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CHAPTER I

Introduction

This dissertation explores the theoretical finite sample and asymptotic properties

of several econometric estimators. Two central themes are robustness and pragma-

tism. This dissertation develops theory that is focused on real-world problems faced

in applied econometrics. To provide increased robustness and reliability in applica-

tions, theories and tools must accurately capture the true behavior and construction

of estimators. This often means taking explicit account of procedures (e.g. variable

selection in Chapter II) that traditional, nonrobust theories ignore. By capturing and

studying these steps, complex and technical though they may be, it is often possi-

ble to deliver highly robust results that are also accessible and easily implemented.

Although this dissertation spans a broad range of microeconometrics, this common

foundation links the chapters together. That is, the goal of the theory develop is to

deliver practicable methods for empirical research or put already-common practices

on sound theoretical footing.

Chapter II concerns robust inference on average treatment effects following model

selection. In the selection on observables framework, this chapter shows how to con-

struct confidence intervals based on a doubly-robust estimator that are robust to

model selection errors and prove that they are valid uniformly over a large class of

treatment effect models. The class allows for multivalued treatments with heteroge-

neous effects (in observables), general heteroskedasticity, and selection amongst (pos-

sibly) more covariates than observations. The estimator attains the semiparametric

efficiency bound under appropriate conditions. Precise conditions are given for any

model selector to yield these results, and it is shown how to combine data-driven selec-

tion with economic theory. For implementation, the group lasso is proposed and new

technical results are derived for high-dimensional, sparse multinomial logistic regres-

sion. A simulation study shows that the estimator performs very well in finite samples
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over a wide range of models. Revisiting the National Supported Work demonstration

data, the method yields accurate estimates and tight confidence intervals.

Chapter III, joint with Matias Cattaneo, studies the asymptotic properties of

partitioning estimators of the conditional expectation function and its derivatives.

Mean-square and uniform convergence rates are established and shown to be optimal

under simple and intuitive conditions. The uniform rate explicitly accounts for the

effect of moment assumptions, which is useful in semiparametric inference. A gen-

eral asymptotic integrated mean-square error approximation is obtained and used to

derive an optimal plug-in tuning parameter selector. A uniform Bahadur represen-

tation is developed for linear functionals of the estimator. Using this representation,

asymptotic normality is established, along with consistency of a standard-error esti-

mator. The finite-sample performance of the partitioning estimator is examined and

compared to other nonparametric techniques in an extensive simulation study.

Chapter IV, also joint with Matias Cattaneo, studies the large sample properties of

a subclassification-based estimator of the Dose-Response Function under Ignorability.

This work relies on the theory developed in the prior chapter, in addition to newly

developed results. Employing standard regularity conditions, it is shown that the

estimator is root-n consistent, asymptotically linear, and semiparametric efficient in

large samples. A consistent estimator of the standard-error is also developed under

the same assumptions. In a Monte Carlo experiment the finite sample performance

of this simple and intuitive estimator is compared to others commonly employed in

the literature.

2



CHAPTER II

Robust Inference on Average Treatment Effects

with Possibly More Covariates than Observations

2.1 Introduction

Model selection has always had a place in empirical economics, whether or not it is

formally acknowledged. A key problem in modern empirical work is that researchers

face datasets with large numbers of variables, sometimes more than observations. A

complementary problem is that economic theory and prior knowledge may mandate

controlling for certain variables, but are generally silent regarding functional form.

These two problems force researchers to search for a model that is simultaneously

parsimonious and adequately flexible. Many formal methods are computationally

infeasible with a large number of variables. A typical response to this challenge is

to iteratively search over a small set of alternative specifications, guided only by the

researcher’s taste and intuition. No matter the approach used, inference almost never

takes into account this “specification search” and the resulting confidence intervals

are not robust to model selection mistakes, and hence are unreliable in empirical

work.

This problem is particularly important in estimating average treatment effects un-

der selection on observables, because in this framework using the right covariates is

crucial for identification and correct inference. In this context, we provide an easy-to-

implement and objective method for covariate selection and post-selection inference

on average treatment effects.1 We establish four main results for multivalued treat-

ments effects with arbitrary heterogeneity in observables and heteroskedasticity. First

1Treatment effects, missing data, measurement error, and data combination models are equivalent
under selection on observables. Thus, all our results immediately apply to those contexts. For reviews
of these literatures, see Tsiatis (2006), Heckman and Vytlacil (2007), Imbens and Wooldridge (2009),
and Wooldridge (2010).
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and foremost, we show that a doubly-robust estimator is robust to model selection

errors, a newly-discovered virtue of this class of estimators.2 By taking explicit ac-

count of the model selection stage and its inherent selection errors, we derive precise

conditions required for any model selector to deliver confidence intervals for average

treatment effects that are uniformly valid over a large class of data-generating pro-

cesses. Second, we show that a simple refitting procedure allows researchers to aug-

ment variables chosen according economic theory with data-driven selection to deliver

flexible inference that remains uniformly valid. Third, we prove that our proposed

estimator is asymptotically linear and attains the semiparametric efficiency bound,

under standard conditions imposed in the program evaluation literature. Fourth, we

derive new technical results for multinomial (and binary) logistic regression, the most

widely used model for treatment assignment.

Inference following model selection is notoriously difficult. In a sequence of pa-

pers, Leeb and Pötscher (2005, 2008a, 2008b, 2009, 2009) have shown that inference

relying too heavily on model selection can not be made uniformly valid. Loosely

speaking, uniform validity of a confidence interval captures the idea that the interval

should have the same quality (coverage) for many data-generating processes. This

theoretical property is practically important because it implies greater reliability in

applications. Our proposed methods for post model selection inference build upon

the path-breaking recent work of Belloni, Chernozhukov, and Hansen (2013). We

circumvent, without contradicting, the impossibility results of Leeb and Pötscher by

not insisting on perfect selection, but rather explicitly accounting for inevitable model

selection errors in the asymptotic approximations.3

Our approach, based on the doubly-robust estimator, has several key features.

The name “doubly-robust” reflects that it is robust to misspecification of either the

treatment equation (propensity score) or the outcome equation, a property obtained

by combining inverse probability weighting and regression imputation. First, we show

that this robustness extends to model selection, enabling us to allow for selection er-

rors in both equations without impacting inference. Second, we capture arbitrary

treatment effect heterogeneity (dependence of the effect on an individual’s observed

characteristics), which is crucial in empirical work. With such heterogeneity, the av-

erage treatment effect and the treatment on the treated differ, and hence we present

2Doubly-robust estimation and its role in program evaluation is discussed by Robins and Rot-
nitzky (1995), Kang and Schafer (2007, with discussion), van der Laan and Robins (2003), Tan
(2010), and references therein.

3Efron (2013) and Berk, Brown, Buja, Zhang, and Zhao (2013) also propose methods for post-
selection inference, both quite distinct from our method.
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results for both. Third, the doubly-robust estimator also stems from the semipara-

metric efficient moment conditions, and hence we obtain the semiparametric efficiency

bound, even under heteroskedasticity, under standard additional conditions. Taking

all these features together enables us to obtain uniform inference over such a large

class of treatment effects models.

In recent independent work, Belloni, Chernozhukov, and Hansen (2013, draft

dated July 19), propose a similar approach. Their main focus is a partially linear

model, in which the coefficient of a treatment indicator will recover the average effect

of a binary treatment only if the effect is constant across observables, but Section 5 of

their most recent draft, developed independently from our work, considers heteroge-

neous effects. There are two broad differences in our approaches. First, we allow for

multivalued treatments, which offers a larger set of estimands and can thus enhance

the understanding of program impacts.4 We show how to improve model selection

in this context by pooling information across treatment levels. Second, although in

both cases the doubly-robust estimator is used for average treatment effects following

a (quite different) model selection step,5 we exploit certain features of the estimator

to produce two benefits: (i) our procedure requires demonstrably weaker conditions

on the model selection stage (see Assumption II.5); and (ii) none of our results require

using variables selected for the treatment equation in the outcome model estimation,

and vice versa (their “post double selection” method), and indeed, we show doing so

requires stronger assumptions (see Assumption II.6).

Our analysis is conducted under selection on observables, which has a long tra-

dition and remains quite popular in empirical economics.6 Covariate selection has

three crucial roles to play in this framework. First, using more observed covariates,

and more flexibly, may help proxy for unobserved confounding and hence increase the

plausibility of unconfoundedness. Second, it is natural that some variables are not

part of the causal mechanism under study, and therefore should be excluded. Third,

the efficient conditioning set must contain those variables that drive the outcome,

which are not necessarily those important for treatment assignment. This reasoning

mandates contradicting goals for practitioners: a large, rich set of controls on the one

hand, and parsimony on the other. Our approach is a formal, theory-driven attempt

4Discussion and applications may be found in, for example Imbens (2000), Lechner (2001), Imai
and van Dyk (2004), Abadie (2005), Cattaneo (2010), and Cattaneo and Farrell (2011b).

5They use different asymptotic variance estimators, and for treatment effects on the treated they
do not exploit the simplification discussed in Remark 1.

6For other approaches and reviews of the literature, see, e.g., Holland (1986), Hahn (1998),
Horowitz and Manski (2000), Chen, Hong, and Tarozzi (2004, 2008), Bang and Robins (2005),
Abadie and Imbens (2006), Wooldridge (2007), and references therein.

5



to reconcile this contradiction.

A special feature of our analysis is that we match the empirical realities of large

data sets by considering selection from amongst (possibly) more covariates than ob-

servations, so-called high-dimensional data. The goal of variable selection is to find a

small model that is nonetheless sufficiently flexible to capture unknown features of the

data-generating process required for inference. If a small model can perfectly capture

the unknown feature it is said to be exactly sparse. A far more realistic scenario is

approximate sparsity, when the bias from using a small model is well-controlled, but

nonzero. Sparsity is a natural framework for thinking about model selection. Indeed,

any time only a few of the available variables are used, a sparsity assumption has

effectively been made. It is common empirical practice to report results from several

small models, but for these results to be valid one must assume these specifications

give high-quality, sparse representations of the unknown features. The alternative

we provide involves selecting a sparse, yet flexible, model from among a large set

of variables. Results may then be compared with more traditional methods used in

practice.

With the aim of mimicking common empirical practice we estimate the propen-

sity score with multinomial logistic regression. To handle this nonlinear model under

approximate sparsity we employ the group lasso (Yuan and Lin 2006) coupled with

a novel penalty that controls both the noise and bias simultaneously. In our view,

the group lasso is particularly well-suited to multivalued treatments because it pools

information across all treatment levels to aid selection. Our results are stated in the

language of treatment effects, but apply to general data structures and are of inde-

pendent interest.7 To the best of our knowledge this is the first detailed study of an

approximately sparse, nonlinear model in the high-dimensional literature. Much of

the literature has focused on linear models (see Buhlmann and van de Geer (2011)

for a survey), while prior studies of nonlinear models often assume exact sparsity, or

present limited results.8 Furthermore, these studies often use high-level conditions

that can be hard to verify. In contrast, we obtain sharp results for logistic regression

7Our techniques build on prior studies, in particular Bickel, Ritov, and Tsybakov (2009), Lounici,
Pontil, van de Geer, and Tsybakov (2009, 2011), Obozinski, Wainwright, and Jordan (2011), Belloni
and Chernozhukov (2011b), Belloni, Chen, Chernozhukov, and Hansen (2012).

8Examples include van de Geer (2008), Belloni and Chernozhukov (2011a), or Negahban, Raviku-
mar, Wainwright, and Yu (2012). Bach (2010) only gives an error bound on coefficients in exactly
sparse logistic regression, which can not yield our results; and does not consider prediction error or
post-selection estimation. In independent work, Belloni, Chernozhukov, and Wei (2013) study ex-
actly sparse logistic regression, also using Bach’s (2010) tools, but are focused on a different inference
goal.
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under the same simple and intuitive conditions used for linear modeling by exploit-

ing mathematical techniques of self-concordant functions put forth by Bach (2010).

We also provide extensions to prior work on linear models needed to apply them in

treatment effect estimation.

Finally, we offer numerical evidence on the finite sample performance of our pro-

cedure. In a small simulation study we find that our procedure delivers very accurate

coverage of confidence intervals even for models where covariate selection is difficult,

either because of a low signal-to-noise ratio or lack of sparsity, thus highlighting the

uniform validity of inference. We also apply our method to the widely-used Na-

tional Supported Work Demonstration data (LaLonde 1986) and find very accurate

estimates and tight confidence intervals (see Table 2.1).

The remainder of the paper proceeds as follows. In Section 2.2, we give a short,

self-contained overview of the main results. For ease of reference, Section 2.2.3 collects

all notation. Section 2.3 describes the treatment effect model. Sparse models are

discussed in Section 2.4, which shows how several models that are commonly used

in empirical work fit in this framework. Section 2.5 presents our estimation method

and gives complete results on treatment effect inference. The proposed group lasso

approach to sparse modeling is detailed in Section 2.6, including theoretical results

on model selection and estimation. Section 2.7 presents the numerical evidence on

finite sample behavior of our procedure. Section 2.8 concludes. The main proofs are

presented in the Appendix, while the remainder are available in a supplement.

2.2 Overview of Results and Notation

Here we give an overview of the main contributions of the paper. We first discuss

treatment effect inference with a general model selector. Then in Section 2.2.2 we

discuss our new results for the group lasso, our proposed model selector. Section 2.2.3

collects notation to be used throughout.

2.2.1 Treatment Effects and Results on Post-Selection Inference

We consider a multivalued treatment, with status indicated by D ∈ {0, 1, . . . , T }.
Interest lies in mean effects of the treatment on a scalar outcome Y . Let {Y (t)}Tt=0 be

the (latent) potential outcomes: Y (t) is the outcome a unit would have under D = t.

Y (t) is only observed for units with D = t; that is, Y =
∑T

t=0 1{D = t}Y (t). Many

interesting parameters combine means of potential outcomes, and having multivalued

treatments allows for a wider range of estimands. Define the mean of one potential

7



outcome as

µt = E[Y (t)].

To fix ideas, µ1 − µ0 is the average treatment effect in the binary case (D ∈ {0, 1}).
Sections 2.3 and 2.5 consider more general average effects, including effects on treated

groups. For simplicity, in this section we focus a single µt.

We use the selection on observables framework to identify µt. For a vector of

covariates X, define the generalized propensity score and conditional outcome regres-

sions as

pt(x) = P[D = t|X = x] and µt(x) = E[Y |D = t,X = x].

For identification it is sufficient to assume that E[Y (t)|D,X] = E[Y (t)|X] (mean

independence) and pt(X) is bounded away from zero (overlap) for all treatment levels.

Broadly, these two assumptions imply that units from one treatment group are good

proxies for other treatments and that there are always such proxies available (see

Section 2.3).

Suppose we have an i.i.d. sample {(yi, di, x′i)}ni=1 from (Y,D,X ′). Then, for model-

selection-based estimators p̂t(xi) and µ̂t(xi), we estimate µt with

µ̂t =
1

n

n∑
i=1

{
1{di = t}(yi − µ̂t(xi))

p̂t(xi)
+ µ̂t(xi)

}
.

This doubly-robust estimator combines regression imputation and inverse probability

weighting, and remains consistent if either pt(x) or µt(x) is misspecified. Following

widespread empirical practice, we estimate p̂t(xi) with multinomial logistic regression

and µ̂t(xi) linearly (see Section 2.6). The choice of covariates in p̂t(xi) and µ̂t(xi) is

crucial, impacting consistency, efficiency, and finite sample performance. Covariate

selection based on ad hoc, iterative searches is common in empirical evaluations, but

is informal, not objective, and not replicable. Balancing tests are also commonly used

in this context, but have the additional drawback of assuming the same covariates are

important for outcomes and treatment assignment, and more generally do not weight

the covariates by their importance for bias.

On the other hand, our proposed procedure gives practitioners an easy to imple-

ment, fully objective tool to perform data-driven covariate selection and treatment

effect inference, with replicable results.9 Importantly, we do not preclude the addition

9For the final estimation step, the doubly-robust estimator is available in STATA 13 and the
package of Cattaneo, Drukker, and Holland (forthcoming) (as the default). The covariate selection

8



of variables known to be important from economic theory or prior knowledge. Our

procedure is intended to supplement these variables with a flexible set of controls,

guarding against misspecification or overfitting.

The following theorem is an example of the more general results presented in

Section 2.5.2, wherein we also define Vt and V̂t = V̂ W
µ (t) + V̂ B

µ (t, t).

Theorem II.1. Consider a sequence {Pn} of data-generating processes that obey, for

each n, Assumptions II.3, and II.4 below. We require two conditions on the model

selector:

(i)
∑n

i=1(p̂t(xi)− pt(xi))2/n = oPn(1) and
∑n

i=1(µ̂t(xi)− µt(xi))2/n = oPn(1);

(ii)
(∑n

i=1 1{di = t}(p̂t(xi) − pt(xi))
2/n
)(∑n

i=1 1{di = t}(µ̂t(xi) − µt(xi))
2/n
)

=

oPn(n−1).

Under these conditions,
√
n(µ̂t − µt) →d N(0, Vt) and V̂t/Vt →Pn 1. For each n, let

Pn be the set of data-generating processes satisfying Assumption II.3, and II.4 and

conditions (i) and (ii). Then

sup
P∈Pn

∣∣∣∣PP [µt ∈ {µ̂t ± cα√V̂t/n

}]
− (1− α)

∣∣∣∣→ 0,

where cα = Φ−1(1− α/2).

This result establishes the uniform validity of an asymptotic confidence interval

for µt, overcoming all the post model selection inference challenges: robustness to

model selection errors, selecting a model that is small but flexible enough to capture

the features of the underlying data generating process, and still retaining efficiency

under additional, standard conditions (see Section 2.5.3). Intuitively, this is similar

to (but distinct from) overcoming pretesting bias in other contexts.

Two general conditions are placed on the model selector. The first is a mild con-

sistency requirement. The second is analogous to the commonly-used, high-level re-

quirement in semiparametrics that first-stage components converge faster than n−1/4.

However, because we use the doubly-robust moment condition we only have the prod-

uct of the two estimation errors; this requirement can be easier to satisfy if one or

the other function is easier to estimate (e.g. if one function is very smooth or very

sparse). In high-dimensional models the rates for the first stage depend on the sample

size, the number of covariates considered, and the sparsity level. We propose to use

stage is easily implemented in R; code is available upon request. A self-contained STATA package is
under development.
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the group lasso and prove that these estimators satisfy (i) and (ii). Importantly, the

rate will depend on the total number of covariates only logarithmically, allowing for

a large number.

2.2.2 Model Selection Stage

We propose refitting following group lasso selection, and show that it meets all

requirements on the model selector. The group lasso is well-suited to program eval-

uation applications because covariates are penalized according to their overall con-

tribution in all treatment groups. This has two consequences. First, information

from all treatments is pooled when doing selection, and hence a weaker signal may be

extracted, which improves the selection properties. Second, the selected variables are

common to all treatment levels. From a practical point of view this is desirable, as

interest rarely lies in a single µt, but rather a collection, and substantial commonality

is expected in the variables important for different treatment levels. Formally, the

group lasso gives the union of all supports. The group lasso is easy to implement, as

discussed in Remark 4.

We consider high-dimensional, sparse models for pt(x) and µt(x). These are de-

fined by a p-dimensional vector X∗ based on the original variables X, with p > n

allowed. The X∗ may consist of any combination of the original variables, interac-

tions, flexible parametric transformations, and/or nonparametric series terms (such

as splines or polynomials). A model is approximately sparse if there are s < n of these

terms that yield a good approximation (s→∞ is allowed). To build intuition, sup-

pose that pt(x) and µt(x) follow p-dimensional parametric models. Then the sparsity

assumption is that there is an s-dimensional model that has sufficiently small specifi-

cation bias. In the nonparametric case, sparsity is weaker than (but analogous to) the

familiar assumption that a small set of basis functions can approximate the unknown

objects well. In practice researchers employ a hybrid of these approaches, which is

covered by our results. Section 2.4 gives more detail and examples.

We form p̂t(x) and µ̂t(x) in two steps (complete details in Section 2.6). First, the

group lasso is applied separately to multinomial logistic and least squares regression to

select covariates from X∗. We then estimate pt(x) and µt(x) by refitting unpenalized

models using the selected variables, possibly augmented with controls that are known

to be important from prior work or economic theory. It is not desirable for a model

selector to discard theory and prior work, and our procedure explicitly avoids this.

We also allow for using logistic-selected variables in the linear model refitting and

vice versa, but this is not necessary for uniform inference nor efficiency (and requires
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stronger assumptions).

Our main results give precise bounds for the number of covariates selected and the

estimation error, both for the penalized and unpenalized estimates. These bounds,

given in Section 2.6.3, are nonasymptotic: exact constants are given for each bound

and these bounds are valid for any given n, p, and s, provided our assumptions are

met. Such results are complex and so we give the following intuitive, asymptotic

result (The notation OPn is defined in Section 2.2.3).

Corollary II.2. Suppose the biases from the best sd- and sy-term approximations to

pt(x) and µt(x) are bounded by bds and bys, respectively. Then under the assumptions

in Section 2.6.3, and δ > 0 described therein, with high probability we have:

1.
∑n

i=1(p̂t(xi)− pt(xi))2/n = OPn

(
n−1sd log(p ∨ n)3/2+δ + (bds)

2sd
)

and

2.
∑n

i=1(µ̂t(xi)− µt(xi))2/n = OPn

(
n−1sy log(p ∨ n)3/2+δ + (bys)

2
)
.

These two results for our proposed group lasso estimators can be directly used

to verify the high-level conditions in Theorem II.1 above. The product of these

rates makes explicit the advantage discussed above of using condition (ii) in Theorem

II.1, by showing exactly how the errors depend on the total number of variables,

the sparsity, and the bias. Section 2.6.3 also shows that the number of variables

selected is the same order as the sparsity level, and provides bounds on the logistic

and linear coefficients directly. Both these results are important for certain steps in

treatment effect estimation that aren’t reflected in the simple statement of Theorem

II.1. These results appear to be entirely new for the multinomial logistic regression,

for any version of the lasso. From a practical point of view, these results provide

formal justification for using multinomial logistic regression, coupled with group lasso

selection and post-selection refitting.

2.2.3 Notation

We collect here notation to be used for the rest of the paper. The population

data generating process (DGP) is denoted by Pn and is defined by the joint law of

the random variables (Y,D,X ′)′. For a given n, {(yi, di, x′i)′}ni=1 constitute n i.i.d.

draws from Pn. In general, the DGP may vary with n, along with features such as

parameters, distributions, an so forth, as discussed in Section 2.4.2. This is generally

suppressed for notational clarity.

We further adopt the following conventions.
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Treatments. Define the treatment sets NT = {0, 1, 2, . . . , T } and NT = {1, 2, . . . , T }.
No order is assumed in the treatments. For each unit i, di indicates treatment

assignment, and define dti = 1{di = t}. Let nt =
∑n

i=1 d
t
i be the number of

individuals with treatment t and define n = mint∈NT nt and n = maxt∈NT nt.

Further define T = T + 1.

Vectors. Define Np = {1, 2, . . . , p}. For a doubly-indexed collection of scalars {δt,j :

t ∈ NT , j ∈ Np}, define δ·,j ∈ RT as the vector that collects over all t for fixed

j; δt,· ∈ Rp collects over j ∈ Np for fixed t; and δ·,· ∈ Rp×T the concatenation

of all δt,·. For simplicity, we write δt for δt,·. When considering the multinomial

logistic model, t will vary only over NT but the notation will be maintained (or,

equivalently, normalize δ0,· = 0). For a set S ⊂ Np, let δt,S ∈ Rcard(S) be the

vector of {δt,j : j ∈ S} for fixed t and similarly let δ·,S ∈ R|S|×T = {δt,j : t ∈
NT , j ∈ S}.

Norms. Single bars will be either absolute value or cardinality of a set, and will be

clear from the context. For a vector v, let ‖v‖1 and ‖v‖2 denote the `1 and

`2 norms, respectively. For the group lasso, define the mixed `2/`1 norm as

|||δ·,·|||2,1 =
∑

j∈Np ‖δ·,j‖2. It will always be the case that the (“outer”) `1 norm

is over the covariates and the (“inner”) `2 norm is over the treatments (in our

application). When discussing the multinomial logistic model, treatments will

be restricted to NT with no change in notation.

Data-Generating Processes. The DGP for a fixed n will be denoted by Pn. The

set of all such Pn that we allow for will be Pn. As shorthand for a sequence

we will use {Pn} = {Pn : n ≥ 1, Pn ∈ Pn}. Expectations and probabilities

will be understood to be taken against Pn, though notationally suppressed:

E[W ] = EPn [W ] denotes the population expectation for a random variable W

and P[A] = PPn [A] the probability of event A. For asymptotic arguments de-

pendence on n is explicit, so that OPn(·) and oPn(·) have their usual meaning

with the understanding that the measure Pn is used for each n.

The empirical expectation will be denoted En[wi] =
∑n

i=1wi/n. Also, define

En,t[wi] =
∑

i∈It wi/nt =
∑n

i=1 d
t
iwi/nt for observations with treatment t.

2.3 Treatment Effects Model

In this section we formally define the treatment effects model and the parameters

of interest. Recall that D ∈ {0, 1, . . . , T } indicates treatment status, {Y (t)}t∈NT are
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the (latent) potential outcomes, and Y (t) is only observed for units with D = t; that

is, Y =
∑

t∈NT Y (t). The building blocks of many general estimands are the averages

µt = E[Y (t)], t ∈ NT , (2.1)

and

µt,t′ = E[Y (t)|D = t′], t, t′ ∈ NT × NT , (2.2)

In the binary case, the average treatment effect is given by µ1 − µ0, whereas the

treatment on the treated is µ1,1 − µ0,1. Having a multivalued treatment allows for a

much larger range of interesting estimands. To fix ideas, we keep as running examples

two leading cases from the literature. First, the so-called dose-response function: the

(T + 1)-vector µ = (µ0, µ1, . . . , µT )′. Second, define τ as the T -vector with element

t given by µt,t − µ0,t. This gives the effect of each treatment relative to the baseline

t = 0, only for those who received that treatment. These vectors are by no means the

only interesting estimands constructed from µt and µt,t′ ; many others are discussed

by Lechner (2001), Heckman and Vytlacil (2007), and others.

The following two conditions are sufficient to identify µt and µt,t′ .

Assumption II.3 (Identification). For all t ∈ NT and almost surely X, Pn obeys:

(a) (Mean independence) E[Y (t)|D,X = x] = E[Y (t)|X = x], and

(b) (Overlap) P[D = t|X = x]) ≥ pmin > 0 for all t ∈ NT .

This assumption is a form of “ignorability” coined by Rosenbaum and Rubin

(1983). This model allows arbitrary treatment effect heterogeneity in observables, but

not unobservables. This assumption is standard in the program evaluation literature,

and its plausibility has been discussed at length, so we omit a general discussion

(see, e.g., Imbens (2004), Wooldridge (2010, Chapter 21), and references therein).

However, in the context of model selection, two remarks on II.3(a) are warranted.

First, in place of Assumption II.3(a), it is more common to instead assume full

conditional independence: Y ⊥⊥ D|X. However, as observed by Heckman, Ichimura,

and Todd (1997), the weaker mean independence is sufficient. For our purposes,

the “gap” between the two assumptions is important. Suppose full independence

holds only conditional on a set of variables strictly larger than the variables entering

the mean functions (e.g. the excess variables affect higher moments). In this case,

because mean independence is still sufficient, we need not aim to select the larger set

of covariates. Our results of course hold under full independence, which is important

for the efficiency discussed in Section 2.5.3 below.
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Second, the main drawback of Assumption II.3(a) is that it does not give iden-

tification of average effects on transformations of Y (t). However, we are expressly

interested in model selection on the mean function of the level of Y (t), and hence As-

sumption II.3(a) is more natural. To operationalize model selection, structure must

be placed on E[Y (t)|X = x], and hence functional form conditions tied to mean inde-

pendence are not limiting per se. Indeed, if the parameter of interest is changed, for

example to E[log(Y (t))], and a sparsity assumption is made for E[log(Y (t))|X = x],

then our method applies.

Assumption II.3 yields identification of µt and µt,t′ using either inverse weighting

or regression, and double robustness follows from combining the two strategies. Recall

the notation pt(x) = P[D = t|X = x] and µt(x) = E[Y |D = t,X = x]. Applying

Assumption II.3 we find that

E
[
ψt
(
Y,D, µt(X), pt(X), µt

)]
=

E
[
1{D = t}Y
pt(X)

+ µt(X)− 1{D = t}µt(X)

pt(X)
− µt

]
= 0 (2.3)

and

E
[
ψt,t′

(
Y,D, µt(X), pt(X), pt′(X), µt,t′

)]
= E

[
1{D = t′}µt(X)

pt′
+
pt′(X)

pt′

1{D = t}(Y − µt(X))

pt(X)
− µt,t′

]
= 0, (2.4)

where pt = P[D = t]. The moment condition (2.3) holds if either pt(x) or µt(x) is

misspecified. For µt,t′ , if µt(x) is misspecified, both pt(X) and pt′(X) must be correctly

specified, while if µt(x) is correct, both propensity scores may be misspecified. It is

important to note that the forms of ψt(·) and ψt,t′(·) are fixed, so the function itself

does not depend on the sample size even if its arguments do. Our estimator will be

a plug-in version of this moment condition.

Remark 1 (Simplifications for µt,t). Identification µt,t does not require Assumption

II.3. Y (t) is fully observed for the sub-population of interest and so a simple average

will deliver µt,t = E[1{D = t}Y ]/pt. Note that (2.4) reduces to this when t = t′. For

τ this means we must only estimate the function µt(xi) for t = 0. Intuitively, we

must use control group observations to proxy for treated units, but not the other way

around.

Thus, for certain parameters of interest, Assumption II.3 can be weakened to hold

only for the comparison group. However, we cover generic estimands, without neces-
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sarily specifying a control group, and so we maintain Assumption II.3 for simplicity,

rather than keeping track of hosts of special cases. �

Remark 2 (Efficient Influence Functions). The functions ψt(·) and ψt,t′(·) are the

efficient influence functions. Thus, our estimators have the interpretation of being

plug-in versions of these influence functions. Indeed, as discussed Section 2.5.3, our

estimators will be asymptotically linear with this influence function. �

2.4 Sparse Models

We now formalize approximate sparsity. It is convenient to work with the linear

log-odds ratio form of the multinomial model; the outcome model already being

linear. Let X∗Y and X∗D be p-dimensional transformations of the covariates X, with

p > n allowed. These transformations are specific to the outcome and treatment

models, but may overlap. They do not vary with t, nor depend on the DGP. Some

examples are given below in Section 2.4.1. For the multinomial logistic model, we

take p0(x) = 1−
∑

t∈NT pt(x) and write

log

(
pt(x)

p0(x)

)
= x∗D

′γ∗t +BD
t , t ∈ NT . (2.5)

Similarly, write the outcome regressions as

µt(x) = x∗Y
′β∗t +BY

t , t ∈ NT , (2.6)

The terms BD
t = BD

t (x) and BY
t = BY

t (x) are bias terms arising from the parametric

specification. As discussed below, these encompass the usual nonparametric bias as

well. When it is clear from the context we often abbreviate both X∗D and X∗Y by X∗

(and their realizations by x∗i ) and refer to them generically as “covariates”. Much

discussion applies to both. We assume En[(x∗i )
2] = 1 without loss of generality (see

Remark 5).

Approximate sparsity requires that only a small number of the X∗ are needed to

make the bias small. Define SD∗ =
⋃

NT supp(γ∗t ) and SY∗ =
⋃

NT supp(β∗t ), so that

these sets capture all variables important for treatment and outcomes, respectively.

We assume that there is some sd < n such that for |SD∗ | = sd, and similarly |SY∗ | =

sy < n, and BD
t and BY

t are sufficiently small. While a great deal of overlap is

expected, in practice it is likely that a few covariates will be more or less important

for different treatments, and so we do not require that the supports of γ∗t , t ∈ NT or
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β∗t , t ∈ NT are constant over t, nor that SD∗ overlaps with SY∗ . Instead, it may be

better to think of Np\SD∗ and Np\SY∗ as the “common nonsupports” of the treatment

and outcome equations. When there is no confusion, we will write s for either sd or

sy.

2.4.1 Parametric and Nonparametric Examples

To concretize the sparse model idea, we now discuss how several models commonly

used in practice fit into this framework. These include parametric and nonparametric

models for pt(x) and µt(x), and hybrids of these. A common theme to all examples

will be comparison to the oracle model: the model that knows the true support in

advance. Our uniform inference results include all these examples as special cases

because, loosely speaking, we obtain uniformity over DGPs where pt(x) and µt(x)

have sparse representations. We aim for an accessible discussion of each model, and

defer technicalities to the literature (Raskutti, Wainwright, and Yu 2010, Rudelson

and Zhou 2011, Belloni, Chernozhukov, and Hansen 2013).

Example 1 (Oracle parametric model). Assume models (2.5) and (2.6) hold with

BD
t = BY

t = 0 and X∗D = X∗Y = X. Let p = s = dim(X). All covariates are used

in all modeling. If dimension is fixed this is the textbook parametric model, see for

example Wooldridge (2010). Alternatively, the dimension can be diverging, but more

slowly than n. We are not aware of any work which covers this case explicitly, though

for the first stage, He and Shao (2000) cover linear and logistic regression, and their

results easily extend to multinomial logistic models.10

The vast majority of treatment effect studies adopt this model (with dimension

fixed), taking the set of covariates as given. In our framework, this is equivalent to

the researcher having access to prior knowledge of which covariates are important

and which are not. Such knowledge no doubt plays an important role, but it can not

cover all situations or all variables in a data set. Furthermore, as more data become

available, the researcher does not increase the complexity of their model. �

Example 2 (Exactly sparse parametric model). Retain the exact parametric struc-

ture of the prior example, but let dim(X) = p be possibly larger than n, and assume

that SY∗ and SD∗ are unknown sets of cardinality less than n. Model selection must be

performed. Often, researchers (implicitly) rely on the oracle property, that SY∗ and

10Even with diverging dimensions, the parametric multinomial logistic model relies on the inde-
pendence of irrelevant alternatives.
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SD∗ can be found with probability approaching one, and conduct inference condition-

ing on this event. This approach can never be made uniformly valid, and is known

to have poor finite sample properties, as shown by Leeb and Pötscher. �

Example 3 (Approximately sparse parametric model). Again suppose a purely para-

metric model, so that X∗D = X∗Y = X and dim(X) = p, possibly greater than n.

