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ABSTRACT 

 

Hebbian forms of synaptic plasticity, including long-term potentiation (LTP) and 

long-term depression (LTD), are thought to underlie learning and memory, but these 

processes may have a destabilizing effect on neural activity.  Homeostatic synaptic 

plasticity (HSP), often studied as compensatory adaptations driven by perturbations of 

neuronal activity, is thought to counteract the destabilizing influence of Hebbian 

plasticity in neural circuits.  However, it is unclear how these opposing forces on synaptic 

efficacy co-exist in neuronal circuits, largely because of the differing preparations and 

time domains over which they are studied.  To investigate interactions between these 

distinct forms of synaptic plasticity, we characterized a rapid form of HSP expressed at 

CA3-CA1 synapses in acute hippocampal slices.  By altering the frequency of Schaffer 

collateral stimulation, we induced compensatory changes in synaptic strength that are 

bidirectional, input-specific and mechanistically distinct from LTP and LTD.  

These features allowed us to address the manner by which HSP interacts with 

Hebbian plasticity at the same population of synapses.  Our results reveal that input-

specific HSP generally offsets the magnitude of subsequent Hebbian plasticity expression 

in an additive fashion.  Strikingly, we found that prior induction of Hebbian plasticity 

constrained the magnitude of subsequent HSP expression.  This interaction only occurs if 

both plasticities alter synaptic strength in the same direction, as input-specific HSP was 

otherwise able to compete with previously established Hebbian plasticity.  We identify a 
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scenario in which neither form of plasticity studied is dependent on new protein 

synthesis, yet the metaplastic interaction between them is mediated by local protein 

synthesis.  Taken together, the magnitude and durability of synaptic efficacy changes are 

a product of both Hebbian and homeostatic mechanisms, suggesting that HSP may also 

influence information coding and storage in neural circuits.   

Finally, we examine the nature of activity-dependent biosynthesis of FMRP 

involved in another local translation-dependent process at synapses, mGluR- LTD.  We 

find that mice with the Fragile X premutation exhibit impaired mGluR-dependent 

translation of dendritic FMRP and enhanced mGluR-LTD.  The synaptic plasticity 

phenotype is shared with Fragile X Syndrome model mice, yet involves a distinct 

underlying mechanism, suggesting a possible mechanism for cognitive defects in 

premutation carriers. 
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Chapter I 

Introduction: 

Activity-dependent synaptic plasticity in area CA1 

 

1.1   From Aristotle to Hebb 

“Memory is the scribe of the soul” 

     -Aristotle  

 

This succinct statement attributed to the great Greek philosopher who pondered 

the nature of memory more than 2000 years ago encapsulates the fundamental importance 

of memory to humanity.  How exactly we can remember events and facts for entire 

lifetimes has been of interest to scientists since the earliest days of neuroscience.  

Santiago Ramon y Cajal even conjectured on the mechanisms underlying this process in 

1894, speculating that increased mental activity causes greater branching of neuronal 

processes and connections between them (Jones, 1994, 1999).  Later, Donald Hebb 

described in more depth a candidate cellular mechanism, often referred to as Hebb’s rule, 

or Hebb’s postulate (Hebb, 1949).  Hebb described a rule whereby the connection 

between a pair of neurons would become stronger if they were simultaneously active.  

Within a network of neurons, this process would lead to the formation of cell assemblies, 

which would serve as the physical memory trace, or engram.  An important feature of the 
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cell assembly is that partial activation would lead to full activation of the assembly, so 

long as the cells involved were recurrently connected.  Taken together, Hebb provided a 

mechanism whereby synaptic changes could lead to memory formation at the scale of 

neuronal networks. 

Loss of the ability to form new memories through disease or injury has 

devastating consequences on quality of life.  In particular, damage to the human 

hippocampus has profound negative consequences on declarative memory formation, but 

not memory storage, since patients display severe anterograde amnesia but retrograde 

amnesia is typically less severe (Scoville & Milner, 1957; Squire & Wixted, 2011; Zola-

Morgan et al., 1986).  The basic hippocampal circuit is composed of a trisynaptic loop, a 

feedforward circuit involving three major regions:  The dentate gyrus (1) receives input 

from the surrounding entorhinal cortex via the perforant pathway.  Dentate gyrus neurons 

project via the mossy fibers to area CA3 (2), which then projects to area CA1 (3) via 

Schaffer collaterals.  CA1 axons then project to the subiculum and back to the cortex 

(Andersen et al., 1971).  Although this basic circuit is an oversimplification of the full 

hippocampal circuitry, it has proved an extremely useful paradigm in animal studies, 

which have demonstrated that the rodent hippocampus, and the CA1 hippocampal region 

in particular, is similarly involved in memory formation (Mayford et al., 2012; Morris et 

al., 1986; Shimizu, 2000; Tsien et al., 1996).  For example, lesions to the rodent 

hippocampus result in deficits in the Morris water maze assessment of spatial learning 

and memory (Bliss et al., 2003).  The hippocampus is not the only structure to have 

influence on learning and memory, but I will focus on this region for the purposes of this 

introduction. 
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Excitingly, experimental activation of cell assemblies underlying a learned 

memory may be achievable with currently available techniques.  Work from Tonegawa’s 

lab in mice has demonstrated a method to label active hippocampal cells during fear 

conditioning in one context with light-activated channelrhodopsin-2 (ChR2).   

Stimulating the labeled cells with the appropriate light while the mouse was in a neutral 

context elicited freezing behavior, a common measure of fear memory recall in rodents 

(Liu et al., 2012).  They extended these findings in an impressive set of experiments, in 

which they creating a false memory using a similar approach.  Investigators initially 

labeled a population of cells in the mouse hippocampus active during novel context 

exploration.  These mice were later placed in a second, fear conditioning context while 

driving spiking in the labeled neurons.  By activating the initial cell population during the 

creation of a fear memory, they tested whether the fear memory would map onto the 

active cell assembly representing the non-fearful context.  Indeed, these mice would 

freeze upon reintroduction to the initial context but not a completely novel context, 

suggesting the creation of a false memory and not just generalized fear behavior 

(Ramirez et al., 2013).  With the recent advent of light-activated channels with non-

overlapping excitation spectrums it will become possible to activate separate cell 

assemblies within the same experiment, which may allow more complex investigations of 

engrams underlying learning and memory (Klapoetke et al., 2014). 

1.2   Hebbian synaptic plasticity 

1.21   Long Term Potentiation (LTP) 
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Several decades after Hebb published his postulate, a cellular correlate of Hebb’s 

rule was discovered in the rabbit hippocampus (Bliss & Lømo, 1973).  In response to a 

rapid pattern of perforant pathway stimulation, investigators observed a persistent 

enhancement of neurotransmission.  Thus, it is known as long term potentiation (LTP).  

LTP is an associative process, as it occurs when a synapse experiences presynaptic 

activity and postsynaptic depolarization coincidently.  Since LTP strengthens the 

connection between simultaneously active neurons, it can be considered a biological 

implementation of Hebb’s rule.   

40 years of studies following up on this initial discovery of a Hebbian LTP have 

revealed that Hebbian processes come in many varieties (Bliss et al., 2003).  It should be 

noted that Hebbian plasticity has been reported in brain regions outside the hippocampus, 

including the neocortex and amygdala, but I will restrict my discussion primarily to 

findings from area CA1 of the hippocampus.  Different patterns of electrical stimulation 

delivered to the axons in a slice preparation produce varying degrees and types of 

plasticity (Cooper & Bear, 2012; Kirkwood et al., 1993).  A single burst of 100 pulses at 

100 Hz (a ‘tetanus’) typically produces a weaker and shorter lasting potentiation of 

postsynaptic responses.  The delivery of multiple tetani produces a much longer lasting 

and stronger potentiation.  Beyond the degree of potentiation, there are mechanistic 

differences between these plastic changes.  For instance, the weaker of the two, 

commonly referred to as early-phase LTP (E-LTP) does not require new transcription or 

translation for expression whereas the stronger late-phase LTP (L-LTP) requires new 

protein synthesis.  Before revisiting the protein synthesis requirements of Hebbian 

synaptic plasticity below, I will introduce a second type of plasticity. 
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1.22   Long Term Depression (LTD) 

The counterpart to LTP is long term depression, or LTD.  LTD was discovered in 

the CA1 region using the acute hippocampal slice preparation (Dudek & Bear, 1992; 

Stanton & Sejnowski, 1989).  Prior to discovery, LTD was predicted to occur under 

conditions when patterns of input activity fail to activate NMDA receptor-dependent 

signaling strongly enough to trigger LTP (Bienenstock et al., 1982).  The modification 

threshold is the switch point whereby postsynaptic activity lower than this threshold 

produces LTD and higher than this threshold produces LTP.  Consistent with the 

prediction, hyperpolarizing the postsynaptic neuron while delivering a typically LTP-

inducing stimulation (high frequency stimulation, HFS) resulted in depression of synaptic 

responses (Stanton & Sejnowski, 1989).  Induction of NMDA receptor-dependent LTD at 

CA1 can reliably be induced by delivering current pulses to Schaffer collaterals at a 

relatively slow frequency (low frequency stimulation, LFS < 10 Hz).  By delivering 900 

pulses across a wide range of frequencies in separate slices, Dudek and Bear (Dudek & 

Bear, 1992) were able to produce a plot of the frequency of presynaptic stimulation 

frequency versus the sign and degree of synaptic changes which resulted in a response 

curve similar to the curve produced by Bienenstock, Cooper and Munro (the BCM curve) 

(Bienenstock et al., 1982).   

Strictly speaking, LTD is not accounted for by Hebb’s original learning rule.  

However, since his original description, Hebb’s rule was extended to account for LTD, 

resulting in the Hebbian covariance rule (Dayan & Abbott, 2001; Sejnowski et al., 1989).  

The covariance rule specifies that synaptic strength increase when presynaptic and 

postsynaptic activity are positively correlated, but decrease if they are negatively 
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correlated, thus describing a role for LTD as an associative plasticity.  From this point on, 

when I refer to Hebbian plasticity I will be referring to LTP and LTD.  Like LTP, LTD 

can also be subdivided into a weaker early phase (E-LTD) and a longer lasting late phase 

(L-LTD) which requires de novo protein synthesis (Bear & Abraham, 1996; Collingridge 

et al., 2010; Manahan-Vaughan et al., 2000; Sajikumar et al., 2005). 

1.23   Hebbian Synaptic Plasticity – Protein Synthesis Dependence 

L-LTP is perhaps the most attractive candidate memory mechanism because 

several of its properties parallel those seen in memory formation.  It can produce 

extremely long-lasting changes in synaptic efficacy, in some cases observed for several 

months in vivo (Abraham et al., 2002).  Conversion of E-LTP to L-LTP requires new 

protein synthesis, and experiments across multiple systems for the last 50 years have 

revealed that consolidation of stable memories requires protein synthesis (Flexner et al., 

1963; Agranoff et al., 1965, 1966; Davis & Squire, 1984; Sutton et al., 2001; Costa-

Mattioli et al., 2009). Interestingly, reactivated memories can be sensitive to disruption 

and ultimately destabilize unless they undergo a process of reconsolidation that also 

requires new protein synthesis (Nader & Hardt, 2009; Tronson & Taylor, 2007).  Like 

LTP, L-LTD requires new protein synthesis for the changes to persist in an enduring 

form (Bear & Abraham, 1996; Collingridge et al., 2010; Manahan-Vaughan et al., 2000; 

Sajikumar et al., 2005).    

As already mentioned, LTP and LTD can be sub-classified based on their 

dependence on new protein synthesis, tested by global application of translation 

inhibitors.  Delivering a single train of high or low frequency stimulation leads to a 
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translation-independent enhancement or depression of synaptic strength (early-phase 

LTP/LTD) lasting 1-3 hrs, whereas repeated stimulation trains lead to more long-lasting 

changes in synaptic transmission (late-phase LTP/LTD) that require protein synthesis 

(Frey et al., 1988; Huang & Kandel, 1994; Manahan-Vaughan et al., 2000).  

Transcription has also been shown to be important for L-LTP in vitro and in vivo 

(Alberini, 2009; Frey et al., 1996).  Consistent with this view, a number of transcription 

factors are involved in both LTP and memory, including cAMP response element binding 

protein (CREB), CCAAT enhancer binding protein (C/EBP), and others (for an extensive 

review of specific transcription factors underlying LTP and memory, see Alberini, 2009).   

1.24   in vivo LTP induced by learning 

Another point of connection between LTP and memory is in the common 

molecular mechanisms required for each.  There are a number of molecules important for 

LTP and memory, which includes, but is not limited to, NMDA receptors (NMDARs), 

CaMKII, BDNF, IGF2 and Arc/Arg3.1 (Chen et al., 2011; Lu et al., 2008; Morris et al., 

1986; Plath et al., 2006; Silva et al., 1992; Silva et al., 1992).  Of course, demonstration 

that LTP and memory involve some of the same molecular mechanisms does not 

necessarily imply that LTP underlies or causes memory consolidation.  For instance, in 

vivo NMDAR blockade disrupts LTP and memory formation (Morris et al. 1986), but 

Autry et al. (2011) found that NMDAR blockade led to an increase in hippocampal 

protein synthesis and BDNF production.  This finding provides but one potential 

consequence of NMDAR blockade beyond selectively disrupting LTP induction, and 

there are almost certainly other unappreciated effects.  However, together with the points 
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I have already discussed, it is generally assumed that Hebbian plasticity plays a dominant 

role in memory formation.  In addition, numerous studies have found strong correlations 

between LTP expression and memory performance (Malenka & Bear, 2004).  For a 

recent example, applying recombinant insulin-like growth factor 2 (IGF-2) to the rodent 

hippocampus leads to both enhanced LTP and greater memory performance on an 

inhibitory avoidance task, whereas disrupting IGF-2 signaling blocked both of these 

effects (Chen et al., 2011).  Notably, LTP-like changes have been recorded in the 

hippocampus in response to learning in awake, behaving animals, and this LTP occludes 

subsequent tetanus-induced potentiation suggesting the mechanisms underlying learning-

induced potentiation are similar to the LTP typically studied (Neves et al., 2008; 

Whitlock et al., 2006).   

1.3   Molecular mechanisms underlying Hebbian synaptic plasticity 

1.31   NMDA receptors and calcium 

Hebbian forms of plasticity at CA3-CA1 synapses are largely induced and 

expressed postsynaptically (Malenka & Bear, 2004).  One of the most fundamental 

proteins in both LTP and LTD is the glutamatergic NMDA receptor.  This ionotropic 

receptor is permeable to Ca
++

 ions, in addition to Na
++

 ions, but is gated by both 

glutamate and membrane voltage.  The voltage gate is achieved by a Mg
++

 ion block in 

the pore of the channel that is removed upon sufficient depolarization.  This property 

allows the receptor to act as a detector of coincident activation between a presynaptic 

input and the postsynaptic target, an essential feature of a Hebbian process.  Importantly, 

NMDAR antagonists block LTP induction in vitro and in vivo (Abraham et al., 1987; 
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Morris et al., 1986).  In vivo disruption of NMDAR activation, pharmacologically or 

genetically, also blocks formation of certain types of memory, consistent with the idea 

that NMDAR-dependent LTP underlies memory (Morris et al., 1986; Tsien et al., 1996; 

but see Bannerman et al., 2012).  LTD also requires NMDAR activation (Dudek and 

Bear, 1992), so in vivo blockade of NMDARs will affect both types of Hebbian 

plasticity.  Thus, while this data implicates Hebbian synaptic plasticity in memory 

formation, it is not clear that LTP alone is required.  Furthermore, NMDAR involvement 

in processes other than LTP/LTD may contribute to the memory deficits observed.  A 

common feature of major synaptic plasticity subtypes is their dependence on calcium 

signaling.  Since NMDA receptors are permeable to Ca
2+

 ions and they are activated 

during LTP and LTD induction, activated NMDA receptors are a likely source of 

elevated calcium required for LTP and memory (Wayman et al., 2008).    

1.32   CaMKII 

Elevation of postsynaptic calcium binds to calmodulin and activates 

calcium/calmodulin-dependent protein kinase II (CaMKII), a dodecameric holoenzyme 

strongly implicated in LTP and memory formation (Lisman et al., 2012).  Active CaMKII 

phosphorylates CaMKII in trans at T286 which keeps the kinase in a persistently active 

state.  Introduction of constitutively active CaMKII potentiates synaptic responses and 

preventing T286 phosphorylation blocks LTP and memory (Lledo et al., 1995; Giese et 

al., 1998).  Interestingly, active CaMKII is targeted to the postsynaptic density of active 

synapses, providing part of the mechanism for the synapse specificity of LTP.  At active 

synapses, CaMKII activity leads to enhanced AMPA receptor (AMPAR) signaling.  

Potentiated AMPAR-mediated currents can occur via increase single channel 
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conductance, increased AMPAR surface accumulation, or both (Bredt & Nicoll, 2003; 

Poncer et al., 2002).  Phosphorylation of AMPAR and the auxillary subunit stargazin by 

CaMKII are important for proper AMPAR delivery to synapses (Opazo et al., 2010; 

Tomita et al., 2005).  Phosphorylation of the GluA1 AMPAR subunit at S831 by CaMKII 

increases the single channel conductance and is thought to occur in the early stages of 

LTP expression (Bredt & Nicoll, 2003). 

1.4   The problem with purely Hebbian circuits 

 Although there is strong evidence that Hebbian modifications are a crucial 

component of learning and memory, they cannot be the only mechanism operating in 

neural networks.  Networks that operate purely by Hebbian plasticity rules have been 

shown to be inherently unstable due to the positive feedback nature of LTP/LTD (Miller, 

1996).  If the connection between any two neurons is strengthened by coincident activity, 

then one can assume after a sufficiently long period of time that the neurons will be 

coincidently active and strengthened, which will increase the probability of subsequent 

strengthening.  In time, the connections will be strengthened to saturation and the 

overarching network will be inflexible.  The discovery of LTD was initially thought to 

counteract this problem by weakening the connections when activity of neuron pairs did 

not coincide (Dudek & Bear, 1992; Stanton & Sejnowski, 1989).  However, 

computational models have revealed that networks expressing both of these processes are 

still unstable (Dayan & Abbott, 2001; Turrigiano & Nelson, 2000).  Thus, a number of 

solutions have been explored which serve to confer network stability.  One solution based 

primarily on the computational modeling data was to augment the Hebbian learning rule 

with an artificial renormalization term to constrain saturating values the synaptic weights 
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(Oja, 1982).  However, there is now strong evidence for empirically-based solutions 

relevant to the stability of neural networks.  For the remainder of this introduction, I will 

discuss two of these research areas: metaplasticity and homeostatic plasticity. 

1.5   Metaplasticity 

An interesting feature of synaptic plasticity is that the plasticity processes are not 

fixed, but are altered depending on recent history, a phenomenon known as metaplasticity 

(Abraham & Bear, 1996).  This ‘plasticity of plasticity’ adds substantial complexity to 

the understanding of neural circuits.  On a technical level, this means that one has to take 

into account the history of synaptic activation to predict the outcome of a plasticity-

inducing protocol.  More importantly, it suggests that an understanding of metaplasticity 

will give insight into how plasticity processes, most often studied in simplified slice 

preparations, function in dynamic neural networks of living animals. 

The stabilizing element of metaplasticity can readily be seen using the BCM 

curve previously discussed.  The modification threshold was defined as the junction point 

between activity levels that would produce LTD and LTP.  A network with a fixed 

modification threshold is unstable, but if that threshold can vary based on the history of 

activity, then it may be possible to add stability.  To confer stability, the modification 

threshold must vary in a manner to make it more difficult to achieve the same direction of 

change (Bienenstock et al., 1982).  In Chapter III, I describe a novel form of 

metaplasticity that is consistent with this requirement.   

1.6   Homeostatic Plasticity 

1.61 Theoretical need for homeostatic plasticity 
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LTD was originally thought to contribute to the stability of neural networks by 

balancing out LTP, but computational models revealed continued instability (Dayan & 

Abbott, 2001; Dudek & Bear, 1992; Stanton & Sejnowski, 1989).  These models show 

that Hebbian processes will lead to instability in neural circuits due to their positive-

feedback nature if not balanced by a negative-feedback mechanism (Renart et al., 2003).   

Negative-feedback processes which compensate for changes in neural activity have been 

described in neurons and neuronal networks, and these define so-called “homeostatic” 

forms of plasticity.  The earliest relevant studies were conducted in crustacean 

stomatogastric ganglion.  Isolating a rhythmically firing neuron from this network 

abolished its rhythmic activity.  However, the rhythmic firing returned after several days 

in single neuron cultures (Turrigiano et al., 1994).  This study revealed that an isolated 

neuron has a preferred activity pattern, or a set point of firing rate.  Deviation from this 

set point can be detected, and compensated for by some mechanism.  This and similar 

studies have led to the notion that neurons homeostatically regulate their own activity 

through internal mechanisms that achieve homeostasis of activity rates (Marder & Prinz, 

2002).  Although complete isolation of a neuron from its network may be a rather drastic 

scenario, neurons face a variety of activity altering situations throughout the life of an 

organism, including growth, development and extreme sensory events, such as eye 

opening in the rodent (Turrigiano & Nelson, 2004).  Given the apparent stability of neural 

systems through these challenges, homeostatic plasticity is likely a fundamental 

component of nervous systems.  Although a strict definition of homeostatic plasticity is 

that some feature of neuronal activity is maintained steadily, the term is often used to 
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describe any compensatory process that seeks to achieve homeostasis, whether or not it is 

completely successful.    

1.62   Homeostatic Synaptic Plasticity (HSP) 

Forms of plasticity involving compensatory changes enacted at synapses are 

generally referred to as homeostatic synaptic plasticity (HSP).  In addition to synaptic 

forms of homeostatic plasticity, compensatory changes in intrinsic excitability have also 

been found to promote stable firing rates.  The properties and mechanisms of intrinsic 

homeostatic plasticity will not be explicitly discussed here (for an excellent review, see 

Turrigiano, 2011). 

Homeostatic forms of synaptic plasticity which compensate for changes in 

activity can be expressed at different levels within a neuron, either on a global scale 

involving cell-wide changes or on a local level, implementing changes in a spatially 

restricted manner.  Although a spectrum of HSP subtypes may exist, I will distinguish 

between two broad categories of HSP: global HSP and local HSP.  It is currently 

accepted that both forms exist at excitatory synapses, but initial studies were interpreted 

to reflect a single global HSP mechanism and this view dominated the literature for 

several years (Turrigiano & Nelson, 2004).  Although compensatory changes at 

inhibitory synapses have also been observed (Bateup et al., 2013; Echegoyen et al., 

2007), I will concentrate my discussion of HSP to excitatory synapses.  

1.63   Global HSP 

In early studies using dissociated cultures of neocortical neurons, Turrigiano and 

colleagues (1998) found that chronically perturbing neural activity gave rise to changes in 
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the efficiency of synaptic transmission, as measured by changes in the size of miniature 

excitatory postsynaptic potentials (mEPSCs) resulting from spontaneous release of a 

single synaptic vesicle.  Chronic blockade (48 hours) of action potentials in cultured 

neocortical neurons with the voltage-gated sodium channel antagonist tetrodotoxin (TTX) 

produced a compensatory increase in mEPSC amplitudes due to a transcription-

dependent accumulation of GluA2-containing AMPARs (Gainey et al., 2009).  HSP is a 

bidirectional process, as chronic blockade of GABAA-mediated inhibition with 

bicuculline, which increases overall activity, resulted in decreased mEPSC amplitudes 

(Turrigiano et al., 1998).   

Early analysis revealed that the size of mEPSCs were adjusted multiplicatively 

and thus synaptic transmission was thought to scale up or down in response to changes in 

average activity (Turrigiano & Nelson, 2004).  However, since the activity-altering 

manipulation would likely involve all synapses, the interpretation of these changes as 

global HSP may have been premature.  A subsequent demonstration that blocking 

postsynaptic firing with microperfusion of TTX at the soma induces AMPAR 

accumulation throughout dendrites provided stronger evidence that blocking postsynaptic 

spiking leads to global scaling up of synaptic weights (Ibata et al., 2008).  More recently, 

Goold and Nicoll (2010) showed that chronically driving action potentials in ChR2 

expressing neurons using repeated photoactivation causes a cell-autonomous decrease in 

AMPAR and NMDAR mediated currents.  Notably, chronic blockade of action potentials 

has also been shown to induce HSP in vivo.  Surgical implantation of TTX impregnated 

Elvax polymer near CA1 in rats led to an increase in the amplitude of mEPSCs in acute 

hippocampal slices made 2 days following implantations (Echegoyen et al., 2007).  That 
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same year, it was reported that dark rearing mice leads to a multiplicative increase in 

mEPSCs in visual cortical neurons (Goel & Lee, 2007), similar to the effect observed in 

cultured neurons (Turrigiano et al., 1998). 

1.64   Local HSP 

Although there is evidence for global HSP at excitatory synapses (Ibata et al., 

2008; Turrigiano et al., 1998; Goold & Nicoll, 2010), the existence of local HSP has also 

been substantiated (Branco et al., 2008; Hou et al., 2011; Hou et al., 2008; Ju et al., 2004; 

Sutton et al., 2006).  Based on early studies, it was generally assumed that HSP operates 

on a very slow timeframe of hours to days.  More recently, several studies have identified 

rapid forms of homeostatic plasticity that operate from within a few hours to mere 

minutes (Branco et al., 2008; Frank et al., 2006; Hou et al., 2011; Ibata et al., 2008; Ju et 

al., 2004; Sutton et al., 2006), suggesting that homeostatic plasticity is not necessarily a 

slow process sensitive only to chronic activity manipulations.  One of the earliest studies 

demonstrating rapid, local HSP was found by blocking NMDA receptors in addition to 

action potentials (TTX+APV) in cultured hippocampal neurons, leading to an increase in 

the amplitude of mEPSCs within 60 minutes (Sutton et al., 2006).  Impressively, local 

microperfusion of APV across a subsection of dendrite induced protein-synthesis 

dependent increases in AMPAR accumulation only within the perfused region, indicating 

spatially restricted alterations in synaptic activity drive local compensatory adaptations.  

