
Energy-Efficient Decoders of Near-Capacity Channel Codes

by

Youn Sung Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
2014

Doctoral Committee:

Assistant Professor Zhengya Zhang, Chair
Professor David Blaauw
Assistant Professor Jianping Fu
Professor Trevor Mudge

c© Youn Sung Park 2014

All Rights Reserved

To my loving family

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Professor Zhengya Zhang for his

support and guidance. It has been an honor to be his first Ph.D. student. His tremendous

effort, valuable ideas, and warm encouragement helped me make my Ph.D. experience

productive and stimulating. I would like to thank Professor David Blaauw and Dennis

Sylvester for the insightful discussions and ideas. I would also like to thank Professor Trevor

Mudge and Jianping Fu for participating in my dissertation committee and evaluating my

research proposal and reviewing this dissertation.

My research was supported by NSF under grant CCF-1054270, DARPA under coopera-

tive agreement HR0011-13-2-0006, NASA, Intel, Broadcom Foundation, and the University

of Michigan. The chip fabrication donation was provided by ST Microelectronics. Dr.

Pascal Urard at ST Microelectronics, Dr. Engling Yeo at Marvell Semiconductor, and Dr.

Andrew Blanksby at Broadcom offered valuable feedback in reviewing my chip designs.

I consider myself very fortunate to be able to work with very talented individuals here

at the University of Michigan. I will never forget the enjoyable memories that are shared

with Jungkuk Kim, Dongsuk Jeon, Yaoyu Tao, Yoonmyung Lee, Inhee Lee, Chia-Hsiang

Chen, Phil Knag, Shuanghong Sun, Wei Tang, Thomas Chen, Shiming Song, Gyouho Kim,

Dongmin Yoon, Yejoong Kim, Suho Lee, Suyoung Bang, Sechang Oh, Jaeyoung Kim, Seok-

Hyeon Jeong, Taehoon Kang, Hyunsoo Kim, Inyong Kwon, Jaehun Jeong, Zhiyoong Foo,

Donghwan Kim, and Myungjoon Choi.

Last but not least, I thank my parents in Korea as well as my wife Yeori Choi and

daughter Ji Yu Park, for their endless support and trust. I dedicate this work to them for

their love and support.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vi

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Near-Capacity Channel Codes . 1
1.1.1 Low-Density Parity-Check Codes 2
1.1.2 Nonbinary Low-Density Parity-Check Codes 5
1.1.3 Polar Codes . 8

1.2 Scope of this Work . 12
1.2.1 Low-Density Parity-Check Codes 12
1.2.2 Nonbinary Low-Density Parity-Check Codes 13
1.2.3 Polar Codes . 13

II. LDPC Decoder with Embedded DRAM 15

2.1 Decoding Algorithm . 15
2.2 Decoder Architecture . 17

2.2.1 Pipelining and Throughput 19
2.3 Throughput Enhancement . 23

2.3.1 Row Merging . 23
2.3.2 Dual-Frame Processing . 25

2.4 Low-Power Memory Design . 25
2.4.1 Memory Access Pattern 27
2.4.2 Non-Refresh Embedded DRAM 27
2.4.3 Coupling Noise Mitigation 29
2.4.4 Retention Time Enhancement 31

2.5 Efficient Memory Integration . 33
2.5.1 Sequential Address Generation 35

iv

2.5.2 Simulation Results . 36
2.6 Decoder Chip Implementation and Measurements 39

2.6.1 Chip Measurements . 41
2.6.2 Comparison with State-of-the-Art 41

2.7 Summary . 44

III. Nonbinary LDPC Decoder with Dynamic Clock Gating 46

3.1 Decoding Algorithm . 46
3.1.1 VN Initialization . 47
3.1.2 CN Operation . 48
3.1.3 VN Operation . 50

3.2 High-Throughput Fully Parallel Decoder Architecture 51
3.2.1 Look-Ahead Elementary Check Node 52
3.2.2 Two-Pass Variable Node 56
3.2.3 Interleaving Check Node and Variable Node 58

3.3 Low-Power Design by Fine-Grained Dynamic Clock Gating 59
3.3.1 Node-Level Convergence Detection 60
3.3.2 Fine-Grained Dynamic Clock Gating 62

3.4 Decoder Chip Implementation and Measurement Results 64
3.4.1 Chip Measurements . 65
3.4.2 Comparison with State-of-the-Art 69

3.5 Summary . 71

IV. Belief-Propagation Polar Decoder . 72

4.1 Decoding Algorithm . 72
4.1.1 Successive Cancellation Decoding 72
4.1.2 Belief Propagation Decoding 74

4.2 Decoder Architecture . 76
4.3 High-Throughput Double-Column Unidirectional Architecture . . . 77

4.3.1 Unidirectional Processing Architecture 77
4.3.2 Double-Column Architecture 80

4.4 High-Density Bit-Splitting Register File 82
4.5 Decoder Chip Implementation and Measurement Results 84

4.5.1 Chip Measurements . 86
4.5.2 Comparison with State-of-the-Art 86

4.6 Summary . 89
4.7 Future Research Directions . 90

4.7.1 Polar Code Design . 90
4.7.2 Reconfigurable BP Polar Decoder 90

V. Conclusion . 92

BIBLIOGRAPHY . 94

v

LIST OF FIGURES

Figure

1.1 Bit error rate comparison between uncoded and encoded systems. 2

1.2 An example H matrix and factor graph representation of an LDPC code . 3

1.3 BER (solid-line) and FER (dashed-line) of rate-1/2 LDPC codes used in
wireless communication standards [1, 2, 3]. 4

1.4 Comparison of binary LDPC and nonbinary LDPC (NB-LDPC) code. . . 6

1.5 BER (solid-line) and FER (dashed-line) comparison of LDPC and NB-LDPC. 7

1.6 Example of polarization effect on N = 214 for a BEC channel with ε = 0.5. 9

1.7 Polar code encoder example for N = 8. 9

1.8 BER (solid-line) and FER (dashed-line) comparison of LDPC and polar
codes under successive cancellation decoding. 11

2.1 H matrices of the rate-1/2, rate-5/8, rate-3/4 and rate-13/16 LDPC code
for the IEEE 802.11ad standard [1]. 16

2.2 Illustration of LDPC decoder architectures. The shaded part represents the
section of the H matrix that is processed simultaneously. 18

2.3 (a) Variable node, and (b) check node design (an XOR gate is incorporated
in the sort and compare-select logic of the CN to perform the parity check.) 20

2.4 Pipeline schedule of (a) a conventional single-frame decoder without row
merging, (b) a conventional single-frame decoder with row merging, and
(c) proposed dual-frame decoder with row merging. Note that (a) and (b)
require stalls in-between frames due to data dependency between the PS
and VC stages. 21

vi

2.5 (a) Illustration of row merging applied to the H matrix of the rate-1/2
LDPC code for IEEE 802.11ad. The merged matrix has only 4 rows, short-
ening the decoding iteration latency; and (b) modified check node design
to support row merging. 24

2.6 (a) Power breakdown of a 65 nm synthesized 200 MHz row-parallel register-
based LDPC decoder for the IEEE 802.11ad standard, and (b) memory
power breakdown. Results are based on post-layout simulation. 26

2.7 (a) V2C memory access pattern, and (b) C2V memory access pattern. . . 28

2.8 Schematic and capacitive coupling illustration of the (a) classic 3T cell [4],
and (b) proposed 3T cell and (c) its 4-cell macro layout. 30

2.9 Effects of transistor sizing on WWL and RWL coupling noise. Only the
falling transition of WWL and the rising transition of RWL are shown as
they determine the cell voltage after write and before read. 31

2.10 Cell retention time with negative WWL voltage. 32

2.11 100k Monte-Carlo simulation results of cell retention time at 125◦C. The
simulation was done on post-layout extracted netlist at 1.0V supply voltage
with -300mV WWL. The retention time is measured as the time for the cell
voltage to drop to 0.5V (in black) and 0.4V (in grey). 34

2.12 Schematic and waveform of sequential address generation based on 5-stage
circular shift register. 36

2.13 Layout and schematic illustration of a 5 × 210 eDRAM array including cell
array and peripherals. 37

2.14 Simulated read access time (in black) and power consumption (in grey) of
the eDRAM array at 25◦C and 125◦C. Results are based on post-layout
simulation using a -300mV WWL and power is measured at a 180 MHz
clock frequency. 38

2.15 Chip microphotograph of the decoder test chip. Locations of the 32 eDRAM
arrays inside the LDPC decoder and the testing peripherals are labeled. . 39

2.16 BER performance of the (672, 336) LDPC code for the IEEE 802.11ad
standard using a 5-bit quantization with 10 decoding iterations and floating
point with 100 iterations. 40

2.17 Measured LDPC decoder power at 5.0 dB SNR and 10 decoding iterations.
The total power is divided into core and eDRAM power. Voltage scaling is
used for the optimal core and eDRAM power. 42

vii

2.18 Measured LDPC decoder power across SNR range of interest at 10 decoding
iterations. Voltage scaling is used for optimal core and eDRAM power. . . 43

3.1 Illustration of forward-backward algorithm with dc = 6. 49

3.2 Architecture of the fully parallel nonbinary LDPC decoder. 51

3.3 Architecture of the check node. 53

3.4 Sub-operation schedule of (a) the bubble check elementary check node and
(b) the look-ahead elementary check node. 53

3.5 Operation schedule of (a) the elementary check node and (b) the check node. 55

3.6 Architecture of the variable node. 56

3.7 Operation schedule of (a) the elementary variable node and (b) the variable
node. Note that EVN3 uses a shorter sorter length since only the minimum
is required. 57

3.8 Operation schedule of the decoder which includes the variable node, check
node, permutation & normalization, and inverse permutation stages. . . . 58

3.9 (a) Power breakdown of the 65 nm synthesized fully parallel nonbinary
LDPC decoder, and (b) the distribution of sequential logic used in the
decoder. 60

3.10 Example of clock gating showing active and clock gated nodes at different
iterations during the decoding process of one frame. 61

3.11 Implementation of fine-grained dynamic clock gating for the variable and
check node. 62

3.12 Cumulative distribution of clock gated nodes at each iteration for various
SNR levels with a decoding iteration limit of 30. The parameters used for
clock gating are M = 10 and T = 10. 64

3.13 Chip microphotograph of the decoder test chip. Locations of the test pe-
ripherals and the decoder are labeled. 65

3.14 BER and FER performance of the GF(64) (160, 80) regular-(2, 4) NB-
LDPC code using 5-bit quantization. 66

3.15 Illustration of throughput and energy efficiency of various decoder config-
urations at 5.0 dB SNR. L, M , and T represents decoding iteration limit,
minimum decoding iteration, and consecutive iteration threshold, respec-
tively. 67

viii

3.16 Measured NB-LDPC decoder (a) power and (b) energy efficiency at 5.0 dB
SNR and 30 decoding iterations. CG denotes clock gating and DT denotes
decoder termination. The parameters used for clock gating and decoder
termination are M = 10 and T = 10. 68

4.1 Example of successive cancellation: (a) factor graph for a N = 8 polar code
and (b) successive cancellation decoding schedule. 73

4.2 Example of BP factor graph for N = 8 polar code. 75

4.3 Conventional single-column bidirectional architecture of a 1024-bit BP po-
lar decoder. 77

4.4 Illustration of the PE outputs in a bidirectional architecture. The outputs
produced by the PEs in the R and L propagations are shown in blue and
red, respectively. 78

4.5 Illustration of the (a) bidirectional PE which outputs both Lout and Rout
and (b) unidirectional PE which outputs either Lout or Rout based on di-
rection. 79

4.6 (a) single-column and (b) double-column unidirectional architecture and
(c) their comparison. The critical paths are highlighted in red. 81

4.7 Conventional memories: (a) standard register file and (b) distributed reg-
isters. 82

4.8 Illustration of the proposed bit-splitting register file. 83

4.9 Chip microphotograph of the decoder test chip. Locations of the test pe-
ripherals and the decoder are labeled. 84

4.10 FER performance of the (1024, 512) polar code using SC and BP decoding
algorithm, and the (672, 336) LDPC code for the IEEE 802.11ad standard
for comparison. 85

4.11 Measured power consumption and energy efficiency of the BP polar de-
coder at the minimum supply voltage for each clock frequency. (BP polar
decoding using maximum 15 iterations with early termination enabled.) . 87

4.12 Measured energy efficiency of the BP polar decoder at the minimum supply
voltage for each clock frequency at various decoding iteration limit. 88

4.13 Illustration of 16-bit BP polar decoder factor graph containing 2 8-bit BP
polar decoder factor graphs. 91

ix

LIST OF TABLES

Table

1.1 Summary of state-of-the-art LDPC decoder ASIC implementations. 4

1.2 Summary of state-of-the-art NB-LDPC decoder ASIC layout implementa-
tions. 8

1.3 Summary of state-of-the-art polar decoder ASIC synthesis implementations. 11

2.1 Measurement summary of the LDPC decoder at 5.0 dB SNR and 10 de-
coding iterations . 42

2.2 Comparison of state-of-the-art LDPC decoders 44

3.1 Measurement summary of the NB-LDPC decoder at 5.0 dB SNR 67

3.2 Comparison of state-of-the-art NB-LDPC decoders (ASIC layout) 70

3.3 Comparison of state-of-the-art NB-LDPC decoders (ASIC synthesis) . . . 70

4.1 Comparison of state-of-the-art polar decoders. 89

x

ABSTRACT

Energy-Efficient Decoders of Near-Capacity Channel Codes

by

Youn Sung Park

Chair: Zhengya Zhang

In state-of-the-art communication and storage systems, channel coding, or error control

coding (ECC), is essential for ensuring the reliable transmission and storage. State-of-the-

art communication and storage systems have adopted channel codes such as LDPC and

turbo codes to close the gap towards the ultimate channel capacity known as the Shannon

limit. Their goal is to achieve high transmission reliability while keeping the transmit

energy consumption low by taking advantage of the coding gain provided by these channel

codes. The lower transmit energy is at the cost of extra energy to decode the channel codes.

Therefore a decoder that provides a good coding gain at high energy efficiency is essential

for achieving the lowest total energy. This work focuses on reducing the decode energy

of near-capacity channel codes, including LDPC codes, nonbinary LDPC codes, and polar

codes.

LDPC code is one of the most widely used ECC in communication and storage sys-

tems due to its capacity-approaching error correcting performance. State-of-the-art LDPC

decoder implementations have demonstrated high-throughput in the Gb/s range through

the use of highly parallel architectures. However, these designs consumed high memory

power due to the use of registers for the high access bandwidth. A non-refresh embedded

DRAM is proposed as a new memory solution to replace the most power-hungry parts of

xi

the decoder. The proposed eDRAM takes advantage of the deterministic memory access

pattern and short access window to eliminate its refresh circuitry and trades off excess

retention time for faster read access time. Architectural techniques can be employed to im-

prove throughput and to accommodate the eDRAM memory. A prototype 1.6 mm2 65 nm

decoder for a (672, 336) LDPC code compatible with the IEEE 802.11ad standard achieves

a peak throughput of 9 Gb/s at 89.5 pJ/b. With voltage and frequency scaling, the power

consumption is further reduced to 37.7 mW for a 1.5 Gb/s throughput at 35.6 pJ/b.

Nonbinary LDPC (NB-LDPC) code achieves even better error-correcting performance

than a binary LDPC code of comparable block length at the cost of significantly higher

decoding complexity and low decoding throughput. However, the factor graph of a NB-

LDPC code consists of much fewer edges compared to binary LDPC code. In this work,

a Gb/s fully parallel NB-LDPC decoder architecture is proposed to take advantage of the

low wiring overhead of NB-LDPC codes. With new architectural techniques including a

one-step look-ahead check node design and interleaving of variable node and check node

operations, both the clock frequency and iteration latency are significantly improved over

the state-of-the-art. By a node level convergence detection strategy, a fine-grained dynamic

clock gating can be applied to save dynamic power. A 1.22 Gb/s NB-LDPC decoder test

chip for a (160, 80) GF(64) NB-LDPC code is designed as a proof-of-concept. The test chip

consumes 3.03 nJ/b, or 259 pJ/b/iteration, at 1.0 V and 700 MHz. Voltage scaling to 675

mV improves the energy efficiency to 1.04 nJ/b, or 89 pJ/b/iteration for a throughput of

698 Mb/s at 400 MHz.

The recently invented polar code is provably capacity-achieving compared to capacity-

approaching codes. Although the achievable error-correcting performance of a polar code of

a practical block length is similar to LDPC code of comparable block length, the recursive

construction of polar codes allows for a very regular structure that reduces the wiring com-

plexity of the encoder and decoder design. This work proposes a belief propagation polar de-

coder, which delivers a much higher throughput over a conventional successive cancellation

decoder. Architectural improvements using unidirectional processing element and double-

column parallelism further reduce the decoding latency and improve throughput. A latch-

based register file is designed to maximize the memory bandwidth while keeping a small

xii

footprint. A 1.48 mm2 65 nm polar decoder test chip is designed for a 1024-bit polar code.

The decoder achieves a peak throughput of 4.68 Gb/s at 15.5 pJ/b/iteration. With voltage

and frequency scaling, the energy efficiency is further improved to 3.63 pJ/b/iteration for

a throughput of 779 Mb/s at 50 MHz.

This work has demonstrated energy-efficient decoders for LDPC, NB-LDPC, and polar

codes to advance the state-of-the- art. The decoders will enable the continued reduction of

decode energy for the latest communication and storage applications. The new techniques

developed in this work, including non-refresh embedded memory, bit-splitting register file,

and fine-grained dynamic clock gating are widely applicable to designing low-power DSP

processors.

xiii

CHAPTER I

Introduction

Communication and storage of information have become a ubiquitous part of modern

technology. The goal of efficient communication and storage is to transmit or store the most

information using the least energy. The ultimate theoretical limit of efficient communication

and storage is defined by the Shannon capacity, which captures the least transmit energy,

or signal-to-noise ratio (SNR), needed for reliable transmission. For a given information

reliability measured in terms of bit error rate (BER), a system with weak or no error-

correcting code (ECC) will require a high SNR, whereas a system with a strong ECC will

be able to reduce the necessary SNR and the transmit energy. Fig. 1.1 illustrates the

difference between a coded system versus an uncoded system. A near-capacity code is the

most efficient in terms of SNR, but the decoding can be complex, adding significant decode

energy. Therefore it is essential to design good decoders for near-capacity channel codes to

achieve both good SNR and high decode energy efficiency to reduce the total energy cost.

This research is focused on ECC algorithms and their very-large scale integration (VLSI)

implementation through algorithm, architecture, and circuits co-optimizations. State-of-

the-art near-capacity codes will be considered, including low-density parity-check (LDPC)

[5], nonbinary LDPC (NB-LDPC) [6], and polar codes [7].

1.1 Near-Capacity Channel Codes

Turbo code was invented in 1996 [8]. Soon after, LDPC code was rediscovered [5, 6].

Turbo and LDPC codes have been widely adopted in commercial applications, such as

1

B
it

 e
rr

o
r

ra
te

 (
B

E
R

)

Eb/N0 (dB)
1.0

1000-

10-10

2.0 3.0 4.0 5.0 6.0 7.0

10-20

10-30

10-40

10-50

10-60

10-70

Coding gain

Same BER, lower SNR

Shannon

limit

Uncoded BPSK
Coded LDPC

Figure 1.1: Bit error rate comparison between uncoded and encoded systems.

3GPP-HSDPA [9], 3GPP-LTE [10], WiFi (IEEE 802.11n) [3], WiMAX (IEEE 802.16e)

[11], digital satellite broadcast (DVB-S2) [12], 10-gigabit Ethernet (IEEE 802.3an) [13],

magnetic [14] and solid-state storage [15]. This section reviews LDPC, nonbinary LDPC

and polar codes, their current state-of-the-art decoder designs, and major challenges.

1.1.1 Low-Density Parity-Check Codes

An LDPC code is a block code defined by a M × N parity-check matrix H [5, 16],

where M is the block length (number of bits in the codeword) and N is the number of

parity checks. The elements of the matrix H(i, j) are either 0 or 1 to represent whether bit

j of the codeword is part of parity check i. An H matrix can be represented using a factor

graph composed of two sets of nodes: a variable node (VN) for each column of the H matrix

and a check node for each row. An edge is drawn between VN(j) and CN(i) if H(i, j) = 1.

2

1 0 0 1 0 0

0 1 0 0 1 0

1 0 1 0 1 0

0 0 1 0 0 1

v1 v2 v3 v4 v5 v6

c1

c2

c3

c4

of rows:

of columns:

Variable Nodes

C
h

ec
k
 N

o
d
es

M = 4

N = 6

v1 v2 v3 v4 v5 v6

c1 c2 c3 c4

Figure 1.2: An example H matrix and factor graph representation of an LDPC code

An example H matrix with its corresponding factor graph is shown in Fig. 1.2.

Due to their excellent error-correcting performance, LDPC codes have been used in

a wide range of applications. The bit error rate and frame error rate (FER) of three

wireless standards are illustrated in Fig. 1.3. In addition, the iterative belief propagation

(BP) decoding algorithm can be efficiently implemented in the min-sum algorithm [17].

The algorithm enables simple processing nodes that are easily implemented in hardware.

Therefore the decoder complexity can be kept low while achieving good error-correcting

performance.

Table 1.1 summarizes some key metrics of state-of-the-art LDPC decoders. A 3.03

mm2 0.13 µm LDPC decoder for WiMAX consumes more than 340 mW for a throughput

up to 955 Mb/s [18]. With technology scaling, the area and power consumption of LDPC

decoders continue to improve. A 1.56 mm2 65 nm LDPC decoder for the high-speed wireless

standard IEEE 802.15.3c consumes 360 mW for a throughput of 5.79 Gb/s [19]. For a higher

throughput, the decoder architecture can be further parallelized, but the power and area

increase accordingly. A 5.35 mm2 65 nm 10-gigabit Ethernet LDPC decoder consumes 2.8

W for up to 47 Gb/s [20].