Suppose that there exist coefficients γ0·,· and β0
·,· such that log[pt(x)/p0(x)] = x∗D

′γ0t

and µt(x) = x′β0
t exactly, but instead of any coefficients being precisely zero, suppose

they may be ordered such that |γ0t,j| ∝ j−αγ and |β0
t,j| ∝ j−αβ , with αγ and αγ at least

2. With this rapid decay, there exist sd and sy that are o(n) such that Equations

(2.5) and (2.6), and other conditions needed, are satisfied for γ∗t,j = γ0t,j for j ≤ sd

and β∗t,j = β0
t,j for j ≤ sy and the rest truncated to zero. That is SD∗ and SY∗ collect

the largest coefficients and BD
t =

∑
Np\SD∗

xjγ
0
t,j, and similarly for BY

t . �

Example 4 (Semiparametric model). Assume pt(x) and µt(x) are unknown functions

that can be well-approximated by a linear combination of sd and sy basis functions,

respectively (e.g. are sufficiently smooth). In (2.5) and (2.6), γ∗·,· and β∗·,· are the

coefficients of these approximations, while BD
t and BY

t are the usual nonparametric

biases. X∗D = RD(X) and X∗Y = RY (X) are series terms used in the approximation.

Standard semiparametric analyses, such as Hirano, Imbens, and Ridder (2003), Im-

bens, Newey, and Ridder (2007), or Cattaneo (2010), can be viewed in this context

as oracle models that know in advance which terms yield the best approximation,

typically assumed to be the first terms. Instead, we only require that some sd (or sy)

of a set of p series terms give good approximations. This allows for greater flexibility

in applications, where there is no knowledge of which series terms to use, and the

researcher may want to mix terms from different bases. �

Example 5 (Mixed parametric and semiparametric model). Partition X = (X1, X2).

Suppose that the true log-odds function satisfies log[pt(x)/p0(x)] = x′1γ
1
t + ht(x2) +

B1
t (x), where B1

t (x) is a specification bias and ht(·) is a smooth unknown function.

For a set of basis functions RD(x2), there will exist coefficients γ2t such that ht(x2) =

RD(x2)
′γ2t +B2

t (x2) and so

log

(
pt(x)

p0(x)

)
= x∗D

′γ∗t +BD
t , x∗D = (x′1, RD(x2)

′)′, γ∗t = (γ1t
′
, γ2t
′
)′,

and BD
t = B1

t +B2
t .

We require that some collection of variables and series terms give a good, sparse

approximation, without placing explicit conditions on how many of either. Implicitly,
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one will restrict the other. For example, if the dimension of the parametric part is

large, then we require that ht(·) can be more easily approximated. We treat µt(x) the

same. This example is closest to actual practice, where some variables (e.g. dummies)

enter in a known way and should not be considered part of a nonparametric object,

while other covariates must be considered flexibly. �

2.4.2 Conceptual considerations in n-varying DGPs

We close this section with a discussion of how the DGP may vary with sample

size. Much of the DGP, including parameters and distributions, is allowed to depend

on n. Perhaps the most salient features that do not depend on n are the set of

treatments and the functions ψt and ψt,t′ . It is likely that our results can be extended

to accommodate a growing number of treatments, but that is beyond the scope of

our study. In the models (2.5) and (2.6), X∗, γ∗·,·, and β∗·,· must depend on n by

construction. Our results on estimation of these models are nonasymptotic: exact

constants are provided that are defined for a fixed n. For treatment effect inference,

we use triangular array asymptotics to retain the dependence on n of the DGP. The

interpretation of the results does, and should, change depending on what is assumed

about the DGP. To illustrate, let us return to Examples 2 and 4.

First, consider the simple parametric models of Example 2. We may now define

µt = E[E[Y (t)|X]] = E[X ′]β∗t , which depends on n by construction. That is, given an

exact parametric specification for E[Y (t)|X] with a diverging number of covariates,

the parameter to be estimated, µt, must depend on n. This may seem unnatural, as

we typically think of the “true” parameters being features of a (large) fixed study

population. However, with a diverging number of covariates, the idea of a fixed DGP

is not clear. Indeed, if we estimate µt = µ
(n1)
t based upon n1 observations, and

then proceed to gather n2 more observations, when we re-estimate our target is now

µ
(n1+n2)
t 6= µ

(n1)
t . One possible resolution is as follows. First, the parameter of interest

is µ
(∞)
t = E[Y (t)], which is defined without reference to covariates. We can view each

successive n-dependent µt as an approximation of µ
(∞)
t based upon p = pn covariates.

Note well that in our thought experiment, pn1 6= pn1+n2 , and so additional variables

should have been collected for all n1 + n2 samples.

Contrast this with the semiparametric model in Example 4. It is common to as-

sume the population DGP is fixed over n. The treatment effects may be constructed

in terms of the underlying variables, e.g. µ
(∞)
t = E[Y (t)] = E[E[Y (t)|X]], with X∗

serving only the purpose of aiding in approximating the regression functions. Model

selection is performed on series terms, not underlying variables, to estimate the coef-
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ficients γ∗·,· and β∗·,·. If µt = E[X∗Y
′]β∗t +E[BY

t ] does not depend on n, the bias term, by

definition, exactly compensates for the n-dependence in E[X∗Y
′]β∗t . We emphasize that

our inference results allow for general n-dependence in the DGP, and interpretation

by the econometrician must take careful account of any conceptual assumptions.

2.5 Main Results on Treatment Effect Estimation and Infer-

ence

In this section we present results on uniformly valid treatment effect inference.

We first present the estimators and conditions required for a generic model selector

to yield uniform inference. We then give theoretical results, and close with a short

discussion of efficiency.

2.5.1 Estimation Procedure with a Generic Model Selector

The moment functions ψt(·) and ψt,t′(·) of Equations (2.3) and (2.4) have fixed

and known form, and so for (model selection based) estimators p̂t(x) and µ̂t(x), we

can define

µ̂t =
1

n

n∑
i=1

{
dti(yi − µ̂t(xi))

p̂t(xi)
+ µ̂t(xi)

}
(2.7)

and

µ̂t,t′ =
1

n

n∑
i=1

{
dt
′
i µ̂t(xi)

p̂t′
+
p̂t′(xi)

p̂t′

dti(yi − µ̂t(xi))
p̂t(xi)

}
, (2.8)

where p̂t = nt/n. By combining these estimators appropriately we can construct

estimators µ̂ and τ̂ for the dose-response function µ and the vector τ , respectively,

and any other estimand. Notice that when t = t′ µ̂t,t is an average over the appropriate

subpopulation: µ̂t,t = En,t[yi].
Although in this section we allow for generic model selection based estimates p̂t(x)

and µ̂t(x), it is important to distinguish between estimates based upon selected sets

that have no “additional randomness” and those that do. Model selection based

estimation will naturally have two steps: first data-driven selection and then refitting

to ameliorate the shrinkage bias and allow the researcher to augment the selected

variables. Let S̃D and S̃Y be the selected sets and ŜD and ŜY be the final sets

of variables used in the refitting. We will say that these contain no “additional

randomness” if the added variables (i.e. Ŝ \ S̃, for Y or D) are nonrandomly selected,

such as from economic theory or prior knowledge. On the other hand, the added

variables may be selected from a random process beyond that included in S̃. The
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leading example would be using logistic-selected variables in the regressions or vice

versa. Then the variables used in µ̂t(xi) depend not only on the randomness of S̃Y ,

but also on that of S̃D, and hence on {di}ni=1. Stronger conditions are required for

the estimators with additional randomness.

The choice of method is in part dependent on the assumptions of the underlying

model. To illustrate, first, return to Example 2, where we have a purely parametric

model with X = X∗D = X∗Y . The researcher may want to set ŜD ⊃ S̃D ∪ S̃Y , in

order to have a better chance that SY∗ ⊂ ŜD. The set ŜD now contains additional

randomness due to S̃Y . Conversely, consider Example 4. It is natural to include

“low-order” basis functions for each underlying covariate, say linear and quadratic

polynomials. Thus, the researcher may want to include these in Ŝ, whether or not

selected by the group lasso. However, there is no reason that the series terms useful

for approximating the functions µt(x) would be useful for pt(x), or vice versa, and no

additional randomness is injected.

We now state the sufficient conditions used for treatment effect estimation and

inference. For exposition, we present these in three groups: those concerning the

underlying DGP, requirements of p̂t(x) and µ̂t(x) in the “no additional randomness”

case, and finally the stronger conditions to allow for “additionally random” selected

sets. Begin with conditions on the DGP. Let U ≡ Y (t) − µt(X) and impose the

following condition.

Assumption II.4 (Data Generating Process). For each n, the following are true

for the DGP Pn.

(a) (yi, di, xi) is an i.i.d. sample from (Y,D,X), where the data generating process

obeys Equations (2.5) and (2.6) such that |SY∗ | = sd and |SD∗ | = sy.

(b) The covariates X∗ have bounded support, with maxj∈Np X
∗
j ≤ X <∞, uniformly

in n. Transformations may depend on n but not the underlying data generating

process.

(c) E[|U |4 | X] ≤ U4, uniformly in n.

(d) minj∈Np, t∈NT E[X∗j
2U2]∧E[X∗j

2(1{D = t}−pt(X))2] is bounded away from zero,

uniformly in n.

(e) For some r > 0: E[|µt(xi)µt′(xi)|1+r] and E[|ui|4+r] are bounded, uniformly in

n.
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The conditions of Assumption II.4 are mild and intuitive. Assumption II.4(a) re-

stricts attention to cross-sectional applications and codifies the requirement that the

underlying functions have sparse representations. The condition of bounded covari-

ates is unlikely to be a limitation in practice. Any X∗ that are underlying variables

will naturally be bounded in applications. This condition is automatically satisfied

for most common choices of basis functions employed in nonparametric estimation.

Finally, Assumptions II.4(c), II.4(d), and II.4(e) are weak moment conditions on the

potential outcome models, including allowing the errors to be heteroskedastic and

non-Gaussian. Excepting the support requirements of II.4(a) these conditions are

not unique to high-dimensional models or model selection. Formalizing the require-

ment of uniform bounds in n is needed when doing array asymptotics.

We now give precisely the conditions on the model selector for uniformly valid

inference.

Assumption II.5 (Model Selector Restrictions). The model selection based estima-

tors p̂t(x) and µ̂t(x) obey the following for a sequence {Pn}, uniformly in t ∈ NT .

(a) En[(p̂t(xi)− pt(xi))2] = oPn(1) and En [(µ̂t(xi)− µt(xi))2] = oPn(1),

(b) En,t[(µ̂t(xi)− µt(xi))2]1/2En,t[(p̂t(xi)− pt(xi))2]1/2 = oPn(n−1/2).

The first is a mild consistency requirement. The second is more interesting. It

is analogous to the commonly-used, high-level requirement in semiparametrics that

each first-step component converge at n−1/4 at least.11 Belloni, Chernozhukov, and

Hansen (2013) use just such a condition. However, by making use of the doubly-

robust property we have the weaker condition shown, involving the product. If one

function is relatively easy to estimate Assumption II.5(b) can be satisfied even if the

other does not converge at n−1/4. In high-dimensional, sparse models the rates for

the first stage depend on the sample size, the number of covariates considered, and

the sparsity level. Thus, if one function requires fewer covariates to estimate, i.e.

smaller p or s, then greater complexity can be allowed for in the other (capturing, in

particular, their relative smoothness).

For our proposed group lasso selectors, recalling the results of Corollary II.2,

Assumption II.5(a) will be satisfied if (
√
n−1sd log(p ∨ n)3/2+δD + bds

√
sd) → 0 and

(
√
n−1sy log(p ∨ n)3/2+δY + bys) → 0. Further, II.5(b) is satisfied if their product

is o(n−1/2), which clearly shows how the relative sparsities and smoothnesses may

interact.
11See, for example, Newey (1994a), Newey and McFadden (1994), and Chen (2007), and references

therein.
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When considering the additional-randomness estimators, we need a stronger bound

on the regression errors U and more conditions on the first stage.

Assumption II.6 (Regularity conditions for union estimators). The model selection

based estimators pt(x) and µ̂t(x) obey the following for a sequence {Pn}, uniformly

t ∈ NT : (
max
i∈It
|ui|
) ∣∣En,t[(p̂t(xi)− pt(xi))2]∣∣ = oPn(n−1/2)

and

‖γ̂t − γ∗t ‖1 ∨ ‖β̂t − β
∗
t ‖1 = oPn(log(p)−1).

These stronger conditions are needed because we must apply bounds for self-

normalized sums (de la Peña, Lai, and Shao 2009). Belloni, Chen, Chernozhukov,

and Hansen (2012) were the first to use these techniques in high-dimensional, sparse

models. The first condition is a high-level condition that can be verified with con-

ditions on the errors and a bound for estimation. For example, if we follow Belloni,

Chen, Chernozhukov, and Hansen (2012) and assume that maxi∈Nn |ui| = OPn(n1/q)

for some q > 2, then Assumption II.6 is met under our group lasso results if both(
n1/2+1/q

[
n−1sd log(p ∨ n)3/2+δD + (bds)

2sd
])

and(
log(p)

[√
n−1s2d log(p ∨ n)3/2+δD + bdssd ∨ bys

])
converge to zero. Note that as q increases, the stringency of the rate restriction

decreases. For example, if the ui are Gaussian, q can be taken to be any (large)

positive number.

Remark 3 (Linear Probability Models). Some authors advocate a linear probability

model for the function pt(x), instead of the multinomial logistic form. Our results

cover this case as well. Note that all we require are sufficiently high quality approxi-

mations to the underlying objects. If Assumptions II.5, and II.6 if appropriate,12 are

met then uniform inference is possible using a linear probability model. Our group

lasso results (Theorems II.14 and II.15) can be used directly to verify these condi-

tions. In the same vein, multinomial logistic regression can be used to estimate µt(x)

if the outcome Y is discretely valued. �

12Assumption II.6 can be slightly weakened in this case due to the linear link function.
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2.5.2 Theoretical Results

We now come to our main results on inference on average treatment effects. Most

of our discussion will concern µt and µ; similar points apply to results for µt,t′ and

τ . Our first result concerns consistency of our estimates under misspecification.

Theorem II.7 (Double Robustness). Consider a sequence {Pn} of data-generating

processes. Suppose that for some p0t (x) and µ0
t (x), En[(p̂t(xi) − p0t (xi))

2] = oPn(1)

and En[(µ̂t(xi)− µ0
t (xi))

2] = oPn(1). Let Assumptions II.3, and II.4 hold for each n,

with the regularity conditions also holding for p0t (x) and µ0
t (x). If p0t (x) = pt(x) or

µ0
t (x) = µt(x), then |µ̂t − µt| = oPn(1).

This theorem formalizes the double-robustness property of our estimators: the

propensity score or regression may be misspecified if the limiting objects must be

well-behaved. Compare to Assumption II.5(a). The nearly identical result for µt,t′ is

omitted to save space.

We now turn to our main inference results. First we demonstrate a Bahadur

representation of a generic µ̂t or µ̂t,t′ . These are shown to be equivalent to a sample

average of the moment functions ψt(·) and ψt,t′(·), respectively, after proper centering

and scaling, evaluated at the true pt(xi) and µt(xi). Using these results, asymptotic

normality can be obtained for general estimands. We state explicit results for the

leading examples µ and τ .

Before giving the results for µ, we need an asymptotic variance formula. Let

the conditional variance of the potential outcomes be σ2
t (x) = E[U2|D = t,X = x].

Define the T -square matrix Vµ with elements

Vµ[t, t′] = 1{t = t′}E
[
σ2
t (X)

pt(X)

]
+ E [(µt(X)− µt)(µt′(X)− µt′)] ≡ V W

µ (t) + V B
µ (t, t′).

Straightforward plug-in estimators for these two components are given by

V̂ W
µ (t) = En

[
dti(yi − µ̂t(xi))2

p̂t(xi)2

]
and

V̂ B
µ (t, t′) = En [(µ̂t(xi)− µ̂t)(µ̂t′(xi)− µ̂t′)] .

Our first result gives the asymptotic behavior of µ̂t and µ̂ for a sequence of DGPs.

Theorem II.8 (Estimation of Average Treatment Effects). Consider a sequence {Pn}
of data-generating processes that obey Assumptions II.3, II.4, and II.5 for each n. If
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µ̂t(xi) and p̂t(xi) do not have additional randomness in the estimated supports, we

have:

1.
√
n(µ̂t − µt) =

∑n
i=1 ψt(yi, d

t
i, µt(xi), pt(xi), µt)/

√
n+ oPn(1);

2. V
−1/2
µ
√
n(µ̂− µ)→d N (0, IT ); and

3. V̂ W
µ (t)− V W

µ (t) = oPn(1) and V̂ B
µ (t, t′)− V B

µ (t, t′) = oPn(1).

If, in addition, Assumption II.6 holds, then the same is true when the supports contain

additional randomness.

Theorem II.8 itself may appear standard, but what is nonstandard is that the

model selection step of the estimation has been explicitly accounted for. This imme-

diately gives the following uniform inference results.

Corollary II.9 (Uniformly Valid Inference). Let Pn be the set of data-generating

processes satisfying the conditions of Theorem II.8 for a given n. For a fixed, twice

uniformly continuously differentiable function G : RT → R with gradient ∇G such

that lim infn→∞ ‖∇G(µ)‖2 is bounded away from zero, we have:

sup
P∈Pn

∣∣∣∣PP [G(µ) ∈
{
G(µ̂)± cα

√
∇G(µ̂)′V̂µ∇G(µ̂)/n

}]
− (1− α)

∣∣∣∣→ 0,

where cα = Φ−1(1− α/2).

Corollary II.9 shows that these procedures are uniformly valid over the class of

DGPs we consider, and hence will be reliable in applications. This method of proving

uniformity follows Belloni, Chernozhukov, and Hansen (2013) and Romano (2004),

and is distinct from the approach of Andrews and Guggenberger (2009). By not

relying on an oracle property, we avoid the uniformity problems demonstrated by

Leeb and Pötscher, as discussed before.

Our results for the treatment effects on the treated, µt,t′ , are conceptually similar.

The variance formula for τ is slightly more cumbersome notationally. Define the

T -square matrix Vτ with elements

Vτ [t, t′] = 1{t = t′}E
[
pt(X)

p2t

[
σ2
t (X) + (µt(X)− µ0(X)− µt,t + µ0,t)

2]]
+ E

[
pt(X)pt′(X)

ptpt′p0(X)
σ2
0(X)

]
≡ V W

τ (t) + V B
τ (t, t′).
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Straightforward plug-in estimators for these two components are given by

V̂ W
τ (t) = En

[
dti
p̂2t

[
(yi − µ̂0(xi)− µ̂t,t + µ̂0,t)

2]]
and

V̂ B
τ (t, t′) = En

[
p̂t(xi)p̂t′(xi)

p̂tp̂t′ p̂0(xi)2
d0i (yi − µ̂0(xi))

2

]
.

Note that we needn’t estimate µt(x) and σ2
t (x), again due to the simplification dis-

cussed in Remark 1. With this notation, we have the following results.

Theorem II.10 (Estimation of Treatment Effects on Treated Groups). Consider a

sequence {Pn} of data-generating processes that obey Assumptions II.3, II.4, and II.5

for each n. Then under Pn, as n → ∞, if µ̂t(xi) and p̂t(xi) do not have additional

randomness in the estimated supports:

1.
√
n(µ̂t,t′ − µt,t′) =

∑n
i=1 ψt,t′(yi, d

t
i, µt(xi), pt(xi), pt′(xi), µt,t′)/

√
n+ oPn(1);

2. V
−1/2
τ
√
n(τ̂ − τ )→d N (0, IT ); and

3. V̂ W
τ (t)− V W

τ (t) = oPn(1) and V̂ B
τ (t, t′)− V B

τ (t, t′) = oPn(1).

If, in addition, Assumption II.6 holds, then the same is true when the supports contain

additional randomness.

Corollary II.11 (Uniformly Valid Inference). Let Pn be the set of data-generating

processes satisfying the conditions of Theorem II.10 for a given n. For a fixed, twice

uniformly continuously differentiable function G : RT → R with gradient ∇G such

that lim infn→∞ ‖∇G(τ )‖2 is bounded away from zero, we have:

sup
P∈Pn

∣∣∣∣PP [G(τ ) ∈
{
G(τ̂ )± cα

√
∇G(τ̂ )′V̂τ∇G(τ̂ )/n

}]
− (1− α)

∣∣∣∣→ 0,

where cα = Φ−1(1− α/2).

2.5.3 Efficiency Considerations

The prior theoretical results are aimed at delivering robust inference. In this

section, we briefly discuss the efficiency of our estimator. We consider two efficiency

criteria: semiparametric efficiency and oracle efficiency. The former deals with the

variance of the final estimator, whereas the latter is directly about the efficacy of
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the model selection. To put each criterion on sound conceptual footing, we separate

discussion and restrict each to the most appropriate set of models.

For semiparametric efficiency, assume that pt(x) and µt(x) are nonparametric ob-

jects, as in Example 4. Recall that X are fixed-dimension variables and the DGP does

not vary with n. If we “upgrade” the mean independence of Assumption II.3(a) to

full independence, namely {Y (t)}NT ⊥⊥ D|X, then Theorems II.8 and Theorem II.10

immediately yield asymptotically linearity and semiparametric efficiency, attaining

Hahn’s (1998) and Cattaneo’s (2010) bounds.

Let us turn to oracle efficiency. An alternative to our approach is to prove that the

true support can be found with probability approaching one (the oracle property),

then conduct inference conditioning on this event. This approach cannot be made

uniformly valid, but may be of interest in the causal setting when restricted to exactly

sparse models (there is no “true” support in approximately sparse models), because

discovering the true support is equivalent to finding the variables in the causal mech-

anism (White and Lu 2011). This may be interesting in its own right, or for future

applications by way of hypothesis generation. Further, efficiency can be improved

because only variables appearing in µt(xi) = E[Y |D = t, xi] should be used, hence

SD∗ \ SY∗ are not needed and SY∗ \ SD∗ can be ignored for propensity score estimation.

Perfect selection requires two strong conditions: (i) an orthogonality condition on

the Gram matrixes that restricts the correlation between the variables in and out

of the true support (Zhao and Yu 2006, Bach 2008), and (ii) a beta-min condition

bounding the nonzero coefficients away from zero. Intuitively, highly correlated vari-

ables can not be distinguished, nor can coefficients sufficiently close to zero be found

with certainty. Both bounds may depend on n. Under such conditions, it is possible

to show that SY∗ and SD∗ can be found with probability approaching one.

2.6 Group Lasso Selection and Estimation

We now give details for group lasso model selection and estimation. This section is

quite technical. Our main theorems are given in Section 2.6.3. To set up these results,

we first make precise how selection and refitting are implemented. Section 2.6.1

develops our (apparently) novel penalty choice for multinomial logistic regression.

Restricted and sparse eigenvalues, key quantities in our bounds, are discussed in

Section 2.6.2. Discussion will be model-specific so we use the general notation X∗

and s.

We first select covariates by applying the group lasso penalty to the multinomial
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logistic loss (for the propensity scores) and to least squares loss (to estimate the

outcome regression). The loss functions are defined as

M(γ·,·) =
∑
t∈NT

En
[
−dti log

(
p̂t({x∗i

′γt}NT )
)]

and E(β·,·) =
∑
t∈NT

En,t[(yi−x∗i
′βt)

2],

where we denote the multinomial logit function as

p̂t({x∗i
′γt}NT ) = exp(x∗i

′γt)/

(
1 +

∑
t∈NT

exp(x∗i
′γt)

)

. Then, the group lasso estimates for the propensity score coefficients, denoted γ̃·,·,

solve

γ̃·,· = arg min
γ·,·∈RpT

{
M(γ·,·) + λD|||γ·,·|||2,1

}
, (2.9)

where λD is a penalty parameter discussed in detail below and |||γ·,·|||2,1 is the mixed

`2/`1 norm defined above. Similarly, the regression estimates solve

β̃·,· = arg min
β·,·∈RpT

{
E(β·,·) + λY |||β·,·|||2,1

}
. (2.10)

To ameliorate the downward bias induced by the penalty and to allow for researcher-

added variables, we refit unpenalized models.13 Let S̃D = {j : ‖γ̃·,j‖2 > 0} and

S̃Y = {j : ‖β̃·,j‖2 > 0} be the selected covariates and ŜD and ŜY those used in

refitting.14 We require Ŝ ⊃ S̃ and |Ŝ| ≤ s for D and Y (we will prove that |S̃| ≤ s in

both cases). The refitting estimators solve

γ̂·,· = arg min
γ·,·, supp(γt)=ŜD

{M(γ·,·)} (2.11)

and

β̂·,· = arg min
β·,·, supp(βt)=ŜY

{E(β·,·)} . (2.12)

13The bias is away from the pseudo-true coefficients of the sparse parametric representation, γ∗·,·
and β∗·,·. There is no relation to specification biases BDt and BYt .

14When supp(γ∗t ) and supp(β∗t ) will not vary much over t, the group lasso is known to have better
properties than the ordinary lasso in terms of selection and convergence. Obozinski, Wainwright,
and Jordan (2011) give a sharp bound on the overlap necessary to yield improvements, while Huang
and Zhang (2010), Kolar, Lafferty, and Wasserman (2011), and Lounici, Pontil, van de Geer, and
Tsybakov (2011) also demonstrate advantages of the group lasso approach. These works show,
among other things, that the group lasso advantage increases as T increases, and with the group
structure, may perform better with smaller samples. We defer to the works cited for a formal
discussion.
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2.6.1 Choice of Penalty

We now turn to choice of the penalty parameters λD and λY . These must be chosen

so that, with high probability, the penalty dominates the noise, which is captured by

the magnitude of the score in the dual of the |||·|||2,1 norm.

For linear regression, we set

λY =
4XU

√
T

√
n

(
1 +

log(p ∨ n)3/2+δY√
T

)1/2

, (2.13)

for some δY > 0, so that

λY > 4 max
j∈Np
‖En,t[uix∗i,j]‖2,

with probability 1−P for small (and shrinking) P , following Lounici, Pontil, van de

Geer, and Tsybakov (2011). This penalty is of the form λY ∝ Λ(1 + rn), where Λ

is an upper bound on the true score. The rate rn balances the rate of convergence

against the concentration effect: larger rn slows the rate of convergence, but makes

the probability of concentration of the group lasso estimate higher, by shrinking P .

For the multinomial logistic regression, we instead find λD such that

λD > 2 max
j∈Np
‖En[(p̂t({x∗i

′γ∗t }NT )− dti)x∗i,j]‖2

with probability 1 − P . Note that p̂t({x∗i ′γ∗t }NT ) appears instead of pt(xi),
15 which

implies that the bias and noise are simultaneously dominated. To achieve this, we set

λD = 2X
√
T

[
bds +

1
√
n

(
1 +

log(p ∨ n)3/2+δD√
T

)1/2
]
, (2.14)

for some δD > 0. The form of λD is Γ + Λ(1 + rn)1/2, where the added Γ bounds the

bias contribution. To the best of our knowledge, choosing the penalty in this way

to handle an approximately sparse, nonlinear model is new in the high-dimensional,

sparse literature, and may be useful in future research.

In the Appendix we show that, for δ = δY or δD, the concentration probability is

given by

P =
4
√

log(2p)(1 + 64 log(12p)2)

log(p ∨ n)3/2+δ
, (2.15)

Remark 4. For given δY and δD, the only unknown quantities in λY and λD are X ,

U , and bds. In practice, we set bds = 0 for two reasons: first, bias estimation may be

15The multiple of 2 instead of 4 is a related technicality.
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difficult; and second, the only consequence of a smaller penalty is (perhaps) a slight

reduction in efficiency. We use maxi≤n maxj∈Np |x∗i,j| to estimate X , after scaling

(see Remark 5). We estimate U by iteration. Given an initial estimate µ̂
(0)
t (x),

Û (k) = En[(yi − µ̂(k−1)
t (xi))

4]1/4, where µ̂
(k)
t (xi), k > 0, is based on Eqn. (2.12). The

initial estimate can be least squares on a few variables, a regularized method tuned

by cross validation, or other options. �

Remark 5 (Weighted Penalties). Two final remarks are in order regarding weighting

the group lasso penalty. First, one may weight the `2 portion of the penalty, as in

λD
∑
j∈Np

‖Xjγ·,j‖2,

whereXj is the design matrix for covariate j, across all the treatments. (Other weight

matrixes are possible.) With this choice, the estimate is invariant to within group

(treatment) reparameterizations, and is thus scale invariant for each covariate. We

therefore assume throughout that En[(x∗i )
2] = 1 without loss of generality.

Second, the `1 norm can be weighted to give a penalty of the form

λD
∑
j∈Np

wj‖γ·,j‖2

. Two common choices for wj are the number of variables in group j or an adaptive

penalty from a pilot estimate. Our groups are equally sized, and although adaptive

procedures may improve oracle properties (Zou 2006, Wei and Huang 2010), our goal

is not perfect selection. �

2.6.2 Restricted Eigenvalues

The local behavior of optimizations (2.9), (2.10), (2.11), and (2.12) is captured by

their respective Hessians, which involve the second moment matrix of the covariates.

The eigenvalues of such matrixes will be explicit in our bounds. We are interested in

finite sample bounds, and so we will only discuss the empirical Gram matrixes (see

Remark 6). Define

Q = En[x∗ix
∗
i
′] and Qt = En,t[x∗ix∗i

′]. (2.16)

In high-dimensional data, both are singular, and so we use restricted eigenvalues and

sparse eigenvalues (Bickel, Ritov, and Tsybakov 2009).
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For the multinomial logistic regression, the minimal restricted eigenvalue is defined

by

κ2D ≤ min
δ

{∑
t∈NT δ

′
tQδt

‖δ·,S∗D‖
2
2

: δ ∈ RpT \ {0},
∣∣∣∣∣∣δ·,{SD∗ }c∣∣∣∣∣∣2,1 ≤ 3

∣∣∣∣∣∣δ·,SD∗ ∣∣∣∣∣∣2,1} . (2.17)

For least squares estimation we instead use

κ2Y ≤ min
δ

{∑
t∈NT δ

′
tQtδt

‖δ·,S∗Y ‖
2
2

: δ ∈ RpT \ {0},
∣∣∣∣∣∣δ·,{SY∗ }c∣∣∣∣∣∣2,1 ≤ 3

∣∣∣∣∣∣δ·,SY∗ ∣∣∣∣∣∣2,1} . (2.18)

The only difference is thatQ appears for κD, whereasQt are used in κY . The restricted

set, or cone constraint, requires the magnitude of δ·,· off the true support be small

relative to the true support, measured in the group lasso norm. We will show that

(γ̃·,· − γ∗·,·) and (β̃·,· − β∗·,·) obey the respective constraints.

In contrast, the refitting errors (γ̂·,·− γ∗·,·) and (β̂·,·−β∗·,·) (from (2.11) and (2.12))

may not obey the cone constraint, but are known to be sparse. This motivates the

use of sparse eigenvalues. For a set S ⊂ Np and a p× p matrix Q̃, define

φ{Q̃, S}2 = min
δ∈Rp, supp(δ)=S

δ′Q̃δ

‖δ‖22
and φ{Q̃, S}2 = max

δ∈Rp, supp(δ)=S

δ′Q̃δ

‖δ‖22
. (2.19)

Finally, it will be useful to define a bound on φ{Q̃, S} over all subsets of a certain

size. To this end, for any integer m, define φ(Q̃,m) = maxS⊂Np, |S|≤m φ{Q̃, S}.
We take these quantities to be primitive, and defer discussion to the literature. For

example, see van de Geer and Buhlmann (2009), Huang and Zhang (2010), Raskutti,

Wainwright, and Yu (2010), Rudelson and Zhou (2011), and Belloni, Chernozhukov,

and Hansen (2013). In particular, Huang and Zhang (2010) show that the group lasso

may need fewer observations to satisfy conditions on sparse eigenvalues.

Remark 6. Often, invertibility of Q and Qt relies on their convergence to nonsingular

population counterparts.16 Some of the papers cited above verify conditions on the

restricted and sparse eigenvalues by just this approach. Our theorems can be restated

in this way by conditioning on the event that Q and Qt are close to their counterparts

in the appropriate sense, and adjusting the probability with which the conclusions

hold. We instead take bounds to be infinite if the minimum eigenvalues are zero.

�
16This is standard in fixed-dimension models, and has been used for diverging-dimensions para-

metric models (He and Shao 2000) and nonparametrics (Newey 1997, Huang 2003, Belloni, Chen,
Chernozhukov, and Kato 2012, Cattaneo and Farrell 2013, Chen and Christensen 2013).
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2.6.3 Theoretical Results

We now have the necessary notation and assumptions to state our theoretical

results on group lasso estimation, beginning with multinomial logistic regression,

followed by a terse treatment of linear models. Corollary II.2 is a special case of the

results in this section, see Remarks 7 and 8.

Our first result is a nonasymptotic bound on the group lasso estimates from (2.9).

Theorem II.12 (Group Lasso Estimation of Multinomial Logistic Models). Sup-

pose Assumptions II.3(b), II.4(a), II.4(b), and II.4(c) hold and that maxi≤n b
d
t,i ≤ bds.

Define Ap = 0 ∨ (pmin/(pmin − bds)) and

RM =

(
Ap
pmin

)T
3T AKλD

√
s

κD
, for AK > 2

κ2D
κ2D − 8X

√
T λDs

.

Then with probability 1− P

max
t∈NT

En[(p̂t({x∗i
′γ̃t}NT )− pt(xi))2]1/2 ≤ RM + bds,

max
t∈NT
‖γ̃t − γ∗t ‖1 ≤

(
|S̃D ∪ S∗D|

φ{Q, S̃D ∪ S∗D}

)1/2

RM,

and

|S̃D| ≤ 8sLn

{
min
m∈NDQ

φ(Q,m)

}
,

where

ND
Q =

{
m ∈ {1, 2, . . . n} : m > 8sLnφ(Q,m)

}
, and Ln =

(
RM
λD
√
s

)2

.

This theorem is new to the literature, to the best of our knowledge. Much of

the detail involves capturing the finite sample behavior of the Hessian and Gram

matrixes. We discuss the features of this result in the following remarks.

• The Hessian ofM(γ·,·) is En[Hi⊗x∗ix∗i ′] for a T -square matrix Hi that depends

the coefficients and x∗i through the estimated probabilities p̂t({x∗i ′γt}NT ). The

error RM depends on how well-controlled is this matrix. The factors pmin, Ap,

and AK capture the behavior of Hi and κ−1D accounts for the rest. Under over-

lap, the true probabilities are bounded above pmin, and hence p−Tmin captures the

nonsingularity of the population version of Hi. To get to this point requires two
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steps. First, the sparse parametric representations p̂t({x∗i ′γ∗t }NT ) must also be

bounded away from zero, leading to the factor of Ap. This is essentially a bias

condition, which in the asymptotic case holds trivially: Ap may be chosen arbi-

trarily close to one as bds → 0. Second, AK controls the neighborhood in which

p̂t({x∗i ′γ̃t}NT ) is also bounded away from zero. Intuitively (and asymptotically),

the estimate will be in a small (shrinking) neighborhood of the p̂t({x∗i ′γ∗t }NT ).

