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Abstract 

Anaerobic membrane bioreactor (AnMBR) treatment, which combines the anaerobic microbial 

conversion of organic compounds into methane-rich biogas with membrane separation of treated 

wastewater and microbial biomass, has been proposed for direct energy recovery from domestic 

wastewater. We demonstrated in a bench-scale investigation that AnMBR can achieve 92 ± 5% 

chemical oxygen demand (COD) removal at 15°C, but that dissolved methane in the permeate 

represents 40-50% of the total methane produced. If unrecovered, this methane is a lost energy 

source and results in substantial greenhouse gas emissions. This work motivated an evaluation of 

the trade-offs between the membrane biofilm’s role in treatment and its contribution to fouling. 

We demonstrated that the development of a biofilm enriched in active syntrophic bacteria and 

methanogens significantly improved effluent quality, while maintaining acceptable fluxes. 

However, methanogenesis in the biofilm resulted in substantial levels of dissolved methane in the 

permeate. The lower temperature limit of AnMBR treatment was explored by sequentially 

lowering the operating temperature of the system from 15, 12, 9, 6, to 3°C under conditions 

supporting biofilm treatment. COD removal > 95% was achieved at temperatures as low as 6°C. 

COD removal fell to 86 ± 4.0% at 3°C and, at this temperature, essentially all COD removal 

occurred in the biofilm, suggesting that the biofilm was less inhibited by temperature decreases 

than the suspended biomass. Finally, we evaluated the life cycle environmental and economic 

impacts of AnMBR technology compared to aerobic treatment systems. AnMBR will not be net 

energy positive in the foreseeable future without reduction in fouling control energy demands. 



xv 

Currently, AnMBR is better suited for higher strength domestic wastewater treatment. Further, 

global warming impacts were over an order of magnitude higher than aerobic systems arising from 

the direct emission of effluent dissolved methane. Future research is necessary to (1) promote 

increased biological activity in suspended biomass at low temperatures such that membrane 

biofilm treatment is reduced and dissolved methane oversaturation avoided, (2) develop low-

energy dissolved methane recovery technologies to limit global warming impacts, and (3) establish 

fouling control strategies that reduce energy demands thereby improving the net energy balance. 
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Chapter 1. Introduction  

 

1.1 Background 

Mounting concerns regarding adverse stressors on our planet (e.g., anthropogenic influences on 

climate change, biodiversity loss, and nitrogen and phosphorus cycles (Rockström et al. 2009)) are 

driving an integration of sustainability science (Kates et al. 2001) in engineering the built 

environment. Wastewater treatment plants are positioned at an important interface between the 

built and natural environments. Historically, the primary objective in the wastewater treatment 

field has been to reduce pollutant loading to protect local water quality. However, the integration 

of sustainability science and environmental engineering is broadening the focus of wastewater 

treatment from local to regional and even global environmental protection. Wastewater treatment 

should be re-evaluated with an emphasis on energy demands and environmental impacts such as 

greenhouse gas emissions, to address an environmental footprint broader than local water quality 

concerns.  

Part of this sustainability-centric mindset is the recognition that wastewater is a valuable resource 

containing energy, nutrients, and water. Technologies that recover energy could mitigate 

wastewater treatment plants’ burden on the power grid. Recovered nutrients could be sold as 

fertilizer and serve as a revenue source for utilities while also lessening environmental impacts 

associated with artificial fertilizer production. Water reuse could provide additional revenue, 

reduce impacts associated with drinking water production, and alleviate stress on drinking water 
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reservoirs. By rethinking our approach to wastewater treatment, we can recover these resources 

and significantly improve the economic and environmental sustainability of water management. 

Providing incentives for resource recovery from wastewater depends on multiple factors including 

location-specific water quality concerns, broader environmental burdens, and freshwater supply. 

For example, increasingly stringent nitrogen regulations in the Chesapeake Bay Watershed are 

forcing utilities to implement more advanced wastewater treatment systems for nitrogen removal. 

Nutrient recovery is now being viewed by utilities in the region as an opportunity to generate 

revenue while helping to achieve nitrogen removal requirements. Incentive to recover energy from 

wastewater can be influenced by regional electricity costs, environmental impacts of electricity 

production (Masanet et al. 2013), availability of alternate renewable energy sources, and other 

factors. For example, regions that rely heavily on coal for electricity production (e.g., the Midwest) 

have greater environmental impacts associated with energy use than regions that rely heavily on 

renewables such as hydroelectric power (e.g., the Pacific Northwest). Further, draught-prone 

regions such as the Southwest are highly motivated to recover water. In contrast, water plentiful 

areas such as the Great Lakes region have little incentive to do so. Water use in thermoelectricity 

production interconnects energy and water recovery and could further incentivize recovery of both 

from wastewater. These regional concerns will dictate adoption of resource recovery technologies.  

Location-specific water quality concerns have traditionally been the primary variable to dictate 

wastewater treatment plant design (e.g., inclusion of nitrogen and/or phosphorus removal). 

However, the core of most treatment plants consists of an activated sludge system. Such activated 

sludge treatment plants protect the aquatic environment in most cases, but limit our ability to 

recover resources from wastewater, particularly energy and nutrients. For example, organic carbon 

is mineralized rather than converted into an energy-rich end product (e.g., methane) and ammonia 
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is converted to nitrogen gas using traditional nitrification/denitrification approaches. Further, these 

systems have high economic cost with significant energy demands and excessive production of 

residuals that require further treatment and disposal. For example, wastewater treatment plants 

account for approximately 3% of the U.S. electric load (EPA Office of Water 2006). Improving 

the environmental footprint of wastewater treatment requires an approach that reduces costs, 

energy demands, and environmental impacts of treatment. Rather than focus on optimization of 

existing activated sludge systems that can only provide limited returns, new technologies that also 

recover resources are needed.  

We need to consider harnessing alternative microbial metabolisms in wastewater treatment to 

improve the economic and environmental sustainability. However, new approaches to wastewater 

treatment must be resilient during fluctuating conditions (e.g., changes in wastewater strength, 

composition, and temperature) to ensure continuous protection of the aquatic environment, 

economically viable, and avoid creating new environmental problems. Researchers have proposed 

three leading alternatives: (1) anaerobic treatment to produce biogas (Lettinga et al. 1984), a 

methane-rich fuel that can be used for electricity production; (2) microbial fuel cells to directly 

produce electricity (Logan et al. 2006); and (3) photosynthetic microalgae-based treatment for 

recovery of energy, nutrients, or other algae-derived products (Mallick 2002). Of these 

alternatives, anaerobic treatment has been implemented to the greatest extent globally due to its 

ability to recover energy while not requiring energy intensive aeration and generating a fraction of 

the residuals relative to activated sludge processes (Grady et al. 2011). However, anaerobic 

processes have only been used widely in high-strength industrial wastewater treatment and sludge 

digestion, not for domestic wastewater treatment. 
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Activated sludge processes are traditionally favored over anaerobic treatment for domestic 

wastewater treatment due to conventional wisdom, that as yet has not been well tested in research: 

(1) anaerobic reactors must be operated at mesophilic (30-40°C) or thermophilic (50-60°C) 

temperatures, (2) long solids retention times (SRTs) are difficult to achieve because of poor 

settleability of anaerobic biomass, and (3) post-treatment is necessary if the effluent is to be 

discharged directly into the environment. Technologies such as the upflow anaerobic sludge 

blanket (UASB) reactor attempt to overcome these barriers by employing granular sludge in an 

upflow reactor configuration to provide liquid/solid separation through gravity sedimentation to 

extend the SRT (Lettinga et al. 1984). However, UASB treatment is adversely affected by low 

temperatures (Lew et al. 2011, Turkdogan-Aydinol et al. 2011) with maintenance of well-settling 

granules particularly challenging at low temperatures (McKeown et al. 2012). Further, UASB 

requires post-treatment to meet effluent regulations even in warm climates (Chernicharo 2006, 

Foresti et al. 2006, Langenhoff and Stuckey 2000, Seghezzo et al. 1998). Therefore, the large 

volumetric flow rates of low-temperature domestic wastewater generated in many parts of the 

world (Tchobanoglous et al. 2003) make attaining the benefits of anaerobic treatment a 

considerable challenge. 

Anaerobic membrane bioreactors (AnMBRs) combine anaerobic treatment with membranes for 

complete solid/liquid separation and retention of anaerobic microorganisms to achieve long SRTs. 

By operating at long SRTs and producing an effluent free of suspended solids, the potential exists 

to match the effluent quality of activated sludge processes, produce fewer residuals, and directly 

recover energy. Membrane separation has traditionally been employed in aerobic membrane 

bioreactors (AeMBRs). AeMBRs have seen widespread implementation in domestic wastewater 

treatment due to their ability to provide a superior effluent quality relative to activated sludge 
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processes that rely on gravity sedimentation. Improvements in effluent quality are increasingly 

more relevant as we are forced to consider water reuse (Daigger et al. 2005, Verstraete et al. 2009) 

due to population growth and lifestyle choices that have made water demand significantly exceed 

supply in various regions of the world. The rapid decline in membrane costs during the 1990s 

(Furukawa 2008, Judd 2010) has also benefitted AeMBR adoption by significantly reducing 

capital and membrane replacement costs (De Wilde et al. 2007).  

Although AeMBRs are commercially viable, they remain energy intensive due to aeration 

requirements for biological treatment and membrane fouling control and, despite potential water 

reuse opportunities, fail to recover energy or nutrients. In contrast, treatment technologies such as 

microbial fuel cells have not been proven commercially viable due to high capital expenses (Xie 

et al. 2012), issues for scale-up (Logan 2010), poor energy recovery with domestic wastewater 

(Foley et al. 2010), and inadequate effluent quality (Ahn and Logan 2010). Microalgae treatment 

is plagued by similar concerns (Pittman et al. 2011) as well as high land use requirement (Fortier 

and Sturm 2012). AnMBRs can theoretically produce a high quality effluent at low temperatures 

rich in nutrients for agricultural reuse applications while directly recovering energy from domestic 

wastewater. These benefits, along with the proven commercial viability of membrane bioreactor 

technology, make AnMBRs a more attractive approach to domestic wastewater treatment than 

activated sludge processes, AeMBRs, microbial fuel cells, or microalgae.  

The successful development of AnMBR technology requires an increase in fundamental 

knowledge combined with broad consideration for environmental constraints at multiple scales to 

contextualize the technology’s capabilities, limitations, and appropriate implementation. The 

overarching goal of this dissertation is to advance AnMBR technology for domestic wastewater 

treatment at low temperatures using process engineering, microbial ecology, and sustainability 
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assessment tools. This interdisciplinary approach significantly advances the scientific 

understanding of AnMBR technology thereby increasing the likelihood of full-scale 

implementation. Widespread AnMBR implementation has the potential to improve resource 

recovery from domestic wastewater while minimizing the environmental footprint of treatment. 

1.2 Overview of Dissertation 

This dissertation specifically focuses on direct energy recovery from domestic wastewater using 

AnMBR at psychrophilic temperatures. We began with a literature review of the state of 

knowledge regarding AnMBR technology for domestic wastewater treatment (Chapter 2; (Smith 

et al. 2012)) and then conducted a preliminary investigation of AnMBR treatment of a synthetic 

and actual domestic wastewater at 15°C using a bench-scale system (Chapter 3; (Smith et al. 

2013)). Observations during this preliminary work motivated an in-depth investigation of the 

membrane biofilm’s role in treatment (Chapter 4; (Smith et al. 2014b)). We then gauged the 

lower temperature limits of AnMBR domestic wastewater treatment by operating a bench-scale 

system at lower psychrophilic temperatures:12, 9, 6, and 3°C (Chapter 5; (Smith et al. 2014a)). 

Molecular analyses including high-throughput sequencing of 16S rRNA gene (rDNA) and 16S 

rRNA and reverse transcription quantitative PCR (RT-qPCR) targeting expression of the methyl 

coenzyme-M reductase (mcrA) gene in methanogens were used to evaluate microbial community 

structure and activity in the biofilm and suspended biomass at different operational temperatures. 

Finally, an assessment framework was developed to compare the life cycle environmental and 

economic impacts of AnMBR systems and conventional wastewater treatment systems with a 

focus on establishing operational and design targets AnMBR needs to achieve for the technology 

to move to full-scale (Chapter 6; (Smith et al. 2014c)). Overarching conclusions and future 

research directions are provided in Chapter 7.   
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Chapter 2. Perspectives on Anaerobic Membrane Bioreactor 
Treatment of Domestic Wastewater: A Critical Review 
 

2.1 Abstract 

Interest in increasing the sustainability of water management is leading to a reevaluation of 

domestic wastewater (DWW) treatment practices. A central goal is to reduce energy demands and 

environmental impacts while recovering resources. Anaerobic membrane bioreactors (AnMBRs) 

have the ability to produce a similar quality effluent to aerobic treatment, while generating useful 

energy and producing substantially less residuals. This review focuses on operational 

considerations that require further research to allow implementation of AnMBR DWW treatment. 

Specific topics include membrane fouling, the lower limits of hydraulic retention time and 

temperature allowing for adequate treatment, complications with methane recovery, and nutrient 

removal options. Based on the current literature, future research efforts should focus on increasing 

the likelihood of net energy recovery through advancements in fouling control and development 

of efficient methods for dissolved methane recovery. Furthermore, assessing the sustainability of 

AnMBR treatment requires establishment of a quantitative environmental and economic 

evaluation framework. 

2.2 Introduction 

Current domestic wastewater (DWW) treatment schemes are energy intensive, produce large 

quantities of residuals, and fail to recover the potential resources available in wastewater. In fact, 

municipal wastewater treatment plants account for approximately 3 percent of the U.S. electrical 



11 

energy demand according to the U.S. Environmental Protection Agency’s Office of Water (2006). 

Because of an increased interest in sustainability within water management, DWW treatment 

practices are being reevaluated with a focus on reducing energy demands and environmental 

impacts, while recovering resources in the form of water, materials, and energy (Guest et al., 2009). 

Considering this, it is important to note that the relatively low-strength of DWW (e.g., 5-day 

biochemical oxygen demand [BOD5] of 110-350 mg/L in the U.S.) and its production at high per 

capita flow rates (e.g., 190-460 L/capita*d in the U.S.) (Tchobanoglous et al., 2003) in most of the 

developed world make sustainable water management particularly challenging. 

