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ABSTRACT 

 

Many energy conversion technologies rely on the function and properties of thin films. In 

many cases, the fundamental physics underlying the structure-property-performance 

interrelationship is not completely understood. So it is not possible to fully exploit the true 

capabilities of these systems. Therefore, investigating and understanding such interrelationships 

in different systems is of both scientific and technological importance.  

In this dissertation, both conjugated polymer systems for photovoltaic application and 

strained silicon system for thermoelectric application are investigated in order to develop a 

clearer understanding of the effect of film thickness and microstructural features on electrical 

transport. Morphological features such as domain size, phase purity are investigated in the 

polymers in order to understand the effects on charge mobility, recombination and further on 

device performance. With regard to silicon, the effects of lattice strain on electrical conductivity 

and thermopower are studied.  

The out-of-plane hole mobility was investigated in regioregular P3HT thin films. It was 

shown that the hole mobilities monotonically increased an order of magnitude when film 

thickness increased from 80 nm to 700 nm. Based on X-ray diffraction, spectroscopic 

ellipsometry and simulations, this thickness-dependent mobility is associated with substrate 

induced anisotropies of the P3HT film structure.  

xi 
 



The role of microstructural features on the performance characteristics of the archetypal 

P3HT:PCBM (1:1) bulk heterojunction solar cell was investigated.  It is demonstrated that small 

domain sizes and correspondingly large interfacial areas accommodated a high initial carrier 

density. However in these materials, non-geminate recombination of carriers could be significant, 

leading to low open circuit voltages and low fill factors. The purity of the domains also 

influenced the charge carrier mobilities and non-germinate recombination. One important 

finding from this study is that high short circuit currents were readily achieved with smaller 

domain sizes than 10 nm, which is believed to the best domain size.   

With regard to the thermoelectric characterizations in the strained silicon thin film 

possessing nanomesh topology, the electrical conductivity was found to increase several folds and 

the power factor doubled. This enhancement is attributed to the splitting of silicon conduction 

band under the biaxial tensile strain, which affects the effective mass, inter-valley scattering and 

energy distribution of transporting electrons.  
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

With the global population explosion and ever-growing economy, the world’s 

energy demand continues to increase. The global primary energy demand is expected to 

increase by one-third from 2011 to 2035, reaching around 17400 million tonnes of oil 

equivalent.1 Whether or not the future energy demands will be met by fossil fuels is 

unclear. Nevertheless, the consequences associated with combustion of fossil fuels, such 

as climate change, are certain. As a result, alternative energy sources that are efficient, 

non-polluting, renewable and cost effective are necessary.  

Energy exists in different forms, such as electricity, light and heat. Among all 

various forms for different applications, electricity certainly is the utmost important form 

in modern society. Power generation varies over places and electricity is the most efficient 

and fastest way to transmit power across long distances using high voltage transmission 

towers. Electricity is also the most widely used energy form in industries and everyday 

livings. According to the International Energy Agency, demand for electricity grows faster 

than any other final form of energy between 2011 and 2035; the total demand will 

increase by two-thirds during this period with an average growing rate of 2.2-2.5% per 
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year.1 It is therefore of significant importance to study and explore new sources and 

methods for electricity generation. 

In this thesis we will primarily be concerned with thin film electricity generation 

technologies involving photovoltaics and thermoelectrics. In the remainder of this section, 

I will describe the basic photovoltaic effect in organic semiconductors and the 

thermoelectric effect in silicon. The next section of the chapter will be devoted to 

describing two experimental techniques that I used to investigate various transport 

processes associated with energy conversion in materials. 

 

1.1.1 Photovoltaic systems 

Solar power is one of the cleanest and most renewable energy sources. The total 

amount of energy that comes from sunlight onto the Earth in one hour is nearly 

comparable to the energy consumed on the planet in a year. The physical process of 

transforming sunlight into electricity is referred as photovoltaic (PV) effect. Devices 

operating via a mechanism based on this effect are thus called photovoltaic devices, or 

solar cells.  

The performance of a solar cell is usually characterized by a 𝑱𝑱-𝑽𝑽 curve, as shown 

in Figure 1.1, and its efficiency is defined by a power conversion efficiency (𝑷𝑷𝑷𝑷𝑷𝑷). The 

𝑷𝑷𝑷𝑷𝑷𝑷 is a standard metric used by industry to describe the solar cell performance and it is 

defined as the ratio of the electrical power produced by a solar cell per unit area over the 

power of incident light per unit area under certain standard test conditions.2 Based on the 

parameters of the 𝑱𝑱-𝑽𝑽 curve, 𝑷𝑷𝑷𝑷𝑷𝑷 is defined as: 
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 SC OCPCE J V FF=   (1.1) 

where 𝑱𝑱𝑺𝑺𝑺𝑺 is the short circuit current, photocurrent produced by the solar cell under no 

external electric field; 𝑽𝑽𝑶𝑶𝑶𝑶 is the open circuit voltage,  external voltage applied across the 

device to fully compensate 𝑱𝑱𝑺𝑺𝑺𝑺; and 𝑭𝑭𝑭𝑭 is the fill factor, the ratio of the most obtainable 

power over the product of 𝑽𝑽𝑶𝑶𝑶𝑶 and 𝑱𝑱𝑺𝑺𝑺𝑺; all are labeled in Figure 1.1. 

High efficiency solar cells have been manufactured using traditional inorganic 

semiconducting materials like Si or GaAs.3 However, the fabrication of high efficiency 

inorganic solar cells is subject to strict processing conditions including highly controlled 

temperature and vacuum environments, requiring expensive manufacturing facilities 

worth millions of dollars. Some of these materials are also not earth abundant and limited 

Figure 1.1 A representative J-V curve of a solar cell measured under the standard test conditions. Key parameters 
(𝑱𝑱𝑺𝑺𝑺𝑺, 𝑽𝑽𝑶𝑶𝑶𝑶, 𝑭𝑭𝑭𝑭) are all labeled. 
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in supply. Moreover, the choice of inorganic materials for high efficiency solar cell 

performance is fairly limited.4 Therefore, research is necessary to identify newer and 

more cost effective materials.  

The emergence of conjugated polymers has an important impact on device 

technologies because of their ability to conduct electricity. Conventional polymers like 

polystyrene or poly(methyl methacrylate) are usually insulating because electrons are 

localized in the covalent bonds and do not contribute to conductivity. In contrast, 

conjugated polymers are materials that possess conjugation along the polymer backbone, 

involving an overlap of p-orbitals with intervening sigma bonds. The interjacent single 

bonds are thus bridged by the overlapped p-orbitals so pi electrons are delocalized in the 

entire conjugated region. As a result, a band structure is formed and charges can move 

along backbones; so conjugated polymers can therefore be either metallic or 

semiconducting.5 Because of their ability to conduct charges, conjugated polymers have 

been broadly used in different types of solar cells including bulk heterojunction solar cell, 

dye-sensitized solar cell and other excitonic solar cells.6-9 The absorption coefficients of 

conjugated polymers are so high that ~100 nm thick film can absorb ~90% of sunlight at 

peak wavelength. Therefore solar cells made from conjugated polymers are usually of 

thicknesses between 100 nm and 200 nm. Such thinness makes polymer solar cells much 

lighter in weight, more adaptable to flexible substrate, and more suitable for cheap 

fabrication techniques such as roll-to-roll processing, compared to their inorganic 

counterparts.10-12 However, in a typical organic solar cell, the photon excited hole-

electron pairs (excitons) have much higher binding energy due to the intrinsically low 
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dielectric constant in the organic systems and therefore cannot dissociate into free carriers 

immediately as in inorganic systems. Excitons can typically diffuse ~10 nm before either 

geminate recombination or complete dissociation.13, 14 This relatively short exciton 

diffusion length, together with the aforementioned high absorption coefficient, imposes 

some dimensional requirements on the solar cell structure. Morphological features on this 

scale of tens to hundreds of nanometers are also expected to influence the electrical 

transport properties and further the device performance. The interrelationship between 

the nanoscale morphology, electrical transport properties and solar cell performance is far 

from being fully understood. Additional research is required to comprehend the 

underlying physical mechanism in order to improve device performance.  

Chapters 2 and 3 are dedicated to the study of a widely used conjugated polymer, 

poly(3-hexylthiophene) (P3HT) and its bulk heterojunction blend with a fullerene 

derivation, phenyl-C61-butyric acid methyl ester (PCBM). Before discussing these studies, 

we described the operation of a series of experimental techniques we used to investigate 

physical processes in these materials. 

 

1.1.2 Thermoelectric systems    

The direct energy interconversion between heat and electricity is referred as the 

thermoelectric effect. More specifically, the energy transformation from temperature 

gradient into electric voltage is known as the Seebeck effect. Devices whose operation 

relies on this effect are broadly used for power generation, waste heat recovery and solid 

state refrigeration. One important technology for power generation is radioisotope 
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thermoelectric generators (RTGs) used in deep space probes.15 Remote from the Sun 

where solar panels are less efficient, the RTGs can generate electricity from the heat 

released by the decay of some radioactive materials. Compared to conventional power 

generators or compression engines, thermoelectric devices contains no moving parts and 

thus no friction loss. As a result, they should have less energy dissipation and longer 

lifetime.  

The total conversion efficiency of a thermoelectric device can be calculated by16  

 1 1
1c

c h

ZT
ZT T T

η η + −=
+ +

  (1.2) 

In the above equation, 𝜼𝜼𝒄𝒄 is the Carnot efficiency, 𝑻𝑻𝒄𝒄 and 𝑻𝑻𝒉𝒉 are temperatures at cold 

and hot ends, and 𝒁𝒁𝒁𝒁 is a dimensionless figure of merit used to evaluate thermoelectric 

materials, 

 
2SZT Tσ
κ=   (1.3) 

where 𝑺𝑺 is the Seebeck coefficient or thermopower, 𝝈𝝈 is the electrical conductivity, 𝜿𝜿 is 

the thermal conductivity and 𝑻𝑻 is the absolute temperature; 𝑺𝑺𝟐𝟐𝝈𝝈 is also known as the 

thermoelectric power factor. Conventional compression engines typically operate at ~30% 

of Carnot efficiency. Therefore, thermoelectric materials with 𝒁𝒁𝒁𝒁 > 2~3 are desired in 

order for thermoelectric devices to achieve competitive efficiencies with traditional heat 

engines.17  

According to equation (1.1.3), maximization of 𝒁𝒁𝒁𝒁 relies on optimization of a set 

of intrinsic material properties. Since electrical and thermal conduction are always highly 

related in a material, these properties are actually conflicting with one another in terms 
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for thermoelectrics. For example, 𝑺𝑺  is proportional to the effective mass 𝒎𝒎∗  of the 

primary charge carrier in degenerate semiconductors so large 𝒎𝒎∗  produces high 

thermopower. However, carriers with large 𝒎𝒎∗  move slowly and result in low carrier 

mobility and electrical conductivity. Therefore, an optimal 𝒎𝒎∗  is needed to strike a 

balance between 𝑺𝑺 and 𝝈𝝈.18 Charge carrier density 𝒏𝒏 is also of great importance to both 

𝑺𝑺 and 𝝈𝝈. 𝑺𝑺 usually has a negative dependence on 𝒏𝒏 while 𝝈𝝈 is proportional to 𝒏𝒏. Such 

competition also leads to a non-monotonic dependence of 𝒁𝒁𝒁𝒁  on 𝒏𝒏  and the peak 

typically occurs at carrier concentration between 1019 and 1021 cm-3 depending on the 

material system.18  High 𝒁𝒁𝒁𝒁  is thus usually found in heavily doped semiconducting 

materials like Bi2Te3, PbTe and Sb2Te3. 

Compared to those materials, the most common semiconducting material silicon 

is not considered as a good thermoelectric material. Because of its fairly high thermal 

conductivity, bulk silicon has a very low 𝒁𝒁𝒁𝒁 ≈ 0.01 at room temperature. However, by 

incorporating structure on a scale smaller than the phonon mean free path (~102 nm), the 

thermal conductivity can be greatly reduced and 𝒁𝒁𝒁𝒁 can be tremendously enhanced.19, 20 

An alternative approach to improve 𝒁𝒁𝒁𝒁  is to increase the power factor. Ab initio 

calculations have shown that compressive or tensile lattice strain has certain effects on the 

𝒎𝒎∗ and can improve the power factor to some extent.21, 22 However, this idea has not 

been experimentally realized to our best knowledge. Chapter 4 is therefore devoted to 

study the effect of biaxial tensile strain in silicon thin films on the thermopower and 

electrical conductivity.  
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1.2 EXPERIMENTAL TECHNIQUES 

Various experimental techniques were used to fabricate the nanoscale features in 

the systems and investigate both structural and electrical properties thereof. Most 

fabrication and investigation were completed in our own lab while some were conducted 

in other groups or in university facilities. X-ray diffraction and energy filtered transmission 

electron microscopy were done in EAML and XMAL facilities; microfabrication and 

scanning electron microscopy were carried out in LNF cleanroom; Raman spectroscopy 

was finished with help from Prof. Matzger’s group in the Department of Chemistry. 

Discussed here are only two major techniques for electrical property characterization for 

the apparatus of these techniques were newly set up in the lab by the author. Details of 

other methods will be referred to in the following chapters accordingly.  

 

1.2.1 Time of flight 

Time of flight (ToF) technique is a well-developed and commonly used method to 

characterize carrier mobility in the direction normal to the substrate.23 A scheme of the 

experimental setup is shown in Figure 1.2(a). A film of thickness 𝒅𝒅  is sandwiched 

between an Al electrode and an ITO electrode, as in a typical polymer solar cell. A pulse 

of laser is incident to one side of the sample to generate a very thin layer (~100 nm) of 

excitons upon absorption by the material. The side can be either ITO or Al side 

depending on the ease of probing. If the laser is incident on the Al side, the Al layer 

needs to be thin (~20 nm) for transparency.  Laser-generated excitons are then dissociated 

into holes and electrons under the applied external voltage 𝑽𝑽𝒅𝒅𝒅𝒅 and depending on the  
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voltage polarity, either holes or electrons are transported to the other side of the sample 

and collected by the opposite electrode. The current transient produced by such charge 

Figure 1.2 (a) A scheme of ToF experiment setup; (b) a representative ToF current transient.  
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carrier transport is then recorded by an oscilloscope system. Most equipment operations 

are automated using the LabVIEW program. 

