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Abstract 
 
Biofilms are aggregates of bacterial cells enclosed in an extracellular matrix. When 

encased in a biofilm, bacteria function differently. In particular, there is a hypothesis that 

frequency of gene transfer in biofilms is higher than that in corresponding planktonic 

counterparts, in part due to increased competence. When the acquired genes increase 

virulence or ability to treat bacteria, as is the case with antibiotic resistance gene, the 

potential downstream impacts on human health can be substantial. Biofilms, along with 

trace levels of antibiotics and antibiotic resistance determinants, are a common occurrence 

in water treatment and distribution systems. This dissertation assesses the role of natural 

transformation in biofilms in the formation and dissemination of antibiotic resistant 

bacteria in water networks using laboratory and agent-based models. In an initial set of 

laboratory experiments, we demonstrated detectable transformation frequencies in 

Acinetobacter baylyi strain AC811 biofilms exposed to varying genomic and donor DNA 

encoding antibiotic resistance in a once-through flow system replicating environmental 

conditions in water system pipes. An additional set of experiments compared 

transformation frequencies of AC811 biofilm and planktonic cells incubated with donor 

plasmid DNA. The microtiter experiment data showed that the transformation frequencies 

of suspended cells were at least 10-fold higher than that of the biofilm cells. Similarly, the  
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flow system experiment data indicated that transformation frequencies of the planktonic 

samples were approximately 10-fold higher than frequencies of corresponding biofilm 

samples. qPCR was used to quantify comP gene expression in AC811. Comparison  comP 

gene expression trends in biofilm and planktonic cells suggests that the observed  

frequency differences are due to a variation in competence state between biofilm and free-

floating cells. These results suggest that the assumption of increased competence of 

biofilm cells as compared to planktonic cells may not be generalizable across all bacterial 

species. Development of an agent-based model allowed us to study additional factors that 

may affect transformation frequency and in a setting that allows visualization of the 

biofilm structure. We developed an extension to the iDynoMiCs agent-based model and 

used this extended model to assess the effect of resistance gene burden value on the 

persistence of resistant bacteria in a biofilm exposed to donor DNA and varying 

antimicrobial concentrations. Several trends are apparent in simulations results. Bacteria 

harboring no cost and low cost fitness genes will persist in the absence of selective 

pressure and increasing antimicrobial concentration in the influent promotes increased 

resistance expansion within the single-species biofilm. Results suggest that influent 

antimicrobial concentration can substantially affect the type and frequency of resistance 

genes circulating in the environment. This model can be a tool to test hypotheses that are 

difficult to conduct in the laboratory setting and can be used to drive future laboratory 

studies.  
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Chapter 1 

Introduction 

 
 

1.1 Background 

 
Biofilms are microbial communities formed by sessile aggregates of bacteria attached to 

organic or inert surfaces.[1-3] They are encased within an extracellular matrix and exhibit 

distinct properties from their planktonic counterparts.[2, 4, 5] A general assumption is that 

frequency of gene transfer in biofilms is greater than among planktonic cells due to 

advantages afforded by the matrix, close spatial orientation of the cells and increased 

genetic competence.[6-9] Biofilms, along with trace levels of antibiotics and antibiotic 

resistance determinants, are a common occurrence in water treatment and distribution 

systems.[10-12] Antibiotic selective pressure and horizontal gene transfer of antibiotic 

resistance genes may contribute to emergence of antibiotic resistant bacteria from water 

systems.[13-15] It is unknown if exposure to antibiotic resistant bacteria in the water is 

associated with increased risk of bacterial infection in the general population.[11] But, there 

is increasing evidence that clinically important resistance genes have emerged from 

environmental sources.[10] And in fact, water systems can serve as a reservoir for the spread 

of antibiotic resistance to opportunistic pathogens.[11] This dissertation research investigates 
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various factors that influence natural transformation and/or persistence of resistance genes 

in Acineotbacter baylyi strain BD413 biofilms such as exposure to donor DNA, 

competence gene expression, resistance gene metabolic burden and antimicrobial 

inhibition using laboratory and agent-based models. 

 

This thesis contains five chapters. The second chapter is a review of the various 

components that contribute to natural transformation in biofilms in water systems. This 

review of literature also includes a discussion of the physiologic properties and natural 

transformation of the model organism, Acinetobacter baylyi strain BD413. The third 

chapter describes a series of laboratory studies using Acinetobacter baylyi strain BD413. In 

the first set of experiments, Acinetobacter sp. strain BD413 biofilms developed in flow 

systems were exposed to varying donor genomic and plasmid DNA encoding antibiotic 

resistance. The next set of experiments tested the hypothesis that growth in a biofilm 

increases competence. Transformation frequencies of biofilms developed in static and 

dynamic flow systems were compared with their respective planktonic counterparts. 

Expression patterns of comP, a competence gene in the BD413 competence pathway, were 

also compared between the two growth modes. The fourth chapter describes the 

development of an agent-based model that simulates DNA uptake, genetic transformation, 

resistance gene expression and antimicrobial inhibition in a single species biofilm. This 

extended agent-based model was also used to assess the effect of resistance gene burden 

value on the persistence of resistant bacteria in a biofilm exposed to donor DNA and 

varying antimicrobial concentration. The fifth and final chapter provides a summary of the 
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study conclusions and suggestions for future work. Findings from this work contribute to 

the larger study of the spread of antibiotic resistant bacteria in water distribution systems. 
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Chapter 2 

Literature Review: Components that contribute to natural 

transformation in water treatment and distribution system biofilms 

 
 

2.1 Abstract  

Bacterial pathogen resistance to antibiotics limits therapeutic options and increases 

morbidity and mortality.[1] Prevalence of resistance genes and resistant bacterial strains is 

increased in areas of heavy antibiotic use.[1, 2] Water treatment plants and distribution 

networks house bacterial biofilms, antibiotics and resistance genes.[3, 4] Thus, emergence 

and dissemination of antibiotic resistant bacteria from water systems can be due to the 

selective pressure of trace levels of antibiotics and from horizontal gene transfer of 

antibiotic resistance genes.[1, 5, 6]  It is unknown if exposure to antibiotic resistant bacteria in 

the water is associated with increased risk of bacterial infection in the general population.[7] 

But, there is increasing evidence that clinically important resistance genes have emerged 

from environmental sources.[8] And in fact, water systems can serve as a reservoir for the 

spread of antibiotic resistance to opportunistic pathogens.[7] This chapter provides an 

overview of biofilm development and characteristics, summarizes evidence of antibiotics,  

antibiotic resistant genes and antibiotic resistant bacteria in water systems and ends with a 

focus on the physiologic properties and natural transformation of the model organism, 

Acinetobacter baylyi strain BD413.  
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2.2 Biofilms: A general introduction 

Biofilms are interactive microbial communities formed by sessile aggregates of bacteria 

attached to organic or inert surfaces.[9-11] Whether composed of a single or multiple species, 

bacteria in a biofilm are encased within a matrix composed of water, extracellular DNA, 

secreted polymers, adsorbed nutrients and metabolites, cell lysis products and other 

detritus from the surrounding environment.[4, 10, 12] Biofilms are ubiquitous, especially in 

moist environments with sufficient nutrient flow and where attachment to a surface is 

possible.[10] Rather than being transient formations of settled planktonic cells, it is now 

widely accepted that biofilms are the preferred bacterial growth mode and exhibit distinct 

properties from their planktonic counterparts.[12-15] Thus, extrapolation from studies of 

planktonic cells may be severely limited.[16] 

 

Biofilm development is a complex multifactorial process resulting in an ordered and, often 

heterogeneous, microbial community.[10, 12] Formation of the extra polysaccharide substance 

(EPS) is an integral component of this process. There are two general theories regarding 

general biofilm development.[17] The first is a two-step process. Bacteria attach to the 

surface via van der Waals forces, electrostatic forces and hydrophobic interactions. These 

cells are reversibly attached and can be removed via fluid shear forces. However, 

attachment can be strengthened through exo-polysaccharides or ligands that interact with 

the surface.[17] Some wild bacterial strains have a thick EPS layer surrounding the bacterial 

cell as well as thick protrusions or fimbriae that project out from the cell and through the 

EPS layer.[16] The fimbriae help to align bacterial cells with the surface and with one 

another while the EPS serves to irreversibly attach some cells to the surface.[17] Once cells 
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are irreversibly attached, the biofilm structure grows through cell division and also recruits 

other cells from the bulk fluid phase.[16, 18] The second theory involves a three-step process. 

In the first two steps, bacteria attach via van der Waals and electrostatic forces before 

permanently sticking on with the help of specific adhesion receptors.[17] Over time, the 

biofilm transforms into a structured community with the development of chemical 

gradients, water channels and internal nutrient availability.[15, 18, 19]  

 

Biofilm maturation often results in a structure with an array of microenvironments. In thick 

biofilms, the cells in the upper layers exhibit aerobic activity reducing the oxygen available 

to the cells in the lower layers, next to the substratum. In addition, pH gradients have been 

noted in many biofilms, both in the vertical and horizontal zones. Biofilms also have an 

internal local availability of nutrients due to cell lysis and, in the case of some multi-

species biofilms, due to the use of metabolites produced by one species and used as a 

nutrient by another. In some instances, heterotrophic bacteria surround primary producers 

and use their metabolic exudates.[18] Biofilm communities that have achieved physiological 

cooperation and work together as a unit are sometimes referred to as ‘consortia’.[18] 

 

2.3 Biofilms and antibiotic resistance 

Mature biofilms can tolerate antibiotic agents at concentrations up to 1000 times that 

needed to kill genetically equivalent planktonic bacteria.[13, 18] Reduced susceptibility of 

biofilms to antibiotics is well documented, however there are several working hypotheses 

as to the cause.[20] The antibiotic may fail to fully penetrate the biofilm because of structural 
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barriers and/or consumption or neutralization reactions with the biomass.[21-25] Retarded 

diffusion may also lead to biofilm regions with low substrate concentration levels and 

metabolically inactive, less susceptible cells.[25, 26] Another hypothesis is that cells may turn 

on a protective stress response upon exposure to high antibiotic concentrations or a 

subpopulation of persistor cells may develop.[20] Alternatively, sessile cells may undergo a 

physiological change upon surface adherence, resulting in a biofilm phenotype with 

increased resistance.[25, 27] For instance, genes encoding efflux pumps may be differentially 

expressed in biofilm cells versus planktonic cells. While these are all plausible theories, the 

reality is that biofilm resistance seems to be a combination of several factors.[26, 28-31] In fact, 

one species may have different resistance responses depending on the antibiotic agent 

and/or biofilm properties.[20, 32]  

 

Biofilms may acquire antibiotic resistance through the uptake of extracellular DNA 

encoding resistance genes. A general assumption is that biofilms have high gene transfer 

frequencies as compared to planktonic cells due to advantages afforded by the matrix, 

close spatial orientation of the cells and increased genetic competence.[33-36] The matrix 

concentrates exogenous DNA for efficient DNA uptake during natural transformation. 

And, Roberts et al. (2001) conjectures that there are a variety of phenotypes displayed 

among the closely packed cells with an increased likelihood of ‘gene transfer’ 

phenotypes.[34, 37, 38] The close proximity of cells in a biofilm also facilitates cell-cell 

communication.[10, 12, 39] This may increase genetic competence in instances where 

competence induction is regulated via a quorum-sensing mechanism such as in Gram-



 9 

positive Streptococcus mutans.[40] Li et al. (2001) demonstrated that S. mutans cells 

developed in a static system had 10- to 600-fold higher transformation frequencies than 

their planktonic counterparts.[41] These results support the prevailing hypothesis regarding 

higher transformation frequencies in biofilms versus planktonic cells. However, as 

mentioned previously, competence development in streptococci is dependent on cell 

density.[41] This hypothesis remains to be explored with other bacterial species with 

competence pathways that may not be induced via a quorum-sensing mechanism. 

 

2.4 Biofilm formation in water treatment & distribution systems  

Biofilms are a common occurrence in water systems.[3, 4, 42] Approximately 107 cells (dead 

or alive) remain per liter of water cleaned in even the most technologically advanced water 

treatment facilities.[43] Cells that come through the process may be killed, reversibly injured 

or may be unharmed. Thus the increase of bacteria in water networks, post treatment, can 

be due to internal regrowth, after-growth and breakthrough growth. Regrowth refers to the 

resuscitation and subsequent growth of cells that were reversibly injured in the treatment 

process, after-growth is used to describe the growth of cells already present in the post-

treatment water distribution system and the term breakthrough growth denotes the 

multiplication of cells that passed through the treatment process unharmed.[44] Xi et al. 

(2009) found that the total heterotrophic plate count of bacteria in tap water samples was 

lower than in the source water but still significantly higher than treated water, indicating 

regrowth of bacteria in the drinking water distribution system.[7] A majority of viable post-

treatment cells adhere to the surface of the distribution pipes and storage tanks and form 
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biofilms. In fact, approximately 95% of the biomass in water systems is in the form of 

biofilms while less than 5% is found suspended in the bulk fluid.[44] Microbial cells are 

released into and contaminate the circulating water due to either the detachment of bacteria 

from the pipe and storage tank walls or the sloughing off of cells from the biofilm due to 

the shear forces of the bulk fluid.[43]  

 

2.5 Presence of antibiotics in the general aqueous environment and in water 

treatment and distribution systems  

Approximately 5500 tons of antibiotics are produced and purchased per year in the US and 

a majority of these compounds are excreted and can enter various stages of the urban water 

cycle as active metabolites. [2, 8, 45-52]  While there are different sources of antibiotic pollution 

in the aqueous environment such as hospital waste and industrial pharmaceutical waste, a 

significant portion of antibiotic use in the US is for animal husbandry/ agricultural 

purposes.[45-48, 51, 53, 54] Antibiotics are administered as feed additives at sub-therapeutic levels, 

used to treat infections and are prophylactically sprayed on fruit trees.[46, 47, 55, 56] Antibiotics 

in manure used as fertilizer and pharmaceutical compounds used in animal farming 

practices can seep through the soil into surface water, ground water and potentially, 

drinking water.[51, 56, 57] Wastewater treatment plant (WWTP) disinfection procedures are not 

designed to efficiently remove antibiotics and treated effluent can contaminate receiving 

rivers.[8, 51, 58-61]  Drinking water can also be affected by ‘indirect potable reuse.’ This term 

refers to situations when municipal water is recycled and treated effluents are used to 

augment drinking water sources or when a drinking water plant intake is downstream from 
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a wastewater effluent discharge point.[8, 52, 62] Trace levels of antibiotics have been found in 

finished drinking water, however there is scant research in this area.[7, 62]   

 

2.6 Antibiotic resistant bacteria and antibiotic resistance genes in water treatment 

and distribution systems 

Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are fed into 

water systems from various sources and ARGs can further persist in these settings. 

Antibiotics in hospital and pharmaceutical plant effluents, treated municipal waste and 

agricultural runoff can lead to selection for antibiotic resistant bacteria in source water.[7, 56, 

63] And, crude antibiotic preparations used on farms, manure from treated animals and 

human associated wastewaters contain both ARB and ARGs.[8, 45, 57, 59, 64, 65]  Subsequent water 

treatment kills most of the bacterial cells but ARGs are still present in treated effluent and 

in distribution systems.[7, 8, 61] In addition, there is evidence that traditional disinfection 

procedures do not damage ARGs during the treatment process.[66] This extracellular DNA 

can remain stable for long periods of time, especially when associated with solid surfaces. 

DNA in this state is protected from environmental nucleases and can persist and retain its 

bacterial transforming abilities.[48, 67, 68]  

 

2.7 Water treatment and distribution processes contribute to an increase in antibiotic 

resistant bacteria  

Emergence and dissemination of ARB from water systems can be due to the selective 

pressure of trace levels of antibiotics and from horizontal gene transfer of ARGs.[1, 5, 6, 8]  

Research indicates that the treatment process in WWTPs contributes to an increase in 
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ARB, although the precise mechanism for this increase is not clarified.[1, 6] Zhang et al. 

(2009) found that the prevalence of Acinetobacter spp. isolates resistant to amoxicillin/ 

clavulanic acid, chloramphenicol or rifampicin progressively increased from raw influent 

samples to final effluent samples.[1] Ferreira da Silva et al. (2007) demonstrated a similar 

trend among WWTP Enterobacteriaceae isolates. Prevalence of resistance to ciprofloxacin 

and cephalothin significantly increased from Escherichia spp. isolated from raw influent to 

those isolated from treated effluent samples.[6] The same phenomenon is seen in drinking 

water systems. In two separate studies, Armstrong and colleagues found antibiotic resistant 

bacteria in drinking water treatment plant samples and in finished water samples.[69, 70] In 

fact, antibiotic resistant gram-negative organisms, including Acinetobacter spp., were more 

common in finished drinking water than in source waters.[69] Comparing source, finished 

and tap water samples, Xi et al. (2009) described heterotrophic plate count data that 

indicated a significant increase in resistance to chloramphenicol and rifampicin in tap 

water samples than in source water samples. And, there was a significant increase in 

resistance to tetracycline in tap water compared to source water and finished drinking 

water samples.[7]  

 

The aforementioned study results suggest that water treatment and distribution systems can 

significantly impact the formation and spread of antibiotic resistant bacteria. Trace levels 

of antibiotics, presence of antibiotic resistant bacteria and resistance genes and high 

microbial densities in the form of biofilms lining pipes and storage tanks in water networks 

may create an environment that promotes gene transfer.[3, 44, 56, 63] In addition, water systems 
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link different environmental compartments and can therefore facilitate the spread of 

antibiotic resistant bacteria between these compartments.[1]  

 

2.8 Model organism: Acinetobacter baylyi strain AC811 

Acinetobacter baylyi strain BD413 is an ideal model organism for studying transformation, 

particularly in experiments conducted to assess the role of natural transformation in 

biofilms in the formation and spread of antibiotic resistant bacteria in water systems. 

Acinetobacter spp. are non-motile, coccobacilli bacteria that are capable of utilizing a wide 

variety of carbon sources and thus can be found in numerous environmental niches.[1, 71-73] 

In particular, members of this genus are found in soil, sewage, freshwater, and in drinking 

water systems.[44, 74, 75] The naturally competent Acinetobacter baylyi strain BD413, 

originally isolated from the soil, is particularly well suited for studying natural 

transformation.[76-78] BD413, also known as Acinetobacter sp. strain ADP1, has an 

extremely efficient transformation system and does not discriminate between homologous 

and heterologous DNA.[1, 71, 78-80]  This strain exhibits high transformation frequencies in 

planktonic batch culture as well as in monoculture biofilms developed in once-through 

flow systems.[75, 77]  In addition, it is transformable in groundwater and soil liquid with 

transformation frequencies as efficient as in vitro frequencies, even in the presence of 

indigenous microorganisms.[81]The ubiquity of this genus and evidence of high gene 

transfer between strains makes these microorganisms suitable for monitoring antibiotic 

resistance in the environment.[1, 53, 82] Acinetobacter sp. strain AC811 is a nonencapsulated 
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derivative of strain BD413 and is the recipient organism in a majority of the transformation 

experiments described in this work.[1, 79] 

  

2.9 Overview of the Acinetobacter baylyi strain BD413 competence pathway  

There are five genes in the BD413 competence pathway: comB, comC, comE, comF and 

comP.[71, 83-85] Respective transformation-deficient mutants indicate that all five gene 

products are essential for natural transformation. In particular, comE and comF mutants 

exhibited reduced transformation frequencies whereas comB, comC and comP mutants 

resulted in completely noncompetent phenotypes.[83-85] Amino acid sequences of ComB, 

ComE, ComF and ComP proteins are similar to prepilins, precursors of structural subunits 

of type IV pili.[84-86] And, ComC is similar to type IV pilus biogenesis or assembly 

factors.[83] Homologues of type IV pilus structures may be involved in natural 

transformation in various bacteria and there is no definitive conclusion as to whether type 

IV pilus structures are involved with DNA transformation. However, the presence of thick 

and thin fimbriae on the surface of comB, comC, comE, comF and comP mutants implies 

that these genes are not essential for pili development and that these two particular types of 

pilus structures are not involved in natural transformation in BD413.[71, 83-86] Instead, these 

competence proteins may be part of DNA translocating machinery. ComC and ComP are 

essential for DNA binding, with ComC located at the cell surface.[71, 83-86] ComC may be the 

basement protein or molecular usher for an oligomeric structure that transports DNA 

across the outer membrane, the periplasmic space and the cytoplasmic membrane.[71, 83, 84] 

ComB, ComE, ComF and ComP form this DNA shaft with ComP located in the outer 
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membrane.[71, 84-86] Double-stranded DNA binds to the surface of this structure and DNA 

enters the cell in a single-stranded form powered by ATP hydrolysis or an electrochemical 

gradient across the membrane.[85]  

 

comB and comP expression profiles indicate that transformation machinery is present prior 

to competence induction. Induction of competence in Acinetobacter baylyi strain BD413 

takes place after dilution of a stationary phase culture into fresh nutrient medium.[87] Cells 

remain competent during the exponential growth phase, decreasing thereafter.[86-88]  

Conversely, comB and comP expression peaks slightly after dilution of a stationary culture 

into fresh medium and then decreases across the exponential phase before peaking again in 

the late stationary phase.[85, 86, 89] Thus, comB and comP expression is not correlated with 

competence induction and is growth phase dependent. In fact, immediate competence of 

