursion
equation is

‘/’ F4 —_ S o _‘f ;! .
B(X,n) = || X[ + UeQI(I.;L(l,%(n))VB(AX + GU,n + 1)

While the backward recursion equation appears more elegant in its formulation, we con-
sider the forward recursion equation to be more useful. In the absence of a definite endpoint
the set of feasible terminal states is too large to allow computation. The well defined ini-
tial condition on the other hand allows forward chaining through the solution space in a
well defined recursive manner. An example illustrating the pruning of forward search using

Dijkstra’s implementation of dynamic programming is presented in Section 5.

13



4.3. Free-endtime fixed-endpoint problem

Here the control objective is to clear the network in as short a time as possible. Thus the
target state is the zero vector. The dynamical equation and control constraint set (X, R(n))

are as usual.

We define the cost associated with a state trajectory to be

J(X(n;no, N Z |X(7)|| where N € IN .

.-—ﬂ.u

The optimal cost J= as a function of the initial state Xy at time ng is
J*(Xo,n0) = min{J(X(n; no, N)) : X(no)=Xo, X(N) =0, X(j +1) = AX(j) + GU(j) ,

and U(j) € AX (), RG)  mo<j<N,NeN}
However, if this problem is viewed as an infinite horizon, i.e., all state trajectories are

assumed defined on [no, c0), then the problem may be viewed as free-endpoint free-endtime.
We define

J(X(n;ng)) ZHX

=
and
J*(Xo,no) = min{ J(X(nimo) : X(no) = Xo, X(j +1) = AX() + GU() .
and U(j) € X (), R(G)) , mo <5}
Thus if J*(Xo,no) exists then lim;_q || X (J)|| = 0 which means that the target is implicitly

achieved and the exogenous demand R terminates in finite time. Moreover the requirements
of integrality force X(j) = 0 in finite time.
5. An Example Illustrating the Forward DP Recursion

The triangle network of Figure 2 is used. A and B are valid origin vertices and B and C

are valid destination vertices. Accordingly,

V. = {n1=A, vu=B, v3=C}
E = {pl =(A,B), £2=(B1C)1 £3:(‘4‘C)}
D = {d]_:B,dQIC}

The impedance functions are presented in tabular form.

14



Av=1) B ¢ (v=3) (d=2)

Figure 2: Triangle network

Number of Vehicles | Travel Time-AC | Travel time-AB/BC
1 20 15
2 20 17
3 30 22
4 40 33
5 60 45
6 100 70
Capacity =6

Max travel time =100/70

Table 1: Impedance Functions

We wish to find a system optimal routing for the following demand pattern:

PO} = 1
r0) = 1
() = 3.

Our objective is to clear the network, as in Section 4.3. To better illustrate the working of
the DP algorithm an equivalent but different formulation of the cost function is used. We

define

J(X(n;0,N)) = Z ¥ Z Zkgk 27 (n), v (n))| u?(n) .

n=0 d,eD (;EE

Thus the total cost of traveling a link is incurred as soon as the vehicle is routed to a link.

The flow of the algorithm is presented as a tree in Fig. 3 and the important computations
are shown in Table 2. (By “Terminal” we mean a node that will reach the terminal state
without any further inputs. The “not expanded” nodes are ones that are not expanded

further since they cannot yield optimal solutions.)
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011: J=169; (5,0,0) Not expanded
012: J=124; (2,0.3) 0121: J=139; Terminal

01; J=34; (2,0,0)
013: J=120; (0,3,1) | 0131: J=135; Not Expanded

014: J=116; (0,2,2) | 0141: J=131; Not Expanded

0: J=0; (0,0,0)
( 021: J=134; (4,0,1) Not expanded

022: J=170; (1,0,4) Terminal

02; J=35; (1,0,1) ‘
023: J=104; (3,0,2) 0231: J=138; Terminal

024: J=112; (2,0,3) 0241: J=127; Terminal

and
OPTIMAL
(z,y,z) = (number of vehicles on AB, number of vehicles on BC, number of vehicles on AC)

Figure 3: DP Tree

6. Some Extensions
6.1. Inclusion of background traffic

The model of Section 3 assumes that all vehicles are to be routed during their travelin the
network. We now discuss how to include background traffic into the model. By background
traffic we mean vehicles whose routing is not part of the optimization but rather is a known
deterministic function of time. This function could for instance be based on historical data,

on shortest path calculations, or on some traffic equilibrium solution.