A representative ToF current transient is plotted on a double log scale as in 

Figure 1.2(b). If there is no trapping and carrier transport is non-dispersive (all carriers 

having the same mobility), the ideal current transient would be a leveled line with a 

turning point indicating the moment at which all carriers reach the opposite electrode, as 

the dashed line in Figure 1.2(b). However, trapping sites are ubiquitous in almost all 

practical materials and carriers always have at least a Maxwell-Boltzmann distribution of 

mobilities due to the thermal environment. So in a real current transient as the solid 

curve in Figure 1.2(b), current decreases slowly with time due largely to carrier trapping 

during the transport within the film; after a distinct “knee” area, the current falls faster but 

not steeply, meaning the collection of carriers with different mobilities at the opposite 

electrode. Such “knee” area can be characterized by two asymptotes to the pre-knee and 

post-knee curve; the crossing of these two asymptotes is defined as the transit time 𝒕𝒕𝒕𝒕𝒕𝒕 for 

carriers to be transported from one side of the film to the other, as indicated in Figure 

1.2(b). The average carrier velocity 𝒗𝒗 is then 

 dc

tr

Vdv Et dµ µ= = =   (1.4) 

where 𝝁𝝁 is the carrier mobility and 𝑬𝑬 is the electric field induced by the external voltage. 

So 𝝁𝝁 can be calculated by 

 
2

dc tr

d
V tµ =   (1.5) 
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In practice, trapped carriers in the film have the space charge effect and would 

disturb the uniform external electric field. In order to eliminate this, the density of 

generated carriers, or the laser intensity in use, should be as low as is consistent with the 

sensitivity of the oscilloscope. Another simple but effective way is running the laser pulses 

with both electrode grounded before turning on 𝑽𝑽𝒅𝒅𝒅𝒅  to collect charges.23 Another 

practical convention is that since the generated carrier layer upon laser excitation is ~100 

nm, the film thickness should be much larger than that in order for carriers to be 

transported for enough time to give a clear knee area. So ToF is usually applied to films 

thicker than 1 μm.24-26  

 

1.2.2 Charge extraction by linearly increasing voltage 

In order to overcome the limitation of the ToF technique being only able to 

measure carrier mobilities in thick films, a newly developed technique, charge extraction 

by linearly increasing voltage (CELIV), and its variant photo-CELIV are employed in the 

study.27-29 The CELIV experimental setup is very similar to that of the ToF measurement 

without the laser, as shown in Figure 1.3(a). The sample structure is the same as that for 

ToF measurement with the film of interest between two electrodes. Instead of laser 

excitation in ToF, CELIV applies a linearly increasing voltage across the sample to 

extract equilibrium charge in the sample. The extracted carriers also generate a current 

transient, which is recorded by an oscilloscope system as well. For photo-CELIV, a laser 

pulse is utilized again to generate carriers, which are extracted by a linearly increasing 

voltage. Unlike in ToF where the applied voltage is synchronized with the excitation laser  
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pulse, the onset of the increasing voltage is usually delayed from the laser pulse by a  

Figure 1.3 (a) A scheme of CEIV setup; (b) a typical CELIV current transient. 
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certain period of time. Generated free carriers are confined in the sample during this 

delay time and recombine. So the total amount of extracted carriers decreases as the 

delay becomes longer. This enables photo-CELIV to characterize carrier recombination 

in addition to carrier mobility. Similarly to ToF, almost all operations, especially the 

synchronization between the laser, the applied voltage and the oscilloscope, are 

automated by the LabVIEW program.  

A typical CELIV current transient is shown in Figure 1.3(b). Upon the start of the 

increasing voltage, the current transient jumps to 𝒋𝒋𝟎𝟎  due to the constantly changing 

external electric field induced by the linearly increasing voltage. This displacement 

current has little to do with carrier transport and is determined by the capacitance of the 

sample as in 

 0 0
0 0

AdE dVj dt d dt d
εε εεεε= = =   (1.6) 

In the above equation, 𝜺𝜺  and 𝜺𝜺𝟎𝟎  are relative and vacuum permittivity, 𝒅𝒅  is the film 

thickness and 𝑨𝑨  is the voltage changing slope. As the voltage ramps, carriers are 

extracted out so the carrier density is lower in the sample, while higher voltage gives 

higher carrier conductivity. These two competing properties give rise to the peak of the 

drift current. By solving the continuity, current and Poisson equations, an analytic 

solution of the carrier mobility is obtained27 

 
2

2
max

2
3

d
At

µ =   (1.7) 
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 where 𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎  is the current peak time, as labeled in Figure 1.3(b). In practice, a 

numerically estimated correction factor arising from calculating the extraction length is 

included for mobility estimation:28 

 
2

2 max
max

0

2

3 (1 0.36 )

d
jAt j

µ =
∆

+
  (1.8) 

Compared to ToF, CELIV analytical model takes the self-field of carriers into 

consideration and is less strict with the film thickness; thin films down to ~100 nm can be 

accurately measured by CELIV provided that equilibrium carriers are enough at test 

temperature to distinguish the drift current from the displacement current. However, 

CELIV is not selective about the carriers probed as in ToF; the measured value is a 

convolution of mobilities of holes and electrons if they have similar mobilities.   

 

1.3 STUDY SCOPE 

As mentioned earlier, conjugated polymer system for photovoltaic application and 

strained silicon system for thermoelectric application have been studied and will be 

discussed in the following chapters. These systems are all composed of thin films with 

thicknesses between 1 and 102 nm while the areas are macroscopic.  

To be specific, Chapter 2 will discuss the effect of a film thickness dependent 

structural evolution on the out-of-plane hole mobility in neat P3HT films. An order of 

magnitude enhancement of the mobility is shown to be caused by the change of P3HT 

aggregate orientations.  
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Chapter 3 will discuss the role of domain size and phase purity on the initial 

carrier density, recombination and carrier mobility in P3HT:PCBM bulk heterojunction 

solar cells. Largest 𝑱𝑱𝑺𝑺𝑺𝑺 is found in supercritical CO2 (scCO2) processed device where high 

phase purity gives high carrier mobility and large interfacial areas produces most initial 

carriers. 𝑽𝑽𝑶𝑶𝑶𝑶 and 𝑭𝑭𝑭𝑭 are affected by fast recombination though.  

Chapter 4 will discuss how biaxial tensile strain affects the silicon band structure 

and improves the power factor in silicon thin films with nanomesh structure. Electrical 

conductivity is shown to increase by several folds and the power factor is doubled.   
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CHAPTER 2 

EFFECT OF THICKNESS-DEPENDENT STRUCTURAL 

EVOLUTION ON OUT-OF-PLANE HOLE MOBILITY IN 

POLY(3-HEXYLTHIOPHENE) FILMS 

 

Reprinted with permission from:  

Huang B., Glynos E., Frieberg B., Yang H., Green P.F.; ACS Appl. Mater. Interfaces, 

2012, 4, 5204-5210. Copyright © 2012 The American Chemical Society.  

2.1 INTRODUCTION 

As organic semiconductors, conjugated polymers are of great importance for 

various solid state electronic devices that include field-effect transistors (FETs), light 

emitting diodes (LEDs) and solar cells.1-4 Benefits of organic materials for devices include 

cost effective and low-temperature processing strategies such as spin coating, drop casting, 

inkjet printing and roll-to-roll manufacturing.5 However, compared to their inorganic 

counterparts, such as silicon and germanium, one major limitation of many conjugated 

polymers is their intrinsically low carrier mobilities, associated with the effects of chemical 

bonding rendering the carrier transport to occur via hopping among localized sites.  

The charge carrier mobility impacts the performance of electronic devices in 

different ways. In organic LEDs, the imbalance between hole and electron mobilities in 

the recombination layer is responsible for charge build-up and impairs the external  
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quantum efficiency.6 In polymer FETs, inherently low charge carrier mobility restricts 

switching speeds.7 In solar cells, key parameters, such as 𝑱𝑱𝑺𝑺𝑺𝑺, 𝑭𝑭𝑭𝑭 and consequently 𝑷𝑷𝑷𝑷𝑷𝑷, 

are also affected by charge carrier mobilities.3,8,9 Therefore, accurate characterization of 

carrier mobilities and a thorough understanding of the connection between carrier 

mobility and film morphology is important for both scientific and technological 

reasons.10-13  

One conjugated polymer of significant scientific and technological interest is 

poly(3-hexylthiophene) (P3HT). The incorporation of 3-hexyl substitutes into the polymer 

chain has two regioregularities: head to tail (HT) and head to head (HH), as shown in 

Figure 2.1(a). Regioregular P3HT (RR-P3HT) consists of only one kind of 3-

hexylthiophene while regiorandom P3HT has both HT and HH 3-hexylthiophenes in a  

Figure 2.1 Molecular structures of (a) two regioregularities of 3-hexylthiophene and (b) regioregular and regiorandom 
P3HT.  
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random pattern; both are shown in Figure 2.1(b). The hexyl functional groups improve 

the solubility and thus the solution processability of the polymer.14 Structure-controlled 

syntheses have developed to successfully obtain RR-P3HT with HT regioregularity 

greater than 98.5%.15, 16 Compared to the regiorandom one, RR-P3HT has relatively high 

hole mobilities for conjugated polymers, reported to be as high as 0.1 cm2V-1s-1,17 and has 

been widely used in FETs and solar cells.18-20 Such high hole mobilities originate from the 

self-assembled lamellar structure of polymer chains in thin films.  

RR-P3HT forms a semicrystalline structure in thin films. In the crystalline phase, 

the backbones of the chains of this planar shaped macromolecule self-organize to form 

layers, each of which stack in the π-π coupling direction to create a lamellar structure, as 

shown in Figure 2.2.  The π-π coupling direction is orthogonal to the alkyl chain stacking 

direction and the strong π-π conjugation gives rise to a much higher hole mobility.17 The 

Figure 2.2 A scheme of π-π coupling between different polymer chains in a lamellar structure of a P3HT aggregate.  
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lamellae possess an “edge-on” orientation with the substrate when the π-π coupling 

direction is parallel to the substrate. When the π-π coupling direction is perpendicular to 

the substrate, the lamellae are oriented “face-on” to the substrate. Hole mobilities are 

much lower in the direction normal to the substrate than in the direction parallel to the 

substrate when the lamellae are oriented edge-on.    

Generally, the absolute hole mobilities in RR-P3HT thin films depend on factors 

that include molecular weight,21, 22 solvent processing conditions,20 annealing conditions23 

and even film thickness,24-27 all of which influence the morphology of the film. The latter, 

film thickness, has been a topic of controversy for some time. Measurements of transport 

properties in thin film FETs reveal an effect of film thickness on the in-plane hole 

mobility (transport direction parallel to the substrate) of RR-P3HT. In the film thickness 

range, from 20 nm to 200 nm, Gburek and co-authors reported an order of magnitude 

increase in the hole mobility; they attributed the trend to the improved ordering in 

thicker films.26 However, using the same transistor structure, Reséndiz and collaborators 

reported only a slight decrease in the mobility within the same thickness range.27  

With regard to the operation of solar cells, the out-of-plane hole mobility 

(transport direction normal to the substrate) is more relevant than the in-plane mobility, 

as the effective charge extraction occurs normal to the substrate in the bulk 

heterojunction device structure.  The out-of-plane mobility is generally very different from 

in-plane mobility due to the anisotropy of crystalline RR-P3HT.17 Typically, the out-of-

plane hole mobility of highly regioregular P3HT is reported to be within the range of 10-4 

to 10-3 cm2/V-s, measured using the ToF measurement technique; no evidence of a film 
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thickness dependence has been reported.13,21,28, 29 However, the ToF measurements were 

conducted on films in the thickness range of microns; the out-of-plane hole mobility has 

not been fully characterized in thinner RR-P3HT films, and indeed not less than 200nm 

in thickness. The effect of a substrate on the morphology of conjugated polymers is 

particularly important in thin films, in the thickness range of tens of nanometers.  The out-

of-plane carrier mobilities would be expected to be thickness dependent in this thickness 

regime. This issue has remained largely unexplored. 

Here we report a study of the out-of-plane hole mobilities in RR-P3HT films of the 

same polymer, with thicknesses from 80 nm to over 1 µm, using the CELIV and ToF 

methods. Surprisingly the hole mobilities was lowest in the thinnest films, and increased 

by over an order of magnitude in film of thickness 700 nm; the mobilities remained 

constant for thicker films. We show that this behavior is connected to changes in the 

morphology, characterized using grazing incidence X-ray diffraction (GIXRD) and 

spectroscopic ellipsometry (SE), of the film, associated with effects of the underlying 

substrate.   

 

2.2 EXPERIMENTAL SECTION 

2.2.1 Materials 

P3HT of high regioregularity was purchased from Rieke Metals, Inc. and used as 

received without further purification; it is of ~95% regioregularities and number average 

molecular weight 50,000 g/mol. The energy level aligning material poly(3,4-
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ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) (Clevios™ PH 500) was 

purchased from Heraeus Materials Technology and also used as received.  

 

2.2.2 Experiments 

2.2.2.1 Sample preparation 

The samples were prepared using the following procedures. PEDOT:PSS solution 

was first warmed to room temperature and filtered by 0.45 μm nylon filters. A layer of 

PEDOT:PSS was spin-coated onto a pre-cleaned indium tin oxide (ITO)-coated glass 

substrate and then baked at 150 ˚C for 15 min in a nitrogen environment on a hot plate.  

Prior to spin coating of PEDOT:PSS, the ITO-coated glass substrates were solvent 

cleaned by consecutive ultrasonication in DI-water, acetone and isopropanol for 10 min 

each step, and then UV-cleaned for another 10 min. 

The RR-P3HT was dissolved in chlorobenzene, shaken for over 10 hours and 

filtered with 0.45 µm Teflon filters. The solution concentrations were varied from 7 

mg/ml to 52 mg/ml so that different film thicknesses could be spin coated, from the 

chlorobenzene solutions, onto the PEDOT:PSS/ITO substrates. These samples were then 

thermally annealed at 150 ˚C for 15 minutes.  Subsequently, 2 nm thick layers of lithium 

fluoride were evaporated on top of these structures followed by evaporation of a layer of 

aluminum, serving as the top electrode, through shadow masks, at a typical pressure of 

10-7 mbar.  For the CELIV measurements the aluminum layer was 100 nm thick and for 

the ToF measurements the Al layers were 20 nm thick. 

23 
 



All solution spin-coating and thermal treatments were performed in a glovebox 

under nitrogen atmosphere (moisture<5 ppm, oxygen<5 ppm); the samples were 

transferred to the evaporation chamber without exposure to the atmosphere. 

 

2.2.2.2 Hole mobility measurement 

The ToF and CELIV experiments are well established techniques and carefully 

described in a number of publications,30, 31 so we will describe information specific to our 

experiments.  The ToF measurements were performed using a nitrogen laser (VSL337 

from Newport) with a wavelength of λ=337 nm, an intensity per pulse of approximately 

120 µJ, and a pulse width less than 4 ns, for photo-generation of charge carriers in the 

films. A Sorensen XHR300 DC power supply was used to apply constant voltage over 

devices. The current transients were then amplified using a FEMTO DLPCA-200 low 

noise current amplifier and recorded with a Tektronix TDS3052C digital oscilloscope.  