BD413 cells diluted into fresh medium is probably not due to induction of protein 

expression. This is supported by the finding that transformation of BD413 is not hindered 

by the protein synthesis inhibitor, chloramphenicol.[86, 88, 89] Most probably, DNA uptake 

machinery is already present in stationary cells and diluting these cells into fresh medium 

provides the requisite energy for DNA uptake.[85, 86, 89] Also, competence regulation may 

involve promoters that respond to environmental nutrient limitations or the energy charge 

of the cell as evidenced by higher levels of gene expression in the late stationary phase.[86] 
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2.10 Factors that affect transformation in Acinetobacter baylyi strain BD413 in 

planktonic and biofilm growth mode 

Several studies have examined factors that affect transformation in Acinetobacter baylyi 

strain BD413 in both batch culture and biofilm growth modes. Palmen et al. (1993) found 

that BD413 transformation frequency increases with increasing concentration of both 

chromosomal and plasmid donor DNA; the frequency curve follows saturation kinetics.[77] 

Palmen and colleagues also studied the effect of incubation time with plasmid donor DNA 

on transformation frequency of BD413 batch culture cells. As expected, transformation 

frequency increases with longer incubation times.[77] Transformation frequency in strain 

BD413 also increases, in a biphasic pattern, as the donor DNA fragment size increases.[88] 

In particular, transformation of a modified BD413 strain with fragments larger than 1 kb 

resulted in high transformation frequencies.[88] Hendrickx et al. (2003) studied natural 

transformation in Acinetobacter baylyi strain BD413 biofilms developed in a once-through 

system.[75] Although in situ microscopy monitoring revealed new transformants in a 3-day 

old biofilm, younger cells are more readily transformed. Thus, biofilm age appears to 

affect transformation frequency.[75] Similar to batch culture experiment results, 

transformation frequency in BD413 biofilms increased as a function of influent plasmid 

DNA concentration. However the curve did not follow saturation kinetics since a 

saturation point was not reached in the tested donor DNA range.[75]  

 

2.11 Transformation of Acinetobacter baylyi strain BD413 in the natural environment 

Identification of resistance genes in the environment and use of genetically modified crops 

has prompted studies that characterize natural transformation in the environment. These 
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experiments are either conducted outside of the laboratory setting or in microcosms made 

up of materials recovered from the environment. BD413 served as the recipient organism 

in several transformation studies. Williams et al. (1996) found that BD413 recipient cells 

were transformed by whole cell lysate in filter matings incubated in the river and also 

when incorporated into the indigenous river epilithon. The authors also discovered that 

transformation frequencies of in situ filter matings increased with ambient river 

temperature.[90] Direct observation of horizontal gene transfer mechanisms in the 

environment is not always possible. However, microcosm studies offer the opportunity to 

study effects on transformation in the laboratory setting using materials recovered from the 

environment. Chromosomal DNA adsorbed to sand and sterilized groundwater aquifer 

material successfully transformed BD413 in respective microcosm settings. In fact, 

transformation efficiency with adsorbed DNA was as high as with DNA in solution.[68] Soil 

microcosm studies also produced detectable BD413 transformation frequencies. Antibiotic 

resistant cell lysate proved to be a viable source of transforming DNA for kanamycin-

sensitive BD413 populations residing in sterile and non-sterile soil. Homologous sources 

were 4- to 16-fold more efficient for transformation in the sterile soil setting compared to 

heterologous DNA. And in the non-sterile soil setting, cell lysate from homologous 

sources transformed recipient cells at a frequency of 1.1 x 10e-6 while BD413 did not 

uptake heterologous DNA at detectable rates. Further work clarified that cell lysates are 

available as transforming DNA for up to 4 days in sterile soil and for up to 8 hours in non-

sterile soil.[91] Per these results, BD413 may appear to be recalcitrant to uptake of 

heterologous DNA. However, Watson and Carter (2008) found that there are several 
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external factors that may influence and even promote transformation.[67] In particular, 

transformation in soil environments is dependent on nutrient availability and on soil 

texture. Simulated root exudate promoted transformation in sterile soil microcosms 

containing antibiotic sensitive BD413 cells, whereas previous experiments sans root 

exudate did not produce any detectable transformation frequencies.[67] In addition, effects 

of tested environmental factors on transformation frequency varied according to soil type. 

Soils with a higher proportion of clay content had higher gene transfer rates.[67] 

Acinetobacter baylyi strain BD413 is prevalent in many environmental compartments and 

appears to be transformable in different settings under a wide range of conditions Thus, it 

can be viewed as a sentinel bacteria for gene transfer in an environment polluted with 

antibiotics and resistance genes. 

 

2.12 Research implications 

Biofilms form in water system pipes and storage tanks, representing a potential risk factor 

for the formation and spread of ARB.[3, 7, 42, 43, 92] There have been numerous studies 

documenting the increase in ARB post water treatment and distribution.[1, 6, 69, 70] In addition, 

several microcosm experiments identified factors that affect transformation in soil.[67, 91] 

However, there has been minimal work on natural transformation in biofilms developed in 

dynamic flow systems. In addition, only one study conducted by Li et al. (2001) has 

confirmed higher gene transfer frequencies in biofilm cells compared to their planktonic 

counterparts.[41] This dissertation addresses these gaps in knowledge by using a simplified 

laboratory model to assess transformation frequencies in biofilms developed in once-
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through flow systems and exposed to varying antibiotic resistant donor DNA. We also 

describe data comparing transformation frequencies and competence gene expression in 

Acinetobacter baylyi strain BD413 biofilm and planktonic growth modes. Finally, we 

present an agent-based model that incorporates the various natural transformation 

processes. This model is used to look at factors that promote the formation and persistence 

of antibiotic resistant bacteria in a single-species biofilm. In addition, this model has 

numerous future applications as a stand alone computational tool and as an aide to drive 

future laboratory work. This dissertation work not only has downstream implications 

regarding water treatment procedures, water reuse and agricultural antibiotic use; it also 

highlights the need to approach a multitier issue, such as this one, with an interdisciplinary 

approach. 
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Chapter 3 

Evaluation of DNA transformation frequency in Acinetobacter baylyi 

AC811 biofilm and suspended culture 

 

3.1 Abstract 

Biofilms form in water distribution systems, coming in contact with potential donor DNA 

sources. The prevailing hypothesis is that frequency of gene transfer in biofilms is higher 

than that in corresponding planktonic counterparts, in part due to increased competence. 

Therefore, biofilms in water distribution systems may significantly contribute to the 

formation and spread of antibiotic resistant bacteria in water systems through natural 

transformation. To test the hypothesis regarding increased competence of biofilm cells, 

transformation frequencies in the biofilm and planktonic growth of Acinetobacter sp. strain 

AC811 with donor plasmid pWH1266 DNA carrying a tetracycline resistance marker were 

compared. Additionally, the underlying genetic mechanism responsible for observed 

differences was characterized. We demonstrate that detectable transformation frequencies 

are seen in Acinetobacter sp. strain AC811 biofilms developed in flow systems and 

exposed to varying donor DNA. Transformation frequencies ranged from 0 to 10e-4. We 

also compared DNA transformation frequencies in biofilm cells and overlying suspended  

cells grown in microtiter plates for 60 hours and in biofilm cells grown in a flow-cell 

system for 12, 24, 48 & 72 hours with planktonic cells grown in batch culture and 
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recovered at the exponential, early-stationary and late-stationary phases. The microtiter 

experiment data show that the transformation frequencies of suspended cells were at least 

10-fold higher than that of the biofilm cells. Similarly, the flow system experiment data 

indicate that transformation frequencies of the planktonic samples at various growth stages 

were approximately 10-fold higher than frequencies of corresponding biofilm samples. To 

investigate whether the expression of competency components is differentially expressed 

in both growth modes, qPCR was used to quantify the expression of the comP gene in 

AC811. Comparison of comP gene expression trends in biofilm and planktonic cells 

suggests that the ComP DNA uptake machinery is not synthesized to the same extent in 

BD413 planktonic and biofilm cells, possibly accounting for observed transformation 

frequency differences. The number of comP gene transcripts per AC811 biofilm cell 

decreased over time. However, in a more complex pattern, number of comP gene 

transcripts per planktonic cell decreased over the course of the exponential phase and then 

increased to maximal levels in the stationary phase. The evidence indicates that BD413 

planktonic cells are more competent than BD413 cells in the biofilm growth mode and that 

the hypothesis regarding increased competence of biofilm cells may not be generalizable 

across all bacterial species. 

 

3.2 Introduction 

Biofilms are interactive microbial communities formed by sessile clusters of bacteria 

attached to organic or inert surfaces.[1-3] These bacterial aggregates are encased within a 

matrix composed of water, polymeric substances including extracellular DNA produced by 
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the cells themselves, and other debris from the surrounding environment.[4-7] It is now 

widely accepted that biofilms are the preferred mode of bacterial growth and are 

ubiquitous in clinical, industrial and natural settings.[8-11] In particular, they adhere to the 

surface of water distribution pipes and storage tanks and form biofilms. Approximately 

95% of the biomass in water systems is in the form of biofilms while less than 5% is found 

suspended in the bulk fluid.[12] Water networks can also be reservoirs of antibiotic resistant 

genes.[13-15] The presence of resistance determinants and high cell densities in this setting 

may induce horizontal gene transfer.[14] 

 

Microbial biofilms are not simply a cluster of settled planktonic cells; they exhibit distinct 

properties from their free-floating counterparts.[16, 17] The complex biofilm structure and 

induced phenotype of the component cells is the result of a variation in gene regulation as 

compared to respective planktonic counterparts.[18-21] Furthermore, architectural features of 

and gene expression in biofilms may enhance gene transfer among biofilm cells.[2, 4, 11, 22] A 

general assumption is that biofilms have high gene transfer frequencies as compared to 

planktonic cells due to advantages afforded by the matrix, increased genetic competence, 

and close spatial orientation of the cells.[11, 21, 23] The matrix concentrates exogenous DNA 

for efficient uptake during natural transformation. Roberts et al. (2001) hypothesized that 

there are a variety of phenotypes displayed among the closely packed cells within a biofilm 

with an increased likelihood of ‘gene transfer’ phenotypes.[8, 18, 23] The close proximity of 

cells in a biofilm also facilitates cell-cell communication.[3, 4] This may increase genetic 

competence in instances where competence induction is regulated via a quorum-sensing 
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mechanism such as in Gram-positive Streptococcus mutans.[19] In S. mutans, the level of 

competence is higher in biofilm cells as compared to associated planktonic cells resulting 

in up to a 600-fold increase in transformation frequency of biofilm cells.[24] However, this 

phenomenon has not been demonstrated in other bacterial species. 

In the current study, we assess the transformation frequency of monoculture Acinetobacter 

baylyi strain AC811 biofilms developed in a once-through flow system that have been 

exposed to donor DNA encoding antibiotic resistance. We also compare transformation 

frequencies and expression patterns of comP, a competence pathway gene, in 

Acinetobacter baylyi strain AC811 biofilm and suspended growth modes. Acinetobacter 

spp. are Gram-negative, non-motile, coccobacilli bacteria that are ubiquitous in the 

environment.[12, 25-28] AC811 is a derivative of Acinetobacter baylyi strain BD413, a 

naturally competent strain that is well suited for studying natural transformation.[29, 30] It has 

an extremely efficient transformation system and does not discriminate between 

homologous and heterologous DNA.[25] Thus far, five genes in the BD413 competence 

pathway have been identified and the expression of a portion of these has been 

characterized in planktonic batch culture cells.[25, 31, 32] There is no evidence that induction of 

competence in strain BD413 is regulated by a quorum-sensing mechanism. 

 

Previous experiments have characterized transformation frequencies of Acinetobacter 

baylyi strain BD413 planktonic cells and biofilms developed in the lab setting.[33, 34] In a set 

of batch culture transformation experiments, Palmen et al. (1994) found that BD413 cells 

induced competence for natural transformation maximally after dilution of stationary phase 
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cells into fresh medium. Thus, transformation frequencies of BD413 cells with plasmid 

DNA were highest at the start of the exponential phase, decreased over the course of the 

exponential phase, and were undetectable in the stationary phase.[34] Hendrickx et al. (2003) 

studied the effect of biofilm age on transformation frequency in monoculture BD413 

biofilms developed in once-through flow systems exposed to influent plasmid DNA.[33] The 

authors found that biofilm thickness reached a maximum after 48 h and remained at this 

level due to a steady state between lysis, detachment and growth functions.[33] Thus, 1-day 

old BD413 biofilms are still actively growing and accumulating mass while 3-day old 

biofilms could be considered mature biofilms.[33] Transformation frequencies in mature 

BD413 biofilms were lower than young biofilms.[33]  

 

We expand on the work of Hendrickx et al. (2003) by evaluating DNA frequency in 

AC811 biofilms developed in a flow system with extracted genomic DNA in addition to 

plasmid DNA.[33] And, to our knowledge, this is the only study that compares 

transformation frequencies and competence gene expression between Acinetobacter baylyi 

biofilm and planktonic cells. We additionally characterize the expression pattern of a 

competence pathway gene, comP, in Acinetobacter baylyi strain AC811 biofilm cells. 

Finally, it is the only study to use a Gram-negative bacterium to test the hypothesis of 

increased genetic competence and gene transfer in biofilms as compared to free-floating 

cells.  

 

 



 31 

3.3 Methods 

3.3.1 Bacterial strains, plasmids & growth conditions.  

Strains and plasmids used in this experiment are listed in Table 3.1. All strains were 

subcultured from frozen stock. Stocks were prepared from overnight batch cultures (240 

rpm, 30 °C) grown in Luria-Bertani (LB) broth (BD Diagnostics, Franklin Lakes, NJ). 

Aliquots were then frozen with 70% glycerol and stored at -80 °C. Strains were routinely 

maintained on LB plates and LB medium supplemented with either 25 µg/ml kanamycin 

(Fisher Sci, Houston, TX), 50 µg/ml streptomycin (Sigma Aldrich, St. Louis, MO) or 5 

µg/ml tetracycline (Sigma Aldrich, St. Louis, MO) was used to select for antibiotic 

resistant transformants. In the current study, a series of transformation experiments were 

conducted with recipient cells developed in different growth modes. Acinetobacter sp. 

strain AC811 served as the recipient strain in all transformation experiments. The 

nonencapsulated AC811 strain is a derivative of Acinetobacter sp. strain BD413 (also 

known as Acinetobacter sp. strain ADP1) and belongs to the Acinetobacter baylyi 

species.[30, 35] 

 

Acinetobacter sp. strain AC811 biofilms developed in a flow-though system served as 

recipient cells in experiments assessing transformation frequency associated with influx of 

genomic DNA, plasmid DNA and PCR amplified DNA product.[8] Genomic DNA was 

isolated from streptomycin resistant (strepr) strain Acinetobacter sp. strain AC323 and a 

tetracycline resistant (tetr) Acinetobacter sp. environmental isolate. Plasmid pWH1266, 

carrying a tetr marker, was isolated from Acinetobacter sp. strain AC1499. And, a 1kb 
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DNA segment containing a kanamycin resistance (kanr) gene flanked by sequences 

homologous to the recipient AC811 strain was obtained through PCR amplification of the 

appropriate region in the AC811 comP mutant strain (AC811∆comP::km). A. baylyi strain 

AC811 and AC811∆comP::km were used as the recipients in transformation frequency 

experiments comparing competence of biofilm and free-floating cells. The donor DNA in 

these genetic transformation experiments was the plasmid pWH1266 carrying a tetr marker.  

 

3.3.2 Preparation and storage of transforming DNA.  

All plasmid DNA was extracted using the QIAprep Spin Miniprep Kit (50) (QIAGEN, 

Valencia, CA) and all genomic DNA was obtained with the Wizard SV Genomic DNA 

Purification System (Promega, Madison, WI) following protocols as described in the 

respective manuals (Promega, Madison, WI).  DNA sample concentrations were 

determined using the Nanodrop 1000 (Thermo Scientific, Hanover Park, IL) and were 

subsequently stored at -80 °C. 

 

The following primers were used to amplify the 1000 bp fragment from the 

AC811∆comP::km strain: F’ CTAAGAACAAATTGTGTGAG ; R’ 

GATTTACTTGAAATCGCGCC (IDT, Coralville, IA). Primer stocks (100 µM) were 

stored at -80 °C. The PCR reaction was conducted by adding 1µl of extracted 

AC811∆comP::km genomic DNA (20 ng/µl) into a microcentrifuge tube and then adding 

39.75 µl sterile water, 5 µl 10X GoTaq Buffer (Promega, Madison, WI), 2.0 µl dNTP mix 

(40 mM), .25 µl GoTaq DNA polymerase (Promega, Madison, WI), and 1 µl of each 
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primer (20 µM). PCR reactions to amplify the 1000 bp DNA fragment were performed as 

follows: 95 °C (10 min), 30 cycles of 94 °C (1 min), 42 °C (30 sec), 72 °C (30 sec), and 72 

°C (10 min) for final extension. PCR amplified product was purified using the QIAquick 

PCR product purification kit (QIAPREP, Valencia, CA). Amplified products were 

quantified on the Nanodrop 1000.  

 

3.3.3 Screening of antibiotic resistant transformants in experiments assessing 

transformation frequency of AC811 biofilms developed in once-through flow systems 

and exposed to influent genomic and plasmid donor DNA.  

Kanamycin, streptomycin and tetracycline sensitive AC811 cells were grown in biofilms 

developed in a once flow-through system and were exposed to the previously described 

donor DNA. Post incubation, appropriate biofilm and effluent sample dilutions were 

spread onto fresh LB medium plates and onto LB medium plates supplemented with either 

kanamycin (25 µg/ml), streptomycin (50 µg/ml) or tetracycline (5 µg/ml) to capture 

transformants. After 24 h incubation at 30 °C, transformation frequencies were obtained by 

calculating the ratio of transformants to the total viable cell count. 

 

3.3.4 Screening of tetr transformants in experiments comparing transformation 

frequencies of AC811 cells in biofilm and suspended growth modes.  

Tetracycline-sensitive AC811 cells developed under varying growth conditions were 

incubated with pWH1266 donor DNA in polystyrene microtiter plate wells. Post 

incubation, appropriate dilutions were spread onto fresh LB medium plates and onto LB 

medium plates supplemented with tetracycline (5 µg/ml) to capture transformants. After 24 
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h incubation at 30 °C, transformation frequencies were obtained by calculating the ratio of 

transformants to the total viable cell count.  

 

3.3.5 Transformability of AC811.  

Plate transformation experiments were conducted to confirm the transformability of 

AC811 with the previously described donor DNA. In brief, a mixture of 100 µl of an 8 h 

AC811 planktonic broth culture and 10 µl of a 2 µg/ml donor DNA solution was placed 

onto an LB plate. Post incubation at 30 °C for 6 h, the cells were scraped off and diluted 

into 1 ml 1X PBS.  Appropriate dilutions were spread onto fresh LB medium plates and 

onto LB medium plates supplemented with antibiotic to capture transformants. After 24 h 

incubation at 30 °C, transformation frequencies were obtained by calculating the ratio of 

transformants to the total viable cell count. These experiments also verified that 

transformants were able to grow on the appropriate selective plates.  

 

3.3.6 Evaluation of transformation frequency in AC811 biofilms, developed in a once-

through flow system, with genomic and plasmid donor DNA.  

AC811 biofilms were grown in silicon tubes in a once-through flow system using methods 

described previously.[8] 10% LB growth media was continuously pumped through the 

system at a constant flow rate of 30 ml/h with the aid of a multi-channel pump (Ismatec 

12Ch peri pump, Fisher Sci, Houston, TX). Thus, multiple biofilms could be developed in 

parallel. Initially, the system was inoculated with 1 ml of an 8 h AC811 batch culture and 
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media flow was paused for 3 h to allow for bacterial attachment. Flow was then resumed at 

7 ml/h for 1 h and then increased to 30 ml/h thereafter.  

AC811 biofilms were grown for 72 h in the flow-system. At that time point, 2 µg/ml donor 

DNA solutions made up in minimal M9 media (64 g/L Na2HPO4, 15 g/L KH2PO4, 2.5 g/L 

NaCl, 5.0 g/L NH4Cl, 1M MgSO4, 1M CaCl2) were added to the system at a flow rate of 7 

ml/h over the course of 1 h. As discussed previously, multiple biofilms may be developed 

in parallel and donor DNA was only administered once for each distinct channel. After 

donor DNA addition, the flow rate was maintained at 7 ml/h for 1 h and then increased to 

30 ml/h thereafter.  

 

Post DNA addition, effluent was collected at the 24 h and 48 h time points and the biofilm 

biomass was scraped off the silicone tubing and collected at the 72 h time point. All 

samples were homogenized (~17,000 rpm, TH Homogenizer, Omni International, Marietta, 

GA) and plated appropriately. Transformation frequencies were calculated as described 

above. Baseline effluent was collected prior to the addition of donor DNA solution to each 

biofilm channel in the flow-system. Baseline samples were plated as described above to 

check for a potential spontaneous mutation rate to the tested antibiotics. In addition, with 

each biofilm run there was at least one channel to which no DNA was added to serve as a 

negative control. Concurrent with the addition of the donor DNA solution to the biofilm 

flow-system, aliquots of the donor DNA were spread onto LB agar plates and incubated at 

30°C for at least 24 h to check for possible contamination of the extracted donor DNA 

solution with any remaining live cells of the source resistant strain. 
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3.3.7 Comparison of transformation frequencies of biofilms developed in a static 

system with transformation frequencies in overlying suspended cells.  

AC811 static biofilms were grown at room temperature for a period of 60 h in Costar 6-

well microtiter plates (Fisher Sci., Houston, TX) through a 1:10 inoculation of 10% LB 

media with an 8 h batch culture. Biofilm biomass and suspended cells grown in one well 

were separated resulting in one biomass sample and one suspended cell sample. These 

samples were subsequently homogenized (~17,000 rpm) and incubated with pWH1266 

plasmid at a final concentration of 0.4 µg/ml for 6 h (Figure 3.1A). Donor pWH1266 DNA 

was added to another microtiter plate well at a final concentration of 0.4 µg/ml. After a 6 h 

incubation period, the combined mixture of biofilm biomass and overlying suspended cells 

was homogenized (~17,000 rpm) to disperse the cells (Figure 3.1B). Finally, pWH1266 

DNA was added to yet another microtiter plate well at a final concentration of 0.4 µg/ml. 