In asymptotics AK may be chosen arbitrarily close to 2, which stems from the

factor of 1/2 in a quadratic expansion of M(·). A lower bound on AK is re-

quired in finite samples to ensure that p̂t({x∗i ′γ̃t}NT ) is positive, and hence the

two-term expansion is valid. This is analogous to Belloni and Chernozhukov’s

(2011a) “restricted nonlinear impact coefficient” approach, with a central dif-

ference that AK is captured in our bound directly.

• The maximal sparse eigenvalues are crucial to the bound on |S̃D|. In many prior

results, the latter is bounded using the largest eigenvalue of Q itself, i.e. φ(Q, n).

Adapting the technique of Belloni and Chernozhukov (2011b) to the present

case, we are able to find a tighter bound, which yields sparsity proportional to

s under weaker conditions. This is crucial for refitting.

• For the linear model the constants in the group lasso bounds can offset the

(logarithmic) suboptimality in rate (Huang and Zhang 2010, Lounici, Pontil,

van de Geer, and Tsybakov 2011), and this may be true here as well.

The error bounds for post-selection estimation are more complex and depends in

part on the good properties of the initial group lasso fit. The following theorem gives

our results.

Theorem II.13 (Post-Selection Multinomial Logistic Regression). Suppose the con-

ditions of Theorem II.12 hold. For

AK > 2

{
φ{Q, ŜD ∪ S∗D}2

φ{Q, ŜD ∪ S∗D}2 −X
√
T λD|ŜD ∪ S∗D|

}

∨

 φ{Q, ŜD ∪ S∗D}

φ{Q, ŜD ∪ S∗D} − 2RMX
√
T
√
|ŜD ∪ S∗D|

 ,

define

R′M =

(
Ap
pmin

)T T AKλD√|ŜD ∪ S∗D|
2φ{Q, ŜD ∪ S∗D}
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and

R′′M = {RM} ∨

R′M +

[
R′MRM +

(
Ap
pmin

)T
T AKR2

M

]1/2 .

Then with probability 1− P,

max
t∈NT

En[(p̂t({x∗i
′γ̂t}NT )− pt(xi))2]1/2 ≤ R′′M + bds,

and

max
t∈NT
‖γ̂t − γ∗t ‖1 ≤

(
|S̃D ∪ S∗D|

φ{Q, S̃D ∪ S∗D}

)1/2

R′′M.

This result is the first study of post-selection estimation in approximately sparse

logistic models, for any T ≥ 1. We explicitly capture the dependence on the loss func-

tionM(γ·,·) and the impact of the initial group lasso fit. It is not readily discernible

if these bounds improve upon the group lasso estimates. This in part depends on

the DGP and the selection success of the initial fit. It would be interesting to have

an explicit characterization of the improvements offered by refitting. In this result,

further lower bounds on AK are required to handle the sparse eigenvalues, compared

to the restricted version in Theorem II.12. The role played by AK is the same in both

cases, as with the other factors.

It is worth noting that, despite the complexity of multinomial logistic regression,

the conditions for Theorems II.12 and II.13 are simple and intuitive, and match those

used for linear models.

Remark 7 (Asymptotics for Multinomial Logistic Regression). It is relatively straight-

forward to state asymptotic rates of convergence, as done in Corollary II.2. The first

conclusion there is immediate from Theorem II.13 if in addition to the conditions re-

quired, we also impose that λD
√
s = o(1), κD and minS:|S|=O(s) φ{Q,S} are bounded

away from zero, and φ(Q, ·) is bounded, uniformly in the set ND
Q . This also implies

that |S̃D| = OPn(s) and ‖γt − γ∗t ‖1 = OPn(
√
n−1s2 log(p ∨ n)3/2+δ + bdss), which is

important for verifying Assumption II.6.

The rates of convergence for the propensity score estimates and the `1 error of

the coefficients are minimax optimal up to a factor of log(p ∨ n)1/2+δ. A tighter

bias condition (by
√
s) is required than in the linear model case, due to the bias in

estimating the Hessian.17 Inspection of the proof shows that this condition can be

17The more stringent requirement may be an artifact of the proof. However, it is worth noting that
using a different proof method and considering only an oracle series estimator in a semiparametric
model, Cattaneo (2010, Theorem B-1) found the same bias requirement.
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dropped in the binary case. �

We now give our results for group lasso estimation of the conditional outcome re-

gressions. In computing µt(xi) for dti 6= 1 we are performing out of sample prediction,

which slightly complicates the bounds. Our first result is on the initial group lasso

fit.

Theorem II.14 (Group Lasso Estimation of Linear Models). Suppose Assumption

II.4(a), II.4(b), II.4(c) hold and that maxi≤n b
y
t,i ≤ bys. Define

RE =

(
3λY
√
s

κY
+ 2bys

)
.

Then with probability 1− P

max
t∈NT

En[(x∗i
′β̃t − µt(xi))2]1/2 ≤

(
φ{Q, S̃Y ∪ S∗Y }
φ{Qt, S̃Y ∪ S∗Y }

)1/2

RE + bys ,

max
t∈NT

∥∥∥β̃t − β∗t ∥∥∥
1
≤

(
|S̃Y ∪ S∗Y |

φ{Q, S̃Y ∪ S∗Y }

)1/2(
φ{Q, S̃Y ∪ S∗Y }
φ{Qt, S̃Y ∪ S∗Y }

)1/2

RE ,

and

|S̃Y | ≤ 32sLn

min
m∈NYQ

∑
t∈NT

φ(Qt,m)

 ,

where

NY
Q =

m ∈ {1, 2, . . . , n} : m > 32sLn
∑
t∈NT

φ(Qt,m)

 , and Ln =

(
RE + bys
λY
√
s

)2

.

This theorem generalizes Lounici, Pontil, van de Geer, and Tsybakov (2011) to the

nonparametric, approximately sparse case, improves the sparsity bound, and gives out

of sample prediction (imputation) results. The analogous generalization for within

sample prediction loss (e.g. multi-task learning), En,t[(x∗i ′β̃t − µt(xi))
2]1/2, may be

found in the Appendix.

For refitting, we are predicting for the entire sample and so we utilize the general

results given by Belloni, Chen, Chernozhukov, and Hansen (2012) for post-selection

estimation of least squares. The following result is a direct implication of their Lemma

7 and our Theorem II.14.

34



Theorem II.15 (Post-Selection Linear Regression). Suppose log(p) = o(n1/3) and

minj∈Np E[X∗j
2U2] > 0 hold in addition to the conditions of Theorem II.14. Then

En[(x′iβ̂t − µt(xi))2]1/2 ≤ A1

√
s(T ∧ log(sT ))

nφ{Q,S∗Y }
+ A2

√
|ŜY \ S∗Y | log(pT )

nφ{Q,SFPY }

+ A3

√
En[(x∗i

′β̃t − µt(xi))2]

and

max
t∈NT

∥∥∥β̂t − β∗t ∥∥∥
1
≤ A4

(
|ŜY ∪ S∗Y |

φ{Q, ŜY ∪ S∗Y }
En[(x′iβ̂t − µt(xi))2]

)1/2

,

where for absolute constants Ak, k=1, 2, 3, 4 that do not depend on n nor the DGP.

As above, the performance of the refitting procedure depends in part on the success

of the initial group lasso fit. Indeed, the middle term is dropped if the true support

union is found. The constants Ak, k=1, 2, 3, 4 are not given explicitly but are known

to be absolute bounds (de la Peña, Lai, and Shao 2009). This result is less precise

than Theorems II.12 and II.13, but sufficient to verify Assumptions II.5 and II.6.

Remark 8 (Asymptotics for Multinomial Logistic Regression). As in Remark 7,

we can now recover Corollary II.2 by imposing that, uniformly in NT : κY and

minS:|S|=O(s) φ{Qt, S} ∧ φ{Q,S} are bounded away from zero, and φ(Q, ·) ∨ φ(Qt, ·)
is bounded, also uniformly in the set NY

Q. This also yields |S̃Y | = OPn(s) and

‖β̃t − β∗t ‖1 = OPn(
√
n−1s2 log(p ∨ n)3/2+δ + bys

√
s). �

2.7 Numerical and Empirical Evidence

2.7.1 Simulation Study

To illustrate the uniform validity of our inference procedure we conducted a small-

scale Monte Carlo exercise to study how our estimator behaves as the propensity score

and regression functions change, and the model selection problem becomes more or

less difficult. For simplicity we focus on the average effect of a binary treatment with .

We generate 1000 observations (yi, di, x
′
i)
′, with p = 500, from the models in Example

3. The covariates include an intercept, with the remainder drawn from N(0,Σ), with

covariance Σ[j1, j2] = 2−|j1−j2|, 2 ≤ j1, j2 ≤ 500. Errors are standard Normal. The

crucial aspect of the DGP are the coefficient vectors β0
0 , β0

1 , and γ0. We consider a
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range of models, defined by positive scalars ρβ, ργ, αβ, and αγ, as follows:

β0
0 = ρβ(−1, 1,−1, 2−αβ ,−3−αβ , . . . , j−αβ , . . . , p−αβ)′, β0

1 = −β0
0 , and

γ0 = ργ(1,−1, 1,−2−αγ , 3−αγ , . . . , j−αγ , . . . ,−p−αγ )′.

The multipliers ρβ and ργ affect the signal-to-noise ratio (the variance is fixed), but

not the sparsity. For very small values distinguishing the large and small coefficients

is difficult for a given sample size. The exponents αβ and αγ control the sparsity,

where for small values a sparse representation is not possible.

Figure 2.1 shows the empirical coverage rate of 95% confidence interval for µ1−µ0

for different DGPs. Panel (a) shows the multipliers ρβ and ργ ranging over 0.01 (weak

signal) to 1 (strong), with αβ = αγ = 2. Panel (b) varies the sparsity exponents αβ

and αγ range over 1/8 (not sparse) to 4 (very sparse), with ρβ = ργ = 1. Of 1000

observations total, the (mean) size of the comparison group declines from 497 to 302

as ργ increases and 444 to 303 as αγ increases, over their given ranges. Coverage is

exceedingly accurate over all signal strengths, and breaks down only when neither

µt(xi) nor pt(xi) is sparse, which is exactly when Assumption II.5(b) (or condition

(ii) of Theorem II.1) can not be satisfied. Note that coverage accuracy is retained

when only one function is sparse, showcasing the double-robustness property.

2.7.2 Empirical Application

To illustrate the role that model selection can play in a real-world application,

we revisit the National Supported Work (NSW) demonstration. The NSW has been

analyzed numerous times since LaLonde (1986). Our aim is a simple study of model

selection, not a comprehensive or conclusion evaluation of the NSW. As such, we

focus on the subsample used by Dehejia and Wahba (1999) and the Panel Study of

Income Dynamics (PSID) comparison sample, taking as given their data definitions,

sample selection, and trimming rules. Detailed discussion of these choices, and the

NSW program may be found in Dehejia and Wahba (1999, 2002) (hereafter DW99 and

DW02) and Smith and Todd (2005), and references therein. Briefly, the outcome of

interest is earnings following a job training program. The dataset includes a treatment

indicator, post-treatment earnings (1978), two years of pre-treatment earnings (197418

and 1975), as well as age, education, a marital status, and indicators for Black and

Hispanic. Thus, X consists of seven variables.

18This naming follows DW99, though the variable itself may be measured outside 1974, see dis-
cussion in the works cited.
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Our goal is to highlight the role model selection has in inference, and hence we

will be interested in comparing specifications. We will keep the estimator fixed: all

estimates will be based on the doubly-robust estimator (2.8) (with standard errors

from Section 2.5.2). We will consider the following three:

1. No Selection: X, (earn1974)2, (earn1975)2, (age)2, and (educ)2;

2. Informally Selected: The above, plus 1{educ<HS},
1{earn1974=0}, 1{earn1975=0}, and (1{earn1974=0}×Hispanic). This speci-

fication was selected by DW02 using an informal balance test.

3. Group Lasso Selection: X, 1{educ<HS}, 1{earn1974=0}, 1{earn1975=0},
all possible interactions, and all polynomials up to order five of the continuous

covariates (age, educ, earn1974, earn1975).

For specifications 1 and 2, we use the same covariates in the outcome and treatment

models. In addition, all specifications include an intercept and we include educa-

tion and pre-treatment income in the refitting step following model selection. We

follow DW99 and DW02 and discard controls with estimated propensity score larger

(smaller) than the maximum (minimum) in the treated sample.19

Table 2.1 presents results from these three specifications, and includes the exper-

imental arm of the NSW. The group lasso based estimate performs very well: the

point estimate is accurate and the interval is tight. Selecting from 171 possible co-

variates allows for a great deal of flexibility, but the sparsity of the estimate keeps

the variance well-controlled. The no-selection point estimate is accurate, but fails to

yield significance, while the specification of DW02 yields a significant, but overly high

estimate and wide confidence intervals. The benefits of explicit model selection are

clear.

2.8 Discussion

The main results of this paper established a method to achieve uniformly valid in-

ference on average effects of multivalued treatments even after model selection among

possibly more covariates than observations. We demonstrated robustness to model

selection errors, misspecification, and heterogeneous effects in observables. To accom-

plish this, we proved new results on group lasso estimation of multinomial logistic

19A formal treatment of trimming is beyond the scope of the present study. The goal of our
analysis is illustrative, and hence we take DW99’s trimming as given. This issue is discussed by
DW99, DW02, and Smith and Todd (2005).
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regression models. Numerical evidence shows that our method is quite promising for

applications.

We handle very general treatment effects models, but restrict attention to studying

impacts on the mean. A useful and natural extension would be to consider quantile

treatment effects (Firpo 2007) or more generic moment condition based estimands

(Cattaneo 2010). Under appropriate regularity conditions, it seems plausible that

such an extension can be made. However, the first stage estimation is quite complex

in our framework, and this extension would require additional nontrivial technical

work. In additional, we plan to develop a formal choice for the penalty parameter

that is optimal in some sense, beyond the simple discussion in Section 2.6.1.
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Figure 2.1: Empirical Coverage of 95% Confidence Intervals, Varying Signal Strength
and Sparsity of pt(x) and µt(x)

(a) Varying Signal Strength
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CHAPTER III

Optimal Convergence Rates, Bahadur

Representation, and Asymptotic Normality of

Partitioning Estimators

3.1 Introduction

Nonparametric estimation of an unknown conditional expectation function and

its derivatives is an important problem in econometrics (see, e.g., Ichimura and Todd

(2007) and references therein). In many applications the object of interest is a con-

ditional expectation, its derivative, or functional thereof, while in other cases their

nonparametric estimators are employed as a first step in a semiparametric procedure.

The implementation of nonparametric estimators requires suitable large sample prop-

erties, including sufficiently rapid rates of convergence and known asymptotic distri-

butions. Series- and kernel-based methods are examples whose properties are now

well understood.

This paper studies the large sample properties of an estimator of the regression

function and its derivatives known as partitioning. This estimation strategy is al-

ternatively referred to as blocking, subclassification, or stratification. The estimator

is constructed by partitioning the support of the conditioning variables into disjoint

cells, which become smaller with the sample size, and within each the unknown re-

gression function (and its derivatives) is approximated by linear least-squares using

a fixed-order polynomial basis (other bases are possible). Consistent estimation is

achieved as the cells become small enough to remove the error of the parametric ap-

proximation. For a recent textbook discussion of this estimation strategy see Györfi,

Kohler, Krzyżak, and Walk (2002, Chapter 4). After the necessary notation and

assumptions are introduced, we provide a detailed comparison between partitioning

estimators and other nonparametric estimators in Section 3.2.2 below.
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The partitioning estimator, although simple and intuitive, has not received a

thorough treatment in the econometrics or statistics literature. The available results

typically concern mean-square rates for special cases (see, e.g., Kohler, Krzyżak, and

Walk (2006) and references therein). The main goal of this paper is to provide a

general asymptotic treatment of partitioning estimators. Our analysis yields the fol-

lowing new insights. First, employing simple and intuitive sufficient conditions, in

most cases weaker than those in the existing literature, mean-square and uniform

convergence rates of the partitioning estimator are established and shown to be op-

timal. More generally, the uniform convergence rate explicitly highlights a natural

trade-off between moment assumptions and rate restrictions. Second, we characterize

the leading terms of a conditional integrated mean-square error expansion and pro-

vide an optimal plug-in selector for the tuning parameter. Third, we derive a uniform

Bahadur-type representation of linear functionals of the partitioning estimator, which

is used to establish asymptotic normality under simple and intuitive conditions, with

a suitable standard-error estimator. We cover both regular and irregular estimands.

The applicability of the new results is illustrated with three examples: (i) derivative

of the regression function at a point, (ii) partial and full means, and (iii) weighted

average derivatives. Our results are also useful in other contexts in econometrics, as

discussed in Section 3.1.1 below.

The paper proceeds as follows. In the remainder of this section we give the main

motivations for our work, discussing in particular the importance of our results for

both empirical and theoretical econometrics. Section 3.2 describes the partitioning

estimator formally and also provides a comparison to other nonparametric estimators.

Rates of convergence and a general integrated mean-square error expansion for the

partitioning estimator are given in Section 3.3, while a Bahadur-type representation

for linear functionals of the estimator and asymptotic normality with valid standard-

error estimators are developed in Section 3.4. The results of a Monte Carlo study

are summarized in Section 3.5. Finally, Section 3.6 concludes. Proofs are gathered in

the appendix. A supplement is available upon request containing detailed technical

proofs and greatly expanded simulation results.

3.1.1 Motivation and Preliminary Discussion

Studying the large-sample properties of partitioning estimators may be interesting

and important for a variety of reasons, some theoretical and others methodological.

The partitioning estimator has specific features and asymptotic optimality proper-

ties that make it a useful addition to the econometrics toolkit: a complement, not a
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substitute, to the arsenal of nonparametric procedures commonly employed in econo-

metrics. This estimator is attractive because it is very tractable and enjoys useful

asymptotic representations leading to intuitive results, as well as other features that

may be useful in econometric applications.

In particular, the partitioning estimator is potentially discontinuous in finite sam-

ples (just like nearest-neighbor estimators). This specific characteristic may be an

advantage from a practical point of view, and could also lead to an estimator with

desirable theoretical properties. The “binning” underlying the partitioning estimator

arises naturally in many economic problems, where units (people, firms, etc.) in the

same bin share similar economic behavior, and therefore partitioning-based inference

procedures have been proposed to retain this natural interpretability (see applica-

tions below). From a theoretical perspective, we are interested in understanding the

asymptotic properties of partitioning given its potential discontinuity in finite sam-

ples, and how they compare with results for other nonparametric procedures. We

briefly discuss three implications of this discontinuity, which make the partitioning

estimator theoretically and practically interesting in our view.

1. Shape Restrictions: Convergence Rates. Nonparametric estimation typically

assumes the estimand is smooth and most estimators are constructed impos-

ing some of the underlying smoothness assumed. The partitioning estimator

does not impose smoothness and therefore allows us to understand what ef-

fects imposing this shape restriction may have on asymptotic properties, which

arguably is of theoretical interest. For instance, we establish optimal uniform

convergence rates for partitioning, showing (by example) that imposing smooth-

ness is not necessary for this result. This finding is not ex-ante obvious in our

view, especially given other known results (see Section 3.2.2).

2. Shape Restrictions: Bias-Variance Trade-Off. From a more practical perspec-

tive, removing the smoothness restriction may be interpreted as “freeing up

restrictions”. This means that the estimator will have a different bias-variance

behavior in finite samples. To fix ideas, consider the linear partitioning and

linear regression spline estimators of a univariate regression function. For each

sample size, both are (piecewise linear) least squares fits, and differ only in

that the spline is required to be continuous (see Section 3.2.2). That is, the

linear spline is a restricted least squares problem compared to the partitioning

estimate. From linear model results, it follows that the spline has larger bias
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than the partitioning estimate, but smaller variance.1 Neither can be strictly

superior or inferior, based on the usual bias-variance trade-off, and in fact the

partitioning estimator may have better properties from a theoretical point of

view.

3. Diagnostics. The potential discontinuity of the partitioning estimator in finite

samples makes it a useful complement to existing smooth estimates already

available in the literature. Specifically, the partitioning estimate may be used

as a diagnostic check on the underlying smoothness assumptions imposed by

other procedures, particularly if such assumptions are in question for a certain

region of the support. Furthermore, the discontinuous partitioning estimate

can be used to characterize the overall variability of the data relative to a

smoothed-out estimate (see the regression discontinuity application below for

an example).

Further motivation for our work stems from the role of partitioning estimators

in empirical economics. Perhaps originating with the regressogram of Tukey (1947),

partitioning-based procedures have been suggested in many contexts where “binning”

has a natural interpretation, despite their formal properties being unknown in most

cases. We close this section by briefly discussing four examples where partitioning es-

timation arises in econometrics: as an exploratory device, a nonparametric estimator,

and two semiparametric cases.

Application: Regression Discontinuity. Partitioning estimators are used heuris-

tically in the regression discontinuity (RD) design for two purposes: (i) to plot a

smoothed-out cloud of points along with global polynomial fits of the underlying re-

gression function for control and treatment units, and (ii) to investigate whether the

data suggests the presence of other possible discontinuities in the underlying condi-

tional expectation of potential outcomes, as a form of falsification test. Imbens and

Lemieux (2008) review the RD literature, and explicitly advocate partitioning (calling

it a “histogram-type estimate”) to assess the plausibility of the RD design. Our gen-

eral result in Theorem III.5 is employed in Calonico, Cattaneo, and Titiunik (2012)

to derive an optimal choice of partition length in this context, thereby providing a

systematic way of plotting RD data. �

Application: Porfolio Sorting. In understanding anomalous asset returns, a com-

mon approach is “portfolio sorts”, in which assets are partitioned into homogeneous

1This claim assumes that the estimators are misspecified in finite samples, as is the case with
nonparametric estimators in general. This remains true when comparing to kernel-based estimators.
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groups according to characteristics that may drive anomalies. A number of infor-

mal and formal analyses are then performed on the sorted assets, including tests

of monotonicity and comparison of extremes. See, e.g., Fama and French (2008).

Our results may be used to develop formal nonparametric inference for this type of

application. �

Application: Subclassification on Observables. In many econometric contexts

units are divided in groups according to their observed characteristics, and then infer-

ence is conducted first within each subclass and then overall. Under an ignorability

assumption, for example, subclassification (or partitioning) has been proposed in

multiple forms to estimate treatment effects. Imbens and Wooldridge (2009) give a

recent survey of the program evaluation literature, which includes several examples

of partitioning-based procedures. Despite many such procedures have been proposed

and used in empirical work, there is a paucity of rigorous asymptotic theory. The

theoretical results presented herein may be used to characterize the large-sample prop-

erties of those partitioning-based procedures. For instance, in Cattaneo and Farrell

(2011b) we employ these results to formalize the properties of a partitioning-based

estimator of the average treatment effect and dose-response function. �

Application: Average Derivatives. Partitioning also yields simple and intuitive

estimators for derivatives of the regression function. Based on this observation, Baner-

jee (2007) recently proposed a partitioning-based semiparametric average deriva-

tive estimator. In Section 4 we discuss an alternative semiparametric estimator for

(weighted) average derivatives, and establish its asymptotic properties under general,

easy-to-interpret sufficient conditions. �

3.2 The Partitioning Estimator

3.2.1 Setup and Estimator

Before describing the estimator we introduce some notation. For a scalar, vector,

or matrix A we denote |A| =
√

tr(A′A). For a multi-index k = (k1, k2, · · · , kd) ∈ Zd+,

we let [k] = k1 + · · · + kd, x
k = xk11 · · ·x

kd
d for x = (x1, · · · , xd)′ ∈ Rd, and ∂kh(x) =

∂[k]h(x)/(∂k1x1 · · · ∂kdxd) for smooth enough function h(x).

We impose the following assumption on the data generating process throughout.

Assumption III.1.

(a) (Y1, X
′
1), · · · , (Yn, X ′n) is an i.i.d. sample from (Y,X ′), and X ∈ X is continu-

ously distributed with Lebesgue density f(x).
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(b) X ⊂ Rd is given by X = ×d
`=1X`, a Cartesian product of compact, convex

intervals.

(c) E[|Y |2+η | X] is bounded for some η ≥ 0.

(d) f(x) is bounded and bounded away from zero on X .

(e) µ(x) = E[Y |X = x] is S-times continuously differentiable on (an extension of)

X , and satisfies |∂mµ(x)− ∂mµ(x′)| ≤ C |x− x′|α, for some constants C > 0

and α ∈ (0, 1], and all x, x′ ∈ X and [m] = S.

We discuss the salient features of this assumption in the following remarks.

• Part (a) restricts attention to cross-sectional contexts with continuous regres-

sors. Our results can be extended to cover some form of time-dependent data,

or to include discrete regressors by working conditionally, although we do not

consider these extensions here to simplify the discussion and notation.

• Part (b) requires regressors with compact support. The assumed rectangular

structure is without loss of generality for most of the results presented here.

The compact support assumption has the main advantage of allowing for the

density f(x) to be bounded away from zero on the full support of X, but has the

potential drawback of introducing bias at the boundary of the support. This

assumption is also imposed for nonparametric series estimators (Newey 1997)

and nonparametric local polynomials (Fan and Gijbels 1996), but it can be

relaxed in semiparametric inference by considering weaker (weighted) norms

(Chen 2007). In this paper we only focus on the conventional mean-square and

uniform norms.

This assumption is important because it can affect the attainable convergence

rates for nonparametric regression estimators in general. Specifically, in the

case of mean-square convergence, Kohler, Krzyżak, and Walk (2009) show that

it is possible to attain Stone’s (1982) optimal L2 convergence rate even without

compactness as long as certain moment conditions hold, and Kohler, Krzyżak,

and Walk (2006) show that a cleverly constructed special partitioning estimator

attains this rate. In the case of the uniform convergence rate, it appears to be an

open question whether Stone’s (1982) bound is achievable without compactness.

• Part (c) allows for the case of η = 0 (i.e., bounded second conditional mo-

ment only), and the generality will be useful in the derivation of the uniform

convergence rate.
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• Part (d) ensures that all cells in the partition will contain enough observations

asymptotically, and appears difficult to relax without affecting the rates of con-

vergence.

• Part (e) is a classical smoothness condition controlling the amount of bias reduc-

tion possible, when coupled with an appropriate basis choice employed within

each cell.

To describe the nonparametric procedure, we first give a precise description of the

partitioning scheme. For a sequence Jn →∞ as n→∞, partition each X` into the Jn

disjoint intervals [p`,j−1, p`,j), j = 1, . . . , Jn − 1, and [p`,Jn−1, p`,Jn ], with p`,j−1 < p`,j

for all j. The complete partition of X consists of the Jdn cells formed as Cartesian

products of all such intervals. Let Pj ⊂ Rd denote a generic cell of the partition,

j = 1, . . . , Jdn, and for x ∈ Rd, let 1Pj(x) be the indicator for x ∈ Pj. Throughout, we

suppress the dependence on n for notational convenience: all aspects of the partition

implicitly depend on n.

To guarantee that each cell is well defined we require that |p`,j − p`,j−1| � J−1n for

all ` = 1, . . . , d and j = 1, . . . , Jn, where for scalars a and b, a � b denotes that C∗b ≤
a ≤ C∗b for positive constants C∗ and C∗ that do not depend on j = 1, . . . , Jn nor n.

Hence, by construction the partition satisfies vol(Pj) � J−dn , where vol(Pj) denotes the

volume of cell Pj. A simple, natural partitioning scheme meeting this requirement is

evenly dividing the support of each covariate, although other possibilities are allowed

so long as all intervals decrease proportionally to Jn.

Within each cell the unknown conditional expectation is approximated by solving

a least squares problem. For fixed K ∈ N, let r(x`) = (1, x`, x
2
` , . . . , x

K−1
` )′ denote

the vector of powers up to degree K − 1 on a single covariate x` ∈ X`. Let R(x)

represent a column vector containing the complete polynomial basis of degree K − 1

formed as the Kronecker product of the r(x`), discarding terms with degree exceeding

K − 1. Thus, each element of R(x) is given by xk = xk11 · · ·x
kd
d for a unique k ∈

{k ∈ Zd+ : [k] ≤ K − 1}. We assume R(x) is ordered ascendingly in k ∈ Zd+ and

` = 1, . . . , d. For example, if K = 1 then R(x) = (1) and sample means are fitted in

each cell, while if K = 2 then R(x) = (1, x1, . . . , xd)
′, corresponding to ordinary linear

least squares. This construction is explicitly meant to cover the general, unrestricted

case, although in applications other bases may be of interest. For example, if µ(x)

additively separable, then the interactions between covariates may be excluded from

the basis, leading to a simpler least squares problem. This additional flexibility is

useful, for example, in estimation via control functions. The goal of this construction
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is to ensure that R(x) is flexible enough to remove bias up to the appropriate order

(see Lemma B.2).

The choice of K is intimately related to bias reduction. Setting a higher K allows

for a more flexible functional form within each cell and hence lower bias, provided

the underlying function is sufficiently smooth.2 In this sense, the partitioning scheme

and the choice of K play the same role for the partitioning estimator that the choice

of specific higher-order kernel plays in kernel-based estimation, while the choice of

Jn is analogous to the choice of bandwidth in a kernel context. The partitioning

scheme and (fixed) K represent the smoothing parameter, and Jn →∞ is the tuning

parameter of the nonparametric procedure.

Let Rj(x) = 1Pj(x)R(x) denote basis restricted to the cell containing x. Using

this notation the partitioning regression estimator of order K is given by:

µ̂(x) =

Jdn∑
j=1

Rj(x)′β̂j, β̂j =
(
R′jRj

)−
R′jY,

Rj = (Rj(X1), . . . , Rj(Xn)))′ , Y = (Y1, . . . , Yn)′,

(3.1)

where A− denotes any generalized symmetric inverse. Under regularity conditions

given below, and with proper scaling, the matrix R′jRj will be positive definite uni-

formly in j with probability approaching one (see Lemma B.4), and the standard

inverse will exist. The structure given in Eqn. (3.1) implies that µ̂(x) is a (random)

function that has at most finitely many discontinuities, is almost everywhere differ-

entiable, and is of bounded variation. (Qualifiers such as “almost everywhere” and

“for n large enough are usually omitted for simplicity.)

To construct an estimator of the derivatives of µ(x), let m ∈ Zd+ be a multi-index

and ∂mµ(x) denote a partial derivative of order [m]. An intuitive estimator of ∂mµ(x)

is

∂̂mµ(x) ≡ ∂mµ̂(x) ≡
Jdn∑
j=1

1Pj(x) (∂mR(x))′ β̂j, (3.2)

which we take as the definition throughout. In words, ∂mµ̂(x) is defined as the

derivative of the estimated polynomial regression function, restricted to a particular

cell containing x (as there are no boundary issues in differentiating R(x)). Because

∂mR(x) has zeros in some components, the resulting estimator employs a lower degree

2This bias reduction is asymptotic. Ruppert and Wand (1994, Remark 4) provide a very inter-
esting discussion, for local polynomials, that highlights how in finite samples this smoothing-bias
reduction could be more than offset by increased variability.
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basis but the least squares problem within each cell is unaffected. This intuitively

corresponds to estimating the rougher function ∂mµ(x). The main results of this

paper also cover the estimation of derivatives of the regression function, provided K

is large enough.

3.2.2 Related Literature

The partitioning estimator is closely related to, but different from, other nonpara-

metric estimators available in the literature. In this section we describe how it relates

to two common estimators: series and local polynomials.

From a series estimation perspective, the partitioning estimator may be recast

as a linear sieve estimator. Define Rn(x) = (R1(x)′, . . . , RJdn
(x)′)′ by collecting the

bases over all Jdn cells, and set Rn = [Rn(X1), . . . ,Rn(Xn)]′. The partition regression

estimator can then be written as

µ̂(x) = Rn(x)′B̂n, B̂n = (R′nRn)−R′nY = (β̂′1, . . . , β̂
′
Jdn

)′.

This representation implies that results available from the sieve estimation literature

are in principle applicable to the partitioning estimator. But by exploiting the specific

structure of the partitioning estimator we are able to obtain faster uniform conver-

gence rates and new results such as derivative estimation, an integrated mean-square

error expansion, and a Bahadur representation, while improving on rate restrictions

and using simple primitive conditions, when compared to the results available in the

general series estimation literature (Newey (1997), de Jong (2002), and Belloni, Chen,

Chernozhukov, and Kato (2012)).

Regression splines are series estimators for which improved results are available

(Huang 2003). Partitioning estimators and polynomial splines are intuitively similar,

but fundamentally different smoothing procedures. Both estimators rely on a refining

partition of the support with fixed-order basis functions: an order K spline uses K−1

degree polynomials (in our notation). The key distinguishing characteristic is that at

the cell boundaries (called “knots”) the spline estimate is forced to be smooth when-

ever possible: a spline of order K is (K − 2)-times differentiable at each knot. For

precisely this reason splines are usually regarded as a “global” smoother. In contrast,

partitioning estimators place no restriction on the behavior of the polynomials at the

boundary of each cell, and hence the basis functions are truly local (and compactly

supported). In this paper we show that the partitioning estimators have the same

optimal L2 convergence rate under the same rate restrictions as polynomial splines.
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We also show that the partitioning estimator achieves the optimal uniform conver-

gence rate for levels and derivatives. General series estimators are only known to

have suboptimal uniform rates (de Jong 2002). (In personal communication, X. Chen

shared preliminary work showing that spline least squares regression may achieve the

optimal uniform convergence rate under certain conditions (Chen and Huang 2003).)

Kernel-based local polynomials are another class of nonparametric estimators of

the regression function and its derivatives. Partitioning estimators are conceptu-

ally (and numerically) distinct from the kernel-based local polynomial estimators

discussed in Fan and Gijbels (1996) and the local polynomial estimators discussed

in Eggermont and LaRiccia (2009, Chapter 16), which are also different from each

other. These local polynomial approaches and the partitioning estimators differ in the

way that observations are grouped: the local polynomial approaches use observations

near the evaluation point, as determined by the choice of kernel and bandwidth, while

partitioning estimators use observations within each cell, regardless of the particular

evaluation point. This fact implies that partitioning estimators are naturally discon-

tinuous while local polynomials are not. The partitioning estimator can be viewed

as a local polynomial estimator with a particular variable bandwidth and a uniform

spherical kernel.