This focus on sustainable development is driving innovations in anaerobic biotechnology, which 

has long been considered an option to allow for energy recovery from DWW through the 

conversion of organic matter to methane-rich biogas. In comparison to aerobic biological DWW 

treatment, anaerobic processes require less energy input because they do not require aeration, 

produce a fraction of the residuals, and offer the possibility of operation in energy neutral or even 

positive configurations due to biogas generation (van Lier and Lettinga, 1999; Zeeman and 

Lettinga, 1999; Aiyuk et al., 2004; Chu et al., 2005; van Haandel et al., 2006). Conventional 

wisdom regarding anaerobic treatment assumes, however, that: (1) bioreactors must be heated to 

mesophilic (30-40oC) or thermophilic (50-60oC) temperatures, (2) long solids retention times 

(SRTs) are necessary, and (3) post-treatment is required to produce an effluent suitable for direct 

discharge into the aquatic environment. As a result, anaerobic processes have not been utilized 

widely for full-scale DWW treatment (Aiyuk et al., 2006). Low DWW temperatures in temperate 

and cold climates have been considered a barrier for anaerobic treatment because the energy 

requirements associated with heating large quantities of wastewater outweigh the energy recovery 

potential (Lettinga et al., 2001; Martin et al., 2011). Therefore, low-temperature, ambient or 
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psychrophilic (<20oC), treatment essentially is the only economically feasible option for anaerobic 

DWW treatment in temperate and cold climates. Furthermore, high-rate treatment with short 

hydraulic retention times (HRTs) is necessary to treat the large volumes of dilute DWW, while 

long SRTs are essential to maintain the slow growing anaerobic microbial populations in the 

treatment systems. At low temperatures, biomass growth is greatly reduced, which increases the 

need for a long SRT and necessitates the elimination of even minor sludge washout (Lettinga et 

al., 2001). Two review papers (O'Flaherty et al., 2006; van Haandel et al., 2006) independently 

concluded that no microbial barriers exist to anaerobic treatment of DWW, even at low 

temperatures, provided the system is operated at long SRTs. The well-established upflow 

anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactor 

configurations largely meet the requirements necessary for high-rate anaerobic treatment 

(Seghezzo et al., 1998; Rebac et al., 1999; Aiyuk et al., 2004). Anaerobic membrane bioreactors 

(AnMBRs), by coupling membrane filtration with anaerobic treatment, provide an alternative 

strategy for DWW treatment at low temperatures with the potential for a higher quality effluent.  

AnMBRs can provide the same benefits as aerobic membrane bioreactors (AeMBRs), but may do 

so with reduced energy requirements. AeMBRs have gained considerable popularity in the past 

decade for the treatment of both high and low strength wastewater as membrane costs have 

decreased dramatically (Furukawa, 2008). For instance, AeMBRs have been installed in over 200 

countries with 4,400 total installations by the top three suppliers (Kubota, Mitsubishi Rayon, and 

Zenon (now GE)) as of 2009 (Judd, 2010). Furthermore, the MBR industry is predicted to have a 

mean growth rate of approximately 12% from 2000 to 2013 (Judd, 2010). This is largely because 

AeMBRs have the ability to provide superior effluent quality when compared to conventional 

aerobic treatment that relies on gravity sedimentation, can reduce the footprint of operation, and 
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have potential in water reuse schemes (Daigger et al., 2005). However, AeMBRs remain energy 

intensive due to aeration requirements. In addition, membrane fouling continues to be a primary 

challenge to implementing any MBR system, aerobic or anaerobic, because of its direct effect on 

capital and operating costs. Consequently, many studies have been conducted to better understand 

fouling and to assess fouling control strategies in AeMBRs as reviewed by Le-Clech et al. (2006). 

Significantly less work has been done on fouling in AnMBRs, particularly in applications of low-

strength wastewater treatment (Bérubé et al., 2006). Despite this, research on AnMBRs has 

increased substantially over the past decade because of the interest in reducing energy demands. 

Two review papers have already appeared on AnMBR treatment of a variety of waste streams. 

Liao et al. (2006) reviewed AnMBR technology for a wide range of high and low-strength 

wastewaters including DWW. Bérubé et al. (2006) focused on membrane fouling when 

considering AnMBRs for low-strength wastewater treatment. However, these reviews did not 

address operational concerns beyond membrane fouling for AnMBR low-strength wastewater 

treatment and a substantial amount of AnMBR research has been conducted since they were 

published. 

The objective of the current review is to comprehensively discuss the available literature on 

AnMBRs for DWW treatment and identify the main research areas that need further attention. 

Interest in AnMBRs for DWW treatment has grown rapidly during the past few years, as evidenced 

by a surge of research publications on the topic since 2010 (Baek et al., 2010; Gao et al., 2010; Ho 

and Sung, 2010; Dagnew et al., 2011; Gimenez et al., 2011; Huang et al., 2011; Kim et al., 2011; 

Martinez-Sosa et al., 2011; Salazar-Pelaez et al., 2011). Much of the reviewed literature and studies 

published so far have focused on proof of concept and membrane fouling. However, a broader 

understanding of AnMBR technology in the context of DWW treatment is needed for successful 
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full-scale implementation. Building on the review paper by Bérubé et al. (2006), which focused 

on membrane fouling, the current review discusses recent advancements in fouling control, but 

examines in greater detail other operational concerns that need to be resolved to allow full-scale 

implementation of AnMBRs for DWW treatment. For instance, the lower limits of HRT and 

temperature allowing for adequate treatment performance have yet to be established. The complex 

relationships among HRT, SRT, treatment performance, and membrane fouling are also poorly 

defined in the current literature. Furthermore, methane solubility, especially at low temperatures, 

complicates methane recovery. In addition, anaerobic treatment lacks the capacity for substantial 

nutrient removal, which is an important consideration when direct discharge of treated effluents in 

nutrient sensitive watersheds is necessary. Thus, coupling AnMBR treatment with downstream 

treatment is necessary to remove (and ideally recover) nutrients available in DWW. Such post-

treatment, if possible, should retain the excellent AnMBR effluent quality with respect to 

suspended solids. Beyond nutrient removal, the removal of trace contaminants by AnMBR 

treatment has yet to be evaluated. It is clear that AnMBR research must extend beyond membrane 

fouling to best determine the circumstances under which AnMBR DWW treatment is practical and 

economically feasible. Therefore, this review covers recent advancements made in membrane 

fouling control, the effects of HRT and SRT on treatment performance and fouling, the role of the 

membrane biofilm in treatment, implications of temperature on AnMBR performance, 

complications with methane recovery, nutrient removal limitations, the fate of trace contaminants 

in AnMBR treatment, and finally, pilot-scale studies.  

2.3 Selection of Reactor Configuration and Membrane Pore Size, 

Material, and Configuration 

Simply defined, an AnMBR is an anaerobic bioreactor coupled with membrane filtration. The 

membrane filtration component can exist in three configurations: external cross-flow, internal 
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submerged, or external submerged (Liao et al., 2006). In an external cross-flow configuration, the 

membrane unit is separate from the bioreactor and the membranes operate under pressure to 

produce permeate. Suspended anaerobic biomass maintained in the bioreactor is pumped into the 

membrane unit creating a positive pressure that leads to permeate production. The rejected biomass 

or retentate is returned to the bioreactor. In an internal submerged membrane configuration, 

membranes are submerged directly into the suspended biomass in the bioreactor and permeate is 

produced by exerting a vacuum on the membrane. Alternatively, membranes may be located in an 

external chamber separate from the main bioreactor, but are still submerged in suspended biomass 

and are operated under vacuum. In such an external submerged configuration, suspended biomass 

from the bioreactor is pumped to the external chamber, while retentate is returned to the main 

bioreactor. This configuration facilitates membrane cleaning and replacement by allowing 

isolation of the membrane unit in an external chamber. This separation enables anaerobic 

conditions to be maintained in the main bioreactor during membrane cleaning or replacement.  

Regardless of membrane configuration, the anaerobic bioreactor is most commonly a continuously 

stirred tank reactor (CSTR). Alternatives to a CSTR have also been proposed, such as UASB 

(Aiyuk et al., 2004; Ho and Sung, 2009), EGSB (Chu et al., 2005), and fluidized bed (Kim et al., 

2011) reactors coupled with membrane filtration. These reactor designs allow for considerable 

biomass retention in the bioreactor, which potentially limits membrane fouling by reducing the 

amount of biomass in contact with the membranes (Liao et al., 2006). However, biomass growth 

on the membrane surface, colloidal solids, soluble microbial products (SMP), and extracellular 

polymeric substances (EPS) are also important contributors to membrane fouling (Bérubé et al., 

2006). Therefore, bioreactor designs that limit membrane-biomass contact are not guaranteed to 

reduce fouling.  
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The selection of membrane pore size, material, and configuration are important design decisions. 

Microfiltration and ultrafiltration membranes are most commonly used in MBRs. In addition, there 

is growing interest in using dynamic or secondary membranes, which rely on the formation of a 

cake layer for biomass retention rather than on an actual membrane, in both aerobic (Chu and Li, 

2006) and anaerobic applications (Zhang et al., 2010). Organic and inorganic membranes have 

been applied in AnMBR DWW treatment and it has been shown this choice of material can impact 

the type and extent of membrane fouling, as well as the associated costs (Bérubé et al., 2006). 

Finally, flat-sheet (Hu and Stuckey, 2007; Huang et al., 2011), tubular (Baek and Pagilla, 2006; 

Ho and Sung, 2009; Salazar-Pelaez et al., 2011), and hollow fiber (Wen et al., 1999; Chu et al., 

2005; Lew et al., 2009; Dagnew et al., 2011; Gimenez et al., 2011; Kim et al., 2011) membranes 

have been studied for AnMBR DWW treatment. Table 1 presents various operational parameters 

and treatment performance results obtained in bench-scale AnMBR studies for DWW treatment 

(studies with simulated and actual DWW are included). A broad range of configurations, 

membrane materials, operational temperatures, and fouling control strategies have been 

researched. 
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Table 2-1. Operational parameters and treatment performance results obtained in published 

bench-scale AnMBR studies for DWW treatment. 

Study 

Average 

Influent 

Strengt

h 

[mg/L 

TCODa] 

Temp 

[°C] 

Bioreactor 

Configurat

ion 

Membrane 

Information 
Fouling Control 

SRT 

[d] 

HRT 

[h] 

Average 

Effluent 

[mg/L 

TCODa/% 

removal] 

Wen et 

al. 
(1999) 

100-

2600b 

12-25 

 

UASB with 

submerged 
membrane 

0.03 μm polyethylene 

submerged hollow fiber 

Periodic cleaning with 

5% NaOCl 
150 

6 19/97 

4 12/97 

Chu et 

al. 
(2005) 

383-849c 

 

25 

EGSB with 

submerged 
membrane 

0.1 μm polyethylene 

submerged hollow fiber 

Backflushing and 
relaxation; 

Periodic cleaning with 

0.03% NaOCl 

145 
3.5-

5.7 

93-96 

20 87-92 

15 85-86 

11 76-81 

Hu and 

Stucke
y 

(2006) 

460 c 35 
Submerged 

AnMBR 

0.4 μm 
submerg

ed 

hollow 
fiber 

0.4 μm 
polyethylen

e chloride 

submerged 
flat sheet 

Biogas sparging ∞ 

48 23/95 25/95 

24 29/94 32/93 

12 38/92 32/93 

6 40/91 40/91 

3 44/90 43/91 

Baek 
and 

Pagilla 

(2006) 

84 

[SCOD]b 32 

Completely 
mixed 

anaerobic 

bioreactor 

0.1 μm PVDFd external 

tubular 

Cross-flow; weekly 
cleaning with 0.1% 

w/w NaOH and 

disinfectant 

∞ 

48 25/58 

24 37/55 

16 37/56 

12 24/68 

Saddou

d et al. 

(2007) 

685b 37 

Jet flow 

anaerobic 

reactor 

100 kDa external Cross-flow ∞ 15-60 87/88 

Ho and 

Sung 

(2009) 

500 c 25 

Completely 

mixed 
anaerobic 

reactor 

1 µm PTFEe external 
tubular 

Cross-flow; periodic 
cleaning with NaOCl 

90-
360 

6-12 <40/>92 

Lew et 

al. 
(2009) 

540b 
25 

 

Completely 
mixed 

anaerobic 

reactor 

0.2 µm external hollow 

fiber 
 

Periodic backflushing; 
chemical cleaning with 

0.1 M NaOH, 1% 

H2O2, and 1% HCl 

∞ 4.5-12 65/88 

Ho and 

Sung 
(2010) 

500 c 

25 Completely 
mixed 

anaerobic 

reactor 

1 µm PTFEe external 

tubular 
Periodic backflushing ∞ 9 

25/95 

15 75/85 

Gao et 

al. 
(2010) 

500 c 30 

Upflow 

anaerobic 
reactor 

100 kDa external coated 

PVDFd and 30 kDa 
external polyetherimide 

Cross-flow 50 24 <20/>96 

Huang 

et al. 
(2011) 

550 c 25-30 

Completely 
mixed 

anaerobic 

reactor 

0.45 µm PESf flat sheet Biogas sparging 

30, 

60, 
∞ 

8-12 <17/>97 

Salazar

-Peláez 

et al. 
(2011) 

350 c ---- 
UASB with 

external 

membrane 

100 kDa external 

PVDFd tubular 

Cross-flow; NaOCl 

cleaning every 6 hours 
∞ 4-12 70/80 

Kim et 

al. 
(2011) 

513 c 35 

Two-stage 

fluidized 

bed/ 
membrane 

bioreactor 

0.1 µm PVDFd hollow 

fiber 

GAC fluidization; 
periodic backflushing 

and/or NaOCl/NaOH 

cleaning 

∞ 
4.2-

5.9 
7/99 

Smith 

et al. 

(2011) 

440c 15 
Submerged 

AnMBR 
0.2 µm PESf flat sheet 

Biogas sparging and 
backflushing 

300 16 36/92 

aTCOD = total COD 
bactual DWW; csimulated DWW 

dPVDF = polyvinylidene fluoride ; ePTFE = polytetrafluoroethylene; fPES = polyethersulfone 
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2.4 Membrane Fouling Control 

Membrane fouling continues to be a substantial challenge in advancing AnMBR technology 

considering membrane material costs and energy demands associated with fouling prevention. 

Fouling results from the accumulation of inorganic and organic foulants internally in the 

membrane pores and externally on the membrane surface, which reduce flux, increase TMP, and 

potentially necessitate chemical cleaning or membrane replacement. The primary foulants of 

interest in AnMBR systems include suspended biomass, colloidal solids, SMP, EPS, attached cells, 

and inorganic precipitates such as struvite.  

Membrane fouling has been controlled through various strategies, which are linked to the 

membrane configuration. In external cross-flow configurations, a high cross-flow velocity is 

maintained to limit inorganic and organic foulant buildup on the membrane. In submerged 

configurations, fouling control is typically accomplished through biogas sparging, backflushing, 

and/or membrane relaxation. A consensus has yet to be determined on which strategy is most 

effective per energy input. For instance, Martin et al. (2011) highlighted the high variability in 

biogas sparging intensity and thus energy demand for fouling control used in submerged AnMBR 

studies. When comparing AeMBR and AnMBR studies, lower permeate fluxes are typically 

observed in AnMBRs potentially as a result of less flocculation and thus increased concentrations 

of fine particulates and colloidal solids at the membrane surface (Liao et al., 2006; Martin et al., 

2011). However, direct comparison studies between AeMBRs and AnMBRs for DWW treatment 

have indicated similar fouling potential (Achilli et al., 2011) or less propensity for fouling in 

AnMBRs (Baek and Pagilla, 2006).  

