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Dissertation Abstract 

Depression is among the world’s most debilitating psychiatric illnesses, and often leads 

to suicide. Consequently, significant resources have been invested towards understanding 

depression and its underlying mechanisms. While notable research efforts have led to 

important discoveries, there continues to be questions that remain unanswered. Most 

importantly, depression research has been largely organized between those who examine 

depression during wake, and those who investigate depression during sleep. For example, while 

very robust and compelling research has established that there are changes in sleep 

architecture associated with depression, how such changes affect the phenomenology of 

depression is poorly understood. Similarly, psychopathologists typically examine depression 

without considering how sleep, a major mediator of mood and cognition, affects depressive 

symptoms. This partitioned approach to research has inadvertently created gaps in our 

knowledge and presents a unique opportunity for integration and extension of existing 

evidence that may provide insights into more effective treatments and prevention. In order to 

address the sleep/wake divide, this three study dissertation compares brain physiology across 

states of wakefulness and sleep. Additionally, this dissertation also examines how cortical 

activity during both sleep and wakefulness is related to mood and severity of depressive 

symptoms. This dissertation also aims to examine the role of sleep not only as a risk for 

depression, but also a factor in enhancing mental health. In particular, the relationship between 

psychological resilience and sleep is examined, along with its role in buffering against the 

negative affective consequences of sleep disruption.  

In the first study, brain physiology during wakefulness and sleep were collected using 

quantitative EEG and related to positive and negative mood in depressed individuals and 

healthy controls. Results indicated that baseline cortical activity was related to general positive 

and negative mood, with decreased activity in the beta frequency associated with negative 

affective experiences (lower positive and higher negative mood). Preliminary evidence 
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suggested that decreased cortical activity may specifically represent negative low arousal 

states, such as anhedonia. Results were consistent with previous research indicating that 

baseline cortical activity may be associated with the amount of cognitive and emotional 

resources available to the individual that enables effective engagement in desirable activities.  

The second study examined two hypotheses regarding sleep in depression, and explored 

how each hypothesis related to mood in depression. The first hypothesis posits that depression 

is characterized by a deficit in slow-wave activity representing deep and restorative sleep. The 

second hypothesis proposes poor sleep in depression results from hyperarousal of the central 

nervous system causing intrusions of excess high-frequency activity that prevents high quality 

sleep. Results show that depression may be better characterized by decreased power in the 

slow-wave activity (predominantly in the delta band). Decreased delta activity was also found 

to be related to increased symptom severity, as well as depressed and anxious mood. Though 

no differences in fast-frequency activity were detected in the total sample, depressed women 

did exhibited a positive relationship between beta activity and depressed mood after 

accounting for decreased activity in the delta band. This suggests that while depression may be 

better characterized by a brain deficit in generating adequately restorative sleep, female brains 

may also experience hyperarousal that is related to increased depression.  

In the third study, the relationship between psychological resilience and sleep was 

examined using the same sample as the first study. Specifically, this study investigated whether 

psychological resilience can serve as a protective factor against the negative mood 

consequences of sleep disruption, and whether this buffer effect is less effective in individuals 

who suffer from depression.  Results indicated that existing levels of resilience continue to 

buffer against negative affective consequences to experimentally disrupted sleep, even in 

depressed individuals. Higher resilience in healthy controls is also related less disrupted 

baseline sleep, suggesting that psychological resilience may be associated with better quality 

sleep.  

Together, these studies provide a foundation to begin bridging the gap between brain 

physiology during sleep and wakefulness. They indicate that depression may be characterized 

by decreased cortical activity that may represent the decreased availability of cognitive and 
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emotional resources during wakefulness, and deficits in generating adequate deep and 

restorative sleep during the night. Finally, the third study suggests that resilience may buffer 

against the negative mood consequences of sleep disruption. 
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CHAPTER 1  

General Introduction 

Major Depressive Disorder (MDD) is a debilitating psychiatric illness that constitutes the 

world’s leading cause of disability (Lopez, Mathers, Ezzati, Jamison, & Murray, 2006),  and is 

among the mostly costly illnesses in the world both in terms of human suffering and economic 

burden (Greenberg et al., 2003). While there is heterogeneity in the experience and 

presentation of MDD, this disorder is generally characterized by persistent low mood or 

anhedonia, often accompanied by lethargy, decreased motivation, decreased alertness and 

focus, and sleep difficulties. In the last two decades, emerging research has indicated that sleep 

difficulties may not only be a symptom of depression, but may contribute to its cause.  

Sleep complaints in depression include difficulty falling asleep, difficulty maintaining 

sleep, early morning awakenings, poor quality sleep, and less commonly, hypersomnia (Breslau, 

Roth, Rosenthal, & Andreski, 1996). Sleep complaints are also extremely common in 

depression, with as many as 90% of depressed individuals reporting notable sleep difficulties 

(Tsuno, Besset, & Ritchie, 2005), and up to 41% reporting symptoms severe enough for a co-

morbid diagnosis of insomnia (Stewart et al., 2006). Several studies have suggested that sleep 

complaints often persist following successful resolution of depressive symptoms, suggesting 

that sleep difficulties may not simply be a symptom of depression (Ford & Kamerow , 1989; 

Lustberg & Reynolds, 2000; Reynolds et al., 1997). Furthermore, Reynolds and colleagues 

(1997) also demonstrated that individuals who continue to report sleep difficulties following 

depression treatment are at higher risk for relapse into future depressive episodes.  

Other evidence also indicates that sleep may play a role in the etiology of depression. 

Several studies have examined the temporal relationship between sleep disturbances and 

depression, indicating that those individuals who are reporting insomnia symptoms are 3.5 

times more likely to develop depression (Baglioni et al., 2011; Pigeon & Perlis, 2007; D. 
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Riemann & Voderholzer, 2003). Furthermore, depressed individuals with comorbid insomnia 

also exhibit prolonged depressive episodes (Riemann, 2009). Finally, studies have also shown 

that the use of cognitive behavioral therapy for insomnia both as an adjunctive or a stand-alone 

treatment in depression results in successful alleviation of depression symptoms (Manber et al., 

2008, 2011; Riemann, 2009). Together, the plethora of evidence suggests that disruption of 

sleep is not only an important part of the phenomenology of MDD, it also likely plays a role in 

the etiology of the disorder.  

 

The sleep/wake divide 

While evidence points to an intimate relationship between sleep and depression, there 

appears to be a gap in our knowledge regarding how brain activity during sleep is related to the 

experience of depression during wakefulness. For example, while robust and compelling 

research has established changes in sleep architecture associated with depression (Borbély et 

al., 1984), how such differences affect the phenomenology of depression has been virtually 

unexamined. Similarly, psychopathologists typically characterize depression without 

considering how sleep, a major mediator of mood and cognition, affects depressive symptoms. 

This partitioned approach to research has inadvertently created gaps in our knowledge of 

depression and presents a unique opportunity for integration and extension of existing 

evidence that may provide insights into more effective treatments and prevention.  

Early studies examining sleep in depression have focused on describing the gross 

organization of sleep (also known as polysomnography, or macroarchitecture), such as latency 

of sleep onset, total sleep time, latency to rapid eye-movement (REM) sleep, along with 

amount and percentage of non-REM (NREM) sleep. This method relies on visual scoring of sleep 

EEG, with a standard practice of assigning singular descriptors of sleep across 30-second epochs 

(e.g., stages 1-4, REM, arousals, etc). Studies examining macroarchitecture in depression have 

predominantly identified changes in REM sleep, particularly with depressed individuals 

exhibiting decreased latency to REM sleep, increased duration of the first REM period, and 

increased density of eye-movements during REM sleep (e.g., Berger & Riemann, 1993). 

Although abnormalities in REM sleep have been well replicated in the literature, less is known 
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regarding how the differences in REM sleep relate to the daytime experiences of symptoms of 

depression.  

Recent sleep research in depression has begun focusing on quantitative EEG (qEEG) as 

an alternative way to describe brain behavior and physiology during sleep.  A qEEG approach to 

sleep characterizes brain physiology via measures of electroencephalogram (EEG) frequencies 

across the sleep stage domains, which is referred to as sleep microarchitecture (Armitage, 

Hudson, Trivedi, & Rush, 1995). This approach provides certain advantages over 

macroarchitecture because it produces more information that is descriptive of brain physiology 

during sleep. Additionally, this method of quantifying sleep is also more comparable to ways in 

which brain physiology is characterized during wakefulness, thereby enabling a more direct 

comparison between the sleeping and waking brain. Despite this opportunity, very few studies 

have directly examined how cortical activity during sleep is related to cortical activity during 

wakefulness, and also how cortical activity across sleep and wakefulness is associated with the 

experience of depression.  

Existing research that has examined qEEG variables in sleep have explored two main 

hypotheses regarding brain physiology during sleep. The first identifies sleep homeostasis as a 

process that is deficient in depression. This hypothesis was derived from observations that 

depressed individuals appear to exhibit both decreased slow-wave activity (SWA) during NREM 

sleep and an abnormal time-course of SWA (e.g., Borbély et al., 1984). SWA is most prominent 

in stages 3 and 4 (or N3 sleep), and is associated with a deeper and more restorative sleep.  

SWA is prioritized to occur predominantly during the first half of the night because of its crucial 

role in brain restoration, and is related to the level of sleep drive that accumulates with the 

duration of prior wakefulness (Borbély, 1982). Therefore, abnormalities in the amount and 

time-course of SWA in depression are thought to be related to a brain deficit in the process of 

restoration (Borbély, 1987). Again, while this body of research has grown over the last three 

decades, very few studies have provided evidence that speaks to how the deficits in SWA in 

depression is related to the experience and symptoms of depression.  

The second hypothesis regarding brain physiology in depression stems from research 

that has noted the high co-morbidity between insomnia and depression. Studies have 
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consistently documented hyperarousal in primary insomnia, indexed by intrusions of excess 

high frequency activity (i.e., beta band).  It is posited that individuals with primary insomnia 

experience hyperarousal of the central nervous system (for review, see Riemann et al., 2010), 

resulting in increased tension and difficulty relaxing. This subsequently detracts from the 

individual’s ability to transition into sleep, and disrupts the brain’s ability to benefit from 

restorative slow-wave sleep. As evidence suggests that sleep difficulties may be related to the 

etiology of depression, hyperarousal has also been posited as a potential mechanism in the 

etiology of depression. However, fewer studies have directly examined the influence of high 

frequency activity in depression and its potential relationship with depressive symptom and 

mood. Additionally, there is also a paucity of studies that examine whether sleep in depression 

is better characterized by a deficit in the brain’s ability to generate adequate restorative sleep, 

or an excess intrusion of fast frequency activity.  

In order to address the gaps in the literature, one aim of this dissertation is to examine 

how brain physiology during sleep is related to both symptomatology and wake cortical activity 

in depression. As a mood disorder, positive and negative mood in depression is of particular 

interest as a dependent variable, in addition to examining symptom severity.  

 

Sleep and positive health 

As research in mental health grows, increasing attention is being directed towards 

examining factors that enhance mental health and human flourishing, rather than a unitary 

focus on mitigating psychopathology. Similarly, preliminary research in sleep has also begun to 

focus on the role of sleep in promoting positive aspects of mental health. For example, research 

has also shown that high quality sleep is linearly related to positive affect (Sonnentag, 

Binnewies, & Mojza, 2008; Steptoe, O’Donnell, Marmot, & Wardle, 2008). However, few studies 

have directly examined how mechanisms of sleep are related to wellness and resilience. 

Resilience is of particular interest because it is related to both the reduction in illness (Khanlou 

& Wray, 2014), and promotion of human flourishing (Ryff & Singer, 2003). The increasing 

attention towards positive psychology in mental health research also calls for the investigation 

for strengths-based interventions in depression (e.g., Sin & Lyubomirsky, 2009). If resilience has 



 

 5 

a role in protecting individuals from the risks that accompany sleep disruption, it may also have 

a cascading effect in preventing not only depression, but a myriad of physical and mental health 

complications. As such, this dissertation also aims to explore the relationship between 

resilience and sleep in depression.  

 

Summary 

The goal of this three study dissertation is to understand the role sleep plays in the 

daytime symptoms and neurobiology of depression by bridging the sleep/wake gap. Doing so is 

important because, despite the evidence suggesting a direct relationship between daytime 

functioning and sleep, research has largely examined them independently, therefore precluding 

the ability to detect underlying mechanisms that may improve current interventions. The first 

two parts of this dissertation examine how brain functioning during sleep influences depression 

symptoms, daytime mood, and daytime brain functioning. The third part of this dissertation 

examines how psychological resilience impacts affective consequences of sleep disruption in 

depression and healthy controls. 

 

Study One 

Major depressive disorder (MDD) is often characterized as a loss of vitality, indicated by 

persistent anhedonia, lethargy, lack of motivation, and decreased concentration, all of which 

contribute to an inability to “get going” and actively engage in desirable activities. Anterior 

asymmetry in cortical activity in depression has received wide-spread attention at a potential 

marker for depression (Debener et al., 2000). However, replication of the anterior asymmetry 

hypothesis has been inconsistent, especially with the development of advanced neuroimaging 

techniques, such as positron emission topography and functional magnet resonance imaging. 

Another line of research has pointed to quantitative EEG (qEEG) as an alternative way of 

characterizing brain physiology in MDD. Specifically, research has examined cortical activity 

across different frequencies during a restful waking state as a way of understanding basic brain 

function. 
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Study one aimed to compare brain physiology during both wakefulness and sleep, as 

well as explored how cortical activity related to mood in depression. Very few studies have 

examined brain physiology across both sleep and wakefulness, which could be resulting in lost 

opportunities for a more integrated understanding of depression. Participants in this study 

completed two nights in the laboratory where their EEG activity was recorded during both 

resting wakefulness and sleep. Participants also completed questionnaires measuring positive 

and negative mood. Cortical activity during the evening, morning, and during sleep were used 

as predictors in positive and negative mood in order to characterize how mood in depression is 

related to brain physiology.  

 

Study Two 

The second study is a large archival study that examined how sleep EEG variables are 

related to depressive symptoms and mood. A notable majority of depressed patients complain 

of difficulties in falling and staying asleep, and overall poor quality sleep. While there is 

evidence that such disturbed sleep has a negative impact on daytime functioning, the exact 

relationship to symptoms of depression remains unclear. Additionally, sleep studies have 

historically relied on descriptive changes of sleep macroarchitecture (i.e. stage scoring of stages 

1-4 and REM), or general organization of sleep. This method is limited in scope because the 

assignment of singular sleep stages to 30 second epochs does not capture the multiple EEG 

events that could have transpired. Additionally, evidence suggests that quantifying sleep in 

discreetly bounded stages may not be ecologically valid.  