Parallelizing LDPC decoder for high throughput increases the interconnect complexity

[21, 22, 23, 24, 25] and memory bandwidth [26]. Though the interconnect challenge has

largely been addressed through the use of structured codes and row-parallel [20, 24, 19]

3

E
rr

o
r

ra
te

Eb/N0 (dB)
1.0

1000-

10-10

1.5 2.0 3.0 3.5 4.0 5.0

10-20

10-30

10-40

10-50

10-60

10-90

10-70

10-80

10-10

2.5 4.5

IEEE 802.11ad
IEEE 802.15c
IEEE 802.11n

Figure 1.3: BER (solid-line) and FER (dashed-line) of rate-1/2 LDPC codes used in wireless
communication standards [1, 2, 3].

Table 1.1: Summary of state-of-the-art LDPC decoder ASIC implementations.

Standard

Core Area (mm2)

Throughput (Gb/s)

Norm. Energy Eff. (pJ/bit)b

Norm. Area Eff. (Gb/s/mm2)b

JSSCʼ12

[19]

802.15.3c

1.56

5.79

62.4

3.70

JSSCʼ11

[18]

802.16e

3.03

0.955

207.9

0.63

JSSCʼ10

[20]

802.3an

5.35

6.67a

61.7

0.44

ASSCCʼ10

[32]

802.11n

1.77

0.679

79

0.77

Early termination enabled.
Normalized to 65nm, 1.0V. Throughput is normalized to 10 decoding iteration for flooding decoders and 5 decoding iteration for

layered decoders.

b

a

4

or block-parallel architectures [27, 26, 28, 29, 30, 31, 32, 18, 33], memory bandwidth still

remains a major challenge. To support highly parallel architectures, SRAM array needs to

be partitioned into smaller banks, resulting in very low area efficiency. High-throughput

LDPC decoders use registers for high-speed and wide access, at the expense of high power

and area. As a result, memory dominates the power consumption and area of LDPC

decoders [34].

1.1.2 Nonbinary Low-Density Parity-Check Codes

Nonbinary LDPC codes, defined over Galois field GF(q), where q > 2, offers better

coding gain than binary LDPC codes [6]. NB-LDPC codes’ excellent coding gain can be

achieved even at a short block length, and a low error floor has also been demonstrated.

The main difference between an LDPC and an NB-LDPC code is that an NB-LDPC

code is formed by grouping multiple bits to symbols using GF elements, as illustrated in an

example in Fig. 1.4. In this example, two bits are grouped to a 2-bit symbol using GF(22)

or GF(4). From the 4 × 6 binary LDPC H matrix on the left-hand side, 2 × 2 submatrices

are replaced with single GF(4) elements, resulting in the 2 × 3 GF(4) nonbinary H matrix

on the right-hand side. An NB-LDPC code can also be illustrated using a factor graph

composed of variable nodes (VN), check nodes (CN). An edge connects VN vj and CN ci if

the corresponding entry in the H matrix H(i, j) 6= 0. Similarly, 2 VNs of the binary LDPC

factor graph are merged to a single VN in the NB-LDPC factor graph. The same applies

to the CNs.

The decoding of NB-LDPC codes follows the same BP algorithm [6] that is used in

the decoding of binary LDPC codes. However, the complexity of an NB-LDPC decoder

is notably higher: each message exchanged between processing nodes in an NB-LDPC

decoder carries an array of log-likelihood ratios (LLR) as illustrated in Fig. 1.4; parity check

processing follows a forward-backward algorithm; and high-order GF operations require

expensive matching and sorting, in contrast to the much simpler addition and compare-

select used in binary LDPC decoding.

As shown in Fig. 1.5, the error-correcting performance of NB-LDPC surpasses that of

binary LDPC introduced in the previous section. In addition, no error floor is observed for

5

1 0 1 0 0 0

0 1 0 1 0 0

0 1 0 0 1 1

1 1 0 0 1 0

α
0

α
0

0

α
2

0 α
1

v1 v2 v3 v4 v5 v6 vA vB vC

c1

c2

c3

c4

cA

cB

v1 v2 v3 v4 v5 v6

c1 c2 c3 c4

α
0

α
2

α
0

α
1

Binary LDPC Nonbinary LDPC

H Matrix

Factor

Graph

vA vB vC

cA cB

GF Element LikelihoodGF Element LikelihoodGF Element LikelihoodGF Element Likelihood

5~8 bit log2(q) bits
 for GF(q)

4~7 bit

LLR
(with parity)

GF Index
(α

0
, α

1
, …) LLR

Message

Structure

LLR Vector (LLRV)

Figure 1.4: Comparison of a binary LDPC code and a nonbinary LDPC (NB-LDPC) code.

6

E
rr

o
r

ra
te

Eb/N0 (dB)
1.0

1000-

10-10

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10-20

10-30

10-40

10-50

10-60

10-70

10-80

10-90

10-10

(672, 336) LDPC
(160, 80) GF(64) NB-LDPC

Figure 1.5: BER (solid-line) and FER (dashed-line) comparison of an LDPC code and a
NB-LDPC code.

NB-LDPC even at very low error rates. This is an important characteristic as many LDPC

codes of finite block length suffer from error floors preventing them from achieving very low

error rates.

The high complexity in the processing elements and large memory requirements have

prevented any large-scale high-throughput chip implementations in silicon. Only FPGA,

synthesis and layout based designs have been demonstrated prior to this work [35, 36, 37,

38, 39, 40, 41, 42, 43]. Table 1.2 summarizes some key metrics of state-of-the-art NB-

LDPC decoder layout implementations. A 10.33 mm2 90 nm NB-LDPC decoder achieves

a throughput of 47.7 Mb/s [37]. Another 46.18 mm2 90 nm NB-LDPC decoder achieves

a throughput of 234 Mb/s [40]. With technology scaling, architecture improvements, and

algorithm simplifications, the throughput of NB-LDPC decoders continue to improve. A

1.289 mm2 28 nm NB-LDPC decoder and a 6.6 mm2 90 nm NB-LDPC decoder achieve

7

Table 1.2: Summary of state-of-the-art NB-LDPC decoder ASIC layout implementations.

TVLSIʼ13

[43]

TVLSIʼ14

[42]

TSPʼ13

[40]

TCAS-Iʼ12

[37]

Block Length

Core Area (mm2)

Throughput (Mb/s)

Design

Energy Efficiency (nJ/b)a

Area Efficiency (Mb/s/mm2)a

layout

837

GF(32)

6.6

716

288

layout

110

GF(256)

1.289

546

33.9

layout

837

GF(32)

46.18

234

13.4

layout

248

GF(32)

10.33

47.7

12.3

4.15 2.76 7.27-

a Normalized to 65nm, 1.0V.

throughputs of 546 Mb/s and 716 Mb/s, respectively [42, 43]. However, these throughputs

are still low compared to Gb/s throughputs of recent LDPC decoders.

1.1.3 Polar Codes

Polar code is a block code recently invented by Arikan which provably achieves the sym-

metric capacity I(W) of any given binary-input discrete memoryless channel (B-DMC)[7].

Compared to traditional capacity-approaching codes such as turbo and LDPC, polar code is

currently the first code that is provably capacity-achieving. Through the channel polariza-

tion effect described by Arikan in [7], N independent channels are combined systematically

using a recursive function, and only the k most reliable channels are used for sending in-

formation while the remaining N − k channels are frozen to known values for both encoder

and decoder. An example of channel polarization is illustrated in Fig. 1.6. The plot shows

the capacity of each channel index for a block length N = 214 for a BEC channel with

erasure probability ε = 0.5. From the polarization effect, a group of channels, shown in the

green circle, approach a capacity of 1 which means they are reliable channels to transmit

information. On the other hand, a group of channels, shown in the red circle, approach a

capacity of 0, which mean they are unreliable channels that need to be frozen to known

values. The remaining channels would either be frozen or used for information transmission

depending on the code rate.

8

C
h

a
n

n
el

 c
a
p

a
ci

ty

Channel index
1

1.00

4092 16368

0.50

0

0.75

0.25

8184 12276

Reliable channels

Unreliable channels

Figure 1.6: Example of polarization effect on a N = 214 polar code in a BEC channel with
ε = 0.5.

9

u0

u1

u2

u3

u4

u5

u6

u7

v0

v1

v2

v3

v4

v5

v6

v7

Figure 1.7: Polar code encoder example for N = 8.

Polar codes can be constructed with block length N = 2n and generator matrix

FN = F⊗n,where F = [1 0
1 1]. (1.1)

where ⊗ is the Kronecker product operation. Using n = 3 as an example,

F8 = F⊗3 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


.

A graphical representation of the encoder using the generator matrix F8 is shown in

Fig. 1.7 where u represents the original message, v represents the encoded message to be

sent through the channel, and ⊕ represents the modulo-2 (or xor) operation.

Although Arikan proved that polar code achieves capacity as the block length N ap-

proaches infinity, the error-correcting performance of polar codes of finite block lengths are

still away from the Shannon limit. Fig. 1.8 shows the error rate of a 1024-bit polar code

10

E
rr

o
r

ra
te

Eb/N0 (dB)
1.0

1000-

10-10

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10-20

10-30

10-40

10-50

10-60

10-70

10-80

(672, 336) LDPC
(1024, 512) SC Polar

Figure 1.8: BER (solid-line) and FER (dashed-line) comparison of an LDPC code and polar
code under successive cancellation decoding.

using successive cancellation (SC) decoding. Current polar codes have similar performance

as binary LDPC codes of similar block length.

Due to the recent introduction of polar codes, only a few hardware implementation of

polar decoders are found in literature. Most of the work has been done in SC decoding be-

cause it is believed that SC decoding provides better error-correcting performance. Several

architectures for SC polar decoder have been proposed including the FFT-like SC decoder,

pipeline tree architecture, line SC architecture, vector-overlapping architecture [44], and

simple successive cancellation (SSC) architecture [45]. On the other hand, little work has

been done in BP decoding despite its advantage of higher degree of parallelism.

Table 1.3 summarizes the state-of-the-art polar decoder designs. A 1.71 mm2 0.18 µm

SC polar decoder implementing the 1024-bit polar code consumes 67 mW for a throughput

11

Table 1.3: Summary of state-of-the-art polar decoder ASIC synthesis implementations.

ASSCCʼ12

[46]

JSACʼ14

[48]

TSPʼ13

[47]

ISWCSʼ11

[49]

Code

Core Area (mm2)

Throughput (Mb/s)

Design

Energy Efficiency (pJ/b/iter)a

Area Efficiency (Mb/s/mm2)a

silicon

SC-Polar

(1024, 512)

1.71

49

608.5

fpga

SC-Polar

(32768, 29492)

-

1044

-

synthesis

SC-Polar

(1024, 512)

0.309

246.1

796.44

fpga

BP-Polar

(512, 426)

-

52.03

-

- - -292.2

a Normalized to 65nm, 1.0V.

of 49 Mb/s [46]. It is the first reported hardware implementation of a SC polar decoder.

Another 0.309 mm2 65 nm synthesis-based design achieves 246.1 Mb/s at 500 MHz [47].

FPGA designs have also been proposed, one of which is a 32768-bit SC polar decoder which

achieves 1044 Mb/s by using the SSC architecture with a high-rate code as a method to

increase throughput [48]. An FPGA-based 512-bit BP decoder achieves 52 Mb/s [49] while

a GPU-based 1024-bit design achieves 5 Mb/s [50].

1.2 Scope of this Work

In this work, new design techniques are proposed to improve upon the state-of-the-

art designs reviewed in the previous section through the use of architecture and circuit

techniques that are co-optimized to work with the decoding algorithms.

1.2.1 Low-Density Parity-Check Codes

Logic-compatible embedded DRAM (eDRAM) [4, 51, 52, 53] is proposed as a promising

alternative to register-based memory that has been used in building high-throughput LDPC

decoders. Logic-compatible eDRAM does not require a special DRAM process and it is both

area efficient and low power – an eDRAM cell can be implemented in 3 transistors [4] and

it supports one read and one write port, at half the size of a dual-port SRAM cell and

its energy consumption is substantially lower than a register. A conventional eDRAM is

12

however slow. A periodic refresh is also necessary to maintain continuous data retention.

Interestingly, we find that when eDRAM is used in high-speed LDPC decoding, refresh can

be completely eliminated to save power and access speed can be improved by trading off

the excess retention time.

In this work, we co-design a non-refresh eDRAM with the LDPC decoder architecture

to optimize its read and write timing and simplify its addressing. An analysis of the LDPC

decoder’s data access shows that the access window of the majority of the data ranges from

only a few to tens of clock cycles. The non-refresh eDRAM is designed to meet the access

window with a sufficient margin and the excess retention time is cut short to increase the

speed. The resulting 3T eDRAM cell balances wordline coupling to mitigate the effects on

its storage. We integrate 32 5 × 210 non-refresh eDRAM arrays in the design of a 65 nm

LDPC decoder to support the (672, 336) LDPC code for the high-speed wireless standard

IEEE 802.11ad[1]. All columns of the eDRAM arrays can be accessed in parallel to provide

the highest bandwidth. The decoder throughput is further improved using row merging

and dual-frame processing to increase hardware utilization and remove pipeline stalls. The

resulting decoder achieves a throughput up to 9 Gb/s and consumes only 37.7 mW at 1.5

Gb/s.

1.2.2 Nonbinary Low-Density Parity-Check Codes

The complex decoding and large memory requirement of NB-LDPC decoders have pre-

vented any practical chip implementations. Compared to binary LDPC code, the reduced

number of edges in NBLDPC codes factor graph permits a low wiring overhead in the fully

parallel architecture. The throughput is further improved by a one-step look-ahead check

node design that increases the clock frequency to 700 MHz, and the interleaving of variable

node and check node operations that shortens one decoding iteration to 47 clock cycles. We

allow each processing node to detect its own convergence and apply fine-grained dynamic

clock gating to save dynamic power. When all processing nodes have been clock gated, the

decoder terminates and continues with the next input to increase the throughput.

In this work, we present a 7.04 mm2 65 nm CMOS NB-LDPC decoder chip for a GF(64)

(160, 80) regular-(2, 4) code using the truncated EMS algorithm. With the proposed fully

13

parallel architecture and scheduling techniques, the decoder achieves a 1.22 Gb/s through-

put using fine-grained dynamic clock gating and decoder termination for an efficiency of

3.03 nJ/b, or 259 pJ/b/iteration, at 1.0V and 700 MHz. Dynamic voltage and frequency

scaling further improves the efficiency to 89 pJ/b/iteration for a throughput of 698 Mb/s,

at 675 mV and 400 MHz.

1.2.3 Polar Codes

Due to the inherent serial nature of SC decoding, we turn our attention to BP decod-

ing. A BP decoder is inherently more parallel than SC decoder due to the lack of inter-bit

dependency on the decoded output bits. Therefore the decoder can be designed to imple-

ment a whole column of processing nodes in the factor graph to increase throughput. The

simple computation performed in the processing elements allows for small node footprint

which helps achieve high parallelism. By exploiting the order of computation in the BP

algorithm, a unified shared memory can be used which reduces the memory size by half

and the processing node logic by 33%. To achieve higher throughput and lower latency, a

double-column architecture is used which implements twice as many nodes while the mem-

ory size remains constant. The double-column architecture increases the throughput at the

cost of a slight increase in clock period. To reduce the memory footprint of the decoder, a

bit-splitting latch-based register file is employed which enables an 85% placement density.

In this work, we present a 1.476 mm2 65 nm CMOS polar decoder for the 1024-bit

polar code using the BP algorithm. With the proposed architectural transformations and

memory optimization, the overall decoder achieves a 4.68 Gb/s throughput while consuming

478 mW for an efficiency of 15.5 pJ/b/iteration, at 1.0 V and 300 MHz. Dynamic voltage

and frequency scaling further improves the efficiency to 3.6 pJ/b/iteration for a throughput

of 780 Mb/s, at 475 mV and 50 MHz.

14

CHAPTER II

LDPC Decoder with Embedded DRAM

2.1 Decoding Algorithm

Almost all the latest applications have adopted LDPC codes whose H matrix is con-

structed using submatrices that are cyclic shifts of an identity matrix or a zero matrix. For

example, the newest high-speed wireless standard IEEE 802.11ad [1] specifies a family of

four LDPC codes whose H matrices are constructed using cyclic shifts of the Z × Z identity

matrix or zero matrix where Z = 42. The structured H matrix can be partitioned along

submatrix boundaries, e.g., the H matrix of the rate-1/2 (672, 336) code can be partitioned

to 8 rows and 16 columns of 42 × 42 submatrices as shown in Fig. 2.1.

LDPC encoding and decoding are both based on the H matrix. Encoding produces

LDPC codewords that are transmitted over the channel. The receiver decodes the code-

words based on the channel output. LDPC decoding uses an iterative soft message passing

algorithm called belief propagation [16, 54] that operates on the factor graph in the following

steps:

(a) Initialize each VN with the prior log-likelihood ratio (LLR) based on the channel output

y and its noise variance σ2

(b) VNs send messages (the prior LLRs in the first iteration) to the connected CNs

(c) Each CN computes an extrinsic LLR for each connected VN (i.e., the likelihood of each

bit’s value given the likelihoods from all other VNs connected to the CN), which is then

sent back to the VN.

15

I40 I38 I13 I5 I18

I34 I35 I27 I30 I2 I1

I10 I41I34I7I31I36

I27 I18 I12 I20 I15 I6

I35 I41 I40 I39 I28 I3 I28

I29 I0 I22 I4 I28 I27 I23

I13I0I12I20I21I23I31

I22 I34 I31 I14 I4 I13 I22 I24

I20 I34 I20 I41 I10

I30 I18 I12 I14 I2 I25

I22

I20 I6

I35 I41 I40 I39 I28 I3 I28

I29 I0

I31

I4 I28 I27 I23

Rate 1/2

Rate 5/8
I36 I31 I7 I34 I41

I27 I15

I24

I23 I21 I20 I9 I12 I0 I13

I22 I34 I31 I14 I4 I22 I24

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

I0 =

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

I2 =

For Z = 4

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

I1 =

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

I3 =

Z = 42

Z = 42

I40 I39 I28

I29 I0 I33

I6

I27

I18

I9

I17

I20

I41I22I19

I30 I8

I3

I17 I20

I29

I35 I41

I11 I6 I32

I4

I24

I37 I18

I22 I4 I28 I27 I23

I13I0I12

I14

I21I23I31

I25 I22 I4 I31 I15I34 I14 I18

Rate 3/4
I3 I28

I13 I13 I22 I24

Rate 13/16
I29 I0 I33 I27I30 I8 I17 I20 I24I22 I4 I28 I27 I23

I9I20 I29I11 I6 I32I37 I18 I13I0I12I21I23I31 I10

I3 I4I14I25 I22 I4 I31 I15I34 I14 I18 I13 I13 I22 I24I2

Z = 42

Z = 42

Cyclic Shift of Identity Matrix

M = 336 N = 672

M = 252 N = 672

M = 168 N = 672

M = 126 N = 672

Figure 2.1: H matrices of the rate-1/2, rate-5/8, rate-3/4 and rate-13/16 LDPC code for
the IEEE 802.11ad standard [1].

(d) Each VN computes the posterior LLR based on the extrinsic LLRs received and the

prior LLR, and makes a hard decision (0 or 1). If the hard decisions satisfy all the

parity checks, decoding is complete, otherwise the steps (b) to (d) are repeated.

A detailed description of the decoding algorithm can be found in [16]. In BP decoding,

soft messages are passed back and forth between VNs and CNs until all the parity checks

are met, which indicates the convergence to a valid codeword. In practice, a maximum

iteration limit is imposed to terminate decoding if convergence cannot be reached within

the given iteration limit.

A practical decoder design follows either the sum-product [16] or the min-sum algorithm

[17], which are two popular implementations of the BP algorithm. Using the sum-product

algorithm in the log-domain, the VNs perform sum operations and the CNs perform log-

tanh, sum and inverse log-tanh operations. Min-sum simplifies the CN operation to the

minimum function. The min-sum algorithm usually performs worse than the sum-product

16

algorithm, and techniques including offset correction and scaling [55] are frequently applied

to improve the performance.

2.2 Decoder Architecture

Common LDPC decoder architectures belong to one of three classes: full-parallel, row-

parallel and block-parallel [56] as shown in Fig. 2.2. The full-parallel architecture shown

in Fig. 2.2(a) realizes a direct mapping of the factor graph with VNs and CNs mapped

to processing elements and edges mapped to interconnects [21, 22, 25]. This architecture

provides the highest throughput, allowing each decoding iteration to be done in one or two

clock cycles, but it incurs a large area due to complex interconnects.

For a lower throughput of up to hundreds of Mb/s, the block-parallel architecture shown

in Fig. 2.2(b) processes only one section of the factor graph that corresponds to one or a

few submatrices of the H matrix per clock cycle [27, 26, 28, 29, 30, 31, 32, 18, 33]. The

VNs and CNs are time-multiplexed, so it takes tens to hundreds of clock cycles to complete

one decoding iteration. The more serialized processing requires memories to store messages

and configurable routers to shuffle messages between VNs and CNs. The extra overhead in

memory and routing results in worse energy and area efficiency. A row-parallel architecture

improves upon the block-parallel architecture by processing a larger section of the factor

graph that corresponds to an entire row of submatrices of the H matrix per clock cycle

[20, 24, 19].

The row-parallel architecture [20, 24, 19] shown in Fig. 2.2(c) provides a high throughput

of up to tens of Gb/s, while its routing complexity can still be kept low, permitting a high

energy and area efficiency. To meet the 6 Gb/s that is required by the IEEE 802.11ad

standard, we choose the row-parallel decoder architecture. The IEEE 802.11ad standard

[1] specifies four codes of rate-1/2, rate-5/8, rate-3/4 and rate-13/16, whose H matrices are

made up of 16 columns × 8 rows, 6 rows, 4 rows and 3 rows of cyclic shifts of the 42 × 42

identity matrix or zero matrix, as illustrated in Fig. 2.1. The four matrices are compatible,

sharing the same block length and component submatrix size.