To describe how the local polynomials and the partitioning estimators differ,

consider the estimation of the regression function (a similar discussion applies to

derivative estimation). Both estimation procedures solve the following weighted least-

squares problem:

β̂n(x) = arg min
β∈Rdim(B(·))

n∑
i=1

Wn(Xi, x) (Yi −B(Xi, x)′β)
2
,

where Wn(Xi, x) is a non-negative weighting function and B(Xi, x) is a choice of poly-

nomial basis. Both local polynomials estimators mentioned above employWn(Xi, x) =

K((Xi−x)/hn)/hn, for a fixed kernel functionK(·) and a bandwidth sequence hn → 0.

Moreover, the local polynomials in Fan and Gijbels (1996) are obtained by choos-

ing B(X, x) = R(X − x) and setting µ̂(x) = e′1β̂n(x) with e1 = (1, 0, 0, . . . , 0)′,

while the local polynomial estimator in Eggermont and LaRiccia (2009, Chapter 16)

employ B(X, x) = R(X) and set µ̂(x) = R(x)′β̂n(x). In contrast, the partition-

ing estimators use Wn(Xi, x) =
∑Jdn

j=1 1Pj(Xi)1Pj(x) and B(X, x) = R(X), and set

µ̂(x) = R(x)′β̂n(x). Therefore, results from local polynomial methods cannot be

applied directly to partitioning estimators.

Finally, as a reviewer pointed out, Stone (1982, Section 3) also suggested an-
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other (hybrid) local polynomial procedure which bears some relation to the par-

titioning estimator studied here. Using our notation, Stone’s estimators employ

Wn(Xi, x) =
∑Jdn

j=1 1Pj(Xi)1{j : |z− x| ≤ hn,∀z ∈ Pj}/Nj, where Nj =
∑n

i=1 1Pj(Xi)

is the number of observations in Pj. This estimator uses all (data in) cells falling com-

pletely within an hn-ball around the evaluation point x, in contrast to partitioning

which only considers observations in the cell Pj. Moreover, Stone’s estimator neces-

sitates the choice of two tuning parameters, Jn and hn, which are required to satisfy

hnJn →∞. The rate restriction that the cells are required to shrink faster than the

bandwidth implies that the number of cells in each hn-ball tends to infinity, and hence

asymptotically the weighting is constant in the hn-ball and symmetric about x, just

like a classical local polynomial with a spherical uniform kernel with bandwidth hn,

and not like the partitioning estimators considered here.

In Section 6 we provide further discussion of the potential advantages and disad-

vantages of the partitioning estimators when compared to series, kernel and nearest-

neighbor estimators.

3.3 Convergence Rates and Integrated Mean-Square Expan-

sion

Some further notation is necessary to state the results. Let a∧b = min{a, b}, a, b ∈
R. For a function h(·) let ‖h‖pp =

∫
X |h(x)|p f(x)dx and ‖h‖∞ = supx∈X |h(x)| denote

the Lp and L∞ norms; function arguments are suppressed if there is no confusion.

3.3.1 Rates of Convergence

The following theorem gives the L2 convergence rate for the partitioning estimate

of the regression function and its derivatives.

Theorem III.2. If Assumption III.1 holds and Jdn log(Jdn) = o(n), then for s ≤
S ∧ (K − 1):

max
[m]≤s

‖∂mµ̂− ∂mµ‖22 = Op

(
Jd+2s
n

n
+ J−2((S+α)∧K−s)n

)
.

This theorem shows that, by setting Jdn proportional to nd/(2(S+α)+d) and K ≥
S + 1, the partitioning estimator achieves Stone’s (1982) optimal rate, a property

shared by other series- and kernel-based estimators. Because the partitioning esti-

mator can be recast as a series estimator, the conclusion in Theorem III.2 for the
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regression function (i.e., [m] = 0) could have been obtained directly from general

results in the sieve estimation literature under high-level assumptions. A contribu-

tion of this theorem is to obtain such a result under weaker, primitive conditions.

In particular, the rate restriction required, Jdn log(Jdn) = o(n), is weaker than the

one typically imposed in the general series literature (e.g., Newey (1997) requires the

analogue of Jdn max[m]≤s ‖∂mRn(·)‖2∞ = o(n) with max[m]≤s ‖∂mRn(·)‖2∞ polynomial

in Jdn). This refined rate restriction was also used by Huang (2003) for multivariate

regression splines and by Belloni, Chen, Chernozhukov, and Kato (2012) for general

series estimation, but employing the operator norm instead of the (stronger) Frobe-

nius norm used herein.

Theorem 1 also contributes to the literature in two additional ways. First, ex-

isting results for partitioning estimators of µ(·) only yield the optimal rate when Y

is bounded, and otherwise give suboptimal rates (see, Györfi, Kohler, Krzyżak, and

Walk (2002, Corollaries 11.2 and 19.3)). Second, this result shows that the partition-

ing estimator of derivatives of µ(·) achieves the optimal rate under the same weak

conditions. This result, which appears to be new for the partitioning estimation

literature, is often useful in econometric applications (e.g., average marginal effects).

Next, we discuss the L∞ convergence rate of the partitioning estimator.3

Theorem III.3. Suppose the conditions of Theorem III.2 hold. If, in addition, for

some ξ ∈ [0, 1 ∧ η] the partition satisfies J
dξ(1+2/η)
n log(Jdn)2−(1+2/η)ξ = O(n), with

0/0 ≡ 0, then for s ≤ S ∧ (K − 1):

max
[m]≤s

‖∂mµ̂− ∂mµ‖2∞ = Op

(
J
(2−ξ)d+2s
n log(Jdn)ξ

n
+ J−2((S+α)∧K−s)n

)
.

The parameter ξ is a user-defined choice, which depends on the underlying mo-

ment condition of Assumption III.1(c). This parameter is not a tuning parameter

in the classical nonparametric sense, but rather is explicitly introduced in Theorem

III.3 for potential applications. As formalized in Lemma B.5, ξ allows for greater or

lesser weight placed on the tails of the (conditional) distribution of the outcome vari-

able, which in turn provides a trade-off between the rate restriction imposed and the

(possibly suboptimal) rate of convergence of the estimator. Consider two examples:

(i) if E[Y 4|X] < ∞ (i.e., η = 2), then the additional requirement of Theorem III.3

is J2d
n = O(n) for ξ = 1, implying essentially (S + α) ∧ K ≥ d/2, and (ii) if η = 0,

which implies ξ = 0, only bounded conditional variance is assumed, and Theorem

3In the appendix we also provide conditions for the result to hold almost surely.
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III.3 gives the (suboptimal) rate J
2(d+s)
n /n with convergence implying the other rate

restrictions. For 0 < ξ < 1 neither rate restriction in Theorem III.3 implies the other.

With an appropriate choice of Jn, the convergence rate in Theorem III.3 will be

optimal if η ≥ 1, allowing for ξ = 1, provided the rate restrictions are satisfied.

Known results for general series estimation (e.g., Newey (1997) and de Jong (2002))

do not achieve this optimal uniform rate, and impose stronger side restrictions, which

implies that the rate-optimality of the partitioning estimator cannot be deduced from

those results. Conventional local polynomial estimators, on the other hand, do achieve

this optimal uniform rate (e.g., Masry (1996)) but these results do not apply to the

partitioning estimator, as discussed above.

In semiparametric contexts it may be neither necessary nor desirable that the

nonparametric component attain the optimal rate, if the goal is to minimize the

restrictions imposed. Forcing the preliminary nonparametric estimator to achieve the

optimal rate may require overly-restrictive conditions on the model (e.g., moments)

or tuning/smoothing parameters. Theorem III.3 shows that these conditions may be

ameliorated by an appropriate choice of ξ. See Cattaneo and Farrell (2011b) for an

application of this result.

Finally, we note that the bias rate in Theorems III.2 and III.3, J
−2((S+α)∧K−s)
n ,

highlights the fact that the partitioning estimator is not “adaptive” to the underlying

smoothness of the regression function: to improve the convergence rate of the esti-

mator, the order K must be chosen “large enough” given the unknown smoothness

level, S. This feature is common to many other nonparametric estimators, including

local polynomials and regression splines.4 Although there are estimators that “adapt”

to the underlying smoothness, these are usually believed to have poor finite-sample

properties.

3.3.2 Integrated Mean-Square Error Expansion

We present a general conditional Integrated Mean-Square Error (IMSE) asymp-

totic expansion for the partitioning estimator.5 We focus on evenly split partitions for

notational simplicity, but the results may be extended to other partitioning schemes.

We briefly discuss how to derive a direct plug-in rule for selecting the value of Jn

4Assume s = 0 for simplicity. An order p local polynomial estimator (p odd) employing bandwidth

hn → 0 has bias-rate h
(S+α)∧p
n (e.g., Fan and Gijbels (1996) or Masry (1996)). An order p regression

spline estimator employing knots κn →∞ has bias-rate κ
−((S+α)∧p)
n (e.g., Huang (2003) or Belloni,

Chen, Chernozhukov, and Kato (2012)).
5The supplemental appendix also contains an unconditional IMSE expansion for the special case

of K = 1.
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using this expansion, which provides an alternative to the cross-validation procedures

discussed in Györfi, Kohler, Krzyżak, and Walk (2002, Chapters 8, 13).

We impose the following additional assumption.

Assumption III.4.

(a) σ2(x) = V[Y |X = x] and f(x) are continuous on X .

(b) µ(x) is (S + 1)-times continuously differentiable on (an extension of) X .

These additional smoothness conditions allow us to characterize the leading con-

stants in the asymptotic IMSE expansion, as opposed to giving bounds in the rates

of convergence. Assumption III.4(b) is a slight strengthening of Assumption III.1(e).

Let vol(X ) denote the volume of the support, with |X`| denoting the length of the

interval X` for ` = 1, 2, . . . , d, and set Xdata = (X1, . . . , Xn)′. To save some notation,

we also assume K = S + 1.

Theorem III.5. Suppose the conditions of Theorem III.2 and Assumption III.4 hold.

If w(x) is continuous on X , then:∫
X

E
[
(∂mµ̂(x)− ∂mµ(x))2 | Xdata

]
w(x)dx

=
J
d+2[m]
n

n
[VK,d,m + op(1)] + J−2(K−[m])

n [BK,d,m + op(1)],

where VK,d,m and BK,d,m are given in Eqns. (B.4) and (B.5) in the Appendix.

This result gives a general conditional IMSE expansion valid for any dimension

d, any order K, and any derivative m. Under similar conditions, analogous results

restricted to d > 1 with [m] = 0 or d = 1 with [m] = m ≥ 0 are given by Ruppert

and Wand (1994) for conventional local polynomial estimators and for d = 1 with

[m] = m ≥ 0 by Huang (2003) and Zhou and Wolfe (2000) for regression splines.

We leave the exact expressions of the constants VK,d,m and BK,d,m for the general

case in the Appendix as they are notationally cumbersome. These expressions simplify

considerably for interesting special cases. Specifically, consider estimating µ(x), i.e.,

[m] = 0. While BK,d,0 remains cumbersome (see Eqn. (B.6)), the variance constant

reduces to

VK,d,0 =
dim(R(·))

vol(X )

∫
X

σ2(x)

f(x)
w(x)dx,
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for any d and K. If, in addition, we restrict attention to the univariate case,

BK,1,0 =
vol(X )2K

22K+1(K!)2

(
2

1 + 2K
− P ′KQ−1K PK

)∫
X

(
∂Kµ(x)

)2
w(x)dx,

where PK =
∫ 1

−1R(x)xKdx and QK =
∫ 1

−1R(x)R(x)′dx. Alternatively, for the piece-

wise constant fit in the multivariate case, we obtain the tidy expression

B1,d,0 =
1

12

d∑
`=1

|X`|2
∫
X

(
∂µ(x)

∂x`

)2

w(x)dx.

In all possible cases, minimization of the general asymptotic IMSE obtained in

Theorem III.5 with respect to Jn gives the optimal choice

J∗n =
〈

(CK,d,m n)
1

d+2K

〉
, CK,d,m =

2(K − [m]) BK,d,m

(d+ 2[m]) VK,d,m
,

and 〈·〉 denotes the nearest integer. A feasible plug-in rule can be easily constructed

by using preliminary estimators for the unknown objects in CK,d,m.

3.4 Bahadur Representation and Asymptotic Normality

This section studies the asymptotic behavior of partitioning-based estimators of

linear functionals of the regression function. We establish a uniform Bahadur repre-

sentation, asymptotic normality, and consistency of a suitable standard-error estima-

tor, for both regular and irregular (not root-n estimable) estimands. The estimand of

interest is given by θ = θ(µ) and we consider the simple plug-in estimator θ̂ = θ(µ̂).

The following assumption characterizes the class of functionals considered.

Assumption III.6. θ(µ̃) ∈ R is linear, and |θ(µ̃)| ≤ C max[m]≤s ‖∂mµ̃‖∞, for some

C > 0.

This assumption restricts the class of functionals to be linear and bounded (i.e.,

continuous) in the appropriate uniform norm. It is not difficult to extend the results

presented here to cover non-linear functionals, although this extension is omitted to

conserve space.6 Many interesting econometric applications are covered by linear

6This extension is achieved by a standard “linearization” argument: first the functional is as-
sumed to be differentiable in the appropriate sense (e.g. Frechet differentiable with respect to an
appropriate norm), and then rate restrictions are imposed so that the linearization error is asymp-
totically negligible.
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functionals of the regression function. For concreteness, consider the following three

examples.7

Example 6. Pointwise Inference θ1,m(µ) = ∂mµ(x), m ∈ Zd+, [m] < K, where differ-

entiation is defined in Eqn. (3.2). This irregular estimand is useful for nonparametric

inference for the regression function and its derivatives. �

Example 7. Partial and Full Means θ2,δ(µ) =
∫
×δ
`=1X`

µ(x)f(x1, · · · , xδ)dx1 · · · dxδ,
δ ≤ d, where components of x ∈ X not integrated over are held fixed at some value

(we assume the x` are ordered such that integration is over the first δ covariates).

Estimating partial and full means is an important problem in econometrics (see, e.g.,

Newey (1994b)). It is well known that θ2,δ(µ̂) will not be
√
n-consistent unless δ = d,

though the convergence rate increases as more regressors are integrated out. �

Example 8. Weighted Average Derivative θ3,m(µ) = −
∫
X µ(x)(∂mw(x))dx, [m] = 1,

where w(x) is a continuously differentiable weighting (trimming) function that van-

ishes outside a compact subset of X . The functional in this example corresponds

to the indirect weighted average derivative (integration by parts gives θ3,m(µ) =∫
X (∂mµ(x))w(x)dx), and leads to a simpler estimator based on the regression func-

tion directly. Estimating weighted average derivatives is a well-studied problem (see,

e.g., Stoker (1986)). The conditions on the weighting function w(x) are essential

to eliminate the influence of the boundary of the regressors’ support, and achieve
√
n-consistency. �

The first result in this section establishes a uniform Bahadur-type representation

for θ(µ̂). Specifically, we show that the estimator may be represented as an average

of independent, conditionally mean-zero random variables forming a triangular array

based on certain smoothing weights, plus a remainder that enjoys a particular rate

of convergence. This representation facilitates verification of a variety of properties

of semiparametric estimators employing the partitioning estimator as a preliminary

step.8

To describe the result, define εi = Yi − µ(Xi), i = 1, . . . , n, and qj = P[X ∈ Pj],
j = 1, . . . , Jdn. Because qj � J−dn by Assumption III.1(d), qj captures the rate of

convergence of each cell (as well as the local behavior of f(x) in each cell). The

7For other examples of linear (and non-linear) functionals of interest see, e.g., Andrews (1991),
Newey (1997), Chen (2007), Ichimura and Todd (2007), and references therein.

8For a recent detailed discussion of the applicability of the Bahadur representation to semipara-
metric inference, and such a result for kernel-based local polynomials, see Kong, Linton, and Xia
(2010).
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Bahadur representation of the partitioning-based estimator is then given by:

θ(µ̂)− θ(µ) =
1

n

n∑
i=1

Ψn(Xi)εi + θ(νn), Ψn(z) =

Jdn∑
j=1

Θ′jΩ
−1
j Rj(z)/qj, (3.3)

with Θj = (θ([Rj(·)]1), . . . , θ([Rj(·)]dim(R(·))))
′, where [·]g denotes the gth element of a

vector, and Ωj = E [Rj(X)Rj(X)′] /qj.

The smoothing weight Ψn(x) is a nonrandom function which varies with n only

through the partitioning scheme. By linearity of the functional, the Bahadur rep-

resentation for µ̂ automatically yields the result for θ(µ̂) in Eqn. (3.3). To be con-

crete, in the appendix we first write µ̂(x)− µ(x) =
∑n

i=1 ψn(x,Xi)εi/n + νn(x) with

ψn(x, z) =
∑Jdn

j=1Rj(x)′Ω−1j Rj(z)/qj and a remainder νn(x), and then obtain the

smoothing weight and remainder in Eqn. (3.3) by applying the functional θ(·) to ψn

and νn, respectively: Ψn(z) = θ(ψn(·, z)) and θ(νn). The following theorem charac-

terizes the uniform convergence rate of θ(νn).9

Theorem III.7. Let Assumption III.6 hold with s ≤ S ∧ (K − 1), and consider the

representation in Eqn. (3.3). If the conditions of Theorem III.3 hold, then:

θ(νn) = Op

(
J
(2−ξ/2)d+s
n log(Jdn)1+ξ/2

n3/2
+
Jd+sn

n
+ J−((S+α)∧K−s)n

)
.

Before stating the asymptotic normality result, it is helpful to first discuss an

asymptotic variance formula, which also captures the rate of convergence in general.

To this end, define

Vn = E
[
Ψn(X)2σ2(X)

]
=

Jdn∑
j=1

Θ′jΩ
−1
j ΓjΩ

−1
j Θj/qj, (3.4)

with Γj = E [Rj(X)Rj(X)′σ2(X)] /qj. Since a linear least squares estimate is com-

puted within each cell, the asymptotic variance is of the Huber-Eicker-White het-

eroskedasticity robust form. A plug-in sample analogue of Vn is given by

V̂n =
1

n

n∑
i=1

(Ψ̂n(Xi)ε̂i)
2 =

Jdn∑
j=1

1n,jΘ
′
jΩ̂
−1
j Γ̂jΩ̂

−1
j Θj/qj, ε̂i = Yi − µ̂(Xi)

Ω̂j =
1

n

n∑
i=1

Rj(Xi)Rj(Xi)
′/qj, Γ̂j =

1

n

n∑
i=1

Rj(Xi)Rj(Xi)
′ε̂2i /qj.

(3.5)

9An almost sure version of this theorem is available in the appendix.
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Notice that qj is artificially introduced to take explicit account for the convergence

rate of each sample (and population) average. These quantities are unknown, but

they exactly cancel out in the formulation above, leading to a feasible estimator of

the large-sample variance.

Theorem III.8. Suppose the conditions of Theorem III.7 hold with η ≥ 0, that σ2(x)

is bounded away from zero on X , and θ(νn) = op(
√
Vn/
√
n).

(a) For η > 0, if 0 < ‖Ψn‖2 →∞ and ‖Ψn‖2+η/‖Ψn‖2 = o(nη/(4+2η)), then:

√
n(θ(µ̂)− θ(µ))√

Vn
=

1√
n

n∑
i=1

Ψn(Xi)εi√
Vn

+ op(1)→d N (0, 1),

If, in addition, ‖µ̂− µ‖∞ = op(1), then V̂n/Vn →p 1.

(b) If ‖Ψn −Ψ‖2 → 0, 0 < ‖Ψ‖2 <∞, and θ(µ) = E[Ψ(X)µ(X)], then:

√
n(θ(µ̂)− θ(µ))√

Vn
=

1√
n

n∑
i=1

Ψ(Xi)εi√
V

+ op(1)→d N (0, 1),

and Vn → V = E[Ψ(X)2σ2(X)]. If, in addition, ‖µ̂− µ‖∞ = op(1), then

V̂n/Vn →p 1.

This result gives simple and intuitive sufficient conditions for asymptotic normal-

ity of a partitioning-based plug-in estimator of θ = θ(µ), and for consistency of a

suitable standard-error estimator. The theorem is divided in two parts, which are

mutually exclusive, depending on the asymptotic behavior of the smoothing weights

in the Bahadur representation. This approach is similar in spirit to the central limit

theorems of Newey (1997) for series estimators (compare to his Assumptions 6 and 7),

but using the Bahadur representation we put simple sufficient conditions directly on

the smoothing weights. These results automatically apply to vector-valued estimands,

although we restrict θ to be scalar for simplicity.

The distinctive feature separating the cases is mean-square continuity of the func-

tional θ(·) and its Riesz representation (see, e.g., van der Vaart (1991)). These condi-

tions are not imposed in Theorem III.8(a), so the estimand is irregular, and the CLT

is obtained by directly exploiting the triangular array structure of the Bahadur repre-

sentation. In contrast, in Theorem III.8(b) these conditions imply that the estimand is
√
n-consistent and asymptotically linear with influence function ψi = Ψ(Xi)εi, which

permits an easy characterization of the asymptotic variance. This case is important

because it gives easy-to-verify sufficient conditions for asymptotic linearity.
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The high-level conditions in Theorem III.8 need to be verified in each application

(i.e. for a particular θ(·)). We demonstrate the applicability of this theorem by return-

ing to the three examples introduced above, and giving simple primitive conditions

under which the high-level conditions hold for the partitioning plug-in estimator.

Example 9. Pointwise Inference (continued) Suppose the conditions of Theorem

III.3 hold with η > 0 and the partition satisfies J
(2−ξ)d
n log(Jdn)1+ξ/2 = o(n) and

√
nJ
−d/2−(S+α)∧K
n → 0. Then, for [m] < K the conditions of Theorem III.8(a) are

met, as ‖Ψn‖pp � J
(p−1)d+p[m]
n and Vn � J

d+2[m]
n . Therefore, ∂mµ̂(x) = ∂mµ(x) +

Op(J
d/2+[m]
n /

√
n). The rate restrictions are quite mild in this example. Negligibility of

the remainder term requires the “variance” condition J
(3/2−ξ/2)d
n log(Jdn)1+ξ/2 = o(n);

standard error estimation necessitates the only slightly stronger restriction above. In

the case ξ = η = 1 (in Theorem III.3), the two coincide, giving Jdn log(Jdn)3/2 = o(n),

and only three bounded moments are assumed. As a comparison, the central limit

theorem of Newey (1997) for regression splines requires the analogue of J2d
n /n → 0

and
√
nJ
−(S+α)∧K
n → 0, and assumes four bounded moments. These improvements

are due to the fact that we are able to exactly characterize the convergence rate of

Vn, and to the faster rates of convergence and weaker rate restrictions obtained in the

previous section for partitioning estimators. �

Example 10. Partial and Full Means (continued) Begin with the irregular case (δ <

d). Suppose the conditions of Theorem III.3 hold with η > 0 and the partition satisfies

J
[(3−ξ)d+δ]/2
n log(Jdn)1+ξ/2 = o(n) and

√
nJ
−(d−δ)/2−(S+α)∧K
n → 0. The conditions of

Theorem III.8(a) are met as ‖Ψn‖pp � J
(p−1)(d−δ)
n and hence Vn � Jd−δn . For some

values of δ and ξ, this may imply ‖µ̂−µ‖∞ →p 0, otherwise the exponent on Jn must be

(slightly) increased to (2− ξ)d+ δ/2. These rate restrictions are strengthened by J
δ/2
n

compared to the pointwise case, exactly the decrease in the order of the variance. As

δ increases to d, the rate of the variance decreases, leading to the rate of convergence

θ2,δ(µ̂) = θ2,δ(µ) +Op(J
(d−δ)/2
n /

√
n), which shows that the estimator is

√
n-consistent

only in the full mean case. In this case, θ2,d(µ) =
∫
X µ(x)f(x)dx = E[Ψ(X)µ(X)],

with Ψ(x) = 1. Moreover, Ψn(x) =
∑Jdn

j=1 e
′
1Rj(x) = 1, and hence ‖Ψn − Ψ‖2 = 0,

which verifies the conditions in Theorem III.8(b). �

Example 11. Weighted Average Derivative (continued) Suppose the conditions of

Theorem III.3 hold and the partition satisfies J
(2−ξ/2)d
n log(Jdn)1+ξ/2 = o(n) and

√
nJ
−(S+α)∧K
n → 0. Then, the conditions of Theorem III.8(b) hold and uniform con-

sistency of µ̂(x) is implied. Specifically, note that θ3,m(µ) =
∫
X µ(x)(∂mw(x))dx =

59



E[Ψ(X)µ(X)], with Ψ(x) = −f(x)−1∂mw(x), and hence

Ψn(x) =

Jdn∑
j=1

Rj(x)′Ω−1j E[Rj(X)Ψ(X)]/qj.

Under an appropriate smoothness assumption, there will exist {γ0j } such that

max
1≤j≤Jdn

‖1Pj(·)Ψ(·)−Rj(·)′γ0j ‖∞ = o(1)

, yielding the mean-square convergence condition. Hence θ3,m will be
√
n-consistent.

�

It is important to mention that Theorems III.7 and III.8 (and the examples dis-

cussed above) are established using uniform norms, which leads to the simple and

general sufficient conditions above. In some examples, however, it is possible to im-

prove on these sufficient conditions by relying on the (weaker) L2 norm. For instance,

if the linear functional is continuous with respect to the L2 norm (and hence regular),

then it is possible to improve on the rate restrictions of Theorem III.8 by relying

on sharper rates on the remainder of the Bahadur representation. In the specific

case of partitioning estimators, because of the sharp uniform rates obtained in this

paper the difference between the mean-square and uniform convergence rates is only

a slow-varying function (i.e., log(Jdn)) under appropriate moment assumptions, and

hence using the stronger uniform norm is not too restrictive.

3.5 Monte Carlo Evidence

We report a subset of the results from an extensive Monte Carlo study that we

conducted to explore the finite-sample performance of the partitioning estimator in

comparison to local polynomials and regression splines. We focused on estimating

the regression function µ(x), and examined two measures of global accuracy, root

integrated mean-square error (MSE) and integrated mean absolute error (MAE), as

well as root mean-square error (RMSE) at interior and boundary points of X . The

full set of results from our simulation study is available in the online supplement,

and includes different sample sizes, dimensions and distributions for the covariates,

regression functions, and levels of variability. In addition, as a complement to the

nonparametric results presented here, Cattaneo and Farrell (2011b) report another

extensive simulation study employing the partitioning estimator as a preliminary
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estimator in semiparametric treatment effect estimation.

We generated 5,000 simulated data sets according to Yi = µ(Xi,1, Xi,2) + εi, i =

1, . . . , n, with εi ∼iid N (0, σ2). The covariates are independently distributed as trun-

cated Beta(B,B) distributions. We set σ2 = 1 and consider both B = 1 (uniform)

and B = 1/2 (which places more mass at the boundary), and truncate to [0.05, 0.95].

We discuss only four different specifications for the regression function µ(x1, x2) in

this section:

Model 1: µ(x1, x2) = 0.7 exp
{
−3
(
(4x1 − 2 + 0.8)2 + 8(x2 − 1/2)2

)}
+ exp

{
−3
(
(4x1 − 2− 0.8)2 + 8(x2 − 1/2)2

)}
,

Model 2: µ(x1, x2) = sin(5x1) sin(10x2),

Model 3: µ(x1, x2) =
(
(1− (4x1 − 2)2)2

)
(sin(5x2)/5) ,

Model 4: µ(x1, x2) = 1{(4x1 − 2) ∈ [−2, 1]}((4x1 − 2)7 − 19)/20

− 1{(4x1 − 2) ∈ (−1, 0]}(4x1 − 2)2

+ 1{(4x1 − 2) ∈ (0, 1/2]}(4x1 − 2)4/2

+ 1{(4x1 − 2) ∈ (1/2, 1]}(4x1 − 2)5

+ 1{(4x1 − 2) ∈ (1, 2]}(2− (4x1 − 2)3)

+ 4.26 (exp(−3x2)− 4 exp(−6x2) + 3 exp(−9x2)) .

These bivariate regression functions are graphed in Figure 3.1. These models are

adapted from Fan and Gijbels (1996, Chapter 7.5), Braun and Huang (2005) and

Eggermont and LaRiccia (2009, Chapter 22.1) to the simulation setup consider here.

Model 4 is discontinuous, but we nonetheless include it as another potentially inter-

esting case for comparison.

For all three nonparametric estimators, we use linear and cubic polynomials (i.e.

K = 2 and K = 4 in our notation). We employ a product Epanechnikov kernel with

a common bandwidth for local polynomials, and a tensor product of B-splines for

regression splines. The tuning parameters are chosen as follows: for local polynomials,

the bandwidth is chosen to minimize the asymptotic conditional IMSE derived by

Ruppert and Wand (1994); for the partitioning estimator, we use J∗n defined above;

and for regression splines, we use J∗n+1 knots for each covariate, also placed uniformly

in the support. The final choice may not be optimal for regression splines, but is

made for two reasons. First, it permits a direct comparison between partitioning

and splines, highlighting the role of the inherent discontinuities of the partitioning

estimator. Second, direct plug-in rules for splines are available only for special cases.
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Figure 3.1: Regression functions for simulations.

We use both infeasible and feasible tuning parameters selectors, where the data-driven

selectors were implemented by extending the procedure outlined by Fan and Gijbels

(1996, Section 4.2) to d = 2. The infeasible tuning parameter formula is invalid for

Model 4, and thus we set h∗n = 1/3 for local polynomials and J∗n = 3 for partitioning

and regression splines. We employed the feasible selectors for all models (e.g., ignoring

the lack of continuity in Model 4).

We report here only the case n = 1, 000, presented in Tables 3.1 and 3.2. The

former shows results for B = 1/2, followed by the uniform case. The first two columns

show the infeasible tuning parameter and the rounded mean feasible choice across

simulations. In general, no estimator dominates the others and hence an absolute

ranking does not emerge from this simulation study. The partitioning estimator is on

par with the other two estimators in many cases, by any of the accuracy measures.

In general the global measures are not particularly useful to rank these estimators,

and although it appears that local polynomials perform better “on average”, the

differences are usually small. The partitioning estimator often outperforms the others

at the point (x1, x2) = (0.1, 0.1), indicating good boundary performance.

The discontinuities of the partitioning estimator require further discussion. By
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comparing to B-splines, we observe that according to the global accuracy measures

these discontinuities do not appear to have a deleterious effect: the partitioning esti-

mator is often on par with splines, and occasionally more accurate. The discontinuities

are measure zero, so this may not be surprising, but it shows that the asymptotics

provide a good finite-sample approximation in this case. Local polynomials tend to

slightly outperform both B-splines and partitioning estimators in terms of these global

measures, but not in all cases. The pointwise results are also mixed, depending on the

data generating process and the evaluation point considered. For instance, in Model

2 at the point (x1, x2) = (1/2, 1/2) with B = 1/2, the partitioning estimator performs

poorly (though the feasible local polynomial estimator is hardly better), except for

the infeasible linear fit. This suggests that a practitioner interested in inference at

a particular point should not place a cell boundary at that point. Nonetheless, in

other cases the partitioning estimator outperforms its continuous counterpart, even in

point estimation. The partitioning estimator performs very well in the discontinuous

Model 4, even though cell boundaries are not placed at the discontinuities.

3.6 Conclusion

This paper aimed to give a thorough asymptotic treatment of partitioning estima-

tors of the regression function, its derivatives, and functionals thereof. We established

(optimal) mean-square and uniform rates of convergence, a general conditional IMSE

expansion and an optimal plug-in rule to select the number of cells, and finally a

Bahadur representation and asymptotic normality for linear functionals of the esti-

mator, with valid standard-error estimates. We also showed how these results apply

to a few examples, and performed an extensive simulation study.

This estimation strategy appears to have some advantages and disadvantages when

compared to other popular nonparametric procedures. Indeed, one goal of this pa-

per was to provide a comprehensive analysis of the partitioning estimators to permit

formal comparison to different nonparametric procedures, as we discussed along the

manuscript. While the partitioning estimator is simple and intuitive (and has been

proposed in the econometric literature before), it has the perhaps unappealing feature

of being discontinuous in finite samples. This property is also shared by the popular

nearest-neighbor estimator (e.g., Györfi, Kohler, Krzyżak, and Walk (2002, Chapter

6)), but not by the conventional series- and kernel-based estimators in usual cases.

Thus, while we view this estimator as potentially useful in applications (e.g., as a pre-

liminary exploratory device), it is important to highlight that it does ignore the un-
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derlying smoothness of the regression function when constructing the estimate. From

a theoretical perspective, it is nonetheless interesting that imposing such smoothness

is not needed to construct a nonparametric regression estimator that achieves the

usual optimal rates of convergence. Moreover, this result shows that the partitioning

estimator is not overfitting, even though it enjoys more degrees-of-freedom by not

imposing smoothness restrictions as other estimators do (e.g., regression splines).
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CHAPTER IV

Efficient Estimation of the Dose-Response

Function under Ignorability using Subclassification

on the Covariates

4.1 Introduction

Treatment effect models are a prime example of a missing data problem. Units are

assumed to have a collection of distinct random potential outcomes but, depending

on their treatment status, only one of these outcomes is observed. The popula-

tion parameters of interest in these models are usually some feature of the marginal

distributions of the potential outcomes such as the means or quantiles. These pa-

rameters, however, are not identifiable from a random sample of observed outcomes

and treatment statuses without further assumptions because of the potential pres-

ence of selectivity bias; a non-random missing data problem. A common identifying

assumption in these models is called Ignorability, which includes a key restriction on

the data generating process known as unconfoundedness or selection on observables.

This assumption imposes random missing data after conditioning on a set of predeter-

mined always-observed covariates, and permits the development of flexible inference

procedures by first working conditionally on the covariates and then averaging out

appropriately.

In the context of finite multi-valued treatment effects, a simple and interesting

estimand is the Dose-Response Function (DRF), which describes the mean effect of

each treatment level on the outcome of interest.1 Under Ignorability, many different

semiparametric estimators for the DRF may be constructed using flexible approaches,

1See, e.g., (Imbens 2000), (Lechner 2001), (Imai and van Dyk 2004), (Cattaneo 2010), and
references therein.
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including nonparametric regression methods, matching techniques, inverse probabil-

ity weighting schemes, procedures based on the estimated (generalized) propensity

score, and hybrid procedures that combine some of these techniques.2 These es-

timators, which include a preliminary nonparametric estimator, are well known to

be root-n consistent (where n is the sample size) and asymptotically normal under

appropriate regularity conditions, provided certain restrictions on the tuning and

smoothing parameters involved in the estimation are satisfied. In most cases these

estimators are also asymptotically linear and semiparametric efficient.