Fouling control represents the most intensive energy demand associated with AnMBR treatment, 

and therefore, reducing this demand is central to maximizing the potential energy recovery. 
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Considering the low organic strength of DWW and correspondingly low potential biogas 

generation, minimizing energy demands associated with fouling control is likely necessary to 

achieve energy neutral or positive operation. To this end, Hu and Stuckey (2007) first proposed 

powdered or granular activated carbon (PAC or GAC) addition to submerged AnMBRs to reduce 

membrane fouling in conjunction with biogas sparging. Their results suggest that PAC and GAC 

addition increase membrane flux and enable operation under lower TMP as compared to a control 

AnMBR in which only biogas sparging was used. However, they did not evaluate the effect of 

reduced biogas sparging intensity in the presence of PAC or GAC. The PAC or GAC is not used 

for adsorption and therefore would not need to be regenerated or replaced during operation, 

however, the initial costs and potential life cycle environmental impacts of the activated carbon 

must still be considered. More recently, Kim et al. (2011) proposed the use of fluidized GAC 

through liquid recirculation without biogas sparging for fouling control. Their results show fouling 

may be controlled with substantially less energy input than biogas sparging requires, however, the 

long-term effects on the membrane material have yet to be established. This is particularly 

important as both studies used organic membranes and it has been suggested that aggressive 

fouling control through the use of PAC, GAC, or other media in contact with the membrane may 

be better suited for more abrasion resistant inorganic membranes, despite their higher life cycle 

costs (Ghyoot and Verstraete, 1997). Examining the long-term impact of these aggressive fouling 

control measures on organic membranes is an important area of research that has received little 

attention.  

2.5 Effects of HRT and SRT on Treatment Performance and Membrane 

Fouling 

HRT and SRT are important operational parameters that impact treatment performance and affect 

membrane fouling in an AnMBR. In the context of DWW treatment, a low HRT is desirable to 
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reduce AnMBR size and the overall footprint of operation, whereas a high SRT may be required 

to achieve the necessary treatment performance under the constraints of discharge limits especially 

for lower temperatures (O'Flaherty et al., 2006). However, increasing the SRT, while keeping the 

HRT constant, increases the suspended biomass concentration potentially leading to decreased 

permeate flux (Bérubé et al., 2006; Liao et al., 2006; Huang et al., 2011). Furthermore, increasing 

the SRT may result in higher SMP and EPS production (Huang et al., 2011), which in-turn play a 

role in membrane fouling. Therefore, a tradeoff could exist between controlling HRT and SRT for 

membrane fouling mitigation and obtaining the necessary treatment performance.  

The dependence of AnMBR treatment performance on HRT has been evaluated in various studies 

(Table 2-1; Figure 2-1). Hu and Stuckey (2006) observed a marginal decrease in COD removal 

(approximately 5% overall) when they lowered the HRT from 48 hours to 24, 12, 6, and 3 hours 

during treatment of simulated DWW at mesophilic temperature (35°C). Even at a 3-hour HRT, 

COD removal greater than 90% was achieved. Comparing HRTs of 3.5, 4.6, and 5.7 hours, Chu 

et al. (2005) did not observe a correlation between treatment performance and HRT at temperatures 

greater than 15°C. Likewise, Huang et al. (2011) found that treatment performance was 

independent of HRT when comparing HRTs of 8, 10, and 12 hours in an AnMBR treating a 

simulated DWW at 25-30°C. Several other studies similarly concluded that HRT had little effect 

on AnMBR permeate quality (Ho and Sung, 2009; Lew et al., 2009; Baek et al., 2010). Ho and 

Sung (2009), however, observed an accumulation of soluble COD in an AnMBR operating at 25°C 

when the HRT was reduced from 12 to 6 hours despite stable permeate COD concentrations. 

Another study in which HRT was decreased from 12 to 8 and then 4 hours observed an increase 

in permeate COD at the lowest HRT (temperature was not reported in this study), while there was 

no significant difference between the permeate COD values obtained for HRTs of 12 and 8 hours 
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(Salazar-Pelaez et al., 2011). Salazar-Pelaez et al. (2011) also observed an increase in retentate 

EPS and SMP concentrations at the lowest HRT, which resulted in increased membrane fouling. 

The authors recommended a lower limit be placed on HRT due to fouling concerns. Furthermore, 

Huang et al. (2011) noted that combining a short HRT with a long SRT inevitably leads to increases 

in suspended biomass concentrations, which positively correlates with membrane fouling rates. 

Taken together, these studies suggest that adequate AnMBR treatment performance may be 

obtained at relatively short HRTs even at low temperatures, but that a lower limit on HRT may 

exist primarily due to concerns with membrane fouling. 

 

Figure 2-1. Total COD removal as a function of HRT observed in Chu et al. (2005), Hu and 

Stuckey (2006), Ho and Sung (2009), Huang et al. (2011), and Salazar-Pelaez et al. (2011). 

Membrane separation enables absolute retention of biomass and thus complete control of SRT. 

Because of this, SRT is an easily controllable operational parameter affecting both treatment 

performance and membrane fouling. Baek et al. (2010) operated a bench-scale AnMBR and 

reduced the SRT through biomass wasting in five steps from 213 to 40 days. The decrease in SRT 

did not impact treatment performance or membrane fouling. Conversely, Huang et al. (2011) 
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compared performance during operation at SRTs of 30 and 60 days and for a period without 

biomass wasting and observed better treatment performance at longer SRTs but at the cost of 

increased membrane fouling resulting from higher suspended biomass concentrations and SMP 

production. However, a negative correlation between EPS concentrations and SRT was found, 

which was linked to smaller median particle sizes in the suspended biomass as a function of 

reduced flocculation in the presence of lower concentrations of EPS. The authors speculated that 

the decrease in median particle size associated with the increase in SRT likely accelerated 

membrane fouling. Baek at al. (2010) also observed a decrease in EPS concentrations at higher 

SRTs but noted that concentrations detected were considerably lower than literature values for 

AeMBRs possibly indicating relatively less propensity for EPS fouling in AnMBRs. Conversely, 

other AnMBR studies have pointed to EPS as a major contributor to direct membrane fouling (Chu 

et al., 2005; Gao et al., 2010). Therefore, EPS may act to reduce membrane fouling by increasing 

suspended biomass particle size, whereas EPS may directly contribute to membrane fouling when 

present in excess or when generated directly on the membrane surface by the biofilm or cake layer. 

These observations suggest that a certain SRT may exist to limit EPS-mediated membrane fouling. 

However, the role of EPS quantity and characteristics in fouling as a function of SRT as well as 

other operational variables is not well understood in AnMBRs and controlling SRT is further 

complicated by its interrelatedness with treatment performance.  

2.6 Role of the Membrane Biofilm beyond Fouling 

The biofilm or cake layer that develops on the membrane surface plays a role in membrane fouling, 

but may also contribute to soluble COD removal and thus final permeate quality in an AnMBR. 

The latter has received limited attention in the literature on AnMBRs for DWW treatment. 

Mechanisms of soluble COD removal across the membrane may include microbial activity, 
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adsorption, size exclusion, and charge exclusion. Several AnMBR studies have shown substantial 

differences between the soluble COD concentrations in the bioreactor and in the permeate (Chu et 

al., 2005; Hu and Stuckey, 2006; Ho and Sung, 2009; Baek et al., 2010; Ho and Sung, 2010; Smith 

et al., 2011). In addition, Ho and Sung (2010) observed an increase in soluble COD removal across 

the membrane surface with decreasing temperatures. Some researchers have compared soluble 

COD removal in the bioreactor and soluble COD removal across the membrane and have referred 

to these as, respectively, “biological” and “physical” soluble COD removals (Ng et al., 2000; Baek 

and Pagilla, 2006; Ho and Sung, 2009). These definitions are misleading as it is improbable that 

biological activity does not occur in the membrane biofilm. However, it is important to understand 

the significance of biological soluble COD removal by the biofilm in total COD removal and 

relative to other potential non-biological soluble COD removal mechanisms. Ho and Sung (2010) 

compared specific methanogenic activities in suspended and attached biomass and found that the 

attached biomass was indeed biologically active although it was far lower in activity than the 

suspended biomass. Conversely, Vyrides and Stuckey (2011) compared biological activity of 

attached and suspended biomass from an AnMBR treating high-salinity wastewater and found that 

the attached biomass was considerably more active under both high and low salinity conditions. 

The authors speculated that increases in biological activity result from lower mass-transfer 

limitations in the biofilm. Furthermore, Vyrides and Stuckey (2009) observed an increase in 

dissolved organic carbon (DOC) removal when they reduced the frequency of biogas sparging 

from continuous to intervals of 10 min every 15 min during treatment of high-salinity wastewater. 

The decrease in biogas sparging increased TMP indicating a thicker biofilm developed on the 

membrane, which likely caused an increase in adsorption and eventual biodegradation of high 

molecular weight compounds. Smith et al. (2011) operated two membrane units in parallel in an 
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AnMBR subjected to biogas sparging. One membrane unit was backflushed at a regular interval, 

while the other one was not backflushed. The differences in fouling control led to a higher amount 

of fouling in the non-backflushed membrane unit, as indicated by higher TMPs and by visual 

observations. A positive correlation was observed between membrane fouling and soluble COD 

removal across the membrane. These results suggest that a tradeoff may exist between increased 

fouling and increased soluble COD removal across the membrane.  

2.7 Temperature Implications on Treatment Performance 

Untreated DWW in the U.S. varies in temperature from approximately 3 to 27°C, with an average 

of about 16°C (Tchobanoglous et al., 2003). Given the relatively low average temperature of 

DWW, heating of DWW would be necessary in the U.S. and many regions in the world for most 

of the year if mesophilic treatment were required. Martin et al. (2011) concluded that influent COD 

concentrations higher than 4-5 g/L, an order of magnitude greater than those present in typical 

DWW (Tchobanoglous et al., 2003), would be necessary to generate enough biogas to heat a 

bioreactor to mesophilic temperatures. Therefore, operation at ambient temperatures is essential 

for economical implementation of AnMBRs for DWW treatment.  

Hydrolysis of particulate organics is generally considered to be the rate-limiting step in anaerobic 

digestion (Lee and Rittmann, 2011) and is of special importance in DWW treatment as particulate 

organics represent a large fraction of the total COD. Hydrolysis rates decline with temperature 

(Lettinga et al., 2001), requiring longer SRTs for hydrolysis to occur at psychrophilic temperatures. 

This creates a limitation for most anaerobic treatment systems as the relatively poor settleability 

of anaerobic biomass makes it difficult to retain all biomass in systems that rely on gravity 

separation. Even minor sludge washout in such systems could reduce the SRT to below the limit 

necessary for acceptable treatment performance (Lettinga et al., 2001). Because membranes enable 
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complete retention of particulates, hydrolysis rates may still be sufficiently high in an AnMBR 

even at psychrophilic temperatures resulting in acceptable treatment performance. Thus, other 

pathways may be more critical or rate-limiting in psychrophilic AnMBR operation. Ho and Sung 

(2009) cited acetogenesis as the rate-limiting step in AnMBRs operating at 25°C based on an 

increase in bioreactor soluble COD, but a lack of volatile fatty acid (VFA) accumulation. Rebac 

et al. (1999) investigated the effects of temperature on the kinetics of fatty acid degradation using 

psychrophilically-grown (10°C) mesophilic seed sludge. They found that, although low 

temperatures negatively affected degradation rates, specific methanogenic activities at mesophilic 

temperatures using the psychrophilically-grown biomass were higher than the specific 

methanogenic activities of mesophilically-grown biomass, indicating that psychrophilic conditions 

do not inhibit development of methanogenic microbial communities. Overall, low temperatures 

may reduce maximum specific growth and substrate utilization rates of microorganisms but can 

also lead to an increase in net biomass yield (O’Flaherty et al., 2006). Furthermore, most biological 

reactions pertinent to anaerobic digestion such as hydrolysis and various fermentations are less 

energetically favorable at low temperatures. On the other hand, several reactions are more 

exergonic at low temperatures because of the increased solubility of hydrogen, including 

hydrogenotrophic sulfate reduction, hydrogenotrophic methanogenesis, and homoacetogenesis 

(Lettinga et al., 2001). This implies that hydrogenotrophic methanogenesis may be more important 

than aceticlastic methanogenesis at low temperatures. Indeed, McKeown et al. (2009) found 

increased hydrogenotrophic methanogenic activity at psychrophilic temperatures during a long-

term study (1,243 days) on anaerobic treatment of acidified wastewater. While the temperature of 

operation certainly impacts various pathways in anaerobic metabolism, there is no evidence that 
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low temperatures are inhibitory to process performance under the appropriate operational 

conditions. 

Despite the lack of microbial barriers at low temperatures, only a few studies have assessed 

AnMBR performance for DWW treatment at psychrophilic temperatures (Table 2-1). Even fewer 

studies have evaluated performance as a function of varying DWW temperature within the low-

temperature range. An early study in which a bench-scale UASB system was coupled with 

membrane filtration treating DWW found that high COD removals (averaging 97%) could be 

attained at temperatures ranging from 12 to 25°C for HRTs of 4-6 hours (Wen et al., 1999). A 

dependence on temperature was observed in the UASB with COD removals dropping below 70% 

at temperatures below 15°C. More importantly, however, was the finding that total system COD 

removal (UASB and membrane filtration) was only slightly affected by temperature, and remained 

greater than 88% at the lowest operational temperature. This result highlights the possible role 

membrane filtration has in performance stability across temperature fluctuations. In another study, 

an EGSB coupled with microfiltration treating a simulated DWW was initially operated at 25°C 

and subsequently operated at 20, 15, and 11°C. The temperature was finally increased stepwise 

back to 25°C (Chu et al., 2005). COD removal decreased slightly from >90% at 25°C with 

decreases in temperature to 15°C, but sharply declined to 78% when the temperature was further 

reduced to 11°C. This low COD removal may have been related to the relatively short HRTs used, 

i.e., 3.5 to 5.7 hours. Indeed, changes in HRT significantly affected COD removal when the system 

was operated at 11°C indicating that adequate treatment performance may be obtained at this 

temperature at longer HRTs. Ho and Sung compared AnMBR performance treating a simulated 

DWW using parallel reactors operated at 25 and 15°C and observed COD removals greater than 

95 and 85%, respectively (Ho and Sung, 2010). Although these data suggest some performance 
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dependence on temperature, both reactors were inoculated with sludge from a mesophilic 

anaerobic digester and an AnMBR previously operated at 25°C and thus higher performance at 

25°C could have been expected especially considering the relatively short operational period of 

112 days. VFA profiles for the AnMBR operated at 15°C show a long acclimation phase of 

approximately 60 days after which permeate VFAs remained low suggesting that performance of 

the two reactors may have converged over a longer operational period. Smith et al. (2011) showed 

COD removals greater than 90% could be attained in an AnMBR operated at 15°C. 

Low temperatures may impact the choice of an appropriate inoculum for seeding an AnMBR. 