Instead, this study used a frequency-domain based approach using Fast Fourier 

Transform (FFT) which allows for the digital analysis of data that is a more fine-grained 

description of brain physiology via measures of EEG frequencies and amplitudes across the 

sleep stage domains. This approach better captures dysfunctions of brain processing that may 

contribute to the disorder (Armitage, Hoffmann, Loewy, & Moffitt, 1989). Studies using 

quantitative EEG have suggested that complaints of poor sleep quality may be related to 

deficits of the sleep homeostatic system in producing effective recovery sleep, thereby resulting 

in hyperarousal of the central nervous system during the night (Armitage & Hoffmann, 2001;  
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Armitage & Hoffmann, 1997; Mendelson, James, Garnett, Sack, & Rosenthal, 1986; Stepanski, 

Zorick, Roehrs, & Young, 1988). In order to test this hypothesis, this study takes a quantitative 

EEG approach to explore how EEG activity across the night impacts depressive symptoms 

experienced during wakefulness.  

The sample from this second study was extracted from archival sleep data collected 

from the University of Texas Southwestern Medical School and University of Michigan. A total 

of 150 participants (75 depressed, 75 healthy controls) were randomly selected for inclusion in 

this study. Quantitative EEG from several frequencies across each hour of the night were 

calculated and compared between those with MDD and healthy controls (HC). Additionally, 

these frequencies were entered into a regression model as predictors for depression severity 

and mood. If brain functioning during sleep is related to emotional-functioning during 

wakefulness, EEG activity during sleep should significantly predict variations in mood and 

symptom severity.  

 

Study Three 

The third study examines the relationship between sleep variables and psychological 

resilience. Psychological resilience is characterized by the ability to respond and recover from 

environmental stressors (Block & Kremen, 1996).Though research has established several 

personality and psychological traits that are associated with resilience, less research has 

considered how resilience may affect sleep processes. Sleep is important to consider because 

research has identified its importance in emotional experiences and regulation (Walker & van 

der Helm, 2009), suggesting that a strong sleep system can contribute significantly to the 

resilience.  

In this study, participants are exposed to an environmental stressor via one night of 

sleep disruption. Participants in this study completed a measure of resilience, and positive and 

negative mood before and after two different sleep conditions: baseline sleep, and slow-wave 

sleep interruption. During the slow-wave sleep interruption condition, delta waves were 

visually detected and subsequently interrupted using a series of tones. These tones were 

delivered using a protocol that maximizes disruption to slow-wave activity without waking the 
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participant. Analyses examined whether reported resilience is related to attenuations of 

negative affective consequences of sleep interruption, and if this attenuation differs by 

depressed or healthy control groups. Exploratory correlations were also conducted to examine 

how sleep is related to higher resilience in healthy individuals. 

 

In sum, these three studies will determine: 1) how brain functioning during sleep and 

wakefulness, as indexed by EEG, predicts depression symptoms and mood, 2) if sleep in 

depression is better characterized by decreased slow-wave activity, or intrusions of excessive 

fast-frequency activity, and finally 3) if psychological resilience can serve as a buffer against 

negative affective consequences of sleep disruption. These studies integrate and extend 

existing but separate research in depression, and provide a foundation for understanding how 

depression and well-being is impacted by sleep. 
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CHAPTER 2  

Mood and Cortical Activity across Wakefulness and NREM sleep in Major Depression 

Introduction 

Major depressive disorder (MDD) is often characterized as a loss of vitality, indicated by 

persistent anhedonia, lethargy, lack of motivation, and decreased concentration, all of which 

contribute to an inability to “get going” and actively engage in desirable activities. In order to 

further understand the mechanism driving these symptoms of depression, research in the last 

two decades has increasingly focused on neurophysiological substrates of depression. Much of 

this research has focused on electroencephalography (EEG) as a tool in characterizing brain 

physiology in depression. While research has predominantly involved the examination of 

asymmetrical activity in the frontal cortex as an index of emotional reactivity, others have also 

employed alternative methods of quantitative EEG in understanding the brain in depression.  

Anterior asymmetry in cortical activity in depression has received wide-spread attention 

at a potential marker for depression (Debener et al., 2000). This asymmetry was based on early 

studies documenting that lesion patients exhibited enhanced positive emotions when lesions 

were located in the right-hemisphere (Starkstein et al., 1989), and displayed undue negative 

affect when lesions were located in the left-hemisphere (Gainotti, 1972). Though many studies 

have documented anterior asymmetry in depression (for review, see Davidson, 1992), it has not 

been invariably replicated (e.g., Baskaran, Milev, & McIntyre, 2012; Kentgen et al., 2000; Reid, 

Duke, & Allen, 1998). Similarly, additional lesion studies have also yielded conflicting results, 

with some studies failing to replicate the association between left anterior lesions and 

subsequent depression (e.g., Dam, Pedersen, & Ahlgren, 1989; Herrmann, Bartels, Schumacher, 

& Wallesch, 1995; House, Dennis, Warlow, Hawton, & Molyneux, 1990). Furthermore, studies 
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utilizing functional magnetic resonance imaging and positron emission tomography have largely 

failed in identifying hemispheric asymmetries in underlying neural substrates, leading some 

researchers to question the validity of the frontal asymmetry hypothesis (e.g., Murphy, Nimmo-

Smith, & Lawrence, 2003; Wager, Phan, Liberzon, & Taylor, 2003).  

An alternative way of characterizing brain physiology in MDD is examining and 

comparing EEG activity across different frequencies during a restful waking state. Alpha activity 

(roughly 8-12Hz) is often of interest because it is associated with mental relaxation, and used as 

an inverse index for cortical arousal (Gevins, 1998). Beta activity (roughly 16 – 32 Hz) is also of 

interest because it is also associated with electrophysiological arousal that indicates increased 

cognitive activity, such as alertness and attention (Berger, 1931; Gola, Magnuski, Szumska, & 

Wróbel, 2013; Niedermeyer, 1999). Sigma activity (roughly 12-16 Hz) is traditionally used in 

sleep EEG to identify spindle activity, though this frequency is also sometimes categorized as a 

lower-frequency beta activity during wakefulness. Theta (roughly 4 – 8 Hz) and Delta activity 

(roughly 0.5 – 4 Hz) are considered slower frequency activity that are more pronounced during 

deeper and more restorative sleep. General theta activity across the scalp during wake has 

been associated with low-level alertness that may indicate inefficient information process or 

drowsiness (Schacter, 1977). Delta activity during wakefulness has been related to brain 

dysfunction, such as inefficient perfusion and metabolism (Howland, Shutt, Berman, Spotts, & 

Denko, 2011).  

Studies have documented some qEEG differences between depressed and healthy 

individuals. Early research suggested that depressed individuals may experience increased fast 

frequency activity (beta or higher), and decreased slow frequency activity (delta) compared to 

healthy individuals, though these results were not consistently replicated (Pollock & Schneider, 

1990). Later studies have suggested that increased beta activity in waking EEG may be 

associated with response to a range of psychoactive medications (Coutin-Churchman et al., 

2003; Wauquier, 1993). Other studies have also pointed to an increased in alpha activity in 

depression (Brenner et al., 1986; John, Prichep, Fridman, & Easton, 1988; Schaffer, Davidson, & 

Saron, 1983).  
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In addition to understanding brain physiology during wakefulness, it is also equally 

important to examine brain physiology during sleep.  As both a symptom and a risk factor for 

depression (Clarke & Harvey, 2012; Haynes, Ancoli-Israel, Walter, & McQuaid, 2012), sleep and 

its underlying neurophysiology is of particular importance in depression. In addition to difficulty 

falling and staying asleep, depressed individuals also commonly report light or restless sleep, 

and waking up feeling tired and unrestored. This is consistent with evidence that depressed 

individuals show reduced delta activity and increased beta activity in depression (for review, 

see Armitage et al., 1995). Furthermore, a recent study in depression has also found that 

variation in reports of restfulness in the morning is predicted by the amount of activity in the 

slow wave, or delta frequency (see CHAPTER 3). Several studies have also indicated that quality 

of sleep influences positive and negative mood in the following day (Hamilton et al., 2008; 

Sonnentag et al., 2008; Steptoe et al., 2008); however, very few studies have looked at how 

qEEG in depression as related to positive and negative mood.  

While the identification of group differences in brain physiology have contributed to 

important advances towards establishing biomarkers of psychopathology, more work is needed 

in understanding what psychological factors these variables may represent. As a mood disorder, 

positive and negative mood is of particular interest in depression. Previous research has 

suggested that mood may be related to increased baseline cortical activity, which may 

represent the amount of cognitive resources available to the individual. Specifically, one study 

examining factors predicting response to a brief cognitive intervention identified increased 

baseline cortical activity, indexed by decreased alpha activity, as a significant predictor of 

positive mood (Deldin & Chiu, 2005). The authors proposed that global cortical arousal may be 

a task-independent factor that is associated with general affective reactivity.  

In order to address the gaps in the literature, the current study aims to compare brain 

physiology across the different frequencies between groups, and also examine the relationship 

between positive and negative mood and brain physiology in depression. Very few studies have 

examined brain physiology across both sleep and wakefulness, which could be resulting in lost 

opportunities for a more integrated understanding of depression. To that end, EEG activity from 

resting wakefulness and across non rapid eye movement (NREM) sleep were collected and 
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quantified across five frequency bands ranging from slow (delta) to fast (beta) frequency 

activity. Sleep EEG was limited to NREM sleep periods due to its specific function in generating 

restorative sleep, and may also likely relate to mood. Based on previous research, it was 

hypothesized that depressed individuals would show decreased cortical arousal indexed by 

increased alpha activity, decreased beta activity, and increased delta activity. Additionally, it 

was hypothesized that increased cortical arousal, indexed by either increased beta activity or 

decreased alpha activity during wakefulness would be related to positive mood consequences 

represented by either increased positive mood, or decreased negative mood. If the depressed 

group exhibit excessive beta activity compared to the healthy control group during sleep, we 

anticipated that increased beta activity during sleep would be associated with poor mood 

consequences, represented by either increased negative mood, or decreased positive mood. 

Based on research describing decreased slow-wave activity in depression, it was also 

hypothesized that decreased delta activity would be associated with poor mood consequences, 

represented by either increased negative mood, or decreased positive mood.  

Methods 

Participants 

A total of 34 participants (19 females) between the ages of 18 and 50 years old were 

recruited from the community via fliers and included in this study. Eighteen of these 

participants were healthy controls with no psychiatric history and do not meet diagnostic 

criteria for any Axis I disorder. No differences in age was detected between the healthy control 

group (mean = 26.8, SD = 9.3) and the depression group (mean = 26.0, SD = 9.2).  Healthy 

controls also required a Beck Depression Inventory II (BDI-II;  Beck et al., 1996) score of less 

than seven. Sixteen of these participants were individuals who meet criteria for Major 

Depressive Episode based on DSM-IV-TR criteria, with a BDI-II score of at least 14. The 

depressed and healthy control groups did not differ in sex or age. BDI-II scores for the 

depressed group indicated moderate levels of depression severity (mean = 23, SD = 6.5), 

compared to very low depression in the healthy control group (mean = 1.94, SD = 2.8). 
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Procedures and recruitment for this study comply with the ethical standards of the Institutional 

Review Board. 

Participants in this study were recruited as part of a larger study investigating the 

cognitive consequences of sleep disturbance in depression. Exclusionary criteria in this study 

included history of head injury resulting in loss of consciousness longer than 2 minutes, 

neurological diseases, use of psychotropic medications, and co-occurrence of independent 

sleep disorders (e.g., insomnia, obstructive sleep apnea, narcolepsy, restless leg syndrome, and 

bruxism). Participants were also excluded for lifetime histories of substance dependence, 

bipolar I or II disorder, psychosis, and anorexia or bulimia. Participants received $10 for each 

hour of screening, and $75 for each night of research participation. 

 

Procedure 

Participants 

Participants were recruited from the community in a medium-sized mid-western city. All 

participants were screened for presence and history of psychiatric disorders using the 

Structured Clinical Interview for the DSM-IV (SCID-I/NP; First, 2007). This interview was 

conducted by a trained graduate student and/or a doctoral-level clinical psychologist. 

Participants were excluded from the study if they report any significant illnesses (e.g. untreated 

hypothyroidism), any lifetime history of DSM-IV Axis-I disorder for the healthy control group, or 

head trauma resulting in two minutes or more of unconsciousness. All ethical and informed 

consent guidelines are approved by the Institutional Review Board. 

 
Experimental Conditions 

Each participant completed two nights (adaptation, baseline) with acquisition of 

polysomnography. Prior to the first night, participants were asked to maintain five nights of a 

regular sleep schedule consistent with the sleep schedule during the study. Sleep schedules 

were approximated to the participants’ natural sleep schedule at the time of recruitment. 

Compliance with the schedule was monitored through sleep diary and actigraphy 

(measurement of light and motion). Any deviations from their designated schedule that were 

greater than 2 hours prior to their first night were grounds for study exclusion. Additionally, 
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participants were asked to refrain from use of caffeine after 12 noon, and abstain from alcohol 

or drug use. This pre-study period was followed by three consecutive nights in the sleep 

laboratory, with the first night serving as adaptation to the new sleep environment and as a 

screening for independent sleep disorders.   

 

Behavioral Tasks 

Participants also completed a series of resting state tasks before and after sleep on the 

baseline night. During this task, participants were instructed to relax while their EEG was being 

recorded. The resting EEG task included two blocks presented in random order; one six minutes 

eyes-open and one six minutes eyes-closed block. During the eyes-open block, participants 

were instructed to keep their eyes on the fixation cross, and to avoid thinking about anything in 

particular. During the eyes-closed block, participants completed the same task with their eyes 

closed, but without falling asleep. Each participant completed the resting EEG task before and 

after sleep for each night in the laboratory. 

Mood measures were also completed before and after sleep on baseline night. Mood 

was measured via the Visual Analogue Scale (VAS) with separate items for positive and negative 

mood. Participants also completed a version of the Beck Depression Inventory (BDI-II; Beck et 

al., 1996) modified to assess current symptoms instead of symptoms within the last two weeks.   

Post-hoc measures were also included in this study to examine convergent evidence for 

constructs similar to or involving positive and negative mood. Questionnaires were completed 

on or prior to the first night in the lab, before any experimental tasks were administered. 

Questionnaires included the Positive and Negative Affect Schedule (PANAS; Watson, Clark, & 

Tellegen, 1988), Life Orientation Test (LOT, a measure of optimism; Scheier & Carver, 1985), 

Ego-Resilience Scale (ER89, a measure of psychological resilience; Block & Kremen, 1996), and 

Mood and Anxiety Symptom Questionnaire (MASQ; Watson & Clark, 1991) Anxious Arousal and 

Anhedonia subscales.  
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Physiological Data 

Sleep polysomnography recording included eight scalp electrodes (F3, F4, C3, C4, P3, P4, 

O1, O2) with placement according to the International 10-20 system. Two electrooculogram 

(EOG) electrodes were placed at the left suborbital and right supraorbital ridges. 

Electromyogram consisted of bipolar chin and cheek electrodes. Impedance for scalp and face 

electrodes were kept below 2 KOhms and 5 KOhms respectively. With the exception of the 

Electromyogram (EMG), all electrodes were referenced to linked electrodes placed at the left 

and right earlobes and passed through a 10 KOhm resistor.  

Wake electroencephalogram were recorded with nine scalp electrodes (F3, Fz, F4, C3, 

Cz, C4, P3, Pz, P4) with placement according to the International 10-20 system. Electroculogram 

consisted of two electrodes placed lateral to the left canthus and above the right supraortibal 

ridge. Impedance and references were identical to that of sleep polysomnography.  