This chapter develops a new semiparametric efficient estimator of the DRF based

on the idea of subclassification, blocking, or stratification on the observed prede-

termined covariates. The estimator proceeds by first dividing the support of the

observed covariates into disjoint cells, also called blocks or stratums, then carrying

on inference using only observations within each cell, and finally averaging out appro-

priately. Intuitively, for cells “small enough,” the potential outcomes within each cell

are approximately missing completely at random by virtue of Ignorability, leading

to a consistent, asymptotically linear, and semiparametric efficient estimator under

conventional regularity conditions. Moreover, using this idea we also develop a sim-

ple and intuitive consistent standard-error estimator, leading to asymptotically valid

confidence intervals for the population parameter of interest.

The idea behind the semiparametric estimator discussed in this chapter may be

traced back to the early work of (Cochran 1968), who informally discusses the idea

of subclassification with a univariate continuous covariate in observational studies.

In this chapter we formally derive a first-order, asymptotically linear large sample

approximation for a class of subsclassification-based semiparametric estimators that

allow for an arbitrary number of continuous covariates as well as an arbitrary large

polynomial of approximation within each cell. These results are also connected to the

work of Rosenbaum and Rubin (1983, 1984), who discuss inference by subclassifying

observations based on the estimated propensity score in observational studies. In this

chapter, however, subclassification is done directly on the observed covariates rather

than on the estimated (generalized) propensity score, thereby avoiding preliminary

nonparametric estimation of the propensity score and the related technical issues

of generated regressors and random denominators. The ongoing work of Cattaneo,

Imbens, Pinto, and Ridder (2009) addresses the delicate issue of subclassification-

2For a review on the program evaluation and missing data literatures, see, e.g., Chen, Hong
and Tarozzi (2004, 2008), (Heckman and Vytlacil 2007), (Imbens and Wooldridge 2009), (Bang and
Robins 2005), (Tsiatis 2006), (Wooldridge 2007), and references therein.
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based inference using the estimated propensity score. The results in this chapter

can be viewed as a first step toward developing the theoretical properties of such a

procedure by considering the “known (generalized) propensity score” case, since a

known propensity score may be treated as a univariate observed covariate and the

results herein apply immediately.3

The subclassification-based estimator studied in this chapter may also be viewed

as a two-step semiparametric estimator that depends on a special nonparametric

procedure called Partitioning. In this chapter we exploit this idea, together with some

of the recently developed asymptotic results presented in (Cattaneo and Farrell 2013)

for nonparametric partitioning estimators, to provide sufficient conditions for the

efficient semiparametric estimation of the DRF, and to construct simple and easy-to-

implement consistent standard-error estimators. We assess the performance of these

large sample approximations in a Monte Carlo experiment.

The rest of the chapter is organized as follows. Section 2 introduces the multi-

valued treatment effect model, discusses identification, and describes (both intuitively

and formally) the subclassification-based semiparametric estimator. Section 3 devel-

ops the asymptotic properties of this estimator, while Section 4 reports the main

results of a simulation study. Finally, Section 5 summarizes the work presented here

and discusses possible extensions. All technical derivations are contained in the Ap-

pendix.

4.2 Model, Identification and Estimator

This chapter focuses on the estimation of the Dose-Response Function in the

context of a (finite) multi-valued treatment effect model. Suppose that (Yi, X
′
i, Ti)

′,

i = 1, 2, · · · , n, is an observed random sample, where Yi is an outcome variable,

Xi ∈ X ⊂ Rd is a vector of continuous covariates, and Ti ∈ T = {0, · · · , τ} with

T a finite set of treatments or groups. The procedure discussed below may be eas-

ily generalized to allow for discrete covariates by computing the estimator for each

fixed distinct combination, and then averaging out appropriately, as it is standard in

the literature. However, to simplify the discussion (and notation) we consider only

continuous predetermined covariates. The outcome variable Yi is assumed to satisfy

Yi = D0,iYi(0) + · · · + Dτ,iYi(τ), where Dt,i = 1(Ti = t), t = 0, · · · , τ , is a treat-

ment or group indicator, and Yi(0), · · · , Yi(τ) are τ + 1 random potential outcomes.

3For further discussion on estimators combining subclassification and regression see, e.g., (Imbens
2004) and (Imbens and Wooldridge 2009).
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(1(·) denotes the indicator function.) For each unit i = 1, · · · , n, only one of the

τ + 1 potential outcomes is observed, according to the value of Ti. This leads to the

fundamental problem of causal inference in the context of program evaluation (e.g.,

(Holland 1986)), a classical missing data problem.

The estimand of interest is the DRF given by µ = (µ0, · · · , µτ )′ with µt = E [Yi(t)].

More general estimands are briefly discussed in Section 5, which summarizes potential

extensions to the work undertaken in this chapter. Because all but one of the potential

outcomes are missing for each unit, µ is not identifiable from the data without further

assumptions. The following identification assumption is commonly used in the missing

data and program evaluation literatures.

Assumption 1. (Weak Ignorability) For all t ∈ T :

(a) Yi(t) ⊥⊥ Dt,i | Xi.

(b) 0 < emin ≤ P [Ti = t|Xi].

Assumption 1(a) corresponds to a (weak) version of unconfoundedness or selec-

tion on observables, and implies that after conditioning on the observed covariates

missing data occurs completely at random. This assumption is strong, but commonly

employed in the literature. Assumption 1(b) ensures that the generalized propensity

score et(x) = P [Ti = t|Xi = x] is bounded away from zero, an important condition

for semiparametric efficient estimation. This assumption, and different variations

thereof, has been commonly used in the missing data, measurement error, and treat-

ment effect literatures.

Assumption 1 implies that

µt = E[Yi(t)] = E
[
Dt,iYi
et(Xi)

]
= E

[
E[Dt,iYi|Xi]

et(Xi)

]
= E[E[Yi|Ti = t,Xi]],

which leads to a variety of semiparametric plug-in (feasible) estimation approaches for

the DRF. These alternative representations motivate inverse probability weighting,

imputation, and projection estimation, among other possibilities. For a discussion

of these alternative, well-known approaches see, e.g., Chen, Hong and Tarozzi (2004,

2008), (Bang and Robins 2005), (Imbens, Newey, and Ridder 2007), (Tsiatis 2006),

(Heckman and Vytlacil 2007), (Imbens and Wooldridge 2009), and references therein.

Regardless of the particular identifying approach employed, in all cases at least one

nonparametric estimator is required, unless the researcher is willing to impose strong

parametric assumptions. Suitable implementations of flexible, semiparametric esti-

mators are available in the literature when using local polynomials (including kernels)
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or sieves (including series), and these estimators are known to be asymptotically linear

and semiparametric efficient under appropriate regularity conditions. (An important

alternative estimator is the matching estimator of (Abadie and Imbens 2006) which

is not asymptotically linear.)

To motivate the subclassification estimator considered in this chapter, note that

if the potential outcomes are assumed to be missing completely at random, that is,

if Y (t) ⊥⊥ Dt, then a simple (possibly inefficient) estimator of µt is given by

Ȳt =
1

W̄t

n∑
i=1

Dt,iYi, W̄t =
n∑
i=1

Dt,i,

which is a simple weighted average of the observed outcomes. However, if the data are

not missing completely at random, Ȳt will be inconsistent for µt in general. Nonethe-

less, Assumption 1 leads to a similar idea based on subclassification on the observed

covariates Xi. Suppose that X is compact and that Pn = {Pj : j = 1, · · · , Jdn} is a dis-

joint partition covering X with typical cell Pj (implicit dependence on n through the

partitioning scheme is suppressed for notational ease). Within each (small) cell Pj of

the the partition Pn, Assumption 1 implies that Y (t) is “approximately” independent

of Dt, suggesting the following subclassification-based estimator:

µ̂t =

Jdn∑
j=1

Nj

n
Ȳj,t, Ȳj,t =

1

Nj,t

n∑
i=1

1Pj(Xi)Dt,iYi,

Nj =
n∑
i=1

1Pj(Xi), Nj,t =
n∑
i=1

1Pj(Xi)Dt,i, 1Pj(x) = 1(x ∈ Pj).

The “local” estimate Ȳj,t is only well defined when Nj,t > 0, which is guaranteed

in large samples by Assumption 1(b), provided that the cells are not too small. A

proper definition of this estimator needs to account for the potential empty cells in

finite samples, as done formally below. From an intuitive point of view Nj,t/Nj ≈
P[Dt,i = 1|Xi ∈ Pj] ≈ et(Xi). Thus, under appropriate regularity conditions and for

a fine enough partition, it is natural to expect that

µ̂t =
1

n

n∑
i=1

Jdn∑
j=1

Nj

Nj,t

1Pj(Xi)Dt,iYi ≈ µt.

If all cells of the partition become small as Jdn → ∞, this subclassification-based
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estimator may be viewed as a semiparametric estimator given by

µ̂t =
1

n

n∑
i=1

µ̂t(Xi), µ̂t(x) =

Jdn∑
j=1

Nj

Nj,t

1Pj(x)Dt,iYi,

where Jdn corresponds to the tuning parameter underlying the nonparametric proce-

dure. In fact, µ̂t(x) corresponds to a special case of the nonparametric estimator of

a regression function known as Partitioning (see, e.g., (Györfi, Kohler, Krzyżak, and

Walk 2002, Chapter 4) and (Cattaneo and Farrell 2013)).

Valid first-order, asymptotically linear, semiparametric inference requires a del-

icate choice of tuning and smoothing parameters so that the higher-order variance

and the higher-order bias of the statistic are asymptotically negligible. For the par-

titioning estimator, Jdn is the tuning parameter which “controls” the variance of the

estimator: the smaller the cells (i.e., the larger Jdn), the larger the variance. The

bias, on the other hand, is (partially) determined by the “quality” of approximation:

within each cell, the approximation is based on the sample mean of Dt,iYi, leading

to an approximation error proportional to the inverse of the length of the cell. Thus,

if bias is a concern, a natural way to improve the approximation is to use a more

flexible polynomial in Xi within each block.

These insights lead to the following subclassification-based estimator, which is

the main object of study in this chapter. The following notation is needed to for-

mally describe the estimator. For fixed K ∈ N, let R(x) represent a column vec-

tor containing the complete polynomial basis of order (K − 1) based on x ∈ Rd,

that is, for x = (x1, · · · , xd)′ and α = (α1, · · · , αd)′ ∈ Zd+ (a multi-index), with

|α| = α1 + · · · + αd and xα = xα1
1 · · ·x

αd
d , each element of R(x) is given by xα for

α ∈ {a ∈ Zd+ : |a| ≤ K − 1}. For example, if d = 1 then R(x) = (1, x, x2, · · · , xK−1)′.
Within each cell Pj, the basis is denoted by Rj(x) = 1(x ∈ Pj)R(x). Using this

notation, a subclassification-based estimator (of order K − 1) is given by

µ̂t =
1

n

n∑
i=1

µ̂t(Xi), µ̂t(x) =

Jdn∑
j=1

Rj(x)′β̂j, β̂j = 1n,j(R
′
j,tRj,t)

−R′j,tY ,

Rj,t = (Dt,1Rj(X1), · · · , Dt,nRj(Xn))′, Y = (Y1, · · · , Yn)′,

where 1n,j = 1(λmin(Ω̂j,t) > c), with λmin(A) the minimum eigenvalue of a matrix A,

Ω̂j,t = R′j,tRj,t/(nqj), qj = P [Xi ∈ Pj], and c a fixed positive constant.

This estimator is quite intuitive: within each cell, the unknown regression function
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is approximated by a polynomial of order K − 1 in Xi, which is used to impute

missing values for each observation, and then the imputed values are averaged out to

obtained the final estimator. As shown in the Appendix, under appropriate regularity

conditions, 1n,j takes the value 1 with probability approaching one, so that the least

squares problem within each cell of the partition is (asymptotically) well defined.

4.3 Large Sample Results

This section describes the large sample properties of estimator introduced in the

previous section. The following assumption imposes a set of simple restrictions on

the data generating process.

Assumption 2. (a) Xi has compact support X ⊂ Rd, and its (Lebesgue) density is

bounded and bounded away from zero.

(b) E[|Yi(t)|4|Xi] is bounded for all t ∈ T .

(c) µt(x) is Sµ-times continuously differentiable for all t ∈ T .

(d) et(x) is Se-times continuously differentiable for all t ∈ T .

Assumption 2(a) is important, and may be relaxed only when certain special

partitioning schemes are employed and more stringent moment assumptions are im-

posed, but is otherwise difficult to weaken. Assumptions 2(b)-(d) implicitly control

the rate of convergence in uniform norm of the partitioning nonparametric estimator,

as shown in (Cattaneo and Farrell 2013), and are standard in nonparametric and

semiparametric estimation.

Regarding the partitioning nonparametric estimator, the following assumption

will be imposed throughout. For scalars sequence {aj : j = 1, · · · , Jn}, let aj � J−1n

denote that C∗J
−1
n ≤ aj ≤ C∗J−1n with C∗ and C∗ universal positive constants not

depending on n nor j = 1, · · · , Jn.

Assumption 3. (a) For ` = 1, · · · , d and Jn ∈ N, let the `-dimension of X be

partitioned into the Jn disjoint intervals [p`,j−1, p`,j), j = 1, · · · , Jn − 1, and

[p`,Jn−1, p`,Jn ], satisfying p`,j−1 < p`,j for all j, and |p`,j − p`,j−1| � J−1n . The

complete partition of X consists of the Jdn sets formed as Cartesian products of

all such intervals, with typical cell denoted Pj.

(b) For some K ∈ N, R(x) represents the complete polynomial basis of order

K − 1 based on x ∈ Rd.
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Assumption 3(a) imposes natural restrictions on the partitioning scheme em-

ployed, which guarantee that each cell is well defined. By construction, each cell

must satisfy: vol(Pj) � J−dn , or equivalently, for some positive constants C∗ and C∗:

C∗J
d
n ≤ min1≤j≤Jdn vol(Pj) ≤ max1≤j≤Jdn vol(Pj) ≤ J−dn ≤ C∗Jdn, where vol(·) denotes

the volume of cell Pj. The simplest possible scheme is an evenly spaced partition,

but Assumption 3(a) allows other possibilities so long as all cells continue to decrease

proportionally to Jdn. For a simple example, one may use a partition twice as fine in a

region of abundant data compared to a sparse region (e.g., where the density is low).

Assumption 3(b) specifies the degree of the polynomial used in the approximation

within each cell. This assumption is meant to cover the general, unrestricted case,

although in applications other (restricted) bases may be of interest. For example, if

µt(x) is assumed to be additively separable, then the interactions between covariates

may not be included in the basis R(x), leading to a simpler least squares problem.

The goal of Assumption 3(b) is to ensure that R(x) is flexible enough to remove bias

up to “order K”, as shown in the Appendix.

The following theorem establishes that µ̂t has an asymptotically linear represen-

tation, with the well-known efficient influence function for µt (see, e.g., (Hahn 1998)).

Theorem IV.1. Suppose Assumptions 1–3 hold, and

√
nJ−K∧Sµ∧Sen → 0

and

J10d/7
n log(Jn)2/n→ 0

. Then, for all t ∈ T ,

√
n(µ̂t − µt) =

1√
n

n∑
i=1

ψt(Yi, Xi, Ti) + op (1) ,

where

ψt(Yi, Xi, Ti) =
Dt,i(Yi − µt(Xi))

et(Xi)
+ µt(Xi)− µt.

Theorem 1 shows that there exists a choice of Jdn → ∞ such that µ̂ is asymptot-

ically linear and semiparametric efficient, provided both µt(x) and et(x) are smooth

enough and K is large enough.4 The rate restrictions in Theorem 1 describe the lower

and upper bounds on the rate of growth for the nonparametric tuning parameter, as is

4The rate restrictions imposed in Theorem 1 are in general not minimal, and may be relaxed in
certain cases. It is possible to show by example that a necessary condition is given by Jdn/n→ 0.
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common in semiparametric inference. This condition formalizes the intuition above:

the first statement requires sufficiently small cells to control bias, while the second

ensures the nonparametric variance does not grow too fast.

It follows from this theorem that
√
n(µ̂ − µ) →d N (0, V ), with V the semipara-

metric efficiency bound for µ, that is, V has (t, s)-element (1 ≤ t, s ≤ τ) given by

V[t,s] = E
[
1(t = s)

σ2
t (Xi)

et(Xi)
+ (µt(Xi)− µt)(µs(Xi)− µs)

]
,

where σ2
t (Xi) = V[Yi(t)|Xi]. See, e.g., (Cattaneo 2010) for a discussion on this and

related results.

In order to construct feasible, asymptotically valid confidence intervals for µ a

consistent estimator of the standard errors is needed. Several alternatives are in

principle possible, although a subclassification-based estimator seems most natural

in the present context. One such estimator may be justified as follows. The overall

asymptotic variance may be decomposed into the sum of the “within” and “between”

variance as follows:

V[t,s] = E
[
1(t = s)

σ2
t (Xi)

et(Xi)

]
+ E [(µt(Xi)− µt)(µs(Xi)− µs)] = VW,[t,s] + VB,[t,s].

It is intuitive to separately estimate each component. First, because a least squares

estimate is computed within each cell, a natural choice for V̂W,[t,s] is a Huber-Eicker-

White heteroskedasticity-robust estimator:

V̂W,[t,s] = 1(t = s)

Jdn∑
j=1

1n,jL̂
′
jΩ̂
−1
j,t Σ̂j,tΩ̂

−1
j,t L̂j, L̂j =

1

nqj

n∑
i=1

Rj(Xi),

Σ̂j,t =
1

n

n∑
i=1

Rj(Xi)Rj(Xi)
′Dt,i(Yi − µ̂t(Xi))

2.

This estimator has a simple, intuitive representation when K = 1, given by

V̂W,[t,s] = 1(t = s)
1

n

n∑
i=1

σ̂2
t (Xi), σ̂2

t (x) =

Jdn∑
j=1

N2
j

N2
j,t

1Pj(x)Dt,i(Yi − µ̂t(Xi))
2.

Second, for VB,[t,s], a simple partitioning-based plug-in estimator is:

V̂B,[t,s] =
1

n

n∑
i=1

(µ̂t(Xi)− µ̂t)(µ̂s(Xi)− µ̂s).
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The following theorem verifies that both estimators, V̂W,[t,s] and V̂B,[t,s], are indeed

consistent for their population counterparts.

Theorem IV.2. Suppose the conditions of Theorem 1 hold. Then, for all t, s ∈ T ,

V̂W,[t,s] →p VW,[t,s] and V̂B,[t,s] →p VB,[t,s].

It follows immediately from Theorem 2 that V̂ with typical (t, s)-element (1 ≤
t, s ≤ τ) given by V̂[t,s] = V̂W,[t,s] + V̂B,[t,s] is a consistent estimator of V , leading to a

consistent estimator of the semiparametric efficiency bound obtained in Theorem 1.

4.4 Simulations

In this section we report the results of a Monte Carlo study of the subclassification-

based estimator. We focus on a binary treatment (i.e. τ = 2) and conduct inference

on the average treatment effect throughout, both for simplicity and to facilitate com-

parison with other results in the program evaluation literature.

The data generating process we consider is as follows. X1i ∼ Uniform[−2, 2],

Yi(0) = µ0 + X1i + η0i, Yi(1) = µ1 + exp{X1i} − E[exp{X1i}] + η1i, and Ti =

1{X3
1i/3 − X1i + η2i > 0}, where the errors ηki ∼ N(0, 2), k = 0, 1, 2, and are

mutually independent. We also consider a heteroskedastic variant of this model, in

which η1i ∼ N(0, 2X2
i ). Further, we extend these models to include a second covari-

ate by generating X2i ∼ Uniform[−2, 2] independently of X1i then setting Yi(0) =

µ0 +X1i+X2i+η0i, Yi(1) = µ1 +X3
1iX

2
2i+ exp{X1i}+ exp{X2i}−2E[exp{X1i}] +η1i,

and all else as above. In all cases we set µ0 = 0 and µ1 = 1, so that the average

treatment effect is one. We conduct simulations of each model with sample sizes of

500 and 1,000, both using 2,000 replications and evenly spaced cells.

The average bias for the univariate model are reported in Figure 1 for a range of

Jn. The homoskedastic and heteroskedastic model produce very similar results, and

the discussion below applies to both. The figure demonstrates several salient features

of the subclassification estimator. First, the increased flexibility of the nonparametric

estimator resultant from increasing the number of cells initially decreases the bias.

The nonparametric procedure relies on Jdn → ∞ as n → ∞, and the bias decreases

accordingly: see (A-2) in the appendix. The second important feature is the choice

of the (fixed) parameter K, giving the order of the fit within each cell. Recall from

above that K = 1 corresponds to fitting means within each cell, K = 2 gives a linear

fit, and so forth. As aforementioned, a larger K improves the theoretic bias properties

of the estimator and for modest values of Jn this is borne out in Figure 1: For Jn
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below 10, fitting means within each cell may not be sufficient to remove bias, but

an increase merely to linear fits is often adequate. Much more modest improvements

result from a quadratic fit.

However, as Jn increases further, the bias properties decline: the estimator has

increased bias compared to fewer cells, and substantially so for the quadratic fit.

This is a consequence of the least squares problem being ill-posed in an increasing

number of cells. Heuristically, for the (fixed) n chosen, these Jn represent sequences

for which the rate restrictions of Theorem 1 do not hold, and hence the distributional

approximation is invalid. Recalling the formulation above, for these “empty cells”

1nj = 0 and the matrix Ω̂j,t is singular (or near singular; in practice a numerical cut-

off is employed). Hence, these cells are not included in the estimate, leading to bias.

It is beyond the scope of this work to study a formal trimming procedure, but one that

controls for empty cells in a systematic way may lead to improved performance for

certain choices of Jn. These results (and similarly those of the bivariate specification

below) may be interpreted as a cautionary tale regarding choice of smoothing and

tuning parameters in nonparametric estimation in general. It is also important to

note that this phenomenon does not impact the estimator with degree zero (fitting

means) as severely, since only one observation per cell is required. Indeed, for bias

the piecewise constant version of the subclassification-based estimator is quite robust

to the choice of Jn. Finally, note that the increased sample size expands the range of

Jn for which the estimator performs well, for any choice of K.

Figure 2 reports coverage rates for 95% confidence intervals for the univariate

models. Many of the same conclusions are evident. For modest values of Jn, increased

K leads to more accurate coverage, but beyond a certain value, coverage declines more

rapidly for higher values of K. Again, the robustness to choice of Jn for K = 1 is

evident. The coverage is remarkably accurate for even a large number of cells. The

variance estimator accounts for heteroskedasticity quite well: only a small loss is

evident. In practice, the “empty-cell” issue is likely to be a greater concern.

Figures 3–6 show the Gaussian approximation for the four univariate models.

The estimator approximates the semiparametric efficiency bound for several different

choices of Jn and K, matching the result of Theorem 1. In all cases, the same

conclusions above are evident and the heteroskedasticity makes little difference. For

moderate choices, the robustness is again demonstrated. However, for n = 500 and a

large Jn, the estimator is biased and the variance is inflated: the bottom-right graph

in Figures 3 and 5 shows that the approximation can be poor. Again, increasing the

sample size ameliorates the issue, as would be expected from the theory in Section 3.
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The conclusions from the bivariate model are somewhat different. Figures 7 and

8 report bias and coverage for the bivariate models. Note that the range of Jn is

restricted compared to the univariate models. Recall that the theory requires Jdn cells,

so that the points marked as “10” in Figures 7 and 8 actually utilize J2
n = 100 total

cells. Here the empty cell problem has become severe, and both the bias and coverage

properties become extremely poor. Also observe that for smaller values of Jn, fitting

means is no longer sufficient to remove bias or produce accurate coverage: both are

more accurate for the quadratic fit for a larger range of Jn. This illustrates the tension

between the bias and variance conditions in Theorem 1 for the sequence Jn. This

“curse of dimensionality” is a common problem in nonparametric estimation. Figures

9–12 show the Gaussian approximations, which exhibit the same issues. In some cases,

the approximation is extremely poor for these sample sizes. However, observe that for

moderate values of Jn (e.g., Jn = 3, Jdn = 9), the semiparametric efficiency bound is

approximated well for certain choices of K. To investigate this further, we simulated

the bivariate homoskedastic model with a sample size of n = 2,000. The Gaussian

approximation is shown in Figure 13. As would be expected, the estimator performs

better for a wider range of Jn and K. The bias and coverage results (not shown)

are also substantially improved. When considering additional regressors, researchers

should keep this “curse of dimensionality” in mind.

Finally, we compare the partitioning estimator to several others common in the

literature: inverse probability weighting (IPW), a series-based imputation estima-

tor, and M-nearest-neighbor matching. The propensity score is estimated using a

logistic regression on a power series of Xi up to order four or six, and then the av-

erage treatment effect is estimated by inverse weighting as in (Hirano, Imbens, and

Ridder 2003). The series estimator uses nonparametric regression to impute missing

outcomes in much the same spirit as the partitioning estimator, but the approxima-

tion is global, see (Imbens, Newey, and Ridder 2007). Here we use a power series

of degree four or six, but to approximate the underlying regression function instead

of the propensity score. Finally, we consider nearest-neighbor matching (Abadie and

Imbens 2006). We implement this in Stata using the nnmatch command of (Abadie,

Drukker, Herr, and Imbens 2004). We consider one- and two-neighbor matching, as

well as simple and bias-adjusted estimates. For brevity, we consider only the uni-

variate homoskedastic model. Following the above results, we use only 7- and 10-cell

partitions, and only up to a linear fit. Table 1 presents mean-square error comparison

between the estimators. Gaussian approximations are given in Figures 14 and 15. In

the figures the 10-cell subclassification estimator with degree zero is given by the solid
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line, with the long-dashed line for degree one. Results are comparable with Jn = 7,

so this is excluded. The comparison estimator is given by the short-dashed line for

the “lower” degree (power series of degree four in the case of IPW and Series, or one

match) and a dotted line for the “higher” degree (degree six, two matches).

The subclassification estimator performs comparably to these alternatives. Both

the IPW and series estimators are known to attain the semiparametric efficiency

bound, which is borne out in panels (A) and (B) of Figures 14 and 15. Table 1 shows

that these estimators exhibit comparable variance to the subclassification estimator.

For a fixed number of matches, nearest-neighbor matching is well-centered but does

not attain the bound, and hence it is not surprising that the subclassification estimator

is more concentrated, see panels (C) and (D). The MSE of the matching estimator is

larger as a result. For a piecewise constant or linear fit, the subclassification estimator

appears to be on par with popular choices in the econometrics literature.

4.5 Extensions and Final Remarks

The main result of this chapter (Theorem 1) shows that the subclassification-based

estimator of the Dose-Response Function introduced in Section 2 is asymptotically

linear and semiparametric efficient under standard regularity conditions. Theorem

2 also demonstrates that a simple, consistent standard errors estimator is easy to

construct based on the idea of subclassification. In addition, the simulation study

reported in Section 4 suggests that this estimator performs well in finite samples.

The theoretical results presented in this chapter may be easily extended to cover

other potential estimands of interest. Perhaps the most natural extension would be to

consider estimating the quantiles of the distribution of Y (t), t ∈ T . (See, e.g., Firpo

(2007).) In this case, because the α-th quantile of Y (t), denoted by qt(α), solves

0 = E[m(Y (t), qt(α);α)] with m(y, q;α) = 1(y ≤ q) − α, a natural subclassification-

based estimator of qt(α) would be given by q̂t(α) = arg minq |Mn(q;α)|,

Mn(q;α) =
1

n

n∑
i=1

q̂t(Xi;α), q̂t(x;α) =

Jdn∑
j=1

Rj(Xi)
′β̂j,α,

β̂j,α = 1n,j(R
′
j,tRj,t)

−1R′j,tY (q;α), Y (q;α) = (m(Y1, q;α), · · · ,m(Yn, q;α))′.

Under appropriate regularity conditions, it seems plausible that the resulting estima-

tor q̂t(α) would also be asymptotically normal and semiparametric efficient. More

generally, it is natural to expect that such a result would hold for other estimands
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as defined by a choice of function m(·) in some appropriate class. For a discussion

on related ideas and other potential extensions see, e.g., (Cattaneo 2010) and refer-

ences therein. These extensions are not considered in this chapter for brevity, and

consequently are relegated for future work.

Another useful extension to the present work would be to develop a guide for

the choice of Jn in applications. The number of cells is the nonparametric tuning

parameter, and its choice is important for the finite sample properties of the estimator,

as discussed in Section 4. A natural criterion for choosing Jn would be to consider

a mean-square error expansion of the estimator, which could be minimized to find

the optimal number of cells. Among other things, this would be a function of K, the

smoothing parameter. Following this, a simple “plug-in” estimate could be proposed

for the optimal Jn.
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Figure 4.1: Empirical Average Bias for Univariate Models
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Table 4.1: Mean-Square Error Compared to Alternative Estimators

n = 500 n = 1,000
Bias Var. MSE Bias Var. MSE

Subclassification Estimator
Jn = 7 K = 1 0.484 10.172 10.407 0.887 9.868 10.655
Jn = 7 K = 2 -0.14 10.087 10.107 0.015 9.474 9.474
Jn = 10 K = 1 0.174 10.11 10.14 0.427 9.543 9.726
Jn = 10 K = 2 -0.138 10.285 10.304 0.021 9.595 9.595

IPW
Degree 4 -0.137 9.902 9.921 0.016 9.405 9.405
Degree 6 -0.358 10.567 10.695 -0.16 9.738 9.764

Series
Degree 4 -0.136 9.804 9.822 0.012 9.35 9.35
Degree 6 -0.357 10.446 10.573 -0.169 9.725 9.754

NN-Matching
Simple M=1 -0.135 13.24 13.258 -0.003 12.619 12.619
Simple M=2 -0.113 11.501 11.514 0.021 10.982 10.982
Bias-adj M=1 -0.138 13.24 13.259 -0.005 12.618 12.618
Bias-adj M=2 -0.12 11.502 11.516 0.018 10.981 10.981
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Figure 4.2: Coverage Rates for 95% Confidence Intervals for Univariate Models
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Figure 4.3: Normal Approx. for Univariate Homoskedastic Model, n = 500
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Figure 4.4: Normal Approx. for Univariate Homoskedastic Model, n = 1,000
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Figure 4.5: Normal Approx. for Univariate Heteroskedastic Model, n = 500
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Figure 4.6: Normal Approx. for Univariate Heteroskedastic Model, n = 1,000
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Figure 4.7: Empirical Average Bias for Bivariate Models
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Figure 4.8: Coverage Rates for 95% Confidence Intervals for Bivariate Models
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Figure 4.9: Normal Approx. for Bivariate Homoskedastic Model, n = 500
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Figure 4.10: Normal Approx. for Bivariate Homoskedastic Model, n = 1,000
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Figure 4.11: Normal Approx. for Bivariate Heteroskedastic Model, n = 500
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Figure 4.12: Normal Approx. for Bivariate Heteroskedastic Model, n = 1,000
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Figure 4.13: Normal Approx. for Bivariate Homoskedastic Model, n = 2,000
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Figure 4.14: Comparison to Alternative Estimators, n = 500
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Figure 4.15: Comparison to Alternative Estimators, n = 1,000
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APPENDIX A

Proofs for Chapter 2

Proofs for Chapter 2: Treatment Effect Inference

The proofs in this section are asymptotic in nature, compared to the nonasymp-

totic bounds of the next section. It shall be understood that asymptotic order symbols

hold for the sequence being considered, as a shorthand for the more formal versions

given in the assumptions (e.g. Assumption II.5). C will denote a generic positive

constant, which may be a matrix. Define the set of indexes It = {i : di = t}.

Proofs for Average Treatment Effects

Proof of Theorem II.7. SEE SUPPLEMENTAL APPENDIX.

We first prove Theorem II.8.1 assuming there is no additional randomness injected

into the support estimates. Following this, we redo the proof to account for additional

randomness. We then turn to the remaining portions of Theorem II.8 and to Corollary

II.9, which require shorter arguments.

We make frequent use of the linearization

1

a
=

1

b
+
b− a
ab

=
1

b
+
b− a
b2

+
(b− a)2

ab2
, (A.1)

where the first inequality is readily verified, and the second re-applies the first.

Proof of Theorem II.8.1 without Additional Randomness. With ψt(·) defined in Eqn.
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(2.3), we have
√
n(µ̂t − µt) =

√
nEn[ψt(yi, d

t
i, µt(xi), pt(xi), µt)] +R1 +R2, where

R1 =
1√
n

n∑
i=1

dti(yi − µt(xi))
(

1

p̂t(xi)
− 1

pt(xi)

)

and

R2 =
1√
n

n∑
i=1

(µ̂t(xi)− µt(xi))
(

1− dti
p̂t(xi)

)
.

The proof proceeds by showing that both R1 and R2 are oPn(1).

For R1, applying the first equality in Eqn. (A.1), we rewrite R1 as

R1 =
1√
n

n∑
i=1

dtiui

(
pt(xi)− p̂t(xi)
p̂t(xi)pt(xi)

)
.

Then, applying Assumptions II.3(b) and II.4(c) and the first-stage consistency con-

dition of Assumption II.5(a):

E
[
R2

1|{xi, di}ni=1

]
= En

[
dtiσt(xi)

pt(xi)4
(pt(xi)− p̂t(xi))2

]
≤ CEn[(pt(xi)−p̂t(xi))2] = oPn(1).

Next, again using Eqn. (A.1) we have

1− dti
p̂t(xi)

=
pt(xi)− dti
pt(xi)

+
dti(p̂t(xi)− pt(xi))

p̂t(xi)pt(xi)
.

We use this to re-write R2 = R21 +R22, where

R21 =
1√
n

n∑
i=1

(µ̂t(xi)− µt(xi))
(
pt(xi)− dti
pt(xi)

)

and

R22 =
1√
n

n∑
i=1

(µ̂t(xi)− µt(xi))(p̂t(xi)− pt(xi))
(

dti
p̂t(xi)pt(xi)

)
.

For the first term, as in R1, we have

E
[
R2

21|{yi, xi}ni=1

]
= En

[
(µ̂t(xi)− µt(xi))2

(
pt(xi)(1− pt(xi))

pt(xi)2

)]
≤ CEn

[
(µ̂t(xi)− µt(xi))2

]
= oPn(1),

by the first-stage consistency condition of Assumption II.5(a). Next, by Hölder’s
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inequality, Assumption II.3(b) and the rate condition of Assumption II.5(b)

|R22| ≤
√
n

(
max
i≤n

1

p̂t(xi)pt(xi)

)√
En,t[(µ̂t(xi)− µt(xi))2]En,t[(p̂t(xi)− pt(xi))2]

= OPn(1)
√
n
√

En,t[(µ̂t(xi)− µt(xi))2]En,t[(p̂t(xi)− pt(xi))2] = oPn(1).