For the CELIV measurements, a BK Precision 4075 function generator was used 

to apply the increasing voltage to the device to extract current transients. The current 

transients were then amplified using the FEMTO amplifier and recorded using the 

Tektronix digital oscilloscope.  The ToF measurements were conducted in air while the 

CELIV measurements were conducted in a cryostat (VPF100 from Janis), which provided 

a vacuum of approximately 1 mTorr and a wide temperature range.  Details of the 

experimental data and analysis are described later. 
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2.2.2.3 Structure characterization 

The crystalline structure of the RR-P3HT thin film was investigated using Grazing 

Incidence X-ray Diffraction (GIXRD). Characterization was performed with a Rigaku 

Ultimate IV diffraction spectrometer (Rigaku, Tokyo, Japan) operating at 40 kV and 44 

mA with CuKa radiation (𝝀𝝀 = 1.5418 Å). Careful alignment of source and detector with 

respect to the sample was achieved by using a thin film attachment with three degrees of 

freedom.  During the GIXRD measurements the incident angle was fixed at 0.5°, relative 

to the plane of sample surface.  The scanning angle was measured every 0.02° at rate of 

0.5° min-1 in the out-of-plane direction.  

The thicknesses were measured using atomic force microscopy (AFM), and 

optical properties of RR-P3HT were measured using a variable angle spectroscopic 

ellipsometer, VASE, (M-2000, J.A. Woollam Co.). VASE measurements were performed 

in the transmission mode and the reflection mode at angles of 55°, 60°, 65°, 70° and 75°. 

The film thicknesses and complex refractive indices were measured by fitting the 

acquired ellipsometric angles 𝜟𝜟  and 𝜳𝜳  to a Glass/PEDOT/Cauchy models using two 

different procedures in the CompleteEASE software (J.A. Woollam Co.). The first was 

accomplished by measuring films in both transmission mode and reflection mode 

(transmission weight of 300%),32 and the second was done through use of multi-sample 

analysis (three samples of similar thickness, ±5%).33 Samples of Glass/PEDOT were also 

measured to correctly determine the optical properties of PEDOT using a generalized 

oscillator model (GOM), which were observed to be similar to those found in the 

literature.32 A glass/PEDOT/Cauchy model was used to fit to the thickness in the 
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transparent region of RR-P3HT, with incident energy less than 1.87 eV (λ>750 nm). This 

region was verified to be transparent by the transmission ellipsometry measurements. The 

optical constants for the entire measured spectrum (0.7 eV to 6.5 eV) were then 

determined by direct inversion of the ellipsometric equations. The resultant optical 

properties of the RR-P3HT layer were then parameterized to verify the values were 

physical and Kramers-Kronig (KK) consistent. The RR-P3HT layer was then confirmed to 

be anisotropic as has been shown in the literature.32, 33   The degree of anisotropy was 

determined by the difference between refractive indices in the ordinary and extra-

ordinary directions, i.e., the in-plane and out-of-plane directions respectively33 

 o en n n∆ = −    (2.1) 

For our study the degree of anisotropy was evaluated at an incident energy of 1.00 eV 

(λ~1240 nm), well in the transparent region of RR-P3HT. Nevertheless, please note that 

any wavelength in the transparent region exhibits the same trends. 

 

2.3 RESULTS AND DISCUSSION 

The out-of-plane hole mobilities in RR-P3HT films with thicknesses ranging from 

80 nm to 1.5 µm were measured by the CELIV method. Unlike ToF, the CELIV method 

requires no injection or photo-excitation of charge carriers, so the problem of internal 

electric field perturbations is avoided. This problem restricts the application of ToF to 

relatively thick films; the CELIV technique is more appropriate for thinner films.30 
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Plotted in Figure 2.3 are the results from the CELIV measurements of RR-P3HT 

films; the current density is plotted as a function of time for four different film thicknesses. 

The upper curve represents the voltage applied to each sample at room temperature; it 

ramps up at the rate of 𝑨𝑨 = 1×106 Vs-1. Current transients, exhibited by each film, exhibit 

maxima during the early stages of the application of the fields. The CELIV model 

developed to interpret the data assumes that the diffusion current is negligible, so the 

current transients are composed of two components: the displacement current and the 

drift current.30 The displacement current 𝒋𝒋𝟎𝟎 is caused by the geometric capacitance of the 

sample and becomes smaller as the film thickness increases. The drift current, 𝚫𝚫𝒋𝒋𝒎𝒎𝒎𝒎𝒎𝒎,  

Figure 2.3 Raw data of CELIV measurements of RR-P3HT films with different thicknesses. The upper curve represents 
the voltage of a ramping rate of 𝑨𝑨 = 1×106 Vs-1. The four lower curves are the current transients extracted from RR-
P3HT films. 𝒋𝒋𝟎𝟎 and 𝜟𝜟𝜟𝜟𝒎𝒎𝒎𝒎𝒎𝒎 for 750 nm film are identified by arrows. 
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represents the charges extracted from the film and becomes larger in thicker films 

because more charges are extracted. The values of the drift and displacement currents in 

the 750 nm thick film are identified by the arrows in Figure 2.3. The time at which the 

total current transient reaches maximum, 𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎, is measured from the drift current, and is 

used to calculate the hole mobility 𝝁𝝁:30 
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2 max
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3 (1 0.36 )

d
jAt j

µ =
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+
 (2.2) 

where 𝒅𝒅 is the film thickness, 𝑨𝑨 is the voltage ramping rate, 𝚫𝚫𝒋𝒋𝒎𝒎𝒎𝒎𝒎𝒎 = 𝒋𝒋(𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎) − 𝒋𝒋𝟎𝟎, and 

𝒋𝒋𝟎𝟎 = 𝑨𝑨𝑨𝑨𝜺𝜺𝟎𝟎/𝒅𝒅. 

Figure 2.4 Thickness dependence of hole mobilities measured by both CELIV (black) and ToF (red) methods displayed 
on a semi-log scale. 
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The out-of-plane hole mobilities obtained from the CELIV measurements for 

seven different RR-P3HT thin films are plotted in Figure 2.4 (black circles). The mobility 

increases monotonically from 7.1×10-5 cm2V-1s-1 to 8.6×10-4 cm2V-1s-1 as the thickness is 

increased from 80 nm to 700 nm and reaches a plateau for thicknesses beyond 700 nm. 

This thickness dependence, to the best of our knowledge, has not been previously 

reported. It would not have been measured using ToF because ToF measurements are 

usually conducted on films with thicknesses typically greater than approximately one 

micron. Our data reveal that for thicknesses greater than 700 nm, the mobility saturates at 

a value of 𝝁𝝁  = 8.6×10-4 cm2V-1s-1. This value is in excellent agreement with those 

measured using ToF (red squares in Figure 2.4) for thicker films in the range of 2 to 5 

µm.  Before providing an explanation for this thickness dependence in terms of the 

morphology of the film, we will first discuss the field dependence of the mobilities to 

show that they are consistent with theory that describes transport in disordered 

conductors. 

The hole mobility in RR-P3HT films is influenced by the external electric field. In 

the case of the CELIV measurements, the applied voltage is increased linearly throughout 

the measurement, so the electric field is not constant.  The electric field of interest in our 

experiments is extracted at the time when the current reaches its maximum value; this 

specific time is the time used to calculate the carrier mobility.  We examined a range of 

film thicknesses; each film in our study was subjected to different voltage ramping rates.  

Each transient current maximum value is associated with a ramping rate and a certain 

electric field. The field dependencies of hole mobilities are plotted in Figure 2.5. For any  
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specific electric field, the enhancement is almost one order of magnitude larger for the 

750 nm film, compared to the 80 nm thick samples, as shown in Figure 2.4. For the 750 

nm film, the hole mobilities are in excellent agreement with the results obtained using the 

ToF technique throughout the entire electric field region.31  

For each thickness, the electric field dependence of hole mobility is in agreement 

with the Poole-Frenkel relationship (indicated by the blue dashed line in Figure 2.5):28 

 1/2
0 exp( )E CEµ µ ==   (2.3) 

even for electric fields as low as 𝑬𝑬 = 2.5×105 Vm-1 (𝑬𝑬𝟏𝟏/𝟐𝟐 = 50 V1/2cm-1/2). In this equation 

𝝁𝝁𝑬𝑬=𝟎𝟎 is the mobility extrapolated to zero electric field and 𝑪𝑪 is a coefficient. The Poole-

Figure 2.5 Electric field dependence of out-of-plane hole mobilities in RR-P3HT thin films of increasing thicknesses. 
The dashed line shows a good agreement between the experimental results and the Poole-Frenkel relationship. 
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Frenkel theory describes the electric-field-assisted thermal motion of charge carriers 

between localized states in a semiconductor. With increasing electric field, the charge 

carriers require less thermal energy for delocalization and the mobility increases. This 

trend has been observed in low molecular weight P3HT thin films before.34 However, we 

used high molecular weight P3HT. The data in Figure 2.5 show that 𝑪𝑪 < 0 for all film 

thicknesses, indicating the mobility decreases with increasing electric field. Such a 

decrease of the mobility with increasing electric field has been widely reported for high 

molecular weight RR-P3HT films in this electric field range and for other disordered 

conductors.31, 35-38 Carrier transport in disordered conductors is influenced by the 

statistical distribution of energy states and by the spatial distribution of sites (structural 

disorder) into which the carriers hop. In an environment of significant structural disorder, 

the effect of the spatial structural disorder is to oppose the long-range transport of the 

carriers.  If structural disorder have the dominant influence on transport, then 𝑪𝑪 < 0 and 

the mobility decreases with increasing electric field. 

Specifically with regard to RR-P3HT, the hole mobility along the π-π coupling 

direction is two orders of magnitude faster than in the transverse direction.17 Because the 

RR-P3HT film is composed of crystal domains with different orientations, associated with 

a distribution of π-π coupling directions, the hole mobility is influenced by the 

morphology. So macroscopic carrier transport in RR-P3HT in the presence of a 

sufficiently large E-field would be impeded by the inherent structure of the material, 

thereby leading to the decreasing mobility with increasing electric field (i.e.: 𝑪𝑪 < 0).   
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The film thickness dependence of the mobility of RR-P3HT may be reconciled in 

terms of the structure of RR-P3HT thin films. In thin RR-P3HT films, P3HT tends to form 

a layer of surface induced edge-on crystalline phase on PEDOT:PSS-coated ITO 

substrate, as shown previously in the literature.39 Hence, the out-of-plane direction has the 

lowest π-π coupling direction and the hole mobility is comparatively low; recall that the 

hole mobility along the π-π coupling direction is two orders of magnitude faster.  

However, as the film thickness increases, the substrate-induce-orientation effect decreases 

and a larger fraction of the structure of the film will possess other orientations. So the 

effective π-π coupling along the out-of-plane direction is enhanced and therefore the hole 

mobility would be expected to increase. Beyond a threshold thickness, the distribution of 

orientations of crystal domains in the RR-P3HT films becomes completely random. 

Consequently, the mobility should reach a constant value beyond a threshold thickness.  

Structural information, gleaned from grazing incidence x-ray diffraction (GIXRD) 

and ellipsometry, provides more insight into the issue.  GIXRD, with the scattering vector 

in the out-of-plane direction, was performed to characterize the structure of the films. The 

data in Figure 2.6 show the average grain sizes, calculated from the full widths at half 

maximum (FWHMs) of the (100) peaks in the profiles (shown in the inset), increased 

from 10.9 nm to 12.7 nm; beyond which it remains constant with increasing film 

thickness. This increase in grain size is in part responsible for the enhancement of the 

hole mobility; with a larger grain size, the carriers experience fewer 

crystalline/amorphous/crystalline boundaries to transport as they traverse the film. Carrier 

mobilities in the amorphous regions are appreciably lower than in the crystalline regions.    
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It is important to note, however, that the grain sizes become constant at thicknesses just 

less than 300 nm, whereas the carrier mobilities become constant in films that are much 

thicker, greater than 700 nm. For films thicker than 300nm, the XRD profiles show no 

significant change with regard to crystal orientations.  The appearance of strong (100) 

peaks reveals the existence of a significant amount of edge-on crystalline phases in each 

film.  Nevertheless, this cannot exclude the possible existence of face-on crystalline phase 

because the characteristic (020) peak of face-on phase is centered at 2θ≈21.6°,17 which is 

beyond our current measurement range. 

 

Figure 2.6 Thickness dependence of grain size in RR-P3HT films. The inset shows raw XRD profiles from which the 
grain sizes are calculated. The dash-dot lines indicate where the values saturate. 
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However we show below that a comparable fraction of face-on phases exist in all 

these films. The different orientations of the edge-on and face-on phases contributes to 

optical anisotropy of the film.33 The degree of optical anisotropy of the films was 

investigated using VASE. Refractive indices in the ordinary and extra-ordinary directions, 

which are the in-plane and out-of-plane directions respectively, were determined by fitting 

the ellipsometric data through a careful procedure previously described by Ng and 

Campoy-Quiles.32,33 The degree of anisotropy is then determined from the difference of 

these two indices, as shown in Figure 2.7, as a function of film thickness. In thin films, the 

out-of-plane refractive index is larger than the in-plane refractive index, indicating an 

anisotropic film structure.  This is due to the effect of the substrate-induced orientation of 

Figure 2.7 Difference between the in-plane and out-of-plane refractive indices against the film thickness. The dash-dot 
line shows the zero anisotropy level. 
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edge-on crystals.39 As the film thickness increases, the difference diminishes and 

sufficiently far from the interfaces the two indices become comparable. This implies that 

the film structure gradually changes from a highly anisotropic state to a totally isotropic 

state. Since we have already confirmed the existence of edge-on crystalline phase from 

the GIXRD, such isotropy indicates that a comparable amount of face-on crystalline 

phase must also exist in the films, which is favorable to the out-of-plane mobility. 

Interestingly, the isotropic state begins to develop at about 300 nm from the substrate. 

This is consistent with the thickness at which grain size becomes constant.  We note, 

however, that this thickness is less than the thickness of 700 nm, beyond which the hole 

mobilities become constant.  

In order to reconcile the difference between these two thresholds, a simple 

simulation of the thickness dependence of optical and electric transport properties is 

carried out on a thin film structure.  The film is modeled as a three-dimensional lattice of 

cubes, with 100×100 cubes in the xy-plane parallel to the substrate, and the number of 

layers of cubes in z-direction represents the film thickness. Each cube is treated as a 

crystal domain, which has defined specific optical and electric transport properties related 

to its orientation with respect to the substrate, indexed from 1 to 10.  A value of 1 denotes 

a completely edge-on configuration, which has the highest resistivity in the out-of-plane 

direction; a value of 10 denotes a purely face-on configuration, which has the lowest 

resistivity.  The other values denote intermediate cases. The highest resistivity is assumed 

to be 100 times larger than the lowest one; see supporting information for more details. 