Physiological data were recorded using a Vitaport digital ambulatory system (TEMEC 

Instruments, Kerkrade, Netherlands), with a sampling rate of 256 Hz and amplified by 2500, and 

filters set from 0.16 Hz to 70 Hz. EOG data were sampled at 64 Hz, amplified by 2500, and filters 

set from 0.16 Hz to 30 Hz. EMG data were sampled at 64 Hz, amplified by 5000, with filters set 

from 0.16 Hz to 70 Hz. Additionally, a 60 Hz notch filter was applied to reduce electrical noise. 

Sleep records were visually scored by research personnel in accordance with standard criteria 

(Rechtschaffen & Kales, 1968). Scoring personnel were trained for a 90% stage agreement or 

higher on an epoch-by-epoch basis. All records were inspected visually and epochs containing 

movement, breathing or muscle artifact, or recording difficulties were excluded from analysis.  

Following data collection, EEG power was quantified across five frequencies using power 

spectral analysis (PSA), which uses a set of sine and cosine functions to capture EEG activity 

occurring between discrete frequencies. PSA generates numerical representations of EEG that 

is based on amplitude of EEG activity as well as duration of rhythmic activity. PSA is based on 

the use of fast Fourier Transform (FFT; Gottman, 1981), which is a commonly used strategy for 

EEG analysis (Campbell, 2009). FFT analyses were conducted for the following five frequencies: 

delta (0.5 Hz to < 4 Hz), theta (4Hz to < 8Hz), alpha (8 Hz to < 12 Hz), sigma (12 Hz to < 16 Hz), 

and beta (16 Hz to < 32 Hz). EEG data were averaged between eyes-open and eyes-closed 
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condition in the main analyses in order to preserve power, and because no hypotheses were 

generated regarding differences between the eyes-open and eyes-closed conditions,.  

 

Statistical Analyses 

Prior to hypothesis testing, analyses were conducted to verify the consistency of the 

data with the literature, as well as to provide basic descriptive data of the variables. To that 

end, scalp distribution of alpha activity was examined to demonstrate increased alpha activity 

in the parietal region relative to the frontal region, and also to demonstrate increased power 

during the eyes-closed versus the eyes-open condition. Although this study focused on 

quantitative EEG (qEEG), polysomnography variables were also presented and tested for 

differences between groups for comparison with previous research. Finally, correlations were 

completed between the EEG and mood variables to provide descriptive data regarding the 

relationship between the independent variables.  

Due to the plethora of EEG variables (pre- and post-sleep wake EEG, in addition to 

NREM sleep EEG across five frequencies), a 3-way repeated measures ANOVA was first 

conducted to establish differences between the variables and to test for significant differences 

between groups. EEG activity was submitted as the dependent variable to a Condition (PM, 

NREM Sleep, AM) × Frequency (Beta, Sigma, Alpha, Theta, Delta) × Group (MDD, HC) repeated 

measures ANOVA. A priori contrasts were set for comparison between cortical activity recorded 

before bed (PM) and following sleep (AM) to test for differences pre- and post-sleep. In the 

case that no differences were detected, EEG variables were to be averaged between pre- and 

post-sleep conditions to preserve power in subsequent analyses. Similarly, a priori contrasts 

were also set for comparison between sleep and wake EEG in order to further validate data 

quality. Results are expected to reveal a Condition (sleep versus wake) × Frequency interaction 

that indicates greatest differences in the delta frequency during sleep.  

Mood data were also examined in order to determine if positive and negative mood 

differed pre- and post-sleep. Scores on the VAS were also submitted to a Valence (positive, 

negative) × Time (PM, AM) × Group (MDD, HC) 3-way repeated measures ANOVA. As with the 

EEG variables, in the case that no differences were detected between pre- and post-sleep mood 
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measures, an average were to be calculated between the pre- and post-sleep conditions to 

preserve power in subsequent analyses.   

In order to test the hypothesis that increased cortical activity is related to mood, 

regression analyses were conducted with beta and alpha activity during wake and sleep as 

predictors, and positive and negative mood as the dependent variables. In order to test the 

hypothesis that decreased slow-wave activity is related to mood, regression analyses were also 

conducted with delta activity during wake and sleep as predictors, and positive and negative 

mood as the dependent variables. Based on results of the regressions, post-hoc comparisons 

with other measures similar to or involving positive and negative mood were also conducted in 

attempt to acquire convergent evidence for the relationship between cortical activity and 

mood.  

Results 

Descriptive Data 

EEG Topography 

In order to confirm the consistency of our data with that reported in the literature, we 

examined the distribution of alpha power across the scalp. An ANOVA examining Diagnosis × 

Region × Eyes revealed a main effect of Region F(1,30)=18.795, p<.001, indicating that EEG 

alpha was greater in the parietal regions compared to frontal regions, as expected (see Figure 

2.1). Analyses also revealed a main effect of Eyes, F(1,30)=31.948, p<.001, indicating that alpha 

power was greater during the eyes closed condition.  

Sleep Characteristics 

Although this study focused on qEEG variables, polysomnography was also examined for 

any sleep abnormalities and comparison to differences in sleep architecture found in previous 

depression studies. Independent one-way ANOVAs were conducted on polysomnographic 

variables (see Table 2.1). Results showed a difference in REM latency that was approaching 

statistical significance, with the MDD group demonstrating a shorter latency to REM sleep, as is 

consistent with the literature. No abnormalities in sleep were detected.  
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Descriptive Correlations 

Correlations were conducted in order to describe the relationships between the 

experimental variables. Initial relationships appear to suggest that increased cortical activity, 

especially in the faster frequencies (i.e., beta and sigma) are moderately to strongly related to 

increased positive mood and decreased negative mood (see Table 2.2Table 2.3Table 2.4) 

 

Differences in Cortical Activity 

A three-way repeated measures ANOVA was conducted in order to examine differences 

in cortical activity by Condition (PM, AM, NREM Sleep), Frequency (Beta, Sigma, Alpha, Theta, 

Delta), and Group (MDD, HC). No group differences were detected, though the means of the 

baseline wake EEG variables indicated that they are in the same direction as expected based on 

previous literature: lower delta activity in the depressed group (mean = 19.5, SE = 3.1) 

compared to the healthy control group (mean = 20.7, SE = 3.1), and higher alpha activity in the 

depressed group (mean = 19.7, SE = 4.6) compared to the healthy control group (mean = 16.6, 

SE = 5.6). The same trend was observed in delta activity during NREM sleep, with the healthy 

control group showing higher delta activity (mean = 456.1, SE = 29.0) compared to the 

depressed group (mean = 438.0, SE = 29.0). The lack of group differences may be related to the 

small sample size, which is further discussed in the limitations section. 

In order to examine differences in wake cortical activity by time of day, contrasts were 

set a priori comparing EEG collected before and after sleep. Results did not reveal a Condition 

(AM versus PM) × Frequency interaction, indicating that cortical activity in each of the five 

frequencies did not differ based on nighttime or morning recording conditions. Based on this 

result, wake EEG variables were averaged across AM and PM conditions for subsequent 

analyses. Similarly, a priori contrasts were also set in order to compare wake versus sleep 

cortical activity across different frequencies. Results revealed that cortical activity differed by 

wakefulness versus NREM sleep, Condition (wake versus sleep) × Frequency, F(1,28)=439.57, p 

< .001. As expected, differences were most pronounced in the delta frequency, and least 

difference in beta frequency.  
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Differences in Positive and Negative Mood 

A three-way repeated measures ANOVA was also conducted in order to examine 

differences in mood by Time (PM, AM), Valence (Positive, Negative), and Group (MDD, HC). As 

expected, results revealed that differences between positive and negative mood differed by 

group, Valence × Group interaction, F(1,31)=33.170, p <.001. While the HC group exhibited a 

large difference between positive (mean = 71.67, SE = 2.18) and negative (mean = 21.97 SE = 

3.26), the MDD showed similar levels of positive (mean = 49.13, SE = 3.28) and negative (mean 

= 50.16, SE = 3.36) mood. No significant main effects or interactions with Time were detected. 

Based on this result, positive and negative mood were average across AM and PM conditions in 

subsequent analyses.  

 

Cortical Predictors of Mood 

In order to test the relationship between cortical arousal and mood, two sets of 

regressions were completed (see Table 2.5 Table 2.6Error! Reference source not found.). For 

positive and negative mood respectively, linear regressions were performed with beta and 

alpha activity from both wakefulness and NREM sleep as predictors. Results revealed that beta 

activity during both wakefulness and NREM sleep significantly predicted increased positive 

mood. Only beta activity during wakefulness predicted decreased negative mood. Alpha activity 

did not significantly predict mood.  

In order to test the relationship between slow-wave activity and mood, regressions 

were also conducted with delta activity from both wakefulness and NREM sleep as predictors of 

positive and negative mood. Contrary to our hypothesis, delta activity was not a significant 

predictor of mood.  

Based on these results, beta activity was use in post-hoc comparisons with other 

measures that approximate positive and negative mood in order to examine convergent 

evidence (see Table 2.7 and Table 2.8).  

Positive Items. Items selected for comparison to the positive VAS scale included the 

positive affect subscale from the Positive and Negative Affect Schedule (PANAS), the Life 

Orientation Test (LOT; a measure of optimism), and the Ego-resilience Scale (ER89; a measure 
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of psychological resilience). Results from the total sample suggest that beta activity across both 

wakefulness and NREM sleep were positively correlated with positive mood. Correlations were 

also comparable in direction and strength with the PANAS positive subscale, the LOT, and the 

ER89. The depressed participants showed strong positive correlations between beta activity 

during wakefulness and positive mood on both the VAS and PANAS. The healthy control group 

showed medium to strong positive correlations to positive mood on the VAS across 

wakefulness and NREM sleep, with similarly positive and medium to strong correlations with 

positive mood on the PANAS, LOT, and ER89.  

Negative Items. Items selected for comparison to the negative VAS scale included the 

negative affect subscale from the Positive and Negative Affect Schedule (PANAS), and the 

Anxiety Arousal and Anhedonia subscales from the Mood and Anxiety Symptom Questionnaire 

(MASQ). Results revealed that beta activity across NREM sleep and wakefulness were 

negatively correlated at medium strength with negative mood in the total sample. Correlations 

in the depressed group show similar direction and strength in beta activity.  

Interestingly, correlations in the healthy control group were negative for waking beta 

activity and negative mood on the VAS, but positive for waking beta and negative mood on the 

PANAS. Statistical comparison using the Fischer’s r-to-z transformation (Meng, Rosenthal, & 

Rubin, 1992) revealed that these correlations were significantly different from each other (p < 

.01). A closer look at individuals items on the PANAS negative subscale suggest that the 

negative items represent higher arousal emotions, such as “distressed”, “hostile”, “irritable”, 

“jittery”, “scared”, and “upset”, which may explain the positive correlation with increased fast 

frequency activity. In order to further explore this, correlations were also compared to the 

Anxious Arousal and Anhedonia subscales of the MASQ. Results in the healthy control group 

also reveal that beta activity in NREMP sleep were positively related to Anxious Arousal, but 

negatively related to Anhedonia. Fischer’s r-to-z transformation reveals that all correlations 

between NREMP cortical activity and Anxious Arousal versus Anhedonia are significantly 

different (all p < .01). Together, this may indicate that in healthy individuals, fast frequency 

activity during wakefulness could also be related to higher arousal negative affect, while the 

decrease in general cortical activity may be related to low arousal negative affect.  
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Correlations within the MDD group revealed that beta activity during wakefulness were 

strongly correlated negatively with negative mood on the VAS, but less strongly correlated with 

negative mood on the PANAS. Further comparisons to anhedonia versus anxious arousal 

suggests that faster frequency activity may be more related to negative affect that is lower 

rather than higher arousal. Together, this may indicate that decreased EEG activity during 

wakefulness in depression may be related to increased lower arousal negative affect. 

 

Beta activity and sleep quality. In order to compare results with beta activity to the 

findings in the insomnia literature, post-hoc analyses were also conducted with sleep quality 

and restfulness in the morning from the sleep diary. Correlations were conducted using 

Spearman’s rho coefficient because both items were scored on the ordinal scale. Results 

indicate that increased beta activity during evening wakefulness is also positively related to 

sleep quality and restfulness in the morning (see 

Table 2.9).  

Similar results were found using beta activity during morning wakefulness, with higher 

beta activity related to higher sleep quality, and restfulness in the morning. Results did not 

show significant relationships between sleep quality and restfulness in the morning with beta 

activity during NREM sleep, though the coefficients were also positive.  

Discussion 

This study aimed to characterize the relationship between brain physiology and mood 

across states of resting wakefulness and NREM sleep in depression. Taken together, results 

from this study suggest that positive and negative mood in depression may be associated with 

the availability of brain resources as represented by increased cortical activity in the beta band 

across sleep and wakefulness.  

Results in this study demonstrated that higher beta activity was associated with 

increased positive mood and decreased negative mood in depressed and healthy control 

participants. Beta activity during wakefulness has been associated with increased cognitive 

attention, alertness and attention (Berger, 1931; Gola, Magnuski, Szumska, & Wróbel, 2013; 
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Niedermeyer, 1999). Therefore, one interpretation of this result may be that individuals 

exhibiting higher cortical activity may have more cognitive resources available, and in turn may 

enable them to more effectively engage in desirable activities. This result is consistent with a 

previous study demonstrating that depressed participants with higher baseline cortical activity 

are more likely to experience increased happiness following a brief cognitive intervention 

(Deldin & Chiu, 2005). In fact, the authors of this study proposed that global cortical activity 

may be an important index of affective reactivity has thus far been largely neglected. 

While this study predominantly examined mood by valence (positive and negative), 

there is some preliminary evidence that increased cortical activity may also represent arousal of 

affect. Specifically, healthy controls also exhibited a positive association between cortical 

activity and negative mood as measured by the PANAS, but not as measured by the VAS. 

Comparison of the PANAS and VAS showed that items on the PANAS may represent negative 

affect that are higher on arousal, such as “distressed”, “irritable”, and “jittery”, whereas the 

VAS measured generally negative mood. Comparisons also indicated that depressed 

participants reporting higher anhedonia also exhibited decreased beta activity. Anhedonia 

represents a reduction or lack of pleasure, and is often clinically accompanied by reduced 

motivation, both of which indicate that anhedonia would be considered a state of lower 

arousal. Together, this also further suggests that decreased cortical activity may be associated 

with lower cognitive and emotional resources, which would be consistent with several 

characteristics of depression, including anhedonia, reduced motivation, decreased 

concentration, and lethargy. 

Post-hoc analyses comparing beta activity during NREM sleep with sleep quality and 

restfulness in the morning also revealed that increased beta activity in NREM sleep is related to 

better quality sleep and increased restfulness in the morning. Although this is consistent with 

the other results in this study, these results may be somewhat unexpected compared to 

previous findings of elevated beta activity in patients with Primary Insomnia (Perlis, Merica, 

Smith, & Giles, 2001). However, it is important to note that individuals in this study were 

excluded from participation if they reported or demonstrated moderate to severe sleep 

difficulties or insomnia. In fact, the sleep efficiencies in both groups suggest that participants in 
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this sample are relatively good sleepers. Therefore, it may be the case that barring excessive 

arousal as indicated in Primary Insomnia, higher beta activity in depression may represent a 

healthier amount of cortical activity that promotes alertness, restfulness, increased positive 

mood, and decreased negative mood.  