After a 6 h incubation period, the biofilm biomass was separated from the overlying 

suspended cells resulting in separate biofilm biomass and suspended cell solutions. The 

biofilm biomass and suspended cell samples were then homogenized to disperse the cells 

(~17,000 rpm), (Figure 3.1C). All homogenized samples were plated appropriately and 

transformation frequencies were calculated as described above. 

 

3.3.8 Comparison of transformation frequencies of biofilms developed in a static 

system with transformation frequencies in planktonic batch culture cells.  

AC811 static biofilms were grown at room temperature for a period of 60 h in Costar 6-

well microtiter plates (Fisher Sci., Houston, TX) through a 1:10 inoculation of 10% LB 

media with an 8 h batch culture. The overlying suspended cells were removed and the 
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remaining biofilm biomass was homogenized (~17,000 rpm). Biofilm cells were counted 

using the Haussner Brightline Counting Chamber as per manufacturer instructions 

(Hausser Sci., Horsham, PA). Samples in the range of 108 cells/ml were incubated with 

donor DNA for 2 h and for 6 h at a final concentration of 0.4 µg/ml. AC811 planktonic 

cells were grown at room temperature in batch culture mode in 10% LB for approximately 

8 h to capture them in the exponential phase. Cells were counted and samples in the range 

of 108 cells/ml were incubated with donor DNA for 2 h and for 6 h at a final concentration 

of 0.4 µg/ml. Post incubation, all samples were plated appropriately and transformation 

frequencies were calculated as described above. 

 

3.3.9 Comparison of transformation frequencies of biofilms developed in a flow 

system with transformation frequencies in planktonic batch culture cells.  

AC811 biofilms were grown in silicon tubes in a once-through flow system using methods 

described previously.[8] 10% LB growth media was continuously pumped through the 

system at a constant flow rate of 30 ml/h with the aid of a multi-channel pump (Ismatec 

12Ch peri pump, Fisher Sci, Houston, TX). Initially, the system was inoculated with an 8 h 

AC811 batch culture and media flow was paused for 3 h to allow for bacterial attachment. 

Flow was then resumed at 7 ml/h for 1 h and then increased to 30 ml/h thereafter.  

 

Biofilms were grown in the flow system for 12, 24, 48 and 72 h at room temperature. 

AC811 batch culture cells were also grown in 10% LB at room temperature. Planktonic 

cells were recovered at the exponential (8 h), early stationary (10 h), and late stationary 
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phases (12 h). At each biofilm or planktonic sampling time point, cells were homogenized 

(~17,000 rpm) and then counted using the Haussner Brightline Counting Chamber as per 

manufacturer instructions (Hausser Sci, Horsham, PA). Samples in the total cell count 

range of ~108 cells/ml were incubated with pWH1266 DNA in microtiter plate wells at a 

final concentration 0.4 µg/ml for 2 h and for 6 h. Post incubation, all samples were plated 

appropriately and transformation frequencies were calculated as described above. 

 

3.3.10 Confirmation of the role of the comP gene in the AC811 transformation 

pathway. 

 Transformation experiments were conducted with a comP mutant of strain AC811 

(AC811∆comP::km) to confirm the necessity of the ComP protein in natural 

transformation. AC811∆comP::km biofilms were grown in static systems for 60 h and in 

flow systems for 12, 24, 48 & 72 h, under growth conditions similar to those above. These 

biofilm samples and their planktonic counterparts were homogenized (~17,000 rpm) and 

then counted using the Haussner Brightline Counting Chamber (Hausser Sci, Horsham, 

PA). Samples in the total cell count range of ~108 cells/ml were incubated with pWH1266 

DNA in microtiter plate wells at a final concentration 0.4 µg/ml for 2 h and for 6 h. Post 

incubation, all samples were plated appropriately and transformation frequencies were 

calculated as described above. 
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3.3.11 Sample collection and storage for downstream RNA extraction.  

12, 24, 48 & 72 h AC811 biofilms were developed in the flow-system in 10% LB at room 

temperature using methods described above. AC811 batch culture cells were also grown in 

10% LB at room temperature and recovered at 4, 6, 8, 10 & 12 h. At each biofilm or 

planktonic sampling time point, samples were immediately dispersed in RNAlater 

(Applied Biosystems/ Ambion, Austin, TX) per manufacturer instructions and 

homogenized (~17,000 rpm). Samples were further processed following RNAlater manual 

guidelines with aliquots set aside to be quantified using the Haussner Brightline Counting 

Chamber (Hausser Sci, Horsham, PA).  All quantified biofilm and planktonic cell samples 

were stored at -80 º C for total RNA extraction. 

 

3.3.12 RNA isolation and reverse transcription. 

Total RNA was isolated via the hot-phenol method previously described followed by an 

RNAse-free DNAse I digestion (8U/ 100 ul) (Promega, Madison, WI).[36] Integrity of 

extracted RNA was verified by running the RNA in a precast 2% agarose E-gel 

(Invitrogen, Carlsbad, CA) and total RNA concentration was quantified on the Nanodrop 

1000 spectrophotometer. Quantified extracted total RNA was stored at -80 °C. cDNA was 

reverse transcribed from 1 µg total RNA using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Carlsbad, CA) following protocols described in 

associated manuals. cDNA was quantified on the Nanodrop 1000 and subsequently stored 

at -80 °C. 
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3.3.13 Standard curve set-up.  

The following desalted primers were used to amplify a 110 bp fragment of the target comP 

gene: F’ ATGAATGCACAAAAGGGTTT ; R’ GCACGGACTGTATAATCTGT (IDT, 

Coralville, IA). Primer stocks (100 µM) were stored at -80 °C. The PCR reaction was 

conducted by adding 1µl of extracted AC811 genomic DNA (20 ng/µl) into a 

microcentrifuge tube and then adding 34.75 µl sterile water, 10 µl 5X GoTaq Buffer 

(Promega, Madison, WI), 1.0 µl dNTP mix (40 mM), .25 µl GoTaq DNA polymerase 

(Promega, Madison, WI), and 1 µl of each primer (20 µM). PCR reactions to amplify the 

110 bp comP gene fragment were performed as follows: 95 °C (10 min), 30 cycles of 94 

°C (1 min), 42 °C (30 sec), 72 °C (30 sec), and 72 °C (10 min) for final extension. PCR 

amplified product was purified using the QIAquick PCR product purification kit 

(QIAPREP, Valencia, CA). Amplified products were quantified on the Nanodrop 1000 and 

number of gene copies per ng DNA, for each sample, was calculated through a series of 

mathematical conversions.  

 

3.3.14 qRT-PCR rxn.  

Optimized qRT-PCR reactions were completed on the Mastercycler realplex2 (Eppendorf, 

Westbury, NY) using SYBR Green fluorescence detection technology.  Each 25µl real-time 

PCR reaction mixture consisted of 12.5 µl 2X SYBR Green Master Mix (Applied 

Biosystems, Carlsbad, CA), .25 µl of forward primer (20 µM), .25 µl of reverse primer (20 

µM), 1.0 µl cDNA template, and 11.0 µl DNAse, RNAse free water. Real-time PCR 

reactions were performed as follows: 95 °C (10 min), 30 cycles of 94 °C (1 min), 42 °C 

(30 sec), 72 °C (30 sec), and 72 °C (10 min) for final extension. The fluorescence 
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measuring point was set at the annealing step. All qPCR reactions were run with a 

duplicate standard curve ranging from 102 – 108 gene copies/ µl of the comP gene fragment 

and absolute numbers of comP gene transcripts were extrapolated from standard curve Ct 

values. Appropriate calculations were completed to obtain number of comP gene 

transcripts/ cell for all biofilm and planktonic samples. 

 

3.4 Results 

3.4.1 Exposure to amplified PCR product, plasmid DNA and genomic DNA encoding 

resistance genes results in detectable transformation frequencies in single species 

biofilms developed in once-through flow systems.  

AC811 biofilms were developed in once-through flow systems for 72 h after which they 

were exposed to influent donor DNA for 1 h. Effluent samples were collected at the 

baseline, 24 h and 48 h time points and biofilm cells were scraped from the tube at the 72 h 

time point. Baseline samples were collected prior to exposure to donor DNA and each 

multi-channel run included one negative control tube to which no donor DNA was added. 

Undetectable transformation frequencies in all baseline and negative control samples 

indicate that there is no baseline spontaneous mutation rate or contamination. Results from 

Figure 3.2 indicate that transformation frequencies in effluent and cell samples from 

biofilms exposed to amplified PCR products are at least 10-fold higher than respective 

time point samples from biofilms exposed to pWH1266 plasmid DNA. In general, there 

were detectable transformation frequencies in biofilms exposed to PCR amplified product, 

plasmid DNA and genomic DNA. 
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3.4.2 Transformation frequencies of biofilms grown in a static system are at least 10-

fold lower than transformation frequencies of the overlying suspended cells.  

AC811 static biofilms were developed in microtiter plate wells for 60 h after which 

samples were processed as previously described (Figure 3.1A-C). Two biological 

replicates, both with three technical replicates, were completed for each of five 

transformation experiments represented in Figure 3.3. The average transformation 

frequency of suspended cells (S) homogenized prior to incubation with pWH1266 plasmid 

DNA carrying a tetr resistance gene is 2.8 x 10-4. Surprisingly, this is approximately 10-

fold higher than the 2.6 x 10-5 transformation frequency of biofilm biomass cells (B) also 

homogenized prior to incubation with donor DNA. The fold-difference is decreased to 3-

fold when comparing the transformation frequencies of biofilm biomass cells (B sep), that 

were incubated with donor DNA prior to homogenization, with suspended cells (S). 

Homogenization disrupts biofilm architecture and may inhibit any advantages provided by 

an intact matrix. Therefore, it is expected that biofilm cells that were homogenized prior to 

incubation with the plasmid DNA have lower transformation frequencies compared to 

biofilm cells that were left intact before incubation with donor DNA. There is a significant 

decrease (p < 0.01) of transformation frequencies in biofilm samples (B & B sep) 

compared to that of the suspended cell sample (S). 
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3.4.3 Transformation frequencies of AC811 biofilms developed in a static system are 

at least 10-fold lower than transformation frequencies of AC811 planktonic batch 

culture cells.  

AC811 static biofilms were developed in microtiter plates for 60 h and AC811 planktonic 

cells were grown in batch culture mode and captured in the exponential phase (8 h). 

Isolated biofilm and planktonic cells were then homogenized and counted. Approximately 

108 cells of each type were incubated with plasmid donor DNA for 2 h and for 6 h. Two 

biological replicates were completed for transformation experiments shown in Figure 3.4. 

For each biological replicate, transformation frequencies were averaged across three 

technical replicates. As seen in Figure 3.4, transformation frequencies of planktonic batch 

culture cells are at least 10-fold higher than transformation frequencies in biofilm cells for 

both the 2 h and 6 h incubation periods – contrary to the general hypothesis regarding 

increased competence of biofilm cells. However, the increase in transformation frequency 

for planktonic cells as compared to biofilm cells is only significant (p < 0.01) for the 6 h 

incubation data. The average transformation frequency of AC811 biofilm cells incubated 

with pWH1266 donor DNA for 2 h is 4.7 x 10-5 and for 6 h is 7.2 x 10-5. Transformation 

frequencies of AC811 planktonic cells incubated with donor DNA for 2 h and 6 h are 1.1 x 

10-3 and 8.6 x 10-3, respectively. The viable cell count data indicates that the increase in 

transformation frequencies for both planktonic cells and biofilm cells is attributed to the 

longer incubation time with the donor DNA as opposed to post incubation growth. 
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3.4.4 Transformation frequencies of AC811 planktonic batch culture cells are as 

much as 10-fold higher than transformation frequencies of AC811 biofilms developed 

in a flow-system.  

12, 24, 48 and 72 h BD413 biofilms were developed in a flow-system and AC811 cells 

grown in planktonic batch culture mode were captured at the exponential (8 h), early 

stationary (10 h) and late stationary phases (12 h). All samples were homogenized and 

counted and equivalent numbers of total cells were incubated with donor DNA for 2 h and 

6 h incubation periods. Two biological replicates were completed for all respective 

transformation experiments. For each biological replicate, transformation frequencies were 

averaged across three technical replicates as seen in Figure 3.5. 

 

Appropriate transformation frequency comparisons of planktonic batch culture cells and of 

biofilm cells developed in a dynamic flow system can be made based on growth stage. 

By definition, planktonic batch cultures are actively growing in the exponential phase and 

reach a maximal, steady growth level upon entry into stationary phase. And, according to 

Hendrickx et al. (2003), 1-day old AC811 biofilms are still actively growing and 

accumulating mass while 3-day old biofilms could be considered mature biofilms.[33] In the 

present study, transformation frequencies of planktonic exponential phase cells (8h) are 

higher than young (12 h & 24 h) biofilms for both the 2 h and 6 h incubation periods. The 

same pattern is seen when comparing transformation frequencies of early and late 

stationary phase planktonic cells with mature biofilms (48 h & 72 h). The difference 

between planktonic and biofilm transformation frequencies is most apparent in the 6 h 

incubation results. There is approximately a 10-fold transformation frequency difference 
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between planktonic exponential phase cells and 12 h biofilms. This difference increases to 

more than 10-fold when comparing planktonic exponential phase cells with a 24 h biofilm. 

Similarly, early stationary planktonic batch culture cells that have incubated with donor 

DNA for 6 h are approximately 10-fold higher than 48 h biofilms and late stationary 

planktonic batch culture cells are more than 10-fold higher than 72 h biofilms. Again, these 

results are surprising considering the general consensus that biofilm cells are more 

competent than their planktonic counterparts. 

 

Despite the noted 10-fold differences, only a portion of these transformation frequency 

comparisons is statistically significant. In particular, exponential planktonic cells incubated 

for 2 h with donor DNA have significantly (p < .05) higher transformation frequencies than 

24 h biofilm cells incubated with donor DNA for 2 h. Planktonic cells captured during the 

early stationary phase and incubated with donor DNA for 6 h display significantly (p < 

0.01) increased transformation frequencies than 48 h biofilm cells incubated with donor 

DNA for the same time period. Finally, late stationary planktonic cells incubated with 

donor DNA for 2 h have significantly higher transformation frequencies (p < .05) than 

comparable 72 h biofilm transformation frequencies and late stationary planktonic cells 

incubated with donor DNA for 6 h have significantly (p < 0.01) increased transformation 

frequencies than 72 h biofilm cells incubated with donor DNA for 6 h.  
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3.4.5 The ComP protein is necessary for natural transformation in Acinetobacter 

baylyi strain AC811 and contributes to the differential transformation frequency 

between biofilm cells and their planktonic counterparts.  

Competence factor, ComP, is necessary for natural transformation in strain AC811. It 

allows for the binding to and uptake of exogenous DNA.[25] Transformation frequency 

experiments with AC811 comP mutant biofilms grown in static systems and in flow-

systems and with their respective planktonic counterparts were conducted. Resultant 

undetectable transformation frequencies indicate that the ComP protein is an essential 

component of the BD413 transformation pathway (data not shown). We also investigated 

comP gene expression in biofilms and their planktonic counterparts using quantitative 

PCR. Total RNA was extracted from quantified AC811 biofilms developed in flow-

systems and planktonic batch culture cells. Samples were run alongside standard curves in 

quantitative PCR experiments to obtain absolute quantification of the number of comP 

gene transcripts per cell. Forward and reverse primers were consistently run between 90-

99% efficiency. Two biological replicates, with three technical replicates, were run for 

each biofilm and planktonic time point. Variance of technical replicate Ct values were < 

.56 for all samples.  

 

Results in Figure 3.6 show that the number of comP gene transcripts per AC811 biofilm 

cell decrease over time. In a more complex pattern, number of comP gene transcripts per 

planktonic cell decrease over the course of the exponential phase and then increase to 

maximal levels in the stationary phase. The patterns seen in the planktonic cells are 

consistent with the literature and comparison of the biofilm and planktonic comP 
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expression data may elucidate previously described results.[31] In particular, qPCR results 

indicate that the number of comP gene transcripts per late phase planktonic cell is 

significantly higher (p < .05) than the number of comP gene transcripts per mature biofilm 

cell. This suggests that the DNA uptake machinery is not synthesized to the same extent in 

BD413 planktonic and biofilm cells, possibly accounting for observed transformation 

frequency differences. 

 

3.5 Discussion 

Biofilms in water distribution systems may significantly contribute to the formation and 

spread of antibiotic resistant bacteria in water systems through natural transformation. Our 

initial approach to this multitier question involved the use of a simplified laboratory 

biofilm model to assess the transformation frequency in biofilms and in detached effluent 

cells with donor DNA of different formats. We also compared transformation frequencies 

of and expression of a competence pathway component in biofilm and planktonic cells to 

substantiate the general claim of increased competence in the biofilm state.[23]   

 

Exposure of monoculture AC811 biofilms to strepr, tetr and kanr donor DNA resulted in 

detectable transformation frequencies in both the detached cells in effluent from the once-

through flow system and in biofilm cells collected from the flow cell. These results 

indicate that transformation events can occur in a simplified laboratory model of a water 

distribution pipe under nutrient limited conditions similar to environmental conditions in 

water distribution systems in most developed countries.[37] In addition, detectable 
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transformation frequencies occur in biofilms exposed to tetr plasmid donor DNA. This is 

especially significant since many known antibiotic resistance genes in the environmental 

resistome are found on plasmids.[38] 

 

Transformation frequency differences between biofilms exposed to the various DNA types 

in the once-through flow system experiments may be attributed to varying influent 

resistance determinant concentration and resistance mechanisms. Although the overall 

concentration of donor DNA fed into the influent was the same across the different types 

of donor DNA, the absolute concentrations of the respective resistance gene may have 

differed. For instance, the concentration of the resistance determinants in amplified PCR 

product was probably higher than the concentration of resistance genes in extracted 

genomic DNA. In addition, the number of steps to gene expression may explain the 

difference in transformation frequencies in biofilms exposed to plasmid donor DNA with 

those exposed to extracted genomic DNA from a tetr environmental isolate. Plasmid 

encoded tetracycline resistance on pWH1266 is expressed by the transformed host cell. 

However, assuming that resistance is not present on an extra-chromosomal plasmid in the 

environmental isolate, resistance expression would have to be preceded by uptake and 

integration of the determinant into the host cell chromosome. This may explain the lack of 

detectable transformants with the environmental isolate genomic DNA.    

 

Hendrickx et al. (2003) also obtained detectable transformation frequencies for biofilms 

developed in a multi-channel flow system, but frequencies from that study were at least 10-
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fold higher than our results.[33] Methods differences between the Hendrickx et al. (2003) 

study and our study hamper comparisons. In the Hendrickx et al. (2003) study, after initial 

inoculation with Acinetobacter sp. strain BD413, flow cells were exposed to donor DNA 

during 1 h of continuous flow with donor plasmid DNA. Transformation frequencies were 

calculated in situ via quantitative microscopy for 24 and 72 h biofilms and respective 

frequencies on the order of 10-2 and 10-4 were found.[33] Our study results indicate a 

transformation frequency of 3.45 x 10-5 in biofilms 72 h post exposure to 1 h continuous 

flow with plasmid DNA. As stated previously, this difference in results probably stems 

from protocol differences. Hendrickx and colleagues developed a biofilm in rich LB broth 

and assessed transformation frequency through a noninvasive method resulting in high 

transformation frequencies at a 10-fold lower donor DNA concentration and in much 

younger biofilms.[33] In comparison, we developed our biofilms under nutrient starvation 

conditions and biofilms were grown for 72 h, exposed to donor DNA and then plated 72 h 

post exposure to donor DNA. Transformation frequency in biofilms can decrease with 

age.[33] In addition, comparisons of in situ and plating techniques show 1000-fold higher 

conjugation rates with quantitative microscopy versus plating results.[39] Regardless of the 

discrepancy with the Hendrickx et al. (2003) results, our study still adds to the modest 

literature in this area. In addition, transformation frequencies of biofilms exposed to donor 

DNA, other than plasmid DNA, are detectable in the same system and under the same 

growth conditions.  
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Our results contradict the prevailing hypothesis regarding higher gene transfer rates in 

biofilms as well as transformation frequency work by Li et al. (2001) done with 

Streptococcus mutans.[23, 24] Surprisingly, in all experiments comparing biofilm and 

planktonic transformation frequencies in this study, AC811 biofilm transformation 

frequencies were lower than respective planktonic transformation frequencies. When 

making the appropriate comparisons, frequencies of planktonic cells were approximately 

10-fold higher than biofilm frequencies. Given the close proximity of cells, the advantages 

of the extracellular matrix and the assumption of increased competence – it is reasonable to 

expect higher gene transfer rates in biofilms compared to planktonic cells.[18, 23] However, 

this has only been demonstrated by Li et al. (2001) with Gram-positive Streptococcus 

mutans.[24] Transformation frequencies in Streptococcus mutans biofilms were up to 600-

fold higher than corresponding planktonic cells.[24] The disparity between our results and 

those of Li et al. (2001) may be explained by a difference in competence pathway 

induction between Streptococcus mutans and Acinetobacter baylyi strain AC811. S. 

mutans competence is regulated via a quorum sensing mechanism. S. mutans cells secrete 

competence stimulating peptide and threshold concentrations of this peptide trigger a series 

of events resulting in the up regulation of genes that govern competence. The aggregation 

of cells in a biofilm facilitates cell-cell interactions, such as quorum sensing, and the high 

density of cells would allow for concentrations of signaling molecules to approach 

threshold levels. In contrast, competence induction in Acinetobacter baylyi does not 

correlate with up regulation of genes in the competence pathway.[31, 40] To our knowledge 

only five genes in the Acinetobacter baylyi competence pathway have been identified: 
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comB, comE, comF, comC and comP.[25, 31, 32] The ComP protein is thought to function in 

binding and uptake of DNA.[31] In a study monitoring comP gene expression in planktonic 

batch culture via a comP::lacZ reporter construct – comP expression initially decreased 

over the course of the exponential phase and then began to increase to maximal levels 

during the transition from late exponential phase to stationary phase and beyond.[31] 

Interestingly, the expression of comP did not correlate with transformation frequencies of 

Acinetobacter baylyi cells with donor DNA. Transformation frequencies decreased over 

the course of the exponential phase to minimal levels in the stationary phase. Thus, comP 

transcription is growth dependent but does not correlate with competence development.[31] 

In fact, it may be that components necessary for DNA uptake are synthesized long before 

they are needed.[31]  

 

Although comP gene expression does not seem to correlate with competence induction, 

comparison of the AC811 biofilm and planktonic batch culture comP gene expression 

patterns may elucidate an underlying reason for the observed transformation frequency 

differences seen between the two growth modes. Our study results show that comP 

expression reached maximal levels in the stationary phase of BD413 planktonic cells, 

similar to results previously found by Porstendorfer et al. (2000).[31] Whereas, the number 

of comP gene transcripts per cell decreased as the BD413 biofilm matured. Porstendorfer 

et al. (2000) saw an initial increase in transformation frequency immediately after 

inoculating fresh medium with stationary phase BD413 batch culture cells.[31] This led to 

the possible conclusion that DNA uptake apparatus is already synthesized prior to maximal 
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competence induction.[31] Mature biofilms are similar to stationary phase planktonic batch 

cultures. The number of comP gene transcripts per cell in 10 h and 12 h (stationary phase) 

planktonic batch cultures is significantly (p < .05) higher than those in 48 h and 72 h 

(mature) BD413 biofilms. This suggests that the DNA uptake machinery is not synthesized 

to the same extent in BD413 planktonic and biofilm cells, possibly accounting for 

observed transformation frequency differences. 