To illustrate the substrate effect on crystalline orientations, we created the film such that  
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the first layer is composed of a purely edge-on configuration, identified as Cube 1. The 

second layer is composed of 90% Cube 1 and 10% randomly assigned cubes.  For the 

third layer: 80% Cube 1 and 20% randomly chosen cubes. The subsequent layers are 

described accordingly; at the 11th layer the structure is completely random. Our system is 

defined such that the fraction of Cube 1 in the entire film would gradually saturate at 10%.  

The anisotropy, represented by the orientation index, is calculated by the 

arithmetic mean of indices of all cubes for film thickness, in analogy to how ellipsometry 

averages the optical properties of a film. As for the electric transport property, a charge 

carrier follows a random walk from the first layer to the last through a path determined 

Figure 2.8 Simulated results of optical property, which is represented by orientation index, and transport property, 
which is represented by effective mobility. The dash-dot line indicates where the properties saturate. Methods 1 and 2 
are discussed in detail in the supporting information. 
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by a probabilistic criterion (please refer to supporting information for details). The value 

resistivities of all cubes in this path are then averaged to generate the conductivity, which 

can be scaled to a mobility value. For each thickness, 1000 runs are performed and the 

final mobility was averaged over the 1000 values. Both the anisotropy and mobility data 

were normalized to (0,1] range and shown in the Figure 2.8. As the film thickness 

increases, the normalized orientation index approaches from 0 (completely edge-on, 

anisotropy) to 1 (completely random, isotropy), which qualitatively reflect the change of 

film from anisotropic to isotropic, as shown by the ellipsometry data. Likewise, the 

mobility increases along with the thickness and saturates at certain value, which is also 

consistent with the measured mobility values. Both saturations result from the 

introduction of additional cubes of random orientations in higher order layers.  This 

reflects the reality that the effect of substrate on the formation of edge-on phase is 

diminished with distance away from the substrate. However, the simulated optical 

property converges at a much thinner thickness than the simulated electric transport 

property, which indicate that isotropy and grain size saturates at a thinner film thickness 

than out-of-plane hole mobility. We would like to point out here that despite the fact that 

the results are based on a film of 10% gradient per layer, the observed saturations of 

optical and electrical properties and the existence of the difference between the 

thresholds of two saturations are universal for any gradient film structure which is 

induced by the substrate effect (results from films with other gradients are in the 

supporting information).  
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As it was previously described, the changes and saturations of both anisotropy 

and out-of-plane mobility are caused by the substrate-induced gradient in film structure. 

When the thickness of the film is small, 100nm, this effect is more pronounced. Therefore 

the electronic properties of the bulk do not necessarily represent the properties of the 

material used in devices of thicknesses around 100nm. On the other hand, the 

discrepancy between two saturation thresholds in the simulation essentially comes from 

the different ways of averaging the optical and electric transport properties.  Since the 

experimentally measured anisotropy, grain size and mobility are also averaged values; 

such consistency between the simulated and the experimental results suggests that there is 

also an inherent difference between the averaging methods of structural characterization 

and that of mobility characterization. In other words, while the average film structure 

does not change significantly, the average electric transport property, generally, does. 

This is important toward understanding the connection between the transport property 

and the structure: characterization of macroscopic structure may not be enough to predict 

the behavior of the macroscopic transport properties.  Transport properties are generally 

influenced by microscopic structures like pathways.   

 

2.4 CONCLUSIONS  

In this paper, we studied the thickness dependence of the out-of-plane hole 

mobility in RR-P3HT thin films ranging in thickness from 80 nm to over 1 µm. The 

mobility monotonically increased by an order of magnitude as the thickness increased 
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and reached a value of approximately 1×10-3 cm2/V∙s for thicknesses greater than 700 nm. 

The implication here is that the carrier mobilities are not constant in this material. At the 

substrate the orientation of the molecules is edge-on, and with increasing distance from 

the substrate the fraction of face-on orientations increase.  The out-of-plane hole mobilities 

in the edge-on direction are orders of magnitude slower than in the face-on orientations. 

Such structural changes are due to the substrate effect, as shown by the ellipsometric 

measurements of anisotropy and simulations. The increase of the hole mobilities is 

qualitatively understood from the fact that as film thickness increases, the structural 

anisotropy of the film decreases, due to the increase in the fraction of different 

orientations that favor more rapid out-of-plan carrier transport.  Measurements that reflect 

structural evolution reveal that for film thicknesses greater than 300nm, the average grain 

size and anisotropy remains constant. However, the hole mobility continues to increase 

for films as thick as 700nm. This difference between the threshold values associated 

structural and electric transport properties is likely associated with the fact that the 

transport properties are influenced not only macroscopic morphology but also by 

microscopic pathways, which are often tortuous.   

 

2.5 SUPPORTING INFORMATION 

The film was modeled as a three dimensional lattice of cubes of equal size, 

representing the various grains. Each xy-plane, which is parallel to the substrate, consisted 

of 100 × 100 cubes and the number of xy-planes in z-direction was varied depending on 
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the thickness of the film of interest. Each cube was assigned certain orientation with a 

corresponding resistivity. The orientation was indexed from 1 to 10 (1 being completely 

edge-on with the highest resistivity and 10 being completely face-on with the lowest). The 

resistivity for each cube is calculated using two methods: 
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For each method, R1 = 1 (edge-on) and R10 = 0.01 (face-on), based on the fact that 

the hole mobility in the π-π coupling direction is 100 times large of that in the non-

coupling direction.17 The difference between the two methods lies in how the 

intermediate resistivities are distributed. Method 1 assumes that the conductivity of each 

cube is a square number; Method 2 makes use of an elliptical analogy, with R1 and R10 

being the semi-major and the semi-minor axes, respectively. Each intermediate resistance 

is the radius of ellipse at a given angle from the semi-major axis, in which the angles were 

linearly divided.  

In order to mimic a real film in which the substrate induces orientation, the model 

incorporates a substrate-induced enrichment of the highest-resistivity domain (Cube 1, 

face-on). In our film we assumed a gradient in orientation, in which the first layer 

contained only edge-on crystals (Cube 1), 90% edge-on and 10% randomly chosen 

orientations in the second layer, 80% edge-on and 20% randomly chosen orientations in 

the third layer, and so on until it is completely random starting from the 11th layer. As the 
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film gets thicker (the number of layers goes to infinite), structurally it would be more and 

more bulk-like, and the fraction of edge-on crystals (Cube 1) in the entire film would 

gradually saturate at 10%.   

As the cube numbers is equivalent to the crystal orientation of the grain, the 

average of all the cube numbers gives an estimate of the average orientation of the crystal 

domains throughout the film. Because ellipsometry also yields the average orientation of 

the crystals through measuring the anisotropy, the results are comparable. The optical 

property is thus averaged by the arithmetic mean of numbers of all cubes and is 

normalized to (0,1] scale.  

To determine the path along which a charge carrier would travel through the film 

from the first layer to the last, we set up the following protocol. The charge carrier can 

only go to the adjacent cubes, except the one in the previous layer (5 possible directions 

in total); the probability of going in each direction is proportional to the number of each 

cube. In other words, given the numbers of the 5 adjacent cubes a1, a2, a3, a4 and a5 (a1, 

…, a5 = 1, 2, …, 10), the probability that the charge carrier takes the direction of ai is 

determined by 
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=

∑
  (2.5) 

As the path of the charge carriers is determined using probabilities, even starting 

from the same location the carrier may travel along different paths for multiple runs of 

the procedure (a 2D case is shown in Figure 2.9). In practice, we randomly select a 

position in the first layer and record the path of the charge carrier. By averaging 1,000  
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runs of the same procedure, we obtain the macroscopic electrical properties of the film: 

the resistivity and the conductivity of the entire film. Since only one charge carrier follows 

a random walk in each run, the effect of the interaction between electrons on the 

transport property is eliminated. So the charge carrier density does not play a role and  

Figure 2.9 Three examples of random walk that a charge carrier takes from the same starting spot in the first layer to 
the last layer. The grayscale represents the index of each cube. The first layer is composed of only Cube1 and 10% 
gradient is applied to the first ten layers. It is obvious that in the same film structure, a charge carrier does take 
different routes through the film based on the same path protocol. 
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the calculated conductivity is essentially the mobility scaled by some constant. The 

mobility calculated with the two methods are then normalized to the same (0,1] scale. 

Final results for the thickness dependence of both orientation index and effective 

mobility based on the film structure of a 10% gradient are shown in the main text of the 

paper. But the observation of saturations of both properties and the difference between 

the two saturation thresholds are universal to other gradient film structures. This is 

demonstrated by another set of simulated data based on a 20% gradient as shown in 

Figure 2.10.  

 

Figure 2.10 Simulated results of optical property and transport property from a 20% gradient film structure. The dash-
dot line indicates where the properties saturate. 
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CHAPTER 3 

ROLE OF DOMAIN SIZE AND PHASE PURITY ON 

CHARGE TRANSPORT IN BULK HETEROJUNCTION 

SOLAR CELLS 

 

Reprinted with permission from: 

Huang B., Amonoo J., Li A., Chen X., Green P.F.; J. Phys. Chem. C, 2014, 118, 3968-

3975. Copyright © 2014 The American Chemical Society. 

3.1 INTRODUCTION 

Bulk heterojunction (BHJ) organic solar cells are promising alternatives to 

inorganic solar cells for certain applications because they are easily fabricated at relatively 

low cost using solution based methods that include spincoating and jet printing;1, 2 their 

adaptability to flexible substrates makes them viable for large scale applications using roll-

to-roll processing methods.3 In BHJ organic solar cells, the active layer is composed of a 

conjugated polymer, which typically serves the role of the donor material (D), and a 

fullerene derivative as the acceptor component (A). Single BHJ devices have achieved 

power conversion efficiencies (𝑷𝑷𝑷𝑷𝑷𝑷s) in the range of 7-9%.4, 5 

The effect of the BHJ structure on device performance has been extensively 

studied.6, 7 The active morphology generally consists of the acceptor-rich, donor-rich 

phases, and the intermixed phase, interfacial region, between them.8 Generally the 
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dissociation of excitons into free carriers occurs in the mixed D:A phases in the interfacial 

region, where excitons would subsequently undergo charge separation. Phase separation 

between the D and A phases is such that pathways are created for photocarriers to be 

transported through the D or A phases of the active layer to the electrodes, where they 

are collected.9, 10 A large interfacial region between the D and A rich phases would 

increase the photocarrier generation, and therefore the short circuit current ( 𝑱𝑱𝑺𝑺𝑺𝑺 ), 

provided that recombination is low.11-13 It is also known that recombination could take 

place at the interfacial region, so the structure within the interfacial region is important. It 

follows that the D-rich and A-rich domain sizes and phase purities are also important 

factors that influence the overall device efficiency.  For example, large D and A domain 

sizes would generally be associated with a smaller interfacial region.  Hence the carrier 

density and 𝑱𝑱𝑺𝑺𝑺𝑺  would be reduced correspondingly, as the probability of exciton 

dissociation would decrease. With regard to the phase purity/crystallinity, highly 

crystalline conjugated polymer phases enable high hole mobility, which is beneficial for 

device performance.14 The purity and crystallinity of the polymer-rich phase may be 

disrupted due to the diffusion and mixing of the acceptor molecules, which would 

exacerbate the effects of recombination and consequently affects device parameters.15 

Clearly, the device performance is critically dependent on the morphology of the BHJ; 

the magnitudes of the 𝑱𝑱𝑺𝑺𝑺𝑺, the fill factor (𝑭𝑭𝑭𝑭) and the open circuit voltage (𝑽𝑽𝑶𝑶𝑶𝑶) will vary 

based on changes in the morphology of the active layer.  

Recent simulations suggest that the phase purity and the structure of the D:A 

interfacial region could be of greater importance than the domain size toward 
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determining the exciton dissociation and carrier collection process and consequently the 

𝑱𝑱𝑺𝑺𝑺𝑺.16, 17 Specifically, they showed that a well-connected network of domains of width 4 

nm, with high domain purity and narrow D:A interfacial region, outperformed the 

morphology with diffuse interfacial region and impure domains despite the fact that the 

domain size was 10 nm; 10 nm is suggested to be the typical exciton diffusion length.18 

This difference in 𝑷𝑷𝑷𝑷𝑷𝑷s was attributed to the fact that gains due to improved domain 

connectivity, and larger domain sizes, were offset by increased charge trapping due to 

diffuse interfacial regions. The simulations further suggested that increased purity of the 

domain phases and narrowing the interfacial region would have a more immediate 

impact on improving the device performance than optimizing the domain sizes.  It is 

known experimentally that the length-scales of phase separation increase along with the 

phase purity, which has a potential counterbalancing effect.19-21  

In this study we investigated the interrelations between aspects of the morphology, 

the carrier dynamics and the device performance.  We produced three fundamentally 

different morphologies of the P3HT:phenyl-C61-butyric acid methyl ester (PC61BM) (1:1) 

BHJ system, using different processing strategies: solvent casting, thermal annealing and 

super critical carbon dioxide (scCO2) processing.  In a recent study we showed that 

scCO2 processing was as a low-temperature processing protocol for organic solar cells.22 

The morphologies (differing degrees of phase purities, or degrees of intermixing, and 

average domain sizes) were examined using energy filtered transmission electron 

microscopy (EFTEM) and UV-vis absorption spectroscopy.  The transport properties 

(charge carrier densities, carrier mobilities and non-geminate recombination) were 
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examined using photo-CELIV.  It is evident from this study that trade-offs between 

changes in the morphology and associated changes in magnitude of the effects on 

transport parameters, and device parameters, need to be considered in device design. 

 

3.2 EXPERIMENTAL SECTION 

3.2.1 Materials 

Details of P3HT and PEDOT:PSS are included in Chapter 2. PC61BM with 99.5% 

purity was purchased from American Dye Source Inc. and used as received.  

 

3.2.2 Experiments 

3.2.2.1 Device fabrication  

ITO-coated glass substrates were ultrasonicated and cleaned in deionized water, 

acetone and isopropanol sequentially for 10 minutes for each step. The substrates were 

then treated under UV-ozone for 10 minutes. ~50 nm PEDOT:PSS were subsequently 

spincoated on the substrates, followed by 20 min thermal annealing at 120 °C to remove 

excess water. After the annealing, the substrates were transferred to nitrogen filled 

glovebox (oxygen<0.1 ppm, moisture<0.1 ppm) immediately for active layer spincoating 

and electrode deposition.  

