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Summary. Semicompeting risk outcome data (e.g., time to disease progression and time to death) are commonly collected
in clinical trials. However, analysis of these data is often hampered by a scarcity of available statistical tools. As such, we
propose a novel semiparametric transformation model that improves the existing models in the following two ways. First, it
estimates regression coefficients and association parameters simultaneously. Second, the measure of surrogacy, for example,
the proportion of the treatment effect that is mediated by the surrogate and the ratio of the overall treatment effect on the
true endpoint over that on the surrogate endpoint, can be directly obtained. We propose an estimation procedure for inference
and show that the proposed estimator is consistent and asymptotically normal. Extensive simulations demonstrate the valid
usage of our method. We apply the method to a multiple myeloma trial to study the impact of several biomarkers on patients’
semicompeting outcomes—namely, time to progression and time to death.
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1. Introduction

Terminal events such as death are often the main endpoint
of clinical trials on patients with chronic life-threatening dis-
eases (e.g., cancer). In the evolving course of the disease,
landmark events (e.g., disease progression) are also observed.
Such nonterminal events are typically precursors of the main
event and serve as important endpoints in clinical trials. It
is often of substantial interest to study the association be-
tween the landmark event and death, and the marginal dis-
tribution of the time to the landmark event and the time to
death given treatment and other underlying individual char-
acteristics. The analysis often carries implications of personal-
ized medicine. For example, in a multiple myeloma trial—the
motivating study of this article—the investigators were keen
to understand the relationship between disease progression
and overall survival, and their respective relationships with
the treatment and certain biomarkers, including albumin and
myeloma score (the expression level of myeloma cells and their
normal plasma precursor cells). The resulting prognostic mod-
els shall aid patients’ and physicians’ decision making.

Denote time to the landmark event by S and time to death
by T . Given that the occurrence of terminal events precludes
the occurrence of nonterminal events—but not vice versa—
S and T fall into the paradigm of semicompeting risk data
(Fine, Jiang, and Chappell, 2001). A variety of methods have
been proposed to model S and T . For example, Day, Bryant,
and Lefkopolou (1997) considered the Clayton–Oakes model
(Clayton, 1978; Oakes, 1986) and proposed a test of the inde-
pendence of T and S. Fine et al. (2001) provided a closed-form

estimator of the association parameter in the Clayton–Oakes
model using modified weighted concordance-estimating func-
tions from Oakes (1986), along with an asymptotic variance
estimator. Wang (2003) proposed an estimation procedure in
this model that is more generally applicable to copula models.

In the aforementioned works, the dependence between the
landmark event and death is assessed marginally, with no ad-
justment for covariates such as sex, age, or treatment group.
In practice, the distributions of T and S in the subpopulations
defined by treatment, sex or age are considered. Regression
methodology offers an opportunity to investigate how patient
characteristics influence the landmark event and death. The
literature on regression analysis tailored to semicompeting
risks is limited. Lin, Robins, and Wei (1996) introduced a
semiparametric bivariate location-shift model to describe the
effect of treatment on the landmark event and death in two-
arm randomized studies. The model can be written as follows:

H(S) = Xβ + ε1 and H(T ) = Xα + ε2, (1)

where H(x) = log(x), β and α are parameter scales, (ε1, ε2)
′

are correlated error terms with unspecified distribution, and
the sole covariate X is the treatment indicator. Chang (2000)
extended Lin et al.’s method to the semicompeting risk data
with a general discrete covariate. This research direction has
been further extended to general regression settings in which
the nonterminal event is generalized to be recurrent events
(Ghosh and Lin, 2003; Lin and Ying, 2003), whereas death
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still serves as a terminal event. Recently, Ghosh (2009) ap-
plied Lin et al.’s model to assess surrogacy. It is difficult to
extend Lin et al. and Chang’s method to a high-dimensional
discrete covariate or continuous covariates because the com-
plexity of artificial censoring used by Lin et al. increases with
the cardinality of the support of covariates. Recently, Peng
and Fine (2006) proposed a rank estimator for model (1) that
avoids excessive artificial censoring and thus is not limited to
discrete covariates. However, because the distributions of the
error terms are completely unspecified, the aforementioned
methods cannot estimate or make inference on the association
between S and T based on the bivariate location-shift models
(1). To consider both the marginal effect of covariates on the
landmark event and the association between S and T , Hsieh,
Wang, and Ding (2008) considered a method that combines
the copula model and the first model of (1) with either H or
the distribution of error is known; however, the authors devel-
oped their methodology for discrete covariates. Peng and Fine
(2007) proposed joint models of functional marginal regression
models and a time-dependent copula model for semicompet-
ing risks data. Their method works for continuous covariates.

When analyzing nonstandard data such as survival data,
an investigator has to consider where to place assumptions
and where to keep the model flexible. The methods proposed
by Lin et al. (1996) and Chang (2000) allowed the error dis-
tributions to be unknown but required specification of the
transformation functions. The method proposed by Hsieh et
al. (2008) allows investigators to place an assumption on the
transformation function or the distribution of error. However,
all these methods require an extra model for the association.