 

Patterns of transformation frequencies were similar to those previously seen in the 

literature.[33, 41] Acinetobacter baylyi batch culture cells exhibit the highest competence 

during the exponential phase with competency decreasing thereafter.[25, 41] This is reflected 

in planktonic batch culture transformation frequencies in Figure 3.5. The same results 

show higher transformation frequencies in young biofilms compared to biofilms 24 h and 

older. Hendrickx et al. (2003) first showed this phenomenon in single species 

Acinetobacter baylyi biofilms developed in flow systems.[33] With some notable exceptions, 

the transformation frequency experiments in this paper involved sample homogenization 

prior to incubation with donor DNA. Homogenization not only avoids structural effects 

that may influence transformation frequency, it facilitates more accurate quantification of 

biofilm and planktonic cell numbers. Transformation frequencies of biofilms developed in 

static and flow-systems and their planktonic counterparts were compared. The physiologic 

and structural features of a biofilm may be dependent on the growth system used to 

develop the biofilm. Studies done by Hendrickx et al. (2003) indicate that the overlying 
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suspended cells inhibited the in situ transformation of Acinetobacter baylyi biofilms grown 

in static systems.[33]  

 

Although our results indicate that AC811 planktonic cells are more competent than BD413 

biofilm cells – this in no way diminishes the very real role of transformation in biofilms in 

the spread of antibiotic resistant genes in the environment. Transformation is a complex 

process influenced by numerous factors such as donor DNA, resistance gene type and the 

recipient strain. Therefore, it would be imprudent to draw general conclusions of 

transformation in biofilms based on current study results alone. In addition, the focus of 

this paper as well as many previous studies has been on the cellular components of the 

transformation pathway. However, biofilm architecture plays an important role in 

transformation, particularly advantages conferred by the extracellular matrix.[23] AC811 

biofilms developed in a static system and incubated with donor DNA with an intact matrix 

displayed higher transformation frequencies than biofilm cells that were homogenized 

before incubation with transforming DNA. Future research should focus on structural 

features of biofilms and their effect on transformation. It is also important to recognize that 

transformation is only one of the mechanisms that bacteria use to acquire genes from other 

bacterial cells and the environment.  High gene transfer rates in biofilms are due to 

conjugation and transduction mechanisms in addition to natural transformation.[18] 
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Strain or plasmid Experimental function Source or reference  

Acinetobacter sp. strains 
    AC811                                                       Recipient Strain*                                    Vaneechoutte et al. (2006) 
    AC1499                                                     Harbors plasmid pWH1266                    Hunger et al. (1990) 
    AC811 ΔcomP::km                                   comP mutant of AC811, contains a  
                                                                        1 kb fragment with a kanr gene             Xi Lab        
    AC323                                                       Donor DNA*, strepr                                                Juni (1969) 
    Tetr environmental isolate                         Donor DNA*, tetr                                                      Xi Lab 
     
Plasmids 
    pWH1266                                                 Donor DNA*, non-mobile, Tetr                       Hunger et al. (1990) 
  
* with regards to transformation experiments 
(kanr) kanamycin resistance 
(strepr) streptomycin resistance 
(tetr) tetracycline resistance 

Table 3.1 Strains & plasmids 
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Figure 3.1: Processing of static biofilm samples. (A) Biofilm biomass and overlying suspended cells were isolated 
from one another, homogenized and incubated with donor DNA. These are samples ‘B’ & ‘S’, respectively. (B) Biofilm 
biomass and overlying suspended cells were incubated with the donor DNA together and then homogenized. This is 
sample ‘B+S’.  (C) Biofilm biomass and overlying suspended cells were incubated with the donor DNA together, 
separated into the two components and then homogenized. These are samples ‘B sep’ & ‘S sep’, respectively. All static 
biofilms were grown for 60 h and all samples were incubated for 6 h with pWH1266 donor DNA at a final concentration 
of .4 µg/ml. Transformation frequencies were calculated as previously described.  
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Figure 3.2: Transformation frequency of BD413 biofilms grown in a once-through flow system exposed to various types of 
donor DNA. 72 h A. baylyi strain BD413 biofilms developed in a flow though system served as recipient cells in experiments assessing 
transformation frequency associated with influx of genomic DNA, plasmid DNA and PCR amplified DNA product. Genomic DNA 
was isolated from streptomycin resistant strain AC323 and a tetracycline resistant Acinetobacter sp. environmental isolate. Plasmid 
pWH1266, carrying a tetracycline resistant marker, was isolated from Acinetobacter calcoaceticus strain 1499. And, a 1kb DNA 
segment containing a kanamycin resistance gene flanked by sequences homologous to the recipient BD413 strain was obtained through 
PCR amplification of the appropriate region in the BD413 comP mutant strain (BD413∆comP::km). Transformation experiments 
conducted with the tetracycline resistant genomic donor DNA did not produce any detectable transformation frequencies. All 
transformation experiments were conducted twice; each with three technical replicates. Negative control experiments with no donor 
DNA in the influent indicated no detectable spontaneous mutation rate to any of the tested antibiotics. Baseline samples were collected 
prior to the addition of donor DNA to check for a baseline mutation rate. Transformation frequencies were calculated from effluent 
samples collected at the baseline, 24 h and 48 h time points and from biofilm cells collected at the 72 h time point.    
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Figure 3.3: Transformation frequency of BD413 biofilms grown in the static system and the overlying suspended cells. (S) suspended 
cells were isolated from the biofilm biomass and incubated with DNA and transformation frequency was calculated post incubation; (B+S) 
biofilm biomass and suspended cells were incubated with DNA together before transformation frequency was calculated in the total sample; 
(S sep) biofilm biomass and suspended cells were incubated with DNA together before transformation frequency was calculated in the 
isolated suspended cell component; (B sep) biofilm biomass and suspended cells were incubated with DNA together before transformation 
frequency was calculated in the separated  biofilm biomass component; (B) the biofilm biomass was isolated from the overlying suspended 
cells and incubated with DNA and transformation frequency was calculated post incubation. Symbol * indicates significant decrease (p<0.01) 
of transformation frequencies in biofilm samples (B & B sep) compared to that of the suspended cell sample (S). Negative control 
experiments with no donor DNA indicated no detectable spontaneous mutation rate. All biofilm biomass and suspended samples were 
incubated with pWH1266 plasmid donor DNA (at a final concentration of 0.4 µg/ml) for a period of 6 h. Two biological replicates, each with 
three technical replicates, were completed for each sample. 
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Figure 3.4: Transformation frequencies of BD413 biofilms grown in static systems and 8h BD413 planktonic batch 
culture cells incubated with pWH1266 donor DNA. Biofilm and planktonic cell numbers in the range of 108 cells were 
incubated with the donor DNA at a final concentration of 0.4 ug/ml and were incubated for 2 h and for 6 h. Negative 
controls indicated that there was no detectable spontaneous mutation rate of tetracycline resistance. Two biological 
replicates, each with three technical replicates, were completed for each sample. Symbol * indicates significant increase 
(p<0.01) of planktonic cell transformation frequency compared to that of microtiter biofilm cells incubated with donor 
DNA for the same incubation time. 
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Figure 3.5: Transformation frequencies of BD413 biofilms grown in flow-systems and planktonic batch culture cells (recovered at 
the mid-exponential (8 h), early stationary (10 h) and late stationary (12 h) phases) incubated for 2 h and for 6 h with plasmid 
pWH1266 donor DNA. Biofilm and planktonic cells in the range of 108 cells were incubated with donor DNA at a final concentration of 0.4 
µg/ml. Negative controls indicated that there was no baseline spontaneous mutation rate to tetracycline in either the biofilm biomass samples 
or the planktonic batch culture samples. Symbol  indicates significant increase (p<0.05) in transformation frequency of exponential 
planktonic cells incubated with donor DNA for 2 h compared to that of  24 h biofilm incubated with donor DNA for the same incubation 
time. Symbol § indicates significant increase (p<0.01) in transformation frequency of early stationary planktonic cells incubated with donor 
DNA for 6 h compared to that of  48 h biofilm cells incubated with donor DNA for the same incubation time. Symbol ★ indicates significant 
increase (p<0.05) in transformation frequency of late stationary planktonic cells incubated with donor DNA for 2 h compared to that of 72 h 
biofilm cells incubated with donor DNA for the same incubation time. And, Symbol  indicates significant increase (p<0.01) in 
transformation frequency of early stationary planktonic cells incubated with donor DNA for 6 h compared to that of 72 h biofilm incubated 
with donor DNA for the same incubation time.  
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Figure 3.6:  Real-time PCR results calculating absolute quantification of comP gene transcripts/ cell for BD413 
biofilm(BF) and planktonic (PL) batch culture cells. Two biological replicates, with three technical replicates, were run for 
each biofilm and planktonic time point. No template negative controls indicated no contamination of cDNA. Symbol * 
indicates significant increase (p < .05) of gene transcripts/ cell in late phase planktonic cells (PL 10 & PL 12) compared to 
those in mature biofilms (BF 48 & BF 72). 
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Chapter 4 

Development and use of an agent-based model to assess the effect of 

resistance gene burden value on the persistence of resistant bacteria in a 

biofilm exposed to donor DNA and varying antimicrobial concentrations 

 

4.1 Abstract 

Microbial biofilms are aggregates of bacterial cells attached to a surface. They often form 

in dynamic flow environments, such as water distribution pipes. Biofilms encounter 

resistance determinants in these same compartments and obtain resistance properties 

through horizontal gene transfer mechanisms such as natural transformation. Various 

factors can affect the persistence of resistant bacteria in water system biofilms such as 

antibiotic selective pressure and the metabolic burden imposed by acquired resistance 

genes. This chapter details the development and use of an extended version of the 

iDynoMiCS model. In particular, this extended agent-based model is used to assess the 

effect of resistance gene burden value on the persistence of resistant bacteria in a biofilm 

exposed to donor DNA and varying antimicrobial concentrations. Several trends are  

apparent in simulations results. Bacteria harboring no cost and low cost fitness genes will 

persist in the absence of selective pressure and increasing antimicrobial concentration in 



 65 

the influent promotes increased resistance expansion within the single-species biofilm. In 

addition, the use of this extended model to study additional research questions is discussed. 

 

4.2 Introduction 

Biofilms are the preferred growth mode for many bacterial species and are ubiquitous in 

both natural and clinical settings.[1, 2] Horizontal gene transfer (HGT) mechanisms allow 

bacteria to acquire new genetic features for persistence in a wide range of environments.[3] 

In particular, competent organisms can uptake and integrate extracellular DNA encoding 

resistance genes through the process of natural transformation.[4] Resistance genes may 

incur a fitness cost and can proliferate through both natural transformation and clonal 

expansion.[5, 6] Resistance expansion can also be affected by antibiotic pressure. It is widely 

accepted that the advent of antibiotics advanced therapeutic options as well as initiated 

new selective pressures on existing bacterial populations.[6-10] Prevailing opinion is that 

antibiotics in various settings cause resistance expansion and resistant bacteria may persist 

even if the selection pressure is removed.[9-14] In this study, we focus on the effect of 

resistance gene burden value on the persistence of resistant bacteria in a biofilm exposed to 

donor DNA and varying antimicrobial concentrations.  

 

Resistance expansion in the environment most likely occurs due to antibiotic selective 

pressure, influx of resistant bacteria and HGT.[15] Antibiotics are mainly used for clinical 

and agricultural purposes, polluting those settings as well as land areas fertilized with 

antibiotic contaminated manure.[6] A significant portion of these compounds is only slightly 
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modified post treatment and is excreted into sewage as active metabolites and 30-90% of 

administered veterinary antibiotics are excreted into manure.[16-18] Additionally, 

pharmaceutical compounds are released into the environment post wastewater treatment 

and contaminate receiving rivers.[6, 8, 9] Antibiotic resistance determinants have been found 

in crude antibiotic preparations used on farms and in human-associated wastewater.[6, 19]  

The selection of and increase in resistant bacteria due to antibiotics is seen in both soil and 

aquatic environments. Application of contaminated manure may promote the spread of 

resistance genes in soil.[18, 20] And, studies indicate an increase in antibiotic resistance 

downstream from sewage treatment plants.[16, 21, 22] Antibiotic selective pressures also appear 

to play a role in resistance gene maintenance in other water systems.[16, 23, 24]   

 

It is clear that antibiotic usage has promoted the spread of resistant bacteria. However, 

resistance expansion is a complex process influenced by many factors, such as the 

biological cost of fitness.[9] Bacterial antibiotic resistant phenotypes can be achieved by 

chromosomal DNA mutations, conjugation, mobile genetic elements or the focus of our 

study, transformation.[25, 26] While some resistance genes confer no cost or even improve an 

organism’s fitness, most incur a cost that is usually observed as a reduced bacterial growth 

rate.[5, 26, 27] Studying the interaction between antibiotic use and burden value can provide 

information on resistance stability in the presence and absence of antibiotic.[28-30] Frequency 

and rate of increase of resistant bacteria within a bacterial population is assumed to be 

directly related to the antibiotic pressure and inversely related to the fitness cost of the 

resistant gene.[5, 28, 29, 31]  
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There are a modest number of experiments on burden cost. At present, in vitro fitness 

experiments have mainly been evaluated in pairwise competition of isogenic strains or 

wild-type and resistant strains.[28, 29, 32] Generally, experiments conducted in a drug free 

environment show that acquired resistance is associated with a negative fitness cost.[33-37] 

However, a majority of this research focuses on fitness cost of R plasmids, mobile genetic 

elements and chromosomal mutations. Bacterial transformation with extracellular DNA 

readily occurs in the environment and is the mechanism for emergence of penicillin 

resistance in S. pneumonia and N. gonorrhoae.[38, 39] Despite this, there appear to be no 

studies assessing the fitness cost of extracellular resistance determinants integrated into the 

host chromosome. This may be because the burden is negligible in these instances or 

because respective host strains are difficult to isolate. Finding appropriate samples for 

comparison and conducting in vitro studies can be a difficult and time consuming 

endeavor. In addition, burden values may be dependent on experimental conditions making 

it problematic to compare study results.[28] Thus, pairwise competition experiments set in 

chemostats or batch cultures and results may not be relevant to a biofilm environment.  

While it is possible to assess the effect of burden cost on resistant bacterial spread in a 

biofilm developed in the laboratory setting and exposed to influent donor DNA and 

antimicrobial, such experiments would be labor intensive for several reasons. Donor DNA 

encoding antibiotic resistance and conferring varying burden cost would have to be 

identified and isolated, biofilm experiments would have a finite run time before 

contamination might set in and resistant cells would have to be identified through a non-

invasive technique that wouldn’t disrupt the biofilm structure. In addition, testing a range 
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of burden cost values and a range of influent antimicrobial concentrations ,with the 

appropriate number of technical replicates, would require completing multiple laboratory 

experiments. A theoretical, agent-based model offers an attractive alternative. Simulations 

can be run for as long as needed, a wide range of burden cost values can be explored and 

model images can provide an overview of resistant cell placement in the biofilm. In 

addition, trends from model simulation results can drive laboratory experiment settings 

such as the range of tested influent antimicrobial concentration. 

The development of mathematical models has extended the study of HGT and biofilms 

beyond laboratory in vitro experimentation.[40] Study of HGT has primarily focused on 

conjugation dynamics in microbial communities. Some of the earliest conjugal plasmid 

transfer models applied a mass action approach to all system components, biological and 

chemical.[40-45] However, models have advanced over the years by uncoupling reactions that 

occur at the biologic level from the system level and by extending study to surface attached 

communities.[40, 46, 47] Models studying microbial communities have seen a parallel 

development from the earliest cellular automaton frameworks. The individual-based 

Dynamics of Microbial Communities Simulator (iDynoMiCS) is open source software that 

simulates the growth of individual microbes and subsequent biofilm development in a 

dynamic aquatic environment.[48] In an individual-based model (IbM), individuals or agents 

are modeled explicitly with population behavior emerging from low-level, agent 

interactions.[48] Thus, IbM’s are an appropriate choice for modeling microbial biofilms. 

iDynoMiCS decouples bacterial reactions from solute level reactions, includes separate 
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reactions for bacterial growth and maintenance and produces both biofilm image and 

quantitative output.[48]  

 

In this work, we study the effect of both selective pressure and resistance gene fitness cost 

on the spread and persistence of resistant bacteria within a single-species biofilm. We have 

developed an extension to the base iDynoMiCS model to explore this association. Our 

extended model includes transformation and antimicrobial inhibition mechanisms as they 

occur at the individual cell level embedded within an iBM framework for biofilm growth. 

The model organism is a heterotroph based on Acinetobacter baylyi. A. baylyi  is a 

naturally competent widespread heterotroph capable of taking up environmental DNA.[11, 21, 

49] Members of this genus are found in soil, sewage, freshwater, and in drinking water 

systems.[50-52] This strain exhibits high transformation frequencies in planktonic batch 

culture as well as in monoculture biofilms developed in once-through flow systems.[51, 53] 

The ubiquity of this genus and evidence of high gene transfer between strains makes these 

microorganisms suitable for monitoring antibiotic resistance in the environment.[21, 54, 55] To 

our knowledge, this is the only agent-based model that incorporates natural transformation 

along with biofilm development. Thus, this extended model is a tool for testing hypotheses 

that may be difficult to conduct in vitro and could also be used to drive future laboratory 

work. 
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4.3 Model Overview 

The model description below follows the Overview, Design concepts and Details (ODD) 

protocol developed by Grimm et al. (2006) and is limited to processes associated with 

transformation and antimicrobial inhibition.[56] The current model is an extension of the 

individual-based Dynamics of Microbial Communities Simulator (iDynoMiCS) software 

that provides an ibM simulation of biofilm growth.[40, 48]    

 

4.3.1 Purpose.!!

The purpose of the current model is to simulate DNA uptake, transformation and 

antimicrobial inhibition of bacterial growth in single-species biofilms to observe the effect 

of varying antimicrobial exposure and fitness burden values on the spread of an antibiotic 

resistance gene within the biofilm. 

 

4.3.2 State variables and scales.  

The basic agent in this model is a heterotrophic bacterium chiefly characterized by 

resistance type with properties that include a resistance switch threshold and amount of 

DNA taken up from the surrounding environment. Resistant and non-resistant DNA is 

present in this model in three forms: capsule DNA, particulate DNA and soluble DNA. 

Resistant and non-resistant capsule DNA are bacterial properties that track the respective 

DNA type taken up from the environment. Two additional agents, resistant and non-

resistant particulate DNA, are the result of bacterial lysis. The distinguishing property 

between these two agents is that resistant particulate DNA encodes a metabolic burden and 
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additional metabolic reactions. Bacteria and particulate DNA agents all take up space in 

the model world. However there is no interaction between these two agents. Particulate 

DNA undergoes a solubilization reaction resulting in the solute: soluble DNA. Soluble 

DNA is the only form of DNA that can be taken up by bacteria agents. An antimicrobial 

solute is also present in the model, in addition to those already present in the iDynoMiCS 

base model.[48] The solute field and computation domain are treated as in Lardon et al. 

(2011).[48] The growth substrate or nutrient media in the base iDynoMiCS model is COD 

(chemical oxygen demand). It is essentially a carbon energy source for heterotrophic 

agents. In the present model, COD and nutrient media are interchangeable. Figure 4.1 is a 

model algorithm depicting program flow of bacteria agents and the role of capsule DNA, 

particulate DNA and soluble DNA in the transformation process; Figure 4.1b provides a 

succinct overview of the three DNA types in the model. 

