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Supplementary Material A: Notations

The following notations are used in Theorem 2. Let
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Supplementary Material B: Proofs

The consistency and asymptotic normality stated in Theorems 1 and 2 are proved using
arguments similar to those of Chen et al. (2002), so we highlight only the steps that are

different.
Proof of Theorems 1 and 2.

Step 1. Using similar arguments to Step Al of Chen et al. (2002), it can be shown
that d{Hy(-, ©y), Hy(-)} — 0 almost surely, where Hy(-, ®) is the function implicitly de-
fined as the unique solution of (2.2) for fixed ® and d(G1, G2) = sup,ey, - | exp{G1(t)} —

exp{Ga(t)}|.



Now we show that D{H; (-, Oq), Hio(-)} — 0 almost surely, where H;(-,0,) € H;
is the function implicitly defined as the unique solution of (2.3) with ® = @, Hs(-) =
Hy (-, ©p) and D(G1, Ga) = sup,ey, -1 |E(10g [Spy {G1(t A Uyi) — XiBg, Hao(t A Uyy) — Xiaxg}]

to,T
—log [Sy, {Ga(t A U) — X8y, Hao(t A Uyi) — Xiow}]) ‘, for any two nondecreasing func-
tions G; and Go on [tg, 7] such that Gi(ty) = Ga(ty) = —oo. Denote H; = {H; :
H; is nondecreasing step functions on [tg, 7] with Hi(ty) = —oco and with jumps only
at the observed failure times t1,--- ,t)}, and A is a mapping defined by A(H;)(t) =
LY J (ai(t) + Yilt)dlog |8, { () = X8y, Fa(t, ©6) — Xiawo | ) , where po, By

and oy are the true values of p, 3 and a. For an arbitrary but fixed € > 0, consider G,

and Go such that D(Gy,Gy) > ¢, then there exists a t* € [ty, 7] such that
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Hence, coupling with d{Hs (-, ©,), H(-)} — 0 almost surely, we have
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when n is large enough. Choose H;, € H; such that H{y(t;) = Hyo(t;) fori=1,---, M.
By the law of large numbers, the continuity of Hyy and d{ﬁQ(-, ©y), Hy(+)} — 0 implies
that sup{A(H7i,)(t) : t € [to, 7]} — 0 almost surely. It follows that sup;c, - ‘A(Hfo)(t)—

A{H,(-,©0)}(t)| — 0 almost surely because, by definition of H; (-, ©), A{H; (-, 09)}(t) =

0 for all ¢ € [ty,7]. Then, with probability 1, H;(-, ®) is in the neighborhood of H}, of




radius € under the metric D(-, ). Therefore, D(H, (-, ©y), Hio) — 0 almost surely, since

€ > 0 can be arbitrarily small and }71(-, ©®) and Hjy are monotone.

Step 2. Constructing the expressions of Hy(t; o) and H(t; Op). Let a > 0, let b
be fixed finite numbers and define Ky(t) = [ E[Ya;(s)A AVL Hoo(8)YdHoo(s), Ti(z) =
fb 1 (s)ds, Ao(x fb Ao(8)ds, for t > tg and = € (—o00,00). We choose finite a > 0
and b as the lower limits of the integration to ensure that the integrals are finite. Similar

to Step A2 in Chen et al. (2002), we have, uniformly for t € [ty, 7],
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Now we consider the representative of H (t;©q). Denote
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Ai(t) :/ E[Yi(s)dv2i{ Hio(s), Hao(5)}], A(t) = E[Yi(t)v2i{ Ho(t), H20(t)}].
Thus, it is easy to see that dyi{Hio(t)} = [v1{H10(t)}/B(t)|dB:(t) and dyo{Hx(t)} =
[v2{Hao(t)}/A(t)]dA(t) and therefore:

1 ZM Z/ (’Vu{H1o(S)>H20(S)} [Fl{j‘L(S% 0))} — I‘l{Hm(s)}})

" 71{H10(S)}
—l—% ;/to Yi(s)d <721{521§22)0$2§(8)} |:P2{ﬁ2<5; Oy} — TQ{HQO(S)}}> + Op(n’1/2)

- /t: s d [T (5 ©0) = T {Hio(o)}]

t& H.(s: . s on(n-1/2
+/t0 72{H20(S)}d [FQ{HQ( a®0)} FZ{H2O( )}] + p( ) (82)
Denote Y(t) = [o{A;'(#)}. By (S.1), uniformly for ¢ € [to, 7], we have
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Substituting it into (S.2), we get
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uniformly over ¢ € [to, 7.

Step 3. Denote L(©; Hy, Hy) = [[1—, Li(©; Hy, Hy) and U(©; Hy, Hy) = 610g£(§®H1 Hp)

In the step, we compute V(@) = aU(@’Hl(n’a(z))’HQ(’ at ® = ©. By differentiating both

side of (2.2) with Hy(t) replaced by f[g(t; ®), respect to ©, we obtain the identity

S ~ 0Hy(5:0) Xl
Similar to Step 2, we see that
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where () is defined in Section 3.

However, by differentiating both side of (2.3) with H;(t) and Hs(t) replaced by
H, (t;©) and ]TIQ(t; ®), respect to ©, we obtain the identity
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where v3;(z,y) = ( §gz %Z and S,(z,y) = %ﬁf’y). Similar to Step 2, we now



see that
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It follows from the law of large numbers that
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where £;(©; Hy, H,) is the contribution of subject i to the likelihood function £(©; Hy, Hy).

