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Abstract Most of the current traffic modeling packages assume that drivers
follow a shortest path to go from an origin to a destination. This approach
has been adopted because of its simplicity and convenience. Unfortunately, in
real life, drivers tend to use some other routes according to individual decision-
making processes. These decisions depend on many factors such as travel time,
number of intersections, quality of roads, traffic lights and other attributes.
Therefore, the shortest path assumption cannot reflect drivers’ behavior in real
life and may lead to biased results.

The lack of a realistic model that can be used efficiently on computers is
the real motivation for this project. In this paper, our objective is to develop
a practical traffic model that reflects the route-choice process with greater ac-
curacy. This new model would improve the existing driver's behavior model in
dynamic network simulators.

1 Introduction

Network level traffic models and simulations generally assume drivers follow
a shortest path to go from an origin to a destination. Shortest-path routing
has been adopted over the years because of its simplicity, computational effi-
ciency, and linkage with algorithms for generating equilibrium in static traffic
assignment models. However, in real life, driver's routes are likely to deviate
from optimal shortest paths in significant ways. Empirical research on route
behavior shows that drivers use numerous criteria in formulating a route: travel
time, number of intersections, quality of roads, traffic lights and other factors.
Drivers’ experiences, habits, cognitive limits and other behavioral considera-
tions may also produce variations in route selection. Viewed in this light, one
can see that the shortest path criterion is indeed an unrealistic abstraction of
individual driver behavior, and when aggregated at the network level may result
in an inaccurate representation of traffic.

The purpose of this paper is to present a behavior-based dynamic traffic
assignment approach that combines an individual driver routing module with a



dynamic traffic simulation module. Vehicles are routed in a manner that more
accurately reflects the stochastic nature of individual route selection. Routing
decisions are then aggregated in a dynamic simulation of network traffic flow.
The result of our effort is a behavior-based traffic assignment that provides a
more realistic traffic loading baseline.

Section two of this paper gives a review of micro-simulation assignment.
Section three classifies the drivers on the road into two categories: familiar and
unfamiliar. In section four, the unfamiliar-driver’s behavior is studied in more
detail. Discrete choice models are presented in the section five. In section six,
a simple method for estimating the utility of a path is presented. The probit
model is introduced in section seven. Sections eight and nine link the ideas
discussed in previous sections to develop an applicable model that is superior
to the driver’s behavior models used currently in simulators. Finally, some
numerical results are presented in section ten.

2 Review of Micro-Simulation Assignment

As a first step toward dynamic traffic assignment, researchers have developed
network traffic simulators which assign vehicles, or packets of vehicles, to links
in accordance with some vehicle routing logic. Early simulations of this type
include CONTRAM [10], SATURN (8], and INTEGRATION [16]. Dynamic
network traffic models generally employ some form of shortest route algorithm
to determine the paths of vehicles entering the network. For example, in CON-
TRAM, packets of vehicles are entered onto the network in accordance with
specified departure times. Upon entry, the packets are assigned to a shortest
path from their entry point to their destination. The packet then follows this
path for a designated period of time. The assignment process is then repeated
and the packet is reassigned to a new shortest path based on current link times.

A similar approach was used in the original version of INTEGRATION to
simulate vehicles with route guidance systems. Guided vehicles have the ability
to periodically reassign themselves in response to up-to-date traffic conditions.
One of the benefits of this approach is that vehicles are routed according to
prevailing traffic conditions including signal effects, queues and spillback.

SATURN departs from the responsive assignment approach of CONTRAM
and INTEGRATION and uses an iterative equilibrium approach where link
flows are determined through a modified capacity-restrained assignment proce-
dure. The drawback of this approach is that the assignment does not take into
account signal effects, queues and spillback. Also, the vehicles cannot respond to
incidents or other unexpected traffic occurrences while en-route. The problem
with all three approaches cited here is that the vehicle routes do not accurately
capture the route-selection dynamics described in the empirical research.

To be fair, our descriptions of SATURN, CONTRAM and INTEGRATION
captures their state of development at the time they were introduced, or shortly



thereafter. Many improvements have been made to these models and their
offspring in subsequent years. In this study, INTEGRATION is used to simulate
the traffic in the networks of section ten.

3 Classes of Drivers on the Road

Drivers can be divided into different classes according to individual behavior,
objective of the trip and knowledge of the area. For example, some drivers
prefer a scenic route whilst others are under time pressure. The same driver
may change his behavior depending on the goal of the trip: vacation, business,
etc.