Kashyap et al. (2003) and O’Flaherty et al. (2006) suggested that psychrophiles from natural 

habitats be considered for potential use in psychrophilic anaerobic treatment processes citing the 

large number of psychrophilic methanogens and acetogens isolated from terrestrial ecosystems. In 

fact, a psychrophilic methanogen was recently isolated from the Zoige Wetland of the Tibetan 

Plateau that is active at temperature as low as 0°C (Zhang et al., 2008). Xing et al. (2010) 

investigated the use of psychrophilic inocula from natural habitats (lake sediments) in anaerobic 

digestion at 15°C and determined that inoculation with psychrophilic biomass is feasible. 

Conversely, Rebac et al. (1999) concluded that psychrotolerant mesophiles were adequate for 

psychrophilic anaerobic treatment and that true psychrophiles are not required. Smith et al. (2011) 

seeded an AnMBR with inocula from two mesophilic and one psychrophilic environment and 

compared the microbial community structure of suspended biomass and membrane biofilm 

samples taken after 275 days of operation at 15°C. The AnMBR microbial communities most 

closely resembled the mesophilic inocula rather than the psychrophilic inoculum suggesting that 

psychrotolerant mesophiles dominated in their system (Smith et al., 2011). Nonetheless, AnMBR 

inoculation with truly psychrophilic microbial communities may be critical for process 
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performance and stability at even lower temperatures. O’Flaherty et al. (2006) commented that 

better characterization of psychrophiles in anaerobic treatment may require longer term operation 

(>1,000 days) at psychrophilic conditions to allow enrichment of psychrophilic microorganisms 

relative to psychrotolerant mesophiles. It should be noted that, to the best of our knowledge, no 

studies have assessed anaerobic treatment performance of psychrophiles at elevated temperatures. 

This is of particular importance in AnMBR DWW treatment as most temperate climates 

experience seasonal temperature variation that lead to fluctuations in DWW temperature between 

approximately 5 and 25°C. Thus, it is possible that performance may deteriorate at higher 

temperatures if the AnMBR is seeded with only psychrophilic biomass. A better approach may be 

to seed the AnMBR with a diverse consortium of mesophilic and psychrophilic microbial 

communities to maintain performance across seasonal temperature variation.   

2.8 Complications with Methane Solubility and Recovery 

Anaerobic treatment enables energy recovery from DWW as long as methane can be easily 

collected. Capturing methane is also important to mitigate direct greenhouse gas emissions as 

methane has a global warming potential 25 times that of carbon dioxide (IPCC, 2007). Because of 

this, methane should not be emitted to the atmosphere during AnMBR operation. Methane in the 

gas phase can be easily collected, but dissolved methane is more difficult to capture. Specifically, 

methane is approximately 1.5 times more soluble at 15°C compared to 35°C, for a typical biogas 

methane content of 70%. Because of the relatively low strength of DWW, dissolved methane 

leaving the treatment process in the liquid phase represents a substantial portion of the total 

methane generated. Consequently, recovery of dissolved methane is key to approaching energy-

neutral AnMBR DWW treatment. 
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Few AnMBR studies have addressed methane solubility (Hu and Stuckey, 2006; Dagnew et al., 

2011; Gimenez et al., 2011) and even fewer have quantified dissolved methane (Kim et al., 2011; 

Smith et al., 2011). Kim et al. (2011) reported that 30% of the methane generated left their system 

through the liquid phase during operation at 35°C. Smith et al. (2011) observed that approximately 

50% of the methane generated remained in the liquid phase during operation at 15°C, highlighting 

the important role temperature has in methane solubility and, therefore, direct biogas methane 

recovery. In a recent study by Bandara et al. (2011), dissolved methane in the effluent of a bench-

scale UASB reactor treating a simulated wastewater operated at 35, 25, and 15°C was quantified 

and recovered through the use of a degassing membrane, a non-porous membrane only permeable 

to gases. As expected, an increase in the dissolved methane concentration was observed with a 

decrease in temperature. Dissolved methane concentrations in the UASB effluent were on average 

15.8, 20.5, and 26.0 mg/L (converted from concentrations provided in COD based units) at 

temperatures of 35, 25, and 15°C, respectively. Comparing these concentrations using 

concentrations derived using Henry’s Law based on the biogas methane content reported suggests 

a high level of methane oversaturation in the UASB effluent. A number of other studies using 

anaerobic bioreactors without membrane separation for low-strength wastewater treatment also 

found methane oversaturation (e.g., Singh et al., 1996; Hartley and Lant, 2006). Pauss et al. (1990) 

provided a theoretical and experimental evaluation of methane oversaturation for a number of 

anaerobic bioreactor configurations without membrane separation and cited mass transfer 

limitations as the cause of the observed oversaturation. The methane oversaturation reported in 

these non-MBR studies may have resulted from poor gas-liquid phase equilibrium. Utilizing 

biogas sparging for fouling control in an AnMBR would be expected to result in methane 

equilibrium by limiting the effect of mass transfer limitations. However, methane oversaturation 
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was also observed in an AnMBR study in which biogas sparging was used (Smith et al., 2011). 

Since substantial soluble COD removal took place across the biofilm in this study, it was 

hypothesized that methane oversaturation in the permeate was, at least in part, due to methane 

generation via biological activity in the biofilm. The presence of TMP across the biofilm likely 

forces methane generated by methanogens in the biofilm into the permeate stream, regardless of 

methane saturation. Taken together, the results of several studies indicate methane oversaturation 

should be expected in AnMBR permeate.  

Several methane removal processes have been proposed to capture dissolved methane, including 

stripping of AnMBR effluent through post-treatment aeration (Hartley and Lant, 2006; McCarty 

et al., 2011), methane recovery using a degassing membrane (Bandara et al., 2011), and the use of 

a down-flow hanging sponge (DHS) reactor (Hatamoto et al., 2010). Methane stripping with air is 

commonly employed on landfill leachate to limit methane release from the liquid to the gas phase 

in sewer systems. Energy demands associated with methane stripping with air are estimated to be 

less than 0.05 kWh/m3 of AnMBR permeate (McCarty et al., 2011). Energy recovery from the 

resulting mixture of methane and air has not yet been attempted. Foreseeable complications with 

this practice include the dilution of methane with air and potential explosion hazards resulting from 

a methane and oxygen rich off-gas. Furthermore, the efficiency of this practice for removing 

dissolved methane from AnMBR effluent is not well established. The use of degassing membranes 

represents a more controlled approach by which methane is recovered from AnMBR effluent but 

not diluted with air. Bandara et al. (2011) observed high recoveries of dissolved methane using 

degassing membranes with higher efficiencies for lower temperature as a result of increased 

methane solubility at lower temperatures. However, the degassing technology used was energy 

intensive; energy requirements (0.042 kW) far outweighed the amount of energy embedded in the 
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recovered methane (0.00014 kW). Therefore, although this technology is worth further 

investigation, energy requirements must be substantially reduced for economic feasibility. Finally, 

biological methane oxidation through the use of a DHS reactor has been evaluated (Hatamoto et 

al., 2010). Using this system, up to 95% of the dissolved methane in the effluent was oxidized by 

methanotrophs. However, because dissolved methane was oxidized, methane could not be 

recovered for energy generation using this approach. This technology shows promise for 

drastically reducing potential greenhouse gas emissions from AnMBR effluent, but at the cost of 

energy requirements to operate the DHS and lost energy potential in the methane oxidized. Overall, 

dissolved methane recovery or oxidation is possible through a number of methods although each 

with substantial drawbacks. Addressing the issue of dissolved methane perhaps represents the 

greatest barrier to AnMBR implementation. 

2.9 Nutrient Removal Limitations 

Another major barrier to full-scale adoption of AnMBR DWW treatment is the lack of direct 

nutrient removal capability. Some nutrient removal takes place as a result of biomass growth, but 

is limited due to the low biomass yields typical for anaerobic microbes. In addition, ammonium 

and phosphate concentrations increase as a result of ammonification and phosphate release under 

anaerobic conditions. Challenges exist in coupling AnMBRs with conventional biological nutrient 

removal treatment technologies due to the low COD:N and COD:P ratios typical of AnMBR 

effluents. Biological nitrogen and phosphorus removal processes require sufficient amounts of 

organic electron donor to fuel denitrification and enhanced biological phosphorus removal. 

Chernicharo (2006) suggests treating only a fraction of the waste anaerobically (50 – 70%) and 

using the remaining fraction to support denitrification in downstream biological nitrogen removal. 

Aerobic or partial aerobic treatment common to many biological nutrient removal systems detracts 
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from the energy savings gained by using anaerobic treatment. In addition, dissolved methane 

present in AnMBR effluents will be stripped during aerobic treatment, contributing to greenhouse 

gas emissions. The challenges of capturing or oxidizing methane dissolved in AnMBR effluents 

and achieving nutrient removal are inextricably linked.  

An attractive option for biological nitrogen removal downstream of AnMBR DWW treatment may 

be anaerobic ammonium oxidation (anammox), a process in which ammonium and nitrite are 

converted to nitrogen gas by anammox bacteria (Van De Graaf et al., 1996). It has received 

increasing attention as a cost-effective nitrogen removal strategy in comparison to traditional 

nitrification/denitrification approaches (Schmidt et al., 2003). Because it is a strictly autotrophic 

process and ammonium serves as the electron donor, no additional carbon source/electron donor 

is required to fuel denitrification. Additional benefits of anammox include limited sludge 

production, low energy input, and almost complete nitrogen removal (some nitrate is produced) 

(Gao and Tao, 2011). Full-scale anammox treatment has been applied successfully in Europe, 

Japan, and China where it is being used to treat high-ammonium waste streams, such as industrial 

wastewaters and anaerobic digestates (Gao and Tao, 2011). However, control of the partial 

nitritation process (i.e., partial oxidation of ammonium to nitrite) can be challenging, startup times 

are typically long due to the slow-growth of anammox bacteria, and mesophilic temperatures are 

thought to be necessary. Furthermore, little research has been conducted on anammox treatment 

of waste streams with relatively low ammonium concentrations such as DWW and, to the best of 

our knowledge, no papers have reported results from studies that couple AnMBR treatment with 

downstream anammox treatment. Regardless, the anammox process has been proposed for 

mainstream DWW nitrogen removal (Kartal et al., 2010; O'Shaughnessy et al., 2011). A 

downstream anammox system that utilizes a biofilm process would enable nitrogen removal while 
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maintaining the high quality of AnMBR effluent with regards to suspended solids. With additional 

research and process optimization, it may represent a viable nitrogen removal option for use in 

combination with AnMBR DWW treatment.  

Physical/chemical nutrient removal processes are also promising, but can be significantly more 

energy intensive than biological treatment. Several studies have examined physical/chemical 

treatments coupled with anaerobic treatment to achieve nutrient removal. Aiyuk et al. (2004) 

proposed pretreatment to remove suspended solids and phosphorus through 

flocculation/coagulation, and ammonia removal through post-treatment zeolite adsorption in 

applications of anaerobic DWW treatment. Overall, 94% phosphorus and 99% nitrogen removals 

were achieved in their study, indicating that this approach may be applicable for achieving 

sufficient nutrient removal in AnMBR DWW treatment. Struvite (magnesium ammonium 

phosphate) precipitation represents another means of nutrient removal with potential use in 

AnMBR DWW treatment processes (de-Bashan and Bashan, 2004). A benefit of this approach is 

that recovered struvite is saleable as a fertilizer and struvite recovery limits potential pipe scaling 

and membrane fouling. A disadvantage of this approach is that magnesium must be added to 

encourage struvite formation because its levels are usually limited in DWW. Furthermore, 

although struvite precipitation typically removes all the phosphorus, the stoichiometry of the 

process means that for medium-strength U.S. DWW only 12.5% of ammonium will be removed 

through struvite precipitation and that residual ammonium will remain (Tchobanoglous et al., 

2003). Johir et al. (2011) proposed using an ion-exchange/adsorption process downstream of an 

AeMBR for nutrient recovery. The study found that a pruolite ion-exchange resin achieved 

phosphate and nitrate removal efficiencies of 85% and 95%, respectively. Ion-exchange membrane 

bioreactors, similar to those demonstrated by Matos et al. (2009) to remove nitrate in marine 
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systems, may also be coupled with AnMBRs to achieve nutrient removal. Alternatively, ion-

exchange resins that are specific for ammonium and phosphate removal could be used. In either 

ion exchange process, the nutrients can be recovered during regeneration, but drawbacks include 

large capital and chemical regeneration costs (Miladinovic and Weatherley, 2008).  

The nutrients in AnMBR effluent can be harnessed and recycled if the effluent is used for irrigation 

purposes (McCarty et al., 2011). Offsetting the environmental impacts associated with artificial 

fertilizer use could thus be an added benefit to AnMBR DWW treatment. Challenges regarding 

the transport of AnMBR effluent for irrigation or locating treatment facilities in close proximity 

to agricultural areas certainly exist; however, this solution maximizes resource recovery from 

DWW.  

2.10 Trace Contaminant Fate Considerations 

As AnMBRs move towards full-scale implementation for the treatment of DWW, the fate of trace 

contaminants, such as pharmaceuticals and personal care products (PPCPs), during AnMBR 

treatment requires further attention. Trace contaminants are widely detected in aquatic 

environments (Kolpin et al., 2002) and many are present in DWW treatment plant effluents (Rosal 

et al., 2010). Despite the fact that DWW treatment plants represent an important first line of 

defense against the proliferation of these emerging contaminants in the environment, the DWW 

treatment plant design process typically does not consider trace contaminant removal. 

Nevertheless, partial to complete removal does occur in traditional DWW treatment systems for 

some compounds (Metcalfe et al., 2003), but levels of removal for a given compound can vary 

widely depending upon the process configuration (Fent et al., 2006). Few studies have focused on 

the fate of trace contaminants found in DWW during anaerobic treatment and, to the best of our 

knowledge, none have studied pharmaceutical and PPCP removal during AnMBR treatment. 
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Carballa et al. (2007) studied the fate of PPCPs during anaerobic digestion of sewage sludge, but 

not during anaerobic DWW treatment, and found varying degrees of removal depending on the 

specific compound. Microbial aerobic (or oxic) degradation pathways for substituted and 

unsubstituted aromatic rings, chemical structures common to many PPCPs, have been studied 

extensively (e.g. Harayama et al., 1992). However, reductive pathways utilized during anaerobic 

treatment are not well understood and are an area in need of further research.  

As we consider the potential role of AnMBR processes on trace contaminant fate in resource 

recovery systems, the applicability of existing knowledge about the anaerobic fate of xenobiotic 

compounds to trace contaminant fate needs to be evaluated. Most studies on microbial degradation 

in anaerobic environments work with high concentrations of the target compounds (mg/L - μg/L 

range), concentrations that are far from environmentally relevant (typically in the μg/L - ng/L 

range for DWW). This choice may dramatically impact values obtained for degradation kinetics. 

A variety of anaerobic microbes, including denitrifiers, iron-reducers, sulfate-reducers, 

methanogens, and anoxygenic phototrophs, are capable of degrading aromatic compounds 

(Tierney et al., 2010). A better understanding of the microbes involved and enzymes used in 

degrading trace contaminants in anaerobic environments will help inform the development of fate 

pathways in AnMBRs. In addition, transformation products of anaerobically degraded trace 

contaminants and their ecotoxicity or public health risks are largely unknown and uncharacterized. 