Unlike chronic treatment with TTX alone, this rapid compensatory process is mediated 

by postsynaptic insertion of GluA2-lacking, Ca
++

-permeable AMPARs (Sutton et al., 

2006; Gainey et al., 2009).  A similar result was obtained by AMPAR blockade in place 

of NMDAR blockade, although this treatment has also been shown to involve presynaptic 
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changes (Henry et al., 2012; Jakawich et al., 2010).  Both TTX+APV and AMPAR 

blockade treatments lead to dendritic protein synthesis via dephosphorylation of 

eukaryotic elongation factor-2 (Henry et al., 2012; Nosyreva et al., 2013; Sutton et al., 

2007), suggesting at least partially overlapping mechanisms. 

In another study, reducing glutamate release via chronic hyperpolarization of 

presynaptic neurons by expressing the inwardly rectifying potassium channel Kir2.1 

induced a local increase in AMPAR accumulation at postsynaptic targets (Hou et al., 

2008).  As neighboring synapses terminated by non-Kir2.1 neurons showed no AMPAR 

accumulation, this study revealed a synapse-specific form of HSP.   On the flip side, 

increasing activity at presynaptic terminals by expressing and activating light-gated 

receptors lead to a decrease in AMPAR abundance only at those excited synapses (Hou et 

al., 2011).  In this study, investigators detected compensatory changes after only 30 

minutes of light stimulation (delivered every 20 seconds).  Interestingly, this input-

specific, rapid change depended on calcium and NMDAR activation, all features 

common with Hebbian synaptic plasticity. 

 The most rapid compensatory process reported to date was observed at the 

Drosophila neuromuscular junction.  Application of philanthotoxin to block postsynaptic 

glutamate receptors resulted in a compensatory increase in presynaptic release of 

glutamate within 5-10 minutes, revealing that some neurons have the potential to rapidly 

compensate for detected deviations in activity levels (Frank et al., 2006).  I will provide 

evidence for a rapid compensatory process operating at vertebrate central neurons 

operating over a similar timeframe in Chapter II. 
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1.65   Hebbian - Homeostatic plasticity interaction 

One issue that remains poorly understood is how Hebbian synaptic modifications 

endure in the face of homeostatic mechanisms that should theoretically reverse them.  

One appealing solution to this paradox has homeostatic plasticity uniformly scaling all 

the synapses of a neuron in order to compensate for chronic changes in activity (global 

HSP), which might preserve relative changes in synaptic strength produced through 

Hebbian modification (Turrigiano & Nelson, 2000).  However, it is unclear whether 

maintaining relative synaptic weights preserves information storage capabilities or 

confers stability to neural networks.   

Since homeostatic and Hebbian forms of synaptic plasticity have been studied 

independently of each other, how these seemingly opposed processes function together at 

the same synapses is unclear.  Prior investigations into the interplay between LTP/LTD 

and homeostatic plasticity mainly come from theoretical studies of model neurons.  

Analysis of these models revealed that homeostatic plasticity may play a lead role in 

influencing synaptic transmission in hippocampal CA1 neurons (Rabinowitch & Segev, 

2006; Yeung et al., 2004).  However, experimental support for proposed interactions is 

lacking.  For example, Bonhoeffer and colleagues found that the decay of LTP to baseline 

was dependent on test pulse frequency, a finding they postulated as reflecting a 

homeostatic process (Fonseca et al., 2004).  However, it is unclear whether the decay 

represents an actual homeostatic process or some other mechanism, since studies of 

homeostatic plasticity have largely been confined to cultured networks of neurons.  In 

contrast, Hebbian forms of plasticity are best studied in hippocampal slice preparations 

where the intrinsic hippocampal circuitry is preserved.  The inability to study Hebbian 
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and homeostatic plasticity mechanisms over the same time-scale and at the same 

population of synapses has greatly impeded our ability to evaluate theoretical interactions 

between homeostatic and Hebbian plasticity.  Such issues of metaplasticity have general 

significance beyond the hippocampus, and it is likely that empirical studies will provide 

general insights into this overall issue.  In Chapters II and III, I will demonstrate methods 

to overcome this challenge. 

1.7   Local protein synthesis and Fragile X Mental Retardation Protein (FMRP) 

1.71   Local translation  

Since polyribosomes were first detected in dendrites (Steward & Levy, 1982), the 

functional role of local protein synthesis in dendrites has been under intense investigation 

(e.g., Costa-Mattioli et al., 2009; Sutton & Schuman, 2006).  In line with this, numerous 

studies have reported mRNA trafficking out to dendrites, resulting in a constantly 

growing list of dendritically localized mRNAs (Martin & Zukin, 2006; Cajigas et al., 

2012).  Several forms of synaptic plasticity already discussed are locally expressed and 

require de novo protein synthesis, suggesting that protein synthesis is occurring locally, 

near synaptic sites.  Indeed, local dendritic translation is required for LTP (Huang & 

Kandel, 2005; Kang & Schuman, 1996), non-NMDAR mediated LTD (Huber et al., 

2000; discussed below), and local HSP (Soden & Chen, 2010; Sutton et al., 2006).  

Regarding the last point, the finding that miniature release events suppress dendritic 

translation in their postsynaptic targets led to the initial discovery of local HSP (Sutton et 

al., 2004; Sutton et al., 2006). 

1.72   FMRP is a translation suppressor 
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 An RNA-binding protein that regulates dendritic translation is the Fragile X 

mental retardation protein (FMRP) which suppresses translation by blocking ribosomal 

scanning.  As the name suggests, mutations in the Fmr1 gene which encodes FMRP cause 

the neurodevelopmental disorder Fragile X Syndrome (FXS).  When FMRP is 

phosphorylated it binds target transcripts and suppresses translation.  FMRP is 

phosphorylated by p70 S6 kinase (S6K) (Narayanan et al., 2008).  Dephosphorylation of 

FMRP by protein phosphatase 2A (PP2A) causes unbinding from RNA and an 

upregulation of translation of FMRP targets (Santoro et al., 2012).  FMRP is a key 

molecule associated with local protein synthesis, since it is not only found near synapses, 

but has also been shown to regulate translation of dendritic transcripts (Bassell & Warren, 

2008).  The role of FMRP-regulated local translation has been a topic of great interest 

recently, particularly its role in protein synthesis dependent form of synaptic plasticity I 

have not yet discussed. 

1.73   FMRP in synaptic plasticity 

At CA1 synapses, activation of group 1 mGluRs via low frequency stimulation 

(LFS) in the presence of APV, paired-pulse LFS or direct application of an mGluR 

agonist leads to a form of long term depression (mGluR-LTD) that is independent of 

NMDAR activation and calcium
 
(Fitzjohn et al., 2001; Fitzjohn et al., 1999; Kemp & 

Bashir, 1999; Oliet et al., 1997; Overstreet et al., 1997; Palmer et al., 1997; Schnabel et 

al., 1999).  In synaptoneurosome preparations, mGluR agonists drive local protein 

synthesis (Weiler et al 1993).  Interestingly, mGluR-LTD requires de novo dendritic 

protein synthesis (Huber et al., 2000).  Physically removing the cell body layer from the 

apical dendrite layer where recordings took place permits mGluR-LTD expression.  
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Induction of mGluR-LTD was abolished in the presence of translation inhibitors 

anisomycin, cyclohexaminde or an mRNA cap analogue (introduced postsynaptically), 

but not the transcription inhibitor actinomycin D (Huber et al., 2000).  Thus, activation of 

mGluRs is thought to induce local translation of LTD-associated proteins. 

In Fmr1KO mice, mGluR-LTD is enhanced, presumably due to increased 

expression of LTD-associated proteins (Hou et al., 2006; Huber et al., 2002).  In striking 

contrast to their WT counterparts, FMR1KO mice exhibit mGluR-LTD that is not 

dependent on new protein synthesis (Hou et al., 2006; Nosyreva & Huber, 2006; Volk et 

al., 2007).  These findings have led to a proposal whereby a constitutive abundance of 

LTD-associated proteins in the dendrites leads to exaggerated mGluR-signaling which is 

normally balanced by FMRP suppression of LTD proteins (Bear Huber Warren 

REVIEW).  Consistent with this proposal, decreasing mGluR signaling via genetic 

(Dölen et al., 2007) or pharmacological (Michalon et al., 2012) methods in Fmr1KO mice 

restores mGluR-LTD expression levels.   

FMRP has also been shown to be involved in local HSP (Soden & Chen, 2010).  

Fmr1KO mice don’t exhibit the protein-synthesis dependent increases in mEPSC 

amplitude previously observed after long term treatment with TTX and APV (Aoto et al., 

2008; Soden & Chen, 2010).  Surface biotinylation experiments show that Fmr1KO 

neurons don't show an increase in surface GluA1 levels as seen in WT neurons (Soden & 

Chen, 2010).  Despite this recent study and the overwhelming evidence that FMRP is 

central to proper mGluR signaling and LTD, NMDAR-dependent forms of LTP and LTD 

are largely unaffected in FMR1KO mice (Sidorov et al., 2013).   
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1.74   Fragile X Syndrome (FXS) and Fragile X-Associated Tremor Ataxia Syndrome 

(FXTAS) 

 FMRP was discovered in the search for the genetic basis of what is now called 

Fragile X Syndrome (FXS), but was originally described as Martin-Bell Syndrome 

(Krueger and Bear 2011).  As the name suggests, the FMR1 gene is located on the X 

chromosome.  Hyper-methylation of an expanded CGG sequence repeat (>200 repeats) in 

the 5’ UTR of FMR1 silences its expression, and loss of Fmr1 mRNA and FMRP leads to 

autism and intellectual disability (Kremer et al., 1991; Pieretti et al., 1991).  The work 

discussed above has led to the mGluR theory of FXS, and since decreased mGluR 

signaling can correct the deficits reported in Fmr1KO mice, clinical trials in FXS patients 

are underway (Krueger et al., 2011).   

Intermediate CGG repeat expansions between ~45 and 200 repeats (a 

“premutation”) are associated with the conditions Fragile X-associated Tremor Ataxia 

Syndrome (FXTAS) (Berry-Kravis et al., 2007) in elderly males and Fragile X-associated 

Primary Ovarian Insufficiency (FXPOI) in females (Hagerman & Hagerman, 2004).  

Male premutation carriers with FXTAS present with gait ataxia, action tremor, dementia 

and neuropsychiatric symptoms (Berry-Kravis et al., 2007; Jacquemont & Hagerman, 

2004).  FXS was originally characterized as a neurodevelopmental disorder and FXTAS 

as a neurodegenerative disorder (Berry-Kravis et al., 2007), but that dichotomy is 

complicated by the finding that premutation carriers also display higher rates of autism 

and ADHD-like symptoms at younger ages (Farzin et al., 2006; Hagerman, 2013).  Given 

the partially overlapping symptoms between FXS patients and young premutation 

carriers, it is reasonable to ask whether they share a common pathophysiology.  This 
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question will be addressed in Chapter IV investigating mGluR-mediated signaling and 

LTD in a CGG knock-in mouse model carrying a premutation-sized repeat. 
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Chapter II 

Rapid, input-specific homeostatic synaptic plasticity at CA3-CA1 synapses 

compensates for changes in action potential frequency 

 

2.1 Introduction 

Homeostatic synaptic plasticity (HSP) has emerged as the negative feedback 

counterpart to Hebbian processes, such as long-term potentiation (LTP) and long-term 

depression (LTD), that are thought to underlie learning and memory (Bliss & Lømo, 

1973; Hebb, 1949; Turrigiano & Nelson, 2000).  Despite this widespread notion, HSP has 

rarely been studied in the same context as Hebbian plasticity.  Three major hurdles exist 

in addressing the relationship between Hebbian and homeostatic forms of synaptic 

plasticity: 1) they are typically studied in different preparations, 2) they are studied using 

distinct induction methods, and 3) they are studied over greatly varied time-scales.  For 

example, LTP and LTD are typically examined in acute brain slice preparations and 

rapidly induced using electrical stimulation within seconds to minutes, whereas HSP has 

routinely been studied in cultured neurons in response to pharmacological manipulation 

of activity over multiple hours to days (Malenka & Bear, 2004; Turrigiano & Nelson, 

2004). 

Recently, several studies have identified rapid forms of homeostatic plasticity that 

operate from within a few hours to mere minutes (Branco et al., 2008; Frank et al., 2006; 
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Hou et al., 2011; Ju et al., 2004; Sutton et al., 2006), suggesting that homeostatic 

plasticity is not necessarily a slow process.  These observations prompted us to ask 

whether HSP could be examined in the relatively short-lasting (~10 hours) preparation of 

the acute hippocampal slice, in which LTP and LTD are typically studied.  Rather than 

using pharmacological manipulators of activity, we postulated that altering the frequency 

of afferent stimulation to manipulate activity levels impinging upon CA1 synapses would 

similarly reveal rapid compensatory changes in synaptic strength.  The existence of HSP 

induced in this fashion would allow for investigation of potential interactions between 

Hebbian and homeostatic forms of synaptic plasticity. 

Here, we demonstrate a rapid form of homeostatic synaptic plasticity at CA3-CA1 

synapses in acute hippocampal slices.  By altering the frequency of Schaffer collateral 

stimulation, we observe compensatory strengthening or weakening of synaptic inputs 

depending on whether the frequency is decreased or increased, respectively.  We find that 

NMDA receptor (NMDAR) activation and post-synaptic calcium are necessary for the 

expression of compensatory changes in synaptic strength.  Unlike the mechanisms 

underlying LTP and LTD, we find that homeostatic synaptic plasticity induced by a shift 

in input stimulation frequency occurs independently of CaMKII or calcineurin activity.   

These features allowed us to address the manner by which this HSP co-exists with 

Hebbian plasticity at the same population of synapses.  We find that homeostatic synaptic 

compensation offsets the magnitude of LTP subsequently induced, but does not alter the 

relative change in synaptic strength from the “scaled” baseline.  Finally, we demonstrate 

that homeostatic plasticity can enhance the magnitude and durability of previously 

established LTP, revealing that the net output of this network is the result of intricate 
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interactions between Hebbian and homeostatic plasticity.  These results demonstrate the 

advantages of inducing input-specific HSP in acute hippocampal slices for studying 

potential interaction with Hebbian processes. 

2.2 Materials and Methods  

2.21   Acute hippocampal slice preparation 

All procedures involving animals were approved by the University Animal Care and Use 

Committee.   Sprague Dawley rats, aged 2-3 weeks, were decapitated and the 

hippocampal lobules were rapidly isolated in artificial cerebral spinal fluid (aCSF).  

Older rats were similarly dissected.  aCSF contained (in mM): 119 NaCl, 2.5 KCl, 1 

NaH2P04, 26.3 NaHCO3, 11 glucose, 1.3 MgSO4, and 2.5 CaCl2.   Transverse slices (400 

µm) of the hippocampus were cut using a tissue chopper (Stoelting).  Slices were then 

incubated at room temperature in a humidified interface chamber for at least 2 hours 

before recording. 

2.22   Field electrophysiology 

Hippocampal slices were transferred to a recording chamber, maintained at 26-28°C and 

continuously perfused at 1-2 ml/min with oxygenated aCSF.  Area CA1 was visualized 

with an Olympus SZ51 dissecting microscope, which was also used for electrode 

placement.  Recording electrodes were pulled from borosilicate capillary glass and filled 

with 3M NaCl (1.7 mm o.d.; VWR International).  The recording pipette was placed in 

the stratum radiatum of CA1.  Recordings were made with a MultiClamp 700B amplifier, 

collected using Clampex 10.2, and analyzed using Clampfit 10.2 (Molecular Devices).   

Field excitatory postsynaptic potentials (fEPSPs) were evoked using cluster electrodes 
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also placed in the stratum radiatum of CA1 (FHC).  Current between 0.02-0.25 mA for 

0.1s was delivered with an ISO-flex stimulus isolator (AMPI).  For experiments, current 

was set at a level to elicit 50% of the maximum response.  In experiments where two 

pathways were stimulated, electrodes were placed on opposite sides of the recording 

electrode.  We verified pathway independence by applying two pulses with a 50 msec 

interpulse interval to the two pathways and screening for less than 10% paired-pulse 

facilitation. For all studies, manipulation of frequency followed 30 minutes of stable 

baseline.  If pharmacological agents were included in the experiments, they were applied 

for 30 minutes after stable baseline was obtained, and then plasticity was induced.  The 

following pharmacological inhibitors were used: D,L-APV (100 µM; Tocris), nifedipine 

(10 µM; EMD Biosciences), FK506 (50 µM; LC Laboratories), KN-93 (10 µM; 

Calbiochem), and KN-62 (10 µM; Calbiochem).  D,L-APV was re-suspended in water; 

all other drugs were dissolved in DMSO.  When the drugs were dissolved in DMSO, 

0.1% DMSO was added to the aCSF in control experiments to account for possible 

effects of DMSO. 

2.23   Whole-cell patch-clamp electrophysiology 

CA1 pyramidal neurons were targeted using a blind, whole-cell patch-clamp approach.  

Preparation and equipment was the same as for the field recordings, except that recording 

electrodes (with resistances of 4–6 MΩ) contained (in mM) 115 KMeSO4, 15 KCl, 5 

NaCl, 0.02 EGTA, 1 MgCl2, 10 Hepes, 10 Na2-phosphocreatine, 4 Mg-ATP, and 0.3 Na-

GTP.  For BAPTA experiments, the concentration of KMeSO4 was decreased to 95 mM 

and 10 mM BAPTA-tetraK+ (Invitrogen) was included in the recording solution.  CA1 

pyramidal cells were patched and either eEPSCs or eEPSPs were evoked with stimulating 
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electrodes were placed in stratum radiatum of CA1.  Stimulation frequency was altered 

30 minutes after patch, and, if possible, returned to the baseline frequency after another 

30 minutes.  For voltage-clamp experiments, cells were held at -70 mV.  To measure 

NMDAR currents, the holding potential was switched to +40 mV and NMDAR current 

was measured as the amplitude at 50 ms.  NMDAR currents were measured before 

baseline collection and then again after 30 minutes of altered afferent stimulation 

frequency.  

2.24   Statistics 

The results are presented as mean ± SEM and were evaluated using one-way ANOVA, 

followed by a Tukey post-hoc comparison of groups or Student’s t-test where 

appropriate. The level of significance was set at p<0.05.  

2.3   Results  

2.31   CA3-CA1 synapses exhibit rapid homeostatic compensation to changes in evoked 

synaptic transmission in acute hippocampal slices. 

Instead of using pharmacological blockade or enhancement of activity to evoke 

homeostatic synaptic plasticity (HSP), we asked whether compensatory changes in 

synaptic transmission accompany conditions where the frequency of input stimulation is 

manipulated as a way to alter activity within a network.  For this purpose, we used field 

excitatory postsynaptic potential (fEPSP) recordings in stratum radiatum of CA1 where 

synaptic responses elicited by stimulating CA3 axons (Schaffer collaterals) can be 

monitored over an extended time period.  
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Hebbian forms of synaptic plasticity obey a frequency-response rule, where 

elevating the frequency of afferent stimulation produces LTD in the 0.5 – 3 Hz range and 

LTP in the 10 – 200 Hz range (Cooper & Bear, 2012; Dudek & Bear, 1992).  Outside of 

these LTP/LTD induction ranges, CA3-CA1 synaptic strength generally remains stable so 

long as fEPSPs are continuously elicited at a constant frequency.  We thus explored 

whether compensatory changes in synaptic strength emerge in response to increasing or 

decreasing net input over time within this ‘stable’ frequency range.  We began by 

recording stable fEPSPs at a commonly utilized basal stimulation frequency of 0.1 Hz (1 

pulse/10 seconds) and examined the consequences of reducing net input over time by 

shifting the test frequency to 5.6x10
-4

 Hz (1 pulse/30 minutes).  We found that this high-

to-low frequency shift induced a rapid compensatory increase in synaptic strength that 

emerged within 30 minutes (the first data point after the frequency switch) and stabilized 

at a new higher level within approximately 60 minutes (Fig. 2.1A).  60 minutes following 

the frequency shift, synaptic efficacy is significantly stronger than during the baseline 

period (p=0.036 by Student’s t-test; n=6).  This increase in synaptic efficacy was readily 

reversible when test stimulation was reversed back to the original test frequency of 1 

pulse/10 seconds (Fig. 2.1A).  This compensation exhibits a key feature of homeostatic 

plasticity: synaptic strength is inversely responsive to the levels of synaptic activity over 

time. 

Other features of HSP are less uniform.  Some forms of homeostatic plasticity 

operate cell-wide (Ibata et al., 2008; Lissin et al., 1998; O’Brien et al., 1998; Turrigiano 

et al., 1998), while other studies demonstrate local homeostatic mechanisms where 

activity at a restricted set of synapses is used to locally adjust synaptic function (Branco 
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& Hausser, 2010; Hou et al., 2011; Hou et al., 2008; Ju et al., 2004; Sutton et al., 2006).  

To examine if the homeostatic changes we observe are globally or locally implemented, 

we stimulated two independent input pathways that converge onto a common population 

of CA1 cells by placing two stimulating electrodes in the stratum radiatum of CA1, on 

either side of the recording electrode.  After ensuring pathway independence, stable 

fEPSPs were recorded in each pathway stimulated at 0.1 Hz (1 pulse/10 seconds).  One 

path (control) remained at 1 pulse/10 seconds throughout the experiment, whereas the 

frequency of stimulation in the second (test) pathway was shifted to 5.6x10
-4

 Hz (1 

pulse/30 minutes).  As shown in Figure 2.1B, the test pathway demonstrated a clear and 

reversible increase in synaptic efficacy, while the control pathway remained unchanged.  

An hour after the frequency change, responses in the test pathway were significantly 

greater than during the baseline (p=0.013 by Student’s t-test; n=5), but responses in the 

control pathway remained the same size (p=0.433 by Student’s t-test; n=5).  These results 

demonstrate that these rapid compensatory changes in synaptic strength are implemented 

locally, in an input-specific fashion.   

To better define how local compensatory responses emerge following changes in 

synaptic activity, we systematically altered the disparity between initial and final input 

frequency.  When we shifted stimulation frequency from 0.05 Hz (1 pulse/20 sec) to 

lower frequencies, we found a progressive increase in synaptic efficacy proportional to 

the extent of activity change that plateaued at a final frequency of 3.3x10
-3

 Hz (1 pulse/5 

min).  Shifts from 0.05 Hz (1 pulse/20 sec) to either 3.3x10
-3

 Hz (1 pulse/5 min) or 

5.6x10
-4

 Hz (1 pulse/30 minutes) resulted in significantly stronger synaptic responses one 

hour after the shift (p=0.011 by ANOVA; n=6; Fig. 2.1C-D).  When the stimulation 
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frequency was not altered, responses remained stable throughout the course of the 

experiment.   

At this point, we asked whether homeostatic weakening could be evoked by 

increasing the stimulation frequency from a relatively low frequency to a relatively high 

stimulation frequency.  Note, however, that this higher frequency range is outside the 

frequency range for LTP or LTD.  When we shifted from 3.3x10
-3

 Hz (1 pulse/5 min) to 

higher stimulation frequencies we found a progressive decrease in synaptic efficacy 

correlated with the magnitude of the frequency shift (Fig. 2.1E-F), illustrating that 

homeostatic compensation of synaptic efficacy is bi-directional.  Shifts from 3.3x10
-3

 Hz 

(1 pulse/5 min) to either 0.017 Hz (1 pulse/60 sec) or 0.05 Hz (1 pulse/20 sec) resulted in 

a significantly decreased synaptic response (p<0.001 by ANOVA; n=5).  In all cases, this 

compensatory alteration in synaptic efficacy was reversed upon re-establishment of the 

initial stimulation frequency (data not shown).  Homeostatic weakening, like 

strengthening, occurred locally, in an input specific manner (data not shown).  Shifting 

stimulation frequency to 0.017 Hz (1 pulse/60 sec) had opposite consequences depending 

on whether such a shift resulted in a net reduction (Fig. 2.1C) or increase (Fig. 2.1E) in 

synaptic efficacy over time.  This demonstrates that the change in activity, rather than the 

final frequency itself, is the important determinant of the direction and magnitude of 

compensatory changes in synaptic strength.  Hence, CA1 synapses are subject to rapid, 

bi-directional, and local homeostatic control.  For the remainder of the study, we perform 

all experiments using frequency shifts from 3.3x10
-3

 Hz (1 pulse/5 min) to 0.05 Hz (1 

pulse/20 sec) or 0.05 Hz (1 pulse/20 sec) to 3.3x10
-3

 Hz (1 pulse/5 min). 
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2.32   Local homeostatic plasticity is developmentally regulated.  

HSP studied in either cultured neurons (Wierenga et al., 2006) or with in vivo 

activity blockade (Echegoyen et al., 2007) is known to be developmentally regulated.  

Therefore, we next compared homeostatic compensation in slices from young rats (P14-

21) and slices from older rats (P42-56).  Slices from older animals still exhibited local, 

bi-directional compensation of synaptic efficacy when the stimulation frequency was 

increased (1 pulse/5 min  1 pulse/20 sec) or reduced (1 pulse/20 sec  1 pulse/5 min) 

(Fig. 2.2).  For synaptic weakening, an hour after the frequency change responses from 

both young and older rats are significantly decreased, but not significantly different from 

one another (p=0.01 by ANOVA; n=8).  One hour after the frequency change only 

responses from younger rats are significantly increased in homeostatic strengthening 

experiments (p=0.002 by ANOVA; n=9).  However, the magnitude of this compensation 

in both directions was significantly weaker than that observed in younger slices, 

indicating that rapid homeostatic control of synaptic function diminishes, but remains 

present, as hippocampal circuits mature.   