This completes the proof, as |R1 + R2| = oPn(1) by Markov’s inequality and the

triangle inequality.

Proof of Theorem II.8.1 with Additional Randomness. We must reconsider the remain-

ders R1 and R2. For the former, applying Eqn. (A.1), we find R1 = R11 +R12, where

R11 =
1√
n

n∑
i=1

dtiui
pt(xi)2

(pt(xi)− p̂t(xi))

and

R12 =
1√
n

n∑
i=1

dtiui
pt(xi)2p̂t(xi)

(p̂t(xi)− pt(xi))2 .

For R11, we first add and subtract the parametric representation to get R11 = R111 +

R112, where,

R111 =
1√
n

n∑
i=1

dtiui
pt(xi)2

(
p̂t({x∗i

′γ∗t }NT )− p̂t({x∗i
′γ̂t}NT )

)
and

R112 =
1√
n

n∑
i=1

dtiui
pt(xi)2

(
pt(xi)− p̂t({x∗i

′γ∗t }NT )
)
.

By a two-term mean-value expansion R111 = R111a +R111b, with

R111a =
1√
n

n∑
i=1

dtiui
pt(xi)2

∑
t∈NT

{
p̂t({x∗i

′γ∗t }NT )(1− p̂t({x∗i
′γ∗t }NT ))(x∗i

′(γ̂t − γ∗t )
}

and

R111b =
1

2
√
n

n∑
i=1

dtiui
pt(xi)2

v′iH̄vi,

where vi = {x∗i ′(γ̂t− γ∗t )}NT and H = H({x∗i ′γ∗t +mtx
∗
i
′γ̂t}NT ) for appropriate scalars

mt.

For R111a, consider each term in the sum over NT one at a time; let R111a =∑
t∈NT R111a(t). Let t′ denote the original treatment under consideration. Define
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Σt,j = E
[
(x∗i,j)

2σ2
t′(xi)p̂t({x∗i ′γ∗t }NT )2(1− p̂t({x∗i ′γ∗t }NT ))2/pt′(xi)

3
]
. Then proceed as

follows

R111a(t) =
1√
n

n∑
i=1

(
dt
′
i uip̂t({x∗i ′γ∗t }NT )(1− p̂t({x∗i ′γ∗t }NT ))

pt′(xi)2

) ∑
j∈ŜD

x∗i,j(γ̂t − γ∗t )

=
∑
j∈ŜD

{
1√
n

n∑
i=1

(
x∗i,j

dt
′
i uip̂t({x∗i ′γ∗t }NT )(1− p̂t({x∗i ′γ∗t }NT ))

pt′(xi)2Σ
1/2
t,j

)}

× Σ
1/2
t,j (γ̂t,j − γ∗t,j)

≤
(

max
j∈Np

Σ
1/2
t,j

)(
max
j∈Np

1√
n

n∑
i=1

x∗i,j
dt
′
i uip̂t({x∗i ′γ∗t }NT )(1− p̂t({x∗i ′γ∗t }NT ))

pt′(xi)2Σ
1/2
t,j

)
× ‖γ̂t − γ∗t ‖1

= O(1)OPn(log(p)) ‖γ̂t − γ∗t ‖1 = oPn(1).

Convergence follows under Assumption II.6. For the penultimate equality, it follows

from Assumptions II.3(b), II.4(b), and II.4(c) that maxj∈Np Σt,j = O(1). Finally, the

center factor is shown to be OPn(log(p)) by applying the moderate deviation theory

for self-normalized sums of de la Peña, Lai, and Shao (2009, Theorem 7.4) and in

particular Belloni, Chen, Chernozhukov, and Hansen (2012, Lemma 5). To apply

this lemma, first note that the summand of the center factor has bounded third

moment and second moment bounded away from zero, from Assumptions II.3(b),

II.4(b), II.4(c), and the requirements of Assumptions II.5 and II.6. Σt,j normalizes

the second moment, and the lemma applies under the first restriction of Assumption

II.6.

Again by the results of Tanabe and Sagae (1992) and Assumption II.5, v′iH̄vi ≤
C‖vi‖22. Thus, using Assumption II.3(b) to bound maxi≤n pt(xi)

−2 < C, we find R111b

may be bounded as follows:

|R111b| ≤ C
∑
t∈NT

√
n(max

i∈It
|ui|)En,t

[
|x∗i
′(γ̂t − γ∗t )|2

]
≤ CT max

t∈NT

∣∣∣∣√n(max
i∈It
|ui|)En,t

[
|p̂t({x∗i

′γ̂t}NT )− p̂t({x∗i
′γ∗t }NT )|2

]∣∣∣∣ = oPn(1),

by the union bound and Assumption II.6, using the Assumptions II.3(b) and II.5(a)

to apply Eqn. (A.13) with the inequality reversed.

A variance bound may be applied to R112 as in the previous proof, and we have

|R112| = OPn(bs) = oPn(1) by Markov’s inequality.
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Next, R12 is simply bounded by

|R12| ≤
√
n(max

i∈It
|ui|)

(
max
i∈It

1

pt(xi)2p̂t(xi)

)
En,t

[
(p̂t(xi)− pt(xi))2

]
≤ OPn(1)

√
n(max

i∈It
|ui|)En,t

[
(p̂t(xi)− pt(xi))2

]
= oPn(1),

where the rate follows from Assumptions II.3(b), II.4, and II.5, and this tends to zero

by Assumption II.6.

As in the prior proof, write R2 = R21 + R22. The same bound is used for R22.

However, for R21, add and subtract the pseudotrue values to get R21 = R211 + R212,

where

R211 =
1√
n

n∑
i=1

(x∗i
′β̂t − x∗iβ∗t )

(
pt(xi)− dti
pt(xi)

)
and

R212 =
1√
n

n∑
i=1

(x∗iβ
∗
t − µt(xi))

(
pt(xi)− dti
pt(xi)

)
For the first term, define Σ̃t,j = E

[
(x∗i,j)

2(dti − pt(xi))2/pt(xi)2
]

and then proceed as

follows:

R211 =
1√
n

n∑
i=1

(
pt(xi)− dti
pt(xi)

)∑
j∈ŜY

x∗i,j(β̂t,j − β∗t,j)

=
∑
j∈ŜY

{
1√
n

n∑
i=1

x∗i,j(pt(xi)− dti)/pt(xi)
Σ̃

1/2
t,j

}
Σ̃

1/2
t,j (β̂t,j − β∗t,j)

≤
(

max
j∈Np

Σ̃
1/2
t,j

)(
max
j∈Np

1√
n

n∑
i=1

x∗i,j(pt(xi)− dti)/pt(xi)
Σ̃

1/2
t,j

)∥∥∥β̂t − β∗t ∥∥∥
1

= O(1)OPn(log(p))
∥∥∥β̂t − β∗t ∥∥∥

1
= oPn(1),

where the final line follows exactly as above.

A variance bound may be applied to R212 as in the previous proof, and we have

|R212| = OPn(bs) = oPn(1) by Markov’s inequality.

Proof of Theorem II.8.2. This claim follows directly from the prior result under the

moment conditions of Assumption II.4(e).

Proof of Theorem II.8.3. We begin with V̂W (t). Expanding the square and using Eqn.
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(A.1), rewrite V̂ W
µ (t) = En[dtiu

2
i pt(xi)

−2] +RW,1 +RW,2 +RW,3 where

RW,1 = En
[

dtiu
2
i

p̂t(xi)2pt(xi)2
(p̂t(xi)− pt(xi)) (p̂t(xi) + pt(xi))

]
,

RW,2 = En
[
dti(µt(xi)− µ̂t(xi))2

p̂t(xi)2

]
, and RW,3 = 2En

[
dtiui(µt(xi)− µ̂t(xi))

p̂t(xi)2

]
.

Using Hölder’s inequality, Assumptions II.3(b), II.4(e), and II.5(a), we have the fol-

lowing

RW,1 ≤
(

max
i∈It

p̂t(xi) + pt(xi)

p̂t(xi)2pt(xi)2

)
En[dti|ui|4]1/2En[dti(p̂t(xi)− pt(xi))2]1/2 = oPn(1),

RW,2 ≤
(

max
i∈It

1

p̂t(xi)2

)
En[dti(µ̂t(xi)− µt(xi))2] = oPn(1),

and,

RW,3 ≤ 2

(
max
i∈It

1

p̂t(xi)2

)
En[dti|ui|2]1/2En[dti(µ̂t(xi)− µt(xi))2]1/2 = oPn(1),

where En[|ui|4] = OPn(1) from the inequality of von Bahr and Esseen (1965). From the

same inequality it follows that En[dtiu
2
i pt(xi)

−2]−V W
µ (t)| = oPn(1), under Assumptions

II.3(b) and II.4(c).

Next consider the “between” variance estimator, V̂ B
µ . For any tNT and t′ ∈ NT ,

define

RB,1(t, t
′) = En [(µ̂t(xi)− µt(xi))(µ̂t′(xi)− µt′(xi))] ,

RB,2(t, t
′) = µ̂tEn [µ̂t′(xi)− µt′(xi)] , and RB,3(t, t

′) = En [µt(xi)(µ̂t′(xi)− µt′(xi))] .

From Hölder’s inequality, Assumption II.5(a), Theorem II.8.2, the von Bahr and

Esseen inequality, and Assumptions II.4(c) and II.4(e) it follows that RB,k(t, t
′) =

oPn(1) for k ∈ N3 and all pairs (t, t′) ∈ N2
t . With this in mind, we decompose

V̂ B
µ (t, t′) = En [µt(xi)µt′(xi)]− µ̂tEn [µt′(xi)]− µ̂t′En [µt(xi)] + µ̂tµ̂t′

+RB,1(t, t
′) +RB,2(t, t

′) +RB,2(t
′, t) +RB,3(t, t

′) +RB,3(t
′, t).

Consistency of V̂ B
µ (t, t′) now follows from the von Bahr and Esseen inequality and

Theorem II.8.2.

Proof of Corollary II.9. Suppose the result did not hold. Then, there would exist a
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subsequence Pm ∈ Pm, for each m, such that

lim
m→∞

∣∣∣∣PPm [G(µ) ∈
{
G(µ̂)± cα

√
∇G(µ̂)V̂∇′G(µ̂)/n

}]
− (1− α)

∣∣∣∣ > 0.

But this contradicts Theorem II.8, under which (∇G(µ̂)V̂∇′G(µ̂)/n)−1/2(G(µ̂)−G(µ))

is asymptotically standard normal under the sequence Pm.

Proofs for Average Treatment Effects on Treated Groups

Proofs are similar to those for Theorem II.8 and Corollary II.9, and hence we omit

them to save space.

Proofs for Chapter 2: Group Lasso Selection and Estimation

Unless otherwise noted, all bounds in this section are nonasymptotic. Further, as

the proofs are segregated we will use the generic notation X∗ and s for the covariates

and sparsity level.

Proofs for Multinomial Logistic Models

Lemmas

Lemma A.1 (Score Bound). For λD and P defined respectively in Eqn. (2.14) and

Eqn. (2.15) we have

P
[
max
j∈Np
‖En[(p̂t({x∗i

′γ∗t }NT )− dti)x∗i,j]‖2 ≥
λD
2

]
≤ P .

Proof. First, by the Cauchy-Schwarz inequality and Assumption II.4(b) and the bias

condition, we have

max
j∈Np
‖En[(p̂t({x∗i

′γ∗t }NT )− pt(xi))x∗i,j]‖2

≤ X‖En[(p̂t({x∗i
′γ∗t }NT )− pt(xi))2]1/2]‖2 ≤ X bds

√
T .

Therefore, by the triangle inequality and the definition of λD, with rn = T −1/2 log(p∨
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n)3/2+δ,

P
[
max
j∈Np
‖En[(p̂t({x∗i

′γ∗t }NT )− dti)x∗i,j]‖2 ≥
λD
2

]
≤ P

[
max
j∈Np
‖En[vt,ix

∗
i,j]‖2 + max

j∈Np
‖En[(p̂t({x∗i

′γ∗t }NT )− pt(xi))x∗i,j]‖2 ≥
λD
2

]
= P

[
max
j∈Np
‖En[vt,ix

∗
i,j]‖2 + max

j∈Np
‖En[(p̂t({x∗i

′γ∗t }NT )− pt(xi))x∗i,j]‖2

≥ X
√
T
[
bds +

1
√
n

(1 + rn)1/2
]]

= P

[
max
j∈Np
‖En[vt,ix

∗
i,j]‖2 ≥

X
√
T

√
n

(1 + rn)1/2
]

= P
[
max
j∈Np
‖En[vt,ix

∗
i,j]‖22 ≥

X 2T
n

(1 + rn)

]
,

canceling the bias terms from each side the squaring.

The residuals vt,i are conditionally mean-zero by definition and satisfy E[v2t,i|xi] ≤
1. Using this, Assumption II.4(a) and the definition of X , we find that

E
[
‖En[vt,ix

∗
i,j]‖22

]
=
∑
t∈NT

E
[
En[vt,ix

∗
i,j]

2
]

=
∑
t∈NT

1

n
E[v2t,i(x

∗
i,j)

2] ≤ X
2T
n

uniformly in j ∈ Np. Define the mean-zero random variables ξt,j as:

ξt,j = (En[vt,ix
∗
i,j])

2 − 1

n
E[V 2

t X
∗
j
2].

Thus, we further bound the probability as follows.

P
[
max
j∈Np
‖En[vt,ix

∗
i,j]‖2 ≥

X 2T
n

(1 + rn)

]
= P

[
max
j∈Np
‖En[vt,ix

∗
i,j]‖22 −

X 2T
n
≥ X

2T rn
n

]
≤ P

[
max
j∈Np

∑
t∈NT

ξt,j ≥
X 2T rn
n

]

≤ E

[
max
j∈Np

∣∣∣∣∣∑
t∈NT

ξt,j

∣∣∣∣∣
]

n

X 2T rn
, (A.2)

where final line follows from Markov’s inequality.

Next, applying Lemma 9.1 of Lounici, Pontil, van de Geer, and Tsybakov (2011)

(with their m = 1 and hence c(m) = 2) followed by Jensen’s inequality and Assump-
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tion II.4(c), we find that

E

[
max
j∈Np

∣∣∣∣∣∑
t∈NT

ξt,j

∣∣∣∣∣
]
≤ (8 log(2p))1/2E

(∑
t∈NT

max
j∈Np

ξ2t,j

)1/2


≤ (8 log(2p))1/2

(
E

[∑
t∈NT

max
j∈Np

ξ2t,j

])1/2

≤ 4 log(2p)1/2

(∑
t∈NT

X 4

n2
+
∑
t∈NT

E
[
max
j∈Np

∣∣En[vt,ix
∗
i,j]
∣∣4])1/2

. (A.3)

The leading 4 is
√

8
√

2, where
√

2 is a byproduct of applying the inequality (a−b)2 ≤
2(a2+b2) to ξ2t,j. Again using Lemma 9.1 of Lounici, Pontil, van de Geer, and Tsybakov

(2011) (with their m = 4, and c(m) = 12 since c(4) ≥ (e4−1 − 1)/2 + 2 ≈ 11.54), we

bound the expectation in the second term above as follows:

E
[
max
j∈Np

∣∣En[vt,ix
∗
i,j]
∣∣4] ≤ [8 log(12p)]4/2E

( n∑
i=1

max
j∈Np

∣∣∣∣vt,ix∗i,jn

∣∣∣∣2
)4/2

 ≤ 64 log(12p)2X 4

n2
,

(A.4)

using Assumptions II.4(a) and II.4(b).

Now, inserting the results of Eqns. (A.3) and (A.4) into Eqn. (A.2), we have

P
[
max
j∈Np
‖En[vt,ix

∗
i,j]‖2 ≥

λD
4

]
≤ 4n log(2p)1/2

T X 2rn

(∑
t∈NT

X 4

n2
+
∑
t∈NT

64 log(12p)2X 4

n2

)1/2

≤ 4 log(2p)1/2

rn
√
T

[1 + 64 log(12p)2]1/2 = P ,

using the choice rn = T −1/2 log(p ∨ n)3/2+δ.

Lemma A.2 (Estimate Sparsity). With probability at least 1− P

|S̃D| ≤ 4

λ2D
φ{Q, S̃D}

∑
t∈NT

En
[
(p̂t({x∗i

′γ̃t}NT )− p̂t({x∗i
′γ∗t }NT ))2

]
.

Proof. First, by Karush-Kuhn-Tucker conditions for (2.9), for all t ∈ NT , if γ̃·,j 6= 0

it must satisfy

En[x∗i,j(p̂t({x∗i
′γ̃t}NT )− dti)] = λD

γ̃t,j
‖γ̃·,j‖2

. (A.5)
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Hence, taking the `2-norm over t ∈ NT for fixed j ∈ S̃D, adding and subtracting the

true propensity score, using the triangle inequality, and the score bound (A.1), we

find that

λD =
∥∥En[x∗i,j(p̂t({x∗i

′γ̃t}NT )− dti)]
∥∥
2

≤
∥∥En[x∗i,j(p̂t({x∗i

′γ∗t }NT )− dti)]
∥∥
2

+
∥∥En[x∗i,j(p̂t({x∗i

′γ̃t}NT )− p̂t({x∗i
′γ∗t }NT ))]

∥∥
2

≤ λD/2 +
∥∥En[x∗i,j(p̂t({x∗i

′γ̃t}NT )− p̂t({x∗i
′γ∗t }NT ))]

∥∥
2
.

Let P ∗t be the vector of {p̂t({x∗i ′γ∗t }NT )}ni=1 and similarly for P̃t. Collecting terms,

then squaring both sides and and summing over j ∈ S̃D (i.e. applying ‖ · ‖22 over

j ∈ S̃D to both sides) yields∑
j∈S̃D

λ2D ≤ 4
∑
j∈S̃D

∑
t∈NT

En[x∗i,j(p̂t({x∗i
′γ̃t}NT )− p̂t({x∗i

′γ∗t }NT ))]2

= 4
∑
t∈NT

1

n2

∥∥∥∥[X ′(P̃t − P ∗t )
]
j∈S̃D

∥∥∥∥2
2

≤ 4
∑
t∈NT

φ{Q, S̃D}
n

∥∥∥P̃t − P ∗t ∥∥∥2
2,n

≤ 4φ{Q, S̃D}
∑
t∈NT

En
[
(p̂t({x∗i

′γ̃t}NT )− p̂t({x∗i
′γ∗t }NT ))2

]
.

The result now follows, as the left-hand side is equal to |S̃D|λ2D.

Lemma A.3 (Cone Constraint). Define δ̃·,· = γ̃·,· − γ∗·,·. With probability 1− P, δ̃·,·

obeys the cone constraint required by the definition of κD.

Proof. By the Cauchy-Schwarz inequality and Lemma A.1,∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′δ̃t

]
=
∑
j∈Np

∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i,j
]
δ̃t,j

≤
∑
j∈Np

√∑
t∈NT

En
[
(p̂t({x∗i ′γ∗t }NT )− dti)x∗i,j

]2√∑
t∈NT

δ̃2t,j

≤ max
j∈Np

{∥∥En [(p̂t({x∗i ′γ∗t }NT )− dti)x∗i,j
]∥∥

2

}∑
j∈Np

∥∥∥δ̃·,j∥∥∥
2

≤ λD
2

∣∣∣∣∣∣∣∣∣δ̃·,·∣∣∣∣∣∣∣∣∣
2,1
, (A.6)
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with probability at least 1− P .

By the optimality of δ̃·,·, we have

M(γ∗·,· + δ̃·,·) + λD

∣∣∣∣∣∣∣∣∣γ∗·,· + δ̃·,·

∣∣∣∣∣∣∣∣∣
2,1
≤M(γ∗·,·) + λD

∣∣∣∣∣∣γ∗·,·∣∣∣∣∣∣2,1,
implying

λD

{∣∣∣∣∣∣γ∗·,·∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,· + δ̃·,·

∣∣∣∣∣∣∣∣∣
2,1

}
≥M(γ∗·,· + δ̃·,·)−M(γ∗·,·)

≥
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′δ̃t

]
,

applying the convexity ofM. Using the bound in Eqn. (A.6) and rearranging we find

that

0 ≤ λD

{∣∣∣∣∣∣γ∗·,·∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,· + δ̃·,·

∣∣∣∣∣∣∣∣∣
2,1

}
+
λD
2

∣∣∣∣∣∣∣∣∣δ̃·,·∣∣∣∣∣∣∣∣∣
2,1
.

Canceling λD and decomposing the supports, we find that

0 ≤ 1

2

∣∣∣∣∣∣∣∣∣δ̃·,·∣∣∣∣∣∣∣∣∣
2,1

+

{∣∣∣∣∣∣γ∗·,·∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,· + δ̃·,·

∣∣∣∣∣∣∣∣∣
2,1

}
=

1

2

∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣
2,1

+
1

2

∣∣∣∣∣∣∣∣∣δ̃·,Sc∗∣∣∣∣∣∣∣∣∣
2,1

+
∣∣∣∣∣∣γ∗·,S∗∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,S∗ + δ̃·,S∗

∣∣∣∣∣∣∣∣∣
2,1
−
∣∣∣∣∣∣∣∣∣δ̃·,Sc∗∣∣∣∣∣∣∣∣∣

2,1
,

where the second line follows because γ∗·,Sc∗ = 0. Collecting terms and applying the

triangle inequality yields

1

2

∣∣∣∣∣∣∣∣∣δ̃·,Sc∗∣∣∣∣∣∣∣∣∣
2,1
≤ 1

2

∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣
2,1

+
∣∣∣∣∣∣γ∗·,S∗∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,S∗ + δ̃·,S∗

∣∣∣∣∣∣∣∣∣
2,1

≤ 1

2

∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣
2,1

+

∣∣∣∣∣∣∣∣∣∣γ∗·,S∗∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,S∗ + δ̃·,S∗

∣∣∣∣∣∣∣∣∣
2,1

∣∣∣∣
≤ 1

2

∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣
2,1

+
∣∣∣∣∣∣∣∣∣γ∗·,S∗ − (γ∗·,S∗ + δ̃·,S∗

)∣∣∣∣∣∣∣∣∣
2,1

=
1

2

∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣
2,1

+
∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣

2,1
.

Hence δ̃·,· belongs to the restricted set of (2.17).

Proof of Theorem II.12

Define δ̃·,· = γ̃·,· − γ∗·,·. By the optimality of δ̃·,·, we have

+λD

∣∣∣∣∣∣∣∣∣γ∗·,· + δ̃·,·

∣∣∣∣∣∣∣∣∣
2,1
≤M(γ∗·,·) + λD

∣∣∣∣∣∣γ∗·,·∣∣∣∣∣∣2,1.
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Rearranging and subtracting the score, we have

M(γ∗·,· + δ̃·,·)−M(γ∗·,·)−
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′] δ̃t

≤ λD

{∣∣∣∣∣∣γ∗·,·∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,· + δ̃·,·

∣∣∣∣∣∣∣∣∣
2,1

}
−
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′] δ̃t.
(A.7)

The proof proceeds by deriving a further upper bound to the right and a quadratic

lower bound of the left. The combination of these will yield a bound on En[(x∗i
′δ̃t)

2]1/2.

Let us begin with the right side of Eqn. (A.7). For the penalized difference of

coefficients we have

∣∣∣∣∣∣γ∗·,Sc∗∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,Sc∗ + δ̃·,Sc∗

∣∣∣∣∣∣∣∣∣
2,1

=
∣∣∣∣∣∣∣∣∣δ̃·,Sc∗∣∣∣∣∣∣∣∣∣

2,1
,

because γ∗·,Sc∗ = 0. Therefore,∣∣∣∣∣∣∣∣∣∣γ∗·,·∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,· + δ̃·,·

∣∣∣∣∣∣∣∣∣
2,1

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣γ∗·,S∗∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,S∗ + δ̃·,S∗

∣∣∣∣∣∣∣∣∣
2,1
−
∣∣∣∣∣∣∣∣∣δ̃·,Sc∗∣∣∣∣∣∣∣∣∣

2,1

∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣∣γ∗·,S∗∣∣∣∣∣∣2,1 − ∣∣∣∣∣∣∣∣∣γ∗·,S∗ + δ̃·,S∗

∣∣∣∣∣∣∣∣∣
2,1

∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣∣∣∣∣γ∗·,S∗ − (γ∗·,S∗ + δ̃·,S∗

)∣∣∣∣∣∣∣∣∣
2,1

∣∣∣∣
=
∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣

2,1
,

where the second step follows from the triangle inequality and dropping the nonneg-

ative norm, and the third by the triangle inequality again. Thus, using this result

for the first term and the bound (A.6) for the second, we find that the right side

of Eqn. (A.7) is bounded as follows, using the cone constraint, the Cauchy-Schwarz

inequality, and the definition of κD from Eqn. (2.17),

λD

∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣
2,1

+
λD
2

∣∣∣∣∣∣∣∣∣δ̃·,·∣∣∣∣∣∣∣∣∣
2,1
≤ λD

∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣
2,1

+
λD
2

∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣
2,1

+
λD
2

3
∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣

2,1

= 3λD

∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣
2,1

≤ 3λD
√
|S∗|

∥∥∥δ̃·,S∗∥∥∥
2

≤
3λD

√
|S∗|

κD
En[‖{x∗i

′δ̃t}NT ‖22]1/2. (A.8)
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Note that
∑

t∈NT δ̃
′
tQδ̃t = En[‖{x∗i ′δ̃t}NT ‖22].

Now turn to the left side of Eqn. (A.7). Our goal is to show that this is bounded

below by a quadratic function. We apply the bounds for Bach’s (2010) modified self-

concordant functions. To show that M(·) belongs to this class, we must bound the

third derivative in terms of the Hessian. Recall that

p̂t({x∗i
′γt}NT ) = exp{x∗i

′γt}/

(
1 +

∑
NT

exp{x∗i
′γt}

)
.

Define the T -square matrix H({x∗i ′γt}NT ) as having the (t, t′) ∈ N2
T entry given by

H({x∗i
′γt}NT )[t,t′] =

p̂t({x∗i ′γt}NT )(1− p̂t({x∗i ′γt}NT )) if t = t′

−p̂t({x∗i ′γt}NT )p̂t′({x∗i ′γt}NT ) if t 6= t′

First, note that M(γ·,·) can be written as

M(γ·,·) = En
[
log

(
1 +

∑
t∈NT

exp{x∗i
′γt}
)
−
∑
t∈NT

dti(x
∗
i
′γt)

]
.

Define F : RT → R as F (w) = log
(
1 +

∑
t∈NT exp(wt)

)
, so that

M(γ·,·) = En

[
F (wi)−

∑
t∈NT

dtiwi,t

]

, where wi,t = x∗i
′γt and wi = {wi,t}NT . Then for any w ∈ RT , v ∈ RT , and scalar α,

define g(α) = F (w + αv) : R → R. We verify the conditions of Bach (2010, Lemma

1) for this g(α) and F (w). This involves finding the third derivative of g(α), and

bounding it in terms of the second (i.e. the Hessian). To this end, note that he

multinomial function has the property that ∂p̂t({x∗i ′γt}NT )/∂γt = p̂t({x∗i ′γt}NT )(1 −
p̂t({x∗i ′γt}NT ))x∗i and ∂p̂t({x∗i ′γt}NT )/∂γt′,· = −p̂t({x∗i ′γt}NT )p̂t′({x∗i ′γt}NT )x∗i . From

these, we find that

g′(α) = v′F ′(w + αv) =
∑
t∈NT

vtp̂t(w + αv)

and

g′′(α) = v′F ′′(w + αv)v = v′H(w + αv)v.

To bound g′′′(α), we again use the derivatives of p̂t({x∗i ′γt}NT ) to find the derivatives
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of elements H(w). Routine calculations give, for any r 6= s 6= t:

∂H(w)t,t/∂wt = p̂t(w)(1− p̂t(w))(1− 2p̂t(w)) = H(w)t,t(1− 2p̂t(w))

∂H(w)t,t/∂wr = −p̂t(w)p̂r(w)(1− p̂t(w)) + p̂t(w)2p̂r(w)

= H(w)t,t(p̂t(w)p̂r(w)(1− p̂t(w))−1 − p̂r(w))

∂H(w)t,s/∂wt = −p̂t(w)p̂s(w)(1− 2p̂t(w)) = H(w)t,s(1− 2p̂t(w))

∂H(w)t,s/∂wr = −p̂t(w)p̂s(w)(−2p̂r(w)) = H(w)t,s(−2p̂r(w)).

Each derivative returns the same Hessian element multiplied by term bounded by 2

in absolute value. Let ar represent this factor. Then we bound

g′′′(α) =

∣∣∣∣∣∑
r∈NT

vr
∂v′H(w̃)v

∂wr

∣∣∣∣
w̃=w+αv

∣∣∣∣∣ =

∣∣∣∣∣∑
r∈NT

vrv
′H(w + αv)var

∣∣∣∣∣
≤
∑
r∈NT

v′H(w+αv)v|vr||ar| ≤ 2v′H(w+αv)v
∑
r∈NT

|vr| = 2‖v‖1g′′(α) ≤ 2
√
T ‖v‖2g′′(α).

Applying Bach’s (2010) Lemma 1 with wi = {x∗i ′γ∗t }NT and vi = {x∗i ′δ̃t}NT we get the

lower bound

M(γ∗·,· + δ̃·,·)−M(γ∗·,·)−
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′] δ̃t

≥ En
[
v′iH({x∗i ′γt}NT )vi

4T ‖vi‖22

(
e−2‖vi‖2 + 2‖vi‖2 − 1

)]
≥ En

[
v′iH({x∗i ′γt}NT )vi

4T ‖vi‖22

(
2‖vi‖22 −

4

3
‖vi‖32

)]
, (A.9)

where the second inequality follows from Belloni, Chernozhukov, and Wei (2013,

Lemma 9).

Tanabe and Sagae (1992, Theorem 1) giveH({x∗i ′γ∗t }NT ) ≥ φmin{H({x∗i ′γ∗t }NT )}IT ,

in the positive definite sense, where φmin(A) denotes the smallest eigenvalue of A and

IT is the T × T identity matrix. Then

φmin{H({x∗i γ∗t }NT )} ≥ det{H({x∗i
′γt}NT )} =

∏
t∈NT

p̂t({x∗i
′γ∗t }NT ) ≥

(
pmin

Ap

)T
,

where p0({x∗i ′γ∗t }NT ) = 1−
∑

t∈NT p̂t({x
∗
i
′γ∗t }NT ) and the first inequality is also due to
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Tanabe and Sagae (1992). These results imply that

v′iH({x∗i
′γt}NT )vi ≥ (pmin/Ap)

T v′iIT vi = (pmin/Ap)
T ‖vi‖22

and therefore

En
[
v′iH({x∗i ′γt}NT )vi

4T ‖vi‖22

(
2‖vi‖22 −

4

3
‖vi‖32

)]
≥
(
pmin

Ap

)T
1

4T
En
[
2‖vi‖22 −

4

3
‖vi‖32

]
=

(
pmin

Ap

)T
1

T
En[‖vi‖22]

2

(
1− 2

3

En[‖vi‖32]
En[‖vi‖22]

)
. (A.10)

Recall that vi = {x∗i ′δ̃t}NT . To prove a quadratic lower bound, consider two cases,

depending on whether

1

2

(
1− 2

3

En[‖{x∗i ′δ̃t}NT ‖32]
En[‖{x∗i ′δ̃t}NT ‖22]

)
is above or below 1/AK .

In the first case, combining Equations (A.9) and (A.10) gives

M(γ∗·,· + δ̃·,·)−M(γ∗·,·)−
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′] δ̃t

≥
(
pmin

Ap

)T
1

T
En[‖{x∗i ′δ̃t}NT ‖22]

AK
. (A.11)

Now consider the second case, where this bound does not hold. By Lemma A.3,

δ̃·,· is in the cone defined by (2.17), and therefore

‖{x∗i
′δ̃t}NT ‖1 =

∑
t∈NT

∑
j∈Np

∣∣∣x∗i,j δ̃t,j∣∣∣ ≤ X ∥∥∥δ̃·,·∥∥∥
1
≤
√
T X

∣∣∣∣∣∣∣∣∣δ̃·,·∣∣∣∣∣∣∣∣∣
2,1

=
√
T X4

∣∣∣∣∣∣∣∣∣δ̃·,S∗∣∣∣∣∣∣∣∣∣
2,1
≤
√
T X4

√
|S∗|

∥∥∥δ̃·,S∗∥∥∥
2
≤
√
T X4

√
|S∗|κ−1D En[‖{x∗i

′δ̃t}NT ‖22]1/2,

using Assumption II.4(b), the Cauchy-Schwarz inequality, decomposing the support

of δ·,·, and then following the same steps as (A.8). Hence, by subadditivity,

En[‖{x∗i
′δ̃t}NT ‖32] ≤ En[‖{x∗i

′δ̃t}NT ‖22‖{x∗i
′δ̃t}NT ‖1]

≤ En[‖{x∗i
′δ̃t}NT ‖22]3/2

√
T X4

√
|S∗|κ−1D .
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Thus

1

AK
>

1

2

(
1− 2

3

En[‖{x∗i ′δ̃t}NT ‖32]
En[‖{x∗i ′δ̃t}NT ‖22]

)
≥ 1

2

(
1−
√
T X8

√
|S∗|

3κD
En[‖{x∗i

′δ̃t}NT ‖22]1/2
)
,

which is equivalent to

En[‖{x∗i
′δ̃t}NT ‖22]1/2 > 3

(
1− 2

AK

)
κD

8X
√
T
√
|S∗|
≡ rn.

Because M(γ∗·,· + δ·,·) −M(γ·,·) −
∑

t∈NT En [(p̂t({x∗i ′γ∗t }NT )− dti)x∗i ′] δt is convex in

δ·,·, and hence any line segment lies above the function, we have know that

En[‖{x∗i
′δ̃t}NT ‖22]1/2 > rn

, we have

M(γ∗·,· + δ̃·,·)−M(γ·,·)−
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′] δ̃t ≥ r2n

≥ r2n
En[‖{x∗i ′δ̃t}NT ‖22]1/2

rn
= rnEn[‖{x∗i

′δ̃t}NT ‖22]1/2.

Combining this result with Equations (A.7) and (A.8), we have

3

(
1− 2

AK

)
κD

8X
√
T
√
|S∗|

En[‖{x∗i
′δt}NT ‖22]1/2 ≤

3λD
√
|S∗|

κD
En[‖{x∗i

′δt}NT ‖22]1/2,

which is impossible under the restriction on AK .

Therefore, Eqn. (A.11) must hold.1 Combining this with Equations (A.7) and

(A.8), we find that

(
pmin

Ap

)T
1

T
En[‖{x∗i ′δ̃t}NT ‖22]

AK
≤

3λD
√
|S∗|

κD
En[‖{x∗i

′δ̃t}NT ‖22]1/2.