As pharmaceuticals and PPCPs evolve and take new forms, such as with the emergence of 

nanoparticles in medicine (Wagner et al., 2006), their behavior and biodegradability may also 

change. Understanding the fate of trace contaminants in AnMBRs and post-treatment processes, 

which utilize different redox environments than conventional treatment systems, is necessary to 

ensure a safe effluent that limits trace contaminant pollution. 
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2.11 Pilot-scale Studies 

The performance of AnMBRs treating DWW has been assessed in three recent pilot-scale studies 

by Giménez et al. (2011), Dagnew et al. (2011), and Martinez-Sosa et al. (2011) (Table 2). Each 

one of these studies indicates that treatment performance similar to that observed during bench-

scale research may be obtained at a larger scale. Furthermore, they report that membrane fouling 

may be avoided in the long-term. Giménez et al. (2011), however, highlighted that high sulfate 

concentrations in DWW severely reduce the potential methane generation and energy recovery of 

AnMBR systems. Considering additional complications with sulfide corrosion and the need for 

biogas scrubbing, AnMBR treatment of sulfate-rich DWW should be avoided. 

Giménez et al. (2011) operated a pilot-scale facility fed with pre-treated DWW at a 70 day SRT, 

an HRT ranging from 20 to 6 hours, and a temperature of 33°C. The pilot consisted of an anaerobic 

reactor connected to two membrane tanks with 0.05 µm hollow fiber membranes. The total liquid 

volume of the system was 2,500 L. The pilot also included a rotofilter for pre-treatment screening, 

an equalization tank, and a degasification vessel installed between the membrane tanks and 

permeate pump. Biogas sparging, relaxation, and backflushing were employed for membrane 

fouling control. Biogas sparging was also utilized in the anaerobic reactor to enhance mixing. The 

total and soluble COD concentrations in the influent averaged 445 ± 95 mg/L and 73 ± 25 mg/L, 

respectively. Sulfate concentrations were particularly high, averaging 297 ± 54 mg/L, an order of 

magnitude higher than average sulfate concentrations reported for DWW (Tchobanoglous et al., 

2003). During the study, COD removal averaged 87% during stable operation resulting in a 

permeate COD of 77 mg/L. The high levels of sulfate in the influent greatly impacted biogas 

production as methanogens and sulfate reducers compete for substrates. Theoretically, 0.67 mg/L 

of COD is consumed per 1 mg/L of sulfate reduced, therefore, assuming complete sulfate reduction 
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occurred, approximately 45% of the influent COD was consumed for sulfate reduction rather than 

for methanogenesis. The authors noted that sulfate removal was below 50% during startup but 

quickly increased to near complete removal. This increase in sulfate removal also correlated with 

an increase in the relative abundance of sulfate reducing bacteria. Despite substantial production 

of sulfides during operation, the methane content in the biogas averaged 55%. Giménez et al. 

(2011) discussed methane solubility, but did not quantify dissolved methane. In addition, the 

effectiveness of the degasification vessel was not discussed. No irreversible fouling was observed 

during the study indicating that the combination of relaxation, backflushing, and biogas sparging 

was effective at preventing fouling while operating at a sub-critical flux of 10 L/m2h (LMH). 

According to the authors, the pilot is currently being operated at 20°C to assess the impact of lower 

temperature on treatment performance. 

Dagnew et al. (2011) operated a 630 L pilot-scale AnMBR for DWW treatment with a 

configuration similar to the one described by Giménez et al. (2011). The system was operated at 

an HRT of 8.5 hours, an SRT of 80-100 days, a temperature of 22°C, and was fed screened DWW. 

Membrane relaxation and biogas sparging were used to control fouling, while operating at a sub-

critical flux of 17 LMH. In addition, the membranes were chemically cleaned on a weekly basis. 

During the study, 79 and 85% COD and BOD5 removals were observed, respectively. Permeate 

COD and BOD5 concentrations averaged 47 and 14 mg/L, respectively, indicating good treatment 

performance. Essentially no membrane fouling was detected based on TMP at the flux used (17 

LMH) even though the flux was relatively high in comparison to other studies. However, this 

performance may have resulted from the unnecessarily aggressive chemical cleaning schedule. 

Membrane cleaning was done weekly rather than based on feedback from membrane performance.  
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Martinez-Sosa et al. (2011) operated a pilot-scale AnMBR with a total volume of 350 L for DWW 

treatment. Consistent with the other pilot studies, their system consisted of an external submerged 

reactor configuration with hollow fiber membranes. The pilot was operated for 100 days over 

which the temperature was reduced from 35°C to 28°C on day 69, and then to 20°C on day 79. 

Membrane fouling was controlled using biogas sparging, membrane relaxation, and periodic 

backwashing. The reactor was operated at a sub-critical flux of 7 LMH and an HRT of 19.2 hours 

during the entire operational period. Suspended biomass was only removed from the AnMBR for 

sampling purposes and therefore the system had an SRT of approximately 680 days. DWW was 

used as the influent, however, it was substantially supplemented with glucose to increase the 

average total COD from 398 mg/L to 630 mg/L. Regardless of temperature, COD removals 

remained approximately 90% except for some brief performance perturbations when the reactor 

temperature was reduced. The high COD removal may be misleading, however, since glucose, an 

easily biodegradable substrate, was added to the influent. An analysis of VFAs in the reactor and 

permeate suggested VFA degradation by the membrane biofilm, supporting the results of bench-

scale studies discussed above.   

Table 2-2. Operational parameters and treatment performance results obtained in published pilot 

-scale AnMBR studies for DWW treatment. 

Study 

Average 

Influent 

Strength 

[mg/L 

TCODa] 

Temp 

[°C] 

Bioreactor 

Configuration 

Membrane 

Information 
Fouling Control 

SRT 

[d] 

HRT 

[h] 

Average 

Effluent 

[mg/L 

TCODa/% 

removal] 

Giménez et 

al. (2011) 
445b 33 

Completely mixed 
anaerobic reactor 

(pilot-scale) 

0.05 µm 

hollow fiber 
Biogas sparging 70 6-21 77/83 

Dagnew et 

al. (2011) 
224b 22 

Completely mixed 
anaerobic reactor 

(pilot-scale) 

ZeeWeed™ 

hollow fiber 

Biogas sparging; 
relaxation; weekly 

chemical cleaning 

80-

100 
8.5 47/79 

Martinez-

Sosa et al. 
(2011) 

630c 

35 Completely mixed 

anaerobic reactor 
(pilot-scale) 

38 nm PESd 

flat sheet 

Biogas sparging; 

relaxation; 
backflushing 

680 19.2 <80/90 28 

20 
aTCOD = total COD 

bactual DWW; cactual DWW supplemented with glucose 
dPES = polyethersulfone 

™General Electric Company 
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2.12 Future Research Needs 

This review paper has shown that many of the inherent benefits of anaerobic treatment may be 

obtained through AnMBR DWW treatment, while generating an effluent that is comparable in 

quality to effluent obtained through aerobic treatment. The majority of studies indicated adequate 

DWW treatment performance at a wide range of operational parameters including low 

temperatures and HRTs comparable to aerobic treatment. In addition, advancements in fouling 

control offer the potential to reduce energy requirements. The potential of AnMBR treatment of 

DWW has been assessed in several recent pilot-scale studies. However, additional fundamental 

research, pilot-scale investigations, as well as quantitative environmental and economic 

evaluations are needed before widespread full-scale AnMBR implementation will take place. For 

instance, more membrane fouling research is needed to enable operation at higher fluxes under the 

constraints of low energy requirements for fouling control. There is also limited research on the 

effects of different membrane materials and larger pore sizes (e.g., dynamic membranes) which 

may enable operation at higher fluxes. Furthermore, the lower limits of AnMBR treatment in terms 

of temperature have not yet been fully established. Implications of low temperatures on microbial 

pathways, microbial community structure, and the appropriate inoculum in AnMBR DWW 

treatment also requires further research. Additionally, the relationships among HRT, SRT, 

treatment performance, and membrane fouling in AnMBRs are complex and poorly defined in the 

current literature. The role of the membrane biofilm in treatment also warrants more research along 

with efforts to evaluate and characterize the fate of trace contaminants in AnMBR treatment. 

Moreover, nutrient recovery/removal processes such as struvite precipitation and anammox should 

be evaluated in conjunction with AnMBRs. Ultimately, the recovery or handling of dissolved 

methane represents the most challenging barrier to AnMBR implementation. Advancements must 
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be made to sustainably recover or oxidize discharged dissolved methane before AnMBR 

technology can be implemented on a larger scale. In general, future research on AnMBR DWW 

treatment must be performed at low temperatures considering DWW in cold and temperate 

climates is relatively cold and it is not feasible to heat DWW to mesophilic temperatures. We 

recommend that future research efforts specifically focus on advancements in membrane fouling 

that reduce energy demands, efficient methods for dissolved methane handling, and establishment 

of a quantitative environmental and economic evaluation of the technology based on controllable 

design variables. 

2.13 Conclusions 

AnMBRs have the ability to produce effluents similar in quality to those generated during aerobic 

treatment, while recovering energy and producing substantially less residuals. The majority of 

studies at the bench-scale and pilot-scale indicated adequate treatment performance at HRTs 

comparable to those used in aerobic treatment and at low temperatures. However, a number of 

operational concerns exist that require further research before AnMBR DWW treatment can reach 

full-scale implementation. Specifically, future research efforts should focus on advancements in 

membrane fouling that reduce energy demands, efficient methods for dissolved methane handling, 

and establishment of a quantitative environmental and economic evaluation framework. 
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Chapter 3.  Psychrophilic Anaerobic Membrane Bioreactor 
Treatment of Domestic Wastewater 
 

3.1 Abstract 

A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet 

microfiltration membranes was operated at psychrophilic temperature (15°C) treating simulated 

and actual domestic wastewater (DWW). Chemical oxygen demand (COD) removal during 

simulated DWW operation averaged 92 ± 5% corresponding to an average permeate COD of 36 ± 

21 mg/L. Dissolved methane in the permeate stream represented a substantial fraction (40-50%) 

of the total methane generated by the system due to methane solubility at psychrophilic 

temperatures and oversaturation relative to Henry’s Law. During actual DWW operation, COD 

removal averaged 69 ± 10%. The permeate COD and 5-day biochemical oxygen demand (BOD5) 

averaged 76 ± 10 mg/L and 24 ± 3 mg/L, respectively, indicating compliance with the U.S. EPA’s 

standard for secondary effluent (30 mg/L BOD5). Membrane fouling was managed using biogas 

sparging and permeate backflushing and a flux greater than 7 LMH was maintained for 30 days. 

Comparative fouling experiments suggested that the combination of the two fouling control 

measures was more effective than either fouling prevention method alone. A UniFrac based 

comparison of bacterial and archaeal microbial communities in the AnMBR and three different 

inocula using pyrosequencing targeting 16S rRNA genes suggested that mesophilic inocula are 

suitable for seeding psychrophilic AnMBRs treating low strength wastewater. Overall, the research 

described relatively stable COD removal, acceptable flux, and the ability to seed a psychrophilic 
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AnMBR with mesophilic inocula, indicating future potential for the technology in practice, 

particularly in cold and temperate climates where DWW temperatures are low during part of the 

year. 

3.2 Introduction 

Because of the recent emphasis on sustainability in the water quality industry, various studies are 

exploring how domestic wastewater (DWW) treatment can be accomplished in an energy neutral 

or even energy positive fashion (Guest et al. 2009, McCarty et al. 2011). Current DWW treatment 

plants often recover energy in the form of methane-rich biogas produced during anaerobic 

digestion of primary sludge and biomass generated during conventional aerobic treatment. 

However, approximately 45% of the total biodegradable chemical oxygen demand (COD) in 

DWW is lost through oxidation to carbon dioxide (McCarty et al. 2011), and thus constitutes a lost 

resource. Furthermore, the energy requirements of aerobic treatment are typically much greater 

than the energy recoverable via anaerobic sludge digestion (Foley et al. 2010). To improve energy 

recovery, reduce costs, and minimize environmental impacts, mainstream anaerobic processes are 

being considered as replacements for conventional aerobic DWW treatment (van Haandel et al. 

2006). In comparison to conventional aerobic treatment schemes with anaerobic sludge digestion, 

anaerobic mainstream DWW treatment has the potential to convert all biodegradable COD present 

in DWW to methane, generate substantially less residuals due to the much lower biomass yield of 

anaerobic microbes, and eliminate aeration requirements.  

Although water conservation and source separation have the potential to change DWW 

characteristics and flow rates, DWW in the U.S. and in many other developed countries is still 

relatively low strength (average 5-day biochemical oxygen demand [BOD5] varies from 110-350 

mg/L in the U.S.) and is generated at high per capita flow rates (average production rate varies 
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from 190-460 L/(capita•d) in the U.S.) (Pons et al. 2004, Tchobanoglous et al. 2003). In addition, 

DWW temperatures are relatively low (average of 16°C in the U.S.) and vary seasonally (Pons et 

al. 2004, Tchobanoglous et al. 2003). Given the common perception that anaerobic bioreactors 

must be heated to mesophilic (30-40oC) or thermophilic (50-60oC) temperatures to operate 

efficiently, it is not surprising that aerobic processes have been favored over anaerobic systems for 

the treatment of high volume and relatively cold DWW. Heating high volumes of DWW would 

not be economically feasible, especially since the potential energy recovery from low-strength 

DWW on a per volume basis is low (Lettinga et al. 2001, Martin et al. 2011). As a result, anaerobic 

treatment has not been used for mainstream DWW treatment except in regions with hot climates, 

which naturally benefit from elevated DWW temperatures (Aiyuk et al. 2006). In most temperate 

climates, efficient treatment at low temperatures would need to be demonstrated before widespread 

implementation of anaerobic DWW treatment could be considered.  

The need to treat high volumetric flow rates of DWW necessitates treatment at short hydraulic 

retention times (HRTs) to keep capital costs and footprints of treatment systems sufficiently low. 

At the same time, the low growth rates of anaerobic microbes require long solids retention times 

(SRTs) to ensure adequate treatment. These opposing constraints call for a decoupling of HRT and 

SRT in anaerobic systems. This decoupling becomes even more important at low temperatures for 

which biomass growth rates are especially low and any sludge washout must be avoided (Lettinga 

et al. 2001). Consequently, further development of anaerobic technologies capable of adequately 

treating DWW at high volumetric loading rates and low temperatures is a prerequisite to 

materializing the potential benefits of mainstream anaerobic treatment of DWW.  