Step 4. In the step, we show the asymptotic normality of U(®y; fll(-, Oy), ﬁ[g(', Oy)).
Using the results of Steps 1 and 2 and some empirical process approximation techniques,

we can write
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Substituting (S.4) and (S.3) into it, we get
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where D;(s) and Dy(s) are defined in Section 3. It then follows that
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where A is defined in Section 3. The rest of the proof essentially proceeds along the
lines of Chen et al. (2002) and is omitted here.

Proof of Theorem 3.

By Taylor series expansions, (S.3), (S.6) and Theorem 2, we get,
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Then the first part of Theorem 3 follows.

By Taylor series expansions, we get,
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Then the second part of Theorem 3 follows from Theorem 2, (S.4) and (S.7).
Proof of the Proposition.

Denote U*(®; Hf, H}) = Z?:lfi%. Then, for ||©; — O3] = o(1), we have

1 1
=V"(0,)(01 — ©3) + o(||©; — ©s])), (S.8)

where V*(®) = —%. Similarly to Step 3 in the proof of Theorem 1 and
Theorem 2, combining with E(¢§) = 1 and Var(§) = 1, it follows from the strong law of

large numbers that

d{H;(-,©),H\(-,©)} — 0, d{H;(-,©), Hy(-,©)} — 0,
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almost surely, and furthermore,

However,
1 * A * *
=U (@, Hl ) HQ)
n

1 <& OL(©: Hy, Hy) 1< OL,(©: H HY) OLy(©:; Hy, H.
LS 2Ol 2)+—Zi{ (©: 1}, Hy) _ 0L(6; iy z>},
=1

00 n 00 00

i=1
where the second term is o0,(1). Hence, following from the result of Step 4 in the proof
of Theorem 1 and Theorem 2, we have
1
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Finally, note that U*(©*: Hf Hi) = 0, and U*(®¢; H}, H}) — U*(®: Hy, Hy) —
U(®y; f-\]l, ﬁg) — 0 almost surely; In addition, with the existence of X~ and e % 0,
we have ||©* — (:)|| = 0(1). Combining (S.8) with (S.10), the proof of the Proposition is

completed.
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Supplementary Material C: Simulation 3

Simulation 3. For computational easy, we estimate the transformation function by
estimating equations, which may be less efficient than the maximum likelihood estimator.
To investigate the possible loss due to the using of the estimating equations instead of
the maximum likelihood function, we compare the proposed method with the oracle
parametric maximum likelihood (PML) method, where the transformation function is
correctly specified and all of the parameters are estimated by the maximum likelihood
function. We generate data from a simulation setting similar to Simulation 1, except that
H,(t) = log(t) and Hy(t) = 10log(t)+t in Case 1; Hy(t) = t+1.5 and Hy(t) = 3t+0.5 in
Case 2. To use the PML method, Hy(t) and Hy(t) are specified as H;(t) = 61log(t) + 62
and Hy(t) = 031og(t)+04t for Caes 1, and Hy(t) = 61t+05 and Hs(t) = 03t+0, for Case 2.
The resulting estimators are displayed in Table 5. Table 5 shows that the performance of
the proposed method is close to that of the PML although the transformation function of

our method is unknown. The results in Table 5 confirm the proposed method is efficient.

Table 5. The bias, SD and RMSE of estimators for Simulation 3.

a B P
Bias(SD) RMSE Bias(SD)  RMSE Bias(SD) RMSE
Case 1

Prop. 0.032(0.126) 0.130 0.021(0.121)  0.122 0.0064(0.0439)  0.0444

PML 0.018(0.126) 0.127 0.019(0.119)  0.121 -0.0001(0.0436) 0.0436
Case 2

Prop. 0.024(0.115) 0.117 0.021(0.116)  0.118 0.0082(0.0458)  0.0465

PML 0.005(0.116) 0.116 -0.001(0.116)  0.116 0.0010(0.0450)  0.0450
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Supplementary Material D: Simulation 4

Simulation 4. In this simulation, we consider the data with two-dimensional covariate
vector, which is a combination of continuous and discrete covariates. The setting in
Simulation 4 is similar to that in Simulation 1, except that the covariate X = (X7, X5),
Hy(t) = 13 and Ho(t) = ®7'(¢/2), where X; is generated uniformly over [-2,2], X, is
treatment indicator in which n/2 subjects receive each of the two groups. The censoring
random variable C'is distributed uniformly on (0, 5), so that about 20% of T is censored
by C and about 24% of S is censored by C' A T'. The resulting estimators are displayed
in Table 6, suggesting the proposed method performs well in this setting.

Table 6. The bias, empirical standard deviation and root of mean square

error(RMSE) of estimators based on 500 simulations.

al a2
Method Bias SD RMSE Bias SD RMSE
Proposed -0.0066 0.0625 0.0628 0.0438 0.1160 0.1240

B o
Proposed -0.0070 0.0593 0.0597 0.0449 0.1167 0.1250
5

Proposed 0.0046 0.0461 0.0463
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Supplementary Material E: Figures
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Figure 3: The plot of the prediction error PFE; versus the covariates using the proposed
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Figure 4: The plot of the prediction error PFs versus the covariates using the proposed

method for the myeloma data.
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