2.33   Homeostatic synaptic plasticity is expressed postsynaptically in CA1 pyramidal 

neurons. 

Having established the presence of rapid HSP in acute hippocampal slices, we 

wanted to study the mechanism underlying this phenomenon.  We first examined paired-

pulse facilitation (PPF) during homeostatic weakening of synaptic transmission.  PPF 

increases dramatically in the second postnatal week of life and is relatively stable by the 

age we made slices at for our studies (P14-P21) (Wasling et al., 2004).  Changes in PPF 

are inversely associated with alterations in presynaptic release probability.  To examine 
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PPF throughout the entire time-course of homeostatic plasticity, we used a paired-pulse 

stimulation protocol (inter-pulse interval of 50 ms).  We found that increasing the 

stimulation frequency induced a clear and sustained decrease in fEPSP slope for both the 

first and second pulse; however, the magnitude of PPF remained stable (Fig. 2.3A; p=1.0 

by ANOVA; n=7).  Similarly, there was no change in the magnitude of PPF throughout 

experiments when homeostatic strengthening was induced (Fig. 2.3B; p=0.999 by 

ANOVA; n=9).   

These results demonstrate that homeostatic compensation of synaptic efficacy is 

not accompanied by changes in presynaptic release probability, suggesting a postsynaptic 

locus for expression.  To test this possibility directly, we asked whether buffering 

postsynaptic Ca
2+

 could prevent the homeostatic changes in synaptic strength.  We first 

confirmed that local homeostatic plasticity is revealed in whole-cell patch-clamp 

recordings from individual CA1 pyramidal neurons.  We stimulated two independent 

populations of inputs onto a single pyramidal neuron in CA1, and found that after 30 

minutes of baseline recording increasing the test frequency induced a clear and reversible 

decrease in evoked EPSP (eEPSP) amplitude in the test pathway while the control 

pathway (maintained at 3.3x10
-3

 Hz throughout) remained stable (Fig. 2.4A), consistent 

with our previous observations and further demonstrating that homeostatic strengthening 

is input-specific.  Similarly, synaptic strengthening can be seen in an individual 

pyramidal cell by whole-cell patch-clamp recording by decreasing stimulation frequency 

after a 30 minute baseline period (Fig. 2.4B).  Again, an independent pathway, in which 

stimulation is unaltered, remained stable throughout the course of the experiment.  For 
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both homeostatic synaptic weakening and strengthening, return to baseline is evident 

after the frequency is returned to the original frequency.     

Returning to the question of whether HSP is expressed in the postsynaptic 

compartment, we included the rapid Ca
2+

 chelator BAPTA (10 mM) in the whole-cell 

pipette.  The inclusion of BAPTA prevented homeostatic synaptic weakening in the test 

pathway (Fig. 2.4C-D).  During the homeostatic weakening period, there was a 

significant decrease in eEPSP amplitude in the absence of BAPTA (p=0.029 by Student’s 

t-test; n=8).   This decrease was absent when BAPTA was included in the recording 

pipette (p=0.309 by Student’s t-test; n=8).  Homeostatic strengthening was similarly 

blocked by BAPTA (p=0.102 by Student’s t-test; n=11) (Fig. 2.4E); homeostatic 

strengthening was clearly observed in experiments without BAPTA (p=0.003 by 

Student’s t-test; n=11).  Taken together, these results demonstrate that postsynaptic Ca
2+

 

is required for HSP induced by a frequency shift.   

Having established that acute HSP is postsynaptically expressed, the involvement 

of AMPA and NMDA receptors was examined.  To do this, AMPAR-mediated currents 

and NMDAR-mediated currents were measured before the start of baseline stimulation 

and 30 minutes after homeostatic weakening in whole-cell patch-clamp recording.  There 

is a compensatory decrease in AMPAR responses, but the NMDAR responses stay stable 

(Fig. 2.4F-G), suggesting HSP involves a change in AMPAR currents, but no change in 

the NMDAR currents.  Normalized AMPAR eEPSCs were significantly decreased after 

HSP (p=0.019; n=7); whereas, normalized NMDAR eEPSCs were not altered by HSP 
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(p=0.191; n=7).  Therefore, a presynaptic mechanism is not responsible, since these 

would alter AMPAR and NMDAR responses equally. 

2.34   NMDA receptors, but not L-type calcium channels, are required for homeostatic 

synaptic plasticity. 

To examine a potential synaptic source for observed requirement for postsynaptic 

Ca
2+

, we examined HSP in the presence of the NMDAR antagonist APV.  Whereas in 

interleaved control experiments, high-to-low frequency shifts (1 pulse/20 sec  1 pulse/5 

min) induced rapid and reversible homeostatic synaptic strengthening, we found that the 

application of APV (50 μM) during induction significantly reduced this effect (Fig. 

2.5A).  Homeostatic synaptic strengthening was blocked when measured an hour into the 

frequency switch by the addition of APV when compared to control conditions (p=0.002; 

n=10 (Control), 11 (APV)).  Similarly, application of APV reduced the magnitude of 

homeostatic synaptic weakening (Fig. 2.5B).  Homeostatic synaptic weakening was also 

blocked by the addition of APV (p=0.033; n=4 (Control), 7 (APV)).   

We investigated whether L-type voltage-gated calcium channels could also be a 

source of the calcium underlying HSP by bath-applying the inhibitor nifedipine (10 μM).  

We found that neither homeostatic strengthening (Fig. 2.5C; p=0.726; n=13 for each 

condition) nor homeostatic weakening (Fig. 2.5D; p=0.426; n=5 for for each condition) 

was blocked by the presence of nifedipine.  Therefore, calcium from NMDA receptors, 

but not L-type calcium channels likely contributes to HSP in acute hippocampal slices. 

2.35   Homeostatic plasticity in acute hippocampal slices is mechanistically distinct from 

LTP and LTD.   
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Postsynaptic calcium and NMDA receptor activation are a critical part of the 

signaling cascade for LTP and LTD, leading to the question of how much the 

downstream signaling of homeostatic plasticity in acute hippocampal slices overlaps with 

LTP and LTD.   In the hippocampus, blocking calcium-calmodulin dependent kinase II 

(CaMKII) activity blocks the generation of LTP (Barria et al., 1997; Bortolotto & 

Collingridge, 1998; Ito et al., 1991).  We began by confirming that the CaMK inhibitor 

KN-93 (10 μM) blocks LTP (Fig. 2.6A; Barria et al., 1997; Ito et al., 1991).  LTP is 

significantly weaker in conditions containing KN-93, one hour after LTP induction 

(p=0.022 by Student’s t-test; n=8).  Unlike with LTP, homeostatic strengthening was not 

affected by application of either KN-93 or a second CaMK inhibitor, KN-62 (Fig. 2.6B; 

p=0.868 by Student’s t-test; n=6).  Likewise, an inhibitor of calcineurin (FK506, 50 μM) 

which blocks LTD (Mulkey et al., 1994; Fig. 2.6C; p=0.226 by Student’s t-test; n=8 

(control), 10 (FK506)) failed to alter the expression of homeostatic weakening (Fig. 

2.6D; p=0.05 by Student’s t-test; n = 5).  Taken together, these results demonstrate that 

homeostatic synaptic plasticity in acute hippocampal slices is mechanistically distinct 

from LTP and LTD.   

2.36   Homeostatic synaptic weakening does not alter the relative magnitude of Hebbian 

Plasticity. 

Thus far we have demonstrated that HSP in acute slices is implemented locally 

and postsynaptically with some mechanistic similarities to Hebbian plasticity; therefore 

we asked how these forms of synaptic plasticity interact.  We first addressed whether 

prior induction of HSP alters the magnitude of LTP induced by a single train of high-

frequency stimulation (1xHFS; 100 Hz, 1s).  We began by inducing homeostatic 
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weakening in one of two independent inputs onto a common population of CA1 dendrites 

and then compared the relative magnitude of LTP in the two inputs when LTP was 

induced in both.  Both pathways received baseline stimulation (1 pulse/5 min). Then, 

stimulation frequency was increased in one pathway to 1 pulse/20 sec to induce 

homeostatic weakening.  60 minutes later both pathways received a train of 100 Hz for 1 

second to induce LTP.   We found that induction of homeostatic weakening significantly 

decreased the magnitude of LTP relative to the homeostatic-naive input 30 minutes after 

the induction of LTP (Fig. 2.7A; p=0.005 by Student’s t-test; n=10 control, 8 HSP); 

however, when we plotted the magnitude of LTP relative to the scaled baseline (i.e., the 

20 minute period immediately prior to LTP induction), we found that the decrease in LTP 

was entirely accounted for by the superimposed homeostatic weakening of synaptic 

strength (Fig. 2.7B; p=0.475 by Student’s t-test).  These findings thus provide evidence 

for the theoretical notion that homeostatic plasticity operates in such a way as to preserve 

the capacity for Hebbian activity-dependent changes in synaptic strength.  

2.37   Local cooperation between Hebbian and homeostatic synaptic plasticity 

While our data suggest that rapid homeostatic plasticity preserves information 

coding capabilities in neural circuits, the manner by which homeostatic plasticity 

interacts with already established Hebbian modifications has been a topic of theoretical 

debate. To examine whether the two forms of plasticity could cooperate on a local level, 

we used 2-pathway experiments and induced LTP (1xHFS) in both inputs while 

stimulating at a frequency of 1 pulse/20 sec, then shifted one input to 1 pulse/5 min to 

induce homeostatic strengthening 30 minutes following LTP induction.  While both 

pathways exhibited comparable levels of LTP over the first 30 min, induction of local 
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homeostatic strengthening significantly enhanced the magnitude and durability of LTP 

over the next 3 hours (Fig. 2.8).  The pathway undergoing homeostatic strengthening on 

top of LTP have a higher level of synaptic efficacy 2 hours after the frequency switch 

than the control pathway (p=0.001 by Student’s t-test; n=11).  These results suggest that 

homeostatic plasticity can cooperate with Hebbian plasticity in an input-specific manner.  

These observations further suggest that homeostatic and Hebbian forms of plasticity co-

exist at the same synapses and operate together to influence the magnitude and 

persistence of activity-dependent changes in synaptic efficacy. 

2.4   Discussion 

Our results show that CA1 synapses rapidly compensate for changes in the 

activity of their inputs. While the ability of CA1 neurons to undergo homeostatic synaptic 

plasticity is well established in dissociated cultures (Turrigiano & Nelson, 2004), here we 

demonstrated input-specific synaptic compensation at CA1 synapses in an intact, acute 

hippocampal slice preparation. This novel form of HSP is sensitive to NMDA receptor 

blockade and calcium chelation, but does not require CaMKII or calcineurin activity.  We 

show that prior induction of synaptic compensation offsets the magnitude, but not the 

relative size, of subsequently induced LTP.  Finally, we show that HSP can enhance the 

durability of LTP-initiated synaptic changes.  Synaptic efficacy changes can thus be a 

product of both Hebbian and homeostatic mechanisms, suggesting that HSP may also 

influence information coding or storage in neural circuits. 

2.41   Rapid synaptic compensation in response to a change in input activity over time 
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To date, the most common means of inducing HSP has been pharmacological 

blockade of activity which either increases or decreases network activity levels, 

depending on the specific target.  For the present study, we sought to take advantage of 

the hippocampal slice preparations highly stereotyped organization by electrically 

stimulating Schafer collaterals projecting from area CA3 and terminating on CA1 

dendrites in stratum radiatum.  This recording setup is typically used in LTP and LTD 

studies.  Unlike the induction of LTP or LTD though, we kept the frequency of 

stimulation below the range that would normally produce Hebbian changes (Cooper & 

Bear, 2012; Dudek & Bear, 1992).  We reasoned that despite the generally low 

frequencies of afferent stimulation, changes in activity within this frequency band would 

be sensed by CA1 neurons and compensation of synaptic transmission would result.  We 

found robust compensation for even moderate frequency shifts (see Fig. 2.1C,E).  Intact, 

living brains are highly dynamic and one intriguing possibility is that processes similar to 

the HSP we demonstrate here ex vivo are constantly opposing subtle shifts in activity 

levels in order to promote stability in vivo.  Although it remains to be investigated, a 

dysfunction in such a process would potentially lead to unbalanced activity levels in the 

brain, perhaps leading to seizure disorders or cognitive impairment. 

Since the discovery of homeostatic synaptic plasticity operating at central 

synapses, work from multiple investigators has demonstrated there a distinct classes of 

HSP which can be categorized based on various properties.  HSP can act in a cell-wide 

fashion to adjust strengths of all synapses (Goold & Nicoll, 2010; Ibata et al., 2008; 

O’Brien et al., 1998; Turrigiano et al., 1998) or it can act more locally, even an individual 

synapse (Beique et al., 2011; Hou et al., 2008, 2011; Lee, Yasuda, & Ehlers, 2010; Sutton 
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et al., 2006).  Here we demonstrate a novel implementation of HSP that is input-specific 

and therefore acting locally.  Although our level of analysis does not have the resolution 

to answer whether it operates at individual synapses or subsections of the dendrite, is not 

expressed over the entire cell.  If it were, then we would expect to see both pathways 

respond to the change in evoked activity of a single pathway (Fig. 2.1B). 

HSP can also be classified by the time scale over which it is expressed.  Some 

forms take at least 24 hours for measurable compensation to occur (O’Brien et al., 1998; 

Turrigiano et al., 1998) while others can be induced in as little as a few hours or less 

(Henry et al., 2012; Jakawich et al., 2010; Ju et al., 2004; Sutton et al., 2006).  Strikingly, 

we find that HSP elicited in acute hippocampal slices rapidly begins to compensate for 

the abrupt change in afferent stimulation frequency and typically approaches asymptotic 

levels between 30 and 60 minutes (for examples, see Fig.1C and Fig.1E).  While our 

studies may demonstrate the fastest compensation to a change in activity seen in 

mammalian neurons, this timescale is in line with that observed in invertebrates.  For 

example, at the Drosophila NMJ, homeostatic compensation of presynaptic release is 

observed within a few minutes of postsynaptic receptor blockade (Frank et al., 2006). 

2.42   Postsynaptic compensation to the change in activity levels 

There could have been many potential ways for HSP to be expressed in the 

hippocampus due to our shift in the frequency of Schaffer collateral stimulation.  First, 

the change in activity in the presynaptic fibers being stimulated could lead to a 

compensatory change in presynaptic properties such as neurotransmitter release 

probability or quantal content.  Second, CA1 excitability could be altered by the shifts in 



51 
 

input activity.  Third, postsynaptic properties such as receptor number, composition or 

density could undergo modification.  Fourth, entirely new synapses could be created or 

destroyed.  ‘Silent’ synapses are known to exist at CA3-CA1 synapses, so one method of 

compensating for activity changes would be adjust the silence state of  CA1 synapses. 

Finally, any combination of these possibilities could occur.  For any of these changes to 

be considered compensatory, they must be in the opposite direction as the activity shift.  

For example, an increase in the afferent stimulation rate could lead to a decrease in the 

number of AMPARs expressed at postsynaptic membranes.  We found evidence that 

changes occurred in the postsynaptic compartment (Fig. 2.4A, B).  Importantly, chelating 

post-synaptic calcium blocked these changes, revealing that calcium is required for 

expression of HSP (Fig. 2.4D, E).  In contrast, we found no evidence that presynaptic 

release probability is altered by modifying the stimulation rate (Fig. 2.3A, B).  In 

addition, we show that post-synaptic AMPAR-mediated, but not NMDAR-mediated, 

responses are modified following activity manipulation (Fig. 2.4F, G).  Taken together, 

our results provide strong evidence that HSP in acute hippocampal slices is a post-

synaptic process.   

Previous studies have demonstrated that slow test pulse stimulation to naïve CA1 

synapses can depress synaptic strength in young rodents (Xiao et al., 2004).  Our results 

indicate that the previously observed test pulse induced depression is likely a specific 

case of homeostatic synaptic weakening.  Similar to previous results, we found that this 

plasticity is developmentally regulated and requires postsynaptic calcium (Fig. 2.2; Xiao 

et al., 2004).  Some of these studies observed that ceasing activity for a relatively long 

period of time would allow synaptic responses to recover to baseline levels 
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(Abrahamsson et al., 2007).  Here, we show evidence that the observed recovery can be 

explained by the induction of homeostatic synaptic strengthening due to the decrease in 

stimulation rate (see Fig.1C,D). 

2.43   HSP is distinct from LTP or LTD 

Rapid HSP in acute hippocampal slices shares some features with Hebbian 

plasticity.  Therefore, we investigated the extent to which the molecular pathways 

between these plasticity classes overlap.  We found that postsynaptic calcium is required 

for the expression of HSP (Fig. 2.4), as it is for both LTP and LTD (Wayman et al., 

2008).  Induction of LTP leads to an influx of calcium ions, which activate calcium-

calmodulin dependent kinase II (CaMKII).  Disruption of CaMKII activity prevents the 

expression of LTP (Bortolotto & Collingridge, 1998; Ito et al., 1991; Fig. 2.6A).  

Although HSP requires calcium, blockade of CaMKII did not affect the expression of 

homeostatic strengthening (Fig.6B), suggesting that the signaling mediators of HSP and 

LTP are different.  Like LTP, LTD requires the influx of calcium ions.  However, LTD is 

produced when the protein phosphatase calcineurin (also known as PP2B) is activated by 

calcium.  Blocking calcineurin activity abolishes the expression of LTD (Mulkey et al., 

1994), but did not affect the expression of homeostatic weakening (Fig. 2.6D).   

2.44   Interactions between homeostatic and Hebbian synaptic plasticity 

One of the main advantages of the approach we took here is that it permits direct 

studies of potential interactions between Hebbian and homeostatic forms of plasticity.  

Previous studies have identified that plasticity processes are not static processes, but can 

undergo activity-dependent modifications in a process known as metaplasticity 
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(Abraham, 2008).  We modeled our experimental design after typical metaplasticity 

studies which initially apply a priming event prior to the induction of an activity-

dependent change, such as LTP or LTD (Abraham, 2008).  We have found that prior 

induction of homeostatic plasticity offsets the magnitude of LTP subsequently induced, 

but does not alter the relative change in synaptic strength from the “scaled” baseline. 

These observations provide evidence for the theoretical notion that homeostatic plasticity 

operates in such a way as to preserve the capacity for Hebbian activity-dependent 

changes in synaptic strength (Rabinowitch & Segev, 2008). 

In a separate set of experiments, we reversed the paradigm for studying 

metaplasticity (Fig. 2.8).  Here, we initially induced a weak form of LTP in two 

pathways, and then induced homeostatic strengthening in only one of the pathways.  We 

found that HSP enhanced the magnitude and durability of normally weak and short-lived 

LTP, suggesting that Hebbian and homeostatic plasticity can work in concert to regulate 

the final output of the network.  Furthermore, this data reveals that stable, long-lasting 

changes in synaptic efficacy can be achieved with only weak associative plasticity 

processes in neurons that have a multitude of plasticity processes to access.  This may 

have important implications for engram stability. 
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2.7   Figure Legends  

Figure 2.1. Homeostatic plasticity in acute hippocampal slices is local, bidirectional, 

and reversible.  A, Recording fEPSPs in CA1 of the hippocampus by stimulating the 

Shaffer collaterals.  When the frequency of stimulation was switched from 1 pulse/10 

seconds to 1 pulse/30 minutes, the result is a synaptic strengthening that is reversible 

upon resumption of 1 pulse/10 seconds stimulation frequency.  Example traces are inset.  

Scale bar: 20 ms (horizontal) and 0.5 mV (vertical).  B, When two independent pathways 

are stimulated at 1 pulse/10 seconds
 
and the stimulation frequency is altered in only one 

pathway from to 1 pulse/30 minutes, only the pathway with the altered frequency (test) 

shows homeostatic synaptic strengthening. Simplified, theoretical diagram of 

experimental paradigm is inset to the left.  Example traces are inset to the right.  Scale 

bar: 20 ms (horizontal) and 0.5 mV (vertical).  C, Slices were stimulated once every 20 

seconds for 30 min, and then the stimulation frequency was either kept the same or 

shifted to once every 60 seconds, once every 5 min, or once every 30 min.  D, After 1 

hour of the new stimulation frequency both the pathways shifted to once every 5 minutes 

and once every 30 minutes had significantly stronger responses than the pathway that was 

kept constant (*p=0.011 by ANOVA; n=6).  E, Slices were stimulated once every 5 

minutes for 30 min, and then the stimulation frequency was either kept the same or 

shifted to once every 60 seconds or once every 20 seconds.  F, After 1 hour of the new 

stimulation frequency both the pathways shifted to once every 60 seconds and once every 

20 seconds had significantly weaker responses than the pathway that was kept constant 

(p<.001 by ANOVA; n=5). 
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Figure 2.2.  Homeostatic synaptic plasticity is stronger in younger rats.  A, In rats at 

either P14-21 or P42-56, the Shaffer collaterals were stimulated at 1 pulse/5 min, and 

then the stimulation frequency was shifted to 1 pulse/20 sec.  The induced homeostatic 

weakening was weaker in the slices from older rats, but still present.  B, In rats at either 

P14-21 or P42-56, fEPSPs were evoked at 1 pulse/20 sec, and then, the stimulation 

frequency was shifted to 1 pulse/5 min.  The induced homeostatic strengthening was 

weaker in the slices from older rats, but, again, still present.   
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Figure 2.3.  HSP does not involve a change in presynaptic release probability.  A, 

Stimuli pairs (given 50 ms apart) were delivered at a rate of once every 5 min for 30 min 

and then the rate was switched to once every 20 seconds for 30 min and then returned to 

the original frequency; the normalized fEPSP slope of both the first and the second 

response is shown in blue.  Paired-pulse facilitation (PPF), shown in black, remained 

unchanged throughout the experiment.  Example traces are shown above during the 

original baseline, the weakening period, and then the weakening trace is renormalized to 

the amplitude of the baseline period to demonstrate that PPF stayed constant.  Scale bars: 

0.5 mV (vertical), 20 ms (horizontal).  B, Stimuli pairs (given 50 ms apart) were 

delivered at a rate of once every 20 seconds for 30 min and then the rate was switched to 

once every 5 min for 30 min and then returned to the original frequency; the normalized 

fEPSP slope of both the first and the second response is shown in blue.  PPF, shown in 

black, remained unchanged throughout the experiment.  Example traces are shown above 

during the original baseline, the strengthening period, and then the strengthening trace is 

renormalized to the amplitude of the baseline period to demonstrate that PPF stayed 

constant.  Scale bars: 0.5 mV (vertical), 20 ms (horizontal).   
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Figure 2.4.  HSP in acute hippocampal slices is driven by postsynaptic calcium 

influx.  A, CA1 pyramidal neurons were recorded in whole-cell current clamp mode 

while eEPSPs from non-overlapping inputs were evoked with stimulating cluster 

electrodes.  eEPSPs were obtained via whole-cell patch-clamp recording of pyramidal 

cells in CA1 of the hippocampus.  Example traces demonstrating when two independent 

pathways were stimulated at 1 pulse/20 sec and then one pathway had the stimulation 

frequency shifted to 1 pulse/5 min (test pathway) while the other pathway remained at 1 

pulse/20 sec (control pathway), only the pathway with the frequency change 

demonstrated a decreased eEPSP amplitude. Increasing the frequency of stimulation 

induced a selective decrease in eEPSP amplitude in the test pathway, demonstrating that 

homeostatic weakening is input-specific.   B, Example eEPSPs that were recorded in two 

independent pathways stimulated at a baseline frequency of 1 pulse/5 min followed by a 

shift in the test path to 1 pulse/20 sec 
 
while the other pathway remained at 1 pulse/5 min.  

Decreasing the frequency of stimulation induced a selective increase in eEPSP amplitude 

in the test pathway, demonstrating that homeostatic strengthening is also input-specific.  

C, Example recording of normalized eEPSP amplitude across time for a cell with (black) 

and a cell without (green) BAPTA in the recording electrode.  Homeostatic synaptic 

weakening was not seen in the presence of BAPTA, suggesting that postsynaptic calcium 

is required for negative homeostatic plasticity.  D, Homeostatic weakening is blocked by 

the inclusion of BAPTA in the recording electrode.  There was a significant depression in 

the amplitude during the homeostatic weakening period in the absence of BAPTA 

(*p=0.029; n=8).   This depression was abolished when BAPTA was included in the 

recording pipette (p=0.309; n=8).  E, Summary data, averaging the eEPSP amplitude 
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during the first 30 min (1 pulse/5 min) and the second 30 min (1 pulse/20 sec) for 

pyramidal neurons recorded with normal internal solution and neurons recording with 

BAPTA in the internal solution.  There was a significant increase in amplitude when the 

frequency was switched to 1 pulse/20 sec in the absence of BAPTA (*p=0.003; n=11).   