Thus, dividing through and applying the union bound we find that

max
t∈NT

En[(x∗i
′δ̃t)

2]1/2 ≤ En[‖{x∗i
′δ̃t}NT ‖22]1/2 ≤

(
Ap
pmin

)T 3T AKλD
√
|S∗|

κD
. (A.12)

1Intuitively, the deviation δ̃·,· is too large for the quadratic bound to hold, and so this analysis
is conceptually similar to using Belloni and Chernozhukov’s (2011a) restricted nonlinearity impact
coefficient, but our characterization is different.

112



To bound the propensity score error, we apply the mean value theorem and the

form of ∂p̂t({x∗i ′γt}NT )/∂γt. We must linearize with respect to t only (recall that

p̂t({x∗i ′γ̃t}NT ) depends on all of γ̃·,·). To this end, define Mt as the T -vector with

entry t given by x∗i
′γ∗t + m̃tx

∗
i
′γ̃t for a scalar m̃t ∈ [0, 1] and entries t′ ∈ NT \ {t} equal

to x∗i
′γt′ . Then we have

∣∣p̂t({x∗i ′γ̃t}NT )− p̂t({x∗i
′γ∗t }NT )

∣∣ =
∣∣∣p̂t(Mt)[1− p̂t(Mt)]x

∗
i
′δ̃t

∣∣∣ ≤ ∣∣∣x∗i ′δ̃t∣∣∣ . (A.13)

Using this result coupled with the triangle inequality, the bias condition, and Eqn.

(A.12), we find

En[(p̂t({x∗i
′γ̃t}NT )− pt(xi))2]1/2

≤ En[(p̂t({x∗i
′γ̃t}NT )− p̂t({x∗i

′γ∗t }NT ))2]1/2 + En[(p̂t({x∗i
′γ∗t }NT )− pt(xi))2]1/2

≤ En
[
(x∗i
′δ̃t)

2
]1/2

+ bds

≤
(
Ap
pmin

)T 3T AKλD
√
|S∗|

κD
+ bds.

The `1 bound follows from Eqn. (A.12) by the Cauchy-Schwarz inequality and the

definition in Eqn. (2.19):

‖γ̃t − γ∗t ‖1 ≤
√
|S̃D ∪ S∗D| ‖γ̃t − γ

∗
t ‖2,p ≤

(
|S̃D ∪ S∗D|

φ{Q, S̃D ∪ S∗D}

)1/2

En[(x∗i
′(γ̃t − γ∗t ))2]1/2.

Finally, we bound the size of the selected set of coefficients. First, note that

optimality of γ̃·,· ensures that |S̃D| ≤ n. Then, restating the conclusion Lemma A.2

using the notation of the Theorem and the rate result (A.12), then bounding φ by φ

we find that

|S̃D| ≤ |S∗D|4Lnφ{Q, |S̃D|}.

The argument now parallels that used by Belloni and Chernozhukov (2011b), relying

on their result on the sublinearity of sparse eigenvalues. Let dme be the ceiling

function and note that dme ≤ 2m. For any m ∈ ND
Q , suppose that |S̃D| > m. Then,

|S̃D| ≤ |S∗D|4Lnφ{Q,m(|S̃D|/m)}

≤
⌈
|S̃D|/m

⌉
|S∗D|4Lnφ{Q,m}

≤ (|S̃D|/m)|S∗D|8Lnφ{Q,m}.
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Rearranging gives

m ≤ |S∗D|8Lnφ{Q,m}

whence m 6∈ ND
Q . Minimizing over ND

Q gives the result.

Proof of Theorem II.13

Define δ̂·,· = γ̂·,· − γ∗·,·. Many of the arguments parallel those for Theorem II.12.

The key differences are that a quadratic lower bound for M(γ∗·,· + δ̂·,·) −M(γ∗·,·) −∑
t∈NT En [(p̂t({x∗i ′γ∗t }NT )− dti)x∗i ′] δ̂t may occur, but is not necessary, and δ̂·,· may

not belong to the cone of the restricted eigenvalues, but obeys the sparse eigenvalue

constraints.

We first give a suitable upper bound for

M(γ∗·,· + δ̂·,·)−M(γ∗·,·)−
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′] δ̂t

. By the Cauchy-Schwarz inequality and the definition of the sparse eigenvalues of

Eqn. (2.19),∣∣∣∣∣∣∣∣∣δ̂·,·∣∣∣∣∣∣∣∣∣
2,1

=
∑

j∈ŜD∪S∗D

∥∥∥δ̂·,j∥∥∥
2

≤
√∣∣∣ŜD ∪ S∗D∣∣∣√∑

t∈NT

∑
j∈ŜD∪S∗D

δ̂2t,j

=

√∣∣∣ŜD ∪ S∗D∣∣∣√∑
t∈NT

∥∥∥δ̂·,j∥∥∥2
2

≤
√∣∣∣ŜD ∪ S∗D∣∣∣√∑

t∈NT

φ
{
Q, ŜD ∪ S∗D

}−2
δ̂′tQδ̂t

=

√∣∣∣ŜD ∪ S∗D∣∣∣φ{Q, ŜD ∪ S∗D}−1 En[‖{x∗i
′δ̂t}NT ‖22]1/2. (A.14)

Combining this bound with that of (A.6) yields∣∣∣∣∣∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′] δ̂t
∣∣∣∣∣ ≤ λD

2

∣∣∣∣∣∣∣∣∣δ̂·,·∣∣∣∣∣∣∣∣∣
2,1

≤ λD
2

√∣∣∣ŜD ∪ S∗D∣∣∣φ{Q, ŜD ∪ S∗D}−1 En[‖{x∗i
′δ̂t}NT ‖22]1/2. (A.15)
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Next we M(γ∗·,· + δ̂·,·) −M(γ∗·,·). By optimality of the post selection estimator

M(γ̂·,·) ≤M(γ̃·,·), as S̃D ⊂ ŜD by construction, and hence the right side of the prior

display is bounded by M(γ̃·,·) −M(γ∗·,·). By the mean value theorem, for scalars

{mt ∈ [0, 1]}NT ,M(γ̃·,·)−M(γ∗·,·), the bound of (A.6), the same steps in (A.13), and

(A.14) with δ̃·,· :

M(γ∗·,· + δ̃·,·)−M(γ∗·,·) =
∑
t∈NT

En
[
(dti − p̂t({x∗i

′γ∗t +mtx
∗
i
′δ̃t}))x∗i

′δ̃t

]
=
∑
t∈NT

En
[
(dti − p̂t({x∗i

′γ∗t }NT ))x∗i
′δ̃t

]
+
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− p̂t({x∗i
′γ∗t +mtx

∗
i
′δ̃t}))x∗i

′δ̃t

]
,

≤ λD
2

∣∣∣∣∣∣∣∣∣δ̃·,·∣∣∣∣∣∣∣∣∣
2,1

+
∑
t∈NT

En
[
mt(x

∗
i
′δ̃t)

2
]
.

≤ λD
2

√
|ŜD ∪ S∗D|

φ{Q, ŜD ∪ S∗D}
En[‖{x∗i

′δ̃t}NT ‖22]1/2 + En[‖{x∗i
′δ̃t}NT ‖22], (A.16)

using that mt ≤ 1.

Collecting the bounds of (A.15) and (A.16), and the definition of RM gives

M(γ∗·,· + δ̂·,·)−M(γ∗·,·)−
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′] δ̂t

≤ λD
2

√
|ŜD ∪ S∗D|

φ{Q, ŜD ∪ S∗D}

(
En[‖{x∗i

′δ̂t}NT ‖22]1/2 +RM

)
+R2

M.

Next, we turn to a lower bound. Consider the same two cases as in the proof of

Theorem II.12. In the first case, we have the quadratic lower bound:

M(γ∗·,· + δ̂·,·)−M(γ∗·,·)−
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′] δ̂t

≥
(
pmin

Ap

)T
1

T
En[‖{x∗i ′δ̂t}NT ‖22]

AK
. (A.17)

In the other case, this bound may not hold. Arguing as in the proof of Theorem II.12,

but applying Eqn. (A.14), we get

‖{x∗i
′δ̂t}NT ‖1 ≤

√
T X

√
|ŜD ∪ S∗D|φ{Q, ŜD ∪ S

∗
D}−1En[‖{x∗i

′δ̃t}NT ‖22]1/2.
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Therefore, as above, we find

M(γ∗·,· + δ̂·,·)−M(γ·,·)−
∑
t∈NT

En
[
(p̂t({x∗i

′γ∗t }NT )− dti)x∗i
′] δ̂t ≥ rnEn[‖{x∗i

′δ̂t}NT ‖22]1/2,

(A.18)

with

rn =
3

2

(
1− 2

AK

)
φ{Q, ŜD ∪ S∗D}

X
√
T
√
|ŜD ∪ S∗D|

.

Collecting the upper bounds of (A.15) and (A.16) and the lower bounds (A.17) and

(A.18), and using the definition of RM, we have

{(
pmin

Ap

)T
1

T
En[‖{x∗i ′δ̂t}NT ‖22]

AK

}
∧
{
rnEn[‖{x∗i

′δ̂t}NT ‖22]1/2
}

≤ λD
2

√
|ŜD ∪ S∗D|

φ{Q, ŜD ∪ S∗D}
En[‖{x∗i

′δ̂t}NT ‖22]1/2 +
λD
2

√
|ŜD ∪ S∗D|

φ{Q, ŜD ∪ S∗D}
RM +R2

M.

For some A1 > 1, replace the restriction on AK in the Theorem with the require-

ment that

AK > 2

{
φ{Q, ŜD ∪ S∗D}2

φ{Q, ŜD ∪ S∗D}2 − (A1/3)X
√
T λD|ŜD ∪ S∗D|

}

∨

 φ{Q, ŜD ∪ S∗D}

φ{Q, ŜD ∪ S∗D} − (A1/3)2RMX
√
T
√
|ŜD ∪ S∗D|

 .

Suppose the linear term is the minimum. Then, with the restrictions on AK (and

hence rn), we have

rnEn[‖{x∗i
′δ̂t}NT ‖22]1/2 ≤ (rn/A1)

(
En[‖{x∗i

′δ̂t}NT ‖22]1/2 +RM

)
+R2

M

≤ (rn/A1)
(
En[‖{x∗i

′δ̂t}NT ‖22]1/2 + 2RM

)
.

Therefore

En[‖{x∗i
′δ̂t}NT ‖22]1/2 ≤

2RM
A1 − 1

.
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On the other hand, if the quadratic term is the minimum, define

R′M =

(
Ap
pmin

)T T AKλD√|ŜD ∪ S∗D|
2φ{Q, ŜD ∪ S∗D}

,

and we have

En[‖{x∗i
′δ̂t}NT ‖22] ≤ R′MEn[‖{x∗i

′δ̂t}NT ‖22]1/2 +R′MRM +

(
Ap
pmin

)T
T AKR2

M.

Then, because a2 ≤ ab + c implies that a ≤ b +
√
c, we have the final bound on the

log-odds estimates:

En[‖{x∗i
′δ̂t}NT ‖22]1/2 ≤ R′M +

(
R′MRM +

(
Ap
pmin

)T
T AKR2

M

)1/2

. (A.19)

From this bound on the log-odds estimates, we obtain the bound on the propensity

score estimates and the `1 rate, given by,

max
t∈NT

En[(p̂t({x∗i
′γ̂t}NT )− pt(xi))2]1/2

≤
{

2RM
A1 − 1

}
∨

R′M +

(
R′MRM +

(
Ap
pmin

)T
T AKR2

M

)1/2
+ bds,

and

max
t∈NT
‖γ̂t − γ∗t ‖1

≤

(
|S̃D ∪ S∗D|

φ{Q, S̃D ∪ S∗D}

)1/2{
2RM
A1 − 1

}
∨

R′M +

(
R′MRM +

(
Ap
pmin

)T
T AKR2

M

)1/2
 ,

by arguments parallel to those used in the proof of Theorem II.12. The results as

stated now follow by setting A1 = 3.

Proofs for Linear Models

SEE SUPPLEMENTAL APPENDIX.

117



APPENDIX B

Proofs for Chapter 3

Proofs for Chapter 3

Complete technical details may be found in the online supplement. Let C denote

a generic positive constant that may take different values in different places. We

use
⊗

for Kronecker products and
∏

for usual multiplication. Matrix inequalities

are in the positive definite sense. Consecutive uses of the symbol � are interpreted

pairwise. For a multi-index k, we define the additional notation: k! = k1! · · · kd!,
k ≤ k̃ ⇔ k1 ≤ k̃1, . . . , kd ≤ k̃d, and

∑
[k]≤K =

∑K
L=0

∑
[k]=L for K ≥ 0.

Without loss of generality we take the basis to be centered at the midpoint of

each cell and scaled by the length of the cell. Observe that centering the polynomial

basis around the center of each cell avoids issues of differentiability at the boundary

of each cell and the support X . Define the one-to-one function g(k) : Zd+ → N that

gives the index position of R(x) corresponding to entry xk. Let g∗ = maxk{g(k) :

k ∈ Zd+, [k] ≤ K − 1}. For a generic cell Pj, let pj∗, pj, and p∗j be the vectors

in Rd giving the start, mid-point, and end of the cell, respectively, and let p`,j =

(p`,j + p`,j−1)/2 ∈ R be the midpoint of each interval. Define the matrix functions

D(a) to be the K × K diagonal matrix with entries given by a−(v−1), v = 1, . . . , K

and L(b) to be the K×K lower triangular matrix with typical element
(
u−1
v−1

)
(−b)u−v,

(u, v) ∈ {1, . . . , K : u ≥ v}. We then take the (rotated) polynomial basis to be given

by R̃j(x) ≡ 1Pj(x)R̃(x) = 1Pj(x)SK
⊗d

`=1

{
D
(
p`,j − p`,j

)
L(p`,j)r(x`)

}
, where SK is

a g∗ ×Kd selection matrix which removes terms of degree exceeding K − 1. Finally

let R̃j = (R̃j(X1), . . . , R̃j(Xn))′ and (globally) redefine Ωj = E[R̃j(X)R̃j(X)′]/qj and

Ω̂j = R̃′jR̃j/(nqj), maintaining the same notation for the latter two for simplicity.
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Preliminary Lemmas

Several intermediate lemmas are required before proving the main results. These

lemmas establish properties of partitioning estimators which may be of independent

interest for other applications.

Lemma B.1. Under Assumption III.1(b), the basis satisfies:

max
1≤j≤Jdn

max
[m]≤s

‖∂mR̃j(·)‖∞ = O(Jsn)

, for s ≤ K − 1.

Proof. By construction of the partition, for x ∈ Pj, |x − pj| ≤ |p∗j − pj| � J−1n . For

fixed x ∈ X and a multi-index m such that [m] ≤ K − 1:∣∣∣∂mR̃j(x)
∣∣∣2

=
1

(p∗j − pj)2m
1Pj(x)

∑
[k]≤K−1

1{m ≤ k}
{

k!

(k −m)!

(x− pj)k−m

(p∗j − pj)k−m

}2

= O
(
J2[m]
n

)
,

uniformly in 1 ≤ j ≤ Jdn, x ∈ Pj, and {m : [m] ≤ K − 1}, and in particular for those

satisfying [m] ≤ s ≤ K − 1, for any such s.

Lemma B.2. Define µj(x) ≡ 1Pj(x)µ(x), and following the definition in Eqn. (3.2),

∂mµj(x) ≡ 1Pj(x)∂mµ(x). Under Assumptions III.1(b) and III.1(e), there is a non-

random vector β0
j , depending only on K and j, such that for s ≤ S ∧ (K − 1):

max1≤j≤Jdn max[m]≤s ‖∂mµj(·)− ∂mR̃j(·)′β0
j ‖∞ = O(J

−((S+α)∧K−s)
n ).

Proof. Assumption III.1(e) implies that ∂mµj(x) satisfies the Taylor expansion for

x ∈ Pj given by:

∂mµj(x) =
∑

[k]≤S∧(K−1)−[m]

1

k!

(
∂k+mµj(pj)

) (
x− pj

)k
+O

(∣∣x− pj∣∣(S+α)∧K−[m]
)
,

(B.1)

with constants which can be made uniform in the multi-index m, s, and j. For k ∈ Zd+
define the function β0

j (k) = 1
k!

(
∂kµj(pj)

)
(p∗j − pj)k and the coefficient vector β0

j as
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the g∗ × 1 vector with entry e equal to β0
j (g
−1(e)). Therefore:

∂mR̃j(x)′β0
j

=
∑

[k]≤S∧(K−1)

1{m ≤ k}
(
x− pj

)k−m
(k −m)!

∂kµj(pj)

=
∑

[k̃+m]≤S∧(K−1)

(
x− pj

)k̃
k̃!

∂k̃+mµj(pj).

This matches the Taylor series, hence subtracting from Eqn. (B.1) completes the

proof.

Lemma B.3. Under Assumption III.1, Ωj � Ig∗, the identity matrix, uniformly in

j.

Proof. By Assumption III.1(d) and the construction of the partition, qj � J−dn . Ap-

plying this result and Assumption III.1(d) again, we have: Ωj � Jdn
∫
X R̃j(x)R̃j(x)′dx.

Now, by Assumption III.1(b), properties of the Kronecker product, and the construc-

tion of the transformed basis,

Ωj � JdnSK

d⊗
`=1


p`,j∫

p`,j−1

r

(
x` − p`,j
p`,j − p`,j

)
r

(
x` − p`,j
p`,j − p`,j

)′
dx`

S ′K .

Let H denote the Hilbert matrix of order K, which is positive definite. Changing

variables z = (x`− p`,j)/(p`,j− p`,j), applying |p`,j − p`,j−1| � J−1n , changing variables

t = (z + 1)/2, gives

Ωj � SK


d⊗
`=1

1∫
−1

r(z)r(z)′dz

S ′K

� SK

{
d⊗
`=1

[D(2)L(−1)]−1H [L(−1)D(2)]−1
}
S ′K � Ig∗ .

Lemma B.4. Let an = n−1Jdn log(Jdn). Under the conditions of Theorem III.2:

max1≤j≤Jdn |Ω̂j − Ωj|2 = Op (an). If, in addition, Jdn � (n/ log(n))γ, γ ∈ (0, 1), the

same is true almost surely.

Proof. For k, k̃ ∈ k ∈ Zd+ : [k] ≤ K − 1, let the (g(k), g(k̃)) element of (Ω̂j − Ωj) be
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denoted
∑n

i=1Wij(k, k̃)/(nqj), where

Wij(k, k̃) = [R̃j(Xi)R̃j(Xi)
′]g(k),g(k̃) − [E[R̃j(Xi)R̃j(Xi)

′]]g(k),g(k̃)

. By Lemma B.1 and the triangle inequality, |Wij(k, k̃)| ≤ C and E[Wij(k, k̃)2] ≤ Cqj.

Thus by Boole’s inequality, K being fixed, Bernstein’s inequality, and qj � J−dn :

P
[

max
1≤j≤Jdn

∣∣∣Ω̂j − Ωj

∣∣∣ > (an)1/2 ε

]
≤ CJdn max

1≤j≤Jdn
max

[k],[k̃]≤K−1
P

[∣∣∣∣∣
n∑
i=1

Wij(k, k̃)

∣∣∣∣∣ > qj
√
nJdn log(Jdn)ε

]

≤ CJdn max
1≤j≤Jdn

max
[k],[k̃]≤K−1

exp

{
−C

q2jnJ
d
n log(Jdn)ε2

nqj + qj
√
nJdn log(Jdn)ε

}
,

which is arbitrarily small for ε large enough by the rate restriction of Theorem III.2.

When Jdn � (n/ log(n))γ, the conclusion holds with probability one by the Borel-

Cantelli Lemma.

Lemma B.5. Let the conditions of Theorem III.3 hold, and for ξ therein let r2n =

n−1J
d(2−ξ)
n log(Jdn)ξ. Then for G = (µ(X1), . . . , µ(Xn))′, we have max1≤j≤Jdn |R̃

′
j(Y −

G)/(nqj)| = Op (rn). If, in addition, Jdn � (n/ log(n))γ, γ ∈ (0, 1), and η > 2(1 +

ξγ)/(1− ξγ), the same is true almost surely.

Proof. With the convention 0/0 = 0, define tn = J
dξ/η
n log(Jdn)−ξ/η. Following the

same notation as in Lemma B.4, let Hij(k) = 1Pj(Xi)[R̃j(Xi)]g(k)(Yi1{Yi ≤ tn} −
E[Yi1{Yi ≤ tn}|Xi]) and Tij(k) = 1Pj(Xi)[R̃j(Xi)]g(k)(Yi1{Yi > tn} − E[Yi1{Yi >
tn}|Xi]). For the truncated term, since |Hij(k)| ≤ tn and E[Hij(k)2] ≤ Cqj, Bern-

stein’s inequality and qj � J−dn give, for fixed k ∈ Zd+:

Jdn max
1≤j≤Jdn

P

[∣∣∣∣∣
n∑
i=1

Hij(k)

∣∣∣∣∣ > nqjrnε

]
≤ C exp

{
log(Jdn)

[
1− Cnr

2
n(Jdn log(Jdn))−1ε2

1 + tnrnε

]}
.

For the tails, by Markov’s inequality, E [Tij(k)] = 0, Lemma B.1, Assumption III.1(c),

and qj � J−dn :

Jdn max
1≤j≤Jdn

P

[∣∣∣∣∣
n∑
i=1

Tij(k)

∣∣∣∣∣ > nqjrnε

]

≤ C
Jdn

nr2nt
η
nε2

max
1≤j≤Jdn

1

q2j
E
[
1Pj(Xi)E

[
|Yi|2+η

∣∣Xi

]]
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≤ C
J2d
n

nr2nt
η
nε2

.

These two bounds do not depend on k, and hence by Boole’s inequality and K

constant,

P
[

max
1≤j≤Jdn

∣∣∣R̃′j(Y −G)/(nqj)
∣∣∣ > rnε

]
≤ CJdn max

1≤j≤Jdn
max

[k]≤K−1
P

[∣∣∣∣∣
n∑
i=1

Hij(k)

∣∣∣∣∣ > nqjrnε

]

+ CJdn max
1≤j≤Jdn

max
[k]≤K−1

P

[∣∣∣∣∣
n∑
i=1

Tij(k)

∣∣∣∣∣ > nqjrnε

]
,

which is arbitrarily small for ε large enough by ξ ∈ [0, 1], the rate restriction of the

Theorem, and the definition of tn. The conclusion holds with probability one by

the Borel-Cantelli Lemma if Jdn � (n/ log(n))γ and tn = nτ for (1 + ξγ)/η < τ <

(1− ξγ)/2.

Convergence Rates

Proof of Theorem III.2. Define 1n,j = 1{λmin(Ω̂j) ≥ C} for some positive constant

C, where λmin(Ω̂j) is the smallest eigenvalue, and take µ̂(x) =
∑Jdn

j=1 1n,jR̃j(x)′β̂j (cf.

Eqn. (3.1)). As min1≤j≤Jdn 1n,j = 1 w.p.a. 1, this distinction vanishes asymptotically.

First:

max
[m]≤s

∥∥∥∥∥∥∂mµ̂− ∂m
Jdn∑
j=1

1n,jµj

∥∥∥∥∥∥
2

2

≤ max
[m]≤s

3

Jdn∑
j=1

∥∥∥1n,j(∂mR̃j(·))′Ω̂−1j R̃′j(Y −G)/(nqj)
∥∥∥2
2

(Tn1)

+ max
[m]≤s

3

Jdn∑
j=1

∥∥∥1n,j(∂mR̃j(·))′Ω̂−1j R̃′j(G− R̃jβ
0
j )/(nqj)

∥∥∥2
2

(Tn2)

+ max
[m]≤s

3

Jdn∑
j=1

∥∥∥1n,j [(∂mR̃j(·))′β0
j − ∂mµj(·)

]∥∥∥2
2
.

(Tn3)

By properties of the trace, Assumption III.1(c), R̃j(R̃
′
jR̃j)

−1R̃′j idempotent, K

fixed, and qj � J−dn ,

E
[
|1n,jΩ̂−1/2j R̃′j(Y −G)/(nqj)|2

∣∣∣ {Xi}
]
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=
1n,j

nqj
tr
{
R̃j(R̃

′
jR̃j)

−1R̃′jE [ (Y −G)(Y −G)′| {Xi}]
}

≤ C
1n,j

nqj
tr

{
R̃j

(
R̃′jR̃j

)−1
R̃′j

}
≤ C

nqj
≤ CJdn

n
.

Hence, Tn1 ≤ Op(J
2s
n )
∑Jdn

j=1 1n,j

∣∣∣Ω̂−1/2j R̃′j(Y −G)/nqj

∣∣∣2 ∫Pj f(x)dx = Op

(
Jd+2s
n /n

)
,

by Markov’s inequality and Lemmas B.1 and B.4.

By Boole’s and Bernstein’s inequality and the condition of Theorem III.2:

P

[
max

1≤j≤Jdn

n∑
i=1

(1Pj(Xi)− qj) > nqjε

]

≤ C exp

{
log(Jdn)

[
1− C n

Jdn log(Jdn)

ε2

1 + ε

]}
→ 0. (B.2)

Therefore, by R̃j(R̃
′
jR̃j)

−1R̃′j idempotent and Lemma B.2:

max
1≤j≤Jdn

∣∣∣1n,jΩ̂−1/2j R̃′j(G− R̃jβ
0
j )/(nqj)

∣∣∣2 ≤ max
1≤j≤Jdn

∣∣∣(G− R̃jβ
0
j )
′(G− R̃jβ

0
j )/(nqj)

∣∣∣
≤ max

1≤j≤Jdn

∥∥∥1Pj(·)(µ(·)− R̃j(·)′β0
j )
∥∥∥2
∞

max
1≤j≤Jdn

1

nqj

n∑
i=1

1Pj(Xi) = Op

(
J−2((S+α)∧K)
n

)
.

(B.3)

Applying Lemmas B.1 and B.4, and
∑Jdn

j=1

∫
Pj
f(x)dx = 1, we have

Tn2 = Op(J
−2((S+α)∧K−s)
n ).

Finally, Lemma B.2 immediately gives:

Tn3 = O(J−2((S+α)∧K−s)n )

.

Proof of Theorem III.3. First:

max
[m]≤s

∥∥∥∥∥∥∂mµ̂− ∂m
Jdn∑
j=1

1n,jµj

∥∥∥∥∥∥
2

∞

≤ max
1≤j≤Jdn

max
[m]≤s

3
∥∥∥1n,j(∂mR̃j(·))′Ω̂−1j R̃′j(Y −G)/(nqj)

∥∥∥2
∞
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+ max
1≤j≤Jdn

max
[m]≤s

3
∥∥∥1n,j(∂mR̃j(·))′Ω̂−1j R̃′j(G− R̃jβ

0
j )/(nqj)

∥∥∥2
∞

+ max
1≤j≤Jdn

max
[m]≤s

3
∥∥∥1n,j(∂mR̃j(·))′β0

j − ∂mµj(·)
∥∥∥2
∞

= O
(
J2s
n

)
Op

(
J
d(2−ξ)
n log(Jdn)ξ

n

)
+Op

(
J−2((S+1)∧K−s)
n

)
,

where we apply Lemmas B.1, B.4, and B.5 for the first term; Lemmas B.1 and B.4

and Eqn. (B.3) for the second; and Lemma B.2 for the third. The result follows as

min1≤j≤Jdn 1n,j = 1 w.p.a. 1.

We now demonstrate a version of Theorem III.3 that holds with probability one.

Theorem B.6. Suppose the conditions of Theorem III.2 hold. If, in addition, for

some ξ ∈ [0, 1 ∧ η] the partition satisfies Jdn � (n/ log(n))γ, γ ∈ (0, 1) and η >

2(1 + ξγ)/(1− ξγ), then for s ≤ S ∧ (K − 1):

max
[m]≤s

‖∂mµ̂− ∂mµ‖2∞ = Oas

(
J
(2−ξ)d+2s
n log(Jdn)ξ

n
+ J−2((S+α)∧K−s)n

)
.

Proof of Theorem B.6. The rate restriction on Jn implies that of Theorem III.3,

whose proof may thus be strengthened to hold with probability one using Eqn.

(B.2).

Asymptotic Mean-Square Error

We first give three lemmas necessary for results. The first two are straightforward,

and Lemma B.9 follows identically to Lemma B.4. Proofs may be found in the

supplemental appendix.

Lemma B.7. Let the conditions of Theorem III.2 hold and g(·) be continuous on X .

Then for hj(x) = 1Pj(x)h(x), with remainder uniform in 1 ≤ j ≤ Jdn:
∫
Pj
h(z)g(z)dz =

g(pj)
∫
Pj
h(z)dz + max1≤j≤Jdn ‖hj(·)‖∞(o(J−dn )).

Lemma B.8. Let the conditions of Theorem III.2 hold. If g(·) is continuous on X ,

then:
∑Jdn

j=1 g(pj) vol(Pj) =
∫
X g(z)dz + o(1).

Lemma B.9. Under the conditions of Theorem III.5, for Γj defined Eqn. (3.4) and
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any k ∈ Zd+:

(a) max
1≤j≤Jdn

∣∣∣∣∣ 1

nqj

n∑
i=1

R̃j(Xi)R̃j(Xi)
′σ2(Xi)− Γj

∣∣∣∣∣
2

= Op

(
Jdn log(Jdn)

n

)
;

(b) max
1≤j≤Jdn

∣∣∣∣∣ 1

nqj

n∑
i=1

R̃j(Xi)
(Xi − pj)k

(p∗j − pj)k
− 1

qj
E
[
R̃j(X)

(Xi − pj)k

(p∗j − pj)k

]∣∣∣∣∣
2

= Op

(
Jdn log(Jdn)

n

)
.

Proof of Theorem III.5. We first give some notation and facts used repeatedly through-

out. With a slight abuse notation, let |X |k =
∏d

`=1 |X`|k` . Let U = ×d
`=1[−1, 1]. We

frequently use the change of variables z` = (x` − p`,j)/(p`,j − p`,j), ` = 1, . . . , d, the

Jacobian of which is
∏d

`=1(p`,j−p`,j) = 2−d vol(Pj) = (2Jn)−d vol(X ). For any k ∈ Zd+:

(p∗j − pj)k = (2Jn)−[k]|X |k.
Using Lemmas B.1 and B.7 and the change of variables above, we get the following

results, which also hold for w(x) = f(x) or m = 0:

(a)

∫
X

(∂mR̃j(x))(x− pj)k−mw(x)dx

= 2−dw(pj)(p
∗
j − pj)k−2m vol(Pj)

∫
U

(∂mR(z))zkdz + o(J−d−Kn );

(b) Ωj =
2−d

qj
f(pj) vol(Pj)

∫
U

R(z)R(z)′dz + o(J−dn );

(c)

∫
X

(∂mR̃j(x))(∂mR̃j(x))′w(x)dx

=
2−dw(pj) vol(Pj)

(p∗j − pj)2m

∫
U

(∂mR(z)) (∂mR(z))′ dz + o(J−d−2[m]
n ).

First consider the conditional variance term:
∫
X V[∂mµ̂(x) | Xdata]w(x)dx. By

Lemma B.7, Γj = σ2(pj)Ωj + o(J−dn ). Applying this result and Lemmas B.1, B.4, and

B.9(a), we have:

V

 Jdn∑
j=1

(∂mR̃j(x))′1n,jΩ̂
−1
j R̃jY/(nqj)|Xdata


=

Jdn∑
j=1

1

nqj
(∂mR̃j(x))′Ω−1j ΓjΩ

−1
j (∂mR̃j(x)) + op

(
J
d+2[m]
n

n

)
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=

Jdn∑
j=1

1

nqj
σ2(pj) tr

{
Ω−1j (∂mR̃j(x))(∂mR̃j(x))′

}
+ op

(
J
d+2[m]
n

n

)
.

Integrating the above expression, applying Lemma B.7, the above facts and change

of variables, and Lemma B.8 (under Assumption III.4(a)), we have:

Jdn∑
j=1

1

nqj
σ2(pj) tr

Ω−1j

∫
X

(
∂mR̃j(x)

)(
∂mR̃j(x)

)′
w(x)dx

+ op

(
J
d+2[m]
n

n

)

=
J
d+2[m]
n

n

22[m]

|X |2m vol(X )

∫
X

σ2(x)

f(x)
w(x)dx


× tr


∫
U

R(z)R(z)′dz

−1 ∫
U

(∂mR(z)) (∂mR(z))′ dz


× [1 + o(1)] + op

(
Jd+2[m]
n /n

)
.

Next consider the bias portion of the expansion:
∫
X (E[µ̂(x)|Xdata]−µ(x))2w(x)dx.

Define TK,j,m(x) =
∑

k:[k]=K

(
∂kµj(pj)

)
(x− pj)k−m/(k −m)!, so that under Assump-

tion III.4(b), ∂mµj(x) = TK,j,m(x) + o(J
−(K−[m])
n ) uniformly in 1 ≤ j ≤ Jdn. Then by

Lemmas B.4 and B.9,

Jdn∑
j=1

∂mR̃j(x)′1n,j(R̃
′
jR̃j)

−1
n∑
i=1

R̃j(Xi)µ(Xi)−
Jdn∑
j=1

∂mµj(x))

=

Jdn∑
j=1

(
∂mR̃j(x)′1n,j(R̃

′
jR̃j)

−1

(
n∑
i=1

R̃j(Xi)R̃j(xi)
′

)
β0
j − ∂mµj(x)

)

+

Jdn∑
j=1

∂mR̃j(x)′1n,j(R̃
′
jR̃j)

−1
n∑
i=1

R̃j(Xi)
(
TK,j,0(Xi) + o(J−Kn )

)
= −

Jdn∑
j=1

1n,j1Pj(x)Tk,j,m(x) +

Jdn∑
j=1

∂mR̃j(x)′1n,j(R̃
′
jR̃j)

−1
n∑
i=1

R̃j(Xi)TK,j,0(Xi)

+ op
(
J−(K−[m])
n

)
=
∑
[k]=K

Jdn∑
j=1

1Pj(x)
(
∂kµj(pj)

)(∂mR̃j(x)′

k!qj
Ω−1j E

[
R̃j(X)(X − pj)k

]
−

(x− pj)k−m

(k −m)!

)
+ op

(
J−(K−[m])
n

)
.
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Then since min1≤j≤Jdn 1n,j = 1 w.p.a. 1 by Lemma B.4, the integrated, squared bias

becomes:

Jdn∑
j=1

∑
k, k̃

[k]=[k̃]=K

(
∂kµj(pj)

) (
∂k̃µj(pj)

){ 1

(k −m)!(k̃ −m)!