 

4.3.3 Process overview and scheduling.  

The computational domain consists of three regions: a biofilm composed of bacteria 

agents, the general bulk compartment which encompasses the entire computational 

domain, and a boundary layer between the biofilm and the overlying bulk liquid. Solute 

concentrations in the bulk compartment stay fixed based on user set values. However, 

solute concentrations in the boundary layer and within the biofilm vary due to diffusion 

reactions and agent metabolic reactions, respectively. Solute concentrations in all three 

computational domain regions are updated at the start of each global time-step.[48] Several 

agent time steps are completed in one global time step. In the current model, the global 
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time step is .2 h and the agent time step is .01 h. Thus, 20 agent time steps are completed 

within 1 global time step. This falls in line with reasoning that agent level reactions occur 

faster than reactions at the global level such as the diffusion of solutes. In fact, it is 

assumed that global level values are constant during the smaller agent intervals.[57] It is also 

important to note that model output files are produced every hour of the simulation. 1 

output file is equivalent to 5 global time steps and to 100 agent time steps. 

 

At the start of the agent time step, all growth and maintenance reactions are computed and 

the bacteria agent size (cell radius and biomass) is updated. If the bacterial cell has 

approached the division radius value, it will divide to form two new clones. A fraction of 

bacteria agents that reach the death threshold will lyse and release particulate DNA, the 

remaining will stay dormant until they have access to substrate. Similarly, a portion of 

bacteria that have taken up enough resistant soluble DNA to hit the resistant switch 

threshold will become resistant agents; the rest will remain non-resistant for the duration of 

the simulation. Pressure-driven movements are then applied to all agents along with local 

shoving to minimize agent overlap, and the resultant agent locations are updated. Once the 

agent time-steps are completed, the end of the global time-step is marked by removal of 

agents detached from the biofilm due to erosion effects applied to the entire biofilm 

structure.[40, 48] The agent time-step for the current model is laid out in Figure 4.1. Agent 

processes that are a modification of or are in addition to the base iDynoMiCS model 

described by Lardon et al. (2011) are described below.[48] 

!
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4.3.3.1 Biofilm structure development. The model organism for this HGT model is 

Acinetobacter baylyi, a Gram-negative aerobic heterotrophic bacterial species.[49, 53] The 

overall shape of Acinetobacter spp. biofilms is not detailed in the literature. However an 

organism from the same order, Pseudomonas aeruginosa, appears to form mushroom-

shaped biofilm structures.[58, 59] Several agent and environmental model parameters govern 

bacterial growth and therefore, influence biofilm shape. Included among these are maximal 

bacteria growth rate (µG
max) and maintenance rate (µNR). All bacteria agents undergo 

growth and maintenance reactions. These two metabolism reactions respectively convert 

substrate into additional cellular biomass or deplete biomass. Cellular biomass, in turn, 

affects the cell radius value.  

 

The effects of modifying various parameter values on biofilm structure are illustrated in 

Supplemental Figures 1a-f. Values resulting in mushroom-shaped biofilm structures were 

set as the default as seen in Tables 4.1 & 4.2. In addition, the bacterial growth rate (µG
max) 

and maintenance rate (µ
NR) default values are similar to corresponding heterotrophic 

growth values in previous studies.[48, 60, 61] Long-term biofilm growth in Supplemental Figure 

2 shows the development of mushroom structures into finger-like structures that eventually 

detach. This fingering instability phenomenon has been shown in previous biofilm 

models.[62] 

!

4.3.3.2 Bacterial lysis. All bacteria agents have a cell radius property. This value changes 

according to cell metabolism and bacteria divide or die when an agent reaches threshold 



 74 

cell radius values. Following Lardon et al. (2011) dead agents are subsequently removed 

from the simulation.[48] However in the current model, cells that approach the death radius 

can either lyse or become dormant. Biofilms, even single-species biofilms, are a 

heterogeneous population.[63, 64] Cells can vary in their response to local nutrient and 

chemical concentrations resulting in inactive or dead cells.[63, 65] Following cell death, a 

subpopulation of biofilm cells can lyse and release genomic DNA.[64, 66] In this model, cells 

near the death radius threshold have a probability of lysis [P(lysis)]. Thus, a subset of these 

cells lyse and release genomic DNA (represented by the particulate DNA agent). The 

remainder may lyse in subsequent time steps if they continue to hover near the death 

radius. These cells are most likely located in nutrient poor regions of the biofilm and will 

continue to decrease in size due to starvation and a maintenance cost.[63, 65] Therefore, these 

dormant cells are not completely void of all metabolic reactions but it is highly unlikely 

they will uptake substrate or divide. The default value for P(lysis) was chosen to reflect 

non-extreme behavior (Supplemental Figures 3a-b). 

 

4.3.3.3 Transformation. Natural transformation in bacterial species is the active uptake 

and integration of donor DNA.[67] Acinetobacter baylyi has a particularly efficient 

transformation system and can uptake and process homologous as well as foreign DNA.[68-

71] In addition, A. baylyi is common in water and soil environments making it an 

appropriate choice for modeling transformation in a flow system.[26, 39] To our knowledge, 

the current model is the only agent-based model with transformation functions. 
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Additionally, this HGT model is limited to transformation with chromosomal DNA and 

therefore does not include plasmid spread dynamics. 

 

Three forms of DNA are present in the model: capsule, particulate and soluble DNA. 

Capsule DNA is a bacterial property that tracks the amount and type of DNA taken up. 

Upon lysis, resistant bacterial cells release a portion of their host genomic DNA along with 

any contents of the resistant capsule. The amount of DNA present in the non-resistant 

capsule is considered to be negligible and therefore, unaccounted for post-lysis. Non-

resistant bacterial cells undergo a complimentary sequence of events. Resultant 

extracellular DNA is now a particulate DNA agent labeled as resistant or non-resistant 

depending on the gene profile of the original lysed bacterial cell. Particulate DNA and 

bacteria both occupy space in the model world but there is no interaction between the two. 

In fact, bacteria cannot uptake particulate DNA. Particulate DNA dissolves into the 

surrounding liquid environment forming soluble DNA, a solute that is the only form of 

genetic material accessible to bacteria. Figure 4.1b provides an overview of the three DNA 

types found in the model. 

 

DNA released from lysed cells and soluble DNA solution fed into the bulk influent are the 

only sources of genetic material for transformation in the model biofilm. Since lysed DNA 

dissolves to form soluble DNA these two donor sources are essentially the same. However, 

the surrounding bulk liquid immediately dilutes local concentrations of solute formed from 

cell lysate whereas the user can preset the concentration of resistant and/or non-resistant 
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soluble DNA solution fed into the bulk influent. This is similar to transforming recipient 

cells with whole cell lysate with an unknown concentration of the resistant marker versus 

transforming cells with a purified resistant DNA solution.  

Regardless, both crude cell lysate and purified DNA efficiently transform Acinetobacter 

spp. in laboratory and environmental settings.[39, 68, 72, 73] In particular, Hendrickx et al. (2003) 

demonstrated detectable transformation frequencies in Acinetobacter baylyi biofilms 

developed in a laboratory flow cell.[51] Similar to our model world set-up, the single species 

biofilm was surrounded by bulk fluid and exposed to an influent flow of purified plasmid 

DNA with a resistance marker.[51] Transformation of Acinetobacter spp. in the environment 

may be due to environmental donor DNA that retains its bacterial transforming abilities for 

extended time periods when adhered to sediment particles.[74] While there is no 

representation of such particles in the current model, it is assumed that the transforming 

ability of resistant DNA does not vary with time.  

 

Even in a highly transformable organism such as Acinetobacter baylyi, transformation is a 

regulated process with multiple steps and is treated as such in the model. However, in the 

absence of adequate quantitative transformation parameters, processes are coupled with 

well-established model kinetics. Thus, bacteria agents uptake soluble DNA through the 

same mechanisms for bacterial growth previously described by Lardon et al. (2011).[48] 

The kinetic reaction, describing uptake of COD and subsequent increase in bacterial 

biomass, is also used to characterize uptake of soluble DNA and increase in the DNA 

capsule contents (Table 4.3). Thus, the maximum rate of soluble DNA uptake (µ D
max) and 
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the soluble DNA saturation constant (κDNA) are equivalent to their growth reaction 

counterparts (µ G
max & κCOD) (Table 4.1). There is a minor drawback to using a Monod 

equation to describe soluble DNA uptake kinetics as is illustrated in Supplemental Figures 

4a-c. Rate of soluble DNA uptake will maximize as the biofilm is saturated with donor 

DNA. This then decreases the amount of DNA available to cells located in the lower 

biofilm strata and leads to a decrease in overall transformation frequency. There will 

therefore be a slight dip in the transformation frequency curve before the uptake rate is 

stabilized. 

 

As discussed before, internalized resistant extracellular DNA is tracked in the resistant 

capsule. When this capsule value approaches a user preset resistant switch threshold (Thres) 

the respective bacteria agent has a probability [P(resistant)] of expressing the resistance 

gene. Transformation frequencies of Acinetobacter baylyi batch cultures and monoculture 

biofilms vary with the concentration of donor DNA.[51, 53, 75] Frequency curves often plateau 

when recipient cells are saturated with DNA; therefore we assume that there must also be a 

donor DNA concentration below which transformants are undetectable represented by the 

Thres. Supplemental Figure 5 shows the influence of the Thres parameter value on the 

transformation frequency curve in a single-species biofilm. We assumed a default value for 

Thres based on in vitro transformation frequency experiments (unpublished results). This 

setting also proved to be the most sensitive parameter value for transformation frequencies 

in young biofilms. 
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Transformation with chromosomal DNA is dependent not only on uptake but also on 

functional integration of donor DNA into the host chromosome.[76] Thus, a sub-population 

of cells that approach the Thres has a probability of transformation [P(resistant)]. 

Transformed cells express the resistance gene and the remainder will remain non-resistant 

for the duration of the simulation. Successful recombination events vary as a function of 

the organism and only .1% of internalized DNA fragments are successfully recombined 

into the Acinetobacter baylyi host chromosome.[6] Supplemental Figures 4a-c illustrate the 

effect of changing this parameter value on the overall transformation frequency curve and 

the range of the data values. The default P(resistant) value was set to .02. This was the 

lowest effective value the parameter could be set to. In addition, considering the low 

percent of recombined internalized fragments and the fact that transformation is a 

multifactorial process – this seems to be a reasonable assumption. 

 

There is usually a fitness cost associated with acquired antibiotic resistance.[5] Expression 

of foreign genes can place a significant metabolic burden on the recombinant host cell 

resulting in, but not limited to, a decreased growth rate.[5, 11, 77] This has been shown for 

antibiotic resistant Acinetobacter spp. and an organism from the same order: Pseudomonas 

aeruginosa.[11, 78] Seoane and colleagues found that the growth rate of P. putida cells 

carrying a plasmid is decreased on the order of 10% compared to growth of plasmid free 

cells.[79]  Merkey et al. (2011) used iDynoMiCS to study plasmid invasion in biofilms and 

set the maintenance rate of resistant bacteria to 5% based on these findings. In the current 

model, resistant bacteria agents experience an additional metabolic drain above the 
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baseline maintenance cost of their nonresistant counterparts. The rate of this reaction (µR) 

is equal to 0-20% of the growth rate (µG 
max). We assume that the metabolic burden 

associated with plasmid carriage is much higher than with chromosomally integrated DNA 

however a wide metabolic burden value range ensures a more comprehensive analysis. 

There are instances when antibiotic resistance improves fitness or has no effect at all.[10, 80] 

The former case will not be addressed in this model and the latter can be addressed by 

setting µR to 0%.  

 

4.3.3.4 Antimicrobial Inhibition. Numerous antibiotics are available to control or 

eradicate bacterial infections and they are usually classified according to the mode of 

antagonistic action.[81] While the antimicrobial target(s) and mechanism(s) are often well 

understood, the bacterial response may not be since it usually involves various genetic and 

biochemical pathways.[81] Antibiotic interaction at the biofilm level is also fraught with 

uncertainties. Reduced susceptibility of biofilms to antibiotics has been well documented 

however there are several working hypotheses as to the cause.[82] The antimicrobial may fail 

to fully penetrate the biofilm because of structural barriers and/or consumption or 

neutralization reactions with the biomass.[83-85] Retarded diffusion may also lead to biofilm 

regions with low substrate concentration levels and metabolically inactive, less susceptible 

cells.[86] Alternatively, cells may turn on a protective stress response upon exposure to high 

antimicrobial concentrations or a subpopulation of persistor cells may develop.[82] While 

these are all plausible theories, the reality is that biofilm resistance seems to be a 
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combination of several factors.[86-90] In fact, one species may have different resistance 

responses depending on the antimicrobial agent and/or biofilm properties.[82, 91]  

 

Incorporating new code into the base model to account for a hypothesized or known 

mechanism would introduce unnecessary complexity. Present model goals only require a 

general inhibitory pressure. In addition, antimicrobial interaction with bacterial cells on the 

individual and biofilm levels appears to be a complex process with many unknowns. Thus, 

similar to transformation processes, inhibition follows model kinetics from the validated 

base iDynoMiCS model (Table 4.3).[48] Antimicrobial is treated as a model solute with the 

maximal antimicrobial inhibition rate (µI
max) and the antimicrobial saturation constant (κAb) 

equivalent to their growth reaction counterparts (µ G
max & κCOD) (Table 4.1). However, 

COD uptake increases bacterial biomass whereas antimicrobial uptake decreases biomass 

(Table 4.3). Antibiotics are often classified according to whether they inhibit cell growth 

(bacteriostatic) or induce cell lysis (bacteriolytic).[81] Bacteria agents increase y biomass 

units per x COD units taken up, decrease y biomass units per x bacteriostatic antimicrobial 

units taken up and decrease >y biomass units per x bacteriolytic antimicrobial units taken 

up. Therefore, static drugs directly offset bacterial growth and lytic drugs decrease biomass 

at a greater magnitude than the increase in biomass concurrent with COD uptake. 

 

Although no particular inhibition mechanism is explicitly represented in the present model, 

antimicrobial effects and diffusion at the biofilm level are consistent with previous work. 

Dose response curves in Supplemental Figures 6a & 6c are similar to results of a study 
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examining the dose response of Pseudomonas aeruginosa.[92] Chambless et al (2006) 

studied biofilm antimicrobial resistance using the computer model, BacLAB.[83] 

Antimicrobial concentration profiles were constructed for two hypothetical resistance 

mechanisms: limited antimicrobial penetration of the biofilm structure and stress response 

resulting in resistance. While the number of live versus dead cells and location of cells 

varied, the substratum antimicrobial concentration was approximately 10% of the 

overlying bulk fluid concentration in both.[83] The same pattern was seen in antimicrobial 

plot contours produced from test simulations (data not shown).  

 

4.3.4 Design concepts. 

4.3.4.1 Emergence. Transformation frequencies over time and discernible patterns of 

transformants at the biofilm level are a result of individual bacterium behavior. 

4.3.4.2 Fitness.!Resistance gene expression imposes a metabolic burden on the host 

bacterium. 

4.3.4.3 Adaptation.!Bacteria expressing the resistance gene can withstand antimicrobial 

growth inhibition effects. 

4.3.4.4 Prediction.!This model is a predictive tool to assess trends of transformation 

frequencies and patterns of transformants in biofilms in varying environments. However, 

raw model data may not be equivalent to laboratory results.  

4.3.4.5 Sensing. Bacteria cannot estimate the concentration of nutrients or DNA in their 

surrounding environment and cannot differentiate between resistant and non-resistant 

soluble DNA. 
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4.3.4.6 Stochasticity.!None in addition to that described in Lardon et al. (2011).[48] !

4.3.4.7 Collectives.!The biofilm is tracked as a collective entity to update the delineation 

between the biofilm and surrounding liquid in the computational domain as described by 

Lardon et al. (2011) and by Merkey et al. (2011).[40, 48] 

4.3.4.8 Observation. Information about the bacteria and particulate agents is updated and 

saved at pre-set time intervals. The same occurs for bulk compartment concentrations. 

 

4.3.5 Details.  

4.3.5.1 Initialization. The number, type and placement of bacteria agents as well as initial 

concentrations of all solutes in the bulk compartment are specified in the XML protocol 

document. Sbulk and Sin parameters exist for all model solutes in the XML document and set 

the initial bulk fluid concentration and the influent concentration, respectively. Simulations 

testing hypotheses regarding resistance gene spread in a biofilm exposed to varying 

environmental antimicrobial concentrations and a range of resistance gene burden values 

read in a grown biofilm. To develop this initial structure at least 10 non-resistant bacterial 

agents are randomly placed in a defined region of the computational domain. Soluble DNA 

solute is added to simulations as the source of resistant DNA and antimicrobial may be 

applied to test for its effects.  

 

4.3.5.2 Input. Many of the input parameters are the default values described by Lardon et 

al. (2011). The exceptions are listed in Table 4.1. Default environmental parameters are 

listed in Table 4.2 and model processes/ reactions are shown in more detail in Table 4.3. 
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4.3.5.3 Simulations. All experiments are simulated for 792 hours, which includes 72 hours 

of initial attachment and uninhibited biofilm growth followed by 720 hours of constant 

antimicrobial exposure. Initial unchallenged 72-hour biofilms are composed entirely of 

nonresistant bacteria. These 72-hour biofilms are exposed to continuous soluble resistant 

DNA (10e-3 g.L-1) and antimicrobial (0 g.L-1 – 10e-3 g.L-1) in the influent. The effects of a 

range of metabolic burden values (0-.140 h-1) are examined within these continuous 

antimicrobial treatment simulations. Table 4.4 provides an overview of all the model 

simulations. 

 

4.3.5.4 Submodels. Only transformation and antimicrobial inhibition related extensions of 

the iDynoMiCS model are discussed here; refer to Lardon et al (2011) for a complete 

description of the iDynoMiCS model.[48] 

 

4.3.6 Data analysis.  

iDynoMiCS saves a set of output files describing the agents and solutes written at user set 

time points, mainly agent_State files, POV-Ray files and env_State files.[48] The 

agent_State file lists the properties of each agent in the simulation, including the resistance 

profile. A MATLAB routine is used to analyze these state files and provide numbers of 

resistant and nonresistant bacteria at intervals over the course of the simulation. These data 

are used to construct total resistant cell/ total cell curves and the biomass curves presented 

in the results section. Each set of simulation conditions is repeated five times; each run 

with a unique seed number. Biofilm images are visualized from both the POV-Ray and 
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agent_State results files. POV-Ray files are rendered into images using Mega-POV 

software and provide a detailed pictorial of the overall biofilm structure, sizes of 

component bacterial cells and the location of any resistant cells. However, POV-Ray 

images do not provide a measure of biofilm height. MATLAB plots of agent_State files 

render biofilm images with height along the y-axis. Unlike the POV-ray files, agent sizes 

are not representative of actual size and bacterial agents are not color-coded based on 

resistance profile. By overlapping both POV-Ray images and MATLAB plots, we can 

visually divide POV-Ray rendered images into three biofilm strata (≤ 40 µm, 40 µm  < x ≤ 

80 µm, and > 80 µm). MATLAB analysis of agent_State files provides number of resistant 

and nonresistant bacteria by stratum. As stated previously, all simulations conditions are 

repeated five times. However, biofilm images in the results section are not an average of 

the repeat simulations but are representative images from one of the five repeat 

simulations. 

 

4.3.7 Assumptions.  

There were several assumptions made during model development either for simplicity or to 

minimize computational burden. Competence in Acinetobacter baylyi varies with cellular 

growth phase.[93] However, in the current model, DNA uptake and integration are only 

dependent on the immediate environmental concentration of soluble DNA and the 

P(resistant) value. We assume that all cells are competent for the duration of the 

simulation. In addition, the particulate DNA solubilization rate was set to a low rate and no 
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lag period exists for resistant gene expression. Finally, there are no compensatory 

mechanisms. Once cells become resistant, they cannot revert back to a susceptible state.  

 

4.4 Results 

This study explores the association between resistance burden value and persistence of 

resistant bacteria in biofilms. We ran simulations exposing nonresistant biofilms to a 

constant exposure of both resistant soluble DNA (10e-3 g.L-1) and  varying antibiotic 

concentrations (0-5e-3 g.L-1). Within each set of simulations, we looked at the effect of 

increasing the resistance gene burden value. The tested antimicrobial range and influent 

resistant soluble DNA concentration was set based on previous tests. Supplemental Figure 

6c indicates that the inhibition effects are first apparent at antibiotic influx concentrations 

greater than 10e-4 g.L-1 and that there are virtually no live cells at antimicrobial 

concentrations greater than and including 10e-2 g.L-1. Burden value effects may be 

overshadowed by antimicrobial inhibition reactions at these high antibiotic influx 

concentrations making it difficult to tease out trends. So, the highest antibiotic 

concentration tested was 5e-3 g.L-1. Simulations were also run with no antibiotic exposure 

to observe the base ratio of resistant bacterial cells/ total bacterial cells over time in a 

simulated environment with no antimicrobial pollution. A constant application of resistant 

soluble DNA is applied in all simulations as well. Supplemental Figure 4c indicates that an 

influent donor DNA concentration of 10e-3 g.L-1 produced a mid-range transformation 

frequency. In essence, we could be reasonably sure this non-saturating value would not 

result in any extreme behavior. 
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Several data trends are consistent with prevailing assumptions regarding antibiotic 

exposure and resistance expansion. [9-14] As seen in Figure 4.2a, resistant bacteria with no 

cost or low cost fitness genes persist in the absence of antibiotic. However, resistant 

bacteria with a metabolic burden higher than .007 h-1 are outcompeted by their susceptible 

counterparts. While there is progressively no overlap between the 0 h-1 and .007 h-1 curves 

in the absence of antibiotic, the gap between these two curves lessens as the antibiotic 

influx concentration increases. Results in Figures 4.3a, 4.4a, 4.5a & 4.6a imply that 

frequency and rate of increase of resistant bacteria appears to be directly related to increase 

in antibiotic pressure. Cells harboring resistance genes with burden values .021 h-1 and .035 

h-1 appear to persist long-term once the biofilm is exposed to 2.5e-3 g.L-1 influent 

antimicrobial. And, bacterial cells with resistance genes that have a burden cost of .070 h-1 

appear to persist longer under exposure to antimicrobial concentrations greater than 2.5e-3 

g.L-1. However, there are no conditions in the tested antibiotic exposure range that promote 

the expansion of resistant bacteria with a .140 h-1 metabolic burden value.  