This enhancement was abolished when BAPTA was included in the recording pipette 

(p=0.102; n=11).  F, Example NMDAR and AMPAR traces obtained at +40 and -70, 

respectively both during a baseline period and after 30 min of HSP induction.  NMDAR 

responses were measured at a 50 ms time point.  Scale bars represent 100 pA (NMDAR, 

vertical), 50 pA (AMPAR, vertical), and 50 ms (horizontal).  G, Normalized AMPAR 

eEPSCs were significantly decreased after HSP (*p=0.019; n=7); whereas, normalized 

NMDAR eEPSCs were not altered by HSP (p=0.191; n=7).  Homeostatic weakening 

involves a decrease in AMPAR currents, but no change in the NMDAR current.   
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Figure 2.5.  NMDA receptors, but not L-type calcium channels, are a source of 

calcium required for homeostatic synaptic plasticity.  A-B, Field recordings from CA1 

in the hippocampus were used to investigate the source of calcium involved in 

homeostatic synaptic plasticity.  To block NMDA receptors, APV (100 µM) was added 

after a 30 minute stable baseline was obtained and was included for the remainder of the 

experiment.  Homeostatic synaptic strengthening was blocked by the addition of APV (A, 

*p=0.002; n = 10 (control), 11 (APV)).  Homeostatic synaptic weakening was blocked by 

the addition of APV (B, *p = .033; n = 4 (control, black), 7 (APV, red)).  C-D, The role 

of L-type calcium channels was investigated using nifedipine (10 µM).  After 30 min of 

stable baseline, nifedipine was included in the perfusion aCSF to block L-type calcium 

channels, control experiments included DMSO (0.1%).  Homeostatic synaptic 

strengthening was unaffected by the addition of nifedipine (C, p=0.726; n=13 for both 

control and nifedipine).  Homeostatic synaptic weakening was unaffected by the addition 

of nifedipine (D, p=0.426; n=5 for both control and nifedipine pathways).  
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Figure 2.6.  Homeostatic synaptic plasticity in acute hippocampal slices is 

mechanistically distinct from LTP and LTD.  A-B, After a 30 min period of stable 

baseline, KN-93 (10 µm) or 0.1% DMSO (control) was included in the aCSF for another 

30 min, then a single train of 100 Hz was delivered to slices (A) or the frequency of 

stimulation was switched to 1 pulse/20 sec (B).  In the HSP experiments, no difference in 

the outcome was seen between KN-93 or KN-62 was used so data here are pooled.  KN-

93 and KN-62 were used to block CaMKII activity.  Inhibition of CamKII activity 

blocked the LTP, but not the HSP.  C-D, After a 30 min period of stable baseline, FK506 

(50 µm) or 0.1% DMSO (control) was included in the aCSF for another 30 min, then (C) 

a single train of 1 Hz was delivered to slices or (D) frequency of stimulation was 

switched to 1 pulse/5 min.  FK506, a calcineurin inhibitor, blocked LTD, but not 

homeostatic weakening. 
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Figure 2.7.  Homeostatic synaptic weakening does not alter the relative magnitude of 

Hebbian Plasticity.  A, In two pathway experiments, homeostatic weakening was 

induced in one pathway by shifting the frequency of stimulation from once every 5 

minutes to once every 20 seconds.  An hour after homeostatic weakening, a single train 

of HFS was delivered to both pathways.  B, Renormalization of the previous panel.  Data 

were renormalized to the level before 1 X HFS LTP induction demonstrating that prior 

induction of homeostatic synaptic weakening offsets the magnitude of 1x HFS LTP, but 

does not alter the relative change in synaptic strength from the “scaled” baseline (n=8, 

10).   

  



72 
 

 

  



73 
 

Figure 2.8.  Homeostatic synaptic plasticity can enhance the magnitude and 

durability of weak LTP in an input-specific manner.  In two pathway experiments, 1 

X HFS LTP was induced in both pathways, then homeostatic strengthening was induced 

in only one of the pathways by switching the stimulation frequency from 1 pulse/20 sec 

to 1 pulse/5 min.  Here, HSP may be operating in such a way as to preserve Hebbian 

changes in this circuit. 
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Chapter III 

Hebbian and homeostatic plasticity interact at the same synaptic inputs:  

Metaplasticity mediated by local protein synthesis 

 

3.1   Introduction 

The mammalian hippocampus is known to be critical for the formation of long-

term memories.  Studies in both humans (Scoville & Milner, 1957; Zola-Morgan et al., 

1986) and animal models (Mayford et al., 2012; Tsien et al., 1996) have clearly shown 

the importance of the hippocampus, and the CA1 hippocampal region in particular, in 

long-term memory formation.  Long-lasting activity-dependent modifications to synaptic 

strength, such as long-term potentiation (LTP) and long-term depression (LTD), are 

widely thought to form the cellular basis of information storage in hippocampal circuits 

(Bliss & Lømo, 1973; Dudek & Bear, 1992; Malenka & Bear, 2004).  LTP and LTD are 

often referred to as “Hebbian” forms of synaptic plasticity, because their induction at 

individual synapses is linked with the correlation between that synapse’s activation and 

postsynaptic firing, a learning rule postulated by Donald Hebb (Hebb, 1949).  Although 

there is strong evidence that Hebbian modifications are a crucial component of learning 

and memory, they cannot be the only mechanism operating in neural networks.  

Computational models show that Hebbian processes will lead to instability in neural 
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circuits due to their positive-feedback nature if not balanced by a negative-feedback 

mechanism (Dayan & Abbott, 2001; Renart et al., 2003).  Negative-feedback processes 

which compensate for changes in neural activity also exist at synapses in the brain and 

are generally referred to as homeostatic synaptic plasticity (HSP; Turrigiano & Nelson, 

2004)).  For example, blocking neuronal activity in dissociated neuronal networks with 

the voltage-gated sodium channel blocker tetrodotoxin leads to a compensatory increase 

in synaptic strength whereas raising activity with GABAA receptor antagonist bicuculline 

causes a decrease in synaptic strength (Turrigiano et al., 1998).  Homeostatic plasticity 

can be implemented on a cell-wide scale (global HSP; Ibata et al., 2008; Turrigiano et al., 

1998) as well as a non-global scale, even at individual synapses (Branco et al., 2008; Hou 

et al., 2011; Hou et al., 2008; Ju et al., 2004; Sutton et al., 2006).   

Since homeostatic and Hebbian forms of synaptic plasticity have largely been 

studied independently of each other, how they function together at the same synapses is 

largely unknown.  Hypothetical scenarios regarding how these ostensibly conflicting 

plasticity processes could be interacting have been generated (Rabinowitch & Segev, 

2008; Turrigiano & Nelson, 2000), but experimental support for these ideas is scarce.  

For example, global homeostatic synaptic plasticity, which uniformly scales all the 

synapses of a neuron in order to compensate for chronic changes in activity, is 

hypothesized to preserve relative changes in synaptic strength caused by Hebbian 

processes while promoting stability (Turrigiano & Nelson, 2000).  However, it is unclear 

how locally acting HSP might interact with Hebbian synaptic plasticity at the same 

inputs, potentially in direct competition over control of synaptic efficacy.  In the previous 

chapter, I demonstrated a rapid form of HSP expressed at CA3-CA1 synapses in acute 
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hippocampal slices. By altering the frequency of Schaffer collateral stimulation, we 

induced compensatory changes in synaptic strength that are bi-directional and input-

specific.  I also showed that this model system can be used to investigate potential 

interactions between Hebbian and homeostatic synaptic plasticity.   

In this chapter, we continue to investigate how HSP operates in conjunction with 

Hebbian plasticity to influence the net efficacy of synaptic transmission at CA3-CA1 

synapses in hippocampal slices.  We found that prior induction of Hebbian plasticity 

constrained the magnitude of HSP subsequently induced.  Interestingly, this metaplastic 

interaction was strictly dependent on the order of induction: prior induction of HSP did 

not alter the relative change in synaptic efficacy induced with LTP/LTD induction.  

Although neither form of plasticity studied is dependent on protein synthesis, the 

metaplastic interaction was abolished by blocking local protein synthesis near synaptic 

sites. 

3.2  Materials and Methods  

3.21   Acute hippocampal slice preparation 

All procedures involving animals were approved by the University Animal Care 

and Use Committee.   Acute hippocampal slices were prepared as previously described 

(Chapter II).  P14-21 Sprague Dawley rats were decapitated and the hippocampal lobules 

were isolated.  Transverse slices (400µm) of the hippocampus were cut using a tissue 

chopper (Stoelting, Wood Dale, IL).  Slices were then incubated at room temperature in a 

humidified chamber for at least 2 hours before recording. 

3.22   Electrophysiology 
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Hippocampal slices were transferred to a recording chamber and continuously 

perfused at a rate of ~1.5 ml/min with artificial cerebral spinal fluid (aCSF) heated to 27-

28°C with an in-line solution heater and equilibrated with 95% oxygen/ 5% carbon 

dioxide.  aCSF contained (in mM): 119 NaCl, 2.5 KCl, 1 NaH2P04, 26.3 NaHCO3, 11 

glucose, 1.3 MgSO4, and 2.5 CaCl2, pH 7.4.   Area CA1 was visualized with an Olympus 

SZ51 dissecting microscope.  Recording electrodes were pulled from borosilicate 

capillary glass (1.7 mm o.d.; VWR International, Radnor, PA) and filled with 3M NaCl 

or aCSF.  The recording pipette was placed in the center of CA1 stratum radiatum.  

Extracellular recordings were made with a MultiClamp 700B amplifier, collected using 

Clampex 10.2, and analyzed using Clampfit 10.2 (Molecular Devices, Sunnyvale, CA).   

Field excitatory postsynaptic potentials (fEPSPs) were recorded in response to Schaffer 

collateral stimulation using bipolar stainless steel electrodes also placed in the stratum 

radiatum of CA1 (FHC, Bowdoin, ME).  Current was delivered with an ISO-Flex 

stimulus isolator (A.M.P.I., Jerusalem, Israel) and set between 0.02 - 0.25 mA (0.1 msec 

pulse width).  Current was set to ~50% of the maximum determined by generating 

input/output (I/O) curves before each experiment.  In 2-pathway experiments, stimulating 

electrodes were placed on opposite sides of the recording electrode.  Pathway specificity 

in every experiment was confirmed by less than 10% paired-pulse facilitation between 

inputs (ISI = 50 msec).  Baseline recordings were considered stable when the fEPSP 

slope changed less than ±5% over a continuous 30 min period.  For interaction studies, 

experiments which failed to elicit LTP of at least 20% were omitted from analysis.  Long-

term potentiation was induced by using either a single train of 100 Hz (1 second) or 

4x100 Hz (1s duration each) separated by 5 minutes.  Long-term depression were induced 
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by using either a 1Hz (900 pulses, 15 minutes duration) or 4x 1Hz (900 pulses, 15 minute 

duration separated by 15 minutes).  Data were analyzed by applying a Student's t-test 

(paired or unpaired), considering p<0.05 as statistically significant. 

3.23   Local diffusion of protein synthesis inhibitor 

Drug diffusing extracellular electrodes were fabricated from capillary glass tubing 

(G150-4, Warner) using a P-97 Flaming-Brown pipette puller (Sutter Instruments) pulled 

to resistances between 0.8 and 1.0 MΩ.  To test the puller conditions needed to locally 

diffuse drug from the recording electrode, CNQX was initially included in the recording 

pipette and was shown to block the bulk of fEPSP signal in response to afferent 

stimulation, while a nearby recording electrode filled with aCSF showed no decrement in 

fEPSP signal (data not shown). Subsequent testing confirmed emetine in the recording 

electrode failed to display the late-phase LTP recorded via the nearby vehicle-containing 

recording electrode (data not shown).  The fEPSP signal was amplified 1000 times with a 

DAM-50 DC differential amplifier (WPI).  For experiments, recording electrodes were 

filled with emetine diluted in aCSF or aCSF alone and placed in stratum radiatum in the 

same plane as the apical dendrites, with one electrode site more proximal to the soma 

than a distally placed electrode (see Fig. 3.7).  A single bipolar stimulating electrode was 

used to deliver an identical stimulation pattern to Schaffer collaterals.   

3.3  Results  

3.31   Local HSP can compete with previously established Hebbian plasticity 
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Having previously established that rapid, input-specific HSP can be expressed at 

CA3-CA1 synapses in response to subtle shifts in the rate of afferent stimulation, we set 

out to test how HSP and Hebbian plasticity interact within the same circuit.  While our 

previous study demonstrated that rapid HSP preserves the capacity for LTP in neural 

circuits (Chapter II), the manner by which homeostatic plasticity interacts with already 

established Hebbian modifications has been a topic of theoretical debate (Rabinowitch & 

Segev, 2008; Turrigiano & Nelson, 2000).  Hence, we next examined whether prior 

induction of Hebbian plasticity alters rapid homeostatic compensation of synaptic 

strength.  In these experiments, we first induced Hebbian plasticity (LTP or LTD) in one 

of two independent inputs onto a common population of CA1 dendrites and then 

compared the relative magnitude of homeostatic compensation between the two inputs in 

response to the same frequency shift delivered to both pathways.   

We first examined conditions where homeostatic plasticity should compete with 

established Hebbian modifications – that is, when the homeostatic changes in synaptic 

strength oppose the established Hebbian changes.  After an initial collection of stable 

baseline responses for 30 min, LTP (1x HFS) was induced in one pathway, resulting in a 

significant potentiation of synaptic responses.  When we shifted the test frequency from 1 

pulse every 5 minutes to 1 pulse every 20 seconds 60 minutes after the induction of LTP, 

we found that the magnitude of homeostatic weakening was offset from the naïve (non-

LTP) input (Fig. 3.1A, left).  However, renormalizing the data to the potentiated baseline 

to examine the relative homeostatic weakening revealed that the magnitude and time-

course of homeostatic synaptic weakening in this pathway was indistinguishable from the 

naïve pathway.  Likewise, when we shifted the test frequency from 1 pulse/20 seconds to 
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1 pulse/5 minutes
 
to induce homeostatic strengthening 60 min after the induction of LTD 

(1xLFS) in one pathway, the compensatory increase in synaptic strength in the LTD path 

was offset (Fig. 3.1B, left), but otherwise identical to that of the naïve pathway (Fig. 

3.1B, right).  Taken together, these results suggest that homeostatic forms of synaptic 

plasticity can compete with established Hebbian forms of synaptic plasticity.     

3.32   Hebbian plasticity exerts a pathway-specific constraint on subsequent synaptic 

compensation  

Next, we designed a protocol that would fully assess the ability of HSP to interact 

with a strong form of LTP (Fig. 3.2A).  In these 2-pathway experiments, fEPSPs were 

measured over a 30 minute baseline period at 1 pulse every 40 seconds to ensure stability 

in both pathways.  In order to address the possibility that the initial signaling frequency 

controls the interaction, the baseline frequency was the same in each condition.  LTP was 

then induced in one (test) pathway by delivering 4 spaced (ITI = 5 min) trains of 100Hz 

stimulation (4xHFS, 1 sec), while the control pathway continued to receive stimulation at 

1 pulse/40 seconds but received no LTP induction.  fEPSPs were monitored for an 

additional 30 min following LTP induction, then HSP was induced in both pathways by 

shifting the frequency of stimulation to a new frequency that induced either homeostatic 

weakening, homeostatic strengthening or no compensation (Fig. 3.2A).  The relative 

magnitude of compensation was assessed by renormalizing the fEPSPs to the 20 min 

period immediately prior to HSP induction.  We found that prior induction of saturating 

LTP does not alter the relative magnitude of homeostatic synaptic weakening under 

competing conditions, but significantly reduces the relative magnitude of homeostatic 

synaptic strengthening under cooperating conditions 90 min following HSP induction 
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(paired t-test, p < 0.05) (Fig. 3.2).  Thus, Hebbian and homeostatic plasticity interact 

asymmetrically at hippocampal CA3-CA1 synapses to influence synaptic efficacy 

changes in response to activity. 

The magnitude of homeostatic strengthening expressed in the previous 

experiment’s naïve control path was not particularly strong, raising a potential concern 

with the parameters of HSP induction in that experiment.  Since homeostatic plasticity is 

sensitive to degree of activity disparity (Chapter II), the experiment was run again 

utilizing a greater frequency disparity to induce stronger compensatory strengthening.  In 

both pathways, a 30 minute stable baseline was obtained at a stimulation rate of 1 

pulse/40 seconds before inducing a strong form of LTP induced by four trains of high-

frequency stimulation (4xHFS; 100 Hz for 1 sec, 5 minutes apart) in one pathway (Fig. 

3.3A), similar to the previous experiment (Fig. 3.2).  In this case, stronger homeostatic 

strengthening was induced in both pathways to directly compare the naïve pathway to the 

pathway with a history of Hebbian modification by decreasing the frequency of afferent 

stimulation to 1 pulse every 15 minutes (Fig. 3.3A).  Plotting the magnitude of 

homeostatic strengthening relative to the potentiated baseline (i.e., the 15 min period 

immediately prior to homeostatic strengthening), revealed that HSP expression was 

constrained by prior LTP induction (Fig. 3.3B), as observed with a weaker homeostatic 

strengthening protocol (Fig. 3.2).   

We next examined whether a strong form of LTD exerts a similar influence over 

HSP.  In this case, baseline was collected at 1 pulse/5 minutes before inducing LTD 

(4xLFS; 900 pulses at 1 Hz, 15 minutes apart) in one pathway (Fig. 3.3B, left).  To test 

whether LTD interacts with an HSP that would alter synaptic strength in the same 



83 
 

direction, we induced homeostatic weakening by increasing the rate of afferent 

stimulation to 1 pulse/20 seconds in both pathways after 60 min of LTD expression (Fig. 

3.3B, left).  As with LTP, prior LTD alters the absolute and relative magnitude of 

subsequent homeostatic weakening, revealing a similar pathway-specific constraint on 

HSP (Fig. 3.3B).   

Although we have interpreted the differences in HSP expression levels in 

pathways with a history of Hebbian plasticity as due to a homosynaptic constraint, we 

could not exclude the possibility of that the observed constraint wasn’t a result of 

ceiling/floor effects.  This explanation is especially salient since the strong induction 

protocols used produce saturating forms of LTP and LTD (Abraham & Tate, 1997; 

Heynen et al., 1996; data not shown).  To circumvent this potential confound, we 

performed the experiment as before but with a weak LTD induction protocol (1xLFS; 

900 pulses at 1 Hz).  Even expression of weak, non-saturating LTD constrains the relative 

magnitude of subsequent homeostatic strengthening (Fig. 3.3C).  Thus, Hebbian plasticity 

exerts a pathway-specific constraint on subsequent synaptic compensation expressed in 

the same direction. 

3.33   Homeostatic plasticity preserves the capacity for Hebbian plasticity 

We next addressed whether prior induction of homeostatic plasticity alters the 

magnitude of LTD induced by a single epoch of low frequency stimulation (1xLFS; 900 

pulses at 1 Hz).  In this experiment, we scaled one of two independent inputs onto a 

common population of CA1 dendrites and then compared the relative magnitude of LTD 

induced in the two inputs.  We found that homeostatic weakening by shifting the test 
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frequency from 1 pulse/5 minutes to 1 pulse/20 seconds decreased the absolute 

magnitude of LTD relative to the non-scaled input (Fig. 3.4A, left); however, when we 

plotted the magnitude of LTD relative to the scaled baseline (i.e., the 20 min period 

immediately prior to LTD induction), we found that the decrease in LTD was entirely 

accounted for by the superimposed homeostatic weakening of synaptic strength (Fig. 

3.4A, right).  This reversal of the paradigm in Fig. 3.3C reveals that the interaction 

between LTD and HSP is order-dependent and unlikely a result of a floor effect.  Thus, 

LTD exerts an asymmetric constraining influence on subsequent homeostatic weakening. 

To examine whether such offset of Hebbian plasticity was a general feature of 

homeostatic compensation, we examined if prior homeostatic weakening had a similar 

effect on the saturation of LTP induced by 4 spaced trains of HFS (4xHFS; 100Hz for 1 s, 

5 min apart).  Again, we found that the magnitude of saturated LTP was offset by prior 

homeostatic weakening, diminishing the total increase in synaptic strength (Fig. 3.4B, 

left), but not the relative increase in synaptic efficacy from the scaled baseline (Fig. 3.4B, 

right).  These findings provide further evidence for the theoretical notion that homeostatic 

plasticity operates in such a way as to preserve the capacity for Hebbian activity-

dependent changes in synaptic strength.  

3.34   Metaplastic interaction is mediated by local protein synthesis 

We hypothesized that the metaplastic influence of LTD on homeostatic 

weakening depends on the synthesis of new proteins.  We first tested whether rapid, local 

HSP in acute hippocampal slices depends on new protein synthesis.  Bath application of 

the protein synthesis inhibitor emetine 30 minutes prior to frequency shifts did not alter 
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the subsequent expression of either homeostatic strengthening (Fig. 3.5, left) or 

homeostatic weakening (Fig. 3.5, right).  Unlike previously reported forms of rapid, local 

homeostatic plasticity (Sutton et al 2006; Jakawich et al. 2010), frequency shift-induced 

compensation does not depend on new protein synthesis for its expression in either 

direction.    

 In order to address whether the constraining influence of LTD on homeostatic 

weakening depends on the synthesis of new proteins, we took advantage of the facts that 

neither the weak LTD induction protocol (1xLFS; 900 pulses at 1 Hz) nor homeostatic 

weakening requires protein synthesis (Huber et al., 2000; Fig. 3.5).  We induced non-

saturating LTD in one pathway, followed by homeostatic weakening in both pathways as 

in Figure 3.3C, except this time we bathed slices in the protein synthesis inhibitor 

emetine or cyclohexamide (Fig. 3.6).  Unlike slices bathed in vehicle alone, slices bathed 

with either protein synthesis inhibitor did not display the pathway-specific constraint.  

This result supports the hypothesis that the metaplastic influence of LTD on homeostatic 

weakening depends on synthesis of new proteins.   

Given that both forms of plasticity are expressed locally, and that the metaplastic 

interaction occurred in an input-specific manner, we wondered if the protein synthesis 

mediating the interaction was also occurring in a spatially restricted manner.  To 

investigate this possibility, two recording electrodes were placed in the same column of 

CA1 with a single stimulating electrode (fig. 7).  One of the recording electrodes 

contained aCSF vehicle while the other contained emetine, with electrodes designed to 

release contents only over a limited area (data not shown).  In this case, the suppression 

of homeostatic weakening by previous LTD was blocked locally by the focal application 
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of emetine (fig. 8).  Selective blockade of protein synthesis at either proximal or distal 

apical dendrites reveals that metaplastic interactions are not isolated to one dendritic 

compartment (Fig. 3.9).  Taken together, these data reveal that local protein synthesis 

mediates the interaction between Hebbian and homeostatic synaptic plasticities.   

3.35   Protein synthesis dependent cooperation between Hebbian and homeostatic 

synaptic plasticity 

Given that weak, non-saturating LTD exerts a protein synthesis dependent effect 

on homeostatic weakening, we reasoned that non-saturating forms of LTP would exert 

the same effect on homeostatic strengthening.  To test this, we began by inducing weak 

LTP (1xHFS, 100Hz for 1 s) in one pathway before homeostatic strengthening in both 

pathways (Fig. 3.10A).  The overall magnitude of fEPSP slopes was increased due to 

LTP expression, but unlike with other tested forms of LTP and LTD (Fig. 3.3), weak LTP 

did not alter the relative magnitude of homeostatic strengthening.  Induction of slightly 

stronger forms of LTP with 2 trains of HFS (Fig. 3.10B) or theta-burst stimulation (25 

bursts of four pulses at 100 Hz with 200 msec interburst intervals; Fig. 3.10C) similarly 

failed to elicit the pathway-specific constraint.   

We previously found that HSP can prolong the potentiation of normally weak, 

short-lived LTP (see Chapter II), suggesting that Hebbian and homeostatic plasticity can 

cooperate to regulate the final output of the network.  Intriguingly, homeostatic 

strengthening after weak LTP, which is itself protein synthesis independent, resembles 

late phase LTP, which is protein synthesis dependent (Chapter II; Fig. 3.11, left).  Neither 

this form of weak LTP nor HSP are dependent on protein synthesis (Fig. 3.5).  Under 
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some circumstances, Hebbian plasticity can constrain the magnitude of subsequent HSP 

in a protein synthesis dependent manner.  Hence, we examined whether a similar protein 

synthesis dependent constraint occurs alongside the cooperation between LTP and HSP.  

To examine this possibility, we again used 2-pathway experiments and induced LTP 

(1xHFS) in both inputs while stimulating at a frequency of 1 pulse/20 seconds, then 

shifted one input to 1 pulse/5 minutes to induce homeostatic strengthening 30 min 

following LTP induction in the presence of the protein synthesis inhibitor emetine.  

Inhibition of protein synthesis results in significantly stronger homeostatic strengthening 

compared to experiments excluding inhibitor (Fig. 3.11).  Despite evidence using a 

different protocol that weak LTP does not constrain subsequent HSP (Fig. 3.10), these 

data suggest there is an interaction between weak LTP and homeostatic strengthening 

which is regulated by protein synthesis.   

3.4  Discussion  

The present study probed several potential interactions between Hebbian 

plasticity and a rapid, input-specific form of HSP.  Our results reveal that this form of 

HSP generally offsets the magnitude of subsequent Hebbian plasticity expression in an 

additive fashion.  Strikingly, we found that prior induction of Hebbian plasticity 

constrained the magnitude of HSP subsequently induced, but only in cases where both 

plasticities altered synaptic strength in the same direction.  Using induction protocols in 

which neither Hebbian plasticity nor HSP depends on new protein synthesis, we show 

that the metaplastic interaction between them is mediated by local protein synthesis.  

Finally, we follow up on a previous result demonstrating an unexpected form of 
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cooperation between LTP and HSP by unmasking a concurrent metaplastic interaction 

mediated by new protein synthesis. 

3.41   Local HSP can compete with previously established Hebbian plasticity 

Given that Hebbian forms of synaptic plasticity can endure for months in vivo 

(Abraham et al., 2002), one might predict that prior induction of Hebbian plasticity would 

suppress or constrain the magnitude of local homeostatic plasticity that would oppose the 

Hebbian changes, since the latter would limit the durability of the former.  However, we 

found that homeostatic compensation was similar between inputs, regardless of whether 

Hebbian plasticity had been induced or not (Fig. 3.1).  This is perhaps not too surprising, 

given that compensation would do little good if it were being disabled in the exact inputs 

that were deviating from baseline.  As paradoxical as it may seem, we cannot rule out the 

possibility that Hebbian plasticity exerts a non-local constraint on the magnitude of 

opposing HSP since our comparisons were between pathways.  Of course, since LTP and 

LTD do eventually decay back to baseline, perhaps finding that the competing HSP is 

intact is not only unsurprising, but may indicate that decay of LTP and LTD can be 

accounted for by a compensatory process.  One prediction of this idea is that HSP would 

not compete as efficiently with longer lasting forms of LTP, such as late-phase LTP (L-

LTP) which has a much slower decay time.   However, we found no evidence of 

diminished homeostatic weakening following L-LTP (Fig. 3.2). 