In the present article, we propose a new approach. Our
model not only directly provides the marginal regression
models of S and T , but also the association parameter be-
tween S and T . To illustrate our idea, we consider the case
without covariates. We denote the distributions of S, T and
the standard normal variable by F1, F2, and �, respec-
tively. The probit-type transformations �−1{F1(S)}=̂H1(S)
and �−1{F2(T )}=̂H2(T ) follow the standard normal distribu-
tion marginally. The correlation between H1(S) and H2(T )
within the traditional Gaussian framework is then imposed
conventionally and leads to the normal copula model (Li and
Lin, 2006). With the covariates in mind, we consider the fol-
lowing models:

H1(S) = X′β + ε1 and H2(T ) = X′α + ε2, (2)

where H1 and H2 are unknown monotonic increasing trans-

formation functions, (ε1, ε2)
′ ∼ N(0, �ρ), �ρ =

(
1 ρ

ρ 1

)
. Here,

assume Var(ε2) = Var(ε1) = 1 and that X excludes the inter-
cept term for the identification of the models. X can be a
continuous covariate, discrete covariate or a combination of
continuous and discrete covariates. Model (2) leaves the trans-
formation functions unspecified but require the error distribu-
tion to be Gaussian. The reason for this is threefold. First, the
transformation function is more fundamental than the error
distribution in estimating the regression coefficients (Lin and
Zhou, 2009). Specifically, the misspecification of the trans-
formation function leads to a seriously biased estimator of

the regression coefficients, whereas the misspecification of the
error distribution leads to a slightly biased or essentially un-
biased estimator (Lin and Zhou, 2009). Second, the use of
a Gaussian error provides an opportunity to model the as-
sociation between S and T . Finally, the normal distribution
is robust in some degrees (Hanley, 1988; Li and Lin, 2006).
Model (2) naturally provides not only the marginal regression
models of S and T , but also the association parameter of S

and T . Conversely, the models proposed by Lin et al. (1996)
and Chang (2000) cannot provide the direct association pa-
rameter, whereas those proposed by Hsieh et al. (2008) and
Peng and Fine (2007) require an extra copula model for the
association parameter.

The remainder of the article is organized as follows. Section
2 describes an estimation procedure. Section 3 describes the
derivation of the asymptotic properties. Section 4 contains the
simulation results and an application to a multiple myeloma
trial. Section 5 provides concluding remarks.

2. Estimation Procedure

Let a ∧ b = min(a, b) and I(A) to be the indicator function
for event A. Let C be the time to censoring and X the
p-dimensional covariate vector. Assume that (S, T ) and C

are conditionally independent given X. We have n observa-
tions (U1i, δ1i, U2i, δ2i,Xi), i = 1, . . . , n, a random sample from
(U1, δ1, U2, δ2,X), where U1 = S ∧ T ∧ C, δ1 = I(S ≤ T ∧ C),
U2 = T ∧ C, and δ2 = I(T ≤ C). Hence, S is censored by the
minimum of T and C and not just by C. The dependent cen-
soring will complicate the analysis. For notational simplicity,
denote the parameter vectors β, α and ρ by �.

2.1. Estimation of the Parameters

The density function of the standard normal random vari-
able is denoted φ. Denote 
1i(β, H1) = H1(U1i) − X′

iβ and

2i(α, H2) = H2(U2i) − X′

iα. For each observation i, the likeli-
hood will take one of the four forms defined below, depending
on the values of δ1i and δ2i. If both events are observed, that is

δ1i = 1, δ2i = 1, then Li1(�;H1, H2) ∝ φ

{

1i(β,H1)

}
dH1(U1i)√

1−ρ2
×

φ

[

2i(α,H2)−ρ{
1i(β,H1)}√

1−ρ2

]
dH2(U2i); If Si is observed but Ti is

not observed, that is δ1i = 1,δ2i = 0, then Li2(�;H1, H2) ∝
φ

{

1i(β, H1)

}
dH1(U1i) ×

(
1 − �

[

2i(α,H2)−ρ{
1i(β,H1)}√

1−ρ2

])
;

If Si is not observed but Ti is observed, that is δ1i = 0,δ2i = 1,
then Li3(�;H1, H2) ∝ φ

{
H2(U2i) − X′

iα
}

dH2(U2i) ×(
1 − �

[

1i(β,H1)−ρ{
2i(α,H2)}√

1−ρ2

])
; If neither event is ob-

served, that is δ1i = 0, δ2i = 0, then Li4(�;H1, H2) ∝∫ ∞

1i(β,H1)

∫ ∞

2i(α,H2)

φ(x)√
1−ρ2

φ

(
y−ρx√
1−ρ2

)
dx dy. Combining these,

the likelihood resulting from observation i yields:

Li(�;H1, H2) ∝ Li1(�;H1, H2)
δ1iδ2iLi2(�;H1, H2)

δ1i(1−δ2i)

×Li3(�;H1, H2)
(1−δ1i)δ2iLi4(�;H1, H2)

(1−δ1i)(1−δ2i). (3)
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The likelihood function involves parameters � and functions
H1 and H2. To compute the maximum likelihood estimator
�̃, H̃1, and H̃2, we note that H̃1 have and only have positive
jumps at the observed uncensored landmark event time, and
H̃2 have and only have positive jumps at the observed un-
censored terminal event time. As a result, the maximization
problem reduces to a finite dimension problem. It is, however,
still infeasible to maximize the likelihood (3) over a large pa-
rameter space because the dimension of the space increases
with sample size. Since � is of primary interest, to avoid
complicated computation, we propose a new approach to es-
timate �, H1, and H2. Particularly, we use a series of esti-
mating equations described in Section 2.2 to estimate H1 and
H2, and then estimate � by maximizing a pseudo-likelihood,
which is the likelihood function

∏n

i=1
Li(�;H1, H2), with H1

and H2 replaced by the estimated values. Andersen (2005)
showed the pseudo-likelihood method is efficient for the pa-
rameters. The simulation studies also show that the proposed
method, using a full likelihood for the parameters, would be
quite efficient for �.