 

Results also indicate that for some tested conditions, data patterns only emerge once 

simulations are run for the appropriate amount of time. For instance, there is no visible 

trend among the resistant cell/ total cell ratio curves for the different metabolic burden 

values in younger biofilms at antibiotic influx concentrations of 1.25 e-3 g/L and lower. 

This does not apply to biofilms exposed to higher antibiotic concentrations where the 

resistant cell/ total cell curves diverge earlier. 
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The data in Figures 4.3a, 4.4a, 4.5a & 4.6a are presented in a different format in Figures 

4.7a-o and in Figures 4.8a-o. Figures 4.7a-o depict the absolute numbers of resistant cells, 

nonresistant cells and total cells over time while Figures 4.8a-o plot the numbers of 

resistant cells by location within the biofilm. Results in Figures 4.7a, d, g, j & m show a 

rise in the number of resistant cells over time as the influent antibiotic concentration 

increases. At an antimicrobial concentration of 2.5e-3 g.L-1 and above, there is an increase 

in resistant cells regardless of the metabolic burden value. However, at lower 

concentrations, we only see an increase in resistance cells with a fitness cost of 0 h-1 and 

.007 h-1. Nonresistant cells over time plots appear to be roughly similar across 

antimicrobial exposures groups for concentrations 1.25 e-3 g.L-1 and lower. And, the 

various metabolic burden curves appear to almost overlap within each of these same 

antimicrobial exposure groups. However, the metabolic burden curves begin to separate 

out within the 2.5e-3 g.L-1 and the 5.0 e-3 g.L-1 antibiotic exposure groups. It would appear 

that the resistant cell population is high enough to siphon off growth resources, thus 

stunting overall proliferation of the nonresistant cell population. In general, there is a drop 

in the number of nonresistant cells between 240-288 h after which the curve appears to 

flatten out. The exception to this trend are the simulation results of exposing a nonresistant 

biofilm to resistant DNA and 5e-3 g.L-1 antibiotic. In this case, the drop in nonresistant cells 

occurs at an earlier time point between 144-240 h except for the .140 h-1 metabolic burden 

curve. This curve drops at ~ 264 h and stabilizes at a higher number of nonresistant cells 

compared to biofilms housing resistant cells with lower fitness costs. Figure 4.6a implies 

that resistant cells with a .140 h-1 fitness cost are outcompeted by susceptible cells early on 
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(~ 312 h). This would allow the remaining nonresistant population to grow unabated. 

Figures 4.7 c, f, i, l & o chart total cells over time and these results closely mirror 

nonresistant cell curves in Figures 4.7b, e, h, k & n. Figures 4.8a-o plot the resistant cells 

by location in the biofilm. The metabolic burden curves appear to cluster together within 

each of the antibiotic exposure groups. But, there is a pattern in the location of resistant 

cells over time. The number of resistant cells located above 80 µm peaks before 240 h but 

this increase fails to persist over time. In contrast, resistant cells located between 40-80 µm 

and below 40 µm are more predominant in older biofilms. This is not due to an increased 

penetration of the structure by resistant cells over time. Figures 4.2b-c, 4.3b-c, 4.4b-c, 

4.5b-c & 4.6b-c indicate that a majority of the biofilm structure falls below 80 µm after 

240 h, so the location of any resistant cells is limited by biofilm height.  

 

As described previously in the Model Overview section, MegaPOV is auxiliary software 

that can further analyze iDynoMiCS output files. In particular, biofilm images can be 

rendered using MegaPOV and resistance cell type is indicated by color. It was not possible 

to create a composite figure by overlapping images from repeat simulations, instead 

Figures 4.2b-c, 4.3b-c, 4.4b-c, 4.5b-c & 4.6b-c are compilations of biofilm structures that 

are most representative of the average resistant cell total data displayed alongside each 

biofilm image. Each set of simulation conditions was repeated 5 times, each time with a 

different seed value. There are instances when one simulation run may bias the results 

average. This is the case with the 0 h-1 maintenance value results in Figures 4.5b-c and 

with the .007 h-1 maintenance value results in Figures 4.6b-c. In both these instances, 
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average total resistant cell values are influenced by outlier simulation results. Despite this, 

some general inferences may be drawn from biofilm structure development under the 

varying simulation conditions. As noted previously, there is a drop in nonresistant cells 

between the 120 -240 h time points. This decrease in cell count may be a combined result 

of antimicrobial inhibition, detachment of cells and erosion effects. These biofilm images 

imply that resistance expansion within the biofilm structure increases as antimicrobial 

influx concentration rises and thus, the number of resistant cells that detach also increases. 

Higher antimicrobial concentrations seem to promote dispersal of resistant cells from the 

biofilm into the surrounding environment. It is also important to specify that image 

resolution limits the display of cells with an extremely small cell radius value. This would 

account for images that seem to not be tethered to the inert substratum when in fact, there 

is a layer of dormant and starved cells in the substrate poor region.   

 

4.5 Discussion 

Acquired resistance in bacteria is usually associated with a metabolic burden. The fitness 

cost amount can impact the rate of resistance development, stability of resistance and the 

rate at which frequency of resistance might decrease in the absence of antibiotic pressure.[5, 

37] In particular, frequency and rate of increase of resistant bacteria within a bacterial 

population is assumed to be directly related to the antibiotic pressure and inversely related 

to the fitness cost of the resistant gene.[5, 28, 29, 31] It is generally assumed that a decrease in 

selective pressure will benefit the susceptible bacteria and allow them to displace resistant 

strains.[27] The exception to this generalization is bacteria harboring low cost or no cost 
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resistance mechanisms. These bacteria will persist even in the absence of antibiotic.[10, 14] 

The model results presented in this paper support these general assertions. Additionally, 

extended iDynoMiCS model simulation results suggest that magnitude of antibiotic 

selection pressure may allow for the persistence of more virulent resistance genes and 

generally affect the type and frequency of resistance genes circulating in the resistome. 

Study results imply that trends seen in clinical and in silico studies can also be seen at the 

microbial biofilm level. Although model set-up and parameter values do not exactly 

replicate conditions in the natural environment, this extended model can still be exploited 

to study additional hypotheses outside of the laboratory setting. 

 

Our model investigates a wide range of metabolic burden values (0-.140 h-1) and the 

magnitude may correlate with the method of acquired resistance.[37] Merkey et al. (2011) 

set the plasmid metabolic burden rate at 5% of the maximal bacterial growth rate, which 

translates to .035 h-1 in our model.[40] We assume that plasmid carriage imposes a higher 

fitness cost compared to genes integrated into the bacterial chromosome. Thus 

maintenance rates in the lower end of the tested range of values, such as .007 and 0 h-1, 

may be representative of resistance acquired through transformation with extracellular 

DNA. Bacteria with these resistance genes persist in the absence of antimicrobial pressure. 

In contrast, bacteria harboring resistance genes with a fitness cost higher than .007 h-1 have 

a truncated life span in a drug-free environment. Acquired resistance can increase bacterial 

virulence in some instances.[94] Assuming that genes that increase bacterial virulence also 

have a high fitness cost, model results indicate that these genes can persist under certain 
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conditions. In particular, the frequency of high cost resistance genes increases as antibiotic 

selection pressure increases. As stated previously, we assume that low cost and no cost 

resistance genes are most likely the result of the main resistance mechanism under study, 

transformation. However, this does not necessarily rule out the possibility that there are 

high cost resistance genes integrated into bacterial chromosomes. The ephemeral nature of 

high cost resistance genes may decrease the likelihood that such resistance determinants 

are detected in the environment and/or studied in a laboratory setting. The extended 

iDynoMiCS model allows us to demonstrate trends in the absence of appropriate bacterial 

strains for in vitro experiments. 

 

Model simulation results suggest that influent antibiotic concentration may affect the type 

and frequency of resistance genes circulating in the resistome, a reservoir of antibiotic 

resistant determinants. It can also affect HGT of these genes into pathogenic bacteria.[10, 19, 

95, 96] Environmental microbes house a wide array of resistance genes, and some of these 

same genes can be found in pathogenic organisms. There is evidence that the antibiotic 

resistant mechanisms in nosocomial pathogens have their origins in the environmental 

resistome.[27, 97, 98] Furthermore, commensal bacteria can serve as a vector for transmission 

of resistance genes between the environment and clinical settings.[7] The potential effect of 

antibiotics on the make-up of the resistome and downstream mobilization of these genes 

into clinically significant bacteria signals that antibiotic research should expand focus to 

nonpathogenic organisms, such as our model organism – A. baylyi. Additionally methods 
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to remove excreted antibiotic metabolic compounds should be improved so as to reduce the 

total antibiotic circulating in the environment.  

 

Trends in the extended iDynoMiCS model results are consistent with results from previous 

clinical and in silico studies, in addition to the in vitro studies previously discussed in the 

introduction section. Unsurprisingly, some of the earliest observations of antibiotic 

resistance occurred in clinical settings.[99, 100] Nosocomial infections are a significant burden 

to the healthcare delivery process and resistant infections are an increasing threat.[101] As a 

result, there are a number of studies establishing a clear relationship between increased 

antimicrobial use and emergence of resistant strains.[102-106] While there are examples of 

successful interventions – a correlation between reduced prescribing and reduced 

resistance does not always hold.[102] Theoretical models developed at both the human host 

and bacterial agent levels also indicate long-term negative effects of prolific antibiotic use. 

To study the impact of human antibiotic consumption on resistance frequency, Levin 

(2002) developed an SIR model. This open population model showed a rapid rise in 

resistance frequency following a small increase in antimicrobial consumption. However, 

effects of reduced antibiotic use were much slower indicating the persistence of resistance 

long after drug cessation.[107] A population genetics model using parameters derived from 

epidemiologic surveillance data of resistant isolates and community drug consumption 

produced similar results. In this case, constant antimicrobial exposure resulted in a 

sigmoidal rise in resistance. Successful interventions reduced the total numbers of resistant 

pathogens but did not fully reverse antibiotic effects.[12, 108] Although the results are not as 
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conclusive, the same trends are seen in a model with bacterial level state variables.[109] This 

mechanistic model attempted to explain the high densities of resistant bacteria in aquatic 

settings impacted from anthropogenic tetracycline use. Authors ruled out the possibility 

that environmental resistant populations are due to a high influx of resistant bacteria from 

wastewater that then do not grow in the receiving water body. Instead, model results 

indicated that it is more likely that there is a negligible input of resistant bacteria that then 

grow under selective pressure or exogenous bacteria transfer resistance to the local 

population allowing them to survive antibiotic exposure.[109]  

 

Although stated previously, it is important to reiterate that this model can provide 

information on trends and cannot supplant quantitative data. Model development is an 

ongoing process and parameters may be modified as new in vitro data emerges. At present, 

there are several limitations with the current model extension. To our knowledge, this is 

the first agent-based model to incorporate transformation. This is coupled with the fact that 

transformation is a multifactorial process with several unknown parameters.[26, 110] Thus, in 

the absence of good measurements, we used a priori knowledge to choose biologically 

meaningful parameters. Despite this, we did find that transformation curves produced by 

the model had a limited range as seen in Supplemental Figures 4a-c. In all three figures, the 

shape follows the typical Acinetobacter baylyi transformation curve but there are no 

detectable transformants below the 10e-5 g.L-1 soluble DNA influent concentration.[51] This 

is most probably due to a low total cell count. Increasing the computational grid size will 

allow for more bacteria agents and extend the detectable transformation frequency range. 
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However, this will also increase the computation time and the required memory. 

Supplemental Table 1 lists the total cell count and computation time for several grid sizes. 

Depending on the chosen grid size, additional parameter adjustments may have to be made 

to ensure a realistic initial biofilm structure. Additionally, present study experiments are 

based on an initial 72 hr. mushroom shaped heterotrophic nonresistant biofilm. However, 

biofilm structure is affected by nutrient and environmental conditions and on-going 

research implies that Acinetobacter spp. biofilms may not form mushroom structures 

(unpublished results).[2] Repeating simulation conditions using initial biofilms with varying 

structures could expand current study results. Influent antimicrobial concentrations used in 

the model are much higher than those found in the environment or used in in vitro lab 

experiments. Our main concern was to include a selective pressure that has a varied effect 

with changing concentration so the actual concentration was not a concern. Finally, this 

paper presents the results of simulations that include exposure to a constant influent of 

resistant DNA. Biofilms in dynamic flow systems may not encounter a constant supply of 

resistance determinants. In fact, resistant DNA influx may occur in intervals. However, the 

initial application of this extended iDynoMiCs model used the most simple simulation 

settings. This included a constant application of antimicrobial and resistant soluble DNA. 

Future work can and should include more realistic settings for antimicrobial and resistant 

soluble DNA influx. Despite these limitations, it is our assertion that this is a reliable 

model for trend estimation since the current model is an extension of the vigorously 

validated iDynoMiCS model, transformation and antimicrobial inhibition reactions are 
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based on iDynoMiCS kinetic equations, and assumptions are informed from peer-reviewed 

literature and laboratory observations.[48] 

 

 The current model lends itself to studying various hypotheses without any significant 

source code modifications. Current experiments look at the effects of constant 

antimicrobial exposure and resistant soluble DNA across different burden values. 

However, input of antibiotics in the real world may occur in a single pulse or multiple 

pulses.[9] It would be interesting to examine the effect of antimicrobial cessation, post 

prolonged exposure, on the resistance make-up of the biofilm. The antibiotic can also be 

applied in predefined intervals. Initial biofilm structures may be exposed to pulsing 

antibiotic alone, or concomitant and/or alternating with resistant soluble DNA. The 

strength of the antibiotic can also be easily manipulated. The antimicrobial in study 

simulations offsets growth however the strength or toxicity can be easily changed in the 

.xml protocol document. Properties of the initial biofilm may also affect the frequency of 

resistance and location of resistant cells. Running simulations with initial biofilms that 

vary in age and or location of resistant cells within the structure may offer additional 

insights. 

 

Additional but somewhat more significant source code modifications would expand the 

utility of the model. These include: a compensatory mechanism, the ability to use 

antimicrobial as a growth substrate and growth phase dependent competence. It has been 

shown that bacteria can ameliorate the cost of acquired resistance with compensatory 

mutations. These mutations can restore or even improve fitness.[5, 13, 27]  The current model 
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can be amended to include a mutation rate that allows a portion of the resistant bacteria 

population to maintain resistance but with no fitness cost. Bacteria have other means of 

persisting in a hostile environment. For instance, some soil bacteria species can subsist on 

antibiotics, even using them as their sole carbon source.[7] A growth reaction using 

antimicrobial as a substrate can be specified in the .xml protocol document to account for 

this. The model could also be expanded to include bacterial cell competence. As previously 

mentioned, an assumption of the current model is that bacterial cells are competent for the 

duration of their life span. However, competence induction in Acinetobacter baylyi is 

induced after the transition from lag phase to exponential growth phase and decreases 

thereafter.[111]  If this level of complexity is necessary, it could be achieved by manipulating 

the source code. The uptake of soluble DNA reaction could be tied to bacterial cell age, 

only occurring during a specific age period.  

 

This extension of the iDynoMiCS model has numerous applications that would extend 

research beyond the laboratory setting. Hypotheses can be tested for lengthy periods of 

time without the potential contamination issues that abound in a lab setting. The model can 

also be a tool to drive laboratory research and examine ongoing research questions such as 

mechanisms of biofilm resistance to antimicrobials and methods to promote biofilm 

dispersal. In addition, it expands the study of HGT. Conjugation dynamics have been 

extensively studied with in vitro and agent-based models such as the iDynoMiCS 

extension developed by Merkey et al. (2011).[40] Transformation studies are fewer in 

comparison. This may be because the relative contribution of conjugation to antibiotic 
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resistance expansion is higher than that of natural transformation mechanisms. However, in 

depth study of natural transformation is essential to obtain a complete picture of resistance 

expansion in the environment.  
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Parameter                                                   Symbol           Value             Units             Source      
Maximal bacteria growth rate                                            µG

max                                      .7                           h-1                                     1,2,3                                
 
Maximal antimicrobial inhibition rate                               µI

max                                        .7                           h-1                                 Assumed  
 
Maximal DNA uptake rate                                                 µ D

max                                     .7                           h-1                                 Assumed      
 
Saturation constant for COD                                              κCOD                         2.5e-4                     g.L-1                                     4 
 
Saturation constant for antimicrobial                                  κAb                                       2.5e-4                      g.L-1                              Assumed 
 
Saturation constant for soluble DNA                                  κDNA                        2.5e-4                      g.L-1                              Assumed 
 
Maintenance rate of bacteria                                               µNR                                      .0133                        h-1                                       1,2,3 
 
Fitness burden of resistant gene                                          µR                                      (0-.140)*                    h-1                                         5,6  
 
Resistance switch threshold                                                 Thres                                       1                            fg                              7 
 
Probability of transformation                                              P(resistant)                2                             %                              8 
 
Probability of lysis                                                              P(lysis)                      1                             %                       Assumed 
 
Biomass density                                                                  ρbiomass                                150                          g.L-1                                        3 
 
Capsule density                                                                   ρcapsule                    10,000#                      g.L-1                             Assumed 
       
 

Table 4.1: Default agent parameter values 

Sources values: Noguera & Picioreanu (2004)1, Rittmann et al. (2004)2, Lardon et al. (2011)3, default value in idynomics example4, Merkey et al. 
(2011)5, Seone et al. (2010)6, unpublished lab results7, Martinez (2009)8 

This accounts for any additional burden associated with expressing the resistance gene. Thus resistant bacteria will have a baseline maintenance rate 
similar to their nonresistant counterparts plus metabolic burden.* 
In the base iDynoMiCS model, agents are made up of several compartments including inert biomass, active biomass and capsular EPS. In this modified 
model, the capsular compartment keeps track of soluble DNA that has been taken up from the surrounding liquid environment. Cellular division is 
dictated by cell radius which increases as cell biomass increases. To make sure cell division is based on increase in biomass from uptake of nutrient 
media and not from uptake of soluble DNA, the capsule density was set at 10,000 g.L-1.#  
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Parameter                              Symbol                            Value                              Units      

       Influent nutrient media  
          concentration                                                CODin                                                                  10e-3                                            g.L-1 

       Constant bulk concentration                            isConstant                                      False                                           n/a 

       Erosion rate                                                      κDet                                                                        5e-4                                             (µm.h)-1 

       Biofilm max thickness                                     maxTh                                                                  200                                             µm  
 

Table 4.2: Default environmental parameter values 

Please refer to Supplemental Figures 1a-f for an explanation of the environmental parameters and the chosen default values.  
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Bacteria growth on COD                   1.0                                        -1.5                                                                            µ = µG
max 

 
 
 
Antimicrobial inhibition of               -1.0*                                                                                          -1.5                        µ = µI

max 
 
  non-resistant bacteria 
   
 
 
Uptake of soluble DNA                                        1.0                                               -1.5                                                    µ = µ D

max                                                     
 
                       
 
Maintenance of nonresistant             -1.0                                                                                                                            µ = µNR 

max  X 
  bacteria 
 
 
Fitness burden of resistant gene       -1.0                                                                                                                            µ = µR

max  X 
                                                                                                                                                                                                                  
 
DNA solubilization                                                   -1.0                                          1.0                                                     µ = µS

max  X 
 
 
 

Table 4.3: Overview of model reactions 

Process                      Δ                                                                                            Kinetic Expression     Mass                                     Solute (SCOD, SAb, SDNA) 
biomass    capsule              COD       soluble DNA     antimicrobial   

     SCOD 
 
κCOD + SCOD 
 !

       SAb 
 
   κAb + SAb 
 !

       SDNA 
 
 κDNA + SDNA 
 !

X!

X!

X!