Finally, regression analyses also indicated that beta activity across both resting 

wakefulness and NREM sleep predicted increased positive mood, indicating that brain activity 

during both sleep and wakefulness may be an important indicator of the availability of brain 

resources that influence mood in depression. 

 

Limitations 

Limitations of this study include the smaller sample size, which explain the lack of 

statistically significant group differences detected. However, it is important to note that 

recruitment for this study precluded participants who reported or demonstrated moderate to 

severe sleep difficulties, resulting in a sample of relatively and comparably good sleepers. It is 

possible that the selection of good sleepers may have obscured any group differences that 

would otherwise have been detected. Results also did not show significant differences in delta 

activity across the night. This may also be related to a smaller sample size. Future comparisons 

may include examination of delta activity during the first NREM period as well as change across 

subsequent NREM periods.   

Secondly, while results in this study suggested that cortical activity may represent 

arousal and valence of affect, this would require further evidence to be conclusive. This study 

did not directly compare both arousal and valence in affect, and therefore cannot say with 

certainty that arousal is an important factor in cortical activity. Further research would be 

required to examine this hypothesis.  

Conclusion 

The current study examined the relationship between mood and cortical activity during 

sleep and wakefulness in both depressed and healthy participants. Consistent with previous 

research, results suggest that increased baseline cortical activity in both wake and NREM sleep 
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are associated with increased positive mood and decreased negative mood. Furthermore, 

decreased cortical activity may be associated with a lack of cognitive and emotional resources, 

and therefore may also be related to the experience of negative low arousal states such as 

anhedonia and amotivation. Future research may examine changes in mood based on 

experimental manipulation of sleep. 
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Appendix 

 

 
Figure 2.1. Alpha power in the frontal and parietal regions by group.  
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 HC (N=16) MDD (N=16) F-test 

Total sleep time (minutes) 412.5 (28.6) 398.8 (41.2) ns 

Sleep onset latency (minutes) 7.4 (6.8) 10.2 (6.8) ns 

Stage 1% (N1)  4.4 (3.0) 4.1 (2.8) ns 

Stage 2% (N2)  52.2 (9.2) 51.7 (7.0) ns 

Stages 3% and 4% (N3) 16.1 (6.3) 16.6 (7.7) ns 

%REM 24.3 (8.6) 24.6 (4.8) ns 

REM latency (minutes) 98.1 (55.6) 63.6 (44.6) p = .062 

Awake and moving %  2.9 (1.4) 3.0 (1.6) ns 

Sleep efficiency %  95.1 (2.2) 94.5 (2.3) ns 

Table 2.1 Polysomnographic variables by group.
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 Total Sample 
 

Depressed Group 
 

Healthy Control Group 

 

Positive 

PM 

Negative 

PM 

Positive 

AM 

Negative 

AM 

 Positive 

PM 

Negative 

PM 

Positive 

AM 

Negative 

AM 

 Positive 

PM 

Negative 

PM 

Positive 

AM 

Negative 

AM 

Beta - Wake PM .381
*
 -.287 .457

**
 -.433

*
  .526

*
 -.341 .550

*
 -.623

**
  .268 -.265 .442

†
 -.379 

Beta - Sleep NREM .485
**

 -.447
*
 .406

*
 -.250  .183 -.228 .161 -.081  .616

*
 -.511

*
 .439

†
 -.149 

Beta - Wake AM .379
*
 -.309

†
 .380

*
 -.303

†
  .503

†
 -.323 .568

*
 -.591

*
  .354 -.415 .349 -.148 

               

Sigma - Wake PM .286 -.268 .368
*
 -.398

*
  .505

*
 -.385 .540

*
 -.593

*
  .119 -.285 .312 -.409

†
 

Sigma - Sleep NREM .517
**

 -.437
*
 .438

*
 -.209  .499

*
 -.451

†
 .474

†
 -.311  .511

*
 -.397 .422

†
 .037 

Sigma - Wake AM .264 -.268 .333
†
 -.310

†
  .491

†
 -.362 .548

*
 -.558

*
  .037 -.238 .202 -.143 

               

Alpha - Wake PM .092 .017 .214 -.148  .388 -.235 .422 -.438
†
  -.076 .115 .351 -.204 

Alpha - Sleep NREM .322
†
 -.287 .379

*
 -.234  .356 -.233 .468

†
 -.386  .181 -.275 .296 .118 

Alpha - Wake AM .077 .015 .215 -.158  .376 -.220 .542
*
 -.492  -.155 .095 .214 -.140 

               

Theta - Wake PM .122 -.110 .180 -.112  .343 -.146 -.245 -.029  -.026 -.078 .429
†
 -.189 

Theta - Sleep NREM .376
*
 -.371

*
 .312

†
 -.164  .187 -.143 -.051 .032  .485

†
 -.529

*
 .526

*
 -.171 

Theta - Wake AM .034 -.007 .101 .009  .152 .032 -.006 -.054  .113 -.220 .477
*
 -.240 

               

Delta - Wake PM -.015 -.020 .052 -.045  -.127 .397 -.294 .101  .016 -.292 .272 -.119 

Delta - Sleep NREM .079 -.121 .037 .070  -.118 .019 -.351 .321  .255 -.250 .328 -.025 

Delta - Wake AM -.057 .074 .028 .066  -.066 .297 -.097 -.047  .140 -.294 .421
†
 -.147 

Table 2.2. Correlations (Pearson’s r) between VAS mood scales and Sleep/Wake EEG variables. †p≤.1, *p≤.05, **p≤.01 
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 Total Sample  Depressed Group  Healthy Control Group 

 

Beta 

AM 

Sigma 

AM 

Alpha  

AM 

Theta  

AM 

Delta  

AM 
 

Beta 

AM 

Sigma 

AM 

Alpha  

AM 

Theta  

AM 

Delta  

AM 
 

Beta 

AM 

Sigma 

AM 

Alpha  

AM 

Theta  

AM 

Delta  

AM 

Beta PM .906
**

 .788
**

 .609
**

 .206 .269  .981
**

 .915
**

 .826
**

 .108 .126  .832
**

 .651
**

 .310 .281 .416 

Sigma PM .795
**

 .909
**

 .636
**

 .119 .172  .911
**

 .989
**

 .913
**

 .088 -.173  .671
**

 .823
**

 .274 .138 .518
*
 

Alpha PM .686
**

 .767
**

 .926
**

 .249 .009  .866
**

 .945
**

 .970
**

 .114 -.174  .526
*
 .583

*
 .826

**
 .470 .333 

Theta PM .183 .074 .378
*
 .770

**
 .208  .057 .069 .186 .778

**
 .169  .354 .113 .639

**
 .807

**
 .264 

Delta PM .143 -.107 -.011 .435
*
 .468

**
  -.010 -.274 -.254 .287 .726

**
  .353 .082 .283 .564

*
 .263 

Table 2.3. Correlations between wake EEG in the evening and in the morning. †p≤.1, *p≤.05, **p≤.01, ***p≤.001 
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 Total Sample 
 

Depressed Group 
 

Healthy Control Group 

 

Beta 

NREM 

Sigma 

NREM 

Alpha  

NREM 

Theta  

NREM 

Delta  

NREM 
 

Beta 

NREM 

Sigma 

NREM 

Alpha  

NREM 

Theta  

NREM 

Delta  

NREM 
 

Beta 

NREM 

Sigma 

NREM 

Alpha  

NREM 

Theta  

NREM 

Delta  

NREM 

Beta PM .194 .306 .401
*
 .099 .180  .114 .526

*
 .623

**
 -.022 -.363  .190 .051 .046 .158 .049 

Beta AM .337
†
 .489

**
 .544

**
 -.153 -.081  .156 .574

*
 .665

**
 -.002 -.314  .457

†
 .363 .313 .341 .204 

Sigma PM .061 .275 .501
**

 .099 .198  .235 .669
**

 .812
**

 .262 -.168  -.085 -.143 .024 -.085 -.123 

Sigma AM .205 .478
**

 .668
**

 -.140 -.018  .290 .725
**

 .868
**

 .315 -.101  .112 .174 .333 .033 .059 

Alpha PM -.024 .199 .545
**

 .232 .096  .187 .524
*
 .707

**
 .285 -.105  -.174 -.229 .246 .223 -.020 

Alpha AM -.074 .172 .541
**

 -.076 -.206  .243 .596
*
 .779

**
 .281 -.106  -.385 -.513

*
 -.015 -.152 -.405 

Theta PM .077 .019 .162 .391
*
 .550

**
  -.061 -.178 -.143 .272 .292  .123 .137 .486

†
 .470

†
 .281 

Theta AM .271 .097 .212 .277 .462
**

  .226 -.028 .021 .410 .464
†
  .367 .258 .548

*
 .735

**
 .497 

Delta PM -.071 -.135 -.115 -.143 .200  -.333 -.379 -.377 -.415 -.162  .044 .072 .239 .077 .036 

Delta AM .360
*
 .059 -.034 -.063 .284  .025 -.334 -.451

†
 -.409 -.081  .653

**
 .500

†
 .641

**
 .814

**
 .733

**
 

Table 2.4. Correlations between wake EEG and NREM sleep EEG variables. †p≤.1, *p≤.05, **p≤.01, ***p≤.001
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 Beta Activity  Alpha Activity  Delta Activity 

Variables B SE β  B SE β  B SE β 

EEG  Wake 2.000 .676 .443
**

 
 

.036 .228 .033 
 

.071 .370 .036 

EEG NREM Sleep 1.519 .660 .345
*
 

 
.242 .141 .354 

 
.007 .029 .046 

F 6.469
***

  2.342  .054 

Table 2.5. Multiple Linear Regression. DV = Positive VAS. *p≤.05, **p≤.01, ***p≤.001 
 
 
 

 Beta Activity  Alpha Activity  Delta Activity 

Variables B SE β  B SE β  B SE β 

EEG Wake -2.071 .874 -.392
*
  -.026 .277 -.020  .031 .434 .013 

EEG NREM Sleep -1.239 .854 -.240  -.201 .172 -.251  -.001 .034 -.007 

F 5.112
**

  1.078  .003 

Table 2.6. Multiple Linear Regression. DV = Negative VAS. *p≤.05, **p≤.01, ***p≤.001 
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 Total Sample  Depressed Group  Healthy Control Group 

 

VAS 

Positive  

PANAS 

Positive 
LOT ER89 

 VAS 

Positive  

PANAS 

Positive 
LOT ER89 

 VAS 

Positive  

PANAS 

Positive 
LOT ER89 

Beta - Wake .459
**

 .360
*
 .217 .301

†
  .609

*
 .433

†
 .273 .262  .446

†
 .505

*
 .319 .431

†
 

Beta - Sleep NREM .461
**

 .376
*
 .305

†
 .300

†
  .195 .148 -.083 -.169  .552

*
 .351 .538

*
 .440

†
 

Table 2.7. Post-hoc correlations comparing the relationship between EEG and VAS to other measures approximating positive mood.  
 PANAS = Positive and Negative Affect Schedule 
 LOT = Life Orientation Test (measures optimism) 
 ER89 = Ego-Resilience Scale (measures psychological resilience) 
 †p≤.1, *p≤.05, **p≤.01 
 
 

 Total Sample 
 

Depressed Group 
 

Healthy Control Group 

 

VAS 

Negative  

PANAS 

Negative 

MASQ 

Anxious 

Arousal 

MASQ 

Anhedonia 

 
VAS 

Negative  

PANAS 

Negative 

MASQ 

Anxious 

Arousal 

MASQ 

Anhedonia 

 
VAS 

Negative  

PANAS 

Negative 

MASQ 

Anxious 

Arousal 

MASQ 

Anhedonia 

Beta - Wake -.404
*
 -.003 -.021 -.130  -.546

*
 -.075 -.005 -.456

†
  -.427

†
 .458

†
 .062 .082 

Beta - Sleep NREM -.343
†
 -.091 -.052 -.307  -.179 .184 -.124 .207  -.321 -.193 .208 -.599

*
 

Table 2.8.  Post-hoc correlations comparing the relationship between beta activity and VAS to other measures approximating 
negative mood.  

  PANAS = Positive and Negative Affect Schedule 
  MASQ = Mood and Anxiety Symptom Questionnaire 
  †p≤.1, *p≤.05, **p≤.01 
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Table 2.9. Post-hoc correlations between beta activity with sleep quality and restfulness in the morning. †p≤.1, *p≤.05, **p≤.01

 Total Sample  Depression Group  Healthy Control Group 

 

Sleep 

Quality 

AM 

Restfulness 

 Sleep 

Quality 

AM 

Restfulness 

 Sleep 

Quality 

AM 

Restfulness 

Beta - Wake PM .405
*
 .352

*
  .266 .266  .338 .250 

Beta - Sleep NREM .142 .142  .130 .130  .158 .158 
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CHAPTER 3  

Faster Frequency Sleep qEEG Activity, Mood, and Depression 

Introduction 

Anecdotal and scientific evidence indicate that one’s cognitive and emotional 

functioning can be compromised by poor sleep occurring the previous night (Pilcher & Huffcutt, 

1996). Not surprisingly, sleep disturbances such as difficulty initiating/maintaining sleep, or 

restless sleep, are reported in almost all mental illnesses (Harvey, 2008). Sleep difficulties are 

especially relevant in major depressive disorder (MDD), with over 80% of patients with 

depression reporting poor quality sleep linked with adverse consequences for mood and 

daytime functioning (Reynolds & Kupfer, 1987). However, despite the general 

acknowledgement of the intimate relationship between sleep and depression, the precise 

mechanisms by which sleep affects mood dysregulation in depression still remains unclear.  

While some research has established changes in sleep associated with depression, such 

efforts have been mostly confined to methods that are only descriptive of gross changes in the 

organization of sleep (i.e., sleep macroarchitecture). This approach is not without limitations 

(Armitage et al., 1995). Firstly, the process of quantifying sleep macroarchitecture relies on 

visual scoring of sleep stages, which assigns a single stage score to each 30 second epoch. This 

may not fully capture the range of bioelectrical information available. For example, signs of 

hyperarousal in the central nervous system (intrusions of fast frequency activity co-occurring 

with slow activity) may not be captured via stage score data, especially if the time spent in 

slow-wave sleep is similar to that of a well-functioning central nervous system. In short, the use 

of stage scores can be too reductionistic to describe more nuanced changes in 

encephalographic (EEG) activity. This loss of information may preclude discernment of 

mechanisms that contribute to poor sleep and its consequences. Secondly, evidence suggests 
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that sleep may not occur in these discreetly bounded stages (Armitage, Hoffmann, Loewy, & 

Moffitt, 1989), indicating a need for a more ecologically valid construct in understanding the 

relationship between sleep and affective disorders. Such limitations suggest that a more 

comprehensive approach may provide additional evidence that further informs the role of sleep 

in depression. 