2.2. Estimation of the Transformation Functions

Model (2) is member of the family of semiparametric trans-
formation models (Chen, Jin, and Ying, 2002; Zhou, Lin,
and Johnson, 2009). Statistical inference procedures on the
single semiparametric transformation model with indepen-
dent censoring have been extensively studied. Here, we use
the method proposed by Chen et al. (2002), which is easy
to compute. Let α0 and H20 represent the true values of α

and H2, respectively, and �(t) = − log{1 − �(t)} to be the cu-
mulative hazard function of ε2. Suppose N2i(t) = δ2iI(U2i ≤
t), andY2i(t) = I(U2i ≥ t). Motivated by the fact that M2i(t) =
N2i(t) − ∫ t

t0
Y2i(s) d�{H20(s) − X′

iα0} is a martingale process,

we estimate H2(t) by the following estimating equation:

n∑
i=1

(
dN2i(t) + Y2i(t) d log

[
1 − �

{
H2(t) − X′

iα
}]) = 0, (4)

where H2 satisfies H2(t0) = −∞. This requirement ensures
that �(a + H2(t0)) = 0 for any finite a. The starting point
is t0 and is equivalent to zero if S and T are time. Here, we
allow t0 < 0 so that S and T can be monotonic transforma-
tions of time. It is easy to see that the estimator of H2 is a
nondecreasing step function on [t0, ∞) with H2(t0) = −∞ and
with jumps only at the observed uncensored terminal event
times, denoted by td,1 < · · · < td,K.

Now consider the estimation of H1. Because S and T are
correlated, the direct use of Chen et al.’s method would yield
an inconsistent estimator of H1 because of dependent censor-
ing. Alternatively, using the approach of Hsieh et al. (2008),
one can estimate H1(t) based on the identity EI(U1i ≥ t, U2i ≥
t)= Sρ

{
H1(t) − X′

iβ, H2(t) − X′
iα

}
P(Ci > t|Xi), where Sρ is

the survival function of N(0, �ρ). One problem with this
method is that the distribution of the censoring time C must
be modeled.

In this article, we take a different approach, which does not
involve the distribution of C. An important observation that
leads to our estimator is Si ∧ (Ti ∧ Ci) = (Si ∧ Ti) ∧ Ci, which
implies that the survival analysis in which Si is the survival

time and Ti ∧ Ci is the censoring time can be regarded as
the survival analysis in which Si ∧ Ti is the survival time and
Ci is the censoring time. Given that Xi, (Si, Ti) is indepen-
dent of Ci, by regarding the survival time as Wi = Si ∧ Ti

and the censoring time as Ci, we obtain an independent
censoring problem. Then, applying Chen et al.’s (2002)
method to the data {(Wi ∧ Ci, I(Wi ≤ Ci),Xi) : i = 1, . . . , n}
would yield consistent estimators of related parameters
and functions. Denoting W = S ∧ T , under model (2), H1

and H2 are monotonic increasing functions, for any t,
one can see that P(W ≥ t|X) = P{H1(S) ≥ H1(t), H2(T ) ≥
H2(t)|X} = Sρ

{
H1(t) − X′β, H2(t) − X′α

}
. Hence, the cumu-

lative hazard function of W is given by �̃(t) =
− log

[
Sρ

{
H1(t) − X′β, H2(t) − X′α

}]
. Let Ni(t) = ηiI(U1i ≤

t), ηi = I(Wi ≤ Ci) andYi(t) = I(U1i ≥ t), motivated by the fact

that Mi(t) = Ni(t)+ ∫ t

t0
Yi(s) d log[Sρ0{H10(s)−X′

iβ0, H20(s) −
X′

iα0}] is a martingale process and given � and H2, we
estimate H1(t) by the following equation:

n∑
i=1

(
dNi(t)+Yi(t) d log

[
Sρ

{
H1(t)−X′

iβ, H2(t)−X′
iα

}]) = 0,

(5)

where H1(t0) = −∞. Again, following the estimating equation

(5), the estimator Ĥ1(·) of H1(·) is a step function with jumps
at a combination of the observed uncensored terminal and
nonterminal event time, denoted by t1 < · · · < tM . Solving the
system of estimating equations of the infinite number of equa-
tions defined by (4) and (5) is equivalent to solving the sys-
tem of a finite number of equations. In addition, because the
estimating equation (4) is independent of H1, the estimation
of the two infinite-dimensional parameters is decomposed into
two separate estimations of single infinite-dimensional param-
eters, which can greatly reduce computational cost (Lin, Yip,
and Chen, 2009).