Decrease in biomass units due to antimicrobial inhibition may be increased when simulating a stronger (i.e. bacteriolytic) antimicrobial. In the table 
above, the inhibiting effect of the antimicrobial directly offsets bacterial cell growth.* 
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Abin
§(g.L-1) [constant application]            DNAin

(g.L-1) [constant application]                                             Resistance maintenance rate (h-1)°     

0                                                                     10e-3                                                                                                        0.000  
                                                                                                                                                                                         .007  
                                                                                                                                                                                         .021       
                                                                                                                                                                                         .035 
                                                                                                                                                                                         .070 
                                                                                                                                                                                         .140 
 
 
 
10e-4                                                              10e-3  
 
1.25e-3                                                           10e-3  
 
2.5e-3                                                             10e-3 

 
5.0e-3                                                             10e-3  
 
               

Table 4.4: Overview of simulations 

Concentration of antimicrobial in the influent §  
 
Concentration of resistant soluble DNA in the influent  

 
Expressing the resistance gene imposes a metabolic burden on the host bacterium. Burden values are expressed as a percentage of the growth rate ( µG 

max).  
Thus, the maintenance rate of resistant bacteria is actually the baseline maintenance rate (µNR) plus an additional burden value cost.° 

Range of maintenance 
rate values used for all 
experiments 
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Figure 4.1.  Transformation & antimicrobial inhibition model algorithm. Model algorithm depicting the flow of transformation and inhibition 
processes completed every agent time step. The dark grey shaded boxes represent model agents.    
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Figure 4.1b. Overview of DNA in the model. DNA is present in three forms: as a bacterial property (capsule DNA), as a model agent (particulate 
DNA) and as a solute in the bulk compartment (soluble DNA). Arrows between compartments denote model processes. 
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Figure 4.2a: Effect fitness burden value on the persistence of resistant cells in a biofilm in the absence of antimicrobial exposure. A 3-day 
nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then exposed to a constant concentration of 10e-3 g.L-1 
resistant soluble DNA in the influent. In the current model all bacteria, regardless of resistance make-up, experience a baseline maintenance reaction. 
However, expressing the resistance gene imposes a metabolic drain on the host bacterium and resistant bacteria undergo an additional maintenance 
reaction to account for this added cost. The rate of this reaction (µR) is a percentage of the bacteria growth rate (µG

max). In the figure above, resistant 
bacteria cell/ total bacteria cell curves are charted for µR values 0 - .140 h-1. Simulations were run for 30 days and data points are an average of 5 runs; 
each run had a distinct seed value. Due to the high volume of data points, standard deviations are only graphed for a subset of the values. 
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Figure 4.2b: Biofilm images: effect of fitness burden value on the persistence of resistant cells in a biofilm in the absence of 
antimicrobial exposure (0-360h). A 3-day nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was 
then exposed to a constant concentration of 10e-3 g.L-1 resistant soluble DNA in the influent. In the figure above, images of biofilm development 
over time are displayed for µR values 0 - .140 h-1, with each row representing a different µR value. Nonresistant cells are blue and resistant cells 
are red. The total numbers of resistant cells are listed by biofilm height to the right of each respective biofilm image. Total resistant cell data are 
presented as averages with associated standard deviations. Simulations were run for 30 days and data pts are an average of 5 runs; each run had a 
distinct seed value. However the images above are from a single, representative simulation.  
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Figure 4.2c: Biofilm images: effect fitness burden value on the persistence of resistant cells in a biofilm in the absence of 
antimicrobial exposure (480-720h). A 3-day nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial 
biofilm was then exposed to a constant concentration of 10e-3 g.L-1 resistant soluble DNA in the influent. In the figure above, images of 
biofilm development over time are displayed for µR values 0 - .140 h-1, with each row representing a different µR value. Nonresistant 
cells are blue and resistant cells are red. The total numbers of resistant cells are listed by biofilm height to the right of each respective 
biofilm image. Total resistant cell data are presented as averages with associated standard deviations. Simulations were run for 30 days 
and data points are an average of 5 runs; each run had a distinct seed value. However the images above are from a single, representative 
simulation. 
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Figure 4.3a: Effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 10e-4 g/L antimicrobial. A 3-day 
nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then exposed to a constant concentration of 
10e-3 g.L-1 resistant soluble DNA  & 10e-4 g/L antimicrobial in the influent. In the current model all bacteria, regardless of resistance make-up, 
experience a baseline maintenance reaction. However, expressing the resistance gene imposes a metabolic drain on the host bacterium and 
resistant bacteria undergo an additional maintenance reaction to account for this added cost. The rate of this reaction (µR) is a percentage of 
the bacteria growth rate (µG

max). In the figure above, resistant bacteria cell/ total bacteria cell curves are charted for µR values 0 - .140 h-1. 
Simulations were run for 30 days and data points are an average of 5 runs; each run had a distinct seed value. Due to the high volume of data 
points, standard deviations are only graphed for a subset of the values. 
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Figure 4.3b: Biofilm images: effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 10e-4 g/L 
antimicrobial (0-360h). A 3-day nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then 
exposed to a constant concentration of 10e-3 g.L-1 resistant soluble DNA in the influent. In the figure above, images of biofilm development 
over time are displayed for µR values 0 - .140 h-1, with each row representing a different µR value. Nonresistant cells are blue and resistant cells 
are red. The total numbers of resistant cells are listed by biofilm height to the right of each respective biofilm image. Total resistant cell data 
are presented as averages with associated standard deviations. Simulations were run for 30 days and data points are an average of 5 runs; each 
run had a distinct seed value. However the images above are from a single, representative simulation.  
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Figure 4.3c: Biofilm images: effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 10e-4 g/L 
antimicrobial (480-720h). A 3-day nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then 
exposed to a constant concentration of 10e-3 g.L-1 resistant soluble DNA in the influent. In the figure above, images of biofilm development 
over time are displayed for µR values 0 - .140 h-1, with each row representing a different µR value. Nonresistant cells are blue and resistant 
cells are red. The total numbers of resistant cells are listed by biofilm height to the right of each respective biofilm image. Total resistant 
cell data are presented as averages with associated standard deviations. Simulations were run for 30 days and data points are an average of 5 
runs; each run had a distinct seed value. However the images above are from a single, representative simulation.  
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Figure 4.4a: Effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 1.25e-3 g/L antimicrobial. A 3-day 
nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then exposed to a constant concentration 
of 10e-3 g.L-1 resistant soluble DNA  & 1.25e-3 g/L antimicrobial in the influent. In the current model all bacteria, regardless of resistance 
make-up, experience a baseline maintenance reaction. However, expressing the resistance gene imposes a metabolic drain on the host 
bacterium and resistant bacteria undergo an additional maintenance reaction to account for this added cost. The rate of this reaction (µR) is a 
percentage of the bacteria growth rate (µG

max). In the figure above, resistant bacteria cell/ total bacteria cell curves are charted for µR values 
0 - .140 h-1. Simulations were run for 30 days and the current graph represents one set of simulation runs.  
 
 



 111 

 
 

0 # res. [SD] 120 # res. [SD] 240 # res. [SD] 360 # res. [SD]

0 [0] 70.6 [157.9] 0 [0] .4 [.5] h >80

0 0 [0] 27.4 [41.8] 16 [19.3] 97.8 [109.1] 40 < h ≤ 80

0 [0] 8.4 [2.3] 37.6 [30.1] 111.6 [81.1]  h ≤ 40

0 [0] 44 [98.3] 0 [0] 0 [0] h >80

.007 0 [0] 25.4 [45.6] 3.6 [5.9] 18.8 [41] 40 < h ≤ 80

0 [0] 5.8 [3.1] 14.8 [10.7] 18 [17.2]  h ≤ 40

0 [0] 7 [15.6] 0 [0] 0 [0] h >80

.021 0 [0] 10.6 [7.7] .4 [.5] 0 [0] 40 < h ≤ 80
0 [0] 6.2 [2.6] 3.4 [3.2] 1.2 [1.8]  h ≤ 40

0 [0] 1.8 [4.0] 1.8 [4.0] 0 [0] h >80

.035 0 [0] 6.4 [5.5] .4 [.9] 0 [0] 40 < h ≤ 80

0 [0] 4.6 [1.5] 4.8 [3.6] .4 [.5]  h ≤ 40

0 [0] 0 [0] 0 [0] 0 [0] h >80
.070 0 [0] .8 [.8] 0 [0] 0 [0] 40 < h ≤ 80

0 [0] 2.8 [.8] 2.8 [1.5] 0 [0]  h ≤ 40

0 [0] 0 [0] 0 [0] 0 [0] h >80

.140 0 [0] 1 [1] 0 [0] 0 [0] 40 < h ≤ 80
0 [0] 2.8 [2.2] 2 [2.3] 0 [0]  h ≤ 40

M
ai

nt
en

an
ce

 ra
te

 o
f r

es
is

ta
nt

 b
ac

te
ria

 (µ
N

R
, h

-1
) 

Biofilm Age (h) 

B
io

fil
m

 h
ei

gh
t (

µm
) 

Figure 4.4b: Biofilm images: effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 1.25e-3 g/L antimicrobial 
(0-360h). A 3-day nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then exposed to a constant 
concentration of 10e-3 g.L-1 resistant soluble DNA in the influent. In the figure above, images of biofilm development over time are displayed for µR 
values 0 - .140 h-1, with each row representing a different µR value. Nonresistant cells are blue and resistant cells are red. The total numbers of 
resistant cells are listed by biofilm height to the right of each respective biofilm image. Total resistant cell data are presented as averages with 
associated standard deviations. Simulations were run for 30 days and data points are an average of 5 runs; each run had a distinct seed value. 
However the images above are from a single, representative simulation.  
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Figure 4.4c: Biofilm images: effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 1.25e-3 g/L 
antimicrobial (480-720h). A 3-day nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then 
exposed to a constant concentration of 10e-3 g.L-1 resistant soluble DNA in the influent. In the figure above, images of biofilm development 
over time are displayed for µR values 0 - .140 h-1, with each row representing a different µR value. Nonresistant cells are blue and resistant 
cells are red. The total numbers of resistant cells are listed by biofilm height to the right of each respective biofilm image. Total resistant cell 
data are presented as averages with associated standard deviations. Simulations were run for 30 days and data points are an average of 5 runs; 
each run had a distinct seed value. However the images above are from a single, representative simulation.  
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Figure 4.5a: Effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 2.5e-3 g/L antimicrobial. A 3-day 
nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then exposed to a constant concentration of 10e-3 

g.L-1 resistant soluble DNA  & 2.5e-3 g/L antimicrobial in the influent. In the current model all bacteria, regardless of resistance make-up, 
experience a baseline maintenance reaction. However, expressing the resistance gene imposes a metabolic drain on the host bacterium and resistant 
bacteria undergo an additional maintenance reaction to account for this added cost. The rate of this reaction (µR) is a percentage of the bacteria 
growth rate (µG

max). In the figure above, resistant bacteria cell/ total bacteria cell curves are charted for µR values 0 - .140 h-1. Simulations were run 
for 30 days and the current graph represents one set of simulation runs.  
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Figure 4.5b: Biofilm images: effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 2.5e-3 g/L antimicrobial 
(0-360h). A 3-day nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then exposed to a constant 
concentration of 10e-3 g.L-1 resistant soluble DNA in the influent. In the figure above, images of biofilm development over time are displayed for 
µR values 0 - .140 h-1, with each row representing a different µR value. Nonresistant cells are blue and resistant cells are red. The total numbers of 
resistant cells are listed by biofilm height to the right of each respective biofilm image. Total resistant cell data are presented as averages with 
associated standard deviations. Simulations were run for 30 days and data points are an average of 5 runs; each run had a distinct seed value. 
However the images above are from a single, representative simulation.  
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Figure 4.5c: Biofilm images: Effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 2.5e-3 g/L 
antimicrobial (480-720h). A 3-day nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then 
exposed to a constant concentration of 10e-3 g.L-1 resistant soluble DNA in the influent. In the figure above, images of biofilm development 
over time are displayed for µR values 0 - .140 h-1, with each row representing a different µR value. Nonresistant cells are blue and resistant 
cells are red. The total numbers of resistant cells are listed by biofilm height to the right of each respective biofilm image. Total resistant cell 
data are presented as averages with associated standard deviations. Simulations were run for 30 days and data points are an average of 5 runs; 
each run had a distinct seed value. However the images above are from a single, representative simulation. Results cover the time range 480 – 
720 h. 
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Figure 4.6a: Effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 5.0e-3 g/L antimicrobial. A 3-day 
nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then exposed to a constant concentration of 10e-3 

g.L-1 resistant soluble DNA  & 5.0e-3 g/L antimicrobial in the influent. In the current model all bacteria, regardless of resistance make-up, experience 
a baseline maintenance reaction. However, expressing the resistance gene imposes a metabolic drain on the host bacterium and resistant bacteria 
undergo an additional maintenance reaction to account for this added cost. The rate of this reaction (µR) is a percentage of the bacteria growth rate 
(µG

max). In the figure above, resistant bacteria cell/ total bacteria cell curves are charted for µR values 0 - .140 h-1. Simulations were run for 30 days 
and and the current graph represents one set of simulation runs.  
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Figure 4.6b: Biofilm images: effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 5.0e-3 g/L 
antimicrobial (0-360h). A 3-day nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then 
exposed to a constant concentration of 10e-3 g.L-1 resistant soluble DNA in the influent. In the figure above, images of biofilm development 
over time are displayed for µR values 0 - .140 h-1, with each row representing a different µR value. Nonresistant cells are blue and resistant 
cells are red. The total numbers of resistant cells are listed by biofilm height to the right of each respective biofilm image. Total resistant cell 
data are presented as averages with associated standard deviations. Simulations were run for 30 days and data points are an average of 5 runs; 
each run had a distinct seed value. However the images above are from a single, representative simulation.  
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Figure 4.6c: Biofilm images: Effect fitness burden value on the proportion of resistant cells in a biofilm exposed to 5.0e-3 g/L 
antimicrobial (480-720h). A 3-day nonresistant biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then 
exposed to a constant concentration of 10e-3 g.L-1 resistant soluble DNA in the influent. In the figure above, images of biofilm development over 
time are displayed for µR values 0 - .140 h-1, with each row representing a different µR value. Nonresistant cells are blue and resistant cells are 
red. The total numbers of resistant cells are listed by biofilm height to the right of each respective biofilm image. Total resistant cell data are 
presented as averages with associated standard deviations. Simulations were run for 30 days and data points are an average of 5 runs; each run 
had a distinct seed value. However the images above are from a single, representative simulation.  
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Figures 4.7.1 a-o: The number of total resistant cells, total nonresistant cells and total cells in a biofilm over time, part1. Description on 
subsequent page. 
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Figures 4.7.2 a-o: The number of total resistant cells, total nonresistant cells and total cells in a biofilm over time, part2. A 3-day nonresistant 
biofilm was developed in 10e-3 g.L-1 influent nutrient media. This initial biofilm was then exposed to a constant concentration of 10e-3 g.L-1 resistant 
soluble DNA and varying antibiotic concentration. Figures a, d, g, j & m display the total resistant cells over time in a biofilm exposed to 10e-3 g.L-1 
resistant soluble DNA and increasing antibiotic concentration. Figures b, e, h, k & n display the total nonresistant cells over time in a biofilm 
exposed to 10e-3 g.L-1 resistant soluble DNA and increasing antibiotic concentration. Figures c, f, i, l & o display the total (resistant + nonresistant 
cells) cells over time in a biofilm exposed to 10e-3 g.L-1 resistant soluble DNA and increasing antibiotic concentration. Within each figure, a-o, cell 
curves are charted for µR values 0 - .140 h-1. All data points are an average of 5 runs, each with a distinct seed value. Standard deviation values were 
calculated but are not included in the above graphs. 
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Figures 4.8.1 a-o: The number of resistant cells by location in a biofilm over time, part 1. Description on the next page. 
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Figures 4.8.2 a-o: The number of resistant cells by location in a biofilm over time, part 2. A 3-day nonresistant biofilm was developed in 10e-3 

g.L-1 influent nutrient media. This initial biofilm was then exposed to a constant concentration of 10e-3 g.L-1 resistant soluble DNA and varying 
antibiotic concentration. Figures a, d, g, j & m display the total resistant cells located above 80 µm in a biofilm exposed to 10e-3 g.L-1 resistant 
soluble DNA and increasing antibiotic concentration. Figures b, e, h, k & n display the total nonresistant cells located between 40 - 80 µm (40 µm 
< x ≤ 80 µm) in a biofilm exposed to 10e-3 g.L-1 resistant soluble DNA and increasing antibiotic concentration. Figures c, f, i, l & o display the total 
cells locates below 40 µm (x ≤  40 µm) over time in a biofilm exposed to 10e-3 g.L-1 resistant soluble DNA and increasing antibiotic concentration. 
Within each figure, a-o, cell curves are charted for µR values 0 - .140 h-1. All data points are an average of 5 runs, each with a distinct seed value. 
Standard deviation values were calculated but are not included in the above graphs. 
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Grid Domain Size 
(height, width)1

# bacteria agents 
at 0hr.2

# bacteria agents 
at 72hr.3

Computation 
time (min.)

33, 33 10 3206 6.8
33, 65 10 5342 12.1
33, 129 10 10812 29.7
33, 257 10 19004 58.1
33, 513 10 37089 134.7
33, 1025 10 53519 248.8
33, 2049 10 error* N/A
33, 4097 10 error* N/A
33, 8193 10 error* N/A
33, 16385 10 error* N/A
33, 33 100 3523 7.2
33, 65 100 6743 15.2
33, 129 100 12830 31.8
33, 257 100 24702 73.9
33, 513 100 45901 165.7
33, 1025 100 85827 392.9
33, 1025 500 98095 357.04
33, 1025 600 99798 349.9
33, 2049 100 error* N/A
33, 4097 100 error* N/A
33, 8193 100 error* N/A
33, 16385 100 error* N/A

The computational grid is a 2D grid defined by height and width. The algorithm used to solve for 
solute concentration fields requires that the height and width measurements be a power of two 
plus one. (Lardon et al. 2011)1 

 
The number of bacteria agents present at initialization is set in the XML document.2 

 
Nonresistant biofilms were grown for 72 hr.3 
 

Supplemental Table 1: Computational grid size & corresponding total cell count 
post 72 h biofilm growth 
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Simulation Run ID

CODin  (g.L-1) 
Influent nutrient media 
concentration 

Constant bulk 
concentration

µNR  (h-1)                      
Maintenance rate of bacteria 

 µG
max (h-1)               

Maximal bacteria 
growth rate

κDet (µm.h)-1

Erosion rate 
maxTh (µm)            
Biofilm max thickness 

A1 0.01 TRUE 0.133 0.7 5.00E-06 100
A2 0.01 FALSE 0.133 0.7 5.00E-06 100

24 hr. Biofilm                                                              48 hr. Biofilm                                                             72 hr. Biofilm
A1 

A2 

Supplemental Figure 1a: Effect of changing constant bulk concentration settings. The constant bulk concentration settings can be modified to set 
whether the concentration of the bulk fluid is assumed to be constant (TRUE) or is affected by the mass balance between the reactions occurring in the 
biofilm and the influent media feed (FALSE). The settings for simulation A1 are listed in the text box and simulation images for the 24, 48 & 72 hr. 
biofilms are listed below. This layout is repeated for simulation A2. The one difference between the two simulations is the constant bulk concentration 
setting and the difference is highlighted accordingly.      
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Simulation Run ID

CODin  (g.L-1) 
Influent nutrient media 
concentration 

Constant bulk 
concentration

µNR  (h-1)                      
Maintenance rate of bacteria 

 µG
max (h-1)               

Maximal bacteria 
growth rate

κDet (µm.h)-1

Erosion rate 
maxTh (µm)            
Biofilm max thickness 

A2 0.01 FALSE 0.133 0.7 5.00E-06 100
A3 0.01 FALSE 0.0133 0.7 5.00E-06 100

24 hr. Biofilm                                                              48 hr. Biofilm                                                             72 hr. Biofilm

A3 

A2 

Supplemental Figure 1b: Effect of changing the maintenance rate of bacteria (µNR). Every reaction in idynomics is described by a µmax, which is 
the maximum rate of a reaction (in units of hr-1). The settings for simulation A2 are listed in the text box and simulation images for the 24, 48 & 72 
hr. biofilms are listed below. This layout is repeated for simulation A3. The one difference between the two simulations is the maintenance reaction 
µmax and the difference is highlighted accordingly. In simulation A3, µNR has been decreased by 10-fold compared to the same parameter setting in 
simulation A2.      
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Simulation Run ID

CODin  (g.L-1) 
Influent nutrient media 
concentration 

Constant bulk 
concentration

µNR  (h-1)                      
Maintenance rate of bacteria 

 µG
max (h-1)               

Maximal bacterial 
growth rate

κDet (µm.h)-1

Erosion rate 
maxTh (µm)            
Biofilm max thickness 

A3 0.01 FALSE 0.0133 0.7 5.00E-06 100
A4 0.01 FALSE 0.0133 0.07 5.00E-06 100

24 hr. Biofilm                                                              48 hr. Biofilm                                                             72 hr. Biofilm
A3 

A4 

Supplemental Figure 1c: Effect of changing the maximal bacterial growth rate (µG
max). Every reaction in idynomics is described by a µmax, 

which is the maximum rate of a reaction (in units of hr-1). The settings for simulation A3 are listed in the text box and simulation images for the 24, 
48 & 72 hr. biofilms are listed below. This layout is repeated for simulation A4. The one difference between the two simulations is the growth 
reaction µmax and the difference is highlighted accordingly. In simulation A4, the growth reaction µG

max has been decreased by 10-fold compared to 
the same parameter setting in simulation A3.      
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Simulation Run ID

CODin  (g.L-1) 
Influent nutrient media 
concentration 

Constant bulk 
concentration

µNR  (h-1)                      
Maintenance rate of bacteria 

 µG
max (h-1)               

Maximal bacteria 
growth rate

κDet (µm.h)-1

Erosion rate 
maxTh (µm)            
Biofilm max thickness 

A3 0.01 FALSE 0.0133 0.7 5.00E-06 100
A5 0.001 FALSE 0.0133 0.7 5.00E-06 100

24 hr. Biofilm                                                              48 hr. Biofilm                                                             72 hr. Biofilm
A3 

A5 

Supplemental Figure 1d: Effect of changing the influent nutrient media concentration (CODin). Influent media concentration can affect biofilm 
growth. The settings for simulation A3 are listed in the text box and simulation images for the 24, 48 & 72 hr. biofilms are listed below. This layout 
is repeated for simulation A5. The one difference between the two simulations is the media concentration and the difference is highlighted 
accordingly. In simulation A5, the CODin has been decreased by 10-fold compared to the same parameter setting in simulation A3.      
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Simulation Run ID

CODin  (g.L-1) 
Influent nutrient media 
concentration 

Constant bulk 
concentration

µNR  (h-1)                      
Maintenance rate of bacteria 

 µG
max (h-1)               

