Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2014.

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.201400851

Scaling the Stiffness, Strength, and Toughness of Ceramic-Coated Nanotube Foams into the Structural Regime

Anna Brieland-Shoultz, Sameh Tawfick, Sei Jin Park, Mostafa Bedewy, Matthew R. Maschmann, Jeffery W. Baur, and A. John Hart*

Supporting Information

Scaling the stiffness, strength, and toughness of ceramic coated nanotube foams into the structural regime

By Anna Brieland-Shoultz[†], Sameh Tawfick[†], Sei Jin Park[†], Mostafa Bedewy, Matthew Maschmann, Jeffery W. Baur and A. John Hart*

Fig. S1: SAXS characterization of Al_2O_3 coating thickness evolution. (a) Schematic of experimental setup for high energy transmission SAXS of vertically aligned CNT; (b) Line scans of scattering spectra having various number of ALD cycles, where arrow indicates the decrease in *q* with the increased number of cycles in addition to the appearance of a new peak at high *q* values; and (c) schematics qualitatively showing the evolution of the film thickness as well as the surface roughness of the CNT-Al₂O₃ nanotubes.

Fig. S2: High-resolution SEM image of top of CNT forest coated with 100 cycles Al₂O₃ by ALD.

Fig. S3: Measured Young's modulus (in compression) as versus micropillar diameter for bare CNTs, and CNTs coated with 13, 30, and 51 nm Al_2O_3 by ALD.

Fig. S4: Plot showing the sensitivity of the model, used to predict Young's modulus, to the penetration depth of the ALD coating (hence changing the coated volume of the micropillar).

Fig. S5: Load-displacement curves for Al_2O_3/CNT micropillars, with number of ALD cycles as noted. The circle superimposed on each curve indicates the strength value used to construct the strength-density relationship in Fig. 6.