2.3. Algorithm to Estimate �, H1, and H2

Using Chen et al.’s (2002) approach, we provide alternative
versions of (4) and (5) for easy computation. Using Tay-

lor expansion and noting that supk |dĤ1(tk)| = Op(n
−1) and

supk |dĤ2(td,k)| = Op(n
−1), (4) and (5) asymptotically can be

rewritten as:

n∑
i=1

[
dN2i(t) − Y2i(t)φ

{
H2(t−) − X′

iα
}

1 − �
{
H2(t−) − X′

iα
} dH2(t)

]
= 0 and

(6)

n∑
i=1

(
dNi(t) + Yi(t)

Sρ

{
H1(t−) − X′β, H2(t−) − X′α

}
× [

S(10)
ρ

{
H1(t−) − X′β, H2(t−) − X′α

}
dH1(t) + S(01)

ρ

×{
H1(t−) − X′β, H2(t−) − X′α

}
dH2(t)

])
= 0,

(7)
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with H1(t0) = H2(t0) = −∞, S
(10)
ρ (x1, x2) = dSρ(x1, x2)/dx1

and S
(01)
ρ (x1, x2) = dSρ(x1, x2)/dx2. It can be shown that the

solution of (4) and (5) and that of (6) and (7) are asymptot-
ically equivalent (Chen et al., 2002). Equations (6) and (7)
suggest the following iterative algorithms for �, H1, and H2.

Step 0. Choose an initial value of �. Due to the indepen-
dence of T and C given X, we obtain a consistent estimator
(H2n, αn) of (H2, α) by the method proposed by Chen et al.
(2002). Then, applying Chen et al.’s algorithm to equation
(5), we estimate (H1, β, ρ) based on the following estimating
equations with H1(t0) = −∞:∑n

i=1

(
dNi(t) + Yi(t) d log

[
Sρ

{
H1(t)−X′

iβ, H2n(t)−X′
iαn

}])= 0,∫
t

∑n

i=1
Xi

(
dNi(t) + Yi(t) d log

[
Sρ

{
H1(t) − X′

iβ, H2n(t) −
X′

iαn

}]) = 0, and∫
t

∑n

i=1

(
dNi(t)+Yi(t) d log

[
Sρ

{
H1(t)−X′

iβ,H2n(t)−X′
iαn

}])=0.

Step 1. Obtain H2 given α. First noting that
H2(td,1−) = −∞ and using (4), obtain H2(td,1) by solving∑n

i=1

(
dN2i(td,1) + Y2i(td,1) log

[
1 − �

{
H2(td,1) − X′

iα
}]) = 0.

Then, using (6), obtain H2(td,k), k = 2, . . . , K, one-by-one by
solving the equation:

H2(td,k) =

∑n

i=1
dN2i(td,k) + H2(td,k−1)

∑n

i=1

Y2i(td,k)φ
{

H2(td,k−1)−X′
iα
}

1−�

{
H2(td,k−1)−X′

iα
}

∑n

i=1

Y2i(td,k)φ
{

H2(td,k−1)−X′
iα
}

1−�

{
H2(td,k−1)−X′

iα
} .

Step 2. Obtain H1 given α, β and H2. Noting that
H1(t1−) = −∞ and using (5), obtain H1(t1) by solving∑n

i=1

{
dNi(t1) + Yi(t1)

(
log

[
Sρ

{
H1(t1) − X′β, H2(t1) − X′α

}])} =
0. Then, using (7), obtain H1(tk), k = 2, . . . , M one-by-one by
solving the equation:

H1(tk) = H1(tk−1) −

∑n

i=1

[
dNi(tk) + Yi(tk)S

(01)
ρ

{
H1(tk−1)−X′

iβ,H2(tk−1)−X′
iα

}
Sρ

{
H1(tk−1)−X′

iβ,H2(tk−1)−X′
iα

} {
H2(tk) − H2(tk−1)

}]
∑n

i=1

Yi(tk)S
(10)
ρ

{
H1(tk−1)−X′

iβ,H2(tk−1)−X′
iα

}
Sρ

{
H1(tk−1)−X′

iβ,H2(tk−1)−X′
iα

} ,

with H2(t1), . . . , H2(tM) replaced by their estimators obtained
in Step 1, noting that H2(tk) = H2(tk−1) if tk /∈ (td,1, . . . , td,K).

Step 3. Obtain the estimate of � by maximizing the like-
lihood Li(�;H1, H2) defined in (3), with H1 and H2 replaced
by the estimators obtained in Steps 1 and 2.

Step 4. Repeat Steps 1–3 until the prescribed convergence
criteria are met.

3. Inference in Large Samples

In this section, we present the large sample properties of all
estimators. Let �̂, Ĥ1(t) and Ĥ2(t) denote the estimators of
�, H1(t) and H2(t), respectively. Let �0, H10(t) and H20(t)
denote the true values of �, H1(t) and H2(t), respectively.
Regularity conditions for ensuring the central limit theorem
for counting process martingales such as those assumed in
Fleming and Harrington (1991) are assumed here without spe-
cific statement. Let τ = inf{t : P(Si ∧ Ti > t) = 0}. We assume
that τ is finite, P(Si ∧ Ti > τ) > 0 and P(Ci = τ) > 0. We do

this to avoid a lengthy technical discussion about the tail be-
haviour. Xi is bounded, and H10 and H20 have continuous and
positive derivatives.