A row-parallel decoder using flooding schedule is designed using 672 VNs and 42 CNs.

17

Fixed Routing

H Matrix

672-row

3
3
6

-c
o
lu

m
n

VN671

672 VNs, 336 CNs with fixed routing

VN0 VN1 VN2

CN0 CN1 CN2 CN335

(a) Full-parallel architecture

*42×42 matrix block

42 VNs, 42 CNs with programmable

routing and storage memory

Programmable Routing

Memory

CN0 CN1 CN41

VN671VN41VN0 VN1

(b) Block-parallel architecture

Row Layer 0

Row Layer 1

Row Layer 7

*42 rows per row layer

672 VNs, 42 CNs with programmable

routing

Programmable Routing

VN671VN671VN0 VN1 VN2

CN0 CN1 CN41

(c) Row-parallel architecture

Figure 2.2: Illustration of LDPC decoder architectures. The shaded part represents the
section of the H matrix that is processed simultaneously.

18

The 672 VNs process the soft inputs of 672 bits in parallel by computing VN-to-CN (V2C)

messages and send them to the 42 CNs following the H matrix shown in Fig. 2.1. The

42 CNs compute the parity checks and send CN-to-VN (C2V) messages back to the VNs.

The C2V messages are post-processed by the VNs and stored in their local memories. The

row-parallel architecture operates on one block row of submatrices in the H matrix at a

time, as highlighted in Fig. 2.2.

The VN and CN designs in detail are shown in Fig. 2.3. A VN computes a V2C message

by subtracting the C2V message stored in the C2V memory from the posterior log-likelihood

ratio (LLR). The V2C message is then sent to the CN while a copy is stored in the V2C

memory for post-processing the C2V message later in the iteration. A CN receives up to

16 V2C inputs from the VNs and computes the XOR of the signs of the inputs to check if

the even parity is satisfied. The CN also computes the minimum and the second minimum

magnitude among the inputs by compare-select for an estimate of the reliability of the

parity check. Both the XOR and the compare-select are done using a tree structure. The

CN prepares the C2V message as a packet composed of the parity, the minimum and the

second minimum magnitude.

After the C2V message is received by the VN, it compares the V2C message stored

in memory with the minimum and the second minimum magnitude to decide whether the

minimum or the second minimum is a better estimate of the reliability of the bit decision.

The sign and the magnitude are then merged and an offset is applied as an algorithmic

correction. The post-processed C2V message is stored in the C2V memory. The C2V

message is accumulated and summed with the prior LLR to compute the updated posterior

LLR. A hard decoding decision is made based on the sign of the posterior LLR at the

completion of each iteration. The messages and computations are quantized for an efficient

implementation. We determine based on extensive simulations that a 5-bit fixed-point

quantization offers a satisfactory performance.

2.2.1 Pipelining and Throughput

In the LDPC decoding described above, the messages flow in the following order: (1)

each of the 672 VNs computes a V2C message, which is routed to one of the 42 CNs through

19

Offset

Correction

Prior

Memory

+

Posterior

Memory -

=

|min1|

|min2|

parity

V2C

Memory

(sign)(magnitude)

C2V

Memory

V2C
msg

V2C Processing

C2V msg

C2V Post-processing

(a) variable node

Sort Sort Sort Sort Sort Sort Sort Sort

Programmable Routing Network

V
2C

0

V
2C

1

V
2C

2

V
2C

3

V
2C

4

V
2C

5

V
2C

6

V
2C

7

V
2C

8

V
2C

9

V
2C

10

V
2C

11

V
2C

12

V
2C

13

V
2C

14

V
2C

15

C2V {parity, |min1|, |min2|}

Compare
-Select

Compare
-Select

Compare
-Select

Compare
-Select

Compare
-Select

Compare
-Select

Compare
-Select

(b) check node

Figure 2.3: (a) Variable node, and (b) check node design (an XOR gate is incorporated in
the sort and compare-select logic of the CN to perform the parity check.)

20

VC R1 CS R2 PS

Iteration i

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

Iteration i+1

VC R1 CS R2 PS

VC R1 CS R2

VC R1 CS

VC R1

VC

4-cycle stall

(a)

VC R1 CS R2 PS

Iteration i

Iteration i+1

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2

4-cycle stall VC

PS

(b)

VC R1 CS R2 PS

Frame 1, Iteration i

VC R1 CS R2 PS

Frame 2, Iteration j

Frame 1, Iteration i+1

Frame 2, Iteration j+1

VC R1 CS R2

VC R1 CS

VC R1

VC

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

VC R1 CS R2 PS

PS

R2

CS

R1

PS

R2

CS

(c)

Figure 2.4: Pipeline schedule of (a) a conventional single-frame decoder without row merg-
ing, (b) a conventional single-frame decoder with row merging, and (c) proposed
dual-frame decoder with row merging. Note that (a) and (b) require stalls in-
between frames due to data dependency between the PS and VC stages.

21

point-to-point links; (2) each CN receives up to 16 V2C messages, and computes a C2V

message to be routed back to the VNs through a broadcast link; and (3) each VN post-

processes the C2V message and accumulates it to compute the posterior LLR. These steps

complete the processing of one block row of submatrices. The decoder then moves to the

next block row and the V2C routing is reconfigured using shifters or multiplexers. Based on

these steps, we can design a 5-stage pipeline: (1) VN computing V2C message, (2) routing

from VN to CN, (3) CN computing C2V message, (4) routing from CN to VN, and (5)

VN post-processing C2V messages and computing posterior. For simplicity, the five stages

are named VC, R1, CS, R2, and PS, as illustrated in Fig. 2.4(a). The throughput of a

row-parallel architecture is determined by the number of block rows mb and the number of

pipeline stages, np. The H matrix of the rate-1/2, 5/8, 3/4, and 13/16 code has mb = 8, 6,

4 and 3, respectively. Based on the pipeline chart in Fig. 2.4(a), the number of clock cycles

per decoding iteration is mb+np−1. Suppose the number of decoding iteration is nit, then

the decoding throughput is given by

TP =
fclkN

(mb + np − 1)nit
(2.1)

where fclk is the clock frequency and N is the block length of the LDPC code. N = 672

for the target LDPC code. The 1/2-rate LDPC code has the most number of block rows,

mb = 8. np = 5 for the 5-stage pipeline. To meet the 6 Gb/s throughput with 10 decoding

iterations (nit = 10), the minimum clock frequency is 1.07 GHz, which is challenging and

entails high power consumption.

Each VN in this design includes two message memories, V2C memory and C2V memory.

CN does not retain local memory. Each memory contains mb = 8 words to support the

row-parallel architecture for the 1/2-rate LDPC code. Each word is 5-bit wide, determined

based on simulation. In each clock cycle, one message is written to the V2C memory and

one is read from the V2C memory. The same is true for the C2V memory.

For a scalable design and a higher efficiency, the 672 VNs in the row-parallel LDPC

decoder are grouped to 16 VN groups (VNG), each of which consists of 42 VNs. The V2C

memories of the 42 VNs in a VNG are combined in one V2C memory that contains mb =

22

8 words and each word is 5b × 42 = 210b wide. Similarly, the C2V memories of the 42

VNs in a VNG are combined in one C2V memory of 8 × 210b. In each clock cycle, one

210b word is written to the V2C memory and one 210b word is read from the memory. The

same is true for the C2V memory. Each memory’s read and write access latency have to be

shorter than 0.933 ns to meet the 1.07 GHz clock frequency.

2.3 Throughput Enhancement

The throughput of the LDPC decoder depends on the number of block rows. To enhance

the throughput, we reduce the number of effective block rows to process using row merging

and apply dual frame processing to improve efficiency [34].

2.3.1 Row Merging

The H matrix of the rate-1/2 code has the most number of block rows among the four

codes, but note that the H matrix of the rate-1/2 code is sparse with many zero submatrices.

We take advantage of the sparseness by merging two sparse rows to a full row so that they

can be processed at the same time (e.g., merge row 0 and row 2, row 1 and row 3, etc.), as

illustrated in Fig. 2.5(a). To support row merging, each 16-input CN is split to two 8-input

CNs, as in Fig. 2.5(b), when decoding the rate-1/2 code with minimal hardware additions.

The same technique can be applied to decoding the rate-5/8 code by merging row 2 and

row 4, and row 3 and row 5. Row merging reduces the effective number of rows to process

to 4, 4, 4, and 3 for the rate-1/2, 5/8, 3/4, and 13/16 codes, respectively. Row merging

improves the worst-case throughput to

TP =
fclkN

(np + 3)nit
(2.2)

To meet the 6Gb/s throughput with 10 decoding iterations, the minimum clock frequency

is reduced to 720 MHz. Row merging reduces the V2C memory and C2V memory in each

VNG to 4 × 210b. Each memory’s read and write access latency is relaxed, but it has to

be below 1.4 ns to meet the required clock frequency.

23

I40 I38 I13 I5 I18

I34 I35 I27 I30 I2 I1

I35 I41 I40 I39 I28 I3 I28

I29 I0 I22 I4 I28 I27 I23

Row 0 & 2 (M0)

Row 1 & 3 (M1)

Row 4 & 6 (M2)

Row 5 & 7 (M3)

I10 I41I34I7I31I36

I27 I18 I12 I20 I15 I6

I13I0I12I20I21I23I31

I22 I34 I31 I14 I4 I13 I22 I24

I40 I38 I13 I5 I18

I34 I35 I27 I30 I2 I1

I10 I41I34I7I31I36

I27 I18 I12 I20 I15 I6

I35 I41 I40 I39 I28 I3 I28

I29 I0 I22 I4 I28 I27 I23

I13I0I12I20I21I23I31

I22 I34 I31 I14 I4 I13 I22 I24

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Rate 1/2 Z = 42

Rate 1/2 with row merging

N = 672M = 336

Z = 42N = 672Meff = 168

(a)

Sort Sort Sort Sort Sort Sort Sort Sort

Programmable Routing Network

C2V Output

of Row 0/1/4/5

C2V Output

 of Row 2/3/6/7

16-input C2V

{parity, |min1|, |min2|}

Compare
-Select

Compare
-Select

Compare
-Select

Compare
-Select

Compare
-Select

Compare
-Select

Compare
-Select

V
2C

0

V
2C

1

V
2C

2

V
2C

3

V
2C

4

V
2C

5

V
2C

6

V
2C

7

V
2C

8

V
2C

9

V
2C

10

V
2C

11

V
2C

12

V
2C

13

V
2C

14

V
2C

15

(b)

Figure 2.5: (a) Illustration of row merging applied to the H matrix of the rate-1/2 LDPC
code for IEEE 802.11ad. The merged matrix has only 4 rows, shortening the
decoding iteration latency; and (b) modified check node design to support row
merging.

24

2.3.2 Dual-Frame Processing

The 5-stage pipeline introduces a 4 clock cycle pipeline stall between iterations, as shown

in Fig. 2.4(a) and (b), because the following iteration requires the most up-to-date posterior

LLRs from the previous iteration (i.e., the result of the PS stage) to calculate the new V2C

messages. The stall reduces the hardware utilization to as low as 50%.

Instead of idling the hardware during stalls, we use it to accept the next input frame as

shown in Fig. 2.4(c). The ping-pong between the two frames improves the utilization, while

requiring only the prior and posterior memory to double in size. The message memories can

be shared between the two frames and the computing logic and routing remain the same,

keeping the additional cost low. With dual-frame processing, the worst-case throughput is

increased to

TP =
fclkN

4nit
(2.3)

To meet the 6Gb/s throughput with 10 decoding iterations, the minimum clock frequency

is reduced to 360 MHz. To avoid the read after write data hazard due to dual-frame

processing, an extra word is added to the V2C and C2V memory. The size of each memory

in a VNG is 5 × 210b. Each memory’s read and write access latency is further relaxed, but

it has to be below 2.8 ns to meet the required clock frequency.

2.4 Low-Power Memory Design

The memory in sub-Gb/s LDPC decoder chips is commonly implemented in SRAM

arrays, while registers dominate the designs of Gb/s or above LDPC decoder chips. SRAM

arrays are the most efficient in large sizes, but the access bandwidth of an SRAM array

is very low compared to its size. Therefore SRAM arrays are only found in block-parallel

architectures. A full-parallel or row-parallel architecture uses registers as memory for high

bandwidth and flexible placement to meet timing.

To estimate the memory power consumption in a high-throughput LDPC decoder, we

synthesized and physically placed and routed a register-based row-parallel LDPC decoder

that is suitable for the IEEE 802.11ad standard in a TSMC 65 nm CMOS technology.

The decoder follows a 5-stage pipeline and incorporates both row merging and dual-frame

25

Memory

57%

Clock
Tree

 11%

Datapath

18%

Pipeline

14%

(a) Total power

0

10

20

30

40

M
em

o
ry

 P
o

w
er

 (
%

)

V2C C2V Posterior Prior

Dynamic

Leakage

(b) Memory power

Figure 2.6: (a) Power breakdown of a 65 nm synthesized 200 MHz row-parallel register-
based LDPC decoder for the IEEE 802.11ad standard, and (b) memory power
breakdown. Results are based on post-layout simulation.

processing. In the worst-case corner of 0.9V supply and 125◦C, the post-layout design is

reported to achieve a maximum clock frequency of 200 MHz, lower than the required 360

MHz for a 6 Gb/s throughput.

The power breakdown of this decoder at 200 MHz is shown in Fig. 2.6. The memory

power is the dominant portion, claiming 57% of the total power. In addition to memory,

pipeline registers consume 14% of the total power. On the other hand, the datapaths, which

include all the combinational logic, consume only 18% of the total power. The clock tree

consumes 11% of the total power, the majority of which is spent on clocking the registers.

Therefore, reducing the memory power consumption is the key to reducing the chip’s total

power consumption.

The memory power consumption can be further broken down based on the type of data

stored. 35% of the memory power is spent on V2C memory; 35% for C2V memory; 16% for

storing posterior LLRs (posterior memory) and 14% for storing prior LLRs (prior memory).

The V2C memory and C2V memory account for 70% of the memory power consumption,

so they will be the focus for power reduction.

26

2.4.1 Memory Access Pattern

The V2C memory and C2V memory access patterns are illustrated in Fig. 2.7. When

a VN sends a V2C message to a CN, it also writes the V2C message to the V2C memory.

The V2C message is finally read when the C2V message is returned to the VN for post-

processing the C2V message. From this point on, the V2C message is no longer needed and

can be overwritten.

A VN writes every C2V message to the C2V memory, and the C2V message is finally

read when the VN computes the V2C message in the next iteration, when the C2V message

is subtracted from the posterior LLR to compute the V2C message. From this point on,

the C2V message is no longer needed and can be overwritten.

The V2C and C2V memory are continuously being written and read in the FIFO order.

The data access window, defined as the duration between when the data is written to

memory to the last time it is read, is only 5 clock cycles. The IEEE 802.11ad standard

specifies throughputs between 1.5 Gb/s and 6 Gb/s, which require clock frequencies between

90 MHz and 360 MHz using the proposed throughput-enhanced row-parallel architecture.

The data access window for both the V2C memory and C2V memory is 5 clock cycles,

which translates to 14 ns at 360 MHz (6 Gb/s) or 56 ns at 90 MHz (1.5 Gb/s). Therefore,

the data retention time has to be at least 56 ns.

The short data access window, deterministic access order, and shallow and wide memory

array structure motivate the design of a completely new low-power memory for the LDPC

decoder. In the following we describe the low-power memory design to take advantage of

the short data access window. The memory allows dual-port one read and one write in

the same cycle to support pipelining and full-bandwidth access required by the decoder

architecture.

2.4.2 Non-Refresh Embedded DRAM

Register memory found in highly parallel LDPC decoders consumes high power and

occupies a large footprint. Embedded dynamic random access memory (eDRAM) [57, 58,

51, 59, 52, 53] is much smaller in size. A 3T eDRAM cell does not require a special process

27

VC R1 CS R2 PS

R1 CS R2

R1 CS R2

R1 CS R2

Write Row #

Read Row #

0 1 2 3

0 1 2 3

4 0 1

4321

2

5-cycle access window

VC

VC

VC

PS

PS

PS

Cycle 0 1 2 3 4 5 6 7

(a)

PS

R2

CS R2

R1 CS R2

Write Row #

Read Row #

0 1 2 3

0 1 2 3

4 0 1 2

4321

VC R1 CS R2

R1 CS R2

R1 CS R2

R1 CS R2

R1 CS R2

R1 CS

R1

R2

CS R2

R1 CS R2

Frame 1, Iteration i

Frame 2, Iteration j

Frame 1, Iteration i+1

3 4 0 1

4 0 2 3

PS

PS

PS

PS

PS

PS

PS

PS

PS

PS

PS

VC

VC

VC

VC

VC

VC

VC

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

R1 CS R2VC

R1 CSVC

R1VC

VC

5-cycle access window

(b)

Figure 2.7: (a) V2C memory access pattern, and (b) C2V memory access pattern.

28

option. It supports nondestructive read, so it is not necessary to follow each read with write,

resulting in a faster performance. The 3T eDRAM cell also supports dual-port access that

is required for our application. However, eDRAM is slower than register. A periodic refresh

is also necessary to compensate the leakage and maintain continuous data retention. The

refresh power is a significant part of eDRAM’s total power consumption.

As discussed previously, the memory for LDPC decoder has a short data access window.

As long as the access window is shorter than the eDRAM data retention time, refresh can be

eliminated for a significant reduction in eDRAM’s power consumption, making it attractive

from both area and power standpoint. A faster cell often leaks more and its data retention

time has to be sacrificed. In the LDPC decoder design, the memory access pattern is well

defined and the V2C and C2V memory access window is only 5 clock cycles, therefore we

can consider a low-threshold-voltage (LVT) NMOS 3T eDRAM cell to provide only enough

retention time, but a much higher access speed.

2.4.3 Coupling Noise Mitigation

Consider the classic 3T eDRAM cell in Fig. 2.8(a) for an illustration of the coupling

problem. To write a 1 to the cell, the write wordline (WWL) is raised to turn on T1

and write bitline (WBL) is driven high and the storage node will be charged up. Upon

completion, WWL drops and the falling transition is coupled to the storage node through

the T1 gate-to-source capacitance, causing the storage node voltage to drop. The voltage

drop results in a weak 1, reducing the data retention time and the read current. On the

other hand, the coupling results in a strong 0 as the storage node will be pulled lower than

ground after a write. A possible remedy is to change T1 to a PMOS and WWL to active

low to help write a strong 1, but it results in a weak 0 instead.

To mitigate the capacitive coupling and the compromise between 1 and 0, we redesign

the 3T cell as in Fig. 2.8(b) to create capacitive coupling from two opposing directions based

on [52]. Similar ideas have also been discussed in [60, 61]. Compared to [52], we use LVT

NMOS transistors to improve the access speed by trading off the excess retention time. In

this new design, T2 is connected to the read wordline (RWL), which is grounded when not

reading. To write to the cell, WWL is raised. WWL coupling still pulls the storage node

29

T1 T2

T3

WWL
RWL

RBLWBL

C

WWL

C

RWL

VSS

VDD

Data 1

Data 0

WWL coupling weakens data '1'

(a)

T1 T2

T3

WWL

RWL

RBLWBL

C

(VSS)

(VSS)

(VSS)

(VC = VDD)

(VSS)

C
VSS

VDD

WWL

RWL

Data 1

Data 0

Balanced WWL & RWL coupling

Subthreshold leakage Gate leakage

(b)

cell

rwl

cell

rwl

cell

cell

wwl

wwl

R
B

L
0

R
B

L
1

R
B

L
2

R
B

L
3

W
B

L
0

W
B

L
1

W
B

L
2

W
B

L
3

WWL0

RWL0

1
.2

 µ
m

2.0 µm

rwl rwl

rblwblwblrbl

rbl wbl wbl rbl

0
.6

 µ
m

1.0 µm

(c)

Figure 2.8: Schematic and capacitive coupling illustration of the (a) classic 3T cell [4], and
(b) proposed 3T cell and (c) its 4-cell macro layout.

30

Increase T1 Width

WWL

WWL

RWL

RWL

WWL

WWL

RWL

RWL

Increase T1 Length

Increase T2 Width

Increase T2 Length

Data 1

Data 0

Data 1

Data 0

Data 1

Data 0

Data 1

Data 0

Data 0

Data 1

Data 1

Data 1

Data 0

Data 0

Increase
T1 Width

Increase
T2 Width

Data 1

Data 0

Increase
T1 Length

Increase
T2 Length

Data 1

Data 0

WWL RWL

- -

- -

WWL RWL

WWL RWL WWL RWL

Beneficial coupling influence

Harmful coupling influence

Data 0

Data 1

Magnitude & direction of change

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

V
ol

ta
ge

 (
V

)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

V
ol

ta
ge

 (
V

)

-0.4

1.4

1.6

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

1.4

1.6

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4
7.6 7.7 7.8 40.0 40.17.757.65 40.05 40.157.55 39.95 7.6 7.7 7.87.757.657.55 40.0 40.140.05 40.1539.95

Time (ns) Time (ns)

V
ol

ta
ge

 (
V

)
V

ol
ta

ge
 (

V
)

Figure 2.9: Effects of transistor sizing on WWL and RWL coupling noise. Only the falling
transition of WWL and the rising transition of RWL are shown as they deter-
mine the cell voltage after write and before read.

lower after write, resulting in a weak 1 and strong 0. At the start of reading, the read bitline

(RBL) is discharged to ground and RWL is raised. The rising transition of RWL is coupled

to the storage node through the T2 gate-to-drain capacitance, causing the storage node

voltage to rise. The design goal is to have the positive RWL coupling cancel the negative

WWL coupling. The sizing of T1 and T2 can be tuned to balance the coupling. Note that

the focus here is on the falling WWL and rising RWL because they determine the critical

read speed. Rising WWL in the beginning of write does not matter because the effect is

only transient. Falling RWL in the end of read causes storage node voltage to drop, but it

will be recovered when RWL rises in the beginning of the next read.