Alternatively, a quantitative EEG approach may be more descriptive of brain physiology 

via measures of EEG frequencies across the sleep stage domains (Armitage, Hudson, Trivedi, & 

Rush, 1995). This approach characterizes segments of EEG activity into subcomponents based 

on frequency bins, and therefore enables the quantification of slower versus faster frequency 

activity within the segment of EEG. This method is known as Power Spectral Analysis (PSA), and 

is based on Fast Fourier Transform (FFT) that allows for the digital production of data.  Instead 

of assigning singular sleep stages (e.g. stages 1, 2, 3, 4, or REM) based on general and arbitrary 

criteria, PSA relies on mathematical algorithms to describe neurophysiology. It has been 

suggested that sleep in MDD can be disturbed for two reasons. Sleep in MDD may be disturbed 

due to a decrease in slow-wave activity that is indicative of restoration (Armitage, 2007; 

Borbély et al., 1984), or alternatively due to intrusions of fast-frequency (i.e., beta activity) that 

is indicative of hyperarousal (Armitage 1993; Nofzinger et al., 2000). Slow-wave activity has 

been associated with deeper quality sleep, and plays an important role in restoration on various 

levels, including synaptic homeostasis as well as metabolic regulation (for review, see Tononi & 

Cirelli, 2006). On the other hand, fast-frequency activity has commonly been associated with 

cortical arousal, especially during non-REM (NREM) sleep. Research in insomnia has posited 

that excess fast-frequency activity during sleep reflects hyperarousal of the central nervous 

system (Mendelson et al., 1986; Riemann et al., 2010; Stepanski et al., 1988), and therefore 

contributes to difficulties transitioning to and maintaining a sleep state. Due to the intimate 

relationship between insomnia and depression, it has also been proposed that hyperarousal 

may similarly explain poor quality sleep and its daytime consequences in depression (Armitage 

& Hoffmann, 1997; Wallace B. Mendelson et al., 1987; Nofzinger et al., 1999), especially in 

females (Armitage & Hoffmann, 2001; Roseanne Armitage et al., 1995).  
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It has also been proposed that depressed men and women may show differences in 

sleep. The distinction of sex differences is important because it may point to different etiologies 

or underlying mechanisms in the experience of depression, and therefore may require 

differences in intervention. Previous research has demonstrated that compared to women with 

MDD, men with MDD show significantly lower amounts slow-wave activity at the beginning of 

the night, and a slower rate of decay of slow-wave activity throughout the night (Armitage & 

Hoffmann, 2001). This suggests that the sleep neurophysiology of depression in men may be 

different from women, with men showing a tendency towards a less responsive sleep 

homeostatic system. Previous research has also proposed that hyperarousal may be more 

pronounced in women (Armitage et al., 1995). Together, these sex differences indicate that the 

way in which sleep abnormalities contribute to depression may involve disparate mechanisms, 

and may therefore respond differently to the interventions.  

Additionally, while studies have sought to delineate ways in which sleep in depression 

differs from healthy individuals, few studies have explored how the documented abnormalities 

in sleep are related to mood and symptomatology in depression. As mentioned earlier, research 

examining group differences between depressed and healthy individuals discovered differences 

in slow-wave activity (for review, see Armitage & Hoffmann, 2001); however, few studies have 

examined how the decrement in slow-wave activity is related to mood and symptomatology in 

depression. Similarly, findings describing intrusions of fast-frequency activity has been posited 

to reflect hyperarousal in depression (Armitage & Hoffmann, 1997; Mendelson et al., 1987; 

Nofzinger et al., 1999), though the relationship between mood and depression symptoms with 

fast-frequency activity during sleep has been infrequently examined. Though there is relatively 

little work exploring how cortical activity during sleep relate to daytime mood in depression, 

studies conducted in healthy controls indicate that sleep is directly related to mood. For 

example, previous research have demonstrated that sleep loss affects one’s experience of 

stress (Yoo, Gujar, Hu, Jolesz, & Walker, 2007), and also disrupts one’s ability to regulate 

negative affect (van der Helm & Walker, 2011). Together, the research suggests abnormal 

cortical activity in the fast and slow frequencies during sleep in depression may not only reflect 
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differences from healthy individuals, but also relate to the experience of stress and negative 

affect in depression. 

In order to further delineate how sleep EEG influences depression, this study examines 

how quantitative EEG differs by depression diagnosis as well as gender. Differences were also 

subsequently related to depression symptoms, mood, and sleep quality. Given prior findings, it 

is hypothesized that mood, depressive symptoms, and sleep quality will either be predicted by 

either 1) a decrease of slow frequency activity (delta and theta bands), or 2) an increase of fast 

frequency activity (alpha, beta, and sigma bands). If hyperarousal were to be found, we would 

also expect to see increased hyperarousal in women compared to men.  

 

Methods 

Archival sleep data collected from the University of Texas Southwestern Medical School 

(UTSW) and University of Michigan (UM) were used in this present study. Analyses did not 

reveal any group differences by site of data collection1. Data from participants in sleep studies 

between 1991 and 2011 were included in this sample. All participants were recruited for sleep 

studies through flyers posted in the community. Subjects all received a telephone screen, which 

was then followed with a Structured Clinical Interview for the Diagnostic and Statistical Manual 

of Mental Disorders (SCID; American Psychiatric Association, 1994). The SCID for the DSM-III or 

DSM-IV was administered depending on date of recruitment. A detailed personal and family 

history was collected at the clinical interview. None of the participants were engaged in shift-

work or reported independent sleep disorders (e.g., obstructive sleep apnea, narcolepsy, 

bruxism, and periodic limb movement disorder).  

Once enrolled in the sleep study, all participants maintained a regular sleep schedule 

and recorded sleep diaries five days prior to the first night of the sleep study. Actigraphy data, 

based on physical movement and light exposure, was also collected to confirm the accuracy of 

the sleep diary records.  All normal control participants were medically fit and had no personal 

or family history of Axis I disorders based on the SCID. Depressed participants were physically 

                                                      
1 This analysis mirrored the main analysis in this manuscript, with site (UTSW, UM) as the 
between-groups factors. No significant interactions or main effect with site were detected.  
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healthy, but met DSM-III or DSM-IV criteria for a current major depressive episode without 

psychosis. Clinical interviews were conducted by doctoral level clinicians, clinically trained and 

supervised graduate students, and licensed and trained social workers. Hamilton Depression 

Rating Scale (HDRS; Hamilton, 1967) scores were also completed in order to measure severity 

of depression symptoms. Eighty-two healthy controls and seventy-eight patients with MDD 

from the archival database were included in this analysis. Participants were selected randomly 

from all sleep studies which included depressed subjects between the ages of 18 and 45. 

Groups did not differ by sex (see Table 3.1).  

 

Signal Processing 

Participants’ sleep EEG were recorded on either a four or eight EEG electrode montage, 

including leg leads, chest respiration band, and a nasal-oral thermistor. The eight EEG montage 

included electrodes at the left and right frontal, central, parietal, and occipital areas (F3, F4, C3, 

C4, P3, P4, O1, O2), whereas the four EEG montage included central and parietal areas (C3, C4, 

P3, P4). First night polysomnography recording was used to rule out any suspected sleep 

disordered breathing, periodic limb movements, bruxism, or other independent sleep 

disorders. Bipolar chin-cheek electromyograms (EMGs) were also recorded. EEG electrodes 

were referenced to the left and right ear lobes linked together through to a 10 kV resistor to 

minimize inhomogeneous current flow and potential artifactual hemispheric asymmetries 

(Nunez, 1981). EEG was transduced by GRASSTM P511 AC amplifiers set at a sensitivity of 5 (50 

mV, 0.5 s calibration), corresponding to a gain of 50,000. The half-amp low- and high-band pass 

filters were set at 0.3 and 30 Hz, respectively. A 60 Hz notch filter was also used to attenuate 

electrical noise. Signals were digitized on-line at 250 Hz (62.5 Hz for electrooculargram and 

electromyogram) through a 16-bit MICROSTARTM analog-to-digital converter and displayed on a 

digital polygraph system designed and validated in over 500 subjects at UTSW. All raw digitized 

data were stored on mass media.  
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Behavioral Measures 

All participants completed the HRSD, and a subset of depressed participants (N=36) also 

reported their mood following sleep via the Profile for Mood States questionnaire (POMS; 

McNair, Lorr, & Droppleman, 1971), as well as a Post-Sleep Questionnaire that measured 

perceived sleep onset latency, wake after sleep onset, time in bed, time asleep, as well as visual 

analogue scales rating the quality of sleep, restfulness upon awakening, and sleepiness upon 

awakening.  

 
Data Analyses 

Sleep was stage-scored on an epoch-by-epoch basis according to Rechitschaffen and 

Kales’ (Rechtschaffen & Kales, 1968)  criteria by trained technicians with 90% inter-rater 

reliability who were blind to the diagnostic status of the participants.  

EEG power by hour of night was quantified across five frequencies using power spectral 

analysis (PSA), which generates numerical representations of discrete frequency events. PSA is 

based on the use of fast Fourier Transform (FFT; Gottman, 1981), which is a commonly used 

strategy for sleep EEG analysis (Campbell, 2009). FFT uses a mathematical algorithm to 

decompose time series data into discrete sine/cosine frequencies. In this study, FFTs were 

applied to 2 sec segments of EEG data. The resulting power values (power under the curve; 

expressed in μV2) were then averaged within each epoch (30 seconds) in order to match 

conventions used in sleep stage scoring (Rechtschaffen & Kales, 1968). Only epochs from stage 

1, 2, 3, 4, and REM were included for analysis. Summations of power across frequencies were 

produced for the following categories: delta (0.5 Hz to < 4 Hz), theta (4Hz to < 8Hz), alpha (8 Hz 

to < 12 Hz), sigma (12 Hz to < 16 Hz), and beta (16 Hz to < 32 Hz).  

Because central electrodes were recorded in all participants, analyses were initially 

conducted using data from C3 and C4 in order to maximize sample size. The EEG data were 

submitted to a repeated-measures MANOVA, with Frequency (Delta, Theta, Alpha, Sigma, and 

Beta), Laterality (C3 and C4), Hour of sleep (hours 1 through 5), Sex (Male, Female) and Group 

(Healthy Control and MDD) as independent variables. Follow-up analyses were also conducted 

on a subset of participants for whom frontal electrodes were also recorded (N=110: MDD = 36, 

HC = 74). In order to further investigate the relationship between EEG characteristics and 
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depression severity, multiple linear regressions with HRSD scores entered as the dependent 

variable were completed in order to establish sleep EEG predictors of depression symptoms. 

Linear regressions were completed with both combined groups as well as separately to 

distinguish differences between groups. Finally, correlations between POMS subscales and 

sleep EEG variables were also conducted. 

Results 

Group differences 

The five-way Frequency × Laterality × Hour of Sleep × Sex × Group indicated that 

differences in EEG power between groups varied by frequency and hour of sleep, Frequency × 

Hour of Sleep × Group, F(16, 139)=2.986, p<.001, with the MDD group showing significantly less 

power than HCs in the first hour of the night in the theta, F(1,156)=12.327, p<.01,  and delta 

bands, F(1,156)=20.439, p<.001 (see Figure 3.1). Similarly, the MDD group also showed 

significantly less power compared to HCs in the last hour of the night in the theta, 

F(1,154)=4.932, p<.05, and delta bands, F(1,154)=4.545, p<.05. No group differences were 

detected in the beta frequency.  

Overall, results show lower EEG power in the MDD group (M = 126.492, SE = 2.868) 

compared to the healthy control (HC) group (M=135.872, SE=2.891), Group, F(1,154)=5.308, 

p<.05. While not significant, the MDD group also exhibited lower EEG power across all 

frequencies in each remaining hour of the night (see Figure 3.2). Group differences did not vary 

by sex, though females across both groups showed higher overall EEG power compared to 

males, Sex, F(1,154)=5.808, p<.05 (see Figure 3.3). HCs, but not the MDD group, showed 

generally higher EEG power across frequencies in the right hemisphere compared to the left 

hemisphere,  Laterality × Group, F(1,154)=7.141, p<.01 (see Figure 3.4).  

Post-hoc analyses conducted on the frontal electrodes also confirmed no group 

differences in the Beta frequency, Group, F(1,81)=.437, p>.05. Power analyses conducted using 

G*Power (Faul, Erdfelder, Lang, & Buchner, 2007) revealed adequate power (.8) to detected 

group differences. Marginal group effects were detected in the Alpha and Theta frequencies, 

with the MDD group also showing lower power, Alpha: Group, F(1,106)=3.428, p<.10, Theta: 
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Group, F(1,106)=3.583, p<.10. Results also confirmed lower power in the MDD group in the first 

hour of the night in the Alpha, F(1,106)=5.314, p<.05, Theta, F(1,106)=7.773, p<.01, and Delta 

frequencies, F(1,106)=5.320, p<.05.  

 

Depression effects 

In order to examine the relationship between EEG characteristics and depression 

severity, additional regression analyses were performed. Results revealed low frequency 

activity (delta and theta) during the first hour in both hemispheres significantly predicted HRSD 

scores, (R2=.142, F(2,159)=12.980, p<.001). Decreased activity in the slow frequency band 

predicted increased HRSD scores on both the left (β=-.250, p<.01) and right hemispheres (β=-

.350, p<.001). When both hemispheres were included simultaneously in the model, results also 

revealed a laterality effect with relative increased activity in the left hemisphere predictive of 

increased HRSD scores (see Table 3.2). Analyses repeated using EEG power across the night 

revealed the same patterns. 

Results from the hierarchical regression also showed that, after entering low frequency 

activity in the first hour into the model, high frequency activity in the first hour (beta and 

sigma) predict additional significant variance in HRSD scores. Analyses also revealed that this 

relationship was moderated by sex (see Table 3.3). Post-hoc regressions indicated that high 

frequency activity best predicted HRSD scores in females (see Table 3.4). Analyses repeated 

using EEG power across the night also revealed the same patterns. 

 
Mood effects (POMS and Post Sleep Questionnaire) 

Correlations revealed that individuals with depression reporting higher Tension-Anxiety 

scores also exhibited decreased left and right side delta activity across the night (left: r = -.424, 

p < .01; right: r = -.419, p < .05), and decreased left side beta activity across the night (r = -.382, 

p < .05). Depression-Dejection scores showed a trend in the same direction, with decreased 

right delta activity across the night associated with increased low mood (r = -.322, p = .05). 

Similarly, depressed individuals showed higher Tension-Anxiety scores with lower overall EEG 

power (r = -.366, p < .05). Beta activity in the first hour of the night also exhibited a negative 

correlation with Tension-Anxiety scores (left: r = -.422, p < .05; right: r = -.336, p < .05). A 
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comparable relationship was detected with the Confusion-Bewilderment subscale, with 

depressed participants showing higher Confusion-Bewilderment scores with decrease left and 

right side delta activity across the night (left: r = -.342, p <.05; right: r = -.359, p < .05).  