Theorem 1. As n → ∞, in probability, we have |�̂−�0|→
0, supt∈(t0,τ) |Ĥ1(t) − H10(t)| → 0, and supt∈(t0,τ) |Ĥ2(t) −
H20(t)| → 0.

Theorem 2. As n → ∞, we have
√

n

(
�̂ − �0

)
→

N

{
0, �−1�

(
�−1

)′}
, where � and � are defined in Supple-

mentary Material A (SM-A).

Theorem 3. As n → ∞, for any t ∈ (t0, τ), we have√
n
{
Ĥ1(t) − H10(t)

} → N
{
0, Σ1(t)

}
, and

√
n
{
Ĥ2(t) −

H20(t)
} → N

{
0, Σ2(t)

}
, where Σ1(t) and Σ2(t) are defined

in SM-A.

The proofs of Theorems 1–3 are given in Supplementary
Material B (SM-B). From Theorem 3, Ĥ1(t) and Ĥ2(t) con-
verge to H10(t) and H20(t), respectively, at a rate of n−1/2.
This result shows that we estimate the nonparametric func-
tions H1(·) and H2(·) with a parametric convergence rate. A
similar conclusion was also reached by Horowitz (1996), Chen
(2002), and Zhou et al. (2009).

As shown in Theorem 2, the asymptotic variance of �̂

takes the standard sandwich form �−1 �(�−1)′. However, the
matrices � and � are complicated analytic forms involv-
ing complicated computations. Here, we use a resampling
scheme proposed by Jin, Ying, and Wei (2001) to approximate

the asymptotic variance of �̂. First, we generate n exponen-
tial random variables ξi, i = 1, . . . , n with a mean of 1 and
variance of 1. We solve the following ξi-weighted estimation

equations and denote the solutions as �∗, H∗
1(t) and H∗

2(t)
for any t ∈ (t0, τ):∑n

i=1
ξi

∂Li(�;H1,H2)

∂�
= 0,

∑n

i=1
ξi

(
dN2i(t) + Y2i(t) d log

[
1 −

�
{
H2(t) − X′

iα
}]) = 0,

and
∑n

i=1
ξi

(
dNi(t) + Yi(t) d log

[
Sρ

{
H1(t) − X′

iβ, H2(t) −
X′

iα
}]) = 0, where H1(t0) = −∞ and H2(t0) = −∞. The

estimates �∗, H∗
1(t) and H∗

2(t) can be obtained using the
same iterative algorithm in Section 2.3. We establish the
validity of the proposed resampling method.

Proposition The conditional distribution of n1/2(�∗ −
�̂), given the observed data, converges almost surely to the

asymptotic distribution of n1/2(�̂ − �0).

The proof of the proposition can be found in SM-B.
Based on the proposition, one can obtain a large number of
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realizations of �∗ by repeatedly generating ξ1, . . . , ξn many
times. The variance estimate of �̂ can then be approximated
by the empirical variance of �∗.

4. Assessing the Surrogate Endpoints

An important application of semicompeting risks approaches
is assessing the surrogate endpoints. Surrogate endpoints can
be used in lieu of other endpoints in evaluating treatments
or other interventions. They are useful because they can be
measured earlier, more conveniently or more frequently than
the endpoint of interest, which is refereed to as the “true”
or “final” endpoint (Ellenberg and Hamilton, 1989). In the
surrogacy literature, S is the surrogate endpoints and T is
the true endpoint. Before a surrogate end point can replace
a final end point in the evaluation of an experimental treat-
ment, it must be formally “validated.” Prentice (1989) pro-
posed a formal definition of surrogate endpoints and outlined
how potential surrogate endpoints could be validated. How-
ever, Prentice’s criteria are too stringent and are not straight-
forward to verify. Freedman, Graubard, and Schatzkin (1992)
introduced the proportion explained, which is the proportion
of the treatment effect that is mediated by the surrogate.

Suppose X is the covariate, S is the surrogate endpoint
and T is the true endpoint. We fit the data using the pro-
posed models (1). Then, using the multivariate normal the-
ory, we obtain ε2 = ρε1 + ε∗, where ε∗ ∼ N(0, 1 − ρ2) and is
independent of ε1. By coupling this with models (1), we get
H2(T ) = ρH1(S) + X′(α − ρβ) + ε∗. Hence, by the definition
given by Freedman et al. (1992), if X1 (the first element of
X) is the indicator of treatment, the proportion of treatment
effect (PTE) explained by the surrogate S is ρβ1/α1, where
β1 and α1 are the first components of β and α, respectively.
This implies that one can obtain the measure of surrogacy,
or the association between S and T by the models (1). In
contrast, this does not happen with the proportional hazards
model (Lin, Fleming, and Degruttola, 1997) or the acceler-
ated failure time model (Lin et al., 1996; Chang, 2000), both
of which require an extra model to estimate PTE. Buyse and
Molenberghs (1998) proposed replacing the proportion ex-
plained by two new measures. The first measure, termed the
relative effect, is the ratio of the overall treatment effect on the
true endpoint over that on the surrogate endpoint. The second
measure is the individual-level association between both end-
points, after accounting for the effect of treatment, referred
to as the adjusted association. Our model also provides the
relative effect RE = β1/α1. An RE value is useful only if the
variance of H1(T ) and H2(S) are equivalent (Ghosh, 2009). In
our model setting, the variance of H1(T ) and H2(S) are equal;
hence, β1/α1 in our models provide a useful measure of surro-
gacy. In contrast, S ≤ T in the bivariate location-shift model
(Lin et al., 1996; Chang, 2000; Ghosh, 2009), so the vari-
ance of the two random variables will generally not be the

same. Denote β1/α1 = f1(�), ρβ1/α1 = f2(�), R̂E = f1(�̂)

and P̂TE = f2(�̂), Corollary 1 below follows from Theorem
2 in a straightforward fashion.