P3HT:PC61BM (1:1) solutions were prepared by dissolving highly regioregular 

P3HT and PC61BM in chlorobenzene. The solution was then shaken on a stirrer for 10 

hours to make it homogeneous. After being filtered by 0.45 µm filters, the solution was 
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spin coated on PEDOT:PSS pre-coated ITO substrates to form the active layers (~100 

nm). Thin films were spin-cast from chlorobenzene/P3HT:PC61BM (1:1) solutions. A 

subset of these samples was thermally annealed at temperature 𝑻𝑻=150 °C for 15 min; 

another set was processed using scCO2 under conditions of pressure 𝑷𝑷=10.34 MPa and 

𝑻𝑻=50 °C for 5, 15, 30 and 45 min. These different conditions were used in order to create 

materials different morphologies. We note here that in our previous study, a 

chlorobenzene/7vol% nitrobenzene mixture was used to cast the samples. This mixture 

yields samples of different morphologies. 

Quantitatively different morphologies may be produced through the use of 

different scCO2 processing conditions, time 𝒕𝒕, pressure 𝑷𝑷 and temperature 𝑻𝑻. scCO2 is a 

mild plasticizing solvent for the blend and has a mildly preferential interaction. The 

activity of this solvent is readily changed by variations in 𝑻𝑻 and 𝑷𝑷. Therefore the extent 

of separation (domain sizes and purity/intermixing) may be manipulated by 

experimentally changing 𝑻𝑻 , 𝑷𝑷  and 𝒕𝒕 . Details about scCO2 processing apparatus and 

procedure can be found elsewhere.22  

After the processing of the active layers, the devices were completed by 

depositing 1 nm lithium fluoride and 100 nm Al as the top electrode using thermal 

evaporation through shadow masks, at a typical pressure of 10-7 mbar. The scCO2-

processed samples were exposed to air while transferred between the scCO2 apparatus 

and the glove box. For photo-CELIV measurement, the LiF was omitted in order to 

minimize the injection current and Al was 70 nm.23  
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3.2.2.2 EFTEM 

The active layer morphology was studied using EFTEM in a TEM (JEOL 2100F) 

equipped with a Gatan #863 Tridiem imaging filter, operated at an acceleration voltage 

of 200 kV. The active layer of the devices was floated from deionized water and picked 

up onto copper grids (Ted Pella, Inc.) prior to TEM. The spectral images were collected 

using an energy slit width of 8eV and a step width of 0.2 eV, from -5 to 40 eV, covering 

the zero loss regime and plasmon loss regime on the energy loss spectra. 

 

3.2.2.3 UV-vis absorption spectroscopy 

Absorption measurement were conducted with a spectrophotometer (Perkin 

Elmer Lambda 750S) using a thin film accessory.  

 

3.2.2.4 Photo-CELIV 

Measurements were conducted in a cryostat (Janis VPF-100), which provides a 

vacuum of 1 mTorr and a wide range of temperatures. Laser pulses (Quantel 

BrilliantEazy, λ=532 nm) were incident from the ITO side and the intensity was 

attenuated using neutral density filters. A linearly increasing voltage was applied over the 

device, using a function generator (BK Precision 4075), to extract the photo-generated 

current transient, which was amplified by a preamplifier (FEMTO DLPCA-200) and 

recorded by a digital oscilloscope (Tektronix TDS3052C). 
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3.2.2.5 J-V curve characterization 

Photocurrent curves were measured under ambient condition at AM 1.5G (Oriel 

solar simulator) illumination using a semiconductor parameter analyzer (Agilent 4156C). 

3.3 RESULTS AND DISCUSSION 

EFTEM and UV-vis absorption spectroscopy both provide a consistent assessment 

of the relative degrees of intermixing and phase purities of the samples. Images of the 

morphologies of the active layers, processed using different strategies,19, 22 and examined 

using EFTEM, are shown in Figure 3.1 for the as-cast sample (a, d), scCO2 processed 

sample (b, e), and thermally annealed sample (c, f).  Spectral images were taken from -5.0 

eV to 40.0 eV, with a step size of 0.2 eV. Due to the offset in the plasmon peak positions 

in the electron energy loss spectra (EELS) of P3HT and PC61BM, image contrast based 

on local composition was obtained by using the appropriate range(s) of energy loss, 

where one species produces a higher scattering intensity than the other.24 In the energy 

range between 21.7 eV and 25.9 eV, the P3HT-rich phase appears bright (Figures 3.1(a), 

(b) and (c)); between energies 31.7 eV and 37.1 eV, the PC61BM-rich phase renders 

bright (Figures 3.1(d), (e) and (f)). 

A cursory examination of Figures 3.1(a), (b) and (c) reveals that the thermally 

annealed sample possesses a well-developed domain structure; the P3HT rich and 

PC61BM rich phases in the as-cast and sc-CO2 processed samples appear to be much 

smaller and less defined due to significantly more intermixing between the phases.  The 

P3HT-rich domain sizes of the scCO2 processed samples are comparable to those of the  

52 
 



 

as-cast sample, whereas those of the thermally annealed sample are appreciably larger. 

Because of the small domain sizes of the as-cast and scCO2 processed samples, the 

interfacial region between their donor and acceptor phases is much larger than that of the 

thermally annealed sample. As mentioned in the Introduction, photogenerated excitons 

must reside within, or migrate to, the interfacial region in order to be dissociated; they 

would otherwise undergo geminate recombination within the phase where they were 

generated. In the P3HT:PC61BM BHJ system, most excitons are generated within the 

P3HT-rich phase because the P3HT absorption peak resides in the visible range whereas 

Figure 3.1 EFTEM images of P3HT:PC61BM (1:1) thin films spun from chlorobenzene solution. (a), (d) show results 
from as-cast, (b),(e) from scCO2 annealing and (c), (f) from thermal annealing. In the top row, the energy window is 
selected that P3HT component is bright and PC61BM component is dark while in bottom row, P3HT component dark 
and PC61BM component bright. All scale bars are 50 nm. 
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the PC61BM absorption peak resides in the ultraviolet range. Smaller P3HT-rich domain 

sizes and larger interfacial areas should lead to higher initial charge carrier densities in the 

as-cast and scCO2 processed samples than in the thermally annealed sample, for the same 

illumination intensity. Note that with smaller P3HT-rich domains, the pathway for holes to 

be transported through the active layer and reach the anode is appreciably longer and 

the probability of trapping and/or recombination would therefore be higher.  

Qualitative information about the relative phase purities between samples was 

obtained by extracting the selected-area EELS spectra from the EFTEM images. Based on 

visual contrast, as seen in Figure 3.1, small regions (c.a. 5 x 5 nm2) corresponding to 

P3HT- and PC61BM-rich phases were selected from multiple locations across the entire 

imaged area: five each from the as-cast sample, ten each from the scCO2 processed 

sample and ten each from the thermally annealed sample. The EELS spectra of these 

selected regions, and of the full imaged area, were extracted from the images, and the 

plasmon peak positions were calculated from a Gaussian fit.  Representative EELS 

spectra and their Gaussian fits are shown in the supporting information section, Figure 

3.6. The average peak position and standard deviation were calculated for the selected 

areas corresponding P3HT- and PC61BM-rich areas, respectively; the results are 

summarized in Figure 3.2. 

The two dash-dot lines in Figure 3.2 are plasmon peak positions of pure P3HT 

and of pure PC61BM; this was discussed earlier.22 The dashed line denotes the average 

plasmon peak position associated with a fully-mixed (homogeneous) P3HT:PC61BM (1:1) 

blend. The location of this line was calculated to be approximately 24.11 eV by taking  
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the plasmon peak of the fully imaged area. The extent to which each data point deviates 

from the location of this line is a qualitative indicator of the purity of the phase, relative to 

the overall blend composition. As expected, the phase purity is lowest in the as-cast 

sample; the peak positions of P3HT-rich and PC61BM-rich “domains” are very close to 

that of a homogeneous 1:1 mixture. Both scCO2 processing and thermal annealing 

induced a greater extent of phase separation and improved the phase purity of the 

domains. This is indicated by the larger deviation of their peak positions, with the highest 

phase purity exhibited by the thermally-annealed sample. It is worth noting, however, 

that unlike thermal annealing, scCO2 processing improved the phase purity without 

significantly coarsening the domains (readily controlled through changes in 𝒕𝒕, 𝑷𝑷 and 𝑻𝑻),  

Figure 3.2 Plasmon peak positions of P3HT and PC61BM rich domains acquired from EFTEM images of 
P3HT:PC61BM (1:1) samples processed under different conditions. 
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which could be useful for processing material systems where macroscopic aggregation 

upon thermal annealing becomes problematic with regards to exciton diffusion lengths.25  

The foregoing investigation indicates that the purity of the P3HT and PC61BM 

phases of the thermally annealed and scCO2 processed samples are enhanced in relation 

to that of the as-cast sample; this observation is corroborated by subsequent UV-vis 

absorption spectroscopy measurements. Absorption spectra of three samples are shown 

in Figure 3.3. The absorption in the lower energy (<2.5 eV) region of the spectrum of the 

P3HT:PC61BM (1:1) blend is primarily due to P3HT absorption, while at higher energies 

(>2.5 eV) the absorption is from both P3HT and PC61BM.26 It is generally accepted that 

Figure 3.3 UV-vis absorption spectra of as-cast, scCO2 processed and thermal annealed samples. Inset shows the free 
exciton bandwidths W. 
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the ordering of PC61BM aggregates has a negligible effect on the device performance.24, 27 

Therefore, only the P3HT spectra is of particular interest in our study.  

The two peaks (shoulders) denoted by arrows in Figure 3.3 are associated with 

absorption by the crystalline P3HT phase. The interchain π-π interactions, which 

constitute low energy states, are responsible for the lower energy peak, whereas the peak 

located at energy 2.4 eV is due to the more disordered amorphous P3HT phase, in which 

high energy intrachain states are formed.28, 29  The relative intensities of the two lower 

energy shoulders are therefore good indicators of the degree of polymer chain 

ordering/packing in the P3HT phase. Both shoulders, located at ~2.1 eV and ~2.25 eV, 

are more pronounced in the scCO2 processed and the thermally annealed samples than 

in the as-cast sample, indicating an increased degree of ordering/packing of the P3TH 

polymer chains in the domains. This is consistent with the EFTEM/EELS measurements 

discussed earlier. We note that it is well documented that when PC61BM resides between 

P3HT chains they disrupt ordering.  Therefore the exclusion of PC61BM from P3HT-rich 

domain would be associated with increased ordering/packing of P3HT chains. This 

improved ordering would facilitate higher hole mobilities, which we discuss later.14 

The UV-Vis spectra provide additional information about the electronic structure. 

To this end, the free exciton bandwidths 𝑾𝑾 were calculated using information from the 

UV-vis spectra using the following equation: 
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where 𝑨𝑨𝟎𝟎−𝟎𝟎and 𝑨𝑨𝟎𝟎−𝟏𝟏 are peak absorbances, identified by arrows in Figure 3.3; 𝑬𝑬𝒑𝒑 is the 

intermolecular vibrational energy, which is fixed to 0.179 eV. The results are shown in 

the inset in Figure 3.3.  The magnitude of 𝑾𝑾 is indicative of the conjugation length and of 

the size of the P3HT aggregates; the latter has a larger effect.28 A larger value of 𝑾𝑾 is 

indicative of a smaller conjugation length, which would be associated with a larger degree 

of disorder. The thermally annealed sample has the smallest 𝑾𝑾  whereas the scCO2-

processed sample has the largest. For the crystalline P3HT phase in the active layer, 𝑊𝑊 is 

proportional to the nearest neighbor interchain excitonic interaction, based on the 

nearest-neighbor-only approximation.  This nearest neighbor interaction becomes weaker 

with increasing conjugation length in the polymer chain.28 The smallest 𝑾𝑾, exhibited by 

the thermally annealed sample, is indicative of a longer conjugation length. This is 

consistent with the highest phase purity, and manifested in the red-shift of the absorption 

peak at ~2.4 eV. As the conjugation length increases, the optical gap decreases due to 

stronger intrachain coupling between neighbor thiophene rings; this causes the 

bathochromic shift.28 Interestingly, the scCO2-processed sample has the largest 𝑾𝑾 , 

suggesting a shorter conjugation length. However the purer phases and red-shifted 

absorption peak suggests a longer conjugation length compared to the as-cast sample. 

This apparent discrepancy is attributed to the fact that 𝑾𝑾 also increases with coarsening 

aggregate size.28 The slightly larger P3HT aggregate size of the scCO2-processed sample 

has a larger effect on the magnitude of 𝑾𝑾  than that due to the effect of longer 

conjugation length. This is the reason that the scCO2-processed sample has the largest 𝑾𝑾 

of the three samples.  
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The value of 𝑾𝑾  also manifests information about the width of the Gaussian 

distribution of density of localized states; the localized states may serve as carrier traps, at 

the HOMO and LUMO levels.30 This suggests that the scCO2-processed sample has the 

deepest distribution of traps, whereas the thermally annealed sample has the shallowest 

distribution. In energetically disordered organic materials such as P3HT, charge carriers 

are transported via hopping between localized states. As the localized states distribution 

gets deeper in the scCO2-processed sample, charge carriers are more likely to be trapped 

and recombine with opposite charges. So the largest values of 𝑾𝑾 in the scCO2-processed 

sample would be indicative of the highest free carrier recombination rate. This 

information is corroborated by the photo-CELIV experiments, which directly measures 

the carrier recombination, as discussed below. 