2.4.4 Retention Time Enhancement

After the cell design is finalized, we need to ensure that its data retention time is still

sufficient to meet the access window required without refreshing. The data retention time

of the 3T eDRAM cell is determined by the storage capacitance and the leakage currents:

mainly the subthreshold leakage through the write access transistor T1, and the gate-oxide

leakage of T1 and the storage transistor T2. Fig. 2.8(b) illustrates the leakage currents for

data 1. Data 1 is more critical than data 0 as it incurs more leakage and its read is critical.

31

R
et

en
ti

o
n

 t
im

e
(s

)

WWL voltage (V)
0.0

10-50

-0.1 -0.2 -0.3 -0.4 -0.5

10-60

10-70

10-80

75

80

85

90

95

100

10 12 14 16 18 20 22 24 26 28 30

2.8 dB 3.2 dB 3.6 dB 4.0 dB

75

80

85

90

95

100

10 12 14 16 18 20 22 24 26 28 30

2.8 dB 3.2 dB 3.6 dB 4.0 dB

 25 °C
125 °C

Figure 2.10: Cell retention time with negative WWL voltage.

32

Both subthreshold and gate-oxide leakage are highly dependent on the technology and

temperature. For the 65 nm CMOS process used in this design, the subthreshold leakage

is dominant over gate-oxide leakage. To reduce the subthreshold leakage current, we use

negative WWL voltage [57] to super cut-off T1 after write. Fig. 2.10 shows the effect of

negative WWL voltage on data 1 retention time at 25◦C and 125◦C. At 25◦C, the retention

time improves from 100 ns to over 1µs with a -200 mV WWL. At 125◦C, the retention time

worsens to 20 ns, but it can be improved to over 1µs with a -300 mV WWL. A 100k-point

Monte-Carlo simulation is used to confirm that a -300 mV WWL is still sufficient even

after considering process variation. In Fig. 2.11, we measure the time for the storage node

voltage to drop to 500 mV and 400 mV after data 1 is written at 125◦C. Note that with

the help of the RWL coupling, 400 mV is close to the minimum voltage that guarantees

data 1 to be reliably read. The results show that the storage node drops to 500 mV in as

short as 180 ns, and to 400 mV in 300 ns, which is still much longer than the required data

access window of 56 ns (5 clock cycles at 90 MHz for the required minimum throughput of

1.5 Gb/s).

Note that as a proof-of-concept design, the negative WWL voltage is provided from an

off-chip supply. However, based on [52], charge pumps can be included to generate the

negative voltage on-chip with relatively small impact on the area and power.

The proposed eDRAM design is scalable to a lower technology node. However, managing

the cell leakage will be important with the continued reduction of storage capacitance. In a

future process technology where leakage becomes more significant, an LVT NMOS eDRAM

may not be able to provide the necessary retention time. Regular or high threshold voltage

devices and a low-power process may be necessary to ensure a reliable data retention.

2.5 Efficient Memory Integration

A compact 1.0 mm × 0.6 mm layout of the 3T eDRAM cell in a 65 nm CMOS technology

using standard logic design rules is shown in Fig. 2.8(c). The length of T1 and T2 are

increased slightly beyond the minimum length to keep good voltage levels for storing data

0 and 1. The increased T1 length also reduces the subthreshold leakage. The width of both

33

It
er

a
ti

o
n

 c
o
u

n
t

Retention time (μs)
0

5

0.2 0.4 0.6 0.8

4

3

2

1

0

Bitcell retention down to 0.5 V
Bitcell retention down to 0.4 V

x 104

1.0 1.2

Figure 2.11: 100k Monte-Carlo simulation results of cell retention time at 125◦C. The sim-
ulation was done on post-layout extracted netlist at 1.0V supply voltage with
-300mV WWL. The retention time is measured as the time for the cell voltage
to drop to 0.5V (in black) and 0.4V (in grey).

34

T2 and T3 are increased slightly to improve the read speed. The two bitlines WBL and

RBL are routed vertically on metal 2 and the two wordlines WWL and RWL are routed

horizontally on metal 3.

An area-efficient 4-cell macro can be created in a 2 × 2 block using a bit cell, its

horizontal and vertical reflections, and its 180◦ rotation, as shown in Fig. 2.8(c). This

layout allows poly WWL and diffusion RWL to be shared between neighboring cells to

reduce area. 4 RBLs and 4 WBLs run vertically on metal 2. The 8 bitlines have fully

occupied the metal 2 tracks.

A larger memory can be designed by instantiating the 4-cell macro. An illustration of

a 5 row × 210 column eDRAM array for the V2C memory or C2V memory in a VNG is

illustrated in Fig. 2.13. The array is broken to two parts to shorten the wordlines. 210 single-

ended sense amplifiers [62] are attached to RBLs to provide 210 bits/cycle full-bandwidth

access. The sense amplifier includes a self-reset function to save power and accommodate

process variation.

The cell efficiency for the eDRAM IP is relatively low at 15% due to the shallow mem-

ory and full-bandwidth access without column multiplexing. The array efficiency can be

improved for a deeper memory. Even at this array efficiency, the effective area per bit is 4.0

µm2, much smaller than a register. The structured placement of the eDRAM cells improves

the overall area utilization.

2.5.1 Sequential Address Generation

Memory address decoder is part of all standard random-access memories, but it is not

necessary for the memory designed for LDPC decoder as it only requires sequential access.

The memory access sequence can be understood using the multi-iteration pipeline chart in

Fig. 2.7. For the V2C memory, in cycle 0 to cycle 3, V2C messages are written to row[0] to

row[3]. Starting from cycle 4, there will be one read and one write in every cycle. In cycle

4, one V2C message is written to row[4], and another is read from row[0]. In cycle 5, one

V2C message is written to row[0], and another is read from row[1], and so on.

We take advantage of the sequential access to simplify the address generation using a

circular 5-stage shift register [63] shown in Fig. 2.12. The output of each register is attached

35

D Q

S

D Q

R

D Q

R

D Q

R

D Q

R

Reset

Clock

WE[0] WE[1] WE[2] WE[3]WE[4]
/ RE[1] / RE[2] / RE[3] / RE[4]/ RE[0]

Clock

WE

RE

5'b00001 5'b00010 5'b00100 5'b010005'b10000 5'b00001

5'b00010 5'b00100 5'b01000 5'b100005'b00001 5'b00010

Figure 2.12: Schematic and waveform of sequential address generation based on 5-stage
circular shift register.

to one write enable (WE) and one read enable (RE). Only one of the registers is set to 1 in

any given cycle and the 1 is propagated around the ring to enable each word serially. The

simple sequential address generation saves both power and area.

2.5.2 Simulation Results

The complete 5 row × 210 column eDRAM array layout is shown in Fig. 2.13. The

simulation results of the read access time and power consumption of the memory are plotted

in Fig. 2.14. At the nominal supply voltage of 1.0 V and WWL voltage of -300 mV, the read

access time is 0.68 ns at 25◦C. A higher temperature of 125◦C decreases the read access

time to 0.57 ns, due to the increasing leakage of the sense amplifier that accelerates the

charging of the bitline. This effect on read access time becomes more significant when the

supply voltage is lowered. At 0.7 V, the read access time is 4.1 ns at 25◦C and 1.6 ns at

125◦C.

The IEEE 802.11ad LDPC decoder requires 32 5 × 210 eDRAM arrays, 2 for each of the

16 VNGs as V2C memory and C2V memory. To achieve the highest required throughput

of 6 Gb/s, the clock period is set to 2.8 ns, and the memory supply voltage has to be set to

36

IN
0

IN
1

IN
10

1
IN

10
2

IN
10

3
IN

10
4

WWL0

RWL0

WWL1

RWL1

WWL4

RWL4

PCENB

SAEN

SAENB

O
U

T
0

O
U

T
1

O
U

T
10

1

O
U

T
10

2

O
U

T
10

3

O
U

T
10

4

S
eq

ue
nt

ia
l A

cc
es

s
A

dd
re

ss
 G

en
er

at
or

O
U

T
2

O
U

T
3

IN
2

IN
3

DriversCell Array

Sense Amplifier & Output Latch

D
ri

ve
rs

Cell Array

Cell ArrayCell Array

Sense AmplifierSense Amplifier

Output LatchOutput Latch

D
ri

ve
rs

D
ri

ve
rs

S
eq

. A
cc

es
s

A
dd

r.
 G

en
.

Input BufferInput Buffer

O
U

T
10

5

O
U

T
20

9

Sense
Amplifier
& Ouptut

Latch

Input Buffer

Input Buffer

IN
10

5

IN
20

9

137 µm

30
.6
µ
m

Figure 2.13: Layout and schematic illustration of a 5 × 210 eDRAM array including cell
array and peripherals.

37

R
ea

d
 a

cc
es

s
ti

m
e

(n
s)

Supply Voltage
0.7

5.0

4.0

0.8 0.9 1.0 1.1 1.2 1.3

3.0

2.0

1.0

0.0

2.5

2.0

1.5

1.0

0.5

0.0

P
o
w

er
 (

m
W

)

 25 °C
125 °C

Figure 2.14: Simulated read access time (in black) and power consumption (in grey) of the
eDRAM array at 25◦C and 125◦C. Results are based on post-layout simulation
using a -300mV WWL and power is measured at a 180 MHz clock frequency.

38

A
W

G
N

 G
E

N
E

R
A

T
O

R

A
W

G
N

 G
E

N
E

R
A

T
O

R

CTRL

VCO

Figure 2.15: Chip microphotograph of the decoder test chip. Locations of the 32 eDRAM
arrays inside the LDPC decoder and the testing peripherals are labeled.

about 0.9V.

2.6 Decoder Chip Implementation and Measurements

A decoder test chip was implemented in a TSMC 65 nm 9-metal general-purpose CMOS

technology [64]. It was designed as a proof-of-concept to support the rate-1/2 (672, 336)

LDPC code for the IEEE 802.11ad standard, but the architecture also accommodates the

three higher rate codes. The chip microphotograph is shown in Fig. 2.15. The test chip

measures 1.94 mm × 1.84 mm and the core measures 1.6 mm × 1.0 mm including 32 5 ×

210 eDRAM arrays.

The decoder test chip uses separate supply voltages for the decoder core logic and

eDRAM memory arrays to allow each supply voltage to be independently set to achieve

the throughput targets with the lowest power. Clock is generated on-chip, and it can also

be provided through an external source. The decoder incorporates AWGN generators to

39

B
it

 e
rr

o
r

ra
te

 (
B

E
R

)

Eb/N0 (dB)
0.0

1000-

10-10

2.0 3.0 4.0 5.0 6.0 7.0

10-20

10-30

10-40

10-50

10-60

10-90

10-70

10-80

1.0

Q5.0, 10 Iterations
Floating point, 100 Iterations

Figure 2.16: BER performance of the (672, 336) LDPC code for the IEEE 802.11ad standard
using a 5-bit quantization with 10 decoding iterations and floating point with
100 iterations.

model the communication channel and provide input vectors in real time. Decoding errors

are collected on-chip to compute the BER and FER.

The decoder supports two test modes: a scan mode for debugging and an automated

mode for gathering error statistics. In the scan mode, input vectors are fed through scan

chains and the decoding decisions are scanned out for inspection. In the automated mode,

the decoder takes inputs from the on-chip AWGN generators, and decoding decisions are

checked on-chip for errors. The AWGN noise variance and scaling factors are tuned to

provide a range of SNR. We step through a number of SNR points and collect sufficient

error statistics to plot BER against SNR waterfall curves. The waterfall curves are checked

against the reference waterfall curve obtained by software simulation.

40

2.6.1 Chip Measurements

The test chip operates over a wide range of clock frequencies from 30 MHz up to 540

MHz, which translate to a throughput from 0.5 Gb/s up to 9 Gb/s using a fixed 10 decoding

iterations. Early termination is built-in to increase throughput at high SNR if needed. The

decoder BER is shown in Fig. 2.16. An excellent error-correction performance is achieved

down to a BER of 10−7, which is sufficient for the application.

Fig. 2.17 shows the measured power consumption of the decoder chip, the core and the

eDRAM arrays at each clock frequency. The decoder consumes 38 mW, 106 mW, and 374

mW to achieve a throughput of 1.5 Gb/s, 3 Gb/s, and 6 Gb/s, respectively, at the optimal

core and memory supply voltages listed in Table 2.1. The power consumption of the non-

refresh eDRAM increases almost linearly with frequency compared to the quadratic increase

in core logic power, demonstrating the advantage of the eDRAM at high frequency. At 6

Gb/s, the eDRAM consumes only 23% of the total power, and the proportion is further

reduced to 21% at 9 Gb/s. The power consumption over the SNR range of interest is shown

in Fig. 2.18. The power is the highest when the decoder is operating near the middle of the

waterfall region, a result of high switching activities. The power decreases in the high SNR

region due to the improved channel condition that leads to fewer switching activities.

2.6.2 Comparison with State-of-the-Art

The three metrics of an LDPC decoder implementation are throughput, power and sili-

con area. Two efficiency measures can be derived based on the three metrics: power/throughput

(in pJ/b) gives energy efficiency, and throughput/area (in b/s/mm2) gives area efficiency.

Table 2.2 summarizes the results of the test chip along with other state-of-the-art LDPC de-

coders published in the last three years. For a fair comparison, we normalize the throughput

to 10 iterations for a flooding decoder and 5 iterations for a layered decoder that converges

faster.

As Table 2.2 shows, our results have advanced the state of the art by improving the

best energy efficiency to 21 pJ/b in the low power mode and the best area efficiency to

5.63 Gb/s/mm2 in the high performance mode. We provide a range of operating points in

41

P
o
w

er
 (

m
W

)

Frequency (MHz)
0

900

800

200 300 400 500 600

700

600

500

400

300

0

200

100

100

Total
Core
eDRAM

Figure 2.17: Measured LDPC decoder power at 5.0 dB SNR and 10 decoding iterations.
The total power is divided into core and eDRAM power. Voltage scaling is
used for the optimal core and eDRAM power.

Table 2.1: Measurement summary of the LDPC decoder at 5.0 dB SNR and 10 decoding
iterations

Frequency (MHz)

Core
Supply (V)

Power (mW)

eDRAM
Supply (V)

Power (mW)

Total Power (mW)

eDRAM Fraction (%)

Throughput (Gb/s)

Energy Efficiency (pJ/bit)

Area Efficiency (Gb/s/mm2)

30 540

1.15

620.1

1.30

162.8

782.9

21

9.0

89.5

5.63

60 90 180 270 360 450

0.41 0.45 0.51 0.64 0.76 0.94 1.06

5.6 11.0 21.0 68.2 142.8 285.8 480.1

0.69 0.73 0.80 0.92 1.03 1.11 1.22

6.2 10.2 16.7 37.6 64.8 87.8 130.8

11.8 21.2 37.7 105.8 207.6 373.6 610.9

52 48 44 36 31 23 21

0.5 1.0 1.5 3.0 4.5 6.0 7.5

21.0 21.9 35.6 34.5 44.8 61.7 76.4

0.31 0.63 0.94 1.88 2.81 3.75 4.69

42

P
o
w

er
 (

m
W

)

Eb/N0 (dB)
1.0

600

2.0 3.0 4.0 6.0 7.0

400

200

0

500

300

100

5.0

1.0 Gb/s
1.5 Gb/s
3.0 Gb/s
4.5 Gb/s
6.0 Gb/s

Figure 2.18: Measured LDPC decoder power across SNR range of interest at 10 decoding
iterations. Voltage scaling is used for optimal core and eDRAM power.

43

Table 2.2: Comparison of state-of-the-art LDPC decoders

Technology

Block Length

Code Rate

Decoding Algorithm

Core Area (mm2)

Iterations

Input Quantization (bit)

Core Supply (V)

Memory Supply (V)

Clock Frequency (MHz)

Throughput (Gb/s)

Power (mW)

Norm. Throughput (Gb/s)b

Norm. Energy Eff. (pJ/bit)d

Norm. Area Eff. (Gb/s/mm2)d

This Work

65nm

672

1/2

Offset

Min-Sum

1.60

10

5

0.41 0.94 1.15

0.69 1.11 1.30

30 360 540

0.5 6.0 9.0

11.8 373.6 782.9

0.5 6.0 9.0

21.0 61.7 89.5

0.31 3.75 5.63

Layered

Normalized

Min-Sum

JSSCʼ12

[19]

65nm

672

1/2-7/8

1.56

5

6

1.0

197

5.79

361

5.79

62.4

3.70

JSSCʼ11

[18]

130nm

576-2304

1/2-5/6

Layered

Normalized

Min-Sum

3.03

10

6

1.2

214

0.874 0.955

342

1.748

195.7

0.58

397

1.91

207.9

0.63

JSSCʼ10

[20]

65nm

2048

0.84

Offset

Min-Sum

5.35

8

4

6.67a 47.7a

144

2.335c

61.7

0.44

2800

16.695c

167.7

3.12

100 700

0.7 1.2

ASSCCʼ11

[33]

65nm

576-2304

ASSCCʼ10

[32]

ASSCCʼ10

[24]

90nm90nm

648-1944 2048

1/2-5/6 1/2-5/6 0.84

Layered

Offset

Min-Sum

Layered

Offset

Min-Sum

Layered

Offset

Min-Sum

3.36 1.77 5.35

10 10 4

6 5 7

1.2 1.0

84.7 137

0.8 1.2

110 346

7.23 11.691.056 0.679

386.8 1559115 107.4

5.784 9.3522.112 1.36

66.9 166.754.9 79

1.08 1.750.63 0.77

a Early termination enabled.
b Throughput is normalized to 10 decoding iterations for flooding decoders and 5 decoding iterations for layered decoders.
c Early termination requires an average of 2.5 iterations at a 5.5 dB SNR. One additional iteration is needed for convergence detection. [20]
d Energy and area efficiency are normalized to 65 nm, 1.0V and computed based on the normalized throughput.

Table 2.1 to show the tradeoff space between energy efficiency and area efficiency.

2.7 Summary

We present a low-power logic-compatible eDRAM design for a high-throughput LDPC

decoder. The eDRAM retains storage for the necessary data access window, eliminating

refresh for a significant power reduction. A new 3T LVT NMOS eDRAM cell design trades

off the excessive retention time for a fast 0.68 ns read access at 1.0 V. To ensure a reliable

storage, the coupling noise is mitigated by balancing the write and read wordline coupling,

and the subthreshold leakage is minimized by a negative write wordline.

A row-parallel LDPC decoder is designed using 32 5× 210 non-refresh eDRAM arrays for

the (672, 336) LDPC code suitable for the IEEE 802.11ad standard. We use row merging and

dual-frame processing to increase hardware utilization and remove pipeline stalls, resulting

in a significant reduction of the clock frequency from 1.07 GHz to 360 MHz. The 1.6 mm2

65 nm LDPC decoder test chip achieves a peak throughput of 9 Gb/s at 89.5 pJ/b, of which

44

only 21% is spent on eDRAMs. With voltage and frequency scaling, the energy efficiency

is improved to 35.6 pJ/b for a 1.5 Gb/s throughput.

45

CHAPTER III

Nonbinary LDPC Decoder with Dynamic Clock Gating

3.1 Decoding Algorithm

The complexity of the NB-LDPC decoder and its error-correcting performance are de-

termined by the code construction. Quasi-cyclic LDPC codes have been invented to provide

a good error-correcting performance [65, 66, 67], and their regular structures are amenable

to efficient decoder architectures [35, 36, 37, 38, 41]. An equally good error-correcting per-

formance can be achieved with a class of regular (2, dc) codes constructed based on the

algebraic properties of their binary images [68]. Compared to the quasi-cyclic LDPC codes,

the (2, dc) codes feature a very low variable node degree dv = 2, and a check node degree

as low as dc = 4, reducing the processing complexity, the wiring, and the quantization

loss. Therefore, the (2, dc) code is attractive for a practical and efficient implementation.

An NB-LDPC code offers a competitive error-correcting performance even at a short block

length. The performance can be further improved by increasing q, the order of the GF field,

but higher q increases the size and complexity of the decoder.

The direct implementation of the BP decoding algorithm results in a check node com-

plexity of O(q2) and a variable node complexity of O(q). A fast Fourier transform (FFT)

implementation [69] reduces the check node complexity to O(q log q), but it requires check

node processing in the linear domain and the conversion between linear- and log-domain

messages. The extended min-sum (EMS) algorithm [70] in the log domain simplifies the

check node complexity to O(qnm) using only a small subset of nm values among an array of

q LLRs in a message, where nm � q. A further simplification of the EMS algorithm trun-

46

cates the least significant values in a message and keeps only the most significant nm values

in memory [71]. The processing is done entirely using the truncated messages, thereby re-

ducing the complexity of the check node to O(nm log nm) and variable node to O(nm). The

truncated EMS algorithm has demonstrated minimal loss in error-correcting performance

at low SNR compared with BP, while the performance surpasses BP at high SNR [71]. The

truncated EMS algorithm makes it possible to design an NB-LDPC decoder with a reason-

able complexity that is within the range of binary LDPC decoders. A further simplification

using the min-max algorithm [72] incurs a noticeable degradation in the error-correcting

performance.

Similarly to LDPC code, an NB-LDPC code is decoded using belief propagation (BP)

by iteratively passing messages between VNs and CNs over the factor graph. Compared to

a binary LDPC code, the factor graph of an NB-LDPC code is more compact with fewer

nodes and much fewer edges, suggesting a simpler wiring in its decoder implementation.

However, grouping log2 q binary bits to a GF(q) symbol expands the message memory from

log2 q words to q words. The truncated EMS algorithm [71] reduces the message memory

to nm (nm < q) words, e.g., a GF(64) NB-LDPC code can be decoded using nm = 16,

requiring 16 words in message storage, but still higher than what is needed in a binary

LDPC decoder.

The following section describes the truncated EMS decoding algorithm that will be used

as basis for the proposed NB-LDPC decoder. The VN to CN message will be referred to as

the V2C message, or Uj,i (from vj to ci); and the CN to VN message as the C2V message,

or Vi,j (from ci to vj).