AnMBRs have recently emerged as a potential technology for high-rate anaerobic treatment by 

combining anaerobic biological treatment with membrane filtration. This leads to nearly absolute 
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biomass retention and allows for operation at high SRTs, and thus low temperatures, with the 

potential to generate a high quality effluent (permeate). A number of studies have been published 

assessing AnMBR performance for the treatment of simulated and actual DWW (Baek et al. 2010, 

Chu et al. 2005, Dagnew et al. 2011, Gao et al. 2010, Gimenez et al. 2011, Ho and Sung 2010, Ho 

and Sung 2009, Hu and Stuckey 2006, Huang et al. 2011, Kim et al. 2011, Lew et al. 2009, 

Martinez-Sosa et al. 2012, Martinez-Sosa et al. 2011, Salazar-Pelaez et al. 2011, Wen et al. 1999) 

as reviewed recently by Smith et al. (2012). However, only a few studies have evaluated AnMBR 

performance at psychrophilic temperatures of 15oC and below. Specifically, Chu et al. (2005) and 

Ho and Sung (2010) observed average COD removals of 85-86% at 15°C, and Wen et al. (1999) 

reported an average COD removal of 88% at 12°C.  

Several approaches have been applied to counteract membrane fouling in AnMBRs, such as 

backflushing (Chu et al. 2005, Ho and Sung 2010, Lew et al. 2009) and biogas sparging (Dagnew 

et al. 2011, Gimenez et al. 2011, Hu and Stuckey 2006, Huang et al. 2011, Martinez-Sosa et al. 

2011). Using biogas sparging and backflushing concurrently has been observed to be more 

effective than either control method alone in aerobic MBRs (Lu et al. 2005), but the effectiveness 

of this combined approach versus the use of only biogas sparging has not been directly compared 

for AnMBRs. In addition, the impact of methane solubility on AnMBR energy recovery has not 

been adequately addressed (Dagnew et al. 2011, Gimenez et al. 2011, Hu and Stuckey 2006, Kim 

et al. 2011). Finally, the implications of psychrophilic operation on the anaerobic microbial 

communities and appropriate inoculum choices for AnMBRs have received limited attention in 

the literature. Molecular methods, such as clone library based microbial community analyses, have 

been used only in one study so far (Gao et al. 2010) and high-throughput DNA sequencing methods 
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have yet to be employed to examine microbial community structure and considerations regarding 

appropriate inocula. 

This study addresses the aforementioned gaps in the AnMBR literature by assessing the long-term 

performance of a bench-scale AnMBR treating simulated and actual DWW at psychrophilic 

temperatures. Pyrosequencing targeting 16S rRNA genes was used to assess the implications of 

low-temperature AnMBR treatment on the archaeal and bacterial community structures in the 

suspended biomass and in the biofilm. Pyrosequencing was also used to evaluate the selection of 

inocula seeds for psychrophilic AnMBR treatment.  

3.3 Materials and Methods 

3.3.1 AnMBR Configuration 

The bench-scale AnMBR used in this study (Figure 3-1) had a liquid volume of 5 L (total volume 

of 7 L) and contained two submerged membrane housings (manufactured by eMachineShop, 

Mahway, NJ). Each membrane housing incorporated two separate flat-sheet microfiltration 

polyethersulfone membranes (GE Osmonics, Greenville, SC) with a pore size of 0.2 µm and a total 

effective membrane area of 0.0387 m2 (7.74 m2/m3). Because of the two separate membrane 

housings, two permeate streams, designated P1 and P2, were generated during operation. 

Intermittent mixing (1 minute every 30 minutes) was provided by magnetic impeller (Applikon 

Biotechnology, Foster City, CA). Influent and permeate were pumped by peristaltic Masterflex 

L/S pumps (Cole-Parmer, Vernon Hills, IL). The bioreactor was equipped with a water jacket 

connected to a Polystat 6-L recirculating water bath (Cole-Parmer, Vernon Hills, IL) for 

temperature control. Pressures in the system were measured using pressure transducers (Omega 

Engineering, Stamford, CT) located in the headspace and on each permeate  
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line. The bioreactor contained a level sensor and temperature probe (Applikon Biotechnology, 

Foster City, CA). The bioreactor headspace was connected to a biogas collection system with a 1-

L Tedlar gas bag and mini diaphragm pump (KNF Neuberger, Trenton, NJ), which recirculated 

headspace biogas and dispersed it directly below each membrane through a horizontally placed 

sparging tube designed for fouling control. The bench-scale AnMBR was connected to a computer, 

which operated a control program (written in C++) and LabVIEW (National Instruments, Austin, 

TX) data acquisition software. The control program was responsible for operation of all pumps, 

biogas recirculation, and mixing. The LabVIEW application continuously monitored and recorded 

temperature, pressures, and feed flow rate. 
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Figure 3-1. Schematic of bench-scale AnMBR. 

 

3.3.2 Inoculation and Operational Parameters 

The bench-scale AnMBR was inoculated with seed sludge from three sources: a mesophilic 

(35.5°C) upflow anaerobic sludge blanket (UASB) reactor (Anheuser-Busch, St. Louis, MO), a 

mesophilic (32°C) DWW treatment plant anaerobic sludge digester (Northfield Wastewater 
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Treatment Plant, Whitmore Lake, MI), and a psychrophilic (0-23°C; yearly temperature range was 

estimated based on a few data points) anaerobic lagoon used for the treatment of DWW (Maybee, 

MI). The system was inoculated with a total volatile suspended solids (VSS) concentration of 

6,000 mg/L, consisting of 2,500 mg/L VSS of the UASB sludge, 2,500 mg/L VSS of the anaerobic 

digester sludge, and 1,000 mg/L VSS of the anaerobic lagoon sludge.  

During the first operational period of 351 days, the bench-scale AnMBR was fed a synthetic 

wastewater that simulated DWW. The synthetic DWW was prepared as a concentrated solution 

adapted from the SYNTHES recipe presented by Aiyuk and Verstraete (2004) (Table S3-1, 

Appendix A). The original SYNTHES recipe had some divergences from reported medium 

strength U.S. DWW composition (Tchobanoglous et al. 2003), including elevated concentrations 

of phosphorus, nitrogen, and alkalinity. These concentrations were modified in the adapted recipe 

to formulate a DWW feed representative of medium strength U.S. DWW. The concentrated feed 

was prepared biweekly, acidified with hydrochloric acid to a pH of 3.5, and refrigerated at 4°C to 

prevent biodegradation. After dilution with a basic buffer solution containing 3.57 mM sodium 

bicarbonate, 0.126 mM magnesium phosphate, 0.110 mM potassium phosphate, and 0.605 mM 

sodium hydroxide through in-line mixing, the synthetic feed had average measured total and 

soluble COD (SCOD) concentrations of 440 mg/L and 290 mg/L, respectively.  

The reactor temperature was maintained at 15.0 ± 0.1°C throughout the study. The initial organic 

loading rate (OLR) during synthetic wastewater operation was 660 mg COD/(L•d), which 

corresponded to a hydraulic retention time (HRT) of 16 hours. The target membrane flux to achieve 

this HRT was 8 L/(m2•h). At times, this target HRT was not reached due to reduced pump 

efficiency, resulting in a lower OLR. The OLR thus varied between approximately 440 and 660 
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mg COD/(L•d) and the HRT varied between 16 and 24 hours. Biomass was only removed from 

the AnMBR for sampling purposes, which resulted in an SRT of approximately 300 days.  

Biogas sparging and permeate backflushing were employed to prevent membrane fouling. Biogas 

sparging was operated continuously at a flow rate of 4.67 L/min evenly distributed across the four 

membrane surfaces (specific gas demand of 7.24 m3(m2•h); superficial gas velocity of 13.9 m/h). 

Permeate backflushing was initialized by reversing the flow of the permeate pumps while keeping 

the flow rate constant (5.21 mL/min). During the first 185 days of operation, backflushing was 

performed for 30 seconds every 30 minutes. From days 186 through 351, backflushing was carried 

out for four minutes every four hours to increase the duration of backflush events without 

decreasing permeate production, except as described below. In replicate experiments designed to 

study the contribution of backflushing to fouling prevention, membrane P1 was backflushed for 

four minutes every four hours and membrane P2 was not backflushed. These experiments were 

carried out from days 231 through 269 and days 320 through 351.  

During the second operational period, the bench-scale AnMBR was operated using actual DWW 

collected from the Dundee Wastewater Treatment Plant (Dundee, MI). A batch of primary influent 

was collected immediately after preliminary treatment (mechanical screen and grit removal) twice 

a week and stored at 4°C. For consistency, wastewater was collected at approximately the same 

time on each collection day. Fresh membranes were installed at the start of the second operational 

period. Both membrane housings were backflushed for four minutes every four hours. All other 

operational variables remained as described above except the OLR (170-393 mg COD/(L•d)) 

which was lower relative to the first operational phase. During the first 50 days of this second 

operational period, unstable performance was observed and likely resulted from high and variable 

sulfate concentrations in the influent (160 ± 100 mg/L). These elevated and fluctuating sulfate 
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concentrations were determined to be caused by the influent collection time coinciding with a once 

daily industrial facility wastewater discharge in close proximity to the Dundee Wastewater 

Treatment Plant. Unstable performance may have resulted from inhibitory compounds present in 

this industrial discharge. The influent collection time was changed and this resulted in lower and 

less variable influent sulfate concentrations for the next 40 days of AnMBR operation (65 ± 33 

mg/L). Data are reported for these 40 days only.  

3.3.3 Chemical Assays and Sampling 

BOD5, COD, alkalinity, total suspended solids (TSS) and VSS were determined using procedures 

outlined in Standard Methods (2005). Soluble COD was determined by filtering samples through 

a 0.2 µm filter to be consistent with the physical removal capacity of the membrane (same pore 

size). BOD5 was analyzed by the Ann Arbor Drinking Water Treatment Plant (Ann Arbor, MI) on 

day 269 of the synthetic DWW run and on a weekly basis by the Dundee Wastewater Treatment 

Plant (Dundee, MI) during operation with actual DWW. 

Concentrations of volatile fatty acids (VFAs) (formic acid, acetic acid, propionic acid, butyric acid, 

isobutyric acid, valeric acid, and isovaleric acid) were determined by high-performance liquid 

chromatography (HPLC). The HPLC (1100 Series, Hewlett Packard, Palo Alto, CA) was equipped 

with a UV detector, an autosampler, and a vacuum degasser. A 5 mM sulfuric acid eluent solution 

was passed through an Aminex HP87-H column at 60°C. Sulfate concentrations were measured 

using an ion chromatography system (Dionex, Sunnyvale, CA) with a Dionex DX 100 conductivity 

detector. Chromatographic separation was achieved using a Dionex AS-14 column (Dionex, 

Sunnyvale, CA). Anions were eluted through the column with a mixture of ACS reagent grade 

1 mM bicarbonate and 3.5 mM carbonate at a flow rate of 1 mL/min.  
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Biogas methane content was measured with a gas chromatograph (Gow-Mac, Bethlehem, PA) 

coupled with a thermal conductivity detector (TCD). Measurement of dissolved methane in the 

permeate was accomplished as previously described (Rudd et al. 1974). Briefly, 30 mL of permeate 

was collected in a syringe containing 30 mL nitrogen gas. The syringe was shaken by hand for 1 

minute to strip dissolved methane into the gas phase, which was used for gas chromatography 

analysis. Theoretical methane production was calculated assuming 350 L of methane was 

generated per kg of COD removed (Grady et al. 2011) and by considering the influent COD 

unavailable for methane generation due to sulfate reduction. Biomass yield was not taken into 

account in the calculation as it was assumed to be very low (see below). Biogas production was 

measured by collecting gas in a 1-L Tedlar bag and quantifying the production daily using a wet-

type gas meter (Actaris Metering Systems, Dordrecht, The Netherlands). 

3.3.4 EPS Extraction and Quantification 

Extracellular polymeric substances (EPS) were extracted by a cationic exchange resin method 

(Frolund et al. 1996) from biofilm samples removed from the AnMBR (with the membrane 

attached). Biofilm samples were removed from the AnMBR on days 276 and 320 of the first 

operational period and cut into 4x6 cm sections using a sterile scalpel. Additional biofilm sections 

were cut to determine volatile solids (VS) according to Standard Methods (2005). Biofilm samples 

for EPS extraction were immediately stored at -80°C prior to extraction. Duplicate EPS extractions 

were performed for each membrane. EPS extraction was also performed on a fresh PES membrane 

section as a negative control. Proteins and carbohydrates in extracted EPS were quantified 

according to the Bradford assay (Bradford and Williams 1976) and the Dubois method (Dubois et 

al. 1956), respectively.  
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3.3.5 Microbial Analysis 

Inocula biomass samples were individually stored at -80°C upon AnMBR startup until further 

processing. Suspended and biofilm biomass samples were collected from the AnMBR 275 days 

after startup and stored at -80°C. DNA extractions were completed using a phenol chloroform 

extraction method (Urakawa et al. 2010). Additional DNA purification was done using the Wizard 

DNA Clean-Up System (Promega, Madison, WI) according to manufacturer’s instructions. The 

V3, V4, and V5 variable regions of the 16S ribosomal RNA (rRNA) gene were targeted with 

bacterial pyrosequencing primers Bact-338F/Bact-909R and archaeal pyrosequencing primers 

Arch-340F/Arch-915 (Pinto and Raskin 2012). A minimum of two uniquely barcoded primer pairs 

were used for amplification of each sample to provide replication in sequencing results. PCR 

products were purified using the QIAquick PCR purification kit (Qiagen, Valencia, CA). DNA 

was quantified using a spectrophotometer (NanoDrop, Wilmington, DE). After PCR purification 

and DNA quantification, bacterial and archaeal amplicons were separately pooled by equal mass 

(for each uniquely barcoded primer pair) and subsequently concentrated through PCR purification 

using the QIAquick PCR purification kit. Concentrated bacterial and archaeal amplicons were 

pooled at 40% bacterial amplicon mass and 60% archaeal amplicon mass. The resulting amplicon 

pool was concentrated through PCR purification using the QIAquick PCR purification kit and run 

on a 1% agarose gel. Gel extraction was performed using the QIAquick Gel Extraction Kit 

(Qiagen, Valencia, CA) according to manufacturer’s instruction. An additional PCR purification 

was done prior to submitting the amplicon pool to Engencore (University of South Carolina, 

Columbia, SC) for pyrosequencing of 1/8th pico-titer plate (Pinto and Raskin 2012). The pooled 

amplicons generated approximately 20,000 reads and after quality screening 12,368 sequences 

remained (Table S3-2). The resulting sequences were classified using the Ribosomal Database 

Project (Maidak et al. 1997) and further analyzed with Mothur (Schloss et al. 2009) for operational 



60 

taxonomic unit (OTU)-based clustering (average neighbor algorithm at 3% cutoff), principle co-

ordinate analyses, and determination of weighted UniFrac distances (Liu et al. 2007). 