The charge carrier transport properties, including charge carrier densities, 

mobilities and recombination rates, of devices processed using different protocols were 

characterized using photo-CELIV; the results are plotted in Figure 3.4. In photo-CELIV, 

after a specified interval of time delayed after the initial application of a short incident 

laser pulse, a linearly increasing voltage is applied to the device to extract charge 

carriers.31 Typical current transients in the dark (in the absence of a laser pulse) and for 

different delay intervals are reported in the supporting information section, Figure 3.7, for 

all three samples. The dynamics of the charge carrier densities are plotted as a function of 

delay time on a log-log scale in Figure 3.4(a). For all samples, it was evident that as the 

delay time increased, the density of the extracted charge carriers decreased due to 

recombination in the active layer. Based on the microsecond time scales in our study, this  
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Figure 3.4(a) Concentration of extracted charge carriers as a function of delay time and (b) Electric field dependence of 
carrier mobility characterized by photo-CELIV measurement on devices processed under different conditions. Dashed 
lines are for guides to the eye only. 
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would be non-geminate recombination of free charge carriers during transport, after the 

exciton dissociation. This is because the exciton lifetime before dissociation is 

comparable to sub-nanosecond time scales in the P3HT:PC61BM system.32 

During the delay time from 10 µs to 500 µs, all decay curves exhibit a power law 

dependence on time, where 𝒏𝒏(𝒕𝒕) ∝ 𝒕𝒕𝜶𝜶. By fitting the data sets to the power law formula 

and extrapolating to 𝒕𝒕 = 0 μs, the initial carrier densities 𝒏𝒏(𝟎𝟎) was extracted from the for 

each sample: 𝒏𝒏(𝟎𝟎)𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = (1.94±0.05)×1016 cm-3, 𝒏𝒏(𝟎𝟎)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐 = (2.76±0.28)×1016 cm-3 and 

𝒏𝒏(𝟎𝟎)𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = (5.54±0.52)×1015 cm-3. To be exact, 𝒕𝒕 should be extrapolated to the time 

immediately after the exciton dissociation instead of 0; however, this sub-nanosecond 

time scale is negligible in relation to the time resolution limit and the calculation. Our 

calculations, not surprisingly indicate that the initial charge carrier density after exciton 

dissociation is almost 4 times larger in the as-cast sample and 5 times larger in the scCO2 

processed sample than in the thermally annealed sample.  The relative differences 

between the initial carrier densities are consistent with information we learned about the 

structures of the samples: the interfacial (intermixed) regions of the scCO2 processed and 

as-cast samples are significantly larger than those of the thermally annealed sample. While 

the morphologies of the as-cast and the scCO2 processed samples are very similar, 

𝒏𝒏(𝟎𝟎)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐  is ~40% larger than 𝒏𝒏(𝟎𝟎)𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 . We attribute this to the details of the 

morphology that contribute to a reduction of geminate recombination of excitons thus 

enabling the formation of additional free carriers in the scCO2-processed sample.33    

The free carrier recombination rates, reflected in the exponents 𝜶𝜶, were exacted by 

fitting the data to the power law formula, yielding 𝜶𝜶𝒂𝒂𝒔𝒔−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄  = -0.61±0.01, 𝜶𝜶𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐  = -
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0.96±0.04 and 𝜶𝜶𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = -0.50±0.03. The free carrier recombination is most significant in 

the scCO2-processed sample and least in the thermally annealed sample. This observation 

is consistent with the morphology and the free exciton bandwidth analysis. 

Morphologically, a less connected network of the P3HT phase in the scCO2-processed 

sample would be responsible for trapping/recombination. The largest free exciton 

bandwidth exhibited by the scCO2-processed sample indicates that carriers are least likely 

to escape once they are trapped at those sites; hence they would recombine with opposite 

charges. Higher recombination rates in the as-cast and scCO2 processed sample are 

consistent with the lower 𝑭𝑭𝑭𝑭s, as shown below, determined from the J-V curves of the as-

cast and the scCO2 annealed solar cells.  In other words a smaller percentage of free 

carriers arrive at the electrodes and are collected.34  

Larger recombination rates are also consistent with lower 𝑽𝑽𝑶𝑶𝑶𝑶, as discussed by 

Ripollet et al.35 The 𝑽𝑽𝑶𝑶𝑶𝑶 is primarily determined by the difference between the quasi-

Fermi levels (i.e. chemical potentials) 𝑬𝑬𝑭𝑭𝒏𝒏  and 𝑬𝑬𝑭𝑭𝒑𝒑  of holes and electrons, respectively, 

under illumination conditions; specifically 𝑽𝑽𝑶𝑶𝑶𝑶 = (𝑬𝑬𝑭𝑭𝒏𝒏 − 𝑬𝑬𝑭𝑭𝒑𝒑)/𝒒𝒒 , where 𝒒𝒒  is the 

elementary charge.35 As electrons recombine with holes in these energetically disordered 

systems,36  the difference between 𝑬𝑬𝑭𝑭𝒏𝒏 and 𝑬𝑬𝑭𝑭𝒑𝒑 decreases, leading to a lower 𝑽𝑽𝑶𝑶𝑶𝑶.  The 

trends in the magnitudes of the 𝑽𝑽𝑶𝑶𝑶𝑶  exhibited by the devices are consistent with this 

notion.  

The shape of the charge carrier density decay is noteworthy. The recombination 

dynamics in these systems is distinctly different from the Langevin bimolecular 

recombination, which is usually assumed to occur in disordered organic systems in which 
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the carrier density dynamics takes the form of 𝒏𝒏(𝒕𝒕) = 𝒏𝒏(𝟎𝟎)/[𝟏𝟏 + (𝒕𝒕/𝝉𝝉𝑩𝑩 )], where 𝝉𝝉𝑩𝑩 is 

the bimolecular lifetime.23 That Langevin bimolecular recombination does not describe 

our system is well documented.37-39 In fact, different models have been proposed to 

account for the difference between the actual recombination and the classical Langevin 

recombination.40-43 In disordered systems the charges follow paths, via a hopping 

mechanism, along the A- and D-rich domains, which reduces the probability of 

recombination, compared to their ordered inorganic counterparts where band transport 

occurs.   

The charge carrier mobilities were also determined and plotted on a semi-log 

scale as a function of the electric field in Figure 3.4(b). The photo-CELIV technique does 

not distinguish between hole or electron transport so the apparent mobilities we extracted 

are due to contributions from both types of carriers.31 The values of the mobilities were 

calculated using 
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where 𝒅𝒅 is the film thickness, 𝑨𝑨 the voltage ramping rate, 𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎  the time at which the 

current density transient reaches maximum, 𝒋𝒋𝟎𝟎 the displacement current and 𝚫𝚫𝒋𝒋𝒎𝒎𝒎𝒎𝒎𝒎 the 

difference between maximum current density and 𝒋𝒋𝟎𝟎; 𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎, 𝒋𝒋𝟎𝟎 and 𝚫𝚫𝒋𝒋𝒎𝒎𝒎𝒎𝒎𝒎 are retrieved 

from the current density transients.  

The electric field dependencies of carrier mobilities in all cases is well-described 

by the Poole-Frenkel relationship 𝝁𝝁(𝑬𝑬) = 𝝁𝝁𝑬𝑬=𝟎𝟎𝒆𝒆𝒆𝒆𝒆𝒆(𝑪𝑪𝑬𝑬𝟏𝟏/𝟐𝟐) ; negative slopes at this 

relatively low electric field are commonly observed in P3HT systems44, 45 at room  
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temperature and are attributed to the energetic and structural disorder in the system.46 

Since our goal is to associate the value of the mobility with the 𝑱𝑱𝑺𝑺𝑺𝑺, when there is no 

external electric field, all mobilities were fitted using the Poole-Frenkel equation to obtain 

𝝁𝝁𝑬𝑬=𝟎𝟎 ; 𝝁𝝁𝑬𝑬=𝟎𝟎|𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄  = (6.63±0.37)×10-3 cm2V-1s-1, 𝝁𝝁𝑬𝑬=𝟎𝟎|𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐  = (1.59±0.54)×10-2 cm2V-1s-1 

and 𝝁𝝁𝑬𝑬=𝟎𝟎|𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  = (9.47±0.96)×10-2 cm2V-1s-1. It is interesting to note that the relative 

magnitudes of the mobilities reported here are entirely consistent with the degree of 

phase purity reported above. The highest mobilities were measured in the thermally 

annealed sample, which possessed the highest degree of phase purity, followed by the 

scCO2-processed sample.  

Figure 3.5 𝑱𝑱-𝑽𝑽 curves of P3HT:PC61BM (1:1) devices processed under different conditions. For as-cast devices, 𝑱𝑱𝑺𝑺𝑺𝑺 = 
2.64 mA/cm2, 𝑽𝑽𝑶𝑶𝑶𝑶 = 0.62 V, 𝑭𝑭𝑭𝑭 = 0.38, 𝑷𝑷𝑷𝑷𝑷𝑷 = 0.62%; for scCO2 processed devices, 𝑱𝑱𝑺𝑺𝑺𝑺 = 8.1 mA/cm2, 𝑽𝑽𝑶𝑶𝑶𝑶 = 0.58 V, 
𝑭𝑭𝑭𝑭 = 0.40, 𝑷𝑷𝑷𝑷𝑷𝑷 = 1.9%; for thermally annealed devices, 𝑱𝑱𝑺𝑺𝑺𝑺 = 7.0 mA/cm2, 𝑽𝑽𝑶𝑶𝑶𝑶 = 0.60 V, 𝑭𝑭𝑭𝑭 = 0.64, 𝑷𝑷𝑷𝑷𝑷𝑷 = 2.7%. 
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Finally we discuss the device characteristics in further detail, in light of the 

foregoing information about the transport properties. The 𝑱𝑱-𝑽𝑽 curves of devices scCO2 

annealed or thermal annealed for different times are reported in the section containing 

supporting information, Figure 3.8; all the parameters are summarized in Table 3.1. The 

𝑱𝑱-𝑽𝑽 curves of P3HT:PC61BM (1:1) devices processed under different conditions are shown 

in Figure 3.5; the device performance indicators for each processing condition are 

reported in the figure caption. All values were not corrected for spectral mismatch. The 

scCO2-processed sample exhibits the highest short circuit current, whereas the as-cast 

sample exhibits the lowest, 𝑱𝑱𝑺𝑺𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 ~ 𝑱𝑱𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 ~3𝑱𝑱𝑺𝑺𝑺𝑺𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 . Recall that the initial carrier 

densities were such that 𝒏𝒏(𝟎𝟎)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔~𝒏𝒏(𝟎𝟎)𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄~5𝒏𝒏(𝟎𝟎)𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 . This suggests that the 

recombination of carriers in the scCO2-processed sample is appreciably larger than in the 

thermally annealed sample. The recombination rates determined by the CELIV 

experiments confirm this assessment.  

The significantly larger 𝑱𝑱𝑺𝑺𝑺𝑺 in the scCO2 processed sample compared to the as-

cast suggests that improving the phase purity would enhance the device performance to a 

larger degree than optimizing the domain size, considering that the domain sizes of both 

samples are comparable.  

With regard to the 𝑽𝑽𝑶𝑶𝑶𝑶, the scCO2-processed sample possesses a lower value than 

the thermally annealed sample. This has been explained; it is due to faster recombination 

rates in the scCO2-processed sample, which is responsible for a decrease of the difference 

between the quasi-Fermi levels of holes and electrons. Comparing the thermally annealed 

and as-cast samples, we found that the 𝑽𝑽𝑶𝑶𝑶𝑶 of the thermally annealed sample is slightly 
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smaller than that of the as-cast sample. This is attributed to the longer conjugation length 

of P3HT polymer chains in the thermally annealed sample, which is consistent with the 

higher phase purity and reflected in the red-shifted absorption peak in the UV-Vis spectra 

in Figure 3.3. The HOMO of P3HT increases along with the conjugation length. Noting 

that the 𝑽𝑽𝑶𝑶𝑶𝑶  is approximately proportional to the difference between the HOMO of 

donor phase and the LUMO of acceptor phase, the longer conjugation length in P3HT 

would be responsible for this lower 𝑽𝑽𝑶𝑶𝑶𝑶. A similar relationship was also determined for 

different annealing times, as shown in Table 3.1. 

The fill factor, determined to be 𝑭𝑭𝑭𝑭𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 0.38, 𝑭𝑭𝑭𝑭𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐 = 0.40, 𝑭𝑭𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 

0.64, for the samples, is associated with many variables and cannot be fully explained by 

a single transport.47 However, the higher recombination rates in the as-cast and scCO2-

processed samples (𝜶𝜶𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄  = -0.61±0.01, 𝜶𝜶𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐  = -0.96±0.04, 𝜶𝜶𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  = -0.50±0.03), 

which may be due to both disconnected domains and a deep distribution of localized 

states, at least qualitatively, explains the lower 𝑭𝑭𝑭𝑭 in those samples. Based on the results 

of the scCO2 processed and thermally annealed samples, it is clear that the size and 

connectivity of domains have a significant effect on the recombination and consequently 

the 𝑭𝑭𝑭𝑭. Consistently lower 𝑭𝑭𝑭𝑭s in scCO2 processed samples are reported in Table 3.1 for 

different annealing times.  
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3.4 CONCLUSIONS  

We investigated the relation between the morphology of the active layer of a BHJ 

solar cell and the device performance. P3HT:PC61BM active-layer materials possessing 

three fundamentally different morphologies, characterized by domain size, phase purity 

and interfacial region, were prepared using different processing strategies (solvent casting, 

thermal annealing, scCO2 processing).  

The primary difference between the scCO2-processed samples and the thermally 

annealed samples is the sc-CO2 processed samples possessed appreciably smaller average 

domain sizes. It is noteworthy that while the initial carrier densities of these samples were 

such that 𝒏𝒏(𝟎𝟎)𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐~5 𝒏𝒏(𝟎𝟎)𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, the thermally annealed samples had comparable 𝑱𝑱𝑺𝑺𝑺𝑺s, 

and slightly better 𝑷𝑷𝑷𝑷𝑷𝑷s than those of the scCO2–processed samples. This was due to 

recombination rates that were twice as large in the sc-CO2-processed samples: 𝜶𝜶𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐 =    

-0.96±0.04 and 𝜶𝜶𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = -0.50±0.03. The difference between the relaxation rates is also 

consistent with the lower device fill factors exhibited by the scCO2-processed sample 

(𝑭𝑭𝑭𝑭𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐 = 0.40 and 𝑭𝑭𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 0.64).  

The average domain sizes of the as-cast and the scCO2-processed samples were 

comparable and their carrier densities were comparable: 𝒏𝒏(𝟎𝟎)𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = (1.94±0.05)×1016 

cm-3~ 𝒏𝒏(𝟎𝟎)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐  = (2.76±0.28)×1016 cm-3. However, the 𝑷𝑷𝑷𝑷𝑷𝑷 s and the short circuit 

currents in the scCO2-processed sample were three times as large as the as-cast sample.  

This is associated with the fact that the scCO2-processed samples possessed higher 

degrees of phase purity and order than the as-cast samples. The carrier mobilities of the 
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scCO2 samples were moreover, approximately 3 times as large 𝝁𝝁𝑬𝑬=𝟎𝟎|𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄  = 

(6.63±0.37)×10-3 cm2V-1s-1 and 𝝁𝝁𝑬𝑬=𝟎𝟎|𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐 = (1.59±0.54)×10-2 cm2V-1s-1, which is consistent 

with the higher degrees of purity and order in the scCO2 processed sample.   

The foregoing provided insight into the connection between aspects of the 

morphology of the active layer, various transport parameters and device performance. 

This in principle provides further insight into morphological design for devices. 

 

3.5 SUPPORTING INFORMATION 

We note here that clearly the interface is of finite width of many nanometers.  

Representative EELS spectra and corresponding Gauss fittings are displayed in 

Figure 3.6. We note here that the selected regions for EELS spectra were small in size (5 

nm × 5 nm each) and were positioned in the center of each randomly chosen domain (5 

domains for the as-cast sample and 10 domains for the thermally annealed and scCO2 

processed samples each) across the entire image area.  