Maximal bacteria 
growth rate

κDet (µm.h)-1

Erosion rate 
maxTh (µm)            
Biofilm max thickness 

A3 0.01 FALSE 0.0133 0.7 5.00E-06 100
A6 0.01 FALSE 0.0133 0.7 5.00E-06 200

24 hr. Biofilm                                                             48 hr. Biofilm                                                              72 hr. Biofilm
A3 

A6 

Supplemental Figure 1e: Effect of changing the biofilm max thickness (maxTH). The maximum thickness of the biofilm can be set to 
ensure that the full biofilm region remains in the computational domain rather than being artificially cut-off. The settings for simulation A3 
are listed in the text box and simulation images for the 24, 48 & 72 hr. biofilms are listed below. This layout is repeated for simulation A6. 
The one difference between the two simulations is the maximum thickness of the biofilm and the difference is highlighted accordingly. The 
maxth of biofilm in simulation A6 is 100 µm more than that of the biofilm in simulation A3.  
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Simulation Run ID

CODin  (g.L-1) 
Influent nutrient media 
concentration 

Constant bulk 
concentration

µNR  (h-1)                      
Maintenance rate of bacteria 

 µG
max (h-1)               

Maximal bacteria 
growth rate

κDet (µm.h)-1

Erosion rate 
maxTh (µm)            
Biofilm max thickness 

A6 0.01 FALSE 0.0133 0.7 5.00E-06 200
A7 0.01 FALSE 0.0133 0.7 5.00E-05 200
A8 0.01 FALSE 0.0133 0.7 5.00E-04 200

24 hr. Biofilm                                                             48 hr. Biofilm                                                              72 hr. Biofilm
A6 

A7 

A8 

Supplemental Figure 1f.: 
Effect of changing erosion 
rate (κDet).  Varying the 
erosion rate can affect the 
overall biofilm structure. The 
erosion strength is the erosion 
rate times the square of the 
local biofilm height. For the 
purposes of our simulations, 
once cells detach from the 
biofilm they are no longer 
accounted for/disappear from 
the simulation ‘world.’ The 
settings for simulation A6 are 
listed in the text box and 
simulation images for the 24, 
48 & 72 hr. biofilms are 
listed below. This layout is 
repeated for simulations A7 
& A8. The one difference 
between the three simulations 
is the erosion rate and this 
difference is highlighted 
accordingly. The κDet value 
progressively increases by 
10-fold from simulation A6 
to simulation A8.  
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Initialization Day 1 Day 2 Day 3

Day 4 Day 5 Day 6 Day 7

Day 8 Day 9 Day 10 Day 11

Day$12 Day$13 Day$14 Day$15

Supplemental Figure 2. Long-term growth of a single species biofilm. Long-term growth of a single species biofilm under going growth and 

Supplemental Figure 2: Long-term growth of a single species biofilm. Long-term growth of a single species biofilm under going 
growth and maintenance is displayed above. The model world was initialized with 10 non-resistant bacteria agents and with the following 
environmental parameter settings: influent nutrient media concentration (CODin) 10e-3 g.L-1, erosion rate (κDet) 5e-4  (um.hr)-1, maximal 
bacteria growth rate (µG

max) .7 hr-1, maintenance rate of bacteria (µNR) .0133 hr-1 and probability of lysis (P(lysis)) 1%.  
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Supplemental Figure 3a: Effect of changing the probability of lysis [P(lysis)] in a biofilm not undergoing growth and 
maintenance functions. Cells that approach the death radius due to starvation have a certain probability of lysis [P(lysis)]. Those cells 
that lyse produce DNA that is solubilized to become soluble DNA and those cells that do not lyse, stay as dormant cells. The graph 
above looks at the effect of changing the P(lysis) on the ratio of lysed cells/ live cells in a static biofilm. An initial single species, non-
resistant biofilm was grown for 3 days. This initial biofilm structure was then used as the starting point for the experimental simulation 
data graphed above. For all experimental simulations, growth and maintenance functions were turned off to produce a static biofilm 
structure. In addition detachment rate (κDet) was set to 0 um-1hr-1. A set of 5 simulations were run for each P(lysis) value graphed above 
with varying seed values. The ratio of lysed cells/ live cells was averaged across these 5 simulations. Standard deviations were 
calculated and are included on the graph above as well.     
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Supplemental Figure 3b: Effect of changing the probability of lysis [P(lysis)] on the lysed cells to live cells ratio in a biofilm 
undergoing growth and maintenance functions. Cells that approach the death radius due to starvation have a certain probability of 
lysis [P(lysis)]. Those cells that lyse produce DNA that is solubilized to become soluble DNA and those cells that do not lyse, stay as 
dormant cells. The graph above looks at the effect of changing the P(lysis) on the ratio of lysed cells/ live cells in a biofilm undergoing 
growth and maintenance functions. An initial single species, non-resistant biofilm was grown for 3 days. This initial biofilm structure was 
then used as the starting point for the experimental simulation data graphed above. All subsequent experimental simulations were run on 
a biofilm that was undergoing growth and maintenance functions with an influent media concentration (CODin) of 10e-3 g.L-1 in the 
influent flow. In addition, the detachment rate (κDet ) was set to 5e-4 um-1hr-1. A set of 5 simulations were run for each probability of lysis 
value graphed above with varying seed values. The ratio of lysed cells/ live cells was averaged across these 5 simulations. Standard 
deviations were calculated and are included on the graph above as well.     
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Supplemental Figure 4a: Effect of increasing the resistant DNA concentration in the influent flow on the total 
transformants in a biofilm undergoing growth and maintenance functions with a resistance probability value of 
20%. The graph above looks at the effect of changing the resistant DNA concentration in the influent flow of a biofilm 
undergoing growth and maintenance.  An initial single species, non-resistant biofilm was grown for 3 days. This initial 
biofilm structure was then used as the starting point for the experimental simulation data graphed above. All subsequent 
experimental simulations were run on a biofilm that was undergoing growth and maintenance functions with an influent 
media concentration (CODin) of 10e-3 g.L-1. In addition the erosion rate (κDet) was set to 5e-4 um-1hr-1 and the probability of 
lysis of cells P(lysis) was set to 1%. All simulations were run with a resistance probability value of 20%. A set of 5 
simulations were run for each resistant soluble DNA concentration value graphed above, with varying seed values. Standard 
deviations were calculated and are included on the graph above as well. Note that in these simulations, metabolic burden 
associated with the resistance gene is not considered.      
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Supplemental Figure 4b: Effect of increasing the resistant DNA concentration in the influent flow on the total transformants in 
a biofilm undergoing growth and maintenance functions with a resistance probability value of 10%. The graph above looks at the 
effect of changing the resistant DNA concentration in the influent flow of a biofilm undergoing growth and maintenance.  An initial 
single species, non-resistant biofilm was grown for 3 days. This initial biofilm structure was then used as the starting point for the 
experimental simulation data graphed above. All subsequent experimental simulations were run on a biofilm that was undergoing 
growth and maintenance functions with a media concentration of 10e-3 g/L in the influent flow. In addition the detachment or erosion 
rate was set to 5e-4 um-1hr-1 and the probability of lysis of cells that have approached the death threshold was set to 1%. All simulations 
were run with a resistance probability value of .10. A set of 5 simulations were run for each resistant DNA concentration value graphed 
above with varying seed values. Standard deviations were calculated and are included on the graph above as well. Note that in these 
simulations, metabolic burden associated with the resistance gene is not considered.      
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Supplemental Figure 4c: Effect of increasing the resistant DNA concentration in the influent flow on the total transformants in a 
biofilm undergoing growth and maintenance functions with a resistance probability value of 2%. The graph above looks at the effect of 
changing the resistant DNA concentration in the influent flow of a biofilm undergoing growth and maintenance. An initial single species, non-
resistant biofilm was grown for 3 days. This initial biofilm structure was then used as the starting point for the experimental simulation data 
graphed above. All subsequent experimental simulations were run on a biofilm that was undergoing growth and maintenance functions with a 
media concentration of 10e-3 g/L in the influent flow. In addition the detachment or erosion rate was set to 5e-4 um-1hr-1 and the probability of 
lysis of cells that have approached the death threshold was set to 1%. All simulations were run with a resistance probability value of .02. A set 
of 5 simulations were run for each resistant DNA concentration value graphed above with varying seed values. Standard deviations were 
calculated and are included on the graph above as well. Note that in these simulations, metabolic burden associated with the resistance gene is 
not considered.      
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Supplemental Figure 5: Effect of changing the resistance switch threshold (Thres) for resistance gene expression on the 
transformation frequency in a biofilm not undergoing growth and maintenance functions. In this model, bacterial cells have a 
probability of transformation [P(resistant)] upon approaching a resistance switch threshold (Thres) of resistant soluble DNA that has been 
taken up by the cell. The graph above looks at the effect of changing Thres on the transformation curve.  An initial single species, non-
resistant biofilm was grown for 3 days. This initial biofilm structure was then used as the starting point for the experimental simulation 
data graphed above. For all experimental simulations, growth and maintenance functions were turned off to produce a static biofilm 
structure. In addition, soluble resistant DNA was added to the system at an influx concentration of 10e-6 g.L-1 and transformation 
frequencies were calculated for the first 72 hours post addition of resistant DNA. Each transformation frequency point is an average of 5 
simulations run with 5 different seed values. Standard deviations were calculated and are included on the graph above as well.     
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Supplemental Figure 6a: Effect of increasing the antimicrobial concentration in the influent flow of a biofilm not undergoing 
growth and maintenance functions. The graph above looks at the effect of changing the antimicrobial concentration in the influent 
flow of a biofilm not undergoing growth and maintenance functions. An initial single species, non-resistant biofilm was grown for 3 
days. This initial biofilm structure was then used as the starting point for the experimental simulation data graphed above. For all 
experimental simulations, growth and maintenance functions were turned off to produce a static biofilm structure. In addition, erosion 
rate (κDet) was set to 0 um-1hr-1 and the probability of lysis [P(lysis)] was set to 0%. A set of 5 simulations were run for each 
antimicrobial concentration value graphed above with varying seed values. The number of live heterotrophs were averaged across these 
5 simulations. Standard deviations were calculated and are included on the graph above as well. 
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Supplemental Figure 6b: Effect of increasing the antimicrobial concentration in the influent flow of a biofilm not undergoing growth and 
maintenance functions – simulation images. The figure above is a compilation of simulation images that are most representative of the biofilm 
structure trends seen in response to changing the antimicrobial concentration in the influent flow of a biofilm not undergoing growth and maintenance 
functions. An initial single species, non-resistant biofilm was grown for 3 days. This initial biofilm structure was then used as the starting point for 
subsequent experimental simulations. For all experimental simulations, growth and maintenance functions were turned off to produce a static biofilm 
structure. In addition the erosion rate (κDet ) was set to 0 um-1hr-1 and the probability of lysis [P(lysis)] was set to 0%. Any visible trend was most 
evident between antimicrobial concentrations of 1.00-5 g.L-1 to 1.00-2 g.L-1, thus displayed images were limited to this range.  
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Supplemental Figure 6c: Effect of increasing the antimicrobial concentration in the influent flow of a biofilm undergoing growth and 
maintenance functions. The graph above looks at the effect of changing the antimicrobial concentration in the influent flow of a biofilm 
undergoing growth and maintenance.  An initial single species, non-resistant biofilm was grown for 3 days. This initial biofilm structure was 
then used as the starting point for the experimental simulation data graphed above. All subsequent experimental simulations were run on a 
biofilm that was undergoing growth and maintenance functions with an influent media concentration (CODin) of 10e-3 g.L-1. In addition, the 
erosion rate (κDet ) was set to 5e-4 um-1hr-1 and the probability of lysis [P(lysis)] was set to 1%. A set of 5 simulations were run for each 
antimicrobial concentration value graphed above with varying seed values. The number of live heterotrophs were averaged across these 5 
simulations. Standard deviations were calculated and are included on the graph above as well.  
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Supplemental Figure 6d: Effect of increasing the antimicrobial concentration in the influent flow of a biofilm undergoing growth and maintenance 
functions - simulation images. The figure above is a compilation of simulation images that are most representative of the biofilm structure trends seen in 
response to changing the antimicrobial concentration in the influent flow of a biofilm undergoing growth and maintenance. An initial single species, non-
resistant biofilm was grown for 3 days. This initial biofilm structure was then used as the starting point for subsequent experimental simulations. All 
experimental simulations were run on a biofilm that was undergoing growth and maintenance functions with an influent media concentration (CODin) of 10e-3 
g.L-1 in the influent flow. In addition the erosion rate (κDet ) was set to 5e-4 um-1hr-1 and the probability of lysis [P(lysis)] was set to 1%. Any visible trend was 
most evident between antimicrobial concentrations of 1.00-4 g.L-1 to 1.00-2 g.L-1, thus displayed images were limited to this range. 
 



 148 

Chapter 5 

Conclusions & Future Directions 

 

This dissertation research focuses on natural transformation in bacterial biofilms and the 

formation and spread of antibiotic resistant bacteria in water networks. Both laboratory and 

agent-based models examined factors, physiologic and external, that influence 

transformation frequency in monoculture Acinetobacter baylyi strain BD413 biofilms. 

Study findings contribute to a better understanding of differential competence gene 

expression between biofilm cells and their planktonic counterparts and the effect of 

external antibiotic pressure on resistance gene spread within a biofilm. In general, this 

work adds to the growing body of literature focused on the potential repercussions of 

prolific antibiotic use and prevalence of resistance determinants in the environment. 

Conclusions and observations are based on experiments conducted under optimized lab 

conditions and theoretical model output. Therefore, these studies are precursors to 

downstream research that may directly influence policy regarding prophylactic antibiotic 

use in the agricultural industry, water treatment procedures and reclaimed water practices. 

Summarized below are the major study conclusions as well as suggestions for future work. 
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5.1 Conclusions 

The first set of laboratory experiments assessed transformation frequencies in AC811 

biofilms cultured in dynamic flow cells. Exposure of biofilms to streptomycin resistant 

(strepr), tetracycline resistant (tetr), and kanamycin resistant (kanr) donor DNA resulted in 

detectable transformation frequencies in both the detached cells in effluent from the once-

through flow system and in biofilm cells scraped from the flow cell. Transformation 

frequencies calculated from effluent and from biofilm samples were at least 10-fold higher 

in biofilms exposed to kanr amplified PCR product than in biofilms exposed to tetr  

pWH1266 plasmid DNA. Biofilms are common in flowing systems and can come in 

contact with resistant determinants within these same compartments.[1, 2] We cannot 

generalize to gene transfer phenomena in environmental compartments, most likely 

colonized with multispecies biofilms, based on monoculture biofilm experiments 

conducted under optimized laboratory conditions. However, these results suggest that 

natural transformation can occur in mature biofilms developed under nutrient poor 

conditions in dynamic flow systems. Furthermore, presence of transformed detached cells 

implies that these conditions promote dissemination of resistant cells. 

 

The next set of laboratory experiments compared transformation frequencies of biofilm 

cells with their planktonic counterparts in static and dynamic flow laboratory models. 

Transformation frequencies of biofilm cells grown in microtiter plates were compared with 

overlying suspended cells and with planktonic batch culture cells recovered at the 

exponential phase. Gene transfer frequencies were also compared between biofilm cells 
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grown in a once-through flow system for 12, 24, 48 & 72 h with planktonic cells grown in 

batch culture and recovered at the exponential, early-stationary and late-stationary phases. 

The microtiter data show that the transformation frequencies of suspended cells and 

planktonic cells were at least 10-fold higher than that of the biofilm cells. Similarly, the 

flow system experiment data indicate that transformation frequencies of the planktonic 

samples at various growth stages were approximately 10-fold higher than frequencies of 

corresponding biofilm samples. These results were surprising considering the prevailing 

hypothesis of increased competence of cells in the biofilm growth mode.[3]  

 

Comparison of comP gene expression trends in biofilm and planktonic cells suggests that 

the observed frequency differences are due to a variation in competence state between 

biofilm and free-floating cells. The number of comP gene transcripts per AC811 biofilm 

cell decreased over time. Whereas, similar to previous results, the number of comP gene 

transcripts per planktonic cell decreased over the course of the exponential phase and then 

increased to maximal levels in the stationary phase.[4] Previous work indicates that DNA 

uptake apparatus, including ComP, is already synthesized prior to maximal competence 

induction.[4] The number of comP gene transcripts in early and late stage exponential 

planktonic batch cultures is significantly higher than in mature BD413 biofilms. This 

suggests that the DNA uptake machinery is not synthesized to the same extent in BD413 

planktonic and biofilm cells, possibly accounting for observed transformation frequency 

differences. Our results contradict the prevailing hypothesis of increased competence of 

biofilm cells as compared to planktonic cells and suggest that observations of gene transfer 
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in a specific biofilm system may not be generalizable to all biofilms such as mixed species 

biofilms. Transformation in biofilms is influenced by structural factors in addition to 

competence and acquisition of resistance genes by cells in the biofilm growth mode is not 

limited to transformation. Therefore, studies focusing on structural advantages provided by 

the biofilm and detailed studies of each gene transfer mechanism in different biofilm 

systems are warranted in order to provide a comprehensive understanding of the role of 

biofilms in the development of antibiotic resistance. 

 

The final section of this dissertation work focuses on the development of an agent-based 

model to test hypotheses that may be difficult to conduct in the laboratory setting. The 

model presented in this work is an extension of the individual-based Dynamics of 

Microbial Communities Simulator (iDynoMiCS) software that provides an ibM simulation 

of biofilm growth.[5] This modified model additionally simulates DNA uptake, 

transformation and antimicrobial inhibition of bacterial growth in single-species biofilms. 

The larger scope of the work was to develop a transformation model that can be used to 

identify factors that may influence transformation and drive future laboratory research. 

Model output includes the number of resistant cells in a biofilm over time and by location 

within the biofilm structure as well as a time series of biofilm images. An application of 

the model is presented in this dissertation. We assessed the effect of resistance gene burden 

value on the persistence of resistant bacteria in a biofilm exposed to donor DNA and 

varying antimicrobial concentration. Data trends in simulation output were consistent with 

prevalent assumptions about antibiotic exposure and resistance expansion. One particular 
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hypothesis is that a decrease in selective pressure will benefit the susceptible bacteria and 

allow them to displace resistant strains.[6] The exception to this generalization is bacteria 

harboring low cost or no cost resistance mechanisms. These bacterial will persist even in 

the absence of antibiotic, and this is reflected in the model results.[7, 8] In general, increased 

antimicrobial concentration exposure resulted in more pervasive resistance expansion. For 

the higher burden values, this increase was mostly apparent at higher antimicrobial 

concentration values. The results also indicated that for certain simulation conditions, data 

patterns did not emerge in younger biofilms.  Finally, image analyses implied that 

increasing influent antimicrobial concentration seems to promote dispersal of resistant 

cells from the biofilm structure. This study is an example of model utility in situations 

where laboratory experiments may be difficult to conduct. The ephemeral nature of high 

cost resistance genes decreases the likelihood that such resistance determinants can be 

detected in the environment or isolated and studied in a laboratory setting. However, this 

extended iDynoMiCS model allows us to demonstrate trends in the absence of appropriate 

bacterial strains for in vitro experiments. 

 

Identifying factors that influence transformation in biofilms in water systems and promote 

the formation and spread of antibiotic resistant bacteria has implications beyond the 

environmental setting. There is evidence that antibiotic resistant mechanisms in 

nosocomial pathogens have their origins in the environmental resistome.[6, 9-11]  

Acinetobacter spp. are found in multiple environmental compartments, making the 

naturally competent Acinetobacter baylyi an appropriate model organism to monitor 
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resistance trends. Laboratory and modeling studies such as those presented in this work 

hopefully signal the need for more research aimed at better understanding gene transfer in 

biofilms and linking the environment to the clinic. In addition, the utility of models as a 

tool to supplement ongoing studies should not be underestimated. The use of both 

laboratory and agent-based models provided an in-depth study of the various factors that 

influence natural transformation and resistance gene expansion in Acinetobacter baylyi 

strain BD413 biofilms such as exposure to donor DNA, competence gene expression, 

resistance gene metabolic burden and antimicrobial inhibition.  

 

5.2 Future Work 

Natural transformation in water network biofilms is a complex issue. Simplified laboratory 

and agent-based models presented in this dissertation work provide a foundation for this 

research topic. While is not possible to make assumptions about gene transfer in the 

environment based on dissertation results alone, modifying current models may make them 

more generalizable. Models that can closely approximate biofilm characteristics and 

environmental conditions in water treatment and distribution systems will be helpful in 

identifying factors that promote gene transfer in the environment. Environmental trends 

can be portentous of resistance expansion in the clinical setting with gene flow occurring 

between the two compartments.[12, 13]  So, such data would also be instrumental in 

intervention plan development.  
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There are several avenues for additional research. Future laboratory experiments may 

include: development of multi-species biofilms in once-through flow systems, exposure of 

biofilms to influent antibiotic compounds and to donor DNA isolated from environmental 

water samples, and varying environmental conditions that may impact transformation 

frequency such as ambient temperature and flow-rate. In addition, methods that can assess 

transformation while keeping the biofilm structure intact should be utilized.[14] Current 

agent-based model simulations include a constant antimicrobial exposure. However, input 

of antibiotics in the real world may occur in a single pulse or multiple pulses.[15] It would be 

interesting to examine the effect of antimicrobial cessation, post prolonged exposure, on 

the resistance make-up of the biofilm. The antibiotic can also be applied in predefined 

intervals. Additional source code modifications would expand the utility of the model. 

These include: a compensatory mechanism, the ability to use antimicrobial as a growth 

substrate and growth phase dependent competence. Environmental measures of different 

variables could also strengthen models. Examples include antibiotic half-lives, antibiotic 

concentrations and antibiotic resistance gene concentrations in various aquatic systems.  
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