3.4 Results and Discussion 

3.4.1 Reactor Performance 

To assess long-term treatment performance at a psychrophilic temperature of 15oC, the bench-

scale AnMBR was operated for 351 days treating simulated DWW. COD removal during this 

period averaged 92 ± 5% corresponding to an average permeate COD concentration of 36 ± 21 

mg/L (Figure 3-2). This level of COD removal was higher than the previously reported COD 

removal of approximately 85% for this temperature (Chu et al. 2005, Ho and Sung 2010). The 

greater COD removal in the current study may have resulted from differences in membrane 

configuration (hollow fiber (Chu et al. 2005) and tubular (Ho and Sung 2010) versus flat-sheet in 

the current study) and/or other differences. A study directly comparing the impact of different 

membrane configurations on COD removal in an AnMBR has yet to be done.  Influent and 

permeate BOD5 values were measured on day 269 of operation and averaged 227 and 18 mg/L, 

respectively (92% removal). The permeate COD concentration on this sampling day averaged 43 

mg/L, slightly higher than the average permeate COD for the 351 days of operation. VFAs in the 

permeate were largely comprised of acetate (average concentration 18 ± 16 mg/L), with propionate 

present in lower concentrations (average concentration 4 ± 4 mg/L). Permeate concentrations of 

other VFAs, such as formate, isobutyrate, butyrate, isovalerate, and valerate, averaged ≤ 1 mg/L. 

The total VFA concentration in the permeate averaged 22 ± 20 mg/L as acetate whereas the total 

VFA concentration in the reactor averaged 28 ± 22 mg/L as acetate. Periodic spikes in permeate 

COD corresponded with spikes in permeate VFA concentrations, which typically occurred 

immediately after membrane replacement and unavoidable exposure of the system to oxygen. 
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During the operational period of 351 days, bioreactor VSS gradually increased from 6,000 mg/L 

to 10,600 mg/L, which corresponds to a yield < 0.10 g VSS/g COD removed (the yield calculation 

takes into account biomass removal through sampling and membrane replacement). 

Consistent differences in bioreactor and permeate soluble COD concentrations (Figure 3-2) 

indicated substantial soluble COD removal across the membrane. This removal averaged 21 ± 8% 

of the total COD removal. It should be noted that differences in the physical removal capacity of 

the filters used in sample processing relative to the AnMBR membranes despite having the same 

pore size could have influenced this observation. However, other AnMBR studies have observed 

a similar phenomenon at a range of operational temperatures (Baek et al. 2010, Chu et al. 2005, 

Ho and Sung 2009, Hu and Stuckey 2006, Huang et al. 2011). Furthermore, Ho and Sung (2010) 

noticed an increase in membrane-mediated soluble COD removal with a decrease in operational 

temperature, but an explanation was not provided for why this temperature dependence may have 

occurred. The mechanism of soluble COD removal across the membrane may be related to 

microbial activity, size or charge exclusion, and/or adsorption. In two studies, specific 

methanogenic activity (SMA) experiments were performed with biofilm biomass, which suggested 

microbial activity in the membrane biofilm contributed to soluble COD removal across the 

membrane (Ho and Sung 2010, Vyrides and Stuckey 2011). The relative contribution of biological 

activity compared to other potential mechanisms has yet to be studied in detail. Regardless of 

mechanism, the removal of soluble COD across the biofilm is an important factor in achieving a 

high quality effluent during AnMBR treatment. 
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Figure 3-2. Average measured COD concentration in influent (total and soluble COD), 

bioreactor (soluble COD), and Permeate 1 (P1) and Permeate 2 (P2) (total COD).  

Approximately 40-50% of the total methane generated in the AnMBR was dissolved in the 

permeate and was thus discharged with the permeate rather than collected in the headspace (Figure 

3-3). The relatively high fraction of methane lost through the permeate is in part due to methane’s 

increased solubility at psychrophilic temperatures. However, substantial methane oversaturation, 

approximately 1.5 times that predicted by Henry’s law, was also responsible for this high methane 

loss through the permeate (Henry's law constant of 34,300 atm was used for the operational 

temperature; Tchobanoglous et al. 2003).   Methane oversaturation has been observed in several 

non-membrane anaerobic bioreactor studies (Hartley and Lant 2006, Pauss et al. 1990, Singh et al. 

1996), which cited mass-transfer limitations as the likely cause. Conversely, Giménez et al. (2012) 

did not observe methane oversaturation when operating an AnMBR and contributed this 

observation to the use of biogas sparging creating equilibrium between the gas and liquid-phases. 
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In the current study, the use of biogas sparging likely reduced mass-transfer limitations compared 

to conventional anaerobic bioreactors although methane oversaturation was still observed. It is 

possible that the pressure differential across the membrane plays a role in increasing permeate 

dissolved methane concentrations to the point of oversaturation. Further, methanogenic activity in 

the biofilm results in methane generation near the membrane surface and may contribute to 

permeate methane oversaturation, especially in combination with a pressure differential across the 

membrane. The oversaturated methane quantified in the permeate theoretically corresponds to 

56% of the soluble COD removal that occurred across the membrane. It should be noted that the 

dissolved methane in the permeate was not included in the measured permeate COD, assuming 

our analyses results were consistent with those reported by Hartley and Lant (2006). Because 

methane has a global warming potential 25 times that of carbon dioxide (IPCC 2007), management 

of permeate dissolved methane is necessary to limit greenhouse gas emissions (Smith et al., 2012). 

Furthermore, permeate dissolved methane represents a considerable fraction of the total energy 

available in DWW and its recovery may be necessary for energy neutral operation.  The magnitude 

of potential direct greenhouse gas emissions from an AnMBR or other mainstream anaerobic 

treatment process is a direct result of the high volume of effluent containing dissolved methane 

generated and is only marginally increased by a lower operational temperature.  Therefore, 

management of effluent dissolved methane is critical to limit greenhouse gas emissions from 

mainstream anaerobic processes regardless of temperature.   
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Figure 3-3. Methane production in the system (headspace, dissolved, and total observed) during 

20 days of AnMBR operation compared to theoretical methane production. Theoretical methane 

production was calculated assuming 350 L of methane was generated per kg of COD removed 

(Grady et al. 2011) and by considering the influent COD unavailable for methane generation due 

to sulfate reduction. 

The COD removal during operation with actual DWW, 69 ± 10%, was substantially lower than 

during treatment of simulated DWW, 92 ± 5%. This lower COD removal was partly a result of the 

lower strength of the actual DWW compared to the simulated DWW (259 ± 82 mg/L versus 440 

± 68 mg/L, respectively). However, permeate COD was also higher for the actual DWW, averaging 

76 ± 10 mg/L, versus 36 ± 21 mg/L for the simulated DWW. Despite lower COD removal, 

permeate BOD5 values averaged 25 ± 3 mg/L during operation with actual DWW. Nearly complete 

sulfate reduction was observed with permeate sulfate concentrations averaging 2.3 ± 2.1 mg/L 

(96% reduction). Sulfate reduction theoretically consumed 23% of the total COD removed. Biogas 

production was limited by sulfate reduction, the wastewater’s low strength, the high methane 

solubility at the low operational temperature, and methane oversaturation in the permeate. No 

measureable biogas production was observed at influent COD < 225 mg/L. 
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The effluent quality in this study suggests that U.S. EPA’s standards for secondary effluent (<30 

mg/L BOD5, <30 mg/L TSS, 5-9 pH) can be met during low-temperature AnMBR treatment. 

However, it is important to note that AnMBR treatment does not remove nutrients and therefore 

additional treatment may be required in watersheds where nutrient effluent limits are in place. 

Conversely, the nutrient richness of the AnMBR effluent may be considered an asset in locations 

where reuse of the effluent for agricultural irrigation is feasible. The relatively high quality of 

AnMBR effluent, especially when compared to other high-rate anaerobic treatment processes 

(Khan et al. 2011), offers the potential for agricultural reuse without post-treatment.  

3.4.2 Comparative Membrane Fouling Experiment and Biofilm EPS 
Quantification 

To assess the role of biogas sparging and permeate backflushing in short- and long-term membrane 

fouling, comparative experiments were performed using the parallel membrane housings in the 

AnMBR. In a first type of experiment, permeate backflushing was practiced for only one 

membrane housing (P1), while biogas sparging was employed continuously on both membrane 

housings. Fresh membranes were installed at the beginning of the experiment. Over the course of 

the experiment (days 320-351), P1 did not show evidence of membrane fouling as the 

transmembrane pressure (TMP) and flux remained constant throughout the experiment (Figure 3-

4). However, P2 TMP increased to -45 kPa during the first 6 days of operation and then remained 

constant for the remainder of the experiment. P2 flux declined to approximately 3.5 L/m2*h over 

the first 15 days of operation and did not change thereafter. During this fouling experiment, the 

difference in permeate COD concentrations between P1 and P2 averaged 10 ± 4 mg/L (p < 0.05). 

The more fouled membranes, P2, generated a higher quality permeate. This observation indicates 

that a correlation exists between membrane fouling and permeate quality. This experiment was 

reproduced (days 231-269) with a similar outcome. In a second type of experiment, biogas 
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sparging was discontinued for both membrane housings, while permeate backflushing was 

continued to assess the role of biogas sparging in comparison to backflushing in membrane fouling 

control. Discontinuation of biogas sparging resulted in abrupt membrane fouling evidenced by a 

substantial increase in TMP (30-40 kPa) over the course of several hours. Taken together, these 

two types of experiments suggest that backflushing is necessary to avoid long-term membrane 

fouling, whereas biogas sparging is a pre-requisite to having an operational AnMBR system. 

Furthermore, the combination of both fouling control measures enables better control of long-term 

fouling than when either is used individually. 

Membranes with different levels of fouling were removed from the AnMBR and subjected to EPS 

extraction. Three of the four membranes were more fouled based on visual observation and higher 

TMP prior to membrane removal (-65 to -80 kPa), whereas one of the membranes was less fouled 

(TMP was -10 kPa). The membranes exhibiting greater fouling contained higher concentrations of 

EPS, measured as protein and carbohydrate mass per total organic mass (volatile solids) associated 

with the membrane, than less fouled membranes (Figure 3-5). EPS may be a factor in the greater 

soluble COD removal observed with more fouling. However, fouled membranes also had 

considerably more attached biomass: 10 g VS/m2 for the less fouled membrane and an average of 

135 ± 69 g VS/m2 for the fouled membranes, which corresponded to 8.7 ± 1.0% of the system’s 

total VSS. Therefore, it is not possible to ascertain the relative contributions of EPS versus attached 

biomass on membrane fouling and soluble COD removal based on these data. Several AnMBR 

studies have considered EPS as a major contributor to membrane fouling (Chu et al. 2005, Gao et 

al. 2010) but its correlation with soluble COD removal in AnMBRs has not been assessed. EPS 

may increase adsorption of soluble organics or may correlate with increases in biofilm microbial 
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activity as observed in aerobic filters (Gao et al. 2008). These potential mechanisms may be a 

factor in the greater soluble COD removal observed by membranes with more fouling.  

 

Figure 3-4. Transmembrane pressure for Permeate 1 (P1) and Permeate 2 (P2) over time (top). 

Flux for Permeate 1 and Permeate 2 and HRT over time (bottom). During this operational period, 

days 320 to 351, Permeate 1 was backflushed for 4 minutes every 4 hours operation while 

Permeate 2 was not backflushed.  
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Figure 3-5. Concentration of proteins and carbohydrates in extracted EPS from membrane 

samples removed from the AnMBR. Less fouled membrane and fouled membrane 1 were 

removed from the AnMBR on day 276. Fouled membrane 2 and 3 were removed from the 

AnMBR on day 320. Error bars represent the standard deviation of duplicate EPS extractions and 

triplicate protein/carbohydrate measurements. 

3.4.3 Microbial Community Analysis 

Analyzing the archaeal microbial communities in the biofilm and suspended biomass 275 days 

after AnMBR startup indicated Methanosaeta was the dominant genus in each sample representing 

61.2 ± 5.1% and 66.7 ± 1.3% relative abundance (average and standard deviation obtained by using 

sequencing data generated using three different uniquely barcoded primer sets for each DNA 

extract), respectively, indicating that aceticlastic methanogens were abundant in the system (Figure 

3-6). Most hydrogenotrophic methanogens in the biofilm and suspended biomass belonged to the 

genera Methanobacterium and Methanospirillum. The relative abundance of these genera was 

considerably different in the biofilm and suspended biomass communities: Methanobacterium 

constituted 10.7 ± 2.2% and 21.5 ± 2.2% of the relative abundance in the biofilm and suspended 

biomass samples, respectively. In contrast, Methanospirillum represented 19.6 ± 3.0% and 8.2 ± 
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1.1% relative abundance in the biofilm and suspended biomass samples, respectively. Kinetic 

values observed by Schauer et al. (1982) and Karadagli and Rittman (2005) suggest that 

Methanospirillum spp. have a higher substrate affinity than Methanobacterium spp., whereas their 

maximum specific growth rates are similar. Substrate concentrations are likely lower in the biofilm 

in comparison to suspended biomass creating conditions in the biofilm favorable to methanogens 

with higher substrate affinity. However, these kinetic parameters were not determined at 

psychrophilic temperatures and may not be appropriate to describe the present study. Alternatively, 

the propensity of Methanospirillum to grow in filaments (Beveridge et al. 1991) may have resulted 

in the observed higher relative abundance of Methanospirillum over Methanobacterium in the 

biofilm.  

The dominance of aceticlastic methanogens in the system indicates that low temperatures may not 

offer a considerable energetic advantage to hydrogenotrophic methanogens as suggested by 

Lettinga et al. (2001) or alternatively that any energetic advantage is not great enough to be 

reflected in relative abundance. It should be noted that both aceticlastic and hydrogenotrophic 

methanogens have low biomass yields: reported yield values range from 0.01 to 0.07 g biomass 

COD/g COD (Batstone et al. 2001, Conklin et al. 2006). Even though the long SRT and low OLR 

of this study potentially created conditions in which hydrogenotrophic methanogens could have 

been more active than their aceticlastic counterparts such differences are more difficult to detect 

with DNA-based methods for slow growing microbes with low biomass yields even over relatively 

long time periods. More research using RNA-based methods such as RT-qPCR (reverse 

transcriptase quantitative polymerase chain reaction) is necessary to better understand the effect 

of psychrophilic temperatures on methanogenic pathways.  
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Figure 3-6. Classification at the genus level of the archaeal communities in the biofilm and 

suspended biomass samples taken 275 days after startup. 

Bacteroidetes were the dominant bacterial phylum in the biofilm and suspended biomass samples 

(Figure 3-7). This contrasts with the work by Gao et al. (2010) in which Bacteroidetes were 

observed in the suspended biomass but not in the fouling layer of an AnMBR operated for 

treatment of a synthetic domestic wastewater at a temperature of 30°C. In addition to 

Bacteroidetes, Proteobacteria and Firmicutes showed a high relative abundance in both AnMBR 

biomass samples. Known syntrophic bacteria belonging to the genera Smithella and 

Syntrophorhabdus were found in both the suspended biomass and biofilm at relatively low 

abundances (<1%) indicating the presence of syntrophic interactions between hydrogenotrophic 

methanogens and syntrophs. The ‘semi-syntrophic’ class Anaerolineae of the bacterial phylum 

Chloroflexi (Narihiro et al. 2012) were also detected at 0.8% and 1.8% relative abundance in the 

biofilm and suspended biomass, respectively. Gao et al. (2010) speculated that candidate division 

OP11 specifically contributed to membrane fouling as this phylum was abundant (37-63% of 

bacteria) in the fouling layer in their study. Candidate division OP11 was detected in only the 
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biofilm biomass in our study but at very low abundance (<0.1%) and therefore likely did not play 

a role in membrane fouling in the current study. Different operational parameters such as 

temperature may have caused this apparent inconsistency. A comparison between the biofilm and 

suspended biomass bacterial communities OTUs indicated a total of 193 and 145 OTUs in the 

biofilm and suspended biomass, respectively, with 84 OTUs shared.  