Results from the Post-Sleep Questionnaire also revealed that individuals with 

depression reported higher restfulness following sleep with overall increased slow frequency 

activity during sleep. Specifically, positive correlations were detected between restfulness upon 

awakening with left and right Theta activity across the night (left: r = .392, p < .05; right: r = 

.407, p < .05) and left and right Delta activity across the night (left: r = .359, p <.05; right = .354, 

p < .05). Additionally, increased left and right Beta activity across the night was associated with 

decreased sleepiness upon awakening (left: r = -.307, p<.05; right = -.272, p<.05). 

Discussion 

This study aimed to characterize sleep microarchitecture in depression, examined sex 

differences in sleep microarchitecture, and explored the relationship between sleep brain 

physiology with depression symptom and mood profiles. This research addresses a gap in 

depression research by connecting brain activity during sleep to mood and depression severity.  

Results from this study indicate that depression may generally be characterized by 

decreased slow-wave activity during sleep, especially in the slow frequency bands. This finding 

is congruent with the hypothesis suggesting that depression is associated with a deficit in the 

regulation of sleep-wake dependent process (Process S), which is indexed by the amount of 

slow-wave activity, especially during the first half of the night.  Reductions in delta and theta 

activity were most prominent in the first hour of the night, which is congruent with the period 

where more delta activity is expected. Correlations also indicate that decreased delta and theta 

power is associated with decreased restfulness upon awakening, further confirming that this 

deficit is associated with the experience of non-restorative sleep.  

In general, the reduction in slow-wave activity in depression during sleep may represent 

a deficit in generating adequate sleep that is restorative. Tononi and Cirelli (2003, 2006) have 

proposed that the mechanism of restoration in slow-wave activity may be related to synaptic 

homeostasis that occurs during slow-wave activity during sleep. This hypothesis, with some 
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supporting evidence, suggests that during slow-wave activity, neurons that are strengthened 

through synaptic potentiation during wakefulness are progressively downscaled with each 

NREM period, effectively bringing the average synaptic weight to an appropriate baseline level 

(i.e., synaptic homeostasis). Neuronal benefits from synaptic homeostasis include reduced 

energy expenditure towards maintaining higher synaptic weight, and increased space for 

growth of new synapses. Both of these consequences benefit learning and memory, in addition 

to other functions. Conversely, disruptions to synaptic homeostasis result in inadequate 

synaptic downscaling, and synapses are therefore overloaded upon awakening. Consequences 

of synaptic overload include reductions in neuronal excitability, increased synaptic failure, and 

reduced plasticity. Not surprisingly, these neuronal consequences also map onto symptoms 

characteristic of depression, such as fatigue, anhedonia, impaired attention and concentration, 

and decreased motivation. Reduced neuronal plasticity may even contribute to ineffective or 

inefficient attempts at behavioral change. Results from this study lend support for this 

hypothesis, with evidence that decreased slow-wave activity (indicative of inadequate synaptic 

downscaling) is associated not only with reduced restfulness upon awakening, but also with 

increased negative mood and depression severity. Specifically, decreased slow-wave activity 

during sleep was correlated with increased feelings of dejection and depression, confusion and 

bewilderment, and tension and anxiety. Taken together, the results indicate that depression is 

better characterized by a brain deficit in homeostatic processes that enable adequate brain 

restoration.  

Disruptions to synaptic homeostasis may also have cascading effects in further 

disrupting mechanisms of emotion regulation during wakefulness. Reduced synaptic 

homeostasis may result in reduced prefrontal activation that is sometimes observed in 

depression (Tononi & Cirelli, 2006). The functioning of the pre-frontal cortex (PFC) is of 

particular interest because of its role in regulating the limbic area, which is largely implicated in 

the processing of negative emotions. In fact, recent research has indicated that sleep loss 

impacts the functioning of the PFC, resulting in the disinhibition of the limbic region (Yoo et al., 

2007). Specifically, Yoo and colleagues (2007) demonstrated that when sleep deprived 

individuals were shown negative stimuli, their brains exhibited exaggerated reactivity in the 
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amygdala connected with deficits in PFC functioning. This disruption to the cortico-limbic circuit 

may represent another consequence of inadequate sleep homeostasis that explains the 

vulnerability to the development or exacerbation of depression symptoms in individuals with 

sleep disturbances.  

Furthermore, the disruption to brain restoration during sleep may also adversely impact 

the immediate function of offline emotion regulation during sleep. Consistent with synaptic 

downscaling, other studies have pointed to the role of sleep in pruning and consolidation of 

emotional memories (Walker & van der Helm, 2009). Specifically, Walker and colleagues (2009) 

have proposed that REM sleep may play a role in disentangling the affective tone from negative 

episodic memories, thereby facilitating offline emotion regulation. Research examining fear 

conditioning has corroborated this with evidence that sleep can facilitate offline fear extinction 

(Payne, Stickgold, Swanberg, & Kensinger, 2008). It is possible that ineffective synaptic 

downscaling during NREM sleep may also compromise brain functioning during REM sleep, 

further detracting from one’s ability to regulate and resolve past negative events, and in turn 

perpetuate depression.  

Another aim of this study was to explore the presence of hyperarousal in a large sample 

of depressed individuals. Previous research have posited that sleep difficulties in depression 

may be related intrusions of high frequency activity during sleep that may represent a 

hyperarousal of the central nervous system (e.g., Perlis, Merica, et al., 2001).  However, this 

study did not find evidence for hyperarousal in sleep in depression. This is the largest sample of 

clinically-validated depressed participants that we are aware of where hyperarousal in sleep 

was directly examined. Contrary to the hyperarousal theory, results in this study suggested that 

increased beta activity during sleep is associated with decreased sleepiness in the morning, as 

well as decreased feelings of tensions and anxiety. This finding may seem initially unexpected 

given previous research in primary insomnia suggesting that increased fast-frequency activity 

may represent hyperarousal of the central nervous system, which in turn results in decreased 

quality sleep. However, a closer examination of the research examining hyperarousal in primary 

insomnia suggests that increased beta activity may be found predominantly during sleep onset, 

as well as during stage 1 and REM sleep periods (Perlis, Merica, et al., 2001), rather than during 
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non-REM sleep. Moreover, stage 1 and REM sleep states more closely resemble wake cortical 

activity, and therefore are more likely to include faster frequency activity. Furthermore, several 

studies comparing high frequency activity in sleep between individuals with primary insomnia 

versus sleep difficulties secondary to a psychiatric disorder found that elevated beta activity 

was specific to primary insomnia (Lamarche & Ogilvie, 1997; Nofzinger et al., 1999; Perlis, Kehr, 

et al., 2001). Taken together, the findings in this study may provide further confirmation that 

depression better characterized by deficits in producing adequate restorative sleep rather than 

hyperarousal.  

Finally, another goal of this study was to also examine sex differences in sleep in 

depression. Results revealed that whereas both males and females show a decrease in slow 

frequency activity, only female participants exhibited additional fast frequency activity 

associated with increased depression severity. This is somewhat consistent with previous 

research showing increased incidence and amplitude of beta activity in a small sample of 

depressed females (Armitage, Hudson, Trivedi, & Rush, 1995), and further evinces differences 

in neurophysiology in depression between the sexes. This may also indicate considerations of 

sex differences in depression interventions, such as medications for mood management.  

Conclusions 

This study is one of few which examines sleep in depression using a quantitative EEG 

approach, and explores its relationship to depression symptoms and mood. Results suggest that 

sleep in depression may be characterized by an overall decrease in slow-wave activity, and is 

related to increased anxious and depression mood the following morning. The decrease in 

activity is more prominent in the slower frequencies, indicating that this may be related to a 

dysregulation of the wake-dependent process. Furthermore, sex differences were detected, 

with only females showing additional increases in high-frequency activity related to increased 

depression severity. 
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Appendix 

  
Figure 3.1. a) Theta power across the hours of the night. b) Delta power across the hours of the 
night. 
 

  
Figure 3.2. a) Average EEG power across the night. b) EEG power by hour across the night. 
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Figure 3.3. EEG power by sex. 
 

 
Figure 3.4. Right and left EEG power by group. 
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Variables MDD (N=82) HC (N=78) p-value 

Sex  47 ♀ 36 ♀ ns 

Age 30.6 (6.8) 28.6 (5.7) ns 

Hours in bed 6.8 (0.6) 6.9 (0.2) ns 

Sleep onset latency (min) 14.1 (13.2) 8.2 (11.1) <.05 

Table 3.1. Demographic and sleep variables. 
 
 
 

Variables B SE β 

Hour 1: Right Slow Frequency -.061 .016 -.907*** 

Hour 1: Left Slow Frequency .044 .017 .612* 

R2  .142  

F  12.980***  

Table 3.2. Summary of linear regression for variables predicting HRSD. *p≤.05, **p<.01, ***p<.001 

 
 

 Model 1 Model 2 Model 3 Model 4 

Variables B SE β B SE β B SE β B SE β 

Hour 1: Slow Frequency -.021 .005 -.292*** -.028 .006 -.403*** -.029 .006 -.404*** -.028 .006 -.402*** 

Hour 1: Fast Frequency    .109 .041 .225** .093 .042 .193* .090 .042 .186* 

Sex       -3.316 1.703 -.148* -3.324 1.707 -.148* 

Sex × Group          -.510 .845 -.045 

R2  .085   .113   .128   .125  

F  14.755***   6.906**   3.790*   .364  

Table 3.3. Summary of hierarchical linear regression for variables predicting HRSD. *p≤.05, **p<.01, ***p<.001 
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 Female Males 

Variables B SE β B SE Β 

Hour 1: Slow Frequency -.034 .009 -.462*** -.023 .008 -.341** 

Hour 1: Fast Frequency .158 .054 .347** -.011 .067 -.020 

R2  .169   .123  

F  8.137***   5.181**  

Table 3.4. Summary of hierarchical linear regression split by sex for variables predicting HRSD. *p≤.05, **p<.01, ***p<.001 
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CHAPTER 4  

Resilience in Sleep and Depression 

Introduction 

Although sleep difficulty is a common symptom of major depressive disorder (MDD), 

research has indicated that sleep disturbance may also be etiologically related to the 

development and maintenance of MDD. For example, sleep disturbances such as chronic 

insufficient sleep, fragmented sleep due to noise, or a diagnosis of insomnia has been 

associated with increased risk for depression (Tkachenko et al., 2014), and even in predicting 

later onset of depression (Baglioni et al., 2011). Furthermore, previous research has also 

demonstrated reduction in depression symptoms when patients undergo cognitive behavioral 

therapy for insomnia (Manber et al., 2011).  

One mechanism by which disturbances to sleep may increase risk for depression may be 

the affective consequences of sleep disruption (Baglioni, Spiegelhalder, Lombardo, & Riemann, 

2010). Research indicates that individuals deprived of sleep demonstrate an exaggerated 

negative response to stressors (Yoo et al., 2007). Additionally, sleep deprived individuals also 

show a notable impairment in their ability to regulate negative emotions associated with 

stressors (van der Helm & Walker, 2011). Together, individuals who experience sleep 

disturbances may be left with higher levels of stress and impaired ability for emotion 

regulation, thereby increasing their risk for psychiatric difficulties. Though it is clear that sleep 

disruption can contribute to the development of depression, less work has been done in 

examining how the negative consequences of sleep disruption can be mitigated, especially for 

individuals already suffering from depression.   
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Although disturbances to sleep have direct negative consequences, some individuals 

appear less impacted by sleep loss than others. Recent studies examining these individual 

differences have identified certain characteristics, such as personality or genotype, that are 

associated with mood reactivity to sleep disruption (Rupp, Wesensten, Newman, & Balkin, 

2013; Schröder, 2010). While personality and genetic makeup are among important factors in 

identifying individuals at higher risk of health complications from sleep disruption, these 

characteristics are not necessarily malleable, and therefore less amenable to interventions. 

Exploration of additional factors that may buffer against the negative impact of sleep disruption 

may allow us to identify ways of enhancing these factors that protect against subsequent 

negative consequences.  

Psychological resilience may be a potential factor that buffers against the affective 

consequences of sleep disruption, and is also amenable to intervention. Psychological resilience 

is broadly characterized by an ability to respond and recover from environmental stressors 

(Block & Kremen, 1996; Lazarus, 1998), and buffers against potential threats to well-being 

(Khanlou & Wray, 2014). Research in resilience has employed a range of definitions; in this 

study, we conceptualize resilience as a trait that enables individuals to effectively engage in 

self-regulation following exposure to stressors, thereby resulting in less negative and more 

positive experiences and mood. Consistent with the definition advocated by Rutter (1987), 

resilience is defined not merely as the absence of mental illness, but instead how one responds 

to threat. As such, while depressed individuals on average may possess lower resilience, 

individuals with depression may still report varying levels of resilience that serve protective 

functions. This conceptualization is consistent with previous research demonstrating that 

combat veterans experiencing post-war depression show varying levels of severity 

corresponding to their level of resilience (Youssef et al., 2013). Furthermore, this 

conceptualization also allows for the possibility of strengths-based interventions that target the 

enhancement of existing resilience in depression.  

Understanding the role of resilience in sleep may be particularly important because it 

has been established as a factor that can be targeted through interventions. For example, 

several studies have documented the efficacy of the Penn Resiliency Program, a group 
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intervention that teaches adolescents in school a variety of strategies to problem solve and 

cope with difficult social and emotional situations.  This intervention has been shown to reduce 

the onset and severity of depression symptoms (Brunwasser, Gillham, & Kim, 2009), 

demonstrating that resilience is a modifiable trait via intervention. If psychological resilience 

has a role in protecting individuals from the affective consequences of sleep disruption, it may 

also have a cascading effect in preventing not only depression, but a myriad of physical and 

mental health complications.  

Very few studies have examined the relationship between resilience and sleep in the 

context of psychopathology. Some nascent research has pointed to the role of resilience in 

protecting individuals from poor sleep and its adverse consequences. A recent study in 

adolescents examining “mental toughness”, a concept that overlaps with resilience, 

demonstrated that mentally tough adolescents exhibited better sleep indexed by higher sleep 

efficiency, less number of awakenings, less light sleep, and more deep sleep (Brand et al., 

2014). Additionally, another recent correlational study in healthy children suggested that 

resilience mediated the relationship between reported sleep disturbance and externalizing and 

internalizing problems (Chatburn, Coussens, & Kohler, 2014). Taken together, there is strong 

evidence for resilience as a potential buffer against the negative consequences of sleep 

disruption. However, additionally work is needed in exploring the relationship between 

resilience and sleep in adults, especially those already struggling with mood disorders.  

In order to address current gaps in the research, the present study sought to examine 

the role of resilience in the relationship between sleep and depression. Participants in this 

study completed an experimental protocol designed to compare mood responses between 

baseline sleep and disrupted sleep. By including both depression and psychological resilience as 

independent variables, this study can examine if mood responses to sleep disruption in 

depression versus healthy individuals is associated with lower psychological resilience. 