3.42   Hebbian plasticity exerts a pathway-specific constraint on subsequent synaptic 

compensation  
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 Perhaps the most striking result of the present work is that LTP and LTD exert an 

input-specific suppressive influence over HSP.  HSP can be induced in either direction, 

yet the influence of Hebbian plasticity is limited to the HSP that adjusts synapses in the 

same direction, not just on homeostatic strengthening or weakening (Fig. 3.2, 3. 3).  This 

indicates that LTP induction results in a signal that constrains the relative magnitude of 

homeostatic strengthening, while LTD induction results in a signal that constrains the 

relative magnitude of homeostatic weakening.  Another interpretation of these data is that 

Hebbian synaptic plasticity saturates the changes in synaptic efficacy such that further 

changes by HSP are impeded, a so called ceiling, or floor, effect.  Another possibility is 

that Hebbian plasticity is occluding subsequent HSP, indicating a large degree of overlap 

in underlying mechanisms.  However, we do not believe either of these alternative 

explanations to be correct based on follow up experiments. 

First, when we utilized a non-saturating form of LTD, we still found a significant 

decrement in the magnitude of subsequent homeostatic weakening (Fig. 3.3C).  Second, 

when we reversed the contingency such that homeostatic weakening preceded non-

saturating LTD, there was no observable interaction (Fig. 3.4A).  Similarly, HSP does not 

interfere with the subsequent expression of saturating LTP (Fig. 3.4B) or non-saturating 

LTP (Chapter II).  Some forms of metaplasticity which do alter the expression of 

Hebbian plasticity have been shown to work via changes in NMDA receptor (NMDAR) 

signaling (Abraham, 2008; Gambrill et al., 2011).  Thus, our finding that HSP does not 

influence subsequent Hebbian plasticity is in line with previous evidence that rapid HSP 

does not alter NMDAR-mediated currents (Chapter II).  Finally, the most convincing 

evidence that the homosynaptic constraint is not an epiphenomenon of a floor effect 
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comes from experiments which probed the protein synthesis dependence of the 

metaplastic interaction.  Since blocking new protein synthesis abolished the interaction, it 

is unlikely that the interaction is a result of floor effect.  This result is particularly 

striking, since neither weak LTD nor HSP are dependent on protein synthesis for their 

own expression (Fig. 3.5), but the interaction between them requires intact protein 

synthesis.   

The experiments presented here raise the possibility that other forms of synaptic 

plasticity may interact with HSP.  One particularly interesting hypothesis is that 

metabotropic glutamate receptor-dependent LTD (mGluR-LTD) interacts with 

homeostatic weakening.  mGluR-LTD persists in the presence of NMDAR antagonists 

(Oliet et al., 1997).  The types of LTP and LTD examined in the present studies depend 

on NMDAR activation (Malenka & Bear, 2004), as does homeostatic strengthening and 

weakening (Chapter II).  An interaction between mGluR-LTD and HSP would suggest a 

separate underlying signaling cascade.  We found strong interactions of HSP with 

NMDAR forms of LTD (Fig. 3.3B,C) so it is conceivable that any similar interaction 

with mGluR-LTD would involve synthesis of the same HSP-disrupting protein(s). 

3.43   Metaplastic interaction is mediated by local protein synthesis 

 Another striking finding is that the metaplastic interaction requires protein 

synthesis.  We were able to ascertain this protein synthesis dependency by examining 

interactions between protein synthesis-independent forms of synaptic plasticity (Fig. 3.6).  

Because of this advantage, we were able to bath apply protein synthesis inhibitors 

throughout the experiment.  Unfortunately, we could not use this approach to test whether 
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the interaction between HSP and late-phase LTP/LTD since these depend on new protein 

synthesis (Malenka & Bear, 2004).   

Following up with the interaction we could examine, we spatially localized a 

protein synthesis inhibitor to the apical dendrite layer stratum radiatum of area CA1 and 

discovered a novel role for local protein synthesis in mediating metaplastic interaction.  

De novo translation mediating synaptic plasticity can occur within dendrites near 

synapses (Sutton & Schuman, 2006), and this mechanism fits with our results.  To 

confirm dendritic protein synthesis, future experiments could physically isolate the 

dendritic compartment from the soma, the principal site of protein synthesis (Huber et al., 

2000; Kang & Schuman, 1996).  In addition, future studies could examine whether 

transcription, which takes place in the soma, is required for the interaction by bath 

application of the drug actinomycin-D. 

The experiments performed do not reveal when the translation underlying the 

interaction occurs.  One possibility is that LTP and LTD induction concurrently drive the 

creation of proteins that are involved with the interaction, presumably initiating a 

signaling cascade that remains active for the time course of the experiments.  A second 

possibility is that the translation machinery is somehow altered by LTP and LTD 

induction, such that when HSP is induced, new protein synthesis is required.  This 

possibility could be tested by applying protein synthesis inhibitors after LTP and LTD 

induction but before HSP induction.    

What remains to be identified is the relevant translation regulatory signaling 

pathways involved and which transcripts are being translated.  Both mTor and 
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ERK/MAPK signaling pathways are involved in the regulation of protein-synthesis 

dependent forms of plasticity (Gallagher et al., 2004; Hoeffer & Klann, 2010; Lynch, 

2004).  The proteins being synthesized could directly underlie HSP, with new protein 

synthesis altering the balance of relevant players and preventing normal HSP expression.   

Another possibility is that a molecule unnecessary for normal HSP expression is 

synthesized that can functionally interact with the HSP machinery.  To best address these 

possibilities, it would be useful to know the exact molecular mechanisms underlying 

rapid HSP in acute hippocampal slices, which would provide a candidate list of 

transcripts.  Since this compensatory plasticity was only recently discovered, the 

molecular mechanisms are still being investigated.   

3.44   Protein synthesis dependent interaction concurrent with cooperation between 

Hebbian and homeostatic synaptic plasticity 

In the present study, we also followed up on an earlier finding that HSP could 

cooperate with LTP to increase the endurance of the synapse potentiation (Chapter II, 

Fig. 3.11).  Although this type of scenario seems counterintuitive at first glance, it is not 

unlikely that a potentiated input in a behaving organism’s brain would subsequently enter 

a relatively inactive state.  In this case, the potentiation may decay too rapidly in the 

absence of a protective, input-specific compensatory response.  Here, we found that in 

such a scenario, homeostatic strengthening following LTP is likely being constrained in a 

protein synthesis dependent manner (Fig. 3.11).  This result may suggest that although 

HSP can serve to prevent decay of Hebbian changes, it does so with limited capabilities, 

perhaps to prevent the complete salvation of inactive inputs.   
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To move beyond mere speculation of the functional effects of these interactions, 

one could take advantage of current computation models of neural networks and 

implement the reported interactions as modification rules (Dayan & Abbott, 2001).  We 

hypothesize that these rules would have a stabilizing effect on the neural networks, since 

all discovered constraints prevent further deviations in synaptic strength away from the 

original baseline.  Perhaps the most puzzling question is in regard to the nature of the two 

classes of synaptic plasticity studied:  How can rapid, local HSP co-exist with LTP/LTD 

and not erase their changes?  Given that the actual dynamics of these processes are likely 

different in vivo, it will be important to determine whether the reported interactions occur 

in an intact organism. 
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3.7   Figure Legends  

Figure 3.1- Homeostatic synaptic weakening does not alter the relative magnitude of 

Hebbian Plasticity. Prior induction of either (A) 1x HFS LTP or (B) 1x LFS LTD offsets 

the magnitude of homeostatic plasticity subsequently induced in the opposing direction, 

but does not alter the relative change in synaptic strength (n=12 in (A), n=8 in (B)). Thus, 

both forms of plasticity are able to compete with each other at the same synapses.  
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Figure 3.2- Prior induction of 4xHFS LTP does not alter the relative magnitude of 

homeostatic synaptic weakening, but significantly reduces the relative magnitude of 

homeostatic synaptic strengthening. (A) Schematic of experimental setup, illustrating 

2-pathway experiments initially stimulated at 1 pulse every 40 seconds.  During this 

period, saturating LTP (4x HFS) is induced in the test pathway.  Subsequently, both 

pathways are switched to the same new stimulating frequency to induce homeostatic 

strengthening, no homeostatic compensation or homeostatic weakening.  (B) Mean +/- 

SEM from pooled experiments in which no homeostatic compensation is induced and the 

frequency is of maintained at 1 pulse every 40 seconds.  (C) Mean +/- SEM from pooled 

experiments in which homeostatic weakening is induced at a final frequency of 1 pulse 

every 10 seconds.  (D) Mean +/- SEM from pooled experiments in which homeostatic 

strengthening is induced at a final frequency of 1 pulse every 5 minutes.  (E) Partial log-

plot of the renormalized mean +/- SEM renormalized fEPSP slope values (*p<0.05, n=9, 

ISI 10sec, n=7, ISI 20sec, n=3, ISI 40sec, n=6, ISI 5min). 
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Figure 3.3- Hebbian plasticity exerts a pathway-specific constraint on subsequent 

homeostatic compensation. (A) In 2-pathway experiments, strong LTP (arrows indicate 

4 trains of HFS) was induced in the test pathway followed by a frequency shift from 1 

pulse/40sec to 1 pulse/15min in both pathways to induce homeostatic strengthening.   

Renormalizing the fEPSP responses to the 15 minute period prior to the frequency shift 

reveals homeostatic compensation is weaker in the pathway which expressed LTP than 

the naïve pathway (*p<0.05, n=5).  (B) Similar to LTP, prior induction of strong LTD (4 

trains LFS) significantly reduces the relative magnitude of homeostatic compensation in 

the opposing direction (*p<0.05, n=4).  (C) Induction of weak LTD (1 train LFS) reduces 

the relative magnitude of subsequent homeostatic strengthening (*p<0.05, n=14).   
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Figure 3.4- Homeostatic plasticity preserves the capacity for Hebbian plasticity. (A) 

Prior induction of homeostatic synaptic weakening offsets the overall magnitude of weak 

LTD subsequently induced, but does not alter the relative change in synaptic strength 

from the scaled baseline (n=11).  (B) Similarly, prior induction of homeostatic synaptic 

weakening offsets the overall magnitude of strong LTP subsequently induced, but does 

not alter the relative change in synaptic strength from the scaled baseline.   
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Figure 3.5-HSP is not blocked by protein synthesis inhibitors.  Unlike other forms of 

homeostatic plasticity, frequency shift-dependent compensation does not depend on new 

protein synthesis for its expression in either direction.   Bath application of emetine 30 

minutes prior to frequency shifts did not alter the subsequent expression of either 

homeostatic strengthening (left) or homeostatic weakening (right).  Histograms represent 

magnitude of homeostatic strengthening or weakening 90 minutes following frequency 

shift (n=4 control, 5 emetine for strengthening; n=13 control, 7 emetine for weakening).   
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Figure 3.6- Interaction between LTD and homeostatic weakening requires 

translation.  Bath application of emetine or cyclohexamide rescues full expression of 

homeostatic weakening following LTD in the test pathway.  Renormalizing the fEPSP 

slope to the post-LTD baseline reveals that HSP is significantly reduced in comparison to 

the pathway that is naive to LTD, but protein synthesis inhibitors abolish the difference 

between pathways by enhancing the strength of HSP in the pathway with a history of 

LTD.  Histograms depict magnitude of HSP 90 minutes following induction of 

homeostatic weakening.  (*p<0.05, n=14 aCSF group, 7 emetine, 10 cyclohexamide 

group). 
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Figure 3.7-Positioning of electrodes for focal diffusion experiments.  In order to 

inhibit protein synthesis locally, emetine is applied via one recording electrode to a set of 

distal synapses while vehicle (aCSF) is applied via a second recording electrode to 

synapses more proximal to the cell body layer. A captured image of the recording setup 

illustrates that the synapses being recorded from originate from the same neurons. 

GR=Granular layer of DG, MOL=molecular layer of DG, SLM=stratum lacunosum-

moleculare, RAD=stratum radiatum, PY=stratum pyramidale, OR=stratum oriens. 
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Figure 3.8-Local protein synthesis mediates the interaction between Hebbian and 

homeostatic synaptic plasticities.  Focal application of emetine to dendrites in stratum 

radiatum via a recording electrode did not alter the magnitude of LTD, but did enhance 

the magnitude of homeostatic weakening following LTD expression compared to a 

second recording electrode diffusing aCSF alone (*p<0.05, n=10).   
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Figure 3.9-Selective blockade of protein synthesis at either proximal or distal apical 

dendrites reveals that metaplastic interactions are not isolated to one dendritic 

compartment.  (A) Focal application of emetine to dendrites in stratum radiatum to a 

region distal to stratum pyramidale via a second recording electrode did not alter the 

magnitude of LTD, but did enhance the magnitude of homeostatic weakening following 

LTD expression (*p<0.05, n=5).  (B) In separate experiments, emetine applied to 

proximal dendrites revealed the same rescue of homeostatic weakening seen with distal 

application (* p< 0.05, n=5).  
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Figure 3.10-Weak LTP preserves the capacity for homeostatic strengthening.  Prior 

induction of either 1x HFS LTP (A), 2x HFS LTP (B) or TBS LTP (C) offsets the 

magnitude of homeostatic plasticity subsequently induced, but does not alter the relative 

change in synaptic strength.  In each experiment, homeostatic strengthening was induced 

using a frequency shift from 1 pulse/20 seconds
 
to 1 pulse/5 minutes. 
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Figure 3.11-Protein synthesis dependent interaction concurrent with cooperation 

between Hebbian and homeostatic synaptic plasticity.  (A) In 2-pathway experiments, 

homeostatic synaptic strengthening increases the magnitude of synaptic strength at 

synapses with previously established 1x HFS LTP.  Both pathways initially undergo 

induction of weak LTP (1 train HFS), followed by induction of homeostatic 

strengthening in only one pathway.  This long-lasting enhancement was not abolished by 

application of protein synthesis inhibitors, but was in fact significantly increased 

(*p<0.05, n=6 control group, 4 emetine group).   
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Chapter IV 

Impaired activity-dependent FMRP translation and enhanced mGluR-dependent 

LTD in Fragile X premutation mice 

 

This chapter has been published: 

Adam J. Iliff*, Abigail J. Renoux*, Amy Krans, Karen Usdin, Michael A. Sutton, and 

Peter K. Todd.   Hum. Mol. Genet. (2013) 22 (6): 1180-1192.                                                                

*these authors contributed equally to this work 

4.1   Introduction 

Fragile X Syndrome (FXS) is the most common known monogenic cause of 

autism and intellectual disability, affecting upwards of 1 in 4000 boys and 1 in 8000 girls 

(Hernandez et al., 2009; Rogers et al., 2001). FXS results from the expansion of a CGG 

microsatellite repeat in the 5′ untranslated region (UTR) of the FMR1 gene on the X 

chromosome. In humans, this sequence is normally <45 CGG repeats. Expansions to 

>200 repeats trigger hypermethylation of the repeat and FMR1 promoter, resulting in 

transcriptional silencing of the FMR1 gene and the absence of the Fragile X mental 

retardation protein (FMRP), (Bell et al., 1991; Kremer et al., 1991; Oberle et al., 1991; 

Pieretti et al., 1991; Verkerk et al., 1991). 

FMRP is an RNA-binding protein that regulates activity-dependent translation of 

associated transcripts at the synapse (Bassell & Warren, 2008). Mice lacking FMRP 

(Fmr1 KO mice) exhibit specific defects in synaptic signaling mediated through group I 
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metabotropic glutamate receptors (mGluRs; Huber et al., 2002). At CA3–CA1 synapses 

in the hippocampus, mGluR activation normally leads to a long-term depression (LTD) 

of synaptic efficacy that requires new dendritic protein synthesis (Huber et al., 2000; 

Nosyreva & Huber, 2006; Park et al., 2008; Shepherd et al., 2006). mGluR agonists 

trigger rapid FMRP dephosphorylation and degradation, which allows synaptic 

translation of FMRP-associated transcripts (Hou et al., 2006; Nalavadi et al., 2012; Niere 

et al., 2012). In mice lacking FMRP, mGluR-LTD is enhanced and no longer requires 

new protein synthesis, and mGluR agonists fail to trigger the translation of FMRP target 

mRNAs (Huber, et al., 2002; Muddashetty et al., 2007; Niere, et al., 2012; Nosyreva & 

Huber, 2006; Todd et al., 2003). The absence of FMRP is thought to decouple mGluR 1/5 

activity from protein translation, such that basal dendritic translation of these target 

mRNAs is increased, but mGluR-coupled dendritic translation is lost (Bear et al., 2004). 

One of the dendritically localized transcripts whose translation is regulated by 

mGluR signaling is FMRP itself (Antar et al., 2004; Hou, et al., 2006; Todd et al., 2003; 

Weiler et al., 1997). Although the function of this newly synthesized FMRP is unknown, 

it has been proposed to act as a brake on local protein production, hence constraining 

LTD by limiting the new translation of LTD effector proteins (Bear, et al., 2004; Todd & 

Malter, 2002). A critical prediction of this model is that the magnitude of LTD should be 

enhanced by diminished mGluR-dependent translation of FMRP. Despite its appeal, and 

its consistency with studies using the Fmr1 knockout mouse as an experimental model, 

this idea has never been directly tested. 

‘Premutation’ expansions at the FMR1 locus to between 55 and 200 CGG repeats 

are associated with the age-related neurodegenerative condition Fragile X-associated 
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Tremor Ataxia Syndrome (FXTAS) (Berry-Kravis et al., 2007; Bourgeois et al., 2009; 

Greco et al., 2006; Sullivan et al., 2005). This disorder, characterized clinically by gait 

ataxia, action tremor, dementia and neuropsychiatric symptoms, occurs in ∼40% of male 

premutation carriers over the age of 50 (Jacquemont et al., 2004). However, premutation 

range repeats are relatively common in the population [estimates upwards of 1:813 males 

and 1:259 females (Jacquemont et al., 2007; Seltzer et al., 2012)], and have the potential 

to significantly influence the risk of other human diseases. Recent studies in young 

premutation carriers demonstrate higher rates of autism and attention deficit hyperactivity 

disorder (ADHD)-like symptoms in the absence of FXTAS symptoms (Clifford et al., 

2007; Farzin et al., 2006; Grigsby et al., 2006; Loesch et al., 2002; Loesch et al., 2003; 

Loesch et al., 2004; Loesch et al., 2007) and FXS phenotypes have been reported in 

larger premutation and unmethylated full mutation carriers who produce FMR1 mRNA 

but inefficiently translate FMRP (Allen et al., 2005; Chonchaiya et al., 2009; Feng et al., 

1995; Hagerman et al., 1996; Jacquemont et al., 2011; Tassone et al., 2000; Tassone et 

al., 2000). 

Unlike full mutation expansions, premutation-sized repeats are unmethylated and 

over-transcribed, leading to a 2–8-fold elevation in the production of FMR1 mRNA 

(Tassone et al., 2007; Tassone et al., 2000; Todd et al., 2010). However, the CGG repeat 

expansion forms a hairpin loop in the 5′ UTR of the RNA transcript that impairs 

ribosomal scanning and induces significant translational inefficiency (Kaufmann et al., 

1999; Ludwig et al., 2011; Primerano et al., 2002; Zumwalt et al., 2007). This leads to 

low-normal or decreased basal FMRP expression in Fragile X-premutation carriers, 

depending on the repeat size (Kaufmann, et al., 1999; Tassone et al., 2004). The 
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neurodegeneration seen in FXTAS and other age-related premutation phenotypes are 

thought to result primarily from an RNA gain-of-function mechanism (Hagerman, 2012; 

Li & Jin, 2012; Renoux & Todd, 2012). In contrast, work in two independently generated 

FMR1 premutation mouse models suggests an additional role for FMRP insufficiency in 

aspects of the premutation phenotype, especially in younger animals that do not yet 

demonstrate neurodegenerative sequelae (Berman & Willemsen, 2009; Chen et al., 2010; 

Cunningham et al., 2011; Qin et al., 2011). Defects in these mice include alterations in 

neuronal migration, dendritic branching, synaptic activity in cultured neurons, and 

behavioral defects including altered performance on measures of anxiety and social 

interaction (Cao et al., 2012; Entezam et al., 2007; Qin, et al., 2011). 

Given the known critical roles for FMRP in synaptic function and the translational 

inefficiency induced by CGG repeat expansions, we hypothesized that mice with large 

unmethylated CGG repeat expansions would exhibit a specific defect in their ability to 

rapidly translate FMRP at synapses. A defect in activity-dependent synthesis of FMRP 

would allow for the analysis of the function of newly produced synaptic FMRP, including 

its role in long-lasting forms of synaptic plasticity. We therefore evaluated dendritic 

FMRP synthesis and synaptic function in a premutation mouse model where a CGG 

repeat expansion has been knocked into the mouse Fmr1 locus (Entezam, et al., 2007; 

Qin, et al., 2011). 

Here, we show that mice with 120–150 CGG repeats in the mouse Fmr1 5′ UTR 

have modestly reduced basal FMRP expression despite elevated Fmr1 mRNA levels, 

consistent with a robust impairment in translational efficiency. Strikingly, these animals 

exhibit impaired mGluR-dependent translation of dendritic FMRP. Young CGG KI mice 
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exhibit normal basal synaptic properties, but enhanced mGluR-LTD, as in Fmr1 KO mice 

(Huber, et al., 2002). However, the mechanism underlying this functional alteration is 

distinct from that in Fmr1 KO animals, as mGluR-LTD in CGG KI mice remains 

dependent on new protein synthesis. Our results provide a link between local FMRP 

synthesis and mGluR-dependent synaptic plasticity, and raise the possibility that some 

aspects of the cognitive defects observed in premutation carriers and unmethylated FXS 

patients may result from altered activity-dependent translation of FMRP. 

4.2   Materials and Methods 

4.21   Mice and cell culture 

Animal use followed NIH guidelines and was in compliance with the University 

of Michigan Committee on Use and Care of Animals. DNA was extracted from tail 

biopsies and isolated with DirectPCR lysis reagent (Viagen) and proteinase K (0.2 µg/µl, 

Roche), incubated overnight at 55°C. Proteinase K was heat inactivated and DNA 

samples were genotyped first with primers against the Y chromosome 

(5′GTGAGAGGCACAAGTTGGC, 5′GTCTTGCCTGTATGTGATGG) to determine the 

sex of each animal using Platinum® PCR Supermix (Invitrogen). To amplify the 

knocked-in CGG repeat expansion, we targeted mouse specific Fmr1 allele 

(5′AGCCCCGCACTTCCACCACCAGCTCCTCCA, 

5′GCTCAGCTCCGTTTCGGTTTCACTTCCGGT) in male hemizygous animals using 

the Expand High Fidelity PCR System (Roche) supplemented with 2 m Betaine (Sigma) 

and 5% dimethyl sulfoxide (DMSO; Fisher Scientific) as described previously (Tassone 

et al., 2008). As genotyping was performed on tail samples early in life, small expansions 
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in repeat length may have occurred due to somatic instability in older animals (Lokanga 

et al., 2012). Dissociated hippocampal neuron cultures were prepared from postnatal (P1–

3) mice as previously described (Jakawich et al., 2010). Experiments were performed at 

14–17 days in vitro (DIV). 

4.22   Drugs 

(RS)-3,5-DHPG (Tocris) was prepared fresh each day in sterile water, or artificial 

cerebrospinal fluid (aCSF, in mm: 124 NaCl, 5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 1 

MgCl2, 2 CaCl2 and 10 dextrose). Anisomycin (Sigma) was prepared as a 1000× stock in 

DMSO, stored at −20°C, and diluted to final concentration in aCSF or conditioned media. 

4.23   Western blotting 

Brain lysate samples were homogenized in RIPA buffer (50 mm Tris–HCl, 150 

mm NaCl, 0.1% SDS, 1% NP−40, 0.5% deoxycholic acid-sodium salt, pH 7.4) 

containing Complete Mini protease inhibitor cocktail (Roche). Samples were sonicated 

and centrifuged, and total protein content of the supernatant measured using a DC Protein 

assay (Bio-Rad). Equal amounts of protein were mixed with 4× Laemmli buffer and 

boiled for 5 min before separation on 10 or 12% polyacrylamide gels. Gels were 

transferred to PVDF membranes and blocked with Tris-buffered saline containing 0.1% 

Triton-X (TBST) and 5% non-fat milk for 60 min at RT, and incubated with an antibody 

against FMRP (Millipore mouse monoclonal 1C3 1:1000 or Abcam rabbit polyclonal 17 

722, 1:1000) or PSD-95 (Abcam, 6G6–1C9, 1:2000) overnight at 4°C. After washing 

with TBST, blots were incubated with a corresponding HRP-conjugated secondary 

antibody (anti-rabbit or anti-mouse 1:5000; Jackson Immunoresearch); this was followed 
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by chemiluminescent detection (Western Lightning Plus-ECL, PerkinElmer). The same 

blots were reprobed with a mouse monoclonal antibody against β-tubulin (University of 

Iowa's Developmental Studies Hybridoma Bank E7, 1:5000) or β-actin (Sigma 1:5000) to 

confirm equal loading. Band intensity was quantified in the linear range with 

densitometry using NIH ImageJ. 

4.24   Quantitative polymerase chain reaction 

Dissected cortex or hippocampi from P28–60 male mice were flash-frozen and 

stored at −80°C. RNA was extracted using TRIzol Reagent (Invitrogen), following the 

manufacturer's guidelines. Equal amounts of extracted RNA (1 µg) were used to generate 

cDNA (iScript™ cDNA synthesis kit, Bio-Rad). Quantitative polymerase chain reaction 

(QPCR) was performed using iQ™ SYBR© Green Supermix (Bio-Rad) and primers 

against the 2/4 (5′CATGAAGATTCAATAACAGTTGC, 

5′CACTTTAGCTAACCACCAACAG) or 16/17 (5′CCGAACAGATAATCGTCCACG, 

5′ACGCTGTCTGGCTTTTCCTTC) exons of mouse Fmr1, and actin 

(5′GGCATCCTCACCCTGAAGTA, 5′AGAGGCGTACAGGGATAGCA). Samples 

were run in triplicate, and Fmr1 expression data normalized to actin expression for each 

sample. 