We need to distinguish between “guided” and “background” vehicles. Let X,(-) denote
the state vector (as defined in Section 3.2) for guided vehicles and Xj(-) that for background
vehicles. Similarly for U,(+) & Us(-), Yy(-) & Y5(+) and Ry(-) & Ru(-). Finally, define

Xi(n) = X,(n)+ X(n)
Udn) = Up(n)+Us(n)
Ryn) = Ry(n)+ Ry(n)

for all n, where ¢ stands for “total.”

For the background traffic, by assumption,
u (n) = foln, Ye(n),r)(n))
where f; is a known function and where v, is the origin vertex of ;. In order to obtain a
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meaningful problem formulation, we assume that
Us(n) € Q(Xp(n), Ry(n))

e., the routing of the background traffic should satisfy the flow conservation equations

and the headway and capacity constraints in the absence of guided vehicles (Xy(-) =

0 and R,(-) =0).

The network dynamical equation now consists of two parts:

Xo(n+1) = AXy(n)+ G(Xe(n), Us(n))Us(n)
Xy(n+1) = AXy(n)+ G(X(n),Udn))Us(n)
Yn) = CX,(n)
Yy(n) = CXi(n)

with appropriate initial conditions X,(no) and Xy(no). The feasible region for routing deci-

sions Uy(+) is defined by the flow conservation equations

S ouin)= Y yi(n)+r7(n) (di # vy)
£;€8y, £EPy,
Ve € S,,, ul(n) =0 [di = v,)]

and by the headway and capacity constraints

ID|
> (a¥(n)) < K;, 1<k<N;, n=0,1,...

t=1

|D|

T leim)l < ¢ n=0,1,...

1=1
In other words, the headway and capacity constraints are in terms of the total traffic, while
the flow conservation equations are in terms of the guided traffic, since by assumption the

routing of the background traffic satisfies its own set of flow conservation equations.

Finally, the cost of a state trajectory

X (i o, ) = { g ]

Xb(”’} No, Nf)
could in general depend on both types of traffic:

Ny
J(X(nino, Np)) = 3 aal| X, ()l + BillXo(i)ll + aaF(Xg(Np)) + B2 F(Xo(Np))

J=no

where «; and 3; ¢+ = 1,2 are weighting factors.
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6.2. Inclusion of blocking controls

Another interesting extension of the model of Section 3 concerns the inclusion of routing
decisions that actual “block” or “stall” a vehicle at the end of a link instead of routing this
vehicle on a successor link. We will refer to these decisions as blocking controls and use the

notation
— (4”
Ubloak(n) = (ublock(n))mHElxl

to differentiate them from the normal routing decisions U(n). More precisely,

u.(n) = Number of vehicles traveling to destination d; that are on link ¢; at time n
and are due to exit that link at time (n + 1)~, but will be rescheduled to exit
¢; at time (n 4 2)~ instead (i.e., they are blocked at the end of £; for one time
period).

Blocking controls are introduced because in the context of a total travel time cost function,

they may turn out to be optimal.
The new dynamical equation for this “two-input” system is of the form
X(n+1)=AX(n)+ G(X(n),U(n))U(n) + GuiockUblock(T) -
The new term represents the effect of the blocking controls. When U(n) = 0, we have
2y (n+1) = 27 (n) + uiloa(n)
that can be written more compactly as
z9(n +1) = A%29(n) + Gloautio(n)

where G, =[10 - Omjxl. Similarly to the structure of G(X,U), Gulock is of dimension
(S!2) N;|D) x (IDI|E]) and is of the form

1
block

1
block
Gblock ==

2
Gblo ck

 qlEl
L C;b]ock 4
where the block-diagonal form contains |D| copies of each G} g vector.

Capacity and headway contraints are unchanged. However, the flow conservation equa-

tions become

Z ui_ﬂock(n)+ Z u(n) = Z y(n) + r*(n) (di # v,

£;€Py, €85, &€Py,

18



Ve € Sy, u(n) =0 [di = vy)

VL € Poy, Uploa(n) =0 [d: = v]

Observe that no modification of the cost J is necessary since the extra travel time incurred

by the blocked vehicles is automatically summed up in || X (7).