Corollary 1.
√

n{R̂E−RE}→N(0, ḟ 1(�)′�−1�
(
�−1

)′
ḟ 1

(�)), and
√

n{P̂TE − PTE}→N(0, ḟ 2(�)′�−1�
(
�−1

)′
ḟ 2(�))

as n → ∞, where ḟ (�) = df (�)/d�.

5. Simulation

In this section, we describe simulation studies conducted to
assess the finite-sample performance of the proposed method
by comparing it with existing methods. The existing ap-
proaches to analyze semicompeting risk data include (1) the
bivariate location-shift regression model (BLSR) proposed by
Lin et al. (1996); (2) the copula model; and (3) the combi-
nation of regression and copula model (CRC; Peng and Fine,
2007; Hsieh et al., 2008). The copula model is not yet ready
for regression analysis, so we focus on the comparison of the
proposed method with the BLSR and the CRC methods. We
use the method proposed by Hsieh et al. (2008) as a repre-
sentation of the CRC methods. For each of the simulation
settings, a total of 500 simulations with a sample size of 400
are conducted.

Simulation 1. We expect our method’s estimates to be
reliable because our method does not require specification of
a parametric form for the transformation function. We also
assess whether the added robustness is gained at the ex-
pense of reduced efficiency. To investigate these issues, we
compare the performance of the proposed method with the
correct BLSR method (termed CBLSR) and the incorrect
BLSR method (termed MBLSR), in which the transforma-
tion function is correctly specified and misspecified, respec-
tively. To make such a comparison, we generate data with the
sole binary covariate X that takes the value 1 for one-half
of the subjects and 0 for the other half, mimicking a binary
treatment indicator. The following model generates simula-
tion data: H1(S) = βX + ε1, H2(T ) = αX + ε2, where H1(t) =
t, H2(t) = log t, α = β = 1, and (ε1, ε2)

′ is a Gaussian vector
with a mean of 0 and covariance matrix Σρ, ρ = 0.5. We as-
sume S is the time to the nonterminal event, and T is the
time to the terminal event. The censoring random variable C

is distributed uniformly on (0, 20), so that about 15% of T is
censored by C and about 15% of S is censored by C ∧ T .

In the MBLSR, the transformations were misspecified as
H1(t) = H2(t) = t . Table 1 presents the resulting estimators
for β, α, and ρ based on the 500 simulations using the pro-
posed method, the CBLSR and MBLSR methods. A useful
rule of thumb in evaluating bias is that biases do not have
a substantial negative effect on inferences (e.g., by impairing
the coverage of confidence intervals) unless the standardized
bias (bias as a percentage of the SD) exceeds 40% (Olsen and
Schafer, 2001). By this rule, the proposed estimator and the
CBLSR method are unbiased. In contrast, the MBLSR esti-
mator is seriously biased and inefficient, especially for α, which
is the regression coefficient in the model where the transforma-
tion function is misspecified. The comparison of the CBLSR
estimator with the MBLSR estimator shows that a correctly
specified transformation function plays an important role in
the performance of the BLSR methods. The misspecification
of the transformation function can lead to the large biases
and variances of the coefficient estimators. By comparing the
proposed estimates with the CBLSR estimates, we see that al-
though the estimates from the proposed method have a larger
bias than the CBLSR estimators, the proposed estimators are
more efficient than those of the CBLSR method. As a re-
sult, the performances of the two methods are comparable
in terms of mean square errors. The CBLSR estimator is a
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Table 1
The bias, empirical standard deviation (SD), root of mean square error (RMSE), and the empirical coverage probabilities
(CP) of 95% confidence intervals of estimators based on 500 replications using the proposed, the CBLSR, and MBLSR

methods for Simulation 1

α̂ β̂

Method Bias SD RMSE CP Bias SD RMSE CP

Proposed 0.0260 0.1183 0.1211 0.950 0.0277 0.1187 0.1219 0.945
CBLSR 0.0090 0.1157 0.1160 0.0063 0.1144 0.1146
MBLSR 1.3461 0.3558 1.3923 0.1711 0.1341 0.2174

ρ̂

Proposed 0.0086 0.0441 0.0449 0.950

method that leaves the error distribution unspecified, whereas
our estimator leaves the transformation function unspecified.
Hence, correctly putting assumptions on the transformation
functions or on the error distribution may not matter to the
inference about the effect of covariates. However, it does mat-
ter to the association parameter because the CBLSR cannot
directly provide the estimator of the association parameter,
while our method does.

Figure 1a and b displays the average of the estimated trans-
formation functions and their pointwise 95% confidential in-
tervals, which suggest that the proposed method produces
reasonable estimates of the transformation functions.