3.1.1 VN Initialization

The decoding starts by initializing each VN with the prior LLRs based on the infor-

mation received from the communication channel. Because each VN in an NB-LDPC code

represents a GF(q) element, the prior LLR for a VN vj , Lj , is an LLR vector (LLRV) of

47

length q, and each element of the LLRV corresponds to a GF(q) element αi, i ∈ {1, . . . , q}.

Lj = [Lj(1), Lj(2), . . . , Lj(q)],where

Lj(i) = log
P (vj = α̂i|y)

P (vj = αi|y)
, and α̂i = {arg maxαi∈GF (q) P (vj = αi|y)}. (3.1)

and y is the channel information. α̂i is the GF(q) element with the maximum P (vj = αi|y).

Therefore a lower LLR value suggests a higher likelihood of the GF(q) element. The GF

index vector associated with the prior LLRV is Lgfj = [1, 2, . . . , q]. In the following, we

assume that the LLRV is sorted in ascending order unless specified otherwise, and the GF

index vector is used to track the GF element that corresponds to each entry of the LLRV.

In the GF index vector, each GF(q) element is stored in its log2 q-bit binary representation.

An example is shown in Fig. 1.4. Using the truncated EMS algorithm, only the minimum

nm entries, nm < q, in the LLRV are kept. In the first decoding iteration, the prior LLRV

is used as the V2C message, i.e., Uj,i = Lj .

3.1.2 CN Operation

Each GF element αk in the GF index vector of the V2C message Uj,i is multiplied by

H(i, j) before the message is sent to the CN. αk is stored in the binary representation and

H(i, j) is known, so the GF(q) multiplication is described by a q-entry lookup table and

synthesized to logic gates. This GF multiplication is known as permutation.

Suppose a CN receives messages from dc VNs, vj , j ∈ {1, 2, . . . , dc}, where dc is the

degree of the CN. The CN computes the C2V messages for each VN using the forward-

backward algorithm in three steps: forward, backward, and merge that are illustrated in

Fig. 3.1. The forward and backward steps can be carried out in parallel.

As Fig. 3.1 shows, in the forward step, the message from v1 is combined with the message

from v2, and message combining continues until reaching the message from vdc−2 following

equation (3.2a). The “combine” operation is known as the elementary CN (ECN) that is

represented by ⊕ in equation (3.2a). An ECN takes two length-nm LLRV inputs, e.g., U1

and U2, and calculates a length-nm LLRV output U1:2 that contains the nm minimum values

in the set {U1(i) + U2(j), i ∈ [1, nm], j ∈ [1, nm]}. An ECN requires an insertion sorter of

48

U1 U2 U3 U4 U5 U6

U1:2

U1:3

U1:4

V6

U5:6

U4:6

U3:6

V1

F
o

rw
a

rd
 E

C
N

B
a

ck
w

a
rd

 E
C

N

V5 V4 V3 V2

Merge ECN

Step 1

Step 2

Step 3

Step 4

V2C Messages

C2V Messages

V6 V1V5 V4 V3 V2

Figure 3.1: Illustration of forward-backward algorithm with dc = 6.

length nm, and the complexity of the ECN is O(n2
m). An efficient bubble check algorithm

[73] reduces the insertion sorter length to d1+
√

1+8(nm−1)

2 e and the operation complexity to

O(nm
√
nm). The forward step requires dc − 3 ECNs.

Forward: U1:j+1 = U1:j ⊕ Uj+1, j = 1, . . . , dc − 3 (U1:1 = U1). (3.2a)

Backward: Uj−1:dc = Uj:dc ⊕ Uj−1, j = dc, . . . , 4 (Udc:dc = Udc). (3.2b)

Merge: Vj = U1:j−1 ⊕ Uj+1:dc , j = 2, . . . , dc − 1. (3.2c)

The backward step follows equation (3.2b), and it is identical to the forward step, except

that it is done in the reverse direction, as shown in Fig. 3.1. After the forward and backward

are complete, the C2V messages can be readily calculated by merging the messages obtained

from the forward and backward, as described by equation (3.2c) and illustrated in Fig. 3.1.

Merge requires dc ECNs. To sum up, the forward-backward algorithm for CN requires

49

3dc − 6 ECNs in total, and each ECN is of complexity O(nm
√
nm).

Each GF element αk in the GF index vector of the C2V message Vi,j is divided by H(i, j)

before the message is sent to the CN. αk is stored in the binary representation and H(i, j)

is known, so the GF(q) division is described by a q-entry lookup table and synthesized to

logic gates. This GF division is known as inverse permutation.

3.1.3 VN Operation

Each VN receives dv C2V messages and computes the posterior LLR, Lpostj , and the

V2C messages following equation (3.3).

Lpostj = Lj +

dv∑
i′=1

Vi′,j , Uj,i = Lj +

dv∑
i′=1,i′ 6=i

Vi′,j . (3.3)

Note that the operator + and
∑

are not ordinary addition and summation. They

represent pair-wise elementary VN (EVN). An EVN takes two length-nm LLRV inputs, V1

and V2, and calculates a length-nm LLRV output V3 that contains the nm minimum values

in the set {V1(i) + V2(j), V gf
1 (i) = V gf

2 (j), i ∈ [1, nm], j ∈ [1, nm]}. The EVN requires

matching of GF index, which is done using a content-addressable memory (CAM). An EVN

uses an insertion sorter of length nm, and the complexity of the EVN is O(2nm). The VN

makes a hard decision in each iteration based on the most likely GF element. If the hard

decisions of all VNs meet all parity checks defined by the H matrix, decoding terminates.

The VN and CN operations in an NB-LDPC decoder as described above are more com-

plex than a binary LDPC decoder. The CN of a binary LDPC decoder performs compare

select and XOR in a tree structure of complexity O(dc), thus the CN can be easily paral-

lelized for a high throughput. The CN of an NB-LDPC decoder performs forward, backward

and merge with a complexity of O(dcnm
√
nm) using the truncated EMS algorithm [71] with

bubble check ECN [73]. The VN of an NB-LDPC decoder is also more complex than the

VN of a binary LDPC decoder, with a complexity of O(dvnm) compared to O(dv). For

practical implementations of NB-LDPC decoders, the CN and VN operations have to be

serialized, resulting in a lower throughput. The larger memory, expensive sorters and CAMs

all contribute to larger VNs and CNs.

50

VN1 CN1

Routing

Channel

Inputs

Hard

decisions

V2C GF Perm. & Norm.

CN2

CN80

C2V GF Inv. Perm.

VN2

Channel

Inputs

Hard

decisions

V2C GF Perm. & Norm.

C2V GF Inv. Perm.

VN160

Channel

Inputs

Hard

decisions

V2C GF Perm. & Norm.

C2V GF Inv. Perm.

Figure 3.2: Architecture of the fully parallel nonbinary LDPC decoder.

3.2 High-Throughput Fully Parallel Decoder Architecture

The NB-LDPC decoder is heavy on logic and memory but low on wiring compared to

the binary LDPC decoder. A parallel implementation of NB-LDPC decoder does not incur

the same wiring overhead seen in the implementations of binary LDPC decoder. A fully

parallel implementation simplifies the control and message scheduling, leading to a more

efficient design.

The GF(64) (160, 80) regular-(2, 4) NB-LDPC code constructed based on the algebraic

properties of their binary images [68] features low VN and CN degrees, thus the complexity

of VN and CN can be kept low. The block diagram of the fully parallel decoder is illustrated

in Fig. 3.2. The 960 bits of a codeword are grouped into 160 6-bit GF(64) symbols. The

factor graph of the code contains 160 VNs and 80 CNs. The fully parallel decoder is the

direct mapping of the factor graph with 160 2-input VNs and 80 4-input CNs as shown

in Fig. 3.2. Each edge in the factor graph carries an LLRV. The entries of the LLRV

are sent serially to reduce the bit width of the wires and to match the pipelined CN and

VN processing. Permutation and inverse permutation are placed between the VNs and

51

CNs, and messages are normalized in each iteration to prevent saturation. The messages

are quantized to 5 bits to minimize storage. The decoder implements the truncated EMS

algorithm with nm = 16. The word length and truncated EMS setting have been simulated

extensively to ensure a good error-correcting performance down to very low BER levels.

We further improve the throughput of the fully parallel decoder using architecture trans-

form and scheduling techniques: (1) by applying a one-step look-ahead to the ECN bubble

check algorithm, we remove the data dependency to produce a fast ECN design; (2) by

dividing the ECN and EVN schedules into two phases, we allow the interleaving of VN and

CN for a short iteration latency.

3.2.1 Look-Ahead Elementary Check Node

CN takes 4 V2C messages, U1, U2, U3, U4, and computes 4 C2V messages, V1, V2, V3,

V4, using the forward-backward algorithm illustrated in Fig. 3.1. The forward step takes U1

and U2 to compute U1:2; and concurrently, the backward step takes U4 and U3 to compute

U3:4. Next, the four merges are done in parallel to compute V2C messages, as illustrated in

Fig. 3.3. The forward step, backward step, and merge are all done using ECN.

ECN implements the bubble check algorithm to find the nm minimum values in the

set TΣ = {U1(i) + U2(j), i ∈ [1, nm], j ∈ [1, nm]}, where U1 and U2 are two input LLRVs.

The set TΣ is represented in a 2-dimensional matrix. The entries of TΣ are computed on

the fly by reading one entry from U1(i) and one from U2(j) and summing them. The

corresponding GF element of the sum is computed by adding the GF element associated

with the entry U1(i) and the GF element associated with the entry from U2(j). Since the

pair of GF elements are stored in binary representation, the addition is done by the bitwise

logical XOR of the pair. ECN uses an insertion sorter of length nb = 6 for nm = 16. The

ECN sorter is initialized with TΣ(1, 1), TΣ(2, 1), ... TΣ(6, 1). The ECN sorter outputs the

minimum entry, e.g., TΣ(i1, j1), every step and a new entry TΣ(in, jn) is inserted. ECN is

complete after nm steps. Note that we allow duplicate GF outputs because it simplifies the

control logic and ensures a constant latency per iteration. Our simulation results show that

the loss in error-correcting performance due to duplicate GF outputs is negligible.

Using bubble check [73], the new entry from TΣ to be inserted to the sorter is determined

52

C
h

ec
k
 N

o
d
e

V2C1

V2C

MEM1

V2C

MEM2

V2C

MEM3

V2C

MEM4

ECNFWD
(forward)

FWD MEM BWD MEM

From MEM3

C2V4

V2C2 V2C3 V2C4

C2V3 C2V2 C2V1

ECNBWD
(backward)

ECNM1
(merge)

ECNM2
(merge)

ECNM3
(merge)

ECNM4
(merge)

To ECNM1 To ECNM2To ECNM4To ECNM3

From MEM4 From MEM1 From MEM2

Figure 3.3: Architecture of the check node.

Sort (Find S1)
Calculate

Index
Fetch Sort (Find S1)Fetch

ECN Step i ECN Step i+1ECN Step i-1

(a)

Sort (Find S2)

Calculate

Index
Fetch

Sort (Find S2)

Calculate

Index
Fetch

Sort

ECN Step i ECN Step i+1ECN Step i-1

Calculate

Index

(b)

Figure 3.4: Sub-operation schedule of (a) the bubble check elementary check node and (b)
the look-ahead elementary check node.

53

based on the minimum entry in the sorter. Each ECN step consists of three substeps as

illustrated in Fig. 3.4(a): (1) sort: find the minimum entry in the sorter TΣ(i1, j1); (2)

bubble check: calculate the index of the new entry (in, jn) in TΣ to be inserted to the sorter

based on the bubble check algorithm using a “horizontal flag” H described below [73]; and

(3) fetch: read U1(in) and U2(jn), calculate the sum and insert it to the sorter. Each substep

depends on the previous one: fetch depends on sort for the index of the new entry; and sort

depends on fetch for the new entry. The data dependency requires that the three substeps

to be done in series, which results in a long clock period T = tsort + tbubble + tfetch, where

tsort, tbubble, and tfetch are the maximum time needed for the sort, bubble check and fetch.

if i1 = 1 then

H = 1, H̄ = 0

end if

if j1 = 1 and i1 ≥ nb then

H = 0, H̄ = 1

end if

if TΣ(i1 + H̄, j1 +H) has never been inserted to the sorter then

in = i1 + H̄, jn = j1 +H

else

in = i1 +H, jn = j1 + H̄

end if

We apply one-step look-ahead to shorten the clock period. The new sorter keeps track of

not only the minimum TΣ(i1, j1), but also the second minimum TΣ(i2, j2). With this change,

each ECN step is done in three substeps that can be partially overlapped: (1) sort: find the

second minimum TΣ(i2, j2) (the minimum TΣ(i1, j1) is found in the previous ECN step); (2)

fetch: read U1(in) and U2(jn), calculate the sum and insert to the sorter; (3) bubble check:

compare TΣ(i2, j2) with TΣ(in, jn), one of which will be the new minimum TΣ(i1, j1) to be

output next, and the index of the new entry (in, jn) is calculated based on the bubble check

algorithm above. Though the three substeps still remain, the look-ahead design allows sort

and fetch to be done in parallel. The new sequence illustrated in Fig. 3.4(b) allows the

54

ECN Init ECN Compute

6 cycles 16 cycles

Load Sorter Sort and Output

ECN

(a)

ECNFWD

ECNBWD

ECNM1

28 cycles

12 cycles

ECNM2

ECNM3

ECNM4

ECN Init ECN Compute

ECN Init ECN Compute

ECN Init ECN Compute

ECN Init ECN Compute

ECN Init ECN Compute

ECN Init ECN Compute

6 cycles

C2V LLRV OutputCN Output

(b)

Figure 3.5: Operation schedule of (a) the elementary check node and (b) the check node.

overlapping of the substeps to shorten the clock period to T = max{tsort, tfetch} + tbubble.

Since tsort,tfetch are significantly longer than tbubble. The clock period is almost halved

compared to the baseline version.

The schedule of the ECN is divided into two phases: initialization phase and compute

phase, according to Fig. 3.5(a). The initialization phase spans the first nb = 6 cycles

to initialize the sorter. The compute phase spans nm = 16 cycles, during which ECN

outputs one value every cycle. In the CN schedule shown in Fig. 3.5(b), the forward and

backward ECNs are started at the same time. After the initialization phase, the forward

and backward ECNs (ECNFWD, ECNBWD) move to the compute phase, while the four

merge ECNs (ECNM1-4) start their initialization phase. The phase pipelining shortens the

55

V
a
ri

a
b
le

 N
o
d
e Prior MEM

EVN1 EVN2

EVN3

Channel

Inputs

Posterior MEM

C2V1 C2V2

V2C1Hard

Decisions

C2V

CAM1

C2V

CAM2

V2C2

Figure 3.6: Architecture of the variable node.

latency of the CN to 28 cycles.

3.2.2 Two-Pass Variable Node

VN takes 2 C2V messages, V1, V2, and the prior LLRV to compute 2 V2C messages,

U1, U2, and the posterior LLRV. The low VN degree of 2 simplifies the implementation,

as shown in Fig. 3.6. Three EVNs are used: EVN1 and EVN2 start first to compute U2

and U1, followed by EVN3. This design shortens the VN critical path, as EVN3 has been

excluded from the critical path.

EVN finds the nm minimum values in the set {V1(i)+V2(j), V gf
1 (i) = V gf

2 (j), i ∈ [0, nm−

1], j ∈ [0, nm − 1]}, where V1 and V2 are two input LLRVs. The condition V gf
1 (i) = V gf

2 (j)

requires matching of GF indices. Therefore, one of the input LLRVs, e.g., V2, is stored in a

56

EVN First Pass EVN Second Pass

16 cycles 16 cycles

Scan V1 memory Scan V2 memory

EVN

(a)

EVN1

EVN2

EVN3

32 cycles

6 cycles

EVN
First Pass HD

16 cycles

EVN First Pass EVN Second Pass

EVN First Pass EVN Second Pass

1 cycle

VN Output V2C LLRV Output

33 cycles

(b)

Figure 3.7: Operation schedule of (a) the elementary variable node and (b) the variable
node. Note that EVN3 uses a shorter sorter length since only the minimum is
required.

content-addressable memory (CAM) to enable searching of the GF index. EVN implements

a two-pass scan: (1) in the first pass, EVN scans V1 memory, and searches matching GF

index in V2 memory. If a matching entry is found, e.g., V gf
1 (i) = V gf

2 (j), the entry V2(j) is

read to calculate V1(i)+V2(j); if no matching entry is found, a fixed offset is added to V1(i)

and the sum is inserted to the EVN sorter; (2) in the second pass, EVN scans V2 memory.

A fixed offset is added to V2(j) and the sum is inserted to the sorter. The insertion sorter

performs a sort every cycle and keeps its stored items in ascending order.

To support the two-pass scan, the EVN sorter length is kept at least nm + 1 to consider

all nm V1 entries of the first pass and the first V2 entry of the second pass. Simulations

show that the EVN sorter length directly impacts the BER performance of the decoder.

Therefore we choose the EVN sorter length LEV N = 17 to avoid a degradation in BER.

However, note that EVN3 is different from EVN1 and EVN2 in that only the top (minimum)

entry in the posterior LLRV determines the hard decision. We take advantage of this finding

57

Variable Node

0 5 10 15 20 25 30 35 40 45 50Cycles

EVN First Pass EVN Second Pass

EVN
1st Pass

H

D

GF Perm. and Norm.
& V2C Mem Write

ECN Init

ECN Init

ECN Compute

ECN Compute

GF Inverse Perm.
& C2V CAM Write

EVN...EVN1 & 2

EVN3

V2C MEM

Check Node

ECNFWD&BWD

ECNM1-4

C2V CAM

Figure 3.8: Operation schedule of the decoder which includes the variable node, check node,
permutation & normalization, and inverse permutation stages.

to shorten the two passes performed by EVN3 to scan only a small number of top entries

in V1 memory and V2 CAM. The shortening of the two passes are verified by simulation to

guarantee accurate hard decision, and EVN3 is simplified.

The EVN schedule is divided into two phases: first pass and second pass, as in Fig. 3.7(a).

In the VN schedule shown in Fig. 3.7(b), EVN1 and EVN2 start in parallel. The first pass

takes nm = 16 cycles, followed by nm cycles for the second pass. EVN1 and EVN2 each

outputs one value every cycle beginning from the second cycle of the second pass. After

EVN1 and EVN2 start producing outputs, ECN3 starts with a 6-cycle first pass and a

1-cycle second pass to obtain the hard decision.

3.2.3 Interleaving Check Node and Variable Node

The phased schedule of ECN and EVN allows the CN and VN to be interleaved for a

shorter latency and higher throughput. The interleaved schedule is illustrated in Fig. 3.8

and it is executed in the following order: (1) EVN1 and EVN2 first pass, followed by second

pass. In the second pass, each EVN outputs one entry of the V2C message per cycle to

be permuted and forwarded to the CNs; (2) forward and backward ECN initialization,

followed by merge ECN initialization and compute. Merge ECN outputs one entry of the

C2V message per cycle in the compute phase to be inverse permuted and forwarded to

58

the VNs. EVN1 and EVN2 need to wait until all nm entries of the C2V message to be

ready before starting the next iteration because the two-pass scan requires one complete

C2V message to be stored in the CAM for searching. The overall latency of one decoding

iteration is 47 cycles according to Fig. 3.8. Note that EVN3 calculates the posterior. The

posterior is not needed by the ECN, therefore EVN3 is not in the critical path and it can

be overlapped with EVN operations.

3.3 Low-Power Design by Fine-Grained Dynamic Clock Gating

To estimate the power consumption, the fully parallel nonbinary LDPC decoder has

been synthesized and place and routed in a 65 nm CMOS process. Fig. 3.9(a) shows the

power breakdown of the decoder. The switching power of sequential circuits is the dominant

portion, claiming 65% of the total power. The leakage power and the switching power of

combinational circuits claim the remaining 21% and 14% of the total power, respectively.

Further breakdown of the switching power of sequential circuits in Fig. 3.9(b) shows that the

switching power of the VN and CN memories and the sorters in EVNs and ECNs account

for almost all of the sequential switching power.

The high dynamic power consumption prompts us to design a dynamic clock gating

strategy to reduce the power consumption of the decoder. Clock gating disables the clock

input to sequential circuits to save switching power, which in turn cuts the switching of

combinational circuits. The use of clock gating is motivated by the observation that the

majority of the VNs converge within a few decoding iterations before reaching the decoding

iteration limit. Therefore, it is possible to clock gate the VNs and CNs that have reached

convergence to save power.

To achieve the most power savings, the clock gating is implemented at a fine-grained

node level, i.e., at each VN and CN, and the clock gating is enabled dynamically during

run time. The fine-grained dynamic clock gating requires convergence detection at the node

level, i.e., each VN detects when it has reached convergence and can be clock gated. The

node-level convergence detection is different from the conventional convergence detection

done at the global level by checking whether all parity checks have been met [28]. Although

59

Sequential Switching

(incl. clock tree)

65 %

Leakage

21 %

 Comb.

Switching

14 %

(a)

ECN

27 %

VN MEM

27 %

EVN

27 %

CN MEM

18 %

Other

(Controller)

1%

(b)

Figure 3.9: (a) Power breakdown of the 65 nm synthesized fully parallel nonbinary LDPC
decoder, and (b) the distribution of sequential logic used in the decoder.

clock gating can also be based on global convergence detection, the power savings would be

greatly diminished.

3.3.1 Node-Level Convergence Detection

Node-level convergence detection is not equivalent to global convergence detection. Our

proposed node-level convergence detection is designed to match the accuracy of the global

convergence detection without causing BER degradation. The node-level convergence de-

tection is based on two convergence criteria: (1) meet the minimum number of decoding

iterations M, and (2) VN’s hard decisions remain unchanged for the last T consecutive

iterations. The two criteria are designed to prevent false convergence and ensure stability.