Specifically, this study tested if 1) resilience can serve as a buffer against the negative affective 

consequences of sleep disruption, and 2) if this buffering effect of resilience differs between 

depressed or healthy individuals. This study also tested if resilience in healthy individuals is 

related to better quality sleep, indexed by less difficulties falling and staying asleep, in addition 
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to deeper quality sleep. It was hypothesized that depressed individuals would exhibit more 

negative mood and less positive mood in response to sleep disruption compared to healthy 

individuals. It was also hypothesized that individuals reporting higher resilience will show 

attenuated disruptions to mood following interrupted sleep. Finally, if depressed individuals 

lacked resilience, results should reveal a differential effect of resilience between healthy and 

depressed participants. Contrastingly, if resilience serves as a buffer for both depressed and 

healthy individuals, the attenuation of mood disruptions should not differ by diagnosis.  

Methods 

Participants2 

A total of 34 participants (19 females) between the ages of 18 and 50 years old were 

recruited from the community via fliers and included in this study. Eighteen of these 

participants were healthy controls with no psychiatric history, do not meet diagnostic criteria 

for any Axis I disorder, and scored score of less than seven on the Beck Depression Inventory II 

(BDI-II). Sixteen of these participants were individuals who meet criteria for Major Depressive 

Episode based on DSM-IV-TR criteria, with a BDI-II score of 14 or higher. Procedures and 

recruitment for this study complied with the ethical standards of the Institutional Review 

Board. 

Participants in this study were recruited as part of a larger study investigating the 

cognitive consequences of sleep disturbance in depression. Exclusionary criteria in this study 

included history of head injury resulting in loss of consciousness longer than 2 minutes, 

neurological diseases, use of psychotropic medications, and co-occurrence of independent 

sleep disorders (e.g., obstructive sleep apnea, narcolepsy, restless leg syndrome, bruxism). 

Participants were also excluded for lifetime histories of substance dependence, bipolar I or II 

disorder, psychosis, and anorexia or bulimia. Participants received $10 for each hour of 

screening, and $75 for each night of research participation. 

 

                                                      
2 This study was part of the same protocol as in study 1, and the data is therefore collected 
from the same sample as study 1.  
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Experimental Conditions 

Each participant completed two nights (adaptation, baseline) with acquisition of 

polysomnography. Prior to the first night, participants were asked to maintain five nights of a 

regular sleep schedule consistent with the sleep schedule during the study. Sleep schedules 

were approximated to the participants’ natural sleep schedule at the time of recruitment. 

Compliance with the schedule was monitored through sleep diary and actigraphy 

(measurement of light and motion). Any deviations from their designated schedule that were 

greater than 2 hours prior to their first night were grounds for study exclusion. Additionally, 

participants were asked to refrain from use of caffeine after 12 noon, and abstain from alcohol 

or drug use. This pre-study period was followed by three consecutive nights in the sleep 

laboratory, with the first night serving as adaptation to the new sleep environment and as a 

screening for independent sleep disorders.   

 

Slow Wave Activity (SWA) Interruption.  

All participants completed an interruption night, during which their slow-wave activity 

was interrupted using tones delivered via earphones. Slow-wave activity is associated with 

deeper and more restorative sleep, and has also been associated with daytime mood. The 

delivery of tones maximized disruption to slow-wave activity without waking the subject. Slow-

wave activity (delta waves) was visually detected throughout the night. Upon detection of two 

consecutive delta waves, 1000 Hz tones ranging from 20-100 dBs were played at 15 second 

intervals increasing by 5 dBs until signs of interruption is seen (i.e., movement or arousal, 

increased muscle tone, increased fast frequency activity, sleep stage shift, EEG 

desynchronization, alpha burst, and/or slow eye movements). 

 

Measures 

Psychological resilience in this study was captured using the Ego-Resiliency Scale (ER89; 

Block & Kremen, 1996). The ER89 consists of 14 items measuring the ability to return to an 

individual’s baseline level of ego-control following temporary environmental changes or 

stresses. Participants rate each item on a 4-point likert scale ranging from 1 (Does not apply at 
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all) to 4 (Applies very strongly). Items include response to stressors (e.g., “I quickly get over and 

recover from being startled”, “I get over my anger at someone reasonably quickly”), as well as 

the anticipation of positive experiences in situations containing risk (e.g., “I enjoy dealing with 

new and unusual situations”, and “I enjoy trying new foods I have never tasted before”). Block 

and Kremen (1996) reported high reliability, with a coefficient alpha of .76 at both ages 18 and 

23 in that sample. Additionally, high correlations of ER89 score across 5 years have been 

reported with coefficients of .67 and .51 for females and males after adjusting for attenuation. 

Windle, Bennett, and Noyes (2011) also reported rating high construct validity of the ER89 

among nineteen other resiliency scales. 

Depression severity was measured via a version of the Beck Depression Inventory (BDI-

II) modified to assess current symptoms instead of symptoms within the last two weeks. Mood 

was measured through Visual Analogue Scales (VAS), including both positive and negative mood 

items. The VAS was completed before and after sleep on baseline and interruption nights. For 

ease of interpretation, some analyses also used difference scores calculated for positive and 

negative mood between baseline and interruption nights to measure change in mood following 

SWA interruption.  

 

Data Analysis 

In order to test the relationship between resilience, mood after SWA interruption, and 

depression, a general linear model was conducted with scores on the VAS submitted as the 

dependent variable. Four independent variables were used, consisting of Valence (Positive 

Mod, Negative Mood), Night (Baseline, Interruption), Group (MDD, HC), and Resilience (ER89 

scores).  Data analyses first examined the affective consequences of slow-wave activity 

disruption between groups via the Valence × Night × Group interaction. Next, analyses tested 

the model predicting a buffering effect of resilience on mood consequences of SWA 

interruption by examining the Valence × Night × Resilience interaction. Finally, the Valence × 

Night × Group × Resilience interaction was tested to examine if the buffering effect of resilience 

on mood following SWA interruption was moderated by group.  



 

 70 

Additionally, post-hoc analyses were conducted to compare the relative contribution of 

resilience versus depression in predicting changes in mood following SWA interruption. For 

ease of interpretation, difference scores on positive and negative mood taken between 

Baseline and Interruption night was used as the dependent variable. To examine the 

relationship between resilience, depression, and response to SWA interruption, correlations 

were conducted between the respective variables. Two hierarchical linear regressions were also 

conducted to examine resilience and depression severity as predictors of change in positive and 

negative mood following SWA interruption. 

Finally, correlations were conducted between mood, resilience, and polysomnography 

variables on baseline night that were indicators of sleep quality, including ability to fall or stay 

asleep (sleep onset latency, early morning awakenings), restfulness of sleep (number of 

arousals across the night), and depth of sleep (percentage of N1 versus N3 sleep). It was 

hypothesized that better quality sleep in healthy controls would be related to positive mood 

consequences as well as resilience. No hypotheses were generated for the depressed group due 

to lack of previous research examining resilience and sleep in depression.   

Results 

Descriptive  

Sleep characteristics were examined via polysomnographic variables and compared 

between the two groups via independent one-way ANOVAs (see Table 2.1). Results showed a 

difference in REM latency that was approaching statistical significance, with the MDD group 

demonstrating a shorter latency to REM sleep, as is consistent with the literature.   

A manipulation check was also completed to examine the effectiveness of the SWA 

interruption condition. The SWA interruption protocol targeted the interruption of delta, which 

should subsequently result in less time spent in slow-wave sleep (N3 sleep). Means revealed 

approximately a 50% reduction in N3 sleep between baseline night (mean = 67.52, SD = 29.11) 

and SWA interruption night (mean = 33.32, SD = 33.31), with a paired sample t-test confirming 

statistical significance of this difference, t(30)=8.292, p < .001. Calculation of the effect size 

using Cohen’s d revealed a value of 1.1, indicating a large effect size.  
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Sleep interruption and resilience 

Result from the first analysis examining consequences of mood following SWA 

interruption revealed differential responses between HC and MDD groups on both positive and 

negative mood, Valence × Night × Group, Wald χ2 = 11.677, p<.001, with the MDD group 

showing more negative affective consequences following SWA interruption. Specifically, the 

MDD group showed significantly higher negative mood following interruption night compared 

to baseline night, whereas the HC showed no change in negative mood, Night × Group, Wald χ2 

= 6.660, p<.01. Furthermore, while the MDD group showed marginal decreases in positive 

mood following interruption night compared to baseline night, the HC group show significant 

increases in positive mood, Night × Group, Wald χ2 = 8.964, p<.01 (see Figure 4.1). 

The second analysis examined if resilience moderated affective consequences of SWA 

interruption. Results demonstrated that resilience buffered against the negative consequences 

of sleep interruption, Night × Valence × Resilience, Wald χ2 = 23.021, p<.001. For ease of 

interpretation, this was followed-up with correlations using change scores for positive and 

negative mood between nights. Results indicate that higher resilience is related to less negative 

mood and more positive mood following SWA interruption relative to baseline night (see Table 

4.1). 

The third analysis tested whether a diagnosis of depression moderated the buffering 

effect of resilience. Results did not show a significant Valence × Night × Group × Resilience 

interaction, indicating that resilience did not differentially influence mood between MDD and 

HC groups following SWA interruption. Post-hoc analyses further revealed that change in 

positive and negative mood was significantly moderated by resilience for both MDD, Valence × 

Night × Resilience, Wald χ2 = 8.930, p<.01, and HC groups, Valence × Night × Resilience, Wald χ2 

= 16.944, p<.001. In both groups, individuals with higher resilience showed less increases in 

negative mood and less decreases in positive mood following SWA interruption (see Figure 4.2 

and Figure 4.3).  
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Resilience versus Depression  

Post-hoc analyses were also conducted to examine the relative importance of resilience 

versus depression severity in predicting mood response to SWA interruption. For ease of 

interpretation, separate analyses were conducted using change scores as the dependent 

variable in two hierarchical linear regressions. Scores from the BDI-II were entered in the first 

model to test the significance of depression severity in predicting response to SWA 

interruption. The second model included scores from the ER89 in order to test whether 

resilience accounts for additional variance beyond depression severity.  

Results revealed that depression severity did not significantly predict change in positive 

or negative mood following SWA interruption. In contrast, resilience was a significant predictor 

of change in positive and negative mood following SWA interruption, even after accounting for 

depression severity (see Error! Reference source not found. and Error! Reference source not 

found.).  

 

Correlations 

Correlations were also conducted in order to examine the relationship between 

resilience, mood, and sleep. Analyses were conducted separately for HC and MDD groups for a 

few reasons. Firstly, separating analyses by group may prevent illusory correlations that occur 

in the total sample that are driven by general group differences. Secondly, a hypothesis was 

only generated for the healthy control group, and not for the depressed group due to lack of 

previous research examining resilience and sleep in depressed adults. Finally, differences in 

sleep architecture have been documented in depression, which may mean that the relationship 

between resilience and sleep in healthy and depressed individuals may differ based on the 

changes in sleep architecture.  

Consistent with our hypothesis, results in the HC group suggest that higher resilience is 

associated with better quality sleep. Specifically, higher resilience was significantly related to 

decreased stage 1 sleep and decreased early morning awakenings. Resilience was also 

significantly related higher positive mood (r = .680, p < .01), and lower negative mood (r = -.578, 

p < .05). 
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Correlations completed within the MDD group revealed increased negative mood with 

increased early morning awakening. Early morning awakening was also marginally related with 

decreased positive mood. No significant correlations were detected in the MDD group between 

sleep variables and resilience. Correlations between resilience with positive (r = .366) and 

negative (r = -.284) mood did not reach statistical significant, though they were in consistent 

directions with corresponding correlations in the HC group. Pearson correlation coefficients 

indicate medium effect sizes that would likely reach significance with increased sample size. 

 

Discussion 

This study examined the relationship between resilience and sleep by testing if 

resilience buffered against negative affective responses to sleep disruption in depressed and 

healthy individuals. Results indicate that psychological resilience does buffer against increases 

in negative mood and decreases in positive mood following interrupted sleep. Most notably, 

despite being generally more prone to mood disturbances after sleep interruption, depressed 

individuals reporting higher resilience also appear to benefit from the buffer against mood 

disturbances following interrupted sleep. This suggests that resilience not only benefits healthy 

individuals, but can also benefit those who are depressed. Furthermore, results suggest that 

there may be room for a strengths-based model of intervention even in individuals who already 

suffer from depression.   

Results also suggest that, compared to depression severity, an individual’s resilience 

may be more powerful in predicting mood responses to sleep interruption. This result adds a 

new dimension to previous research implicating interrupted sleep as a vulnerability factor to 

depression. Specifically, this study suggests that psychological resilience can serve to protect 

against the mental health risks of interrupted sleep. While ample evidence has implicated sleep 

as a risk factor for depression, sleep disturbance is considered a transdiagnostic process that 

impacts several forms of psychopathology ( Harvey, Murray, Chandler, & Soehner, 2011). This 

further increases the potential impact of these results, and future research should explore how 

increasing resilience may reduce the negative consequences of sleep disruption. 
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As expected, results from this study demonstrated that when accounting for resilience, 

depressed individuals may be at elevated risk for negative emotional consequences of sleep 

disruption than healthy individuals. Specifically, disruptions to slow-wave activity appears to 

impact negative mood, which is consistent with other research showing baseline decreases in 

slow-wave activity in depressed individuals is related to increased depressed mood and 

symptom severity (see CHAPTER 3). When accounting for resilience, healthy individuals did not 

appear to experience an increase in negative mood, and interestingly showed an increase in 

positive mood after sleep interruption. While this is somewhat counterintuitive, one 

explanation may be based in research indicating that sleep deprivation disrupts the inhibitory 

pathway between the prefrontal cortex and the limbic region of the brain (van der Helm & 

Walker, 2011), which is largely implicated in processing of emotional information. This 

disruption of inhibition leads to hyperactivity in the amygdala, translating to increased intensity 

of emotions. Based on this evidence, it is possible that healthy individuals in this sample 

experienced an increase in intensity of their baseline positive emotions, and may similarly 

exhibit an exaggerated response if stressors were to be encountered. Given the smaller sample 

size in this study, this interpretation is tentative and would require further replication with a 

larger sample.  

Results of this study may also have implications beyond depression. While reduction of 

sleep disturbances is ideal for health outcomes, there are certain circumstances where reducing 

disturbances to sleep may be difficult to achieve. Examples include disturbances to sleep due to 

environmental noise, such as nighttime road, rail, and air traffic. In fact, a recent review 

published by the National Institute of Environmental Health Sciences presented noise pollution 

as a public health concern, stating that nearly 100 million people in the United States 

(approximately 50% of the population) are at risk for health complications due to 

environmental noise exposure (Hammer, Swinburn, & Neitzel, 2014). Additionally, several 

studies have documented adverse effects of environmental noise on sleep (Basner, Müller, & 

Elmenhorst, 2011; Halonen et al., 2012; Smith, Croy, Ögren, & Waye, 2013) which are often 

challenging and cost-prohibitive to reduce. Furthermore, another recent study also 

documented that among individuals who are exposure to noise pollution, those who report 
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sleep disturbances were more vulnerable to mental health difficulties. Taken together, results 

from this study indicate that interventions to enhance resilience may also be considered as part 

of a larger solution to protect vulnerable individuals from the negative consequences of sleep 

disturbance.  