Simulation 2. Simulation 1 shows that the misspecifi-
cation of the transformation function will lead to a seri-
ously biased estimator for the BLSR method. Our method
requires the specification of the error distribution. A nat-
ural question is whether the proposed method is sensitive
to the error distribution. To investigate the issue, we gen-
erate data similar to those in Simulation 1, except that
the errors (ε1, ε2)

′ jointly follow a Clayton copular model
as Pr(ε1 ≥ x, ε2 ≥ y) = φ−1

γ [φγ{Pr(ε1 ≥ x)} + φγ{Pr(ε2 ≥ y)}]
with φγ(υ) = (υ−γ − 1)/γ, γ = 0.5, and both marginal distri-

butions of ε1 and ε2 follow the chi-square distribution with
one degree of freedom. Therefore, the assumption on the er-
ror distribution required by our method is not satisfied, but
it follows the requirement of Hsieh et al. (2008).

For each set of simulated data, we estimate β, α and the as-
sociation parameter using the proposed method, the CBLSR
method, the MBLSR method, the CRC1 method and the
CRC2 method. The CRC1 method is the CRC method with
the transformation function correctly specified but the error
distribution unspecified, and the CRC2 method is the CRC
method with the error distribution correctly specified but
the transformation function unspecified. The transformation
functions are misspecified as H1(t) = H2(t) = t in the MBLSR
method. Table 2 presents the bias, the SD, and the RMSE of
β, α, and the association parameter. From Table 2, one can
see that our estimator is slightly biased due to the misspecifi-
cation of the error distribution, while the MBLSR estimator
is seriously biased and inefficient. This result implies that the
estimation of the effect of covariates is driven more by the
assumptions about the form of the transformation function
than those about the error distribution. The conclusion is
consistent with that founded by Lin and Zhou (2009).
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Figure 1. Results of the proposed method based on 500 replications for Simulation 1. (a) The averaged estimates of H1(t);
(b) The averaged estimates of H2(t) (solid line indicates estimates and 95% confidence limit; dashed line represents the true
function).
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Table 2
The bias, SD, and RMSE of estimators based on 500 replications using the proposed, CBLSR, MBLSR, CRC1, and CRC2

methods for Simulation 2

β̂ α̂

Method Bias SD RMSE Bias SD RMSE

Proposed −0.0846 0.1064 0.1359 −0.0399 0.0994 0.1071
CBLSR 0.0047 0.0820 0.0821 0.0071 0.0845 0.0848
MBLSR −0.0855 0.1320 0.1573 −2.0418 0.6230 2.1347
CRC1 0.0645 0.0863 0.1077
CRC2 0.0512 0.0701 0.0868

To further investigate the robustness of the proposed
method, we also conduct the simulation studies with γ vary-
ing from 0.01 to 10. The resulting estimators are displayed in
Table 3. From Table 3, one can see that the proposed method
has a slight bias when γ is small and essentially no bias for the
other case, suggesting that our method is quite robust to the
normal assumption. This occurs probably because the trans-
formation function is nonparametric and the normal assump-
tion is fairly robust toward some departure (Hanley, 1988).

We also have conducted further simulation studies (denoted
as Simulations 3 and 4) to assess the performance of the pro-
posed method when covariates are continuous and to inves-
tigate the possible loss due to the using of the estimating
equations instead of the maximum likelihood function for the
transformation function. The results are reported in the Sup-
plementary Materials C and D and point to the good perfor-
mance of the proposed method and hint at the appropriate-
ness of data analysis reported in the next section.

6. Analysis of a Multiple Myeloma Trial

The motivating example is a trial involving patients with
multiple myeloma, a progressive hematological disease that
represents more than 10% of all hematologic cancers. Time
to disease progression and overall survival are often the two
main clinical outcomes of multiple myeloma patients, whose
overall survival or time-to-disease progression ranges from a
few months to more than 10 years (Decatur et al., 2008).
In an effort to understand the efficacy of treatment and the
clinical heterogeneities among cancer patients, a total of 264
advanced multiple myeloma patients were recruited in a ran-
domized study, wherein patients were randomly assigned to
either receive proteasome inhibitor bortezomib (experimental

arm) or high-dose dexamethasone (control arm). A number
of clinical and laboratory features that may provide prognos-
tic information, including age, gender, tumour proliferative
index, albumin, and Myeloma score (expression of myeloma
markers), were also collected in the study. The purpose of
the analysis is to disclose the relationship between disease
progression and overall survival, and their respective rela-
tionships with the treatment and these potential prognos-
tic factors. In this study, overall survival was assessed from
the date patients received their first dose of study drug to
death or censoring, whichever comes first. Time to progres-
sion was assessed from the same starting date to disease pro-
gression, which can be censored by death. Hence, overall sur-
vival (T ) and time to progression (S) are two semicompeting
outcomes, as the former can censor the latter, but not vice
versa. During the course of the clinical trial, patients’ median
follow-up time was 447 days, and 169 disease progressions and
145 deaths were observed. We consider the following model:
H1(S) = X′β + ε1, and H2(T ) = X′α + ε2, where the covari-
ate vector X includes treatment status (0=control, 1=exper-
iment), gender (0=male, 1=female), Myeloma score, tumour
proliferative index, age and albumin. Except for treatment
status and gender, all covariates are continuous. The resulting
estimates of the regression coefficients and association param-
eter and their standard errors are listed in Table 4. We calcu-
lated the standard errors via the resampling method described
in Section 3, with 400 bootstrap samples. We chose 400 as the
sample size by monitoring the stability of the standard errors.