Each VN checks the criteria upon completing each decoding iteration. If the criteria are

met, the VN is clock gated. If a VN is clock gated, parts of the CN that are used for storing

and processing messages from and to the VN are also clock gated. CN is completely clock

gated when all its connected VNs have been clock gated.

An example in Fig. 3.10 shows the proposed clock gating in action. In this example, we

use decoding iteration limit L = 30 and convergence criteria M = 10 and T = 5. Fig. 3.10(a)

60

CN CN CN CN

VN
C = 0

VN
C = 0

VN
C = 0

VN
C = 0

VN
C = 0

VN
C = 0

VN
C = 0

VN
C = 0

VN
C = 0

VN
C = 0

VN
C = 0

VN
C = 0

Iteration 0

(a)

CN CN CN CN

VN
C = 0

VN
C = 5

VN
C = 3

VN
C = 5

VN
C = 9

VN
C = 7

VN
C = 8

VN
C = 0

VN
C = 7

VN
C = 1

VN
C = 6

VN
C = 2

Iteration 10

(b)

Active Node

Clock Gated Node
CN CN CN CN

VN
C = 6

VN
C = 11

VN
C = 5

VN
C = 11

VN
C = 15

VN
C = 13

VN
C = 14

VN
C = 6

VN
C = 13

VN
C = 5

VN
C = 12

VN
C = 8

Iteration 16

Constant Hard

Decision Counter

C

(c)

Figure 3.10: Example of clock gating showing active and clock gated nodes at different
iterations during the decoding process of one frame.

shows the decoder state at the start of the first iteration where all VNs and CNs are active.

Fig. 3.10(b) shows the decoder state at the start of iteration 11, when the minimum iteration

criterion has been met, and some of the VNs have reached the same hard decisions over the

last 5 or more iterations, therefore these VNs are clock gated. Two CNs are also completely

clock gated because all of their connected VNs are clock gated. The remaining CNs are

partially clock gated. In a few more iterations all VNs and CNs are clock gated, shown in

Fig. 3.10(c), and the decoder only consumes leakage power.

Fine-grained dynamic clock gating can be compared to early termination [28, 22] that is

commonly used in existing decoder designs. Early termination relies on global convergence

detection, whereas fine-grained dynamic clock gating is based on node-level convergence

detection, and it allows a large fraction of the VNs and CNs to be turned off before the

61

ECN (x6)ECN (x6)ECN (x6)ECN (x6)ECN (x6)

EVN (x3)EVN (x3)EVN (x3)

C2V CAM2

Variable Node

Routing

Decoder

Termination

Controller

C2V CAM1

Prior MEM

CG

Latch

Convergence

Detector

EVN

Controller

BWD MEM

FWD MEM

CG

Latch

Controller

V2C MEM4

CG

Latch

V2C MEM3

CG

Latch

V2C MEM2

CG

Latch

V2C MEM1

CG

Latch

Check Node

ECN

Figure 3.11: Implementation of fine-grained dynamic clock gating for the variable and check
node.

global convergence is reached, therefore it saves significant power compared to early termi-

nation. The other difference is that early termination uses the excess decoding iterations

to improve throughput, whereas fine-grained dynamic clock gating eliminates the dynamic

power consumption of the excess decoding iterations to save power, and the throughput is

kept constant.

The idea of early termination can be combined with fine-grained dynamic clock gating

to save power and improve throughput by terminating the decoder once all the VNs and

CNs are clock gated. We term the approach decoder termination to differentiate it from

early termination, because decoder termination relies on node-level convergence detection,

whereas early termination commonly relies on global convergence detection.

3.3.2 Fine-Grained Dynamic Clock Gating

The clock gating architecture is illustrated in Fig. 3.11. The convergence detector inside

each VN monitors the hard decisions in each iteration to check whether the hard decisions

62

have changed between iterations. A counter keeps track of the number of consecutive

iterations that the hard decisions have remained unchanged. When the convergence criteria

are met, the convergence detector enables the clock gating latch (CG latch) to turn off the

clock input to all sequential circuits with the exception of essential control circuits that are

needed for recovering from the clock gating state. The majority of the VN’s dynamic power

is saved, leaving only leakage.

The convergence detector propagates the clock gating signal to the CNs to enable the

CG latch of V2C message memories in the CNs, as noted in Fig. 3.11. Clock gating V2C

memories eliminates the unnecessary memory updates to save dynamic power. In this way,

CN is partially clock gated. When all the connected VNs are clock gated, as indicated by

their clock gating signals, a central CG latch is enabled to completely turn off the CN.

A decoder termination controller monitors the VN clock gating signals. When all the

VNs are clock gated (and CNs are clock gated as a result), decoder terminates the decoding

of the current code frame and moves on to the next input code frame. Decoder termination

reduces the average number of decoding iterations per code frame and therefore improves

the decoding throughput for a net gain in energy efficiency.

In our implementation, each VN stores only the hard decision (6 bit) from the previous

iteration. In each iteration, the VN compares the hard decision with the previous hard

decision, and increments a 4-bit counter if they agree. If not, the counter is reset. After the

comparison, the stored hard decision is replaced by the current hard decision for the next

iteration. The node-level convergence detection requires only 6 bits of storage per VN (or

960 bits for the entire decoder), and a small logic in each VN to compare a pair of 6-bit

decisions, and a 4-bit counter. Compared to the size of the non-binary VN and CN, the

overhead for node-level convergence detection is negligible.

To check the effectiveness of fine-grained dynamic clock gating, we simulated the de-

coder’s behavior with the fine-grained dynamic clock gating using node-level convergence

detection. Fig. 3.12 shows the percentage of nodes that have been clock gated in each de-

coding iteration across various SNR levels. The decoding iteration limit is set to 30, and

the convergence criteria are set to M = 10 and T = 10. Even at a low SNR (Eb/N0) of

2.8dB, more than 85% of the VNs are clock gated after 12 iterations. After 14 iterations,

63

C
lo

ck
 g

a
te

d
 n

o
d

es
 (

%
)

Iteration
10

100

14 18 22 24 26 30

95

90

85

75

80

12 16 20 28

2.8 dB
3.2 dB
3.6 dB
4.0 dB

Figure 3.12: Cumulative distribution of clock gated nodes at each iteration for various SNR
levels with a decoding iteration limit of 30. The parameters used for clock
gating are M = 10 and T = 10.

95% of the VNs are clock gated. At higher SNRs, the VNs are clock gated at an even faster

pace.

3.4 Decoder Chip Implementation and Measurement Results

A decoder test chip for the GF(64) (160, 80) regular-(2, 4) NB-LDPC code was imple-

mented in a STMicroelectronics 65 nm 7-metal general-purpose CMOS technology [74]. The

chip microphotograph is shown in Fig. 3.13. The test chip measures 4.40 mm × 2.94 mm,

and the core measures 3.52 mm × 2.00 mm, or 7.04 mm2. The memory used in this decoder

is implemented using registers. The test chip incorporates AWGN generators to model the

communication channel and provide input vectors in real time. An on-chip controller keeps

track of the decoding errors for calculating the BER and FER.

64

NB-LDPC

DECODER CORE D
E

C
A

P

AWGN Generator

3.52 mm

2
.0

0
 m

m

4.40 mm

2
.9

4
 m

m
CTRLVCO

AWGN Generator

AWGN Generator AWGN Generator

D
E

C
A

P

Figure 3.13: Chip microphotograph of the decoder test chip. Locations of the test periph-
erals and the decoder are labeled.

The chip supports two test modes: a scan mode which takes external inputs through

scan chains and provides outputs through scan chains for functional verification, and an

automated mode for the real-time testing of the decoder using on-chip generated AWGN

noise to emulate the communication channel. Error statistics are collected for plotting BER

and FER against SNR.

3.4.1 Chip Measurements

Fig. 3.14 shows the BER and FER curves for various configurations. The error rate

reported is based on two months of extensive testing. With a decoding iteration limit of

100, the decoder achieves a BER of 7.53×10−11 at 4.2 dB, a significant improvement over

binary LDPC codes of similar block length, e.g., the rate-1/2 672-bit binary LDPC code for

the IEEE 802.11ad standard provides a BER of only 4.36×10−8 at 4.2 dB [75]. Structured

binary LDPC codes of similar block length also encounter severe error floors, which is not

seen in the NB-LDPC code. With a more practical 30 iterations and our proposed node-

level convergence criteria of M = 10 and T = 10, the decoder still provides an excellent

65

E
rr

o
r

ra
te

Eb/N0 (dB)
1.0

1000-

10-10

3.0 4.0 5.0 6.0 7.0

10-20

10-30

10-40

10-70

10-80

10-13

10-10

10-11

2.0

10-50

10-60

10-90

10-12

10 iterations
100 iterations

30 iterations with
clock gating

EMS floating point
100 iterations [19]

Figure 3.14: BER and FER performance of the GF(64) (160, 80) regular-(2, 4) NB-LDPC
code using 5-bit quantization.

BER performance that is very close to the 100-iteration BER performance.

The NB-LDPC decoder test chip operates at a maximum clock frequency of 700 MHz

at 1.0 V and room temperature for a coded throughput of 477 Mb/s with 30 decoding

iterations. The test chip consumes 3.993 W, which translates to an energy efficiency of 8.38

nJ/b. Fig. 3.15, 3.16, and Table 3.1 summarize the measured power consumption of the

NB-LDPC decoder test chip.

To improve the energy efficiency, the fine-grained dynamic clock gating is enabled with

node-level convergence criteria of M = 10 and T = 10, reducing the power consumption

by 50% and improving the energy efficiency to 4.14 nJ/b. To achieve a higher throughput,

decoder termination is enabled to increase the throughput from 477 Mb/s to 1.22 Gb/s

at 5.0 dB SNR (Eb/N0). The power consumption increases due to a higher activity, but

66

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Decoder configuration

Baseline

1500

1250

1000

750

500

250

0

Throughput
Energy Efficiency

12

10

8

6

4

2

0

E
n

er
g

y
 E

ff
ic

ie
n

cy
 (

n
J
/b

)

(L=30,

at 1.0V, 700MHz)

Clock gating
(L=30, M=10, T=10,

at 1.0V, 700MHz)

Decoder term.
(L=30, M=10, T=10,

at 1.0V, 700MHz)

Voltage scaling
(L=30, M=10, T=10,

at 0.675V, 400MHz)

50% energy
reduction

2.6×
throughput

improvement

66% energy
reduction

Figure 3.15: Illustration of throughput and energy efficiency of various decoder configura-
tions at 5.0 dB SNR. L, M , and T represents decoding iteration limit, minimum
decoding iteration, and consecutive iteration threshold, respectively.

Table 3.1: Measurement summary of the NB-LDPC decoder at 5.0 dB SNR

Throughput1

(Mb/s)

700MHz @ 1.0V

30 Iterations

Power1

(W)

Energy Efficiency1

(nJ/b)

700MHz @ 1.0V

30 Iterations \w CG2

700MHz @ 1.0V

30 Iterations \w CG & DT2

400MHz @ 0.675V

30 Iterations \w CG & DT2

3.993

1.974

3.704

0.729

477

477

1221

698

8.38

4.14

3.03

1.04

Measured at 5.0 dB SNR.

CG denotes clock gating, and DT denotes decoder termination. The parameters used for clock gating

and decoder termination are M = 10 and T = 10.

1

2

Decoder Configuration

67

P
o
w

er
 (

m
W

)

Frequency (MHz)
0 300 500 600 800

5.0

4.0

0

2.0

100 200 400 700

3.0

1.0

CG & DT disabled
CG enabled
CG & DT enabled

(a)

E
n

er
g
y
 e

ff
ic

ie
n

cy
 (

n
J
/b

it
)

Frequency (MHz)
0 300 500 600 800

10.0

8.0

0

4.0

100 200 400 700

6.0

2.0

CG & DT disabled
CG enabled
CG & DT enabled

(b)

Figure 3.16: Measured NB-LDPC decoder (a) power and (b) energy efficiency at 5.0 dB SNR
and 30 decoding iterations. CG denotes clock gating and DT denotes decoder
termination. The parameters used for clock gating and decoder termination
are M = 10 and T = 10.

68

the energy efficiency improves to 3.03 nJ/b, or 259 pJ/b/iteration. Voltage and frequency

scaling can be applied to further reduce the power consumption and improve the energy

efficiency. Scaling the supply voltage from 1.0 V to 675 mV reduces the maximum clock

frequency from 700 MHz to 400 MHz and improves the energy efficiency to 1.04 nJ/b, or

89 pJ/b/iteration, at a reduced throughput of 698 Mb/s.

3.4.2 Comparison with State-of-the-Art

Table 3.2 and 3.3 summarize the results of the nonbinary LDPC decoder test chip along

with other state-of-the-art synthesized designs published recently [76, 36, 37, 77, 40, 78, 42,

43]. It is important to note that all the previous designs have not been fabricated in silicon.

This work is the first silicon that has been published to the best of our knowledge. The

decoder claims higher throughput and energy efficiency (in pJ/b/iter), when normalized

to 65 nm and 1.0 V, than the best previously reported post-layout results. The truncated

EMS algorithm allows us to achieve excellent BER performance compared to other simplified

algorithms.

69

Table 3.2: Comparison of state-of-the-art NB-LDPC decoders (ASIC layout)

This Work
TVLSIʼ13

[43]

TVLSIʼ13

[42]

TSPʼ13

[40]

TCAS-Iʼ12

[37]

Technology

Code Length (symbols)

Galois Field

Decoding Algorithm

Core Area (mm2)

Iterations

Core Supply (V)

Clock Frequency (MHz)

Throughput (Mb/s)

Power (mW)

Energy Efficiency (nJ/b)

Energy Efficiency (pJ/b/iter)

Code Rate

Design

Utilization (%)

Gate Count

Area Efficiency (Mb/s/mm2)

Normalized to 65nm, 1.0Vc

Energy Efficiency (nJ/b)

Energy Efficiency (pJ/b/iter)

Area Efficiency (Mb/s/mm2)

65nm

silicon

160

GF(64)

0.5

Truncated

Extended Min-Sum

7.04

87

2.78M

(NAND)

1.0 0.675

700 400

10-30b 10-30b

1221 698

3704 729

3.03 1.04

259 89

173 99.1

3.03 2.29

259 196

173 99.1

90nm

layout

837

0.86

GF(32)

6.6

0.468M

(XOR)

277

10

716

108

288

28nm

layout

110

0.8

GF(256)

1.289

2.57M

(NAND)

520

10

546

424

33.9

90nm

layout

837

0.87

GF(32)

46.18

8.51M

(NAND)

250

5

234

5.06

13.4

90nm

layout

248

0.55

GF(32)

10.33

1.92M

(NAND)

260

10

47.7

4.62

12.3

75.7-

976

1.78

178

4.15

415

893

3.82

765

2.76

552 727

7.27

1006

10.06

480

SES-GBFDA stands for simplified enhanced serial generalized bit-flipping decoding algorithm, RTBCP stands for reduced memory complexity trellis-based check node processing, QSPA stands for q-

ary sum-product algorithm.

Iteration varies from 10 to 30 iterations based on decoder termination. The average iteration at 5.0 dB SNR is 11.71.

General scaling theory is used to scale area, frequency (and throughput), and power by 1/s2, s, and 1/u2 respectively where s is the dimension scale factor and u is the voltage scale factor. The core

supply of [37], [40], [42] are assumed to be 1.0V for normalization purpose.

- -

-

-

-

-

-

-

- - -

SES-GBFDAa RTBCPa Trellis-based Max-

Log-QSPAa

Selective-input

Min-Max

a

b

c

Table 3.3: Comparison of state-of-the-art NB-LDPC decoders (ASIC synthesis)

This Work
TVLSIʼ13

[78]

TCAS-Iʼ12

[77]

TCAS-Iʼ12

[36]

TVLSIʼ11

[76]

Technology

Code Length (symbols)

Galois Field

Decoding Algorithm

Iterations

Clock Frequency (MHz)

Throughput (Mb/s)

Code Rate

Design

Gate Count

Normalized to 65nmb

Throughput (Mb/s)

65nm

silicon

160

GF(64)

0.5

Truncated

Extended Min-Sum

2.78M

(NAND)

700 400

10-30a 10-30a

1221 698

1221 698

180nm

synthesis

837

0.87

GF(32)

0.871M

(NAND)

200

15

64

180nm

synthesis

837

0.87

GF(32)

1.29M

(NAND)

200

15

64

180nm

synthesis

837

0.87

GF(32)

1.37M

(NAND)

200

15

16

-

analysis

837

0.87

GF(32)

0.639M

(XOR)

150

15

10

177 44 -

Iteration varies from 10 to 30 iterations based on decoder termination. The average iteration at 5.0 dB SNR is 11.71.

General scaling theory is used to scale frequency (and throughput) by s where s is the dimension scale factor.

183

Relaxed
Min-Max

Simplified
Min-Sum Min-Max

Reduced-complexity

Min-Max

a

b

70

3.5 Summary

We present a fully parallel NB-LDPC decoder to take advantage of the low wiring

overhead that is intrinsic to NB-LDPC codes. To further enhance the throughput, we apply

a one-step look-ahead to the elementary CN design to reduce the clock period, and interleave

the CN and VN operations for a short iteration latency of 47 cycles. We implement a fine-

grained clock gating at the node level to allow the majority of the processing nodes to be

clock-gated long before reaching the iteration limit. A 7.04 mm2 65 nm decoder test chip is

designed for the GF(64) (160, 80) regular-(2, 4) NB-LDPC code. The decoder implements

fine-grained dynamic clock gating and decoder termination to achieve a throughput of 1.22

Gb/s at 700 MHz, consuming 3.03 nJ/b, or 259 pJ/b/iteration. The test chip demonstrates

a superior error correcting performance compared to binary LDPC decoders. Voltage and

frequency scaling of the test chip to 675 mV and 400 MHz further improve the energy

efficiency to 89 pJ/b/iteration at a reduced throughput of 698 Mb/s.

71

CHAPTER IV

Belief-Propagation Polar Decoder

4.1 Decoding Algorithm

Two decoding algorithms exist for polar codes, namely the SC decoding [7] and the BP

decoding algorithm [49]. Both algorithms work on the same generator matrix FN but differ

in the operation schedule. SC decoding is a non-iterative algorithm, serial in nature due to

inter-bit dependence on the decoded outputs, whereas BP is an iterative algorithm similar

to the BP decoding of LDPC codes. BP decoding is more parallelizable than SC due to the

lack of inter-bit dependence.

4.1.1 Successive Cancellation Decoding

The SC decoding algorithm decodes each bit ûi sequentially based on the channel output

yi and the previously decoded bits {û0, û1, ..., ûi−1}. An example 8-bit SC decoder factor

graph and its decoding schedule is illustrated in Fig. 4.1 [47]. Decoding starts by a series of

f functions that leads to the decoding of û0. In order to decode û1, the decoded û0 needs

to be fed to the g function, g2,1. Similarly, decoding û2 requires the decoded û0 and û1,

and so forth. Therefore, the decoder requires at least 2N − 2 = 14 cycles to decode the

full 8 bits. The iteration latency is linearly dependent on the block length N and therefore

increasing throughput becomes a challenge for SC decoders. The f and g functions used in

the SC decoder are defined as [47]:

f(a, b) =
1 + ab

a+ b
, g(s, a, b) = a1−2sb (4.1)

72

f2,0

g2,1

f2,6

g2,3

f2,2

g2,5

f2,4

g2,7

f1,0

g1,2

f1,4

g1,6

f1,1

g1,3

f1,5

g1,7

f0,0

g0,6

f0,1

g0,4

f0,2

g0,5

f0,3

g0,7

û0

û4

û2

û3

û1

û5

û6

û7

y0

y1

y2

y3

y4

y5

y6

y7

û2+û3

û0+û1+û2+û3

û1+û3

û3

û0+û1

û1

û4+û5

û5

û0

û2

û4

û6

Stage 0Stage 1Stage 2

(a) Factor graph

f0,0

f0,1

f0,2

f0,3

f1,0

f1,1

f2,0

û0

g2,1

û1

g1,2

g1,3

f2,2 g2,3

û2 û3

g0,4

g0,5

g0,6

g0,7

f1,4

f1,5

f2,4

û4

g2,5

û5

g1,6

g1,7

f2,6 g2,7

û6 û7

0 1 2 3 4 5 6 7 8 9 10 11 12 13Cycle

Output

Process

Nodes

(b) Decoding schedule

Figure 4.1: Example of successive cancellation: (a) factor graph for a N = 8 polar code and
(b) successive cancellation decoding schedule.

73

which can be approximated in the LLR domain as [47]:

f(a, b) = sign(a) · sign(b) ·min(|a|, |b|), g(s, a, b) = a(−1)s + b (4.2)

for a more efficient hardware implementation.

4.1.2 Belief Propagation Decoding

Using the BP algorithm, the polar code is decoded by iteratively passing the right-

bound messages (R messages, or messages from the source bits that represent the frozen bit

information) from left to right, and the left-bound messages (L messages, or the messages

from the channel outputs) from right to left over the factor graph. An example factor

graph is illustrated in Fig. 4.2(a). Note that the edges connecting the nodes in factor

graph are regular and fixed between nodes. The connections are different from the polar

encoder introduced in Fig. 1.7 and the SC decoder shown in Fig. 4.1(a), as the nodes have

been intentionally shuffled such that the connections between stages are identical [49]. This

shuffling simplifies the implementation of the decoder, which will become apparent later.

The L message on the right-most side (Lsrc) represents the channel output y and the R

message on the left-most side (Rsrc) represents whether a bit is used as a frozen bit (set to

∞) or as an information bit (set to 0).

The processing element (PE) shown in Fig. 4.2(b) performs 3 compare-selects and 3 sums

to compute a pair of L messages and a pair of R messages using the following equations:

Lout,1 = f(Lin,1, Lin,2 +Rin,2), Lout,2 = f(Rin,1, Lin1,) + Lin,2

Rout,1 = f(Rin,1, Lin,2 +Rin,2), Rout,2 = f(Rin,1, Lin1,) +Rin,2 (4.3)

where f is defined in (4.2).