In order to simplify the study, drivers are classified into two different cate-
gories: familiar and unfamiliar. The familiar driver is the commuter who uses
a route to go to his work and back every day. This type is the most important
because it i1s associated with the majority of traffic on the road during peak
hours. By unfamiliar driver we mean someone who does not know the area or
has very little knowledge of the network and in most cases, uses a map to get to
his destination. The percentage of these drivers is relatively small compared to
the familiar drivers. The unfamiliar drivers are of special importance since they
form the base for the study of familiar drivers. The following section describes
the unfamiliar-driver’s behavior and proposes a model to approximate it.

4 A Model for the Unfamiliar-Driver’s Behav-
ior

Unfamiliar drivers share many characteristics. For instance, they tend to plot
the entire path of their trip before departing and stick to this predetermined
route. Since this driver, in most cases, is using a map to design his trip, only
a few paths are considered. The rest of the feasible paths are ignored because
he assumnes that they are inferior to the ones chosen. After finding the set
of alternative paths, the driver evaluates each path and then chooses the best
one. QObviously, different drivers have different evaluation techniques, hence, a
different best path. The driver cannot evaluate exactly all the parameters of
his trip. For example, the travel time depends on speed restrictions, congestion,
number of available lanes, number of traffic lights and some other undetermined
factors. The model has to reflect all of these factors to a reasonable degree.
The process of approximating the unfamiliar-driver’s behavior has two stages.
The first one is to generate the set of possible routes. A method is applied to
narrow down the vast number of route possibilities, leaving only a few candi-
dates to be considered. Once a set of options has been identified, it is necessary
to measure the relevant attributes of these options and compare them. In the
second stage, a discrete choice model is applied to compute the probability of



choosing an alternative based on its desirability. Section five outlines discrete
choice models and how they can be used to compute these probabilities.

5 Discrete Choice Models

The hypothesis of discrete choice models is that an individual’s preference to-
wards each alternative can be represented by a utility. A utility 13 a function
of the alternative’s attributes and the decision maker’s characteristics. Many
of the attributes that influence an individual’s utility cannot be observed and
thus are treated as random. For example, the real travel time from origin to
destination is usually not obtainable by drivers. The perceived travel time can
be assumed to be a random variable with a given distribution. Therefore, choice
models give only the probability with which the alternatives are chosen, not the
choice itself.

Let A represent a given set of K alternatives and 4} = v, + &, be the utility
of alternative k.! Here, vy is a constant and €, is a random variable with a
given distribution. The decision maker tends to choose the alternative that
yields the highest utility. The probability that alternative k will be chosen is
then the probability that 4, is higher than the utility of any other alternative.
Therefore,

P. = Pl >, Vi€ A/{k}}
= Ee > é
Ploe + & 2> wg}%t}{”f +é}}

where,
Y Pe=land P >0,Vke A
keA

The most commonly used driver-behavior model is the logit model which is
developed using the previous equations.

In logit formulation, the utilities of different alternatives are assumed to be
independent Gumbel-distributed random variables. Hence, the choice proba-
bility of a given alternative can be obtained by some simple calculations. The
independence assumption is a major disadvantage since, in general, the paths
considered by a driver overlap. Another discrete choice model is probit where
a more realistic distribution for the random utilities 1s used. Also, the depen-
dence between the random terms is taken into account which makes this model
superior to the logit model. Later in this paper, the probit model is studied and
then applied to some traffic networks.

Throughout the previous discussions, the utility was assumed known. In the
following section, a simple method for estimating a route’s utility is proposed.

!The symbol "is used to indicate that a variable is random or undeterministic.



6 Utility Estimation

Many factors affect the driver’s preference towards a particular path. For ana-
lytical simplicity, assume that travel time and number of turns dominate other
factors. Also, it is assumed that the utility is linear in these attributes, i.e.,
4 =—f—-+yn. y > 0 is a scalar obtainable from experimental studies. n is the
number of turns encountered on the path and considered to be a deterministic
attribute since the driver can obtain its value from the map. Note that @ < 0
and that a larger 4 value means a shorter travel time, a fewer turns or both.
The only random term in the utility function is the travel time which cannot
be estimated exactly.

Denote the perceived tra.vei time on link ¢ by I.. Let I, be the mean of the
random variable I,,, re, l. = E(l ). . can be chosen as the free-ow travel
time on ¢. Since, in general variance increases with larger travel times, it is
reasonable to assume that Var(l,) is al., where, > 0isascalar.? The perceived
travel time on any path k is given by the relatlonshlp =Y, I.1.;. Here, [is
the indicator function, i.e.,

I 1 if link c is on path k
“# =1 0 Otherwise

One can compute the mean and variance of the random variable ; in terms of
the indicator function:
Efe) = ) Ll

Var(ty) = Z Var(le) 1.