Without any further constraints, the increase in the dimensionality of the decision space
due to the consideration of all feasible blocking controls is likely to render the problem
intractable even for small networks. A reasonable heuristic would be to allow blocking
controls only when the feasible region (X (n), R(n)) (as defined in Section 3) is empty, i.e.,
when there is no routing decision U(n) that satisfies (1) the flow conservation equations, (2)

the headway constraints, and (3) the capacity constraints.

7. Conclusion

We have approached the problem of dynamic traffic assignment in networks from the
viewpoint of dynamical systems and have proposed a new model for this problem. This
model is more detailed than typical macroscopic models, yet it avoids complete microscopic
detail by grouping vehicles into platoons irrespective of origin node and time of entry to
the network. It has been observed in the literature that traffic models based on impedance
functions alone or on link outflow rate functions alone suffer from certain deficiencies. By
using impedance functions to first determine a minimum travel time for a vehicle on a link
and then by using headway contraints and blocking controls (Section 6.2) to limit the outflow
from a link, our model effectively combines both of these approaches. We believe that this

feature of our model is interesting because it closely resembles what happens in a microscopic
simulation of traffic (e.g., the INTEGRATION traffic simulator of Van Aerde [9]).

The work that we have presented opens several avenues for future investigations. Among

these, we wish to mention the following.

e Study of the computational limitations of this approach. How large a network can be

solved optimally using the dynamic programming algorithm of Section 47

o Determination of structural properties of optimal routing policies. Such properties

could then be used to develop heuristics to accelerate the forward search.

o Investigation of the real-time feasibility of this approach, where routing decisions at

each time instant would be made on the basis of a limited lookahead forward search
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and where the state of the model would be updated continuously on the basis of the

data collected from the various sensors in the network.
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Node # Time State Demand Inputs g Cost
0 0 Start State
01 0 . " il =iy, p2t = wr=1,4?t =1 | gll=1, 8 =1 34
1 T =1, 277 =1
02 0 y 2 Pl =1 72 = w4l 21,488 =1 | gl =1 i =1 35
1 Ty =1, z55 =1
011 10 x%l =1, rgl =1 23 =3 ¥l =3 gfé =1 169
11 z‘.,l =21, :1:'71 =
T =
012 10 x%l =1, xgl =1 r33 =3 ¥?? =3 ggg =1 124
11 xTI =2]:;, :r:.,‘1 =1
%30 =
013 10 x%i =i :rgi = =3 wl=2,u¥=1| g2 =18=1] 120
11 rzo =1,z =1
3 =g ol
33 =2, 755 =1
014 10 1‘%1 =1, Ig; =1 r23 =3 =1, =2 | g2l =1,928 =1 | 116
11 zz =1, z77 =1
S S
T3 =1, 755 =2
021 10 z%i =1 xﬁ =4 r22 =3 uw? =3 gl =1 134
1 zyo =1, 25 =1
=5
022 10 z%; = 1., Iﬁ, =7 7o =8 A% = 3 W el 170
11 rym =1, z75 =1
23 _
45 —
023 10 x%i =1, .—c'ﬁ =1 rid =3 Wl =24 =1|g2=10=1| 104
11 ' =1, z75 =1
oo 38
T3 =2, 75 =1
024 10 :r:%l =1, zii =1 rR =3 u?l =1, 4?3 =2 g?,l =192 =1 112
11 ril=1,2% =1
81— 1. 88 =
iz =1, z55 =12
0111 Not expanded by algorithm
0121 17 a3 it =g u?? =1 g2 = 139
21 _
T5g=
0131 17 xii = 1 1‘21 =1 u?? =1 g?g =1 135
37 = 2, 773 = 1
0141 17 ril =1 :r:il =1 u?? =1 g32 =1 131
1 3 _
Tig = 2, T35 = 1
0211 Not expanded by algorithm
0221 Terminal state
0231 32 2z 2,2%= 1 =3 g2 =1 138
0241 27 a':’fl =1, a:'fi' =2 u?? =1 gfg =1 127

Table 2: Computational data for nodes of DP tree

All data not stated in the table is zero