Exemplary transient currents from photo-CELIV characterization are shown in 

Figure 3.7. The charge carrier density was calculated by integrating the current density 

over time. For each sample, a decreased current density with delay time indicates fewer 

charge carriers are collected due to free carrier recombination.  

𝑱𝑱 -𝑽𝑽  curves of samples annealed in scCO2 (10.34 MPa, 50 °C) and at high 

temperature (150 °C) for different periods of time are shown in Figure 3.8. All 

parameters, along with those from as-cast sample are summarized in Table 3.1. The 
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evolution of 𝑱𝑱𝑺𝑺𝑺𝑺 , 𝑽𝑽𝑶𝑶𝑶𝑶  and 𝑭𝑭𝑭𝑭 in the P3HT:PC61BM device as a function of annealing 

time has been studied and can be found elsewhere.19, 22, 33, 48, 49  
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Figure 3.6 Representative EELS spectra and corresponding Gaussian peak fittings for both P3HT-rich and PC61BM-rich 
domains from samples processed under different conditions: (a) as-cast, (b) processed in scCO2 at 10.34 MPa and 50 °C 
for 30 min, and (c) annealed at 150 °C for 15 min. 
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Figure 3.7 Representative photo-CELIV current transients from P3HT:PC61BM (1:1) devices of different processing 
conditions: (a) as-cast, (b) scCO2 processed, and (c) thermal annealed. 
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Figure 3.8 Current density-voltage curves of P3HT:PC61BM (1:1) devices (a) processed in scCO2 at 10.34 MPa and 50 
°C and (b) thermal annealed at 150 °C for different periods of time. 
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Table 3.1 Device Performance Parameters of P3HT:PC61BM (1:1) BHJ Devices Prepared from Chlorobenzene 

 as-cast scCO2 processing thermal annealing 

  5 min 15 min 30 min 45 min 5 min 15 min 30 min 45 min 

𝑽𝑽𝑶𝑶𝑶𝑶 (V) 0.62 0.59 0.58 0.58 0.58 0.60 0.60 0.60 0.60 

𝑱𝑱𝑺𝑺𝑺𝑺 (mA/cm2) 2.64 5.0 6.7 8.1 6.6 4.5 7.0 5.9 5.7 

𝑭𝑭𝑭𝑭 (%) 38 39 41 40 40 65 64 60 64 

𝑷𝑷𝑷𝑷𝑷𝑷 (%) 0.62 1.2 1.6 1.9 1.5 1.8 2.7 2.1 2.2 
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CHAPTER 4 

POWER FACTOR DOUBLING IN STRAINED SILICON 

THIN FILMS WITH NANOMESH 

 

4.1 INTRODUCTION 

Thermoelectric materials can interconvert heat and electrical energy. Materials 

with high 𝒁𝒁𝒁𝒁 > 1~2 are desired for highly efficient thermoelectric devices; such high 𝒁𝒁𝒁𝒁s 

are usually found in heavily doped semiconductors such as Bi2Te3, Sb2Te3 and PbTe.1 

Compared to these materials, the most studied semiconductor Si has several apparent 

advantages including its abundance on the Earth, its nontoxicity and easy integration into 

existent microelectronic and optoelectronic devices. However, silicon has only emerged 

as a promising thermoelectric material very recently.2-4 The biggest challenge is the 

thermal conductivity 𝜿𝜿 of Si; at 300 K, 𝜿𝜿𝑺𝑺𝑺𝑺 ≈ 150 Wm-1K-1, leading to a very low 𝒁𝒁𝒁𝒁 ≈ 

0.01. 𝜿𝜿𝑺𝑺𝑺𝑺 has contributions from a variety of particles or quasiparticles including charge 

carriers (holes or electrons) and phonons (lattice vibrations), 

 Si Si Si
total e phκ κ κ= +   (4.1) 

𝜿𝜿𝒆𝒆𝑺𝑺𝑺𝑺 can be estimated via the Wiedemann-Franz law 

 Si
e LTκ σ=   (4.2) 
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𝑳𝑳 ≈ 2.44×10-8 WΩK-2 is the Lorentz number. With high doping level (~1020 cm-3), 𝜿𝜿𝒆𝒆𝑺𝑺𝑺𝑺 ≈ 1 

Wm-1K-1 at room temperature. So 𝜿𝜿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝑺𝑺𝑺𝑺  is dominated by the phonon transport, which 

can also be evaluated by 

 1
3

Si
ph Cvlκ =   (4.3) 

where 𝑪𝑪  is the specific heat capacity, 𝒗𝒗  is the average phonon velocity and 𝒍𝒍  is the 

phonon mean free path. For bulk silicon, the phonon mean free path ranges from 1 nm 

to 10 μm, more than 67% of which is above 100 nm.5 Therefore, nanostructures with 

feature sizes under 100 nm may induce significant boundary scattering to phonons and 

effectively reduce the phonon contribution to 𝜿𝜿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝑺𝑺𝑺𝑺 . As a result, high 𝒁𝒁𝒁𝒁 s may be 

achieved in low-dimensional nanostructured silicon. For example, Boukai et al. 

demonstrated that the 𝜿𝜿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝑺𝑺𝑺𝑺  was reduced to 0.76 Wm-1K-1 at 300 K in 10 nm wide silicon 

nanowires fabricated by the superlattice nanowire pattern transfer method.2 Tang et al 

also showed that 𝜿𝜿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝑺𝑺𝑺𝑺  was decreased to 1.9 Wm-1K-1 at 300 K in 100 nm thick holey 

silicon films with pitch of 55 nm fabricated by block copolymer (BCP) lithography.4 

While the power factors of these nanostructured silicon were kept comparable to that of 

the bulk silicon, such orders of magnitude reduction of 𝜿𝜿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝑺𝑺𝑺𝑺  resulted in tremendous 

enhancement of 𝒁𝒁𝒁𝒁; 20 nm wide silicon nanowires reached 𝒁𝒁𝒁𝒁 ≈ 1 at 200 K, 10 nm wide 

silicon nanowires reached 𝒁𝒁𝒁𝒁 ≈ 0.6 at 350 K and the holey silicon films achieved 𝒁𝒁𝒁𝒁 ≈ 

0.4 at 300 K.  

While nanostructure engineering is demonstrated as a successful approach to 

reduce the thermal conductivity, it is challenging to further maximize 𝒁𝒁𝒁𝒁 by decreasing 
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the characteristic sizes below 10 nm. The electron mean free path is below 10 nm for 

deeply doped silicon so feature size smaller than this scale may have a setback on the 

electric conductivity.3, 6 Methods to increase the power factor are therefore being 

explored as an alternative. The most direct way to improve the electric conductivity is to 

tune the doping level. However, while heavier doping usually increase the electric 

conductivity according to 

 neσ µ=   (4.4) 

where 𝒏𝒏 is the carrier concentration and 𝝁𝝁 is the carrier mobility, the thermopower of 

heavily doped semiconductors has a negative dependence on carrier concentration 

 ( )
2

32 2

2
8

33
BkS m T neh

π π∗=   (4.5) 

where 𝒎𝒎∗  is the effective mass of the carrier. So an optimal doping level is usually 

required for high power factor and 𝒁𝒁𝒁𝒁.1 Besides tuning the carrier concentration, another 

effective way to enhance the power factor is to use strained silicon instead of unstrained 

one. Tensile strained silicon has been used in n-channel MOSFETs to increase electron 

mobility through the channel. This idea was first proposed and succeeded in Intel’s 90 

nm processing to improve the transistor performance by more than 10%.7-9 The 

improvement in electron mobility leads to an increase in electrical conductivity, which 

was challenging to be tailored beyond desired doping level. Application of strained 

silicon to thermoelectrics has also been explored, but only on a theoretical calculation 

basis; experimental results proving the concept have not been reported to our best 

knowledge.  
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We hereby propose to use biaxial tensile strained silicon thin films to improve the 

power factor. Though the thermal conductivity is beyond the scope of this project, the 

power factor was still characterized in strained silicon thin films with nanomesh structure, 

which should possess a very low thermal conductivity. We hope the power factor results 

presented here can be referenced for full characterization of 𝒁𝒁𝒁𝒁 in similar strained silicon 

thin films with nanomesh structure in the future. About 0.86% biaxial tensile strain was 

initially embedded in the silicon thin film; this level decreased to 0.80% after the 

nanomesh patterning. By incorporating such biaxial tensile strain into nanomesh silicon 

thin films, we achieved 300~500% enhancement in 𝝈𝝈 in the near room temperature range 

and doubled the power factor at 300 K.  

4.2 EXPERIMENTAL SECTION 

4.2.1 Materials 

The strained silicon wafers were custom-made in Soitec and used as received. 

They are biaxial tensile strain silicon thin films with <100> orientation on insulator (SSOI, 

14 nm strained Si/150 nm thermal SiOx/680 μm Si) using the bond and etch back 

technology developed by T.S. Drake, et al.10 Basically, silicon films were epitaxially 

grown on SixGe1-x substrate. The larger lattice constant of SixGe1-x forces the Si lattice 

constant to expand and consequently generate biaxial tensile strain in the thin films, as 

shown in Figure 4.1. As the Si film grows thicker, the substrate effect diminishes and new 

layers  
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become unstrained. So strained silicon films can only made be on the order of 10 nm.  

 

4.2.2 Experiments 

4.2.2.1 Device fabrication  

The strained silicon layer of each SSOI wafer was first doped with phosphorous 

using solid targets in rapid thermal annealing furnace at 900 °C for 2 min. A few 

nanometer thick layer of random copolymer PS-r-PMMA was then spincoated onto the 

top surface and thermally annealed at 190 °C for 17 hours to neutralize the surface. A 

thin film (~100 nm) of asymmetric BCP PS(46k)-b-PMMA(21k) was subsequently 

spincoated onto the surface to form vertically cylindrical nanostructures; PMMA cylinders 

have diameters of ~18 nm and the center to center distance between neighboring 

cylinders (pitch) is ~34 nm. After being annealed at 190°C for 12 hours, the SSOIs were 

irradiated with UV to crosslink the PS matrix and subsequently rinsed with acetic acid  

Figure 4.1 A scheme of epitaxially growing Si thin film on SixGe1-x substrate. Red arrows indicate biaxial tensile strain 
induced by the discrepancy between lattice constants of Si and SixGe1-x. 
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and water to remove the PMMA cylinder cores. With PS as a nanomesh template, the 

samples were subjected to reactive ion etching (CF4) to create nanomesh structure in the 

strained silicon thin film. Finally, the remaining PS was removed by O2 plasma. The 

whole fabrication procedure is displayed in Figure 4.2.  

 

4.2.2.2 Scanning Electron Microscopy 

The scanning electron microscopy (SEM) was conducted on Hitachi SU8000 in-

line SEM.  

 

4.2.2.3 Confocal Raman Spectroscopy 

The confocal Raman spectroscopy was conducted on an inVia Raman 

microscope (Renishaw). A laser light (𝜆𝜆 = 514 𝑛𝑛𝑛𝑛 ) and a 100× Leica microscopic 

objective was used to spatially filter the analysis volume of the samples to provide a 

spatial resolution of 0.5 μm. 

Figure 4.2 A scheme of patterning nanomesh structure onto strained silicon thin films using the BCP method.  
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4.2.2.4 Electrical Conductivity Measurement 

For electrical conductivity, the four-point probe measurement was conducted on a 

SSOI device (2 inch×1 inch) as shown in Figure 4.3. The four contact pads (150 μm×150 

μm) were defined by photolithography with 1000 μm spacing and Ti/Pt (10 nm/100 nm) 

was deposited using electron-beam evaporation at a base pressure of ~2×10-6 Torr. After 

the liftoff, the device was annealed in forming gas at 350 °C for 5 min. The strained 

silicon thin film on the edges of each SSOI device was etched away by XeF2 to avoid 

electrical leakage from the top strained silicon layer to the silicon handle. The device was 

thermally attached to a chip carrier by silver paste. The four contact pads were then wire 

bonded to four pins on the chip carrier which was mounted to the sample stage of a 

cryostat (VPF-500, Janis). A sourcemeter (2400 SourceMeter, Keithley) was used to feed 

current through the outer two pins on the chip carrier and measure voltage between the  

 

Figure 4.3 A scheme of four-point probe measurement of electrical conductivity of the strained silicon thin films with 
nanomesh.  
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inner two pins to characterize the strained silicon thin film sheet resistance. The sheet 

resistance was then converted into electrical conductivity.  

 

4.2.2.5 Thermopower Measurement 

The thermopower was measured in the same cryostat. Once a steady temperature 

gradient was established across the SSOI device, both temperature and voltage drops 

were measured simultaneously by two nanovoltmeters (2182A, Keithley) as shown in 

Figure 4.4. The left side of the device was attached to the sample stage of the cryostat and 

the right side was attached to a Kapton heater; the Kapton heater served as the heat 

source while the temperature controlled sample stage served as a heat sink. Similarly to 

the electrical conductivity measurement, two Ti/Pt (10 nm/100 nm) contact pads (5 mm×1 

mm) were patterned about 1 cm apart on the strained silicon thin film with nanomesh via 

Figure 4.4 A scheme of thermopower measurement of strained silicon thin films with nanomesh.  
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electron beam evaporation at a base pressure of ~2×10-6 Torr, followed by the same 

forming gas annealing used in electrical conductivity sample preparation. Two pairs of 

twisted Ph-Br (Cu (94.8%), Sn (5%), Ph (.2%); OD 0.005 inch, polyimide insulation) wires 

were used for voltage measurement to lower the noise level. Two type-T (copper–

constantan) thermocouples were soldered with indium onto the two contact pads to 

measure the temperature difference. A self-programmed Labview VI was utilized for 

voltage and temperature collection. The thermopower was measured in vacuum (10-6 

Torr) environment to minimize heat loss through air conduction and convection and to 

prevent contamination from surrounding media. 