∫
Pj

(x− pj)k+k̃−2mw(x)dx

+
1

k!k̃!

1

q2j

∫
Pj

∂mR̃j(x)′Ω−1j E
[
R̃j(X)(X − pj)k

]
× E

[
(X − pj)k̃R̃j(X)′

]
Ω−1j ∂mR̃j(x)w(x)dx

− 1

k!(k̃ −m)!

1

qj

∫
Pj

(x− pj)k̃−m∂mR̃j(x)′w(x)dxΩ−1j E
[
R̃j(X)(X − pj)k

]

− 1

k̃!(k −m)!

1

qj

∫
Pj

(x− pj)k−m∂mR̃j(x)′w(x)dxΩ−1j E
[
R̃j(X)(X − pj)k̃

]}

+ op
(
J−2(K−[m])
n

)
=

Jdn∑
j=1

∑
k, k̃

[k]=[k̃]=K

(
∂kµj(pj)

) (
∂k̃µj(pj)

)
{B1 +B2 −B3 −B4}+ op

(
J−2(K−[m])
n

)
,

where the final equality defines the terms B1–B4. Applying Lemma B.7 and the

change of variables above, and discarding a remainder of order o(J−dn )O(J
−2(K−[m])
n ),

these terms are:

B1 =
w(pj)

(k −m)!(k̃ −m)!

∫
Pj

(x− pj)k+k̃−2mdx

=
(p∗j − pj)k+k̃−2mw(pj) vol(Pj)

2d(k −m)!(k̃ −m)!

∫
U

zk+k̃−2mdz;

B2 =
1

k!k̃!

1

q2j

∫
Pj

tr
{

(∂mR̃j(x))′Ω−1j E
[
R̃j(X)(X − pj)k

]
× E

[
(X − pj)k̃R̃j(X)′

]
Ω−1j (∂mR̃j(x))

}
w(x)dx

=
(p∗j − pj)k+k̃−2mw(pj) vol(Pj)

2dk!k̃!
tr

{∫
U

R(x)R(x)′dz

−1 ∫
U

R(z)zkdz
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×
∫
U

R(z)′zk̃dz

∫
U

R(z)R(z)′dz

−1 ∫
U

(∂mR(z)) (∂mR(z))′ dz

}
;

B3 =
(p∗j − pj)k+k̃−2mw(pj) vol(Pj)

2dk!(k̃ −m)!

∫
U

(∂mR(z))′zk̃−mdz

×

∫
U

R(z)R(z)′dz

−1 ∫
U

R(z)zkdz;

and finally B4 is identical to B3 except with k and k̃ reversed.

All four terms have the common factor (p∗j − pj)k+k̃−2mw(pj) vol(Pj), which con-

tains all dependence on the partition. By Lemma B.8, the facts at the outset,

and that [k] = [k̃] = K:
∑Jdn

j=1(∂
kµj(pj))(∂

k̃µj(pj))(p
∗
j − pj)

k+k̃−2mw(pj) vol(Pj) =

(2Jn)−2(K−[m])|X |k+k̃−2m ×∫
X (∂kµj(x))(∂k̃µj(x))w(x)dx[1 + o(1)].

Define:

VK,d,m =
22[m]

vol(X )

(
d∏
`=1

|X`|−2m`
)∫

X

σ2(x)

f(x)
w(x)dx


× tr


∫
U

R(z)R(z)′dz

−1 ∫
U

(∂mR(z)) (∂mR(z))′ dz

 ;

(B.4)

128



BK,d,m =
1

22(K+d−[m])

∑
k, k̃

[k]=[k̃]=K

(
d∏
`=1

|X`|k`+k̃`−2m`
)∫

X

(
∂kµ(x)

) (
∂k̃µ(x)

)
w(x)dx



×

{
1

(k −m)!(k̃ −m)!

∫
U

zk+k̃−2mdz

×+
1

k!k̃!
tr

[∫
U

R(z)R(z)′dz

−1 ∫
U

R(z)zkdz

×
∫
U

R(z)′zk̃dz

∫
U

R(z)R(z)′dz

−1 ∫
U

(∂mR(z)) (∂mR(z))′ dz

]

− 1

k!(k̃ −m)!

∫
U

(∂mR(z))′zk̃−mdz

∫
U

R(z)R(z)′dz

−1 ∫
U

R(z)zkdz

− 1

k̃!(k −m)!

∫
U

(∂mR(z))′zk−mdz

∫
U

R(z)R(z)′dz

−1 ∫
U

R(z)zk̃dz

}
.

(B.5)

Combining all the above steps we obtain the final result, with min1≤j≤Jdn 1n,j = 1

w.p.a. 1.

Finally, we note that for [m] = 0:

BK,d,0 =
1

22K+d

∑
k,k̃

[k]=[k̃]=K

1

k!k̃!

(
d∏
`=1

|X`|k`+k̃`
)

∫
X

(
∂kµ(x)

) (
∂k̃µ(x)

)
w(x)dx


×


∫
U

zk+k̃dz −
∫
U

R(z)′zk̃dz

∫
U

R(z)R(z)′dz

−1 ∫
U

R(z)zkdz

 .

(B.6)

Bahadur Representation and Asymptotic Normality

Proof of Theorem III.7. Using the linearity condition on θ(·), we express the remain-

der in Eqn. (3.3) as θ(νn) = Tn1 +Tn2 +Tn3 +Tn4, where Tn1 =
∑Jdn

j=1 Θ′j1n,jΩ
−1
j (Ωj−
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Ω̂j)Ω̂
−1
j R̃′j(Y −G)/(nqj), Tn2 =

∑Jdn
j=1 Θ′j1n,jΩ̂

−1
j R̃′j(G− R̃jβ

0
j )/(nqj),

Tn3 =

Jdn∑
j=1

1n,j(Θ
′
jβ

0
j − θ(µj)),

and Tn4 =
∑Jdn

j=1(1n,j − 1)[θ(µj) + Θ′jΩ
−1
j R̃′j(Y −G)/(nqj)].

Further, we can write Tn1 = Tn11 − Tn12, with Tn11 =
∑n

i=1

∑Jdn
j=1 Θ′j1n,jΩ

−1
j (Ωj −

Ω̂j)Ω
−1
j (Ωj − Ω̂j)Ω̂

−1
j R̃j(Xi)εi/(nqj) and

Tn12 =
n∑
i=1

Jdn∑
j=1

Θ′j1n,jΩ
−1
j (Ω̂j − Ωj)Ω

−1
j R̃j(Xi)εi/(nqj).

Applying linearity and then continuity of the functional θ(·) from Assumption III.6,

followed by Lemmas B.1, B.3, B.4, and B.5 we have the following bound on |Tn11|:

|Tn11| =

∣∣∣∣∣∣θ
 Jdn∑

j=1

(R̃j(·))′1n,jΩ−1j (Ωj − Ω̂j)Ω
−1
j (Ωj − Ω̂j)Ω̂

−1
j

R̃′j(Y −G)

nqj

∣∣∣∣∣∣
≤ C max

[m]≤s

∥∥∥∥∥∥
Jdn∑
j=1

(∂mR̃j(·))′1n,jΩ−1j (Ωj − Ω̂j)Ω
−1
j (Ωj − Ω̂j)Ω̂

−1
j

R̃′j(Y −G)

nqj

∥∥∥∥∥∥
∞

≤ C

(
max

1≤j≤Jdn
max
[m]≤s

‖∂mR̃j(·)‖∞
)(

max
1≤j≤Jdn

∣∣∣Ωj − Ω̂j

∣∣∣2)( max
1≤j≤Jdn

∣∣∣1n,jΩ̂−1j ∣∣∣)
×
(

max
1≤j≤Jdn

∣∣Ω−1j ∣∣2)
(

max
1≤j≤Jdn

∣∣∣∣∣R̃′j(Y −G)

nqj

∣∣∣∣∣
)

= Op

(
J
(2−ξ/2)d+s
n log(Jdn)1+ξ/2

n3/2

)
.

For Tn12, begin by defining

Wj(i, l) = 1n,jΩ
−1
j

(
R̃j(Xi)R̃j(Xi)

′ − E[R̃j(Xi)R̃j(Xi)
′]
)

Ω−1j R̃j(Xl)εl,

so that we write Tn12 =
∑Jdn

j=1

∑n
i=1

∑n
l=1 Θ′jWj(i, l)/(n

2q2j ). Observe that E[Tn12] = 0

and that unless i = h and l = m, E [Wj(i, l)Wj(h,m)] = 0. By Lemmas B.1 and B.3,

Assumption III.1(c), and qj � J−dn , we have:

max
1≤j≤Jdn

E[Wj(i, i)Wj(i, i)
′]
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≤ C( max
1≤j≤Jdn

|Ω−1j |4)(|R̃j(·)|6∞)(sup
x∈X

σ2(x)) max
1≤j≤Jdn

E[1Pj(Xi)] = O(J−dn ).

Similarly max1≤j≤Jdn E [Wj(i, l)Wj(i, l)
′] = O(J−2dn ). Further, by Assumption III.6 and

Lemma A.1 give that:

max
1≤j≤Jdn

|Θj| ≤ C max
1≤j≤Jdn

max
[m]≤s

‖∂mR̃j(·)‖∞ = O(Jsn)

. Therefore the variance of Tn2 is Op(J
2d+2s
n /n2) because

E[T 2
n2] =

Jdn∑
j=1

1

(nqj)4

n∑
i=1

n∑
l=1

Θ′jE [Wj(i, l)Wj(i, l)
′] Θj

≤ CJ4d
n

n4

(
max

1≤j≤Jdn
|Θj|

)(
max

1≤j≤Jdn
nE [Wj(i, l)Wj(i, l)

′] + n(n− 1)E [Wj(i, l)Wj(i, l)
′]

)
×

(
max
[m]≤s

max
1≤j≤Jdn

sup
x∈Pj

(∂mR̃j(·))

)
,

using qj � J−dn , linearity and continuity of θ(·), and Lemma B.1. Hence |Tn2| =

Op

(
Jd+sn /n

)
, by Markov’s inequality.

Similar steps as employed for Tn11 give |Tn2| = Op(J
−((S+α)∧K−s)
n ) and |Tn3| =

Op(J
−((S+α)∧K−s)
n ), additionally applying Lemma B.2. Finally, from min1≤j≤Jdn 1n,j =

1 w.p.a. 1 it follows that Tn4 is smaller order than the other terms. This completes

the proof.

We now demonstrate a version of Theorem III.7 that holds with probability one.

Theorem B.10. Let Assumption III.6 hold with s ≤ S ∧ (K − 1), and consider the

representation in Eqn. (3.3). If the conditions of Theorem B.6 hold, then:

θ(νn) = Oas

(
J
(3/2−ξ/2)d+s
n log(Jdn)(1+ξ)/2

n
+ J−((S+α)∧K−s)n

)
.

Proof of Theorem B.10. Use the same expansion as in the proof of Theorem III.7.

Remainders Tn2, Tn3, and Tn4 are handled identically, applying the almost sure ver-

sions of the same steps, but Tn1 is bounded directly, using the same steps as for Tn11

above.

Proof of Theorem III.8(a). By assumption σ2(x) is bounded away from zero, so under
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Assumption III.1(c) we have Γj � Ωj. Further by qj � J−dn and Lemma B.3 we have:

Vn � E[Ψn(X)2] = ‖Ψn‖22 , and Vn �
Jdn∑
j=1

Θ′jΩ
−1
j Θj/qj � Jdn

Jdn∑
j=1

|Θj|2. (B.7)

The condition that θ(νn) = op(
√
Vn/
√
n) and the result of Theorem III.7 imme-

diately give the triangular array representation of the Theorem. By construction,

E[Ψn(Xi)εi/
√
nVn] = 0 and

∑n
i=1 E[

(
Ψn(Xi)εi/

√
nVn

)2
] = 1. It remains to verify

the Lindeberg condition. For any δ > 0, by the Hölder and Markov inequalities,

Assumption III.1(c), Vn � ‖Ψn‖22 by Eqn. (B.7), and the conditions of the Theorem,

n∑
i=1

E

[(
Ψn(Xi)εi√

nVn

)2

1

{∣∣∣∣Ψn(Xi)εi√
nVn

∣∣∣∣ > δ

}]

≤ n

[
E

[(
Ψn(Xi)εi√

nVn

)2+η
]] 2

2+η [
P
[∣∣∣∣Ψn(Xi)εi√

nVn

∣∣∣∣ > δ

]] η
2+η

≤ 1

δη
E [|Ψn(Xi)|2+ηE[|εi|2+η | Xi]]

nη/2V
1+η/2
n

= O

((
‖Ψn‖2+η

nη/(4+2η)‖Ψn‖2

)2+η
)
→ 0.

Convergence in distribution follows by the Lindeberg-Feller central limit theorem.

For the second conclusion, observe that by 1n,j = 1 w.p.a. 1, uniformly in j, we

have V̂n/Vn − 1 = Tn1 + Tn2 + Tn3 + op(1), where

Tn1 = V −1n V̂n − V −1n

Jdn∑
j=1

1n,jΘ
′
jΩ̂
−1
j Γ̃jΩ̂

−1
j Θj/qj,

Tn2 = V −1n

Jdn∑
j=1

1n,jΘ
′
j(Ω̂

−1
j + Ω−1j )Γ̃j

(
Ω̂−1j − Ω−1j

)
Θj/qj,

Tn3 = V −1n

Jdn∑
j=1

Θ′jΩ
−1
j

(
Γ̃j − Γj

)
Ω−1j Θj/qj,

and Γ̃j =
∑n

i=1 R̃j(Xi)R̃j(Xi)
′ε2i /(nqj). First, expanding the squared terms, Tn1 can

be split into two terms, and upon applying Lemmas B.1 and B.4, qj � J−dn , Eqns.

(B.2) and (B.7), and the condition of the Theorem, we find that

Tn1 = V −1n

Jdn∑
j=1

1n,jΘ
′
jΩ̂
−1
j

(
1

nqj

n∑
i=1

R̃j(Xi)R̃j(Xi)
′(µ̂(Xi)− µ(Xi))

2

)
Ω̂−1j Θj/qj
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− V −1n

Jdn∑
j=1

1n,jΘ
′
jΩ̂
−1
j

(
1

nqj

n∑
i=1

R̃j(Xi)R̃j(Xi)
′2εi(µ̂(Xi)− µ(Xi))

)
Ω̂−1j Θj/qj

≤
(

max
1≤j≤Jdn

1n,j|Ω̂−1j |2
)(

max
1≤j≤Jdn

‖R̃j(·)‖2∞
)

(‖µ̂− µ‖∞)

×

‖µ̂− µ‖∞ Jdn
Vn

Jdn∑
j=1

|Θj|2
1

nqj

n∑
i=1

1Pj(Xi) +
Jdn
Vn

Jdn∑
j=1

|Θj|2
1

nqj

n∑
i=1

1Pj(Xi)|εi|


= Op (‖µ̂− µ‖∞)× {op(1)O(1)Op(1) +Op(1)} = op(1),

where the final line additionally uses Assumption III.1(c) and the final relation of

Eqn. (B.7) to give:

E

Jdn
Vn

Jdn∑
j=1

|Θj|2
1

nqj

n∑
i=1

1Pj(Xi)|εi|

 ≤ C
Jdn
Vn

Jdn∑
j=1

|Θj|2
E
[
1Pj(Xi)E [|εi| | Xi]

]
qj

= O(1).

By Lemma B.1 and otherwise identical steps to the above, we get:

E[V −1n

Jdn∑
j=1

|Θj|2|Γ̃j|/qj] = O(1).

Therefore, applying Lemmas B.3 and B.4: |Tn2| ≤ C(max1≤j≤Jdn 1n,j|Ω̂
−1
j |3∧|Ω−1j |3)×

(max1≤j≤Jdn |Ω̂j − Ωj|)V −1n

∑Jdn
j=1 |Θj|2 |Γ̃j|/qj = op(1).

Finally, referring to the definitions in Eqn. (3.3), observe that Tn3 =
∑n

i=1 Tn3(i)/n,

where Tn3(i) = V −1n (Ψn(Xi)
2ε2i − E[Ψn(Xi)

2ε2i ]), so that E [Tn3(i)] = 0. Consider two

cases. First, suppose η < 2. Then by Burkholder’s inequality, the fact that for

δ ∈ (0, 1), (a + b)(1+δ)/2 ≤ a(1+δ)/2 + b(1+δ)/2, the cr inequality, Jensen’s inequality,

Assumption III.1(c), and Eqn. (B.7):

E

∣∣∣∣∣ 1n
n∑
i=1

Tn3(i)

∣∣∣∣∣
1+η/2


≤ C

n1+η/2
E

∣∣∣∣∣
n∑
i=1

Tn3(i)
2

∣∣∣∣∣
(1+η/2)/2


≤ C

n1+η/2
E

[
n∑
i=1

|Tn3(i)|1+η/2
]

≤ C

nη/2
E
[
|Ψn(Xi)|2+η E [|εi|2+η | X]

]
+ (E [Ψn(Xi)

2σ2(X)])
1+η/2

V
1+η/2
n
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= O

((
‖Ψn‖2+η

nη/(4+2η)‖Ψn‖2

)2+η
)
→ 0.

Next, for the case of η ≥ 2 we utilize only the fourth moment to find that:

E

( n∑
i=1

Tn3(i)/n

)2
 ≤ V −2n E

[
Ψn(Xi)

4ε4i
]
/n = O

(
‖Ψn‖44n−1‖Ψn‖−42

)
→ 0,

again using Jensen’s inequality, Assumption III.1(c), and the first relation of Eqn.

(B.7). In either case, T3n = op(1) by Markov’s inequality.

Proof of Theorem III.8(b). By Assumption III.1(c), the Cauchy-Schwarz and triangle

inequalities, and the conditions of the Theorem: Vn−V = E[(Ψn(X)2−Ψ(X)2)σ2(X)] ≤
CE[(Ψn(X)−Ψ(X))2]1/2E[(Ψn(X)−Ψ(X)+2Ψ(X))2]1/2 ≤ C‖Ψn−Ψ‖2(‖Ψn−Ψ‖2+

2‖Ψ‖2)→ 0, whence the second conclusion.

Convergence in distribution follows under the assumed moment condition on Ψ(X)

and a standard central limit theorem, because

√
n(θ(µ̂)− θ(µ))/

√
Vn −

n∑
i=1

Ψ(Xi)εi/(
√
nV )

=
n∑
i=1

[(Ψn(Xi)−Ψ(Xi))εi/(
√
nV ) + Ψn(Xi)εi/(

√
nV )(

√
V/Vn − 1)]

+
√
nθ(νn)/

√
Vn

= op(1)

using the above result, the assumed mean-square convergence of Ψn(X), and the

remainder condition of the Theorem.

For the final conclusion, as in the proof of Theorem III.8(a) write V̂n/Vn − 1 =

Tn1 + Tn2 + Tn3 + op(1), for Tn1, Tn2, and Tn3 defined there. As above, Tn1 = op(1)

and Tn2 = op(1). Next, Tn3 = (V −1n − V −1
∑n

i=1 Ψn(Xi)
2ε2i /n +

∑n
i=1[Ψn(Xi)

2 −
Ψ(Xi)

2]ε2i /(nV ) +
∑n

i=1(Ψ(Xi)
2ε2i − V )/(nV ), where the first two terms are op(1) as

in the second conclusion and Markov’s inequality, and the third by the law of large

numbers.

134



APPENDIX C

Proofs for Chapter 4

Proofs for Chapter 4

Throughout the appendix, C denotes a generic positive constant that may take

different values in different places. All bounds are uniform in j = 1, · · · , Jdn unless

explicitly noted otherwise. For A, a scalar, vector, or matrix, let |A| denote the

Euclidean norm.

Define Ωj,t = q−1j E[1Pj(Xi)Dt,iR(Xi)R(Xi)
′], εt = (Y1(t) − µt(X1), · · · , Yn(t) −

µt(Xn))′, and Et = ((et(X1) − Dt,1)/et(X1), · · · , (et(Xn) − Dt,n)/et(Xn))′. We now

collect several useful results regarding the nonparametric partition regression estima-

tor. Details and proofs may be found in Cattaneo and Farrell (2011a). All results

given in the appendix implicitly utilize an appropriate non-singular linear transforma-

tion of the polynomial basis, although the same notation is maintained for simplicity.

Cattaneo and Farrell (2011a) give details on the appropriate rotation and demonstrate

its existence under the conditions imposed in Theorem 1.

Lemma C.1. Under the conditions of Theorem 1, the following results hold:

(A-1) max1≤j≤Jdn supx∈Pj |Rj(x)| ≤ C <∞.

(A-2) There exists vectors γµ,j and γe,j, j = 1, · · · , Jdn, such that

max
1≤j≤Jdn

sup
x∈Pj
|µt(x)−Rj(x)′γµ,j| = O(J−K∧Sµn ),

and

max
1≤j≤Jdn

sup
x∈Pj

∣∣∣∣ 1

et(x)
−Rj(x)′γe,j

∣∣∣∣ = O(J−K∧Sen ).
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(A-3) λmin(Ωj,t) ≥ C > 0.

(A-4) max1≤j≤Jdn

∣∣∣Ω̂j,t − Ωj,t

∣∣∣2 = Op(J
d
n log(Jn)/n).

(A-5) max1≤j≤Jdn

∣∣R′j,tεt/(nqj)∣∣2 = Op(J
9d/7
n log(Jn)5/7/n).

(A-6) max1≤j≤Jdn

∣∣R′jEt/(nqj)∣∣2 = Op(J
d
n log(Jn)/n).

(A-7) max1≤j≤Jdn supx∈Pj |µ̂j,t(x)− µj,t(x)|2 = Op(J
9d/7
n log(Jn)5/7/n+ J

−2K∧Sµ
n ).

Results (A-3) and (A-4) imply that max1≤j≤Jdn |Ω
−1
j,t | ≤ C, max1≤j≤Jdn |Ω̂

−1
j,t | =

Op(1), and P(max1≤j≤Jdn |1n,j − 1| = 0)→ 1.

Proof of Theorem 1

Let γµ,j and γe,j be as given in (A-4). Observe that

√
n(µ̂t − µt) =

1√
n

n∑
i=1

ψt(Yi, Xi, Ti) + εn,1 + εn,2 + εn,3 + εn,4 + εn,5 + εn,6,

where

εn,1 =
1√
n

Jdn∑
j=1

n∑
i=1

(
1− Dt,i

et(Xi)

)
1n,jRj(Xi)

′(R′j,tRj,t)
−1R′j,tεt,

εn,2 =
1√
n

Jdn∑
j=1

n∑
i=1

1n,j

(
1

et(Xi)
− γ′e,jRj(Xi)

)
Dt,iRj(Xi)

′(R′j,tRj,t)
−1R′j,tεt,

εn,3 =
1√
n

Jdn∑
j=1

n∑
i=1

1n,j

(
γ′e,jRj(Xi)−

1

et(Xi)

)
1Pj(Xi)Dt,i(Yi − µt(Xi)),

εn,4 =
1√
n

Jdn∑
j=1

n∑
i=1

n∑
k=1

1n,jRj(Xi)
′(R′j,tRj,t)

−1Dt,kRj(Xk) (µt(Xk)−Rj(Xk)
′γµ,j) ,

εn,5 =
1√
n

Jdn∑
j=1

n∑
i=1

1n,j1Pj(Xi)(R(Xi)
′γµ,j − µt(Xi)),

εn,6 =
1√
n

Jdn∑
j=1

n∑
i=1

(1n,j − 1) 1Pj(Xi)

{
Dt,i(Yi − µt(Xi))

et(Xi)
+ µt(Xi)

}
.
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Consider each reminder εn,1–εn,6. First, εn,1 = εn,11 + εn,12 + εn,13 with

εn,11 =
1√
n

Jdn∑
j=1

1n,j
[
R′jEt

]′
Ω−1j,t

[
Ωj,t − Ω̂j,t

]
Ω−1j,t

[
Ωj,t − Ω̂j,t

]
Ω̂−1j,t

[
R′j,tεt/(nqj)

]
= op(1),

εn,12 = − 1√
n

Jdn∑
j=1

1n,j
[
R′jEt

]′
Ω−1j,t

[
Ω̂j,t − Ωj,t

]
Ω−1j,t

[
R′j,tεt/(nqj)

]
= op(1),

εn,13 =
1√
n

Jdn∑
j=1

1n,j
[
R′jEt

]′
Ω−1j,t

[
R′j,tεt/(nqj)

]
= op(1),

because

|εn,11| ≤
√
n max

1≤j≤Jdn

∣∣R′jEt/(nqj)∣∣ max
1≤j≤Jdn

∣∣∣1n,jΩ̂−1j,t ∣∣∣ max
1≤j≤Jdn

∣∣∣Ω̂j,t − Ωj,t

∣∣∣2
× max

1≤j≤Jdn

∣∣Ω−1j,t ∣∣2 max
1≤j≤Jdn

∣∣R′j,tεt/(nqj)∣∣
=
√
nOp(J

3d/2
n log(Jn)3/2/n3/2)Op(J

9d/14
n log(Jn)5/14/

√
n) = op(1),

and simple variance bounds give E
[
ε2n,12

]
= O(J2d

n /n
2) = op(1) and E

[
ε2n,13

]
=

O(Jdn/n) = op(1), as E[Rj(Xi)Et,i|Xi] = 0, E[q−1j Dt,iRj(Xi)Rj(Xi)
′ − Ωt,j] = 0 and

E[Dt,iRj(Xi)εt,i|Xi, Ti] = 0.

Next, observe that εn,2 = εn,21 + εn,22 with

εn,21 = − 1√
n

Jdn∑
j=1

1n,j

n∑
i=1

(
1

et(Xi)
− γ′e,jRj(Xi)

)
×Dt,iRj(Xi)

′Ω̂−1j,t [Ω̂j,t − Ωj,t]Ω
−1
j,t

[
R′j,tεt/(nqj)

]
= op(1),

εn,22 =
1√
n

Jdn∑
j=1

1n,j

n∑
i=1

(
1

et(Xi)
− γ′e,jRj(Xi)

)
Dt,iRj(Xi)

′Ω−1j,t
[
R′j,tεt/(nqj)

]
= op(1),

because

|εn,21| ≤ O(J−K∧Sen ) max
1≤j≤Jdn

∣∣∣1n,jΩ̂−1j,t ∣∣∣ max
1≤j≤Jdn

∣∣∣Ω̂j,t − Ωj,t

∣∣∣
× max

1≤j≤Jdn

∣∣Ω−1j,t ∣∣ max
1≤j≤Jdn

∣∣R′j,tεt/(nqj)∣∣ 1√
n

Jdn∑
j=1

n∑
i=1

1Pj(Xi)

= O(J−K∧Sen )
√
nOp(J

d/2
n log(Jn)1/2/

√
n)Op(J

9d/14
n log(Jn)5/14/

√
n) = op(1),
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and E
[
ε2n,22

]
= O(J−2K∧Sen ) = op(1).

Next, εn,3 = op(1) because

E
[
ε2n,3
]
≤

Jdn∑
j=1

E

[
1Pj(Xi)

(
γ′e,jR(Xi)−

1

et(Xi)

)2

(Yi(t)− µt(Xi))
2

]
= O(J−2K∧Sen ) = o(1).

Next, εn,4 = op(1) because

|εn,4| ≤
√
nO(J−K∧Sµn )

Jdn
n2

Jdn∑
j=1

n∑
i=1

n∑
k=1

1n,jRj(Xi)
′Ω̂−1j,tDt,kRj(Xk)

≤
√
nOp(J

−K∧Sµ
n )

Jdn
n2

Jdn∑
j=1

n∑
i=1

n∑
k=1

1Pj(Xi)1Pj(Xk) =
√
nOp(J

−K∧Sµ
n ) = op(1).

Next, εn,5 = op(1) because

|εn,5| ≤
√
nO(J−K∧Sµn )

1

n

Jdn∑
j=1

n∑
i=1

1Pj(Xi) =
√
nO(J−K∧Sµn ).

Finally, εn,6 = op(1) because P(max1≤j≤Jdn |1n,j − 1| = 0)→ 1. �

Proof of Theorem 2

For V̂W,[t,s], first define Σ̃j,t = n−1
∑n

i=1Rj(Xi)Rj(Xi)
′Dt,i(Yi − µt(Xi))

2 and L̃j =
1
nqj

∑n
i=1Rj(Xi)Dt,i/et(Xi), then note that

V̂W,[t,t] =
1

n

n∑
i=1

1n,j
Dt,iε

2
t,i

et(Xi)
+ εW,n,1 + εW,n,2 + εW,n,3 + εW,n,4 + εW,n,5,

where

εW,n,1 =

Jdn∑
j=1

1n,jL̂
′
jΩ̂
−1
tj

(
Σ̂tj − Σ̃tj

)
Ω̂−1tj L̂j,

εW,n,2 =

Jdn∑
j=1

1n,j

{
L̂′jΩ̂

−1
tj Σ̃tjΩ̂

−1
tj

(
L̂j − L̃j

)
+
(
L̂j − L̃j

)′
Ω̂−1tj Σ̃tjΩ̂

−1
tj L̃j

}
,
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εW,n,3 =

Jdn∑
j=1

1n,jL̃
′
jΩ̂
−1
tj Σ̃tjΩ̂

−1
tj

(
1

nqj

n∑
i=1

Rj(Xi)Dt,i

(
1

et(Xi)
−Rj(Xi)

′γe,j

))
,

εW,n,4 =

Jdn∑
j=1

1n,j

(
1

nqj

n∑
i=1

Rj(Xi)
′Dt,i

(
1

et(Xi)
−Rj(Xi)

′γe,j

))′
Ω̂−1tj Σ̃tjγe,j,

εW,n,5 =
1

n

Jdn∑
j=1

1n,j

n∑
i=1

1Pj(Xi)Dt,iε
2
i

(
Rj(Xi)

′γe,j −
1

et(Xi)

)(
Rj(Xi)

′γe,j +
1

et(Xi)

)
.

Now, |εW,n,1| ≤ |εW,n,11|+ |εW,n,12| = op(1), where applying (A-7),

|εW,n,11| =

∣∣∣∣∣∣
Jdn∑
j=1

1n,jL̂
′
jΩ̂
−1
tj

(
1

n

n∑
i=1

2Rj(Xi)Rj(Xi)
′Dt,iεi (µ̂tj(Xi)− µt(Xi))

)
Ω̂−1tj L̂j

∣∣∣∣∣∣
≤ C max

1≤j≤Jdn

∣∣∣L̂j∣∣∣2 max
1≤j≤Jdn

∣∣∣1n,jΩ̂−1tj ∣∣∣2 sup
x∈X
|µ̂t(x)− µ(x)|

Jdn∑
j=1

n∑
i=1

1Pj(Xi)Dt,i|εt,i|/n

= op(1),

and similarly |εW,n,12| = op(1).

Next, εW,n,2 = op(1) because

|εW,n,2| ≤ 2

(
max

1≤j≤Jdn

∣∣∣L̂j∣∣∣+
∣∣∣L̃j∣∣∣)( max

1≤j≤Jdn

∣∣∣1n,jΩ̂−1tj ∣∣∣2)
×

(
max

1≤j≤Jdn

∣∣∣∣∣ 1

nqj

n∑
i=1

Rj(Xi)

(
1− Dt,i

et(Xi)

)∣∣∣∣∣
)

×
Jdn∑
j=1

n∑
i=1

∣∣Rj(Xi)Rj(Xi)
′Dt,iε

2
i

∣∣ /n
= Op(1)Op(1)Op

((
Jdn log Jn

n

)1/2
)
Op(1) = op(1),

where

E

 Jdn∑
j=1

n∑
i=1

∣∣Rj(Xi)Rj(Xi)
′Dt,iε

2
i

∣∣ /n


≤ C

(
sup
x∈X
|R(x)|2

)
1

n

Jdn∑
j=1

n∑
i=1

E
[
1Pj(Xi)

]
= O(1).
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Next, εW,n,3 = op(1) because

|εW,n,3| ≤
(

max
1≤j≤Jdn

∣∣∣L̃j∣∣∣)( max
1≤j≤Jdn

∣∣∣1n,jΩ̂−1tj ∣∣∣2)

×
Jdn∑
j=1

1

n2qj

n∑
i=1

n∑
l=1

|Rj(Xl)Rj(Xl)
′|Dt,lε

2
l

∣∣∣∣Rj(Xi)

(
1

et(Xi)
−Rj(Xi)

′γe,j

)∣∣∣∣
= Op

(
J−K∧Sen

)
= op(1),

since

E

 Jdn∑
j=1

1

n2qj

n∑
i=1

n∑
l=1

|Rj(Xl)Rj(Xl)
′|Dt,lε

2
l

∣∣∣∣Rj(Xi)

(
1

et(Xi)
−Rj(Xi)

′γe,j

)∣∣∣∣


= Op

((
1 +

Jdn
n

)
J−K∧Sen

)
= O

(
J−K∧Sen

)
.

Identical reasoning shows |εW,n,4| = op(1) and |εW,n,5| = op(1). Hence V̂W,[t,s] =

VW,[t,s] + op(1), as P(min1≤j≤Jdn 1n,j = 1)→ 1.

Now consider the “between” term of the variance estimator. For V̂B,[t,s], note that

V̂B,[t,s] =
1

n

n∑
i=1

µ̂t(Xi)µ̂s(Xi)− µ̂s
1

n

n∑
i=1

µ̂t(Xi)− µ̂t
1

n

n∑
i=1

µ̂s(Xi) + µ̂sµ̂t

=
1

n

n∑
i=1

µt(Xi)µs(Xi)− µ̂s
1

n

n∑
i=1

µt(Xi)− µ̂t
1

n

n∑
i=1

µs(Xi) + µ̂sµ̂t

+εB,n,1 + εB,n,2 + εB,n,3 + εB,n,4 + εB,n,5,

where

εB,n,1 =
1

n

n∑
i=1

(µ̂t(Xi)− µt(Xi)) (µ̂s(Xi)− µs(Xi)) ,

εB,n,2 =
1

n

n∑
i=1

µt(Xi) (µ̂s(Xi)− µs(Xi)) , εB,n,3 =
1

n

n∑
i=1

(µ̂t(Xi)− µt(Xi))µs(Xi),

εB,n,4 = −µ̂s
1

n

n∑
i=1

(µ̂t(Xi)− µt(Xi)) , εB,n,5 = −µ̂t
1

n

n∑
i=1

(µ̂s(Xi)− µs(Xi)) .

Thus, because µ̂−µ = op(1) and Result (A-7) holds under the assumptions of the

theorem, εB,n,k = op(1) for k = 1, · · · , 5, and V̂B,[t,s] = VB,[t,s] + op(1) as stated. �
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