4.25   Translational efficiency calculation 

The translational efficiency ratio was calculated by deriving FMR1 mRNA 

expression levels determined by qRT–PCR from one cortex while total protein lysates 

were prepared from the contralateral cortex from the same animal. For each animal, 

cortical FMR1 mRNA expression (relative to actin) was normalized to the mean FMR1 
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mRNA expression in control cortices. Similarly, cortical FMRP levels were expressed as 

a ratio to actin expression and then normalized to the mean FMRP expression in control 

cortices. These numbers were then expressed as a ratio of normalized FMRP 

expression/normalized FMR1 mRNA expression. Finally, the mean value of this ratio in 

WT animals was set at 100 and all individual animal values were expressed as a 

percentage of this number. 

4.26   Synaptoneurosomes 

SNs were prepared from male P14–21 WT and CGG KI mice as described 

previously (Hollingsworth et al., 1985; Muddashetty, et al., 2007). Briefly, cortices were 

homogenized in 3 ml of homogenization buffer [containing (in mM) 118 NaCl, 4.7 KCl, 

1.2 MgSO4, 2.5 CaCl2, 1.53 KH2PO4, 212.7 glucose and 1 DTT, pH 7.4], supplemented 

with Complete Mini protease inhibitor cocktail (Roche) on ice. Samples were passed 

through a 100 μm nylon mesh filter, followed by two 10 μm nylon mesh filters 

(Millipore), followed by centrifugation at 1000 g for 15 min at 4°C. The pellets were 

suspended in 1.1 ml homogenization buffer per cortex. SN preparations were divided into 

10 × 100 µl aliquots for technical duplicates, and pre-warmed for 10 min at 37°C before 

stimulation with (RS)-3,5-DHPG (Tocris, 100 µM). After incubation with DHPG at 

37°C, samples were passed through a 28 gauge needle, and processed for western blotting 

as above. Expression of all samples was normalized to unstimulated samples maintained 

at 37°C for 60 min and statistical significance was determined using a Kruskal–Wallis 

one-way analysis of variance. Similar results were observed when comparisons were 

done with pre-stimulated samples (i.e. samples from the same SN prep that were never 

warmed to 37°C, data not shown). 
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4.27   Immunohistochemistry 

Animals were anesthetized with 0.2 mg Ketamine/20 µg Xylazine per kilogram 

prior to transcardial perfusion (2 ml per min) with 5–10 ml of ice-cold sterile phosphate-

buffered saline (PBS) and 5–10 ml of 4% paraformaldehyde (PFA) followed by brain 

dissection. Brains were sunk in 30% sucrose in PBS at 4°C prior to sectioning with a 

vibratome at 30 µm. Free-floating sections were stored in cryostorage (30% sucrose, 

33.33% ethylene glycol, 0.05 m PB pH 7.4) at −20°C. Sections were removed from 

cryostorage by rotating in PBS at 4°C overnight. Sections were permeabilized in 0.1% 

Triton X in PBS for 5 min, followed by staining with DAPI (1:10 000) for 15 min at 

room temperature. Sections were washed 2× with PBS, and mounted on slides in 

ProLong® Gold Antifade Reagent with DAPI (Invitrogen). 

4.28   Immunocytochemistry and microscopy 

All experiments were conducted at 37°C. Neurons were treated with anisomycin 

(40 µM) or vehicle (DMSO 1:1000) for 30 min in conditioned media. Cultures were then 

stimulated with DHPG (100 µM) for 20 min in the presence of anisomycin, or left as 

controls with vehicle, or with anisomycin alone. After treatment, neurons were fixed with 

warmed 4% PFA/4% sucrose in PBS with 1 mm MgCl2 and 0.1 mm CaCl2 (PBS-MC), 

permeabilized (0.1% Triton X in PBS-MC, 5 min), blocked with 5% normal goat serum 

in PBS-MC for 1 h and labeled with an antibody against FMRP (Millipore 1C3 1:200 or 

Abcam 17722 1:500). For co-labeling of dendrites, we used antibodies against Map2 

(Sigma M4403 1:1000, Millipore AB5622 1:1000) for 60 min at RT, or overnight at 4°C. 
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Secondary detection was achieved with Alexa 488-, 555- or 635-conjugated goat anti-

rabbit or goat anti-mouse antibodies (1:500 or 1:1000) for 60 min at RT. 

All imaging was performed on an inverted Olympus FV1000 laser scanning 

confocal microscope with identical acquisition parameters for each treatment condition. 

Image analysis was performed on maximal intensity z-projected images using custom-

written analysis routines for ImageJ. Statistical analysis utilized a one-way analysis of 

variance (ANOVA) to detect differences across conditions within genotype. N≈ 20–

40/condition across multiple individual experiments for each genotype. 

4.29   Electrophysiology 

Hippocampal slices were prepared from P35–42 male CGG KI mice and their 

male WT littermates. Mice were lightly anesthetized with isoflurane before decapitation. 

Then, the brain and hippocampal lobules were rapidly removed and placed in ice cold 

artificial cerebrospinal fluid [aCSF, containing in mm: 124 NaCl, 5 KCl, 1.25 NaH2PO4, 

26 NaHCO3, 1 MgCl2, 2 CaCl2, 10 dextrose (pH 7.4) saturated with 95% O2, 5% CO2]. 

Transverse slices (400 µm) of the hippocampus were cut using a tissue chopper 

(Stoelting, Wood Dale, IL, USA) and CA3 was surgically isolated from CA1 with a 

scalpel. Slices recovered for 2–5 h at room temperature in a submersion chamber 

containing aCSF prior to recording. For recording, hippocampal slices were transferred to 

a recording chamber and continuously perfused at 32°C with aCSF at a rate of 1–2 

ml/min. 

Recording electrodes were pulled from borosilicate capillary glass (G150-4, 

Warner) and filled with aCSF. The recording pipette was placed in the middle of stratum 
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radiatum of CA1. Synaptic responses were elicited using cluster stimulation electrodes 

(FHC, Bowdoin, ME, USA) placed in CA1stratum radiatum, lateral to the recording 

electrode. Current was delivered for 100 µs with an ISO-flex stimulator (AMPI, 

Jerusalem, Israel). Stable baseline responses were collected every 30 s (0.033 Hz) by 

using a stimulation intensity (20–140 μA) yielding ∼50% of the maximal synaptic 

response. The fEPSP signal was amplified 1000 times with a DAM-50 DC differential 

amplifier (WPI) and filtered at 3 kHz. Recordings were collected at 10 kHz using 

Clampex 10.2 and analyzed using Clampfit 10.2 (Molecular Devices, Sunnyvale, CA, 

USA). For all experiments, the initial slope of each fEPSP was expressed as the 

percentage of the baseline average. Pooled data represent the mean fEPSP slope (±SEM). 

Statistical significance was determined using an independent t-test, P < 0.05. 

4.3   Results 

4.31   Reduced FMRP translational efficiency in premutation model mice 

To evaluate the neurobiological effects of ‘premutation’ range CGG repeats in the Fmr1 

gene, we utilized a mouse model of the Fragile X premutation which contains ∼120–150 

CGG repeats knocked-in to the endogenous mouse Fmr1 5′ UTR [CGG KI, Entezam, et 

al., 2007; Fig. 4.1A]. Similar to human premutation patients, the expression of Fmr1 

mRNA is significantly increased in cortical tissue [Fmr1 2/4 exon junction wild-type 

(WT) 1 ± 0.27, KI 5.24 ± 0.98 P < 0.05; Fmr1 16/17 exon junction WT 1 ± 0.24, KI 4.46 

± 0.74; P < 0.05, n = 5; Fig. 4.1B], as well as hippocampus (Fmr1 2/4 exon junction WT 

1 ± 0.07, KI 4.04 ± 1.11 P < 0.05; Fmr1 16/17 exon junction WT 1 ± 0.07, KI 4.40 ± 

1.99, data not shown) in CGG KI mice at 1 month of age (P28–37) compared with 
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littermate controls (Fig. 4.1B and data not shown). Despite this increase in mRNA, 

FMRP expression is significantly reduced in both CGG KI cortex (P28–37, WT 100 ± 

10.09%, KI 37.50 ± 4.37%, P < 0.05, n = 5; Fig. 4.1C) and hippocampus (P35–60, WT 

100 ± 17.00%, KI 44.93 ± 14.71%, P < 0.05, n = 5; Fig. 4.1D) from young animals 

compared with littermate controls. To determine the relative translational efficiency of 

Fmr1 mRNA in cortical tissues, we created a ratio of total FMRP/relative Fmr1 mRNA 

from the same animals. Using this analysis, we find that the efficiency of Fmr1 mRNA 

translation is dramatically reduced in young CGG KI mice compared with littermate 

controls (FMRP CTX/Fmr1 mRNA; WT 100 ± 21.26%, KI 7.60 ± 0.99%, P < 0.05, n = 

5; Fig. 4.1E). 

 Consistent with previous reports (Entezam, et al., 2007; Qin, et al., 2011), FMRP 

is also reduced in the cortex of older (6-month-old) CGG KI mice (WT 100 ± 17.57%, KI 

18.57 ± 2.68%, P < 0.05, n = 3; Fig. 4.1C) and, interestingly, when compared with WT 

littermates, the reduction in FMRP expression is greater in older CGG KI animals than in 

younger animals (1 month: KI 37.50 ± 4.37%, n = 5; 6 month: KI 18.57 ± 2.68%, n = 3; 

P < 0.05). This may reflect either a relatively greater decrease in FMR1 transcription in 

CGG KI versus WT mice with age or could result from somatic instability that is known 

to occur in these mice (Lokanga, et al., 2012; Singh et al., 2007). 

4.32   Activity-dependent synaptic translation of FMRP is impaired in CGG KI mice 

To examine the sub-cellular distribution of FMRP in CGG KI neurons, we 

generated dissociated hippocampal neurons from CGG KI and WT littermate controls 

(P1–3). Neurons were probed with antibodies to FMRP on day in vitro (DIV) 14–17 (Fig. 
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4.2A), and FMRP expression in somatic and dendritic regions was assessed. FMRP 

expression was reduced in both the cell soma and proximal dendrite by similar amounts 

(soma: WT 100 ± 5.74%, KI 49.82 ± 2.69%, P < 0.05; dendrite: WT 100 ± 4.63%, KI 

66.87 ± 2.94%, P < 0.05, n = 23–24 neurons from 2 animals; Fig. 4.2B–D), suggesting 

that, while FMRP expression is lower, what FMRP is expressed in CGG KI neurons is 

appropriately distributed. 

The reduced efficiency of Fmr1 mRNA translation in CGG KI mice suggests that 

rapid, mGluR-dependent synthesis of FMRP might also be disrupted in the CGG KI 

mice. To address this question, we first examined changes in FMRP expression upon 

mGluR1/5 stimulation in synaptoneurosomes (SNs), a biochemical preparation enriched 

for synaptic components and often used as a means to examine protein synthesis at 

isolated synapses (Muddashetty, et al., 2007; Weiler, et al., 1997). SNs were prepared 

from the neocortex of P14–21 CGG KI mice and their WT littermates. In all experiments, 

we verified the appropriate enrichment of the synaptic scaffolding protein PSD-95 at 

different stages of SN preparation, and found that the enrichment of PSD-95 was similar 

between WT and CGG KI mice (Fig. 4.3A). PSD-95 expression in SNs were similar in 

WT and CGG KI mice (WT 100 ± 23.8%, CGG KI 99.2 ± 24.8%, n = 6). Consistent with 

our immunocytochemical results (Fig. 4.2), the expression of FMRP in unstimulated SNs 

was reduced in CGG KI, relative to WT mice (% WT, 42.92 ± 21.51%, P < 0.05, n = 5; 

Fig. 4.3B). We next examined changes in FMRP expression in response to mGluR 

stimulation: SNs were stimulated with the group 1 mGluR agonist, (RS)-3,5-

dihydroxyphenylglycine (DHPG, 100 µM) for either 10 or 30 min at 37°C. Similar to 

effects seen previously in WT SNs (Weiler, et al., 1997), DHPG induced significant 
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increases in FMRP at both 10 and 30 min time points relative to controls (10 min: WT 

199.77 ± 56.97%; 30 min: WT 202.13 ± 54.83%, P < 0.05, n = 15; Fig. 4.3C and D). This 

increase was dependent on new protein synthesis (% 30 min untreated samples: 30 min 

DHPG: 162.5 ± 32.6%; 30 min DHPG + Anisomycin: 124.5 DHPG + Anisomycin 

15.1%, expressed as % untreated n = 6). In contrast, SNs prepared from CGG KI mice 

did not show changes in FMRP expression in response to DHPG stimulation, consistent 

with impaired mGluR-dependent translation (Control: KI 42.92 ± 21.51%; 10 min: KI 

31.16 ± 9.35%; 30 min: KI 40.84 ± 20.12%; NS, n = 5; Fig. 4.3C and D). 

To further assess mGluR-dependent FMRP translation in CGG KI neurons, we 

took advantage of mice expressing green fluorescent protein (GFP) on the X chromosome 

to generate hippocampal cultures where neurons harboring the premutation are 

intermingled with normal length CGG repeat WT neurons (Fig. 4.4A–C). This approach 

allows us to evaluate cell-autonomous roles of the premutation by comparing CGG KI 

neurons with neighboring WT neurons in the same culture, a strategy similar to that used 

previously for other X-linked mutations (Hadjantonakis et al., 1998; Hanson & Madison, 

2007; Kalantry et al., 2009; Niere, et al., 2012). Mice expressing GFP on the X 

chromosome were crossed with CGG KI mice to generate heterozygous XGFP/CGG KI 

females (Fig. 4.4A). This cross generates females possessing one WT X chromosome 

with a normal copy of Fmr1 and GFP and one X chromosome with a premutation range 

CGG repeat knocked-in to the Fmr1 allele, but no GFP. Owing to X-inactivation, roughly 

half the neurons will inactivate the CGG KI X chromosome and express normal Fmr1 

mRNA along with GFP. The remaining neurons will inactivate the GFP-expressing 

chromosome and instead express the CGG KI Fmr1 allele. Analysis of dissociated 
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neuronal cultures and histological staining of hippocampi shows roughly equal 

proportions of GFP+ and GFP− cells in both XGFP/WT and XGFP/KI female mice (Fig. 

4.4B and data not shown). 

We first confirmed the effects of CGG repeat expansions on basal FMRP 

expression in XGFP/CGG KI cultures. GFP(−)/CGG KI(+) neurons exhibit reduced 

FMRP immunoreactivity in mixed XGFP/CGG KI cultured networks at DIV 14–17 

compared with neighboring GFP(+)/FMR1 WT neurons (Fig. 4.4C–E). Consistent with 

studies in non-mosaic neuronal cultures (Fig. 4.2), these effects were seen both in the 

soma (WT 100 ± 4.79%, KI 30.07 ± 1.70%, P < 0.05, n = 14–24 neurons; Fig. 4.4D and 

E) and in both proximal and distal dendritic segments of CGG KI GFP neurons (0–40 

µm: WT 100 ± 8.65%, KI 46.46 ± 7.03%; 40–80 µm: WT 100 ± 17.22, KI 51.47 ± 

5.92%; 80–120 µm: WT 100 ± 15.05%, KI 55.05 ± 5.36%, P < 0.05, n = 13–23 neurons; 

Fig. 4.4D). The total amount of FMRP detected decreases with distance from the cell 

soma in both control and CGG KI neurons. However, the relative difference in 

expression of basal FMRP between WT and CGG KI neurons is smaller in proximal and 

distal dendritic compartments than in the cell soma, suggesting that decreases in FMRP 

reflect a primary failure in translational efficiency rather than a breakdown in FMRP 

transport into dendrites. We next examined whether the premutation had a cell-

autonomous effect on mGluR-initiated translation of new FMRP. XGFP/CGG KI 

cultures were stimulated with DHPG (100 µM, 20 min) prior to FMRP and Map2 

immunostaining. After mGluR activation, WT neurons showed a significant increase in 

dendritic FMRP immunoreactivity (Control: WT 100 ± 6.85%; DHPG: WT 133.74 ± 

11.46%, P < 0.05; Fig. 4.4F–H) and this effect was blocked by pretreatment with the 
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protein synthesis inhibitor anisomycin (40 µM, 30 min prior to and throughout DHPG 

application; Anisomycin + DHPG: WT 96.81 ± 7.75%; Anisomycin: WT 102.53 ± 

7.50%; Fig. 4.4H). In contrast, DHPG did not alter FMRP expression in CGG KI neurons 

in the presence or absence of anisomycin (Control: KI 49.70 ± 4.33%; DHPG: KI 50.42 ± 

6.20%; Anisomycin + DHPG: KI 38.73 ± 2.74%; Anisomycin: KI 42.04 ± 3.20%; NS; 

Fig. 4.4F–H). These data support the hypothesis that premutation range expanded CGG 

repeats impair mGluR-dependent synthesis of FMRP in a cell-autonomous fashion. 

4.33   Enhanced mGluR-LTD in hippocampal slices prepared from CGG knock-in mice 

Since mGluR-dependent translation is critical for certain forms of synaptic 

plasticity that are altered in FXS model mice, we next tested whether there was any 

overlap between the synaptic plasticity phenotypes in Fmr1 KO mice and CGG KI mice. 

We first examined basal synaptic properties at CA3–CA1 synapses in acute hippocampal 

slice preparations from young CGG KI mice with their WT littermates (P31–35). Field 

excitatory postsynaptic potentials (fEPSPs) were evoked by stimulating Schaffer 

collaterals and recording in stratum radiatum of area CA1. In response to a series of 

stimulation pulses of increasing intensity, we found that the corresponding increase in 

fEPSP slope was nearly identical in WT and CGG KI mice (Fig. 4.5A). These largely 

overlapping input/output curves show that CGG KI mice do not exhibit alterations in 

basal synaptic efficacy relative to WT mice. In addition, we tested whether paired pulse 

facilitation, a measure of short-term synaptic plasticity and presynaptic function, was 

altered in CGG KI mice. In response to pairs of stimulation pulses with varying inter-

pulse intervals, WT and CGG KI mice exhibited similar robust facilitation of the second 

synaptic response at all intervals (Fig. 4.5B), suggesting that the neurotransmitter release 
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probability is largely similar between the two genotypes. Hence, basal synaptic function 

is similar between CGG KI mice and their WT littermates. 

Our results suggest that premutation range repeats impair FMRP translation even 

in young mice, raising the question of whether this loss of new FMRP synthesis might 

mimic aspects of the FXS phenotype. To test this idea, we next examined mGluR-

dependent LTD at these CA3–CA1 synapses. After confirming that evoked fEPSPs were 

stable over time, LTD was induced by brief application of DHPG (100 µM, 10 min; Fig. 

4.6). As previously described, DHPG treatment induced a sustained depression of fEPSPs 

in WT slices that persisted well beyond drug application (Fig. 4.6). Interestingly, we 

found that this mGluR-dependent LTD was significantly exaggerated in slices from CGG 

KI mice (Fig. 4.6A), a synaptic phenotype that is similar to Fmr1 KO mice (Huber, et al., 

2002). These results demonstrate that, even during early life, the expanded premutation 

CGG repeat in the Fmr1 gene leads to altered hippocampal synaptic plasticity. 

4.34   Enhancement of mGluR-LTD in premutation and FXS model mice are 

mechanistically distinct 

Like young CGG KI mice, Fmr1 KO mice also exhibit enhanced mGluR-LTD 

(Huber, et al., 2002). Since this exaggerated mGluR-LTD in FXS model mice is thought 

to contribute to intellectual disability and/or autistic features in FXS, it was of interest to 

determine to what extent the exaggerated LTD in each case was due to similar or distinct 

mechanisms. To explore this issue, we examined whether protein synthesis inhibitors 

would impair the induction of mGluR-LTD in CGG KI and Fmr1 KO mice. In WT mice, 

mGluR-LTD requires rapid dendritic protein synthesis for its induction (Huber et al., 
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2000), whereas mGluR-LTD in Fmr1 KO mice is completely resistant to protein 

synthesis inhibitors (Hou, et al., 2006; Nosyreva & Huber, 2006). Consistent with these 

findings, we found that the magnitude of mGluR-LTD in Fmr1 KO mice was not affected 

by blocking protein synthesis with anisomycin (Fig. 4.6B). In contrast, the enhanced 

mGluR-LTD seen in young CGG KI mice was significantly diminished with anisomycin 

(Fig. 4.6C), indicating that mGluR-LTD remains dependent on new protein synthesis in 

these mice, as in WT mice. Taken together, these results suggest that while young FXS 

and premutation model mice share the same exaggerated mGluR-LTD phenotype, the 

mechanism underlying this plasticity is distinct in the two mouse models. 

4.4   Discussion 

The roles of FMRP in both normal and aberrant control of synaptic function have 

received considerable attention in the past two decades. This effort has been greatly 

facilitated by work in the Fmr1 KO mouse, which recapitulates several important features 

of FXS, and has been instrumental in the rapid development of novel therapeutic 

approaches (Bhakar et al., 2012). In addition, significant advances have been made in our 

understanding of the molecular consequences of premutation CGG repeat expansions, 

which enhance FMR1 transcription but impair FMRP translation and elicit toxicity 

directly as RNA (Renoux & Todd, 2012). In contrast, considerably less is known about 

the impact of premutation range CGG repeat expansions on neuronal function. 

Premutation expansions do not typically lead to overt intellectual disability, but they are 

increasingly linked to a broad range of important clinical phenotypes in patients, 

including neuropsychiatric symptoms and autistic features earlier in life (Berry-Kravis, et 

al., 2007; Bourgeois, et al., 2009; Clifford, et al., 2007; Farzin, et al., 2006; Grigsby, et 
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al., 2006; Loesch, et al., 2004). These clinical features are recapitulated in Fragile X 

premutation model mice that exhibit altered social interactions and anxiety behaviors 

compared with littermate controls (Qin, et al., 2011). We therefore examined neuronal 

function in young Fragile X premutation model mice, with a specific focus on the impact 

of the CGG repeat on activity-dependent FMRP translation. 

Our results demonstrate that premutation model mice exhibit a dramatic decrease 

in the translational efficiency of Fmr1 mRNA that impairs rapid, activity-dependent 

synthesis of FMRP in dendrites. This defect in local FMRP synthesis is associated with 

exaggerated mGluR-dependent LTD, a phenotype first reported in Fmr1 KO mice. This 

shared synaptic phenotype, however, is mechanistically distinct between Fmr1 KO and 

premutation model mice, as mGluR-dependent LTD in CGG KI mice remains dependent 

on new protein synthesis (Fig. 4.6B and C). Coupled with data demonstrating altered 

dendritic spine morphology and development in CGG KI mice (Chen, et al., 2010; Qin, et 

al., 2011), our results reveal a shared defect in synaptic plasticity in FXS and premutation 

model mice and suggest an important role for activity-dependent FMRP synthesis at 

synapses in regulating the magnitude of synaptic strength. 

FMRP is an RNA-binding protein found associated with stalled ribosomes 

(Laggerbauer et al., 2001), where it acts primarily as a translational suppressor (Darnell et 

al., 2011; Laggerbauer, et al., 2001; Li et al., 2001). mGluR signaling induces 

dephosphorylation of FMRP, which then dissociates from polysome–transcript 

complexes and is rapidly degraded, leading to an activity-dependent burst of translation 

of FMRP target mRNAs (Fig. 4.7A) (Nalavadi, et al., 2012; Narayanan et al., 2007; 

Narayanan et al., 2008). Intriguingly, FMRP also binds and regulates the translation of its 
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own mRNA in vitro and FMRP is rapidly synthesized at synapses in response to mGluR 

activation in vivo (Hou, et al., 2006; Li, et al., 2001; Siomi et al., 1994; Todd, et al., 

2003; Todd et al., 2003; Weiler, et al., 1997). The role of FMRP as a translation 

repressor, and the clear role of certain FMRP targets (e.g. activity-regulated cytoskeletal-

associated protein; Arc) as mediators of mGluR-LTD (Park, et al., 2008; Waung et al., 

2008), has bolstered the hypothesis that newly synthesized FMRP functions to provide 

negative feedback on further local translation, thus constraining the magnitude of LTD 

after mGluR activation (Fig. 4.7A) (Bassell & Warren, 2008; Bear, et al., 2004; Todd & 

Malter, 2002). This notion of newly synthesized FMRP as a ‘brake’ on local translation is 

consistent with observations that mGluR-LTD and other forms of mGluR-mediated 

plasticity require local protein synthesis in only a brief time window after induction 

(Huber, et al., 2000; Merlin et al., 1998). In the complete absence of FMRP, mGluR-LTD 

is enhanced but no longer requires new protein synthesis (Huber, et al., 2002; Nosyreva 

& Huber, 2006). This has been interpreted as resulting from an uncoupling of mGluR 

activation and synthesis of critical mGluR-LTD effector proteins (Fig. 4.7B) (Bassell & 

Warren, 2008; Bear, et al., 2004). Thus, whereas synaptic levels of Arc and other LTD 

mediator proteins are low basally in WT neurons and increase as a result of mGluR-

dependent synthesis, Arc in FMR1 KO neurons is basally elevated, but is no longer 

synthesized in response to mGluR activation (Fig. 4.7B) (Niere, et al., 2012). 