I

R

2]
—
:I
~—

The variance equality is justified since I.'s are independent random variables.

Therefore,
E(dg) = E(—f - yn)
= wun + E(é)
Var(ﬁk) = QE({E)
= Var(e)

Given two paths k; and k3, the covariance between the utility of k; and that of
ks is:

COV(ﬁh,Gh) = Zlcfc.k\fc,k;
¢

= alg b,

2Note that Vu.r(fg} should be proportional to {2. The linear relation is assumed to simplify
the calculations. Although the variance has units of time xtime implying o to have units of
time, o is taken as a dimensionless quantity for numerical purposes.



where, te, &, is the mean travel time on the common segment between ki and
ks

After computing the expected values and variances, one can assume that
the utility follows a suitable probabilistic distribution. Then, the probability
of selecting a path can be computed accurately. Using a normally distributed
utility leads to the probit model which is introduced in the following section.

7 Multinomial Probit Model

Following many other statistical models, it may be natural to assume that the
random error term of each utility is normally distributed with mean zero, i.e.,
€ ~ N(0,aE(f)), hence, & ~ N(—E(f) — yn, E({)). This implies that the joint
density function of these error terms is a multi-variate normal function. This is
the underlying assumption of the probit model.

As in section five, the likelihood that a particular alternative will be chosen
is given by the probability that its utility is the highest in the choice set. With
the probit model, however, this probability cannot be expressed analytically
since the cumulative normal distribution function does not have a closed form.
The calculations of probit choice’s probability, in the presence of more than two
alternatives, are not straightforward.

The choice probability can be estimated by using either an analytical ap-
proximation or a Monte-Carlo simulation. A widely used analytical method
1s successive approximation. It is based on approximating the distribution of
the maximum of two normally distributed random variables by another nor-
mal random variable. For example, to find Pk =jja one needs to approximate
max{ty, i} by a normally distributed random variable, call it dy. Then, ap-
proximate max{ts, &1} by &3, and so on. In the final step, max{#y,..., k- }
is approximated by Gx_2. Px can be obtained from &x_; by some integration
methods. The successive approximation is fully described in appendix A.

The main advantage of the probit model is its ability to account for depen-
dence between the utilities of different routes. On the other hand, computa-
tional costs for problems of the size encountered in network analysis are very
high. Furthermore, the accuracy of this method deteriorates as the number of
alternatives increases.

In the following section, the probit model is used in conjunction with the
previously presented ideas to develop an algorithm that distributes unfamiliar
drivers on the network according to the utility of each path.

8 A Route-Choice Algorithm for Unfamiliar Drivers

[n traffic modeling, it is convenient to introduce the notion of origin-destination
pairs, or simply O-D pairs. The network is assumed to have source nodes, or



origins, where the flow is generated, and sink nodes, or destinations, where the
flow is absorbed. Each vehicle has a predetermined destination which cannot
be changed during the trip. Hence, the only paths in the network that need to
be considered are these connecting the O-D pairs.> This assumption simplifies
the study and makes it more efficient on a computer.

Here is a description of the route-choice algorithm for unfamiliar drivers:

e I[nitialization. Set i = 1.* Using the free-flow travel time, compute the
mean travel time, ¢t} = E(t;), for all paths k.

]

¢ General Step.
1. Find the set of the K shortest paths connecting each O-D pair ;.5
Let this set be A7.

2. For each path k € A/, compute the mean of its utility, uy = -t} -
Yenk, and the variance, at}.

3. From each set 47, select the M paths with the highest average
utilities.®

4. For each O-D pair j, compute the probability of selecting path k, P},
as described in appendix A.

The previous probabilities can be used in any dynamic traffic simulation package
to distribute cars on the network in a realistic manner.

9 A Model for Familiar-Driver’s Behavior

Any driver starts as an unfamiliar driver then, using his daily experience, adjusts
his route choice to maximize his utility. Here is the algorithm used:

¢ Initialization. Set P = 0 for all paths k. Set 1 = 1. Using the free-flow
travel time, compute the mean travel time, t, = E(ti), for all paths k.

e General Step.
1. Perform the general step of the unfamiliar-driver algorithm described
In section eight.