The decoding schedule of the BP algorithm is illustrated in Fig. 4.2(c). The messages

are passed iteratively back and forth through the stages of PEs in factor graph until the

iteration limit is reached. Within an iteration, the Rsrc messages first propagate through

the PEs in stage 0 and 1. Then the Lsrc messages propagate through the PEs in stage 2, 1,

74

+
=

+
=

+
=

+
=

+
=

+
=

+
=

+
=

+
=

+
=

+
=

+
=

L0

L1

L2

L3

L4

L5

L6

L7

R0

R1

R2

R3

R4

R5

R6

R7

Stage 2Stage 1Stage 0Rsrc Lsrc

(a) Factor graph

=

+
Rout,1

Lin,1

Rout,2

Lin,2

Rin,1

Lout,1

Rin,2

Lout,2

(b) Processing Element (PE)

0 1 2 3 4 5 6 7 8 9 10 11 ...Cycle

Output

R prop. L prop.
Iteration

Iteration 1

R prop. L prop. R prop.

Iteration 2

û0..7 û0..7

Stages

...

Iteration 0

S0 S1 S2 S1 S0 S0 S1 S2 S1 S0 S0 S1 ...

(c) Decoding schedule

Figure 4.2: Example of BP factor graph for a N = 8 polar code.

75

and 0. The resulting intermediate L and R messages (Lint and Rint) are stored in memory

for use in the next iteration. Once the iteration limit is reached, the posterior is computed

by adding the Rsrc message to the leftmost L message, which is equivalent to replacing

the frozen bit locations to the known values (set to 0). The decoding latency of the BP

algorithm is 2 log2N − 1 if a whole stage (column) of PEs work in parallel. The decoding

latency can be reduced if multiple stages of PEs are available for parallel processing.

Most polar decoders presented in the past few years have used the SC algorithm which

is the original algorithm proposed by Arikan in [7] to prove the capacity of polar codes.

However, the algorithm has a major drawback which prevents a high-throughput imple-

mentation due to the inter-bit dependency that results in a serial decoding. Therefore we

decide to use the BP algorithm which enables high degree of parallelism than SC. We will

show that the error-correcting performance of BP decoders are comparable to SC decoders.

4.2 Decoder Architecture

The most basic architecture of the BP polar decoder is a direct implementation of the

polar code factor graph illustrated in Fig. 4.2(a). The decoder can be implemented using a

set of PEs and two memories to store the Lint and Rint messages produced by the PEs as

done in [49]. The Lsrc and Rsrc messages are stored in separate memories. The decoding is

performed by iteratively passing LLRs from left to right (right propagation) and then from

right to left (left propagation) through the PEs to compute new Rint and Lint messages.

A PE produces a pair of L and a pair of R messages based on (4.3). NPE is the number

of PEs used in the architecture. For example, if a full stage of PEs are used, NPE = N/2.

The decoding latency depends on NPE and is calculated using the following equation:

Icycle = Nstage ·
N

NPE
, where Nstage = log2N (4.4)

The regular wiring structure between stages permits a highly parallel decoder imple-

mentation without the complex wiring seen in LDPC decoders. The block diagram of a

conventional 1024-bit BP decoder is shown in Fig. 4.3. The single-column bidirectional de-

coder architecture consists of 512 bidirectional PEs to compute one stage in parallel, with

76

+

=

+

=

+

=

+

=

512
PEs Pipeline Registers,

Lsrc & Rsrc Registers

Routing

R
o
u
ti

n
g

L/R select

Rint

Memory

Routing

9 words
5Kb/word

Lint

Memory
9 words
5Kb/word

Figure 4.3: Conventional single-column bidirectional architecture of a 1024-bit BP polar
decoder.

2 45-Kb message memories to store the left-bound and right-bound intermediate messages.

A bidirectional PE computes both pairs of L and R messages (i.e., computes all 4 equations

of (4.3)). Each memory stores 9 rows of 512 pairs of 5-bit LLR messages.

4.3 High-Throughput Double-Column Unidirectional Architecture

We improve on the basic architecture design by reducing the required memory by half

through the use of unidirectional PE, which only computes either a pair of L or a pair of

R message depending on the direction of propagation. The memory is reduced by half to

45 Kb and the PE logic reduced by 33%. The throughput is nearly doubled by the efficient

use of 2 columns of PEs over one column of PEs.

4.3.1 Unidirectional Processing Architecture

The BP decoding of the polar code specifies one right-bound message propagation (R

propagation) and one left-bound message propagation (L propagation) to complete one

iteration. Fig. 4.4 illustrates the R and L propagation and the outputs created by the PEs

in each stage for an 8-bit polar decoder using the conventional bidirectional architecture.

77

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

L0

L1

L2

L3

L4

L5

L6

L7

R0

R1

R2

R3

R4

R5

R6

R7

Stage 0 Stage 1 Stage 2

R
in

t0L
in

t0

R
in

t1L
in

t1

R
in

t1

R
in

t0 L
in

t1

L
in

t0

L
in

t1

R propagation

(a) R propagation

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

L0

L1

L2

L3

L4

L5

L6

L7

R0

R1

R2

R3

R4

R5

R6

R7

L propagation

Stage 0 Stage 1 Stage 2

R
in

t0L
in

t0

R
in

t1L
in

t1

R
in

t1

R
in

t0 L
in

t1

L
in

t0

L
in

t1

(b) L propagation

Figure 4.4: Illustration of the PE outputs in a bidirectional architecture. The outputs
produced by the PEs in the R and L propagations are shown in blue and red,
respectively.

78

+

Rin,1 Rout,1

Rout,2Rin,2

Lout,1

Lout,2

Lin,1

Lin,2

f

f

f

+

+

(a) Bidirectional PE

+

R/Lin,1 R/Lout,1

R/Lout,2R/Lin,2

L/Rin,1

L/Rin,2

f

f

+

(b) Unidirectional PE

Figure 4.5: Illustration of the (a) bidirectional PE which outputs both Lout and Rout and
(b) unidirectional PE which outputs either Lout or Rout based on direction.

In each stage, one row of messages are read from each Rint and Lint memories and used as

inputs to the PEs. The bidirectional PEs then process these inputs to create new messages

to store in the Rint and Lint memories. For simplicity, we assume that Lint0 is stored in

the Lint memory instead of a separate memory as described in the previous section.

As can be seen in Fig. 4.4(a), the R messages created in the R propagation (Rint0,

Rint1 in blue) overwrites the R messages created in the previous L propagation (Rint0,

Rint1 in red). The R messages that have been produced in the previous L propagation

are overwritten without being used. Therefore, the production of R messages in an L

propagation is unnecessary. Similarly, the production of L messages in an R propagation

is unnecessary, as they are overwritten in the next L propagation without being used, as

79

illustrated in Fig. 4.4(b)

The insight from the above discussion is that the message propagation is unidirectional

to allow only one of L or R messages to be propagated. Therefore, a bidirectional PE is

unnecessary and a unidirectional PE can be designed to match the unidirectional propaga-

tion to only compute L messages in L propagation, and only R messages in R propagation.

This simplification reduces the complexity of the PE to 2 compare-selects and 2 sums as

illustrated in Fig. 4.5.

The unidirectional processing allows L messages and R messages to share only one 45

Kb memory for a 1024-bit polar code as illustrated in Fig. 4.6(a). The memory size is

reduced by 50% and logic complexity by 33% without sacrificing throughput compared to

the conventional bidirectional architecture shown in Fig. 4.3. Synthesis results show that

the area is reduced by 35%, and the critical path is shortened to 3.5 ns.

4.3.2 Double-Column Architecture

From the synthesis result, the critical path of the unidirectional single-column decoder

architecture is highlighted in red in Fig. 4.6(a). It runs through the shared memory, PE,

router and returns to the shared memory. Since a single column of 512 PEs are available to

process a stage of the factor graph in one clock cycle, the R propagation takes 9 cycles and

the L propagation takes 10 cycles adding up to 19 cycles per iteration. With the critical

path of 3.5 ns, a decoding iteration lasts 66.5 ns.

Within the critical path, the processing and routing delays are relatively short, benefiting

from the compact unidirectional PE design and the regular wiring in polar codes. Therefore

the memory access time of the shared memory dominates the critical path.

For a better utilization of a clock period, we design a double-column architecture shown

in Fig. 4.6(b). In this design, two columns of 512 PEs are used to process two stages of the

factor graph in one clock cycle. The critical path, highlighted in red, increases from 3.5 ns

to 4 ns. This is a rather small increase for the benefit of shortening the iteration latency

to 10 cycles or 40 ns and improving the overall throughput by 66%. As summarized in

Fig. 4.6(c), the number of PEs is doubled from 512 to 1024 as well as the number of PE

input routers. Despite this increase, the memory size remains constant. The memory is split

80

+

=

+

=

+

=

+

=

512
PEs

Shared

Memory

Pipeline

Registers

9 words
5Kb/word

Routing

R
o
u
ti

n
g

L/R select

(a) single-column architecture

+

=

+

=

+

=

+

=

512
PEs

Memory

Bank 1

Pipeline

Registers

4 words
5Kb/word

Routing

R
o
u
ti

n
g

L/R select

Memory

Bank 0
5 words
5Kb/word

Routing

+

=

+

=

+

=

+

=

512
PEs

R
o
u
ti

n
g

(b) double-column architecture

Single-Column Double-Column

of PEs 512 1024

Memory 45Kb (1 bank)

Latency – R prop.

Iteration Latency

Latency – L prop.

9 cycles

45Kb (2 banks)

10 cycles

5 cycles

5 cycles

19 cycles (66.5 ns) 10 cycles (40 ns)

Critical Path 3.5 ns 4.0 ns

(c) architecture comparison

Figure 4.6: (a) single-column and (b) double-column unidirectional architecture and (c)
their comparison. The critical paths are highlighted in red.

81

Register

File Cells

Dense I/O

Wire Congestion

Logic

(a) Register file macro

Logic Logic

Logic LogicLogic

LogicLogic

Logic LogicLogic

(b) Distributed registers

Figure 4.7: Conventional memories: (a) standard register file and (b) distributed registers.

into 2 banks (a 25-Kb bank and a 20-Kb bank) to support the double-column processing.

From synthesis, the overall decoder cell area only increases by 28% thanks to simpler PE

design.

4.4 High-Density Bit-Splitting Register File

Using a 5-bit message quantization, the required memory read and write access band-

width to support the 1024-parallel decoder is 20 Kb per cycle. Due to the small number of

words for each memory – 5 words for bank 0 and 4 words for bank 1 – DRAMs and SRAMs

are not good candidates as they suffer from very low cell efficiency for very shallow memory,

where the peripherals such as the sense amplifier dominate the area. Furthermore, the very

wide access would prevent using of column multiplexing as all bitlines would require sense

amplifiers.

More viable memory implementation options include a register file macro or distributed

registers as illustrated in Fig. 4.7. For the case of a register file macro, the wide access of

20 Kb would be available on one side of the macro as shown in Fig. 4.7(a). However, the

very wide memory aspect ratio becomes problematic, and the ultra-dense port placement

82

Bit0

Logic (Adder/Compare-Select)

Logic (Adder/Compare-Select)

Bit1

Logic (Adder/Compare-Select)

Bit2

Bit0

Logic (Adder/Compare-Select)

Logic (Adder/Compare-Select)

Bit1

Logic (Adder/Compare-Select)

Bit2

S
eq

u
en

ti
al

 A
d
d
re

ss
in

g

+

+

Word 0,1,2,… Bit 1

W
o
rd

 0

B
it

 0

W
o
rd

 1

B
it

 0

W
o
rd

 6
4

B
it

 0

In1In0

Out

In0 In1

Out

Carry

logic in memory enables locality

and compression

Figure 4.8: Illustration of the proposed bit-splitting register file.

consumes all available routing tracks required to route the inputs and outputs of the memory

to the PE logic. Using distributed registers for the memory would solve the wire congestion

problem and wide memory aspect ratio, but a design based on distributed registers suffers

from high clock tree power as registers have to be spread out in the design and a power-

hungry clock tree is necessary to deliver all the clock inputs of the registers.

A better solution would be a middle ground between the register file and distributed

register topology, a trade-off between power and area. To relieve the wire congestion, we

split the register file to bit rows to provide more tracks, and allocate PEs between bit rows

to take advantage of locality and compression from the adders and compare-select logic in

the PE. The compare-select and addition are done at bit level, right next to the bit memory,

and the number of output wires over to the next bit row is substantially reduced.

As illustrated in Fig. 4.8, the memory is split into bit-groups and the corresponding PE

logic are placed next to it to exploit locality and compression. For example, bit 0 of word

0 and 1 go through an adder and bit 0 of the output is stored to the location for word 64.

The only propagating output to the next bit row is the carry. Therefore, instead of routing

4 wires (2 outputs and 2 inputs) from bit 0 row to bit 1 row, only 1 is routed and the rest

are consumed locally.

To reduce the memory footprint, a simple sequential addressing scheme is used as the

83

1.80 mm

0.
82

m
m

CTRL

VCO
AWGN Generators

with Scan Chain

Scan Chain

Figure 4.9: Chip microphotograph of the decoder test chip. Locations of the test peripherals
and the decoder are labeled.

memory access pattern is fixed. In addition, registers are replaced by latches and the read

and write word lines are shared to reduce the area and power. The resulting latch-based

bit-splitting register file occupies 1.7 mm × 0.12 mm and 1.7 mm × 0.1 mm for bank 0 and

bank 1, respectively, each providing 5 Kb read ports and 5 Kb write ports along one 1.7

mm side. It supports a denser integration of memory and logic than a standard register

file, resulting in a final decoder area of 1.476 mm2 with a high density of 85%.

4.5 Decoder Chip Implementation and Measurement Results

A double-column BP decoder test chip for the 1024-bit polar code incorporating bit-

splitting register file was fabricated in a TSMC 65 nm CMOS process [79]. The chip

microphotograph is shown in Fig. 4.9. The test chip measures 2.16 mm × 1.6 mm, and

the core measures 1.8 mm × 0.82 mm, or 1.476 mm2. The test chip incorporates AWGN

generators to model the communication channel and provide input vectors in real time.

An on-chip controller keeps track of the decoding errors for measuring the error correcting

84

F
ra

m
e

er
ro

r
ra

te
 (

F
E

R
)

Eb/N0 (dB)
1.0

1000-

10-10

3.0 4.0 5.0 6.0 7.0

10-20

10-30

10-40

10-70

2.0

10-50

10-60

BP-Polar (1024, 512)
SC-Polar (1024, 512) [5]

LDPC (672, 336)
(IEEE 802.11ad) [6]

Figure 4.10: FER performance of the (1024, 512) polar code using SC and BP decoding
algorithm, and the (672, 336) LDPC code for the IEEE 802.11ad standard for
comparison.

85

performance. The code rate of the test chip is fully configurable by specifying the desired

number of frozen bits through the scan chain.

The chip supports two test modes: a scan mode which takes external inputs through

scan chains and provides outputs through scan chains for functional verification, and an

automated mode for the real-time testing of the decoder using on-chip generated AWGN

noise to emulate the communication channel. Error statistics are collected for plotting error

rate against SNR.

4.5.1 Chip Measurements

Fig. 4.10 shows the FER curve of the test chip compared to a SC polar decoder of the

same polar code [47] and an LDPC code for the IEEE 802.11ad standard [75]. The FER

performance of the BP polar decoder is comparable to SC polar decoder as well as the

LDPC code. Furthermore, no error floor is observed even at low error rates.

At room temperature and a nominal 1.0 V supply voltage, the BP polar decoder test

chip operates at a maximum frequency of 300 MHz for a throughput of 2.05 Gb/s using 15

iterations. With a simple early termination scheme based on agreement of 3 consecutive

hard decisions after a minimum of 3 iterations, the average iteration count is lowered to 6.57

(including convergence detection latency) at a 4.0 dB SNR with no loss in error correcting

performance. Early termination enables a higher throughput of 4.68 Gb/s at 478 mW, or

15.5 pJ/b/iteration.

4.5.2 Comparison with State-of-the-Art

Table 4.1 compares the result of the BP polar decoder test chip against a state-of-the-art

SC polar decoder published recently [46]. Note that our design is the first BP polar decoder

ASIC implementation in silicon to the best of our knowledge. The chip demonstrates a

34, 2.8, and 5.2 times improvement in throughput, energy efficiency, and area efficiency,

respectively, over the latest SC polar decoder ASIC [46] (normalized to 65 nm and 1.0 V).

Scaling the supply voltage to 475 mV reduces the throughput to 780 Mb/s for an improved

energy efficiency of 3.6 pJ/b/iteration.

86

E
n

er
g
y
 E

ff
ic

ie
n

cy
 (

p
J
/b

/i
te

r)

Frequency (MHz)
0

20

16

50 100 150 200 250 300

12

8

4

0

500

400

300

200

100

0

P
o
w

er
 (

m
W

)

250 MHz
200 MHz
150 MHz
100 MHz
50 MHz
25 MHz

Frequency

300 MHz
0.900V
0.800V
0.675V
0.575V
0.475V
0.475V

Core Supply

1.000V

Figure 4.11: Measured power consumption and energy efficiency of the BP polar decoder
at the minimum supply voltage for each clock frequency. (BP polar decoding
using maximum 15 iterations with early termination enabled.)

87

E
n

er
g
y
 e

ff
ic

ie
n

cy
 (

p
J
/b

)

Frequency (MHz)
0

160

140

100 150 200 250 300

120

100

80

60

0

40

20

50

 6 iterations
 8 iterations
10 iterations

250 MHz
200 MHz
150 MHz
100 MHz
50 MHz
25 MHz

Frequency

300 MHz
0.900V
0.800V
0.675V
0.575V
0.475V
0.475V

Core Supply

1.000V

Figure 4.12: Measured energy efficiency of the BP polar decoder at the minimum supply
voltage for each clock frequency at various decoding iteration limit.

88

Table 4.1: Comparison of state-of-the-art polar decoders.

Code

Block Length

Process [nm]

Core Area [mm2]

Utilization

Supply [V]

Frequency [MHz]

Iteration

Throughput [Mb/s]

Power [mW]

Energy Eff.

Area Eff. [Mb/s/mm2]

Normalized to 65nm, 1.0V

Energy Eff. [pJ/b]

Area Eff. [Mb/s/mm2]

ASSCCʼ12 [46]This Work

BP Polar SC Polar

1024 1024

65

1.476

85%

1.0 0.475

300 50

6.57a

4676

102.1

3168

477.5 18.6

6.57a

779.3

23.8

528.0

102.1 23.8

3168 528.0

180

̶

1.71

̶

1.3

150

67

49

1367

28.65

292.2

608.5
a Average decoding iteration at 4.0dB with early termination enabled.

[pJ/b]

[pJ/b/iter] 15.54 3.63 ̶

Throughput [Mb/s] 4676 779.3 135.7

4.6 Summary

We present a 1.48 mm2 1024-bit BP polar decoder designed in 65 nm CMOS. Using

the conventional bidirectional single-column architecture as a baseline, we design a uni-

directional processing architecture to reduce the memory size to 45 kb, and simplify the

processing element logic by 33%. To enhance the throughput and decoding latency, we apply

loop-unfolding to implement a double-column 1024-parallel architecture. This architecture

improves the decoding throughput by 66% to 2.05 Gb/s at 300 MHz using 15 decoding iter-

ations. A simple early termination technique is used to detect convergence and terminate,

enabling a high throughput of 4.58 Gb/s. The memory used in the decoder accommodates

logic in memory for an 85% cell placement density. The architecture and circuit techniques

reduce the power consumption to 478 mW for an efficiency of 15.5 pJ/b/iteration at 1.0 V.

Using voltage and frequency scaling, the energy efficiency is improved to 3.6 pJ/b/iteration

at 475 mV for a throughput of 780 Mb/s at 50 MHz.

89

4.7 Future Research Directions

4.7.1 Polar Code Design

The structure of polar codes is defined by the generator matrix as discussed in Chapter I.

Therefore the code design is essentially the selection of bits in the codeword to be frozen.

Arikan proposed in [7] an explicit and efficient construction of polar code for the binary-

erasure channel (BEC). However, this method cannot be used for other channel models, such

as AWGN. Past work has proposed algorithms [80, 81] to find the frozen bit pattern for

other channels. However, the analytical bit selection algorithms are based on SC decoding,

not BP decoding, so these bit selections do not work well in BP decoding. On the other

hand, BP decoding is not as tractable as SC decoding, so an analytical bit selection may

have to rely on assumptions that render the bit selection algorithm not very applicable in

practice. A simulation-based bit selection can be proposed for BP polar decoder to be used

in AWGN and other practical channels. Monte-Carlo simulation can be used to measure the

error rate of each bit position in BP decoding, and the bit selection can be made based on

the ranking of the error rate of each bit. The simulation-based method is expected to find

a more optimal bit selection for BP decoding to close the gap toward the best performance

achieved by SC decoding.

4.7.2 Reconfigurable BP Polar Decoder

The regular wiring structure between stages in BP polar decoders allows polar codes of

different block lengths to be decoded on the same hardware. For example, an 8-bit polar

code can be decoded using a 16-bit BP polar decoder hardware. As illustrated in Fig. 4.13,

the 16-bit polar decoder can be used to implement two 8-bit codes (shown in red and blue)

without any change in the routing structure. In fact, polar codes of different block lengths

are all compatible with each other, and they can be decoded on the same hardware as

long as there is enough memory to store the intermediate messages. This reconfigurable

architecture would be beneficial in applications where different block lengths need to be

supported as well as different code rates, e.g., in multi-standard radios.

90

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

PE0,0 PE1,0

PE0,1

PE1,1

PE0,2

PE1,2

PE0,3 PE1,3

PE0,0

PE1,0

PE1,1

PE0,2

PE0,3

PE1,3

PE1,2

PE0,1

(a) 16-bit BP-polar decoder

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

PE0,0

PE0,1

PE0,2

PE0,3

PE1,0

PE1,1

PE1,2

PE1,3

(b) 8-bit BP-polar decoder

Figure 4.13: Illustration of 16-bit BP polar decoder factor graph containing two 8-bit BP
polar decoder factor graphs.