Our analysis provides several interesting results. First, Fig-
ure 2 depicting the estimated H1, H2 suggests that the form of
the transformation functions resembles that of a log function.
Hence, the semiparametric transformation models developed

Table 3
The bias, SD, and RMSE of estimators using the proposed method with different γ for Simulation 2

α̂ β̂

γ Bias SD RMSE Bias SD RMSE

0.01 −0.0279 0.0999 0.1037 −0.1197 0.1100 0.1626
0.1 −0.0277 0.1000 0.1038 −0.1058 0.1085 0.1515
0.5 −0.0243 0.1005 0.1034 −0.0677 0.1054 0.1253
1 −0.0349 0.1008 0.1067 −0.0542 0.1041 0.1174
2 −0.0530 0.1026 0.1155 −0.0465 0.1038 0.1137
4 −0.0395 0.1004 0.1079 −0.0307 0.0996 0.1042
10 −0.0344 0.1008 0.1065 −0.0264 0.1002 0.1036
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Table 4
The estimates from the proposed method for the myeloma data

α̂ β̂

Estimator SD P-value Estimator SD P-value

Treatment 0.185 0.203 0.363 0.511 0.223 0.022
Gender 0.064 0.160 0.689 −0.012 0.194 0.949
Score −0.018 0.006 0.007 −0.004 0.008 0.603
Index −0.439 0.190 0.021 −0.333 0.242 0.169
Age 0.018 0.014 0.189 0.033 0.014 0.015
Albumin 0.083 0.017 0.000 0.077 0.019 0.000

ρ̂

0.386 0.077 0.000

for our data can roughly be interpreted as accelerated failure
time models. Second, the prognostic factors act differently on
the two main endpoints. Specifically, treatment status and
age have significant effects on time to progression, but their
effects on overall survival are not significant. This suggests
that the treatment and age have only short-term effects on
patients’ outcome, with no long-term effect on patients’ over-
all survival. On the other hand, the tumour proliferative index
and myeloma score have significant effects for overall survival
but not for time to progression, which suggests that these
two prognostic factors have long-term effects on patients’ out-
comes, although their short-term effect is not significant. It
is worth noting that albumin is has an effect on both short-
and long-term outcomes, whereas gender is not significant for
either outcome. Third, as measured by the correlation pa-
rameter, the two outcomes—time to progression and overall
survival—are correlated even after controlling for the afore-
mentioned prognostic factors. This hints that, for multiple
myeloma, disease progression can indeed be regarded as a
precursor or a surrogate for death. Such information would
be helpful for designing next generation therapy for multiple

myeloma patients. Finally, from the resulting estimators, the
proportion of the treatment effect explained by the disease

progression, is estimated as P̂TE = ρ̂β̂1/α̂1 = 1.0678 and its
95% confidence interval is [−1.4117, 3.5473]. The relative ef-

fect of treatment effect is estimated as R̂E = β̂1/α̂1 = 2.7689
and its 95% confidence interval is [−0.4558, 5.9937]. Both con-
fidence intervals contain zero, implying that disease progres-
sion is not a surrogate for death if the treatment is of interest.

Finally, we propose a procedure to check the validity of
the assumed semiparametric transformation models. First,
we randomly divided the data into five subsets of equal
size. We use four of the subsets as the training set; the
remaining set is used for validation. For each subject in
the validation set, we predicted the subject’s event number
of a landmark event and death up to time t by ÊNi(t) =
− ∫ t

t0
Yi(t) d log

{
Ŝ

ρ

(
Ĥ1(t) − X′

iβ̂, Ĥ2(t)−X′
iα̂

)}
and ÊN2i(t)=

− ∫ t

t0
Y2i(t) d log

(
1 − �

(
Ĥ2(t) − X′

iα̂
))

, respectively. We in-
vestigated the performance of the model by examining the
prediction error: PE1i = ∫ τ

t0

(
Ni(t) − ÊNi(t)

)
d
{∑n

k=1
Nk(t)

}
,

PE2i = ∫ τ

t0

(
N2i(t) − ÊN2i(t)

)
d
{∑n

k=1
N2k(t)

}
. Figures 3 and
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Figure 2. The proposed estimators of H1 and H2 for the myeloma data (solid line: estimated; dotted line: 95% confidence
limit).
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4 (in the Supplementary Material E) plot the prediction error
against the covariates, suggesting that the prediction error is
independent of the covariates—that is, the proposed model
basically picks up all of the covariates’ information, and so
the proposed model (2) is reasonable.

7. Discussion

In the current article, we propose semiparametric transfor-
mation models for semicompeting risk data. Our models al-
low the transformation function to be unknown, but the error
distribution is specified to be normal. In this way, our model
can provide direct estimators of the regression analysis and
the association parameter. A simple algorithm is provided to
estimate the transformation functions, and the proposed es-
timators are shown to be consistent and asymptotically nor-
mal. The simulation studies reveal that our method works
well compared with existing methods.

8. Supplementary Materials

The appendices referenced in Sections 3, 5, and 6, the code
and the data are available with this paper at the Biometrics
website on Wiley Online Library.
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