2. If | P{=P{™" |< 6 for all paths k, stop. P} represents the distribution
of familiar drivers over the network.

3. Distribute drivers over different paths using P} and then run a sim-
ulation to get the average travel time on each path 7.

3From here on, the word path refers to a path connecting an 0-D pair.

‘i is a counter. It links the unfamiliar-driver algorithm to the familiar-driver algorithm
presented in the following section.

*A practical range of K is 10 to 20. Shortest-path algorithmas are described in [12].

®M = 3 is used in this study as recommended by [9] and [13].



4. Update ti“ = wty + (1 -w)lg, 0 € w € 1. w is an exponential
smoothing factor.

5. 1t=i+1. Gotol.

6 represents the maximum error in the computed probabilities.

A key question is whether this method converges to a steady state or not.
More research should be done to find the necessary and sufficient conditions for
convergence. In case of cycling, one may need to increase the number of paths
considered or the value of §.

10 Numerical Results

In order to test the algorithm of section eight, two traffic networks were used.
The traffic on each of them was simulated using INTEGRATION. All drivers
were considered to be unfamiliar drivers. The parameters ¥ and a were set to
05 and 1.5 respectively. These two values were chosen according to personal
experience. The networks were loaded with cars during the first 26 minutes.
The number next to each arc on the graph, represents the length of the link in
kilometers in both directions.

The simulation was run twice for each network. In the first run, drivers
followed the shortest path to travel from their origin to destination. A few
arcs were used by the vehicles, this caused immense congestion in these areas,
leaving the rest of the network with zero flow throughout the simulation. In the
second run, the model described in section eight was used to assign drivers to
the alternative routes in the network. The number of arcs used here was larger
than had been used previously. The cars were distributed more realistically over
the network and this resulted in less congestion.

Figure 1 shows the first network. The traffic flow from 4 to 8 is 840 cars/hour

—

and from 9 to 1 is 851 cars/hour. The average travel time from 4 to 8, Tus,



using shortest path is 3.88 minutes. Using the algorithm of section eight, T4s
is 2.78 minutes. Ty ; is 4.15 minutes when shortest path is used and it is 3.44
minutes using the algorithm. The average travel times in the network are 4.02
and 2.98 minutes.

The second network is shown below. The traffic flow from 1 to 7 is 1020

cars/hour and from 10 to 8 is 1000 cars/hour. T\ 7 is 6.26 minutes when using
the shortest path and 4.43 minutes when the algorithm is applied. Thiosis 13.12
minutes and 8.67 minutes. The average travel times in the network are 9.71 and
6.56 minutes.

11 Conclusion

Two algorithms for modeling the behavior of unfamiliar and familiar drivers are
introduced. Both of them generate a choice set and then use the probit model to
distribute drivers over the network. A simple method for estimating the utility
of each alternative is presented. Simulation results indicate that our model gives
a more realistic distribution of the cars than the shortest path assumption, and
therefore decreases the travel time in the network.

In order to improve the performance of the algorithms, more research should
be done on the utility function and its estimation. A survey of the paths cho-
sen by drivers in a real network would lead to a better understanding of their
behavior. Considering more classes of drivers would improve the model.



12 Appendices

A Successive Approximation Method

In this section, the details of computing the probability of choosing a path
are presented. It is convenient to use the notations introduced in section six:
t = E(f) and v = —E(f) — yn. The probit model is used, ie., § ~ N(0, aE({)),
and the utility is obtained as in section seven, i.e., @ ~ N(=E(f) — yn, aE({)).
No other assumptions are made, hence, the results presented here are general.
Given two paths with utilities u; and uy, one needs to approximate the
probabiliy distribution of max{u;, u3} by a normal distribution. Let

8 = \/a(tl+!2—t1g)

_ vy — Up
T T8
= v ®(r) + va®(—r) + Bé(r)
T = (vf +at1)<b(r)+(v-_2, + atz)®(—r) + (vy + v2)Fé(r)

where,
| —2%/2
o(z) = i
®(z) = o(y)dy

then, the distribution of max{u,,us} is approximated by N(v,u — v?). The
covariance between max{uy, uz} and the utility u3 of a third path is given by
the following relationship:

Cov(max{u;,uz},u3) = 1/@“?_72)(313“") + t23®(-r))

For example, given three paths, the probability of selecting path 3, Pj, is
computed as follows:

Py = P(u3z > max{uy, uz})

® Vg — Vv
(\/atg + (4 — v?) - 2Cov(max{uy, uz}, uz)y/ats(u — u2))

The same procedure can be used to compute P, and P;.

10
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