 

4.3 RESULTS AND DISCUSSION 

SEM images of the strained silicon thin films with nanomesh are shown in both 

top view (Figure 4.5(a)) and side view (Figure 4.5(b)). Figure 4.5(a) shows that the top 

strained silicon film was uniformly patterned with the hexagonally arranged nanomesh 

structure. The holes are ~18 nm in diameter and the pitch is ~34 nm, as shown in the 

Figure 4.5(a) inset; the porosity is calculated to be ~23%. These dimensions are inherited 

from the BCP template structure and may be tunable via varying the copolymer 

compositions. Figure 4.5(b) reveals the cross section of SSOI wafers in a tilted view. The 

top strained silicon layer is ~10 nm based on the contrast, which is confirmed by atomic 

force microscopy. It also shows that the nanomesh is completely etched through the top 

layer by reactive ion etching.  
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The nanomesh pattern transfer to the strained silicon thin film may cause slight 

local strain relaxation due to breaking of strained Si bonding and creation of additional 

free surfaces. However, the net biaxial tensile strain in the nanomesh film is expected to 

be preserved by the underlying SiOx layer. The magnitude of the net biaxial tensile strain 

before and after the nanomesh patterning was characterized using confocal Raman 

spectroscopy and normalized spectra are presented in Figure 4.6. In Figure 4.6a, 

spectrum of bulk silicon without nanomesh (solid curve) shows one major peak while 

spectra of strained silicon films without nanomesh exhibit an extra minor peak at a 

smaller wavenumber before (dash curve) and after (dash dot curve) the doping. These 

two peaks are associated with unstrained and strained silicon bonding, respectively, as 

labeled in the figure.10 The unstrained Si peaks in the two spectra of the strained silicon 

films are attributed to the scattering from the silicon handle beneath the SiOx layer.11 The 

sandwiched SiOx layer has a broad Raman peak beyond 2000 cm-1, which is outside the 

detection range here.12 Complete overlapping of these two spectra also suggests that  

Figure 4.5 (a) top view and (b) cross section view of the strained silicon thin films after the nanomesh patterning. 
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Figure 4.6 Confocal Raman spectra of strained silicon thin films (a) before and (b) after the nanomesh patterning.  
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doping with smaller phosphorus atoms does not affect the pre-existing biaxial tensile 

strain significantly. Gaussian fitting (dotted curves) of the strained silicon spectra reveals 

the positions of Si peak and strained Si peak to be 520.7 cm-1 and 514.5 cm-1. The redshift 

of strained Si peak indicates a reduced energy barrier for photons to overcome and 

engage in inelastic Raman scattering, as a result of the biaxial tensile strain in silicon 

bonding. The wavenumber difference between these two peaks (𝚫𝚫𝝎𝝎) can be used to 

determine the strain level (𝜺𝜺) in the strained silicon thin film using10 

 31.38 10ε ω−= × ∆   (4.6) 

The strain level before nanomesh patterning is 𝜺𝜺 = 0.86% . The spectrum of doped 

strained silicon thin film with nanomesh is shown in Figure 4.6(b). A similar Gaussian 

fitting is performed, revealing the strained Si peak at 514.9 cm-1. Using the same equation, 

the strain level is calculated to be 0.80%, which proves the expected weak relaxation of 

the biaxial tensile strain after nanomesh patterning. This level of strain has significant 

effects on the silicon band structure and improves electrical conductivity and power 

factor, as discussed below. 

The electrical conductivity was characterized by the standard four-point probe 

method on both strained and unstrained silicon thin films for direct comparison. A 

correction factor of 1.5 determined by a COMSOL simulation, is also included to 

compensate for the inhomogeneity of the nanomesh film in measurement.  The electrical 

conductivity 𝝈𝝈 is then determined by 

 1.5
sdRσ =   (4.7) 
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where 𝒅𝒅 is the strained silicon nanomesh film thickness and  

 4.53s
VR I=   (4.8) 

is the sheet resistance, 4.53 being the correction factor for four-point probe measurement 

on thin films due to the geometrical confinement of the current.  

Conductivities of the strained and unstrained silicon nanomesh thin films are 

shown in Figure 4.7a. Both films exhibit positive dependence of conductivity on 

temperature, indicating more electrons are excited to the conduction band at elevated 

temperature. More importantly, Figure 4.7a shows that the conductivity of the strained 

silicon thin film with nanomesh is approximately 4 times higher than that of the 

unstrained silicon thin film with nanomesh at 300 K; such substantial enhancement is 

throughout the entire temperature range from 230 K to 380 K. This is mostly attributed to 

the electron mobility enhancement due to conduction band splitting under biaxial tensile 

strain, as shown in the Figure 4.7a inset. In strained silicon, the six-fold degenerate 

conduction band minima (Δ6) split into two groups under biaxial tensile strain, with two 

equivalent cross-plane valleys in [001] direction (Δ2) shifting downwards and four 

equivalent in-plane valleys along [100] and [010] directions (Δ4) shifting upwards. The 

energy gap between Δ2 and Δ4 is strain dependent and characterized to be ~125 meV for 

the 0.80% biaxial tensile strain level.13 The conduction band splitting gives rise to 

enhanced electron mobility, 

 e
m
τµ ∗=   (4.9) 
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due to reduced electron effective mass 𝒎𝒎∗ and increased electron mean free scattering 

time 𝝉𝝉.14 In unstrained silicon, the effective mass is determined by the six equivalent 

ellipsoidal valleys, 

 6 4 2
t lm mm∗ = +   (4.10) 

where 𝒎𝒎𝒍𝒍 = 0.93𝒎𝒎𝟎𝟎 is the longitudinal mass and 𝒎𝒎𝒕𝒕 = 0.21𝒎𝒎𝟎𝟎 is the transverse mass. At 

sufficient strain level, the energy level of Δ2 is lower than that of Δ4 so electrons are 

redistributed to Δ2; therefore only the transverse mass of the Δ2 valleys contributes to the 

electron mobility.15 The electron scattering time also increases due to the suppression of 

inter-valley elastic scattering with optical phonons, which results from strain induced 

Figure 4.7 Temperature dependence of (a) electrical conductivity; (b) thermopower and (c) power factor of both 
unstrained and strained silicon thin films with nanomesh. Inset shows the conduction band splitting under the biaxia  
tensile strain.  
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conduction band splitting.16 The increased electron mobility gives rise to the 400% 

enhancement in the electrical conductivity of strained silicon thin film with nanomesh.  

It is also shown that the temperature dependence of the electrical conductivity of 

the strained silicon thin film with nanomesh is weaker than that of the unstrained one. As 

for the temperature dependence, 

 exp 2 B

E
k Tσ  ∝ − 

 
  (4.11) 

for doped semiconductors with the energy gap 𝑬𝑬  between the dopant level and the 

conduction band serving as the activation energy. Fitting of the unstrained silicon data 

gives 𝑬𝑬 ≈ 0.041 eV, which is consistent with the phosphorus doping.17 Similarly, 𝑬𝑬 is 

estimated to be 0.002 eV for the strained silicon film. Such energy gap difference 0.039 

eV is due to the aforementioned conduction band splitting and confirmed by high-

resolution soft X-ray absorption spectroscopy.18 For strained silicon thin films with 

nanomesh, the conduction band splitting results in weaker temperature dependence. It is 

also noticeable that our electrical conductivity values are an order of magnitude lower 

than those reported by another group.4 This is primarily because our doping level 4×1017 

cm-3 (from Hall measurement) is two orders lower than their doping level. With higher 

doping level, we expect to see larger electrical conductivity enhancement in strained 

silicon films.    

Thermopower was further examined on these films. The measured thermopower 

was negative because electron was the dominant charge carrier in n-typed doped films 

(Figure 4.7b). In both films, the thermopower actually goes to higher absolute values  
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almost linearly as the temperature increases. A similar trend has also been experimentally 

observed from 150 K to 300 K in a 100 nm thick, 55 nm pitch silicon nanomesh thin 

film.4 Such positive correlation between the thermopower and temperature can be 

recovered for different doping levels using an ab initio method and explained by the 

Boltzmann transport model under the relaxation time approximation.15 Essentially, it is 

suggested that a narrow distribution of the energy of the electrons participating in the 

transport renders a good thermopower.19 So as the Fermi level gradually shifts to the 

middle of the energy gap with increasing temperature, the energy distribution of electrons 

in the conduction band narrows (Figure 4.8a) and the thermopower improves. Moreover, 

the thermopower of strained silicon thin film with nanomesh exhibits a 36.5% reduction 

compared with the unstrained sample at 300 K. The reduction is also consistent with the 

ab initio calculation where the thermopower is expected to drop in biaxial tensile 

strained silicon.15 From the perspective of energy distribution, the lowered Δ2 broadens 

the energy distribution of conduction electrons (Figure 4.8b) so the thermopower is 

Figure 4.8 Schemes of influences of (a) temperature and (b) biaxial tensile strain on the energy distribution of transport 
electrons.  
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reduced. Saturation of the thermopower would be observed under sufficient strain when 

all the electron occupation states in Δ4 valleys are transferred to Δ2 valleys.   

The power factors 𝑺𝑺𝟐𝟐𝝈𝝈 for both strained and unstrained silicon thin films with 

nanomesh were compiled based on the electrical conductivity and thermopower results. 

Figure 4.7c shows that there is a ~100% increase in the power factor for the strained 

silicon thin film with nanomesh at 300 K compared with that of the unstrained silicon thin 

film as a result of the significant electrical conductivity enhancement. Besides the biaxial 

tensile strain level, the power factor also depends on the doping concentration. For the 

0.8% tensile strain silicon in this study, the power factor may be maximized with a doping 

concentration of 1020 cm-3.1 

 

4.4 CONCLUSIONS  

This study for the first time demonstrates the great potential of biaxial tensile 

strained silicon for thermoelectric applications. At the doping level of 4×1017 cm-3, 

strained silicon thin film with nanomesh exhibited ~400% enhancement in electrical 

conductivity but a ~36% reduction in thermopower compared to unstrained silicon thin 

film with nanomesh at 300 K. Both changes are attributed to the conduction band 

splitting under biaxial tensile strain. As a combined result, the power factor is almost 

doubled. Such a high power factor, together with greatly reduced thermal conductivity 

associated with the nanomesh structure, is expected to deliver several fold increase in 𝒁𝒁𝒁𝒁. 

It provides a perspective to further increase thermoelectric efficiency when using the 

“phonon-glass electron-crystal” approach.20, 21 
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CHAPTER 5 

CONCLUSIONS AND OUTLOOK 

 

Conjugated polymer thin film systems for photovoltaic application and strained 

silicon thin film system for thermoelectric application are studied in this thesis. Various 

electrical transport properties in the conjugated polymer system (charge carrier density, 

non-geminate recombination and carrier mobility) and in the strained silicon system 

(electrical conductivity, thermopower and power factor) were investigated in conjunction 

with full characterization of film morphology with feature sizes of tens to hundreds of 

nanometers (aggregation size and orientation, domain size, phase purity, tensile strain 

level). Such feature sizes are on the same dimension scale of materials’ intrinsic physical 

property (exciton diffusion length, phonon mean free path) and may affect the transport 

properties tremendously. The investigation results bestowed us better understanding of 

the film morphology effect on the electrical transport in those systems, which can further 

guide the design for superior device performance (𝑱𝑱𝑺𝑺𝑺𝑺,𝑽𝑽𝑶𝑶𝑶𝑶,𝑭𝑭𝑭𝑭,𝑷𝑷𝑷𝑷𝑷𝑷,𝒁𝒁𝒁𝒁). Specifically: 

In chapter 2, we utilized ToF and CELIV to demonstrate an order of magnitude 

monotonic enhancement in the out-of-plane hole mobility (7.1×10-5 cm2V-1s-1 to 8.6×10-4 

cm2V-1s-1) in pristine P3HT thin films as the film thickness increases from 80 nm to about 

700; the mobility saturates at that value at thicknesses beyond. XRD showed a slight 

increase in the P3HT aggregate size, which may partially contribute to the mobility 

improvement. SE revealed a similar varying trend of the film anisotropy degree as the 

mobility, from much negative degree (film being highly anisotropic) in thin films to 

almost zero degree (film being isotropic) in thick films. Combination of XRD and SE 

rendered a morphological image that more and more P3HT aggregates take the face-on 

orientation as the film becomes thicker and the substrate induced preference of edge-on 
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orientation fades. Increasing ratio of face-on P3HT aggregates facilitates the carrier 

transport in the direction normal to the substrate and gives rise to the order of magnitude 

enhancement in the out-of-plane hole mobility.  

In chapter 3, we employed EFTEM and UV-vis spectroscopy to investigate 

domain sizes and phase purities in three fundamentally different morphologies of the 

P3HT:PCBM (1:1) system, which were created by solvent casting, thermal annealing and 

scCO2 processing. Domain is greatly coarsened by thermal annealing while scCO2 

processing hardly enlarges the domain size; interfacial areas are thus much larger in the 

as-cast and scCO2 processed samples than in the thermal annealed samples. scCO2 

processing and thermal annealing both improve the phase purity and increase the P3HT 

polymer conjugation length. Morphological features were reconciled with electrical 

transport properties probed by photo-CELIV, which were further linked with device 

performance. Large interfacial areas gives high initial carrier density and high phase 

purity improves carrier mobility in the scCO2 processed sample, which synergistically 

leads to the highest 𝑱𝑱𝑺𝑺𝑺𝑺  among three morphologies. Long P3HT conjugation length 

induced by scCO2 processing and thermal annealing narrows the gap between the carrier 

quasi-Fermi levels and results in lower 𝑽𝑽𝑶𝑶𝑶𝑶 in those samples. High recombination rate 

resulting from large interfacial areas in the as-cast and scCO2 samples yields low 𝑭𝑭𝑭𝑭. 

In chapter 4, we used BCP method to pattern the nanomesh structure into the 

strained silicon thin films. Confocal Raman spectroscopy revealed that the biaxial tensile 

strain level decreased from 0.86% to 0.80% with the nanomesh patterning. Conduction 

band splitting induced by the remaining strain gives rise to reduction of the electron 

effective mass and addition to the inter-valley scattering time. The electrical conductivity 

therefore increases 300%-500% in the strained silicon films compared to unstrained ones. 

Band splitting also widens the energy distribution of transport electrons and decreases the 

thermopower by 30%-40%. The overall power factor is thus doubled in the near-room-

temperature range. 

The outlook of conjugated polymer systems for photovoltaic application is very 

bright as the 𝑷𝑷𝑷𝑷𝑷𝑷 of state-of-the-art polymer solar cells is steadily advancing towards 15% 
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with emerging polymers of superior properties. Polymers that can deliver better chemical 

properties like tunable band gap or better physical properties like controllable self-

assembly are being synthesized and tailored to need. Structure-property study in these 

new material system are certainly desired for scientific understanding of material physics 

and chemistry, which in return can be used as prediction and guidance for materials with 

excellent performance. 

On the other hand, with inherently low thermal conductivity (𝜿𝜿 ≈ 0.2 Wm-1K-1) 

and electrically semiconducting property, conjugated polymers are a natural candidate 

for near room temperature thermoelectric applications. Some pioneer works have been 

done, demonstrating that by tuning carrier concentration with doping, 𝒁𝒁𝒁𝒁 = 0.42 at room 

temperature can be achieved in PEDOT. Meanwhile, more other conjugated polymers 

like P3HT are being investigated for thermoelectrics. Compared to organic photovoltaics, 

organic thermoelectrics is more an uncharted territory, which is worth deeper 

exploration. 
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