Finally, as expected, results from this study also demonstrated that in individuals 

without psychopathology, higher resilience is related to better quality sleep, indexed by less 

time spent in lighter sleep and less fragmentation of sleep. This further confirms that sleep and 

mental health are intimately connected, and also provides evidence for sleep in not only 

reducing or preventing negative consequences, but perhaps also supporting or enhancing 

quality of life. This is particularly important because evidence indicates wide prevalence of 

insufficient sleep, with as high as 41.3% of individuals reporting insufficient sleep within the last 

13 days (CDC, 2009). 

 

Limitations 

Limitations of this study include the smaller sample size, which may be limiting the 

detection of additional group differences in baseline sleep variables. Another limitation 

includes the self-report of resilience, which may be measuring an individual’s self-efficacy 

around stress management. Future studies may include performance measures that index 

response and recovery from stress.  

Conclusions 

This study was aimed at exploring the relationship between resilience and sleep in 

depression as compared to healthy controls. Results indicate that even in depression, resilience 

can serve as a buffer against the negative mood consequences of sleep interruption. In 

individuals without psychopathology, resilience is related to less disturbed sleep. Future studies 

should aim to further delineate the relationship between resilience and sleep through more 

objective measures of resilience.  
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Appendix 

 
HC  MDD  Total Sample 

 ER89 
VAS 

Negative 

VAS 

Positive 
 ER89 

VAS 

Negative 

VAS 

Positive 

 
ER89 

VAS 

Negative 

VAS 

Positive 

Sleep Onset Latency .305 .181 -.025  -.223 .130 .170  -.123 .257 -.201 

Number of Arousals -.174 -.139 .200  -.114 -.197 .346  .042 -.146 .171 

Early Morning Awakening -.617
*
 .061 -.561

*
  -.266 .533

*
 -.469

†
  -.247 .004 -.292 

Percentage of N1 -.553
*
 .373 -.519

*
  .395 -.304 .298  -.041 -.013 -.090 

Percentage of N3 .163 -.252 .186  -.079 .152 -.167  -.049 .007 -.015 

Table 4.1. Correlations (pearson’s r) between resilience, mood, and sleep variables on Baseline night. †p < .1, *p < .05 
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 Total Sample  MDD  HC 

 
ER89 BDI-II  ER89 BDI-II  ER89 BDI-II 

∆ Positive VAS .414
*
 -.080  .480

†
 .031  .645

**
 -.384 

∆ Negative VAS -.356
*
 .127  -.649

**
 .201  -.364 .302 

Table 4.2. Correlations (pearson’s r) between resilience, depression serverity, and changes in 

mood following SWA interruption. †p < .1, *p < .05, **p < .01 

 
 
 

 
Model 1  Model 2 

 
B SE β 

 
B SE β 

BDI-II .137 .217 .113  -.196 .258 -.161 

ER89     -.748 .350 -.453* 

R
2 
(R

2 
Change) .013  .143* (.131) 

Table 4.3. Depression severity and resilience as predictors of change in negative mood 

following SWA interruption. Dependent Variable: ∆ Negative VAS (Bsl – Int). *p < .05, **p < .01 

 
 
 

 
Model 1  Model 2 

 
B SE β 

 
B SE β 

BDI-II -.059 .190 -.056  .322 .213 .304 

ER89     .856 .288 .597** 

R
2 
(R

2 
Change) .003  .230* (.227) 

Table 4.4. Depression severity and resilience as predictors of change in positive mood following 

SWA interruption. Dependent Variable: ∆ Positive VAS (Bsl – Int). *p < .05, **p < .01 
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Figure 4.1. Change in negative and positive mood following SWA interruption night compared 

to baseline night. †p < .1, *p < .05 
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Figure 4.2. Buffer effect of resilience on change in negative and positive mood following SWA 

interruption in the HC group. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3. Buffer effect of resilience on change in negative and positive mood following SWA 

interruption in the MDD group. 
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CHAPTER 5  

General Conclusion 

This dissertation addresses important disconnects in the literature of affective 

neuroscience in depression by bridging brain physiology between wakefulness and sleep. Sleep 

is of particular importance in depression not only because it is part of the symptomatology, but 

also because a plethora of evidence points of sleep physiology as a mechanism in the etiology 

of depression. However, despite evidence for the intimate relationship between sleep and 

depression, few studies have directly compared brain physiology across states of wakefulness 

and sleep, and how the physiology relates to the symptoms and experience of depression. 

Thus, the first study in this dissertation measured brain physiology during both resting 

wakefulness and sleep, and explored what aspects of cortical activity related to positive and 

negative mood in depression. Secondly, sleep research in depression have proposed two 

hypotheses regarding alterations in sleep. The first hypothesis posits that depression is 

characterized by deficits in the recovery functions of sleep, as indexed by reduced slow-wave 

activity. The second hypothesis posits that sleep in depression is characterized by hyperarousal 

in the central nervous system, leading to poor quality sleep as indexed by intrusions of fast-

frequency activity. Thus, the second study in this dissertation directly examined both slow-wave 

and fast-frequency activity in depression, and explored how each related to depression severity 

and mood. Finally, while nascent research has begun to examine the role of sleep in promoting 

human flourishing and resilience, few studies have investigated this relationship in depression. 

Psychological resilience is particularly important to examine because it may be the first 

protective factor against sleep disruption that may be amenable as a treatment target. Thus, 

the third study examined the relationship between resilience and sleep, and if resilience can 

protect against the negative affective consequences of sleep disruption, even in individuals who 

already suffer from depression.  
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The first study demonstrated that increased baseline cortical arousal is associated with 

positive affective experiences. Both the healthy control and depressed group exhibited higher 

positive and lower negative mood with increased beta activity, which is indicative of cognitive 

activity. Results also show that decreased beta activity was associated with higher anhedonia in 

the depressed group, and higher negative mood on the PANAS (consisting of more high arousal 

negative affect items) in the healthy control group. Together, results in this study are consistent 

with previous research showing that higher baseline cortical activity is related to response to 

brief cognitive intervention (Deldin & Chiu, 2005). Results also provide further preliminary 

evidence that the decrease in cortical activity may be related to a lack of cognitive and 

emotional resources. This decrease may manifest as the experience of negative low arousal 

states, such as anhedonia and decreased motivation. Future studies replicating this result in a 

larger sample size will be necessary in order to maximize generalizability to the larger 

population.  

The second study examined sleep in depression using a quantitative EEG approach, and 

explored its relationship to depression symptoms and mood. This study addressed the 

limitation of sample size in the first study by employing a much larger sample of depressed 

participants, though wake EEG was not available for investigation. Results suggested that sleep 

in depression may be better characterized by a brain deficit in generating adequate deep and 

restorative sleep, rather than a general intrusion of fast frequency activity. In fact, as found in 

the first study, decreased cortical activity during sleep was related to increased anxious and 

depressed mood the following morning. Results further confirm that depression is related to a 

dysregulation of the sleep-dependent process. However, sex differences were also detected, 

with only females showing additional increases in high-frequency activity related to increased 

depression severity.  

The last study investigated the influence of resilience in the emotional consequences of 

sleep disruption in depression as compared to healthy controls. Results indicate that even in 

depression, resilience can serve as a buffer against the negative mood consequences to sleep 

interruption. In healthy individuals, resilience was related to less disturbed sleep, suggesting 
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that individuals with higher psychological resilience may possess a sleep system that is more 

robust, and therefore more able to respond to stress.  

 Together, this dissertation provides new insights and clarifications into the role of sleep 

in depression. Results indicate that not only is sleep different in depression compared to 

healthy controls, these differences are related to the both the symptom severity as well as 

mood. Furthermore, results also clarified that sleep in depression may be better characterized 

by a decreased in slow-wave activity rather than an intrusion of fast-frequency activity, though 

there appears to be a sex difference with females showing both decreased slow-wave activity 

and fast-frequency activity. 

Decreased cortical activity during sleep, especially in the delta frequency as found in the 

second study, may represent disruptions in the recovery processes of sleep. One mechanism of 

sleep-dependent recovery may be the process of synaptic homeostasis. Synaptic homeostasis 

has been proposed to occur during slow-wave activity, and downscales synaptic strength that 

has been building during long-term potentiation (i.e., information processing and learning) 

across wakefulness (Tononi & Cirelli, 2006). Inadequate synaptic downscaling subsequently 

leads to synaptic overload, and therefore reduced neuronal excitability and increased synaptic 

failure during wakefulness. These neuronal consequences may explain characteristic symptoms 

of depression, such as fatigue, anhedonia, impaired attention and concentration, and 

decreased motivation, as suggested in the results of study two.  

Deficiencies in slow-wave activity in depression may lead to a multitude of 

consequences. Firstly, inadequate synaptic downscaling during sleep likely results in impaired 

neuronal functioning during the following day (e.g., reduced neuronal excitability, increased 

synaptic failure), which may be experienced as decreased cognitive activity. As found in study 

one, decreased cognitive activity in depression is subsequently associated with poor mood 

consequences, which is consistent with previous research demonstrating that baseline cortical 

activity was found to predict mood reactivity to a brief intervention (Deldin & Chiu, 2005). 

Furthermore, results also provide further evidence that decreased cognitive activity may be 

particularly related with negative low arousal states, such as depressed mood and anhedonia. 

Together, these results suggest that reduced cortical activity may be an alternative biomarker 
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for depressive disorders marked by “negative” symptoms (i.e., anhedonia, decreased 

motivation, lethargy), and further proposes that this may be a consequence of a deficient sleep-

dependent recovery process. In fact, symptoms marked by low arousal and low valence would 

be a natural consequence to inadequate restoration during sleep.  

Consequential decreased cortical activity from non-restorative sleep may not only affect 

baseline mood states, but also extend to the individual’s ability to effectively engage in their 

environment. When non-restored neurons are less excitable, or even experience synaptic 

failures, it may restrict the amount of cognitive and emotional resources that is available to the 

individual. One instance of a resource or skill of particular importance is emotion regulation. 

Previous studies have already identified altered functioning of the prefrontal cortex (PFC), 

which plays a role in regulation of the limbic system. In fact, individuals who are deprived of 

sleep, and therefore deprived of synaptic restoration, are less able to regulate amygdala 

activity, resulting in exaggerated amygdala responses to stress (Yoo et al., 2007). Additionally, 

impairments in cognitive functioning have been well documented as consequences to sleep 

disruption (for review, see Durmer & Dinges, 2005). Together, this indicates that deficits in 

sleep-dependent restoration not only alters baseline mood, but also further increases reactivity 

to stress, paired with reduced cognitive resources to regulate the stress response. Moreover, 

the resulting state of increased stress may further disrupt sleep, thereby perpetuating the 

vicious cycle of depression.  

Secondly, disruptions to sleep may also exacerbate depression by adversely impacting 

offline emotion regulation. An emerging body of research has begun exploring the role of sleep 

in offline emotion processing and emotion regulation (Walker & van der Helm, 2009). Though 

some of this nascent research has been focused on REM sleep, it is also possible that 

disruptions to NREM sleep can also have negative consequences in offline affect regulation, 

especially given the role NREM sleep in physiological restoration (Saper, Cano, & Scammell, 

2005). This may also explain the relationship between reduced slow-wave activity in depression 

and poor mood. Unlike healthy sleepers who have the opportunity to effectively disentangle 

affect from negative episodic memories, depressed individuals may be deprived of this process 

and therefore wakeup with lingering negative affect from recent negative experiences.  
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Thirdly, the consequences of decreased slow-wave activity in depression may also 

impede responses to intervention. In fact, Tononi and Cirelli (2006) have indicated that 

disruptions to synaptic homeostasis reduces brain plasticity, which has been identified as a 

predictor of response to antidepressant treatment (Castrén & Hen, 2013). Engaging in change 

behaviors with reduced brain plasticity may also require increased effort and duration of 

practice in implementing behavioral change, which may lead to higher frustration, 

hopelessness, and therefore treatment attrition. Similarly, reductions in neuronal 

responsiveness as a consequence of decreased slow-wave activity may reduce effective 

engagement in pleasurable activities or meaningful experiences, and thus attenuate the 

effectiveness of interventions such as behavioral activation. Together, these results suggests 

that a brain deficit in generating adequate deep and restorative sleep may contribute to 

depression by disrupting baseline mood, interfering with neural mechanisms of emotion 

regulation, and mitigating responses to interventions.   

Finally, this dissertation is also among the first studies to examine psychological 

resilience and sleep in depression via objective measures of sleep in depression. The 

relationship between sleep and positive mental health is fairly new, and most existing research 

has focused on subjective reports of sleep quality as dependent variables. This dissertation 

provides evidence that psychological resilience in healthy controls is related to fewer 

disruptions to sleep, suggesting that sleep may also serve as a protective factor in mental 

health. Results also reveal that both healthy controls and depressed individuals reporting 

higher psychological resilience benefit from the buffering effect of resilience against the 

negative affective consequences of sleep disruption. Furthermore, in predicting change in 

mood following sleep disruption, psychological resilience appears to be a more powerful 

predictor than depression severity. Together, these results indicate that even though sleep 

disruption is a powerful risk factor for depression, psychological resilience may be influential in 

reducing this risk.  
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 Results from the third study shows promise in further delineation of the important and 

yet poorly understood role of resilience and sleep in depression. While this study presumes 

resilience as a stable characteristic that is related to sleep quality, it is also possible that 

changes in sleep quality may impact resilience. For example, reduced brain plasticity 

subsequent to inadequate sleep-dependent brain restoration would certainly impact one’s 

ability to respond and recover from stressor. Consequently, follow-up studies may examine 

how resilience may be impacted by disruptions to sleep via tasks that measure the experience 

and recovery from stressors.  Existing research from a developmental psychopathology 

perspective has documented that increased quality sleep appears to be protective against the 

later development of depressive disorders (Silk et al., 2007). Contrastingly, research in sleep 

deprivation has also subsequent impairments in tasks that are likely involved in resilience, such 

as emotion regulation. In light of existing research, it is likely that the relationship between 

resilience and sleep may be bidirectional.  

 

Future Directions 

The studies in this dissertation have provided some evidence that may lead to future 

research. First, given the heterogeneity in depression, future studies may attempt to replicate 

findings within particular dimensions of symptoms in depression. If reduced cortical activity 

during wakefulness is related to negative low arousal states in depression, then cortical activity 

in individuals who experience catatonic-depression may differ that those who experience more 

agitated-depression. Similarly, cortical activity may be further pursued as a dimensional factor 

that may differ between diagnoses involving higher arousal negative affect (e.g., anxiety, 

mania) than those that involve lower arousal negative states (e.g., depression, dysthymia, 

chronic fatigue). 

Future studies may also examine the influence of sleep interventions in the profile of 

cortical activity across diagnoses. Cognitive behavioral therapy for insomnia (CBT-I) has the 

most evidence as a sleep intervention, and has been shown preliminarily to reduce beta activity 

in insomnia (Cervena et al., 2004). Similar studies can be done examining how CBT-I may 

influence cortical activity in depression and other mood disorders.  
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Finally, results from the third study demonstrate that psychological resilience may be 

one malleable factor that can buffer against the negative affective consequences of sleep 

disruption. Future studies may validate this by examining experimental tasks that measure 

emotional and physiological response and recovery from stress in the context of sleep 

disruption and depression.  
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