In CGG KI mice, our results demonstrate that mGluR-LTD is exaggerated as in 

Fmr1 KO mice, but that this enhanced mGluR-LTD remains dependent on new protein 

synthesis, as occurs typically in WT animals (Fig. 4.6C). We suggest that this protein 

synthesis-dependent enhancement of mGluR-LTD occurs because of a specific failure in 
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activity-dependent FMRP production (Fig. 4.7C). Although basal FMRP levels are lower 

in CGG KI mice, FMRP is maintained in both proximal and distal dendritic 

compartments at levels that are 40–60% of normal, which is above the threshold at which 

alterations in mGluR-triggered AMPA receptor (AMPAR) recycling occurs (Nakamoto 

et al., 2007). This suggests that basal synthesis of FMRP, although inefficient, is adequate 

to achieve the suppression of translation of LTD effector proteins in the absence of 

mGluR activity (Fig. 4.7C). However, with mGluR activation, the rapid synthesis of 

dendritic FMRP is significantly impaired by the CGG repeat expansion. This means that 

there is inadequate new FMRP produced to halt the ongoing translation of FMRP target 

mRNAs, leading to an overproduction of these LTD effector proteins. This 

overproduction of LTD effector proteins presumably drives the enhanced LTD 

phenotype, but unlike FMR1 KO cultures, production of these proteins remains coupled 

to mGluR activity, as the release of FMRP cargo transcripts is still required to initiate the 

LTD (Fig. 4.7C). Within this framework, we propose that new translation of FMRP at 

synapses is critical for constraining mGluR-LTD, likely through limiting the sustained 

expression of LTD effectors by repressing their continued synaptic translation. However, 

some aspects of the effects observed here may also derive from either basal insufficiency 

of FMRP or from CGG repeat RNA-mediated toxic effects. Future experiments will be 

required to demonstrate altered synthesis of LTD effector proteins in CGG KI mice and 

to formally exclude contributions from these additional factors on synaptic function in 

CGG KI mice. 

In humans, the consequences of premutation range CGG repeats are age-

dependent. Of relevance, a recent study examined mGluR-dependent synaptic plasticity 
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in aged animals (10–13-month-old), comparing WT animals and a different mouse model 

of the fragile X premutation (Hunsaker et al., 2012). They found that aged premutation 

model mice exhibited weaker immediate synaptic depression following mGluR activation 

relative to their WT counterparts, but the level of sustained synaptic depression was 

similar across genotypes. In contrast, in younger animals, we find no difference in acute 

synaptic depression driven by mGluR activation, but a significant increase in the 

magnitude of enduring synaptic depression following mGluR stimulation. Although 

Hunsaker et al. (Hunsaker, et al., 2012) used a different Fmr1 premutation mouse model 

than the one employed here, these results raise the interesting possibility that the impact 

of the Fmr1 premutation may evolve as a function of age. One possibility is that the 

effects of enhanced mGluR-LTD on the development of childhood and early-adult-onset 

phenotypes in premutation carriers may be dissociable from the development of late-

adult-onset FXTAS in premutation carriers, where RNA-mediated toxicity and 

neurodegeneration might be expected to have a greater impact. 

In this work, we focused on the features of mGluR-LTD in young premutation 

model mice, given that exaggerated hippocampal mGluR-LTD in Fmr1 KO mice is 

widely considered relevant to the intellectual disability and autistic symptoms seen in 

FXS. However, it is likely that Fmr1 premutation repeats may have a broader impact on 

neural excitability. A recent series of in vitro studies demonstrated that neurons cultured 

from premutation mice develop abnormal firing properties (Cao, et al., 2012). These 

neuronal networks exhibit clustered firing and increased Ca
2+

 oscillations, as well as 

disruptions in neurotransmitter transport machinery (Cao, et al., 2012). Neurons derived 

from induced pluripotent stem cells generated from premutation carrier fibroblasts exhibit 
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a similar increase in Ca
2+

 dynamics (Liu et al., 2012). The authors speculated that the 

functional deficits arise from an improper excitation/inhibition ratio created by the altered 

transport of glutamate and GABA. While changes in the ratio of excitation to inhibition 

would influence Ca
2+

 dynamics and thus the firing properties of neurons, we did not find 

evidence of altered basal synaptic transmission in our ex vivo experiments (Fig. 4.5). 

Recent clinical evidence highlights potential points of confluence in symptoms 

found in young premutation carriers with FXS, suggesting that comparisons between 

FXS and premutation model mice may help to better identify specific behavioral and 

neurophysiological correlates of disease features. Specifically, work by a number of 

groups has demonstrated increased rates of autism and ADHD in premutation carriers, as 

well as neuropsychiatric symptoms, and executive and amygdala dysfunction (Cornish et 

al., 2005; Farzin, et al., 2006; Hessl et al., 2007; Hessl et al., 2005; Hessl et al., 2011; 

Hocking et al., 2012; Hunter et al., 2008; Kogan et al., 2008; Loesch, et al., 2003). This 

amygdala dysfunction and structural changes in premutation carriers without FXTAS 

correlate with lower blood FMRP expression (Hessl, et al., 2011). Consistent with this, 

two CGG KI mouse models exhibit numerous behavioral defects that mirror those 

observed in Fmr1 KO animals (Hunsaker, et al., 2012; Hunsaker et al., 2009; Qin, et al., 

2011). We find that FXS model mice and Fmr1 premutation model mice of similar ages 

share an important synaptic plasticity phenotype. Our data raise the intriguing possibility 

that neuropsychiatric abnormalities, autism and ADHD-like symptoms in young 

premutation patients may be linked to the mGluR-dependent plasticity deficits examined 

in mouse models of these disorders. However, it should be noted that the repeat sizes 

studied in CGG KI mice here and elsewhere are significantly larger than that seen in the 
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average premutation carrier, as repeats become progressively less stable with expansions 

above 55 repeats. These findings are therefore more relevant to those rare patients who 

have >100 CGG repeats or who have an unmethylated full mutation. This model may be 

particularly relevant to this latter category, as recent data suggests that a significant 

(>30%) portion of FXS patients exhibit incomplete FMR1 DNA methylation and some 

FMR1 RNA transcription (Jacquemont, et al., 2011). Importantly, this epigenetic 

alteration correlates with clinical severity and response to some experimental therapies 

(Jacquemont, et al., 2011). As clinical trials proceed in this patient population with agents 

that either directly or indirectly target the mGluR pathway (Bhakar, et al., 2012; 

Hagerman et al., 2012; Jacquemont, et al., 2011), it will be important to understand how 

mechanistic differences in different mutation states elicit altered mGluR-LTD, and 

incorporate this knowledge into better practice and drug development. 
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4.7   Figure Legends 

Figure 4.1-Elevated cortical Fmr1 mRNA and decreased Fragile X mental 

retardation protein (FMRP) in the fragile X premutation mouse.  (A) PCR 

genotyping of CGG KI male mice and WT littermates showing the expanded CGG 

repeat. KI band corresponds to ∼120 repeats; WT band corresponds to 8 CGG repeats. 

(B) Fmr1 mRNA levels in the cortex of p28–37 fragile X premutation male mice by 

qPCR using two different sets of primers against Fmr1. The bar graph summarizes three 

experiments, n = 5. (C) Representative immunoblot to FMRP (1C3 1:1000) in p28–37 

male mouse cortices from the indicated genotypes. Below: Summary of three 

experiments. Mean (±SEM) cortical FMRP in 1-month-old (p28–38; n = 5) and 6-month-

old (p177–181; n = 3) CGG KI mice is decreased compared with littermate controls. The 

relative decrease between genotypes is greater in older animals. (D) Representative 

immunoblot against FMRP (17722 1:1000) in hippocampi of p35 CGG KI animals 

compared with WT littermate controls. Below: Mean (±SEM) hippocampal FMRP in 

p35–p60 male CGG KI mice compared with WT littermate controls. n = 5. (E) 

Translational efficiency of cortical Fmr1 RNA expressed as the ratio of FMRP to Fmr1 

RNA levels in each individual animal, plotted on log10 scale; n = 5. *P < 0.05, Student's 

t-test. 
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Figure 4.2-Reduced FMRP is distributed throughout dendrites in cultured CGG KI 

neurons.  (A) DIV 14–17 cultured hippocampal neurons from male P1–3 CGG KI and 

littermate WT animals stained for FMRP (1C3 1:500). (B) 3D surface plot of the relative 

pixel intensity for the linearized images shown in A demonstrating reduced FMRP 

expression throughout the soma and dendrite. (C) Total non-zero FMRP fluorescence 

intensity was quantified in soma, revealing CGG KI neurons have 50% of WT FMRP 

levels. (D) Summary of fluorescence intensity studies in dendrites (0–40 µm), showing 

reduced FMRP in CGG KI neurons compared with WT neurons; n = 23–24 neurons from 

two animals in each group. *P < 0.05, Student's t-test. 
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Figure 4.3-CGG KI SNs do not respond to mGluR stimulation. SNs were prepared 

from WT and CGG KI cortical homogenates.  (A) Verification of SN preparation was 

confirmed by PSD-95 enrichment between the initial homogenate (H), filtered sample 

(F), post-centrifugation supernatant (S) and final synaptoneurosome fraction (SN) in each 

WT and CGG KI preparation. (B) Representative immunoblot against FMRP (17 722 

1:1000) in CGG KI SNs compared with littermate WT control. (C) SNs treated with 100 

μM 3,5-dihydroxyphenylglycine (DHPG) for 10 or 30 min. Samples were immunoblotted 

for FMRP (17 722 1:1000) and actin (1:5000). (D) Quantification of FMRP 

immunoreactivity normalized to untreated samples. WT n = 15, CGG KI n = 5, *P < 

0.05, Kruskal–Wallis one-way ANOVA. 
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Figure 4.4-CGGKI/XGFP heterozygous cultures reveal selective DHPG induction of 

FMRP in WT neurons.  (A) The breeding scheme used to generate mosaic female mice 

with one WT (GFP+) X chromosome, and one CGG KI (GFP−) X chromosome. (B) 

Fluorescent nuclei staining (DAPI 1:10 000) in coronal sections from an XGFP/WT 

female reveal GFP+ and GFP− cells in the hippocampus. (C) Primary hippocampal 

neurons from mosaic XGFP/CGG KI mice allow both WT (GFP+) and KI (GFP−) 

neurons in culture. (D) Quantitative analysis on soma from DIV 14–17 XGFP/CGG KI 

neurons stained for Map2 (Sigma 1:1000) and FMRP (17 722 1:500). CGG KI (GFP−) 

soma showed reduced basal FMRP fluorescence compared with WT (GFP−) neurons. (E) 

Basal FMRP expression is maintained in proximal and distal dendrites of CGG KI mice. 

WT n = 24, CGG KI n = 14, *P < 0.05, Student's t-test. (F) Cultures were treated with 

DHPG (100 µM for 20 min) prior to FMRP and Map2 staining. (G) Proximal dendrite 

segments showed selective FMRP immunofluorescence increases in WT (GFP+) 

neurons, but not in CGG KI (GFP−) neurons. (H) The effects of DHPG are mitigated by 

pretreatment with anisomycin (40 µM for 30 min) in WT proximal dendrites. There is no 

effect of DHPG or anisomycin on FMRP expression in the initial segment of CGG KI 

dendrites. WT n = 15–42 neurons from 1–2 animals, CGG KI n = 7–25 neurons from 1–2 

animals. *P < 0.05, one-way ANOVA with Fisher's-LSD. 
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Figure 4.5-Basal synaptic function is unchanged in CGG KI mice.  (A) Hippocampal 

field excitatory postsynaptic potentials (fEPSPs) in response to Schaffer collateral 

stimulation of increasing strength show a similar input/output response curve in CGG KI 

animals compared with littermate WT controls. n = 19 (WT) and 19 (CGG KI). (B) No 

difference is detected in paired-pulse facilitation, a measure of basal neurotransmitter 

release probability, between CGG KI mice and littermate WT mice at any inter-stimulus 

interval, suggesting that the neurotransmitter release probability at CA3–CA1 synapses is 

not altered by the premutation. n = 8 (WT) and 8 (CGG KI). 
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Figure 4.6-Exaggerated mGluR-LTD in CGG KI mice is protein synthesis 

dependent.  (A) Field EPSPs were recorded in CA1 stratum radiatum in response to 

Schaffer collateral stimulation. Addition of the group 1 mGluR agonist DHPG (100 μM; 

10 min) induced LTD at CA3–CA1 synapses; this mGluR-LTD was significantly 

enhanced in CGG KI mice. n = 9 (WT) and 13 (CGG KI). Inset: Shown are 

representative averages of four consecutive field potential waveforms from each group 

during the baseline period and 1 h after LTD induction. (B) mGluR-LTD in FMR1 KO 

mice persists in the presence of the protein synthesis inhibitor anisomycin (20 µM), as 

previously reported (Huber, et al., 2002). n = 7 (control) and 8 (aniso). (C) In contrast, the 

enhanced mGluR-LTD in CGG KI mice remains sensitive to protein synthesis inhibitors. 

n = 13 (control) and 7 (aniso). 
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Figure 4.7-A working model of mGluR-LTD in WT, KO and CGG KI mice.  Group I 

mGluR receptors are critical modulators of synaptic overactivity. (A) Normally, FMRP 

bound transcripts, including Fmr1 mRNA, exist in stalled polyribosomal complexes at 

synapses. (i) Activation of group I mGluRs triggers the internalization of AMPAR and 

the dissociation/clearance of FMRP from target mRNAs. (ii) This allows for the rapid 

translation of proteins required for the maintenance of AMPAR internalization (LTD 

proteins), leading to long-lasting changes in synaptic strength. In parallel, FMRP is itself 

synthesized at synapses. (iii) This new FMRP acts as a brake on further translation of 

mRNA targets. The end result is mGluR-LTD that requires a temporally constrained 

burst of local protein translation after receptor activation. (B) In FXS model mice, 

translation of FMRP target transcripts is uncoupled from mGluR signaling. (i) This 

results in a basal increase in production of LTD proteins. Upon mGluR activation, 

AMPARs are internalized normally but the presence of excess basal LTD effector 

proteins leads to the enhancement of mGluR-LTD. As the over-synthesis of LTD effector 

proteins is not tied to mGluR activation, induction of mGluR-LTD in FXS model mice 

does not require new protein synthesis. (C) In Fragile X premutation model mice, there is 

adequate basal expression of FMRP to allow for the localization of FMRP with 

associated transcripts at synapses. (i) mGluR activation triggers the dissociation of FMRP 

from these transcripts normally. (ii) However, the CGG repeat expansion blocks rapid 

FMRP synthesis. Without this new FMRP, there is no brake to prevent the ongoing 

synthesis of FMRP target transcripts. (iii) The result is overproduction of LTD effector 

proteins and enhanced mGluR-LTD. In contrast to FXS model mice, synaptic protein 

translation in premutation model mice remains coupled to mGluR activation and the 
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mGluR-LTD is thus dependent on new protein synthesis. This working model makes a 

number of specific predictions which will be tested in future studies. 
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Chapter V 

Future Directions and General Discussion 

 

5.1   Summary 

 The data presented in this dissertation reveal that CA1 synapses can compensate 

for subtle changes in the activity of their inputs through a rapid, input-specific form of 

homeostatic synaptic plasticity (HSP).  Thus, HSP occurs alongside Hebbian processes at 

CA3-CA1 synapses in acute hippocampal slices and like Hebbian synaptic plasticity, 

HSP requires functioning NMDA receptors (NMDARs) and post-synaptic calcium.  

Unlike the mechanisms underlying LTP and LTD, HSP occurs independently of CaMKII 

or PP2B activity.  Although previously discovered forms of rapid, local forms of HSP 

require new protein synthesis, this form of HSP does not, suggesting it represents a novel 

form of synaptic plasticity.  Together, these features permitted an investigation into how 

directly opposed forms of synaptic plasticity can operate at the same population of 

synapses by proving several potential interactions between Hebbian plasticity and a rapid, 

input-specific form of HSP.  Our results reveal that this form of HSP generally offsets the 

magnitude of subsequent Hebbian plasticity expression in an additive fashion.  We also 

identified an unforeseen cooperative effect whereby homeostatic plasticity can enhance 

the durability of established LTP, revealing a condition in which weak LTP stimuli can 

result in long-lasting changes without de novo protein synthesis.  Surprisingly, we 
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discovered that Hebbian plasticity can constrain the expression of HSP subsequently 

induced, but only in cases where both plasticities drive synaptic changes in the same 

direction.  We go on to identify a role for local protein synthesis in mediating this 

metaplastic interaction.  Finally, we examine the nature of an activity-dependent 

biosynthesis of a molecule (FMRP) at synapses involved in the local translation-

dependent mGluR-mediated synaptic plasticity.  Specifically, we found that a mouse 

model of the Fragile X syndrome premutation shares a classic synaptic plasticity 

phenotype with Fragile X syndrome model mice, but involves a distinct underlying 

mechanism (Chapter IV; Iliff, et al., Hum Mol Gen, 2013).  The results from Chapter IV 

suggest a possible mechanism for the increased vulnerability for autism and ADHD-like 

symptoms in premutation carriers. 

5.2   Molecular mechanisms underlying local HSP in acute hippocampal slices 

5.21   Common mechanisms of bidirectional HSP 

NMDAR activation and postsynaptic calcium are required for normal HSP 

expression in acute hippocampal slices (Chapter 2).  This was surprising in the sense that 

Hebbian plasticity also depends on these molecules, yet HSP operates on a very different 

set of principles.  Yet, it may not be surprising that neurons utilize similar activity-

dependent signals in order to respond to the degree of evoked activity.  Another similarity 

with LTP/LTD is that HSP is expressed in the postsynaptic compartment via changes in 

the magnitude of AMPA receptor (AMPAR) mediated currents (Fig. 2.4).  Determining 

exactly how AMPARs are modulated following HSP induction is a process we are only 

beginning to understand and will require further investigation. 
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We found that presynaptic release probability is not altered during bidirectional 

HSP, suggesting that HSP is not expressed in the presynaptic compartment (Chapter 2).  

Consistent with this view, HSP was both blocked by postsynaptic chelation of Ca
2+

 and 

expressed as a change in the magnitude of AMPAR (but not NMDAR) mediated currents.  

This differential regulation of glutamate currents supports a postsynaptic expression 

locus, since a presynaptic change would alter the currents to a similar degree with no 

change in AMPA/NMDA ratio.  Subsequently, our lab found that GluA1 endocytosis was 

required for homeostatic weakening using the endocytosis inhibitor D15 (data not shown; 

1 mM; Tocris), which has previously been shown to block LTD (Lüscher et al., 1999).  

We found that GluA1, but not GluA2, trafficking was required for homeostatic 

weakening in whole cell recordings of CA1 neurons (data not shown).  Inclusion of the 

peptide that binds the C-tail of GluA1 in the recording pipette blocked homeostatic 

weakening (data not shown; 1mM; glua1-TGL and glua2-SVKI from Tocris).    

5.22   S6K activity required for homeostatic strengthening 

Since HSP in slices was blocked by introduction of a peptide against the c-

terminus of GluA1, we turned our attention towards potential mechanisms involving the 

C-tail region.  The GluA1 C-tail contains a number of phosphorylation sites important for 

synaptic plasticity (Lu & Roche, 2012).  Phosphorylation of S831 increases single 

channel conductance, yet hippocampal LTP is unaffected in mice lacking S831 

phosphorylation, making it a good candidate for mediating homeostatic strengthening (Lu 

& Roche, 2012).  However, S831 is phosphorylated by protein kinase C (PKC) and 

CaMKII, and our findings suggest that neither of these kinases is required for 

homeostatic strengthening (Chapter 2; data not shown).  S845 phosphorylation leads to 
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enhanced AMPAR function as well.  Once again, hippocampal LTP is unaffected in mice 

lacking S845 phosphorylation but the activity of the kinase that phosphorylates this 

residue (PKA) is unnecessary for homeostatic strengthening (data not shown).  In 

contrast, S818 phosphorylation (by PKC) is required for LTP.  Finally, T840 

phosphorylation is dispensable for LTP and is phosphorylated by PKC and p70 S6 kinase 

(S6K) (Delgado et al., 2007; Lee et al., 2007).  Additionally, treatment of hippocampal 

slices with NMDA leads to dephosphorylation of this site, a result interpreted as evidence 

of T840 involvement in NMDAR-LTD (Delgado et al., 2007).  In light of our data on the 

NMDAR dependence of HSP in hippocampal slices (Chapter 2), their result could also be 

interpreted as evidence of T840 involvement in HSP.  Intriguingly, induction of 

homeostatic increases in synaptic efficacy with AMPAR blockade in dissociated cultures 

activates S6K activity (Henry et al., 2012).  Taken together, regulation of T840 

phosphorylation by S6K is an excellent candidate mechanism underlying homeostatic 

strengthening. 

To investigate this possibility, we took advantage of a recently described inhibitor 

of S6K activity (Pearce et al., 2010).  Applying S6K inhibitor PF4708671 (Tocris; 10uM) 

to hippocampal slices for 30 min blocked the expression of homeostatic strengthening 

(Fig. 5.1A).  S6K activity is regulated by mTOR activity.  mTORC1 phosphorylates S6K 

thereby increasing its activity and thus the phosphorylation of S6K substrates (Caron et 

al., 2010).  We reasoned that inhibiting mTOR activity might similarly disrupt expression 

of homeostatic strengthening via this pathway.  Indeed, application of the mTOR 

inhibitor rapamycin (100nM ; LC Labs) blocked expression of homeostatic strengthening 

in hippocampal slices (Fig. 5.1B).  A dependence of S6K activity is a shared mechanism 
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with a rapid, local form of HSP investigated in dissociated hippocampal cultures (Henry 

et al., 2012).  However, S6K activity implicated in HSP studied in culture is involved 

with mTOR mediated-protein synthesis (Henry et al., 2012), but HSP in slices is 

independent of new protein synthesis (Chapter 3), suggesting unique compensatory 

mechanisms.  Our working hypothesis is that S6K influences HSP expression via direct 

phosphorylation of the GluA1 subunit at T840. 

5.23   Regulation of GluA1 T840 phosphorylation status may underlie bidirectional HSP 

In an attempt to address whether regulation of GluA1 T840 phosphorylation 

status underlies HSP in slices, we first confirmed that blocking S6K activity led to a 

reduction in T840 phosphorylation using an antibody against phosphorylated T840 (p-

T840).  We found in preliminary experiments that one hour treatments with the drug 

greatly reduced p-T840 signal compared to vehicle treated slices (Fig. 5.2A).  Previously 

it was reported that NMDAR activation by application of NMDA to slices rapidly 

dephosphorylates T840 (Delgado et al., 2007).  We confirmed this result under the same 

conditions (Fig. 5.2B).  We also confirmed another result from the same study (Delgado 

et al., 2007) that p-T840 signal was enhanced by treatment with the phosphatase inhibitor 

cantharidin (Fig. 5.2C).  These results demonstrate bidirectional regulation of p-T840 

state and suggest that a balance of kinase and phosphatase activity maintain p-T840 

levels.  In a preliminary experiment, we found that induction of homeostatic weakening 

in slices using one-pathway stimulation decreased p-T840 signal (Fig. 5.2D), but this 

result requires further validation.  Whether p-T840 increases in response to homeostatic 

strengthening protocols remains to be seen.  A parsimonious explanation of the above 

results is that bidirectional regulation of this site mediates homeostatic strengthening and 
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weakening.  Furthermore, the homeostatic set point of synaptic strength could be the 

dictated by the interplay between kinase and phosphatase activity acting on the T840 

residue, but much more work is needed to validate this potential scenario. 

The previous sets of experiments suggest several follow-up experiments.  For 

instance, would driving S6K activity promote homeostatic strengthening?  Henry et al 

(2012) used exogenous expression of the mTOR activating GTPase Rheb and a 

hyperactive mutant to drive mTOR activity in neurons.  Injection of viral vector 

containing this construct to rat hippocampus could be used to drive mTOR activity in a 

subset of neurons.  Co-expression of a reporter would allow identification of Rheb-

expressing neurons and visually-guided patch clamping experiments to test for enhanced 

homeostatic strengthening.  An important caveat if the hypothesis is correct is that 

driving mTOR activity may occlude subsequent HSP expression.   

 All the work presented thus far has taken place in acute hippocampal slices for 

reasons already mentioned.  Although this preparation has proved beneficial for the 

questions being addresses, the use of dissociated neuronal cultures greatly simplifies the 

investigation into molecular mechanisms.  Therefore, we sought a correlate of the HSP 

characterized in slices in dissociated cultures of hippocampal neurons.  Towards this end, 

we designed a field stimulator that would be able to create a brief voltage field across the 

network to drive activity in a similar manner to that performed in slices, utilizing that 

stimulation rates to induce bidirectional HSP.  In neurons loaded with the calcium 

indicator Fluo5F (5 uM; Invitrogen), stimulating with the field stimulator produces brief 

rises in intracellular calcium (data not shown).  Spontaneous calcium spikes were 
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detected in normal Hepes-buffered saline, but the addition of 50 uM muscimol subdues 

spontaneous activity while permitting stimulated calcium responses (data not shown).   

Consistent with our preliminary results in slices, increasing the frequency of 

stimulation of stimulation from one pulse every 5 min to one pulse every 20 sec caused a 

decrease in p-T840 signal.  One advantage of using a culture model is the ease with 

which one can resolve individual synapses.  By co-staining for PSD95, we were able to 

restrict our examination of p-T840 signal to PSD-95+ puncta.  This type of analysis 

revealed that a homeostatic weakening protocol correlates with a significant decrease in 

p-T840 signal at synapses as compared to a constant stimulation protocol (Fig. 5.3A).  

Similarly, a homeostatic strengthening protocol (one pulse every 20 sec to one pulse 

every 5 min) produced an increase in p-T840 signal at PSD95+ puncta (Fig. 5.3B).  

Future experiments could use this approach combined with inhibitors of S6K to address 

whether S6K activity is responsible for the increased phosphorylation of T840.  