91

CHAPTER V

Conclusion

Communication and storage applications are continuously evolving with growing re-

quirements. In order to reduce the total energy cost of these systems, the use of channel

codes have become absolutely necessary. The coding gain from channel codes allows for

reduction in transmit power at the cost of decode power. It is therefore important to design

a decoder with both good coding gain and high energy efficiency. We have looked into the

design of LDPC, nonbinary LDPC, and polar codes.

LDPC code is the most popular choice in modern communication technology due to

its good error-correcting performance and mature designs. However, with more parallel

designs – due to higher throughput requirements – the memory becomes the most power

hungry part of the decoder. A novel non-refresh eDRAM has been proposed to solve this

issue. It takes advantage of the deterministic memory access pattern that can be found in

most DSP applications in order to trade-off its power and access time. The new memory,

replacing 70% of the memory used in the LDPC decoder, enables the 1.6 mm2 65 nm LDPC

decoder to achieve a peak throughput of 9 Gb/s at 89.5 pJ/b, and 1.5 Gb/s at 35.6 pJ/b

with voltage and frequency scaling.

NB-LDPC code has a superior error-correcting performance than binary LDPC code

at the cost of significantly higher decoding complexity. The merging of multiple bits to

form a GF element reduces the number of edges in the NB-LDPC code’s factor graph,

permitting a fully parallel architecture. An NB-LDPC decoder has been implemented in

65 nm CMOS technology. With architectural improvements and dynamic clock gating, the

decoder achieves a throughput of 1.22 Gb/s with energy efficiency of 3.03 nJ/b, and 698

92

Mb/s at 1.04 nJ/b with voltage and frequency scaling.

Polar code is a recently invented first provably capacity achieving code. Although its

error-correcting performance is not capacity-achieving at finite block length, it is still com-

petitive with binary LDPC codes. The main advantage of polar codes is its easy reconfig-

urability in code rate and regularly structured factor graph. These properties allow for a

more efficient decoder design. With architectural improvements to the BP polar decoder,

the resulting 1.48 mm2 65 nm polar decoder achieves a throughput of 4.68 Gb/s at 15.5

pJ/b/iteration, and 779 Mb/s at 3.63 pJ/b/iteration with voltage and frequency scaling.

The presented channel decoders advance the state-of-the-art designs. Each decoder suc-

cessfully reduces the total energy cost for future communication and storage applications.

93

BIBLIOGRAPHY

94

BIBLIOGRAPHY

[1] IEEE Standard for Information Technology–Telecommunications and Information Ex-
change between Systems–Local and Metropolitan Area Networks–Specific Requirements-
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz
Band, IEEE Std. 802.11ad, Dec. 2012.

[2] IEEE Standard for Information Technology - Telecommunications and Information Ex-
change between Systems - Local and Metropolitan Area Networks - Specific Require-
ments. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for High Rate Wireless Personal Area Networks (WPANs) Amendment
2: Millimeter-wave-based Alternative Physical Layer Extension, IEEE Std. 802.15.3c,
Oct. 2009.

[3] IEEE Draft Standard for Information Technology–Telecommunications and Infor-
mation Exchange between Systems-Local and Metropolitan Area Networks-Specific
Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications: Amendment : Enhancements for Higher Throughput,
IEEE Std. 802.11n/D2.00, Feb. 2007.

[4] W. M. Regitz and J. A. Karp, “Three-transistor-cell 1024-bit 500-ns MOS RAM,”
IEEE J. Solid-State Circuits, vol. 5, no. 5, pp. 181–186, Oct. 1970.

[5] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

[6] M. C. Davey and D. Mackay, “Low-density parity check codes over GF(q),” IEEE
Commun. Lett., vol. 2, no. 6, pp. 165–167, Jun. 1998.

[7] E. Arikan, “Channel polarization: a method for constructing capacity-achieving codes
for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55,
no. 7, pp. 3051–3073, Jul. 2009.

[8] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:
Turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261–1271, Oct. 1996.

[9] 3GPP Standard TS 25.944 Rev. 4.1.0: 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network; Channel Coding and Multiplexing Exam-
ples, 3GPP Organizational Partners Std. HSDPA, Jun. 2001.

[10] 3GPP Standard TS 36.212 Rev. 8.3.0: 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Ac-
cess (E-UTRA); Multiplexing and Channel Coding (Release 9), 3GPP Organizational
Partners Std. 3GPP-LTE, May 2008.

95

[11] IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for
Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and
Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed
Bands and Corrigendum 1, IEEE Std. 802.16e, Feb. 2006.

[12] ETSI Standard TR 102 376 V1.1.1: Digital Video Broadcasting (DVB) User Guide-
lines for the Second Generation System for Broadcasting, Interactive Services, News
Gathering and Other Broadband Satellite Applications (DVB-S2), ETSI Std. TR 102
376, Feb. 2005.

[13] IEEE Standard for Information Technology-Telecommunications and Information Ex-
change between Systems-Local and Metropolitan Area Networks-Specific Requirements
Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications, IEEE Std. 802.3an, Sep. 2006.

[14] A. Kavčić and A. Patapoutian, “The read channel,” Proc. IEEE, vol. 96, no. 11, pp.
1761–1774, Nov. 2008.

[15] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-correction codes in
NAND flash memory,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 2, pp.
429–439, Feb. 2011.

[16] D. J. C. Mackay, “Good error-correcting codes based on very sparse matrices,” IEEE
Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[17] M. P. C. Fossorier, M. Mihaljević, and H. Imai, “Reduced complexity iterative decoding
of low-density parity check codes based on belief propagation,” IEEE Trans. Commun.,
vol. 47, no. 5, pp. 673–680, May 1999.

[18] B. Xiang, D. Bao, S. Huang, and X. Zeng, “An 847-955 Mb/s 342-397 mW dual-path
fully-overlapped QC-LDPC decoder for WiMAX system in 0.13 µm CMOS,” IEEE J.
Solid-State Circuits, vol. 46, no. 6, pp. 1416–1432, Jun. 2011.

[19] S.-W. Yen, S.-Y. Hung, C.-H. Chen, H.-C. Chang, S.-J. Jou, and C.-Y. Lee, “A 5.79-
Gb/s energy-efficient multirate LDPC codec chip for IEEE 802.15.3c applications,”
IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2246–2256, Sep. 2012.

[20] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolić, “An efficient 10GBASE-
T Ethernet LDPC decoder design with low error floors,” IEEE J. Solid-State Circuits,
vol. 45, no. 4, pp. 843–855, Apr. 2010.

[21] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density
parity-check code decoder,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 404–412,
Mar. 2002.

[22] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “Power reduction techniques
for LDPC decoders,” IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1835–1845, Aug.
2008.

[23] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolić, “A 47 Gb/s LDPC
decoder with improved low error rate performance,” in IEEE Symp. VLSI Circuits
Dig., Kyoto, Japan, Jun. 2009, pp. 286–287.

96

[24] A. Cevrero, Y. Leblebici, P. Ienne, and A. Burg, “A 5.35 mm2 10GBASE-T Ethernet
LDPC decoder chip in 90 nm CMOS,” in IEEE Asian Solid-State Circuits Conf.,
Beijing, China, Nov. 2010, pp. 317–320.

[25] M. Korb and T. G. Noll, “Area- and energy-efficient high-throughput LDPC decoders
with low block latency,” in Proc. IEEE Eur. Solid-State Circuits Conf., ESSCIRC’11,
Helsinki, Finland, Sep. 2011, pp. 75–78.

[26] P. Urard, L. Paumier, V. Heinrich, N. Raina, and N. Chawla, “A 360 mW 105 Mb/s
DVB-S2 compliant codec based on 64800b LDPC and BCH codes enabling satellite-
transmission portable devices,” in IEEE Int. Solid-State Circuits Conf. Dig., San Fran-
cisco, CA, Feb. 2008, pp. 310–311.

[27] M. M. Mansour and N. R. Shanbhag, “A 640-Mb/s 2048-bit programmable LDPC
decoder chip,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 684–698, Mar. 2006.

[28] X.-Y. Shi, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, “An 8.29 mm2 52 mW multi-mode
LDPC decoder design for mobile WiMAX system in 0.13 µm CMOS process,” IEEE
J. Solid-State Circuits, vol. 43, no. 3, pp. 672–683, Mar. 2008.

[29] C.-H. Liu, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.-Y. Lee, Y.-S. Hsu, and S.-J. Jou,
“An LDPC decoder chip based on self-routing network for IEEE 802.16e applications,”
IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 684–694, Mar. 2008.

[30] C.-L. Chen, K.-S. Lin, H.-C. Chang, W.-C. Fang, and C.-Y. Lee, “A 11.5-Gbps LDPC
decoder based on CP-PEG code construction,” in Proc. IEEE Eur. Solid-State Circuits
Conf., ESSCIRC’09, Athens, Greece, Sep. 2009, pp. 412–415.

[31] F. Naessens, V. Derudder, H. Cappelle, L. Hollevoet, P. Raghavan, M. Desmet, A. M.
AbdelHamid, I. Vos, L. Folens, S. O’Loughlin, S. Singirikonda, S. Dupont, J.-W. Wei-
jers, A. Dejonghe, and L. V. der Perre, “A 10.37 mm2 675 mW reconfigurable LDPC
and Turbo encoder and decoder for 802.11n, 802.16e and 3GPP-LTE,” in IEEE Symp.
VLSI Circuits Dig., Honolulu, HI, Jun. 2010, pp. 213–214.

[32] C. Roth, P. Meinerzhagen, C. Studer, and A. Burg, “A 15.8 pJ/bit/iter quasi-cyclic
LDPC decoder for IEEE 802.11n in 90 nm CMOS,” in IEEE Asian Solid-State Circuits
Conf., Beijing, China, Nov. 2010, pp. 313–316.

[33] X. Peng, Z. Chen, X. Zhao, D. Zhou, and S. Goto, “A 115 mW 1 Gbps QC-LDPC
decoder ASIC for WiMAX in 65 nm CMOS,” in IEEE Asian Solid-State Circuits Conf.,
Jeju, Korea, Nov. 2011, pp. 317–320.

[34] M. Weiner, B. Nikolić, and Z. Zhang, “LDPC decoder architecture for high-data rate
personal-area networks,” in Proc. IEEE Int. Symp. Circuits and Syst., Rio de Janeiro,
Brazil, May 2011, pp. 1784–1787.

[35] X. Zhang and F. Cai, “Efficient partial-parallel decoder architecture for quasi-cyclic
nonbinary LDPC codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 2, pp.
402–414, Feb. 2011.

[36] X. Chen, S. Lin, and V. Akella, “Efficient configurable decoder architecture for non-
binary quasi-cyclic LDPC codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59,
no. 1, pp. 188–197, Jan. 2012.

97

[37] Y.-L. Ueng, C.-Y. Leong, C.-J. Yang, C.-C. Cheng, K.-H. Liao, and S.-W. Chen, “An
efficient layered decoding architecture for nonbinary QC-LDPC codes,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 59, no. 2, pp. 385–398, Feb. 2012.

[38] C. Zhang and K. K. Parhi, “A network-efficient nonbinary QC-LDPC decoder archi-
tecture,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 6, pp. 1359–1371, Jun.
2012.

[39] X. Zhang, F. Cai, and S. Lin, “Low-complexity reliability-based message-passing de-
coder architectures for non-binary LDPC codes,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 20, no. 11, pp. 1938–1950, Nov. 2012.

[40] Y.-L. Ueng, , K.-H. Liao, H.-C. Chou, and C.-J. Yang, “A high-throughput trellis-based
layered decoding architecture for non-binary LDPC codes using Max-Log-QSPA,”
IEEE Trans. Signal Process., vol. 61, no. 11, pp. 2940–2951, Jun. 2013.

[41] J. Lin and Z. Yan, “Efficient shuffled decoder architecture for nonbinary quasi-cyclic
LDPC codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 9, pp.
1756–1761, Sep. 2013.

[42] ——, “An efficient fully parallel decoder architecture for nonbinary LDPC codes,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013 (early access).

[43] F. Garćıa-Herrero, M. J. Canet, and J. Valls, “Nonbinary LDPC decoder based on
simplified enhanced generalized bit-flipping algorithm,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., 2013 (early access).

[44] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures for successive
cancellation decoding of polar codes,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., Prague, Czech Republic, May 2011, pp. 1665–1668.

[45] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation decoder
for polar codes,” IEEE Commun. Lett., vol. 15, no. 12, pp. 1378–1380, Dec. 2011.

[46] A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C. Leroux, P. Meinerzhagen,
A. Burg, and W. J. Gross, “A successive cancellation decoder ASIC for a 1024-bit
polar code in 180 nm CMOS,” in IEEE Asian Solid-State Circuits Conf., Kobe, Japan,
Nov. 2012, pp. 205–208.

[47] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-
cancellation decoder of polar codes,” IEEE Trans. Signal Process., vol. 61, no. 2, pp.
289–299, Jan. 2013.

[48] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders:
algorithm and implementation,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp.
946–957, May 2014.

[49] A. Pamuk, “An FPGA implementation architecture for decoding of polar codes,” in
Proc. IEEE Int. Symp. Wireless Commun. Syst., Aachen, Germany, Nov. 2011, pp.
437–441.

98

[50] R. L. B. Kumar and N. Chandrachoodan, “A GPU implementation of belief propaga-
tion decoder for polar codes,” in Proc. Asilomar Conf. Signals, Syst., Comput., Pacific
Grove, CA, Nov. 2012, pp. 1272–1276.

[51] D. Somasekhar, Y. D. Ye, P. Aseron, S.-L. Lu, M. M. Khellah, G. R. J. Howard,
T. Karnik, S. Borkar, V. K. De, and A. Keshavarzi, “2 GHz 2 Mb 2T gain cell memory
macro with 128 GBytes/sec bandwidth in a 65 nm logic process technology,” IEEE J.
Solid-State Circuits, vol. 44, no. 1, pp. 174–185, Jan. 2009.

[52] K. C. Chun, P. Jain, J. H. Lee, and C. H. Kim, “A 3T gain cell embedded DRAM
utilizing preferential boosting for high density and low power on-die caches,” IEEE J.
Solid-State Circuits, vol. 46, no. 6, pp. 1495–1505, Jun. 2011.

[53] K. C. Chun, P. Jain, T.-H. Kim, and C. H. Kim, “A 667 MHz logic-compatible embed-
ded DRAM featuring an asymmetric 2T gain cell for high speed on-die caches,” IEEE
J. Solid-State Circuits, vol. 47, no. 2, pp. 547–559, Feb. 2012.

[54] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes
under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618,
Feb. 2001.

[55] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu, “Reduced-
complexity decoding of LDPC codes,” IEEE Trans. Commun., vol. 53, no. 8, pp.
1288–1299, Aug. 2005.

[56] C. Roth, A. Cevrero, C. Studer, Y. Leblebici, and A. Burg, “Area, Throughput, and
Energy-Efficiency Trade-offs in the VLSI Implementation of LDPC Decoders,” in Proc.
IEEE Int. Symp. Circuits and Syst., Rio de Janeiro, Brazil, May 2011, pp. 1772–1775.

[57] J. Barth, W. R. Reohr, P. Parries, G. Fredeman, J. Golz, S. E. Schuster, R. E. Matick,
H. Hunter, C. C. Tanner, J. Harig, H. Kim, B. Khan, J. Griesemer, R. P. Havreluk,
K. Yanagisawa, T. Kirihata, and S. S. Iyer, “A 500 MHz random cycle, 1.5 ns latency,
SOI embedded DRAM macro featuring a three-transistor micro sense amplifier,” IEEE
J. Solid-State Circuits, vol. 43, no. 1, pp. 86–95, Jan. 2008.

[58] P. J. Klim, J. Barth, W. R. Reohr, D. Dick, G. Fredeman, G. Koch, H. M. Le, A. Khar-
gonekar, P. Wilcox, J. Golz, J. B. Kuang, A. Mathews, J. C. Law, T. Luong, H. C.
Ngo, R. Freese, H. C. Hunter, E. Nelson, P. Parries, T. Kirihata, and S. S. Iyer, “A 1
MB cache subsystem prototype with 1.8 ns embedded DRAMs in 45 nm SOI CMOS,”
IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1216–1226, Apr. 2009.

[59] J. Barth, D. Plass, E. Nelson, C. Hwang, G. Fredeman, M. Sperling, A. Mathews,
T. Kirihata, W. R. Reohr, K. Nair, and N. Cao, “A 45 nm SOI embedded DRAM
macro for the POWERTM processor 32 MByte on-chip L3 cache,” IEEE J. Solid-State
Circuits, vol. 46, no. 1, pp. 64–75, Jan. 2011.

[60] W. K. Luk, J. Cai, R. H. Dennard, M. J. Immediato, and S. V. Kosonocky, “A 3-
transistor DRAM cell with gated diode for enhanced speed and retention time,” in
IEEE Symp. VLSI Circuits Dig., Honolulu, HI, Jun. 2006, pp. 184–185.

[61] P. Meinerzhagen, A. Teman, R. Giterman, A. Burg, and A. Fish, “Exploration of
sub-VT and near-VT 2T gain-cell memories for ultra-low power applications under

99

technology scaling,” J. Low Power Electron. Applicat., vol. 3, no. 2, pp. 54–72, Apr.
2013.

[62] S. Satpathy, Z. Foo, B. Giridhar, R. Dreslinski, D. Sylvester, T. Mudge, and D. Blaauw,
“A 1.07 Tbit/s 128×128 swizzle network for SIMD processors,” in IEEE Symp. VLSI
Circuits Dig., Honolulu, HI, Jun. 2010, pp. 81–82.

[63] S.-M. Yoo, J. M. Han, E. Haq, S. S. Yoon, S.-J. Jeong, B. C. Kim, J.-H. Lee, T.-S. Jang,
H.-D. Kim, C. J. Park, D. I. Seo, C. S. Choi, S.-I. Cho, and C. G. Hwang, “A 256M
DRAM with simplified register control for low power self refresh and rapid burn-in,”
in IEEE Symp. VLSI Circuits Dig., Honolulu, HI, Jun. 1994, pp. 85–86.

[64] Y. S. Park, D. Blaauw, D. Sylvester, and Z. Zhang, “A 1.6-mm2 38-mW 1.5-Gb/s LDPC
decoder enabled by refresh-free embedded DRAM,” in IEEE Symp. VLSI Circuits Dig.,
Honolulu, HI, Jun. 2012, pp. 114–115.

[65] L. Zeng, L. Lan, Y. Y. Tai, S. Song, S. Lin, and K. Abdel-Ghaffar, “Construction of
nonbinary quasi-cyclic LDPC codes: a finite field approach,” IEEE Trans. Commun.,
vol. 56, no. 4, pp. 545–554, Apr. 2008.

[66] S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction
of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” IEEE Trans.
Commun., vol. 57, no. 1, pp. 84–93, Jan. 2009.

[67] B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu, “Construction of
non-binary quasi-cyclic LDPC codes by arrays and array dispersions,” IEEE Trans.
Commun., vol. 57, no. 4, pp. 1652–1662, Jun. 2009.

[68] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc)-LDPC codes
over GF(q) using their binary images,” IEEE Trans. Commun., vol. 56, no. 10, pp.
1626–1635, Oct. 2008.

[69] S. Kim and G. E. Sobelman, “Scaling, offset, and balancing techniques in FFT-based
BP nonbinary LDPC decoders,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60,
no. 5, pp. 277–281, May 2013.

[70] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes over
GF(q),” IEEE Trans. Commun., vol. 55, no. 4, pp. 633–643, Apr. 2007.

[71] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-complexity decod-
ing for non-binary LDPC codes in high order fields,” IEEE Trans. Commun., vol. 58,
no. 5, pp. 1365–1375, May 2010.

[72] V. Savin, “Min-Max decoding for non binary LDPC codes,” in Proc. IEEE Int. Symp.
Information Theory, Toronto, Canada, Jul. 2008, pp. 960–964.

[73] E. Boutillon and L. Conde-Canencia, “Bubble check: a simplified algorithm for elemen-
tary check node processing in extended min-sum non-binary LDPC decoders,” IEEE
Electron. Lett., vol. 46, no. 9, pp. 633–634, Apr. 2010.

[74] Y. S. Park, Y. Tao, and Z. Zhang, “A 1.15Gb/s fully parallel nonbinary LDPC decoder
with fine-grained dynamic clock gating,” in IEEE Int. Solid-State Circuits Conf. Dig.,
San Francisco, CA, Feb. 2013, pp. 422–423.

100

[75] Y. S. Park, D. Blaauw, D. Sylvester, and Z. Zhang, “Low-power high-throughput LDPC
decoder using non-refresh embedded DRAM,” IEEE J. Solid-State Circuits, vol. 49,
no. 3, pp. 783–794, Mar. 2014.

[76] X. Zhang and F. Cai, “Reduced-complexity decoder architectures for non-binary LDPC
codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 7, pp. 1229–
1238, Jul. 2011.

[77] X. Chen and C.-L. Wang, “High-throughput efficient non-binary LDPC decoder based
on simplified min-sum algorithm,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59,
no. 11, pp. 2784–2794, Nov. 2012.

[78] F. Cai and X. Zhang, “Relaxed min-max decoder architectures for nonbinary low-
density parity-check codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 21, no. 11, pp. 2010–2023, Nov. 2013.

[79] Y. S. Park, Y. Tao, S. Sun, and Z. Zhang, “A 4.68Gb/s belief propagation polar decoder
with bit-splitting register file,” in IEEE Symp. VLSI Circuits Dig., Honolulu, HI, Jun.
2014, pp. 144–145.

[80] R. Mori and T. Tanaka, “Performance and construction of polar codes on symmetric
binary-input memoryless channels,” in Proc. IEEE Int. Symp. Information Theory,
Seoul, Korea, Jun. 2009, pp. 1496–1500.

[81] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf. Theory, vol. 59,
no. 10, pp. 6562–6582, Oct. 2013.

101