Although we can elicit bidirectional changes in p-T840 levels in dissociated 

cultures using electrical stimulation, it remains unknown whether this protocol leads to a 

functional change in synapses.  To address this question, future experiments could 

measure changes in surface AMPAR accumulation.  Our lab has previously published 

studies using methods that would accomplish this goal, using both a surface biotinylation 

assay (Zhang et al., 2012) and a surface GluA1 immunofluorescence assay (Henry et al., 

2012; Jakawich et al., 2010).  Additionally, electrophysiological recordings could 

measure changes in the amplitude of evoked or miniature EPSCs, either of which indicate 

altered synaptic function.  If HSP is produced in culture using our protocol, then the 

underlying mechanism could be probed.  For instance, the role of NMDARs and calcium, 
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shown to be important for HSP in slices (Chapter 2) could be investigated using the same 

strategies.   

 Despite all the potential advantages of using the approaches outlined above, a 

difficulty remains in testing our working model.  Outside of a couple studies, not much is 

known about the T840 site on GluA1.   The creation of a T840A mouse line would be 

invaluable for studies into the role of T840 phosphorylation in synaptic plasticity.  A 

mouse line containing this mutation along with 4 other mutated GluA1 phosphorylation 

sites (S831A, T838A, S839A, T840A, S845A) has been created (Lee et al., 2007), but as 

already mentioned, several of these sites play established roles in synaptic plasticity 

which may confound interpretations.   

5.24   What is the mechanism of homeostatic weakening? 

 In addition to de novo protein synthesis, degradation has also been shown to play 

a pivotal role in both L-LTP (Fonseca et al., 2006) and mGluR-LTD (Hou et al., 2006), 

indicating that a proper balance of protein synthesis and degradation is needed for proper 

responses in activity-dependent processes (Ehlers, 2003).  We found that protein 

synthesis is dispensable for bidirectional changes in synaptic transmission in response to 

subtle changes in the frequency of afferent stimulation (Chapter 3).  In subsequent 

experiments, the role of protein degradation in mediating rapid, local HSP in 

hippocampal slices was explored using the proteasome inhibitor lactacystin (10uM; 

Sigma) and the ubiquitin-activating enzyme (E1) inhibitor Ube1-41(50uM; Biogenova).  

Neither of these inhibitors altered the magnitude or time course of homeostatic 
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weakening, suggesting that neither de novo protein synthesis nor degradation via the 

ubiquitin-proteasome system mediates homeostatic weakening (data not shown). 

 In chapter 2, we used treatment of slices with the compound FK506 to inhibit 

protein phosphatase 2B (PP2B) to demonstrate a mechanistic difference between 

homeostatic weakening and LTD.  Unlike NMDAR-dependent LTD induced by delivery 

of 900 pulses at 1Hz, FK506 did not alter the expression of homeostatic weakening (Fig 

2.5; Mulkey et al., 1994).  A pair of phosphatases required for NMDAR-dependent LTD 

(Mulkey et al., 1993) and known to dephosphorylate T840 GluA1 (Delgado et al., 2007) 

is protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A).  In fact, most 

inhibitors of PP1 also inhibit PP2A with similar potencies (Swingle et al., 2007), so 

resolving which phosphatase is being inhibited typically involves a complex interplay of 

multiple inhibitors at non-maximal activity concentrations.  Both okadaic acid (Mulkey et 

al., 1993; Niere et al., 2012; Woo et al., 2002; Young et al., 2006) and calyculin A 

(Mulkey et al., 1993; Woo et al., 2002) have been used in hippocampal slices previously 

and could be used to test whether PP1/PP2A phosphatase activity underlies homeostatic 

weakening.  Another PP1/PP2A inhibitor, cantharidin, has been shown to block the 

dephosphorylation of T840 that occurs in response to NMDAR activation (Delgado et al., 

2007), and could potentially be used to investigate both the PP1/PP2A-dependence of 

HSP and the regulation of GluA1 phosphorylation at T840.  Although cantharidin has not 

been used as extensively as okadaic acid, we and others have found that cantharidin 

increases basal levels of GluA1 phosphorylation at T840 in hippocampal slices (Delgado 

et al., 2007; Fig. 5.2C). 
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We found that NMDAR antagonism blocked the bulk of change in evoked 

responses during homeostatic strengthening and weakening (Chapter 2).  However, some 

detectable change persisted (Fig. 2.6), suggesting either incomplete NMDAR blockade or 

the presence of a non-NMDAR mediated component to HSP.  A simple hypothesis is that 

HSP is mediated in part by mGluR activation, as there are both NMDAR- and mGluR-

dependent forms of LTP/LTD in CA1.  A number of mGluR antagonists have been used 

successfully in hippocampal slices (Gladding et al., 2009) and could be used to test this 

hypothesis. 

5.3   The complex interplay between Hebbian synaptic plasticity and HSP at CA1 

synapses 

5.31   Local HSP competes with established Hebbian plasticity 

We found that synapses could compensate for changes in activity in a direction 

that would reverse the changes of a previously established Hebbian process (Chapter 3).  

For instance, the expression of homeostatic weakening was unaltered at synapses that had 

a prior history of LTP induction.  On the one hand, this result is surprising, because it 

suggests that these diametrically opposed processes can interfere with each other, 

reducing the potential for extremely long-lasting changes in synaptic efficacy which is 

known to occur in vivo (Abraham et al., 2002).  On the other hand, the competition 

between these processes may be a necessary and perhaps stabilizing property of neuronal 

networks.  To produce long lasting changes in LTP, other processes are required, perhaps 

in part to overcome this competition.  It is well established that LTP requires de novo 

protein synthesis for longer lasting forms of LTP, such as L-LTP.  Since we found that 
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homeostatic weakening could compete with L-LTP too (Chapter 3), the protein synthesis 

requirement might have more to do with events like spine growth rather than outright 

disabling of competing local HSP. 

 Interestingly, the competition is one-sided.  Induction of local HSP in either 

direction caused a change in the magnitude of synaptic responses, but did not alter the 

relative expression of LTP or LTD induced on top of those changes (Chapter 3).  We 

argued in Chapter 3 that this result is internally consistent, since we found no previous 

evidence that NMDARs were altered as a consequence of HSP induction (Chapter 2).  

The strictly additive effect of prior homeostatic plasticity induction may be specific to 

local, input-specific forms of HSP.  Arendt et al (2013) found that 60 hour treatment of 

organotypic slice cultures with TTX produced a dramatic increase in the expression of 

subsequent LTP (Arendt et al., 2013).  Prolonged TTX treatment caused an increase in 

both AMPAR and NMDAR-mediated currents, another key difference between our 

findings (Chapter 2; Arendt et al., 2013).  The authors go on to show that the enhanced 

LTP is not due to the increase in NMDARs, but rather the unsilencing of TTX treatment-

created silent synapses.  This study uses a different preparation than we use in chapter 2, 

in addition to different protocols for HSP and LTP induction, all of which may contribute 

to the differences observed in both studies.  An advantage to investigating rapid, local 

forms of HSP in organotypical slices cultures is that more complex interactions than we 

examined in Chapter 3 could be probed.  For instance, it would be interesting to see if 

repeated bouts of LTP followed by homeostatic weakening would still lead to LTP 

saturation.    
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Another study found that decreasing the rate of stimulation of Schaffer collaterals 

(similar to our own protocol) or ceasing stimulation altogether increased synaptic 

transmission and NMDAR-mediated transmission via incorporation of GluN2B subunits 

(Gambrill et al., 2011).  We found increased synaptic transmission using similar 

protocols but no change in NMDAR-mediated transmission (Chapter 2).  It is unclear 

why these two studies have conflicting results, but a potentially important difference 

between them is the use of GABAA receptor antagonist in Gambrill et al (2011), which 

may alter the network dynamics of CA1 in a way that produces NMDA receptor changes.  

The authors also argue that LTP is enhanced following upregulation of NMDA receptors, 

which is consistent with a change in LTP threshold (Abraham, 2008).  However, one 

caveat of that interpretation is that LTP was induced on top of stimulation cessation, 

which they showed increases synaptic responses.  Thus, the reported increase in LTP 

could be an additive effect of homeostatic strengthening with the LTP (i.e., HSP+LTP) 

rather than a specific increase in the magnitude of LTP.  Future experiments could use 

decreased stimulation rather than lack of stimulation and wait until responses have 

stabilized to probe for a specific enhancement in LTP induction. 

5.32   Translation regulatory mechanisms underlying metaplastic interaction 

Although the molecular mechanisms responsible for homeostatic weakening 

aren’t fully known yet, we found that a protein synthesis-independent form of LTD 

constrained the magnitude of HSP subsequently induced.  This instance of metaplasticity, 

in which one type of plasticity alters the expression of another, is mediated by local 

protein synthesis (Chapter 3).  A number of questions are generated by these findings and 

will be discussed here. 
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5.33   What are the relevant translation regulatory signaling pathways involved?   

Both mitogen-activated protein kinase (MAPK) and mammalian Target of 

rapamycin (mTor) signaling transduction pathways are involved in the regulation of 

protein-synthesis dependent forms of plasticity (Gallagher et al., 2004; Hoeffer & Klann, 

2010; Lynch, 2004).  Inhibition of a MAPK sub-class, extracellular-signal regulated 

protein kinases (ERK) blocks mGluR-LTD but not NMDAR-dependent LTD (Gallagher 

et al., 2004).  We therefore used an inhibitor of ERK activity (U0126) to probe its 

involvement in signaling the constraint on HSP following LTD induction.  Surprisingly, 

we found that U0126 treatment blocked the expression of NMDAR-dependent LTD (Fig. 

5.4A), even though our conditions were highly similar to those previously reported not to 

disrupt LTD.  This result impeded our ability to investigate the interaction.  One 

interpretation of our result is that our induction protocol is invoking an ERK-mediated 

protein synthesis-dependent form of LTD.  However, multiple experiments using 

translation inhibitors have shown no decrement in the magnitude of LTD (Chapter 3).  In 

our hands, ERKs may be playing a role in LTD expression outside its involvement in 

protein synthesis.  More studies are needed to validate our result, perhaps using other 

inhibitors of ERK activity. 

Another major signaling transduction pathway strongly implicated in translation 

is the mTOR pathway.  mTOR is a serine/threonine kinase with substrates involved in 

catalyzing translation.  One of these substrates is p70 S6 kinase (S6K) which has already 

been discussed here.  We previously found mTOR and S6K to be a molecular players 

underlying translation-independent homeostatic strengthening.  Given that mTOR plays a 

well-established role in translation, we addressed the possibility that it was involved in 
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the interaction between Hebbian and homeostatic plasticity.  As an initial test of this 

possibility, we applied rapamycin to slices while performing the LTD-homeostatic 

weakening experiment described in Chapter 3.  We found no difference between 

rapamycin- and vehicle-treated slices, although there was a slight trend towards greater 

homeostatic weakening in the presence of rapamycin (data not shown).  This non-

significant effect occurred regardless of prior LTD induction at the same input.  Thus 

mTOR and S6K activity are likely only required for homeostatic strengthening.  

Recent work has implicated another translational regulator, eukaryotic Elongation 

Factor 2 kinase (eEF2K), in mediating translation dependent synaptic plasticity (Henry et 

al., 2012; Park et al., 2008; Sutton et al., 2007).  Homeostatic increases in synaptic 

efficacy in dissociated cultures correlate with decreases in eEF2 phosphorylation in 

addition to increases in protein synthesis (Henry et al., 2012; Sutton et al., 2007; Sutton et 

al., 2004).  In mice lacking eEF2K, mGluR-LTD and L-LTP are deficient in area CA1 

(Park et al., 2008).  eEF2K is a calcium/calmodulin-dependent kinase whose activity can 

be triggered by synaptic stimulation (Scheetz et al., 2000).  Phosphorylation of eEF2 by 

its kinase inhibits translation via stalled elongation similar to the method of inhibition by 

the drug cyclohexamide (Ryazanov et al., 1988).  Cyclohexamide, as well as emetine, 

was demonstrated to abolish the interaction between Hebbian and homeostatic plasticity 

in Chapter 3, raising the possibility that eEF2K activity may be involved.  To examine 

this possibility, we applied the eEF2K inhibitor NH125 to hippocampal slices while 

performing the LTD-interaction experiment as described.  The constraint of homeostatic 

weakening was similar between slices bathed in NH125 and DMSO vehicle control (Fig. 
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5.4B).  Thus, it is currently unclear which signal transduction pathway mediate crosstalk 

between different forms of synaptic plasticity. 

Turning to a slightly different approach, we focused on the translational 

suppressor Fragile X mental retardation protein (FMRP) (Todd & Malter, 2002).  If the 

transcript(s) involved with metaplastic interactions is normally suppressed by FMRP but 

translated in response to LTP/LTD induction, then perhaps Fmr1KO mouse lacking 

FMRP would exhibit greater degrees of HSP constraint.  This hypothesis builds off of 

findings in Fmr1KO mice that show exaggerated responses to mGluR stimulation, 

leading to excess mGluR-LTD (Hou et al., 2006; Huber et al., 2002; Iliff et al., 2013; 

Chapter 4).  mGluR-LTD is dependent on dendritic protein synthesis (Huber et al., 2000), 

which raised the possibility that FMRP was involved in other forms of synaptic plasticity 

involving local protein synthesis.  However, Fmr1KO mice display largely normal L-LTP 

(Paradee et al., 1999; Zhang et al., 2009), early phase NMDAR-dependent LTP (E-LTP) 

and LTD (E-LTD) (Godfraind et al., 1996; Huber et al., 2002; but see Lauterborn et al., 

2007), and global HSP (Soden & Chen, 2010).  The latter study did find evidence that 

Fmr1KO mice are deficient in their ability to express a protein synthesis dependent form 

homeostatic plasticity mediated by retinoic acid (Soden & Chen, 2010), suggesting 

FMRP can modulate the expression of HSP under certain circumstances.  To examine 

this possibility in the context of our metaplastic interaction, we made hippocampal slices 

from Fmr1KO mice and their WT littermates as previously described (Chapter 4, Iliff et 

al., 2013) while performing the LTD-interaction experiment as described above and in 

Chapter 3.  However, the constraint of homeostatic weakening by prior LTD was weak in 

both genotypes (Fig. 5.5), so further experiments are needed to resolve of the role of 
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FMRP in mediating the metaplastic interaction.  Once recording conditions are optimized 

to detect the interaction in WT littermates, an accompanying approach may be used to 

explore a role for FMRP in metaplasticity.  Previously, a mouse model overexpressing 

human FMRP was found to abolish mGluR-LTD (Hou et al., 2006).  Future studies could 

use a similar approach to test for the absence of a metaplastic interaction.  At least one 

previous study has demonstrated a role for FMRP in metaplastic enhancements to a 

heterosynaptic form of LTP (Connor et al., 2011), setting a precedent for FMRP’s 

involvement in metaplasticity.  Still, the major electrophysiological phenotype associated 

with loss of FMRP is enhanced mGluR-LTD with an associated loss of the requirement 

for protein-synthesis.   

5.34   Which transcripts are being locally translated?   

Much less is known about the newly created proteins underlying the metaplastic 

interaction.  If the sign and direction of HSP is determined by a balance of kinase and 

phosphatase activity as suggested above, then the translated transcripts could either be 

these kinases or phosphatases.  In this scenario, the balance would be shifted away from 

normal HSP expression.  Of course, another possibility is that a protein is created which 

normally does not partake in HSP, yet alters the properties of HSP, perhaps by shifting 

the balance of kinase and phosphatase activity.  A better understanding of the molecular 

mechanisms underlying rapid HSP in acute hippocampal slices would aid in the creation 

of candidate proteins.   

Recently, a study in dissociated hippocampal neurons provided possible clues into 

the identity of proteins involved with our metaplastic interaction.  Okuno et al (2012) 
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followed up on the paradoxical findings that expression of the immediate early gene Arc 

weakens excitatory synapses (Rial Verde et al., 2006) and is required for mGluR-LTD 

(Park et al., 2008; Waung et al., 2008), NMDAR-LTD (Plath et al., 2006) and 

homeostatic plasticity (Beique et al., 2011; Chowdhury et al., 2006), yet is strongly 

expressed following LTP induction (Messaoudi et al., 2007; Steward et al., 1998; Ying et 

al., 2002).   The authors stimulated neurons with BDNF for 2 hours, a treatment that 

results in potentiation of synapses and drives Arc expression (Okuno et al., 2012; Ying et 

al., 2002).  Following BDNF-LTP, activity in the cultures was blocked using TTX or 

CNQX+APV for 2 hours.  The cultures which underwent glutamate receptor or action 

potential blockade exhibited greater Arc accumulation at PSD95+ puncta than cultures 

treated with no drugs.  The authors also found that Arc expression correlated with 

CaMKIIß expression and that Arc preferentially targets CaMKIIß under conditions of 

reduced Ca
2+

, a finding they used to suggest Arc targets inactive synapses containing 

CaMKIIß and weakens them.  The function of this event was proposed to prevent 

synaptic enhancement only at weak synapses (Okuno et al., 2012).  Taken together, the 

investigators have created an experiment in dissociated cultures whereby LTP induction 

is followed by a potential homeostatic strengthening induction protocol, as CNQX 

treatment alone can produce homeostatic strengthening in a similar frame used in the 

Okuno et al (2012) study (2 hour blockade).  Interestingly, enhancing activity (which 

may promote homeostatic weakening) showed no such effect on Arc accumulation.  

Additionally, Arc upregulation was enhanced in an input-specific manner, as expression 

of tetanus toxin to inhibit activity at a small number of presynaptic inputs begat greater 

changes at those inputs than their neighbors.  These results indicate that following LTP, 
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Arc is targeted to inactive inputs where it may promote weakening of synaptic 

transmission.  If this is occurring in our experiments, then it could explain why we found 

diminished homeostatic strengthening following LTP, as unmasked by application of 

protein synthesis inhibitors (Chapter 3).  This process would be competing with HSP at 

the same inputs.  If this were the case, then blocking Arc induction, which could be done 

with available Arc KO mice (Park et al., 2008) should also prevent the observed 

interaction.  CaMKIIß would also be a candidate interaction protein since it associates 

with Arc under these conditions (Okuno et al., 2012).  A molecule acting in a similar 

fashion as Arc, but in the opposite scenario, would make an excellent candidate protein 

for the LTD-homeostatic weakening interaction, but the identity of such a candidate 

remains elusive. 

The work collected here demonstrates a distinct form of synaptic compensation 

operating in an intact hippocampal circuit.  The rapid, input-specific properties of this 

process permitted an exploration into the nature of its interactions with Hebbian synaptic 

plasticity in acute hippocampal slices.  I have revealed a novel type of metaplasticity that 

crosses plasticity domains and requires de novo local protein synthesis.  The functional 

impact of such interactions is unclear.  A reasonable hypothesis might be that it serves as 

an additional layer of protection from saturating synaptic transmission.  My 

investigations addressed a major theoretical problem in the synaptic plasticity field, 

although my work is by no means exhaustive.  Using our approach, other potential 

interactions could be investigated.  Future studies into the molecular underpinnings of the 

metaplastic interactions uncovered here are also needed.  A major conclusion from my 

thesis work is that HSP, along with Hebbian plasticity, has a profound effect on the net 
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efficacy of neurotransmission, arguing that HSP is a critical component of the synaptic 

mechanisms underlying memory in the brain.  As important as the actual findings 

presented here, I have also demonstrated the usefulness of this approach for studying 

metaplasticity.  A combination of multiple approaches and techniques will be needed to 

fully understand how dynamic neural networks can encode the memories we cherish so 

much, and perhaps more importantly, how we can protect this capacity from neurological 

disease.   
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5.5   Figure Legends 

Figure 5.1— S6K participates in homeostatic strengthening of CA1 synapses.  

Sprague Dawley rats, aged 2-3 weeks, were decapitated and the hippocampal lobules 

were rapidly isolated in artificial cerebral spinal fluid (aCSF) containing (in mM): 119 

NaCl, 2.5 KCl, 1 NaH2P04, 26.3 NaHCO3, 11 glucose, 1.3 MgSO4, and 2.5 CaCl2.   

Transverse slices (400 µm) of the hippocampus were cut using a tissue chopper 

(Stoelting).  Slices were then incubated at room temperature in a humidified interface 

chamber for at least 2 hours before recording.  Hippocampal slices were transferred to a 

recording chamber, maintained at 26-28°C and continuously perfused at 1-2 ml/min with 

oxygenated aCSF.  Area CA1 was visualized with an Olympus SZ51 dissecting 

microscope, which was also used for electrode placement.  Recording electrodes were 

pulled from borosilicate capillary glass and filled with aCSF.  The recording pipette was 

placed in the stratum radiatum of CA1 and bipolar stimulating electrodes (FHC) were 

placed on either side of the recording site.  fEPSP recordings were made with a 

MultiClamp 700B amplifier, collected using Clampex 10.2, and analyzed using Clampfit 

10.2 (Molecular Devices).  Current between 0.02-0.25 mA for 0.1s was delivered with an 

ISO-flex stimulus isolator (AMPI).  For experiments, current was set to elicit 50% of the 

maximum response.  We verified pathway independence by applying two pulses with a 

50 msec interpulse interval to the two pathways and screening for less than 10% paired-

pulse facilitation.  Following 30 minutes stable baseline, (A) the S6K inhibitor 

PF4708671 [10uM; Tocris] or (B) the mTOR inhibitor rapamycin [100nM; LC Labs] was 

applied for 30 minutes prior to induction of homeostatic strengthening.  Column graphs 

represent normalized fEPSP slopes 90 minutes into HSP.  
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Figure 5.2— Phosphorylation of T840 GluA1 regulated by frequency-shifts in slice.   

(A) Treatment of hippocampal slices with the PP1/PP2A inhibitor cantharidin (10uM) 

increases basal T840 GluA1 phosphorylation throughout stratum radiatum.  (B) 

Treatment of slices with the S6K inhibitor PF4708671 (5uM) decreases basal T840 

GluA1 phosphorylation.  In (A) and (B), acute hippocampal slices were sectioned and 

incubated as described in Chapter 2.  Following a 2 hour incubation period, slices were 

moved to one of two submersion chambers, containing bubbling aCSF with DMSO 

vehicle control or drug for 1 hour, and then immediately fixed with 4% PFA.  After re-

sectioning the slices, they were probed with p-T840 GluA1 and MAP2 primary 

antibodies.  Stained sections were imaged on an epifluorescent microscope with identical 

setting between groups and stitched together using ImageJ software (NIH).  (C) Induction 

of homeostatic weakening for 30 minutes following a stable 30 minute baseline in one-

pathway experiments leads to a decrease in p-T840 immunofluorescence compared to 

slices constantly stimulated at baseline frequency.  (D) We confirmed the finding from 

Delgado et al. (2007) that treatment of slices with NMDA for 5 minutes produced a 

significant decrease in p-T840 immunofluorescence compared to matched controls 

treated with vehicle (n=3; P < 0.05; white box represents area of quantification). 
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Figure 5.3— Translation regulatory signal transduction pathway involvement with 

the metaplastic interaction.  Dissociated hippocampal cultures (DIV 18-22) were 

stimulated for 60 minutes with a field stimulator driven by an ISO-Flex stimulus isolator 

in Hepes-buffered saline containing 50uM muscimol.  In (A), cultures were either 

constantly stimulated at a rate of one pulse every 5 minutes for 60 minutes or switched to 

a frequency of one pulse every 20 seconds after a 30 minute baseline period to mimic the 

homeostatic weakening protocol.  In (B), cultures were either constantly stimulated at a 

rate of one pulse every 20 seconds for 60 minutes or switched to a frequency of one pulse 

every 5 minutes after a 30 minute baseline period to mimic the homeostatic strengthening 

protocol.  Following stimulation, neurons were fixed with 2% PFA and probed with p-

T840 GluA1 and PSD95 primary antibodies.  A redirected particle analysis (custom 

ImageJ macro) was performed to quantify the intensity of p-T840 GluA1 signal only at 

PSD95+ puncta. 
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Figure 5.4— Translation regulatory mechanisms underlying the metaplastic 

interaction. (A) Treatment of hippocampal slices with the ERK inhibitor U0126 [20uM; 

Tocris] blocks NMDAR-dependent LTD induced with 900 pulses at 1Hz; n=6 (LTD), 10 

(LTD+U0126).  (B) In 2-pathway experiments, LTD was induced in one path only, 

followed by induction of homeostatic weakening in both pathways.  Prior LTD constrains 

the expression of homeostatic weakening.  Treatment of hippocampal slices with the 

eEF2K inhibitor NH125 [10uM; Tocris] does not alter the relative magnitude of 

homeostatic weakening following LTD induction compared to slices treated with DMSO 

vehicle.   
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Figure 5.5— Fmr1KO mice and WT littermates fail to exhibit a pronounced 

metaplastic interaction. Acute hippocampal slices were prepared from Fmr1KO mice 

and their WT littermates, as described previously (Iliff et al., 2013).  These slices 

underwent the protocol used in Chapter 3 (see Fig. 3.3C) to demonstrate a metaplastic 

interaction between NMDAR-LTD and homeostatic weakening.  Only experiments 

exhibiting LTD > 20% were used to probe for a potential interaction.  (A) CA1 synapses 

from WT littermates fail to exhibit a pronounced metaplastic interaction detected under 

different conditions (see Chapter 3) and in unrelated mouse lines (data not shown).  Left, 

data normalized to the initial baseline.  Right, data renormalized to the 20 minute period 

prior to the induction of homeostatic weakening.  (B) CA1 synapses from Fmr1KO mice 

also fail to exhibit a pronounced metaplastic interaction, similar to WT mice.  Left, data 

normalized to the initial baseline.  Right, data renormalized to the 20 minute period prior 

to induction of homeostatic weakening.  (C) An exploded view of the renormalized data 

projecting the initial 30 minutes of homeostatic weakening.  This comparison suggests 

slightly weaker, but not significant, HSP following LTD in the Fmr1KO mice compared 

with WT littermates.  The weak interaction at WT synapses suggests optimization of 

recording conditions may be required before satisfactory analysis of FMRP involvement.  

In addition, the number of slices used in the analysis was fewer than typically used so 

further experiments are needed to form any strong conclusion (n = 3-6 slices per 

condition). 
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