 

Figure 3-7. Classification at the phylum level of the bacterial communities in the biofilm and 

suspended biomass samples taken 275 days after startup. 

Comparing the bacterial and archaeal communities in the AnMBR and the inocula indicated that 

the AnMBR communities showed the highest level of similarity with the mesophilic inocula 

(Figure 3-8). The bacterial communities in the AnMBR biofilm and suspended biomass were most 
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similar to each other, and showed a high degree of similarity to the mesophilic anaerobic digester 

inoculum. The AnMBR archaeal communities were most similar to the mesophilic UASB 

inoculum.  

 

Figure 3-8. Comparison of the AnMBR communities in biofilm and suspended biomass samples 

(275 days after startup) with the three inocula using dendrograms of the weighted UniFrac 

distance metric (archaea top left; bacteria bottom left) and principle co-ordinate analyses 

(archaea top right; bacteria bottom right). Jackknife support for each node of the dendrogram is 

indicated by the colored circle. For a visual comparison, pie charts next to the sample name 

represent their respective community structures at the phylum level and genus level for bacteria 

and archaea, respectively. 

The analysis of microbial communities in the AnMBR and the inocula suggest that mesophilic 

psychrotolerant populations were most abundant in the AnMBR as indicated by the more similar 
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bacterial and archaeal community structures of the AnMBR biomass samples and the mesophilic 

inocula (anaerobic digester and UASB, respectively). These results indicate that seeding the 

AnMBR with both mesophilic inocula may have been helpful for attaining the treatment 

performance observed. Seeding with the psychrophilic inoculum (anaerobic lagoon) appeared to 

have been less important in establishing the AnMBR bacterial and archaeal communities. 

However, it is important to note that sequences classified within the phylum Acidobacteria were 

detected in the AnMBR biofilm and suspended biomass (2.5% and 3.8% relative abundance, 

respectively) as well as in the psychrophilic inoculum, but were not detected in either mesophilic 

inoculum. Of the sequences classified within this phylum, 93% and 94% in the biofilm and 

suspended biomass classified with class Holophagae, respectively, strict anaerobes that ferment 

aromatic compounds (Hugenholtz et al. 1998). A benefit of the observation that mesophilic 

psychrotolerant populations appeared to dominate in the AnMBR is the possibility that their 

activity increases with an increase in temperature. If so, a rise in temperature would immediately 

result in an increase in treatment performance as the microbial community structure would not 

need to change substantially. This finding is positive from a practical perspective as seasonal 

variations will not necessitate engineered shifts in microbial community structure (e.g., 

reinoculation). However, the ability of psychrotolerant mesophilic communities to adapt to even 

lower temperatures (<15°C), which may occur during winter months in temperate and cold 

climates, and still provide adequate treatment deserves further study. It is also unknown whether 

or not a different psychrophilic inoculum would have benefited treatment performance in this 

study. Therefore, additional research is necessary to elucidate an AnMBR inoculation protocol that 

ensures both optimal treatment and stabile performance across seasonal temperature variations. 
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3.5 Conclusions 

A bench-scale AnMBR was operated to treat simulated and actual DWW for at a psychrophilic 

temperature of 15oC. The following conclusions were made based on observations during the 

study: 

 A high quality effluent was generated during AnMBR treatment at psychrophilic 

temperature (92 ± 4% COD removal and 36 ± 21 mg/L average permeate COD during 

simulated DWW operation; 24 ± 3 mg/L average permeate BOD5 during actual DWW 

operation).  

 Dissolved methane in the permeate represented a substantial portion of the total methane 

generated in the system (approximately 40-50% of total methane generated over time).  

 Membrane fouling was successfully managed using biogas sparging and permeate 

backflushing. Comparative fouling experiments suggested that the combination of the two 

fouling control measures was important.  

 Pyrosequencing of the AnMBR and inocula microbial communities demonstrated that 

mesophilic inocula are suitable for psychrophilic AnMBR seeding. 

Collectively, these conclusions indicate AnMBRs represent a strong candidate technology for 

innovation within DWW treatment with the ability to produce similar quality effluents relative to 

aerobic treatment, while concurrently recovering useful energy and producing considerably less 

residuals. However, full-scale implementation of the technology will require further research to 

overcome the existing operational concerns. Future research efforts should specifically focus on a 

better understanding of membrane fouling, the biofilm’s role in treatment, and development of 

efficient dissolved methane recovery processes.  
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Chapter 4. Improving Anaerobic Membrane Bioreactor 
Treatment of Wastewater through Membrane Biofilm 
Development 
4  

 

4.1 Abstract 

Membrane biofilm development was evaluated to improve domestic wastewater treatment of low-

temperature anaerobic membrane bioreactor (AnMBR). Three levels of membrane fouling 

indicated by transmembrane pressure (TMP) were compared using a bench-scale system at 

constant flux equipped with replicate membrane housings, separate permeate collection, and 

independent biogas sparging control. High fouling reduced permeate chemical oxygen demand 

(COD) >50 mg/L, but resulted in a permeate dissolved methane concentration 2-3 times the 

predicted concentration by Henry’s Law at saturation. Restoring fouled membranes to a TMP near 

zero by increasing biogas sparging did not impair biofilm treatment, suggesting that the 

biologically active biofilm was tightly adhered to the membrane surface and distinct from the 

foulant layer that contributed to high TMP. High dissolved methane oversaturation persisted in the 

absence of high TMP implying that methanogenesis in the biofilm, rather than high TMP or a 

combination of the two, was the primary driving force in methane oversaturation. RNA-based 16S 

rRNA sequencing, reverse transcription quantitative PCR (RT-qPCR) targeting the methyl 

coenzyme-M reductase (mcrA) gene, and performance observations indicated that a specialized 

microbial community enriched in highly active methanogens and syntrophic bacteria developed in 

the biofilm. The results describe a potentially attractive operational strategy to improve COD 
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removal of low-temperature AnMBR by supporting syntrophy and methanogenesis in the 

membrane biofilm. 

4.2 Introduction 

Anaerobic membrane bioreactor (AnMBR) treatment allows for the direct recovery of energy from 

wastewater in the form of methane-rich biogas.  In AnMBRs, methane is produced during the 

anaerobic microbial degradation of the organic compounds present in wastewater in a bioreactor 

containing microbial biomass in suspension.  This suspended biomass is separated from the treated 

wastewater using membrane filtration to produce a particle free wastewater effluent (permeate).  

The recent recognition of the potential benefits of AnMBR treatment of domestic wastewater 

compared to conventional activated sludge treatment has resulted in a surge in AnMBR research 

activity (e.g., (Ma et al. 2013, Smith et al. 2013, Yoo et al. 2012)) and pilot-scale evaluations 

(Dagnew et al. 2011, Gimenez et al. 2011, Martinez-Sosa et al. 2011, Robles et al. 2013, Shin et 

al. 2014).  As the pumping energy demand needed for membrane filtration increases during the 

development of a membrane fouling layer, membrane fouling has received considerable attention 

in AnMBR research (Chen et al. 2012, Gao et al. 2010, Huang et al. 2011, Kola et al. 2014, Yang 

et al. 2011). The consensus in the water quality engineering field has been to operate membrane-

filtration systems, including AnMBRs, with minimal membrane fouling (Yang et al. 2006), which 

is accomplished using gas sparging, backflushing, and chemical cleaning. As a result, almost no 

research has been performed on the potential benefits of membrane fouling.  The membrane 

fouling layer contains considerable microbial biomass and can thus be considered a membrane 

biofilm, which has the potential to improve effluent quality by providing additional biodegradation 

not accomplished by the suspended biomass.    
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Anaerobic microbial communities in a membrane biofilm could have an advantage over suspended 

microbial communities because of reduced mass-transfer limitations. Mass-transfer phenomena 

likely have a substantial effect on substrate utilization when substrate concentrations are low such 

as during domestic wastewater treatment (Gonzalez‐Gil et al. 2001), at low temperatures (Wu et 

al. 1995), and when mass-transport is influenced by advective forces such as liquid flow through 

a membrane biofilm.  In addition, biofilms may support lower intercellular distances between 

methanogens and their syntrophic partners and thus provide enhanced microbial activity relative 

to the suspended biomass activity. Upflow anaerobic sludge blanket (UASB) reactors rely on this 

enhanced activity through the formation of granules (dense aggregates of microbes), which are 

essentially spherical biofilms (Saravanan and Sreekrishnan 2006).  UASB reactors are designed 

and operated to allow anaerobic microbes to form these granules allowing for low intercellular 

distances (Tiwari et al. 2006). In AnMBRs, membrane filtration provides complete biomass 

retention and therefore does not offer conditions amenable to granule formation. However, a 

membrane biofilm potentially represents an environment conducive to efficient syntrophic 

interactions and a high degree of biological activity similar to the environment in UASB granules.  

This study elucidated the contribution of the membrane biofilm in AnMBR treatment of domestic 

wastewater using a bench-scale AnMBR operated at 15°C equipped with three submerged 

membrane housings with independent permeate collection and biogas sparging control. The three 

membrane housings were operated to allow for three different levels of membrane fouling and 

membrane biofilm development.  Illumina sequencing of 16S rRNA genes (rDNA) and 16S rRNA 

and reverse transcription-quantitative PCR (RT-qPCR) targeting the mcrA gene transcripts were 

applied to compare microbial community structure and activity dynamics in the suspended 

biomass and in the membrane biofilms.  
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4.3 Materials and Methods 

4.3.1 AnMBR operation and chemical assays 

A bench-scale AnMBR described previously (Smith et al. 2013) was redesigned to incorporate 

three submerged flat-sheet membrane housings incorporating microfiltration polyethersulfone 

membranes (GE Osmonics, Greenville, SC) with a pore size of 0.2 µm and a total effective 

membrane area of 924 cm2. The system was operated at 15°C with a synthetic domestic wastewater 

containing particulate and soluble organic compounds, nutrients, and trace elements to simulate 

the chemical oxygen demand (COD) and other constituents of domestic wastewater (Smith et al. 

2013). The three membrane housings, designated P1, P2, and P3, each generated a separate 

permeate stream during operation. Three mini diaphragm pumps (KNF Neuberger, Trenton, NJ) 

recirculated headspace biogas and dispersed it directly below each membrane housing by 

horizontally placed sparging tubes for fouling control. Biogas sparging flow rates were 

independently controlled for each membrane housing using in-line flow meters. The liquid volume 

of the reactor was 4 L. The AnMBR was inoculated with sludge from a mesophilic (32°C) 

wastewater treatment plant anaerobic sludge digester (Northfield Wastewater Treatment Plant, 

Whitmore Lake, MI) at an initial volatile suspended solids (VSS) concentration of approximately 

8,000 mg/L.  

The system was operated at a target hydraulic retention time (HRT) of 16 h, which corresponds to 

an organic loading rate (OLR) of 670 mg COD/L•d. Biomass was only removed from the AnMBR 

for sampling purposes, which resulted in a solids retention time (SRT) of approximately 300 days. 

From days 1 through 99 (Phase 1), a membrane flux of 2.7 L/m2/h (LMH) was targeted for each 

membrane housing. This relatively low membrane flux ensured operation with minimal membrane 

fouling could be maintained without chemical cleaning and provided greater operational control. 
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The high biogas sparging flow rate selected for Phase 1 (3.0 L biogas/min for each membrane 

housing or 5.8 m3 biogas /h/m2 membrane surface area) helped prevent the formation of a 

membrane biofilm. Backflushing was performed for 30 s every 10 min of bioreactor operation. 

Biogas sparging flow rates were reduced from days 100-138 (Phase 2) for P2 and P3 to allow for 

different levels of membrane biofilm development for each membrane housing, resulting in the 

need to operate with different transmembrane pressures (TMPs) to maintain similar fluxes. Low 

fouling (LF), medium fouling (MF), and high fouling (HF) were targeted for P1, P2, and P3, 

respectively (Figure 4-1). Due to pump slippage at high TMP, the flux for P1 was increased as 

necessary to maintain an HRT of 16 h. Data from days 139-151 are not presented due to a brief 

exposure of the system to oxygen during biofilm sampling on day 138 (described below), which 

resulted in poor system performance. On day 152, biogas sparging flow rates were increased for 

P2 and P3 to reduce fouling and restore the TMP to near zero. All membranes were operated at a 

TMP near zero by day 154 and continued in that operational regime until day 161 (Phase 3). From 

days 162-172 (Phase 4), the biogas sparging flow rate was reduced for P2 to target a high level of 

fouling comparable to P3 during Phase 2.  
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Figure 4-1. Average transmembrane pressure (TMP) for each of the membranes P1, P2, and P3 

(left y axis) and bioreactor HRT (right y axis) from days 0 to 172.  This time period is divided in 

four phases defined by operating regime.  Data from days 139-153 are not reported due to poor 

AnMBR performance. Error bars for HRT represent the standard deviation of daily flow rate 

measurements. Error bars for TMP represent the standard deviation of pressure data recorded 

every minute of operation.  

COD, total suspended solids (TSS), and VSS were determined using procedures outlined in 

Standard Methods (APHA 2005). Soluble COD was determined after filtering samples through a 

0.2 µm filter to be consistent with the physical removal of suspended material in the AnMBR by 

membrane filtration (same pore size). Concentrations of volatile fatty acids (VFAs) (formate, 

acetate, propionate, butyrate, and valerate) and sulfate were determined with an ion chromatograph 

(ICS-1600, Dionex, Sunnyvale, CA) equipped with a conductivity detector, autosampler, and 
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reagent free eluent generator to produce a KOH gradient. Eluent was passed through a Dionex AS-

11HC column at 60°C at a flow rate of 0.30 mL/min.  

Biogas methane content was measured with a gas chromatograph (Gow-Mac, Bethlehem, PA) 

coupled with a thermal conductivity detector (TCD). Measurement of dissolved methane in the 

permeate was accomplished as previously described (Rudd et al. 1974). Briefly, 30 mL of permeate 

were collected in a syringe containing 30 mL nitrogen gas. The syringe was shaken by hand for 1 

minute to strip dissolved methane into the gas phase. The gas phase was collected from the syringe 

and sampled for gas chromatography. Biogas production was measured by collecting gas in a 1-L 

Tedlar bag and quantifying the production daily using a wet-type gas meter (Actaris Metering 

Systems, Dordrecht, The Netherlands). 

Permeate sampling was performed approximately daily for measurements of COD, VFAs, and 

sulfate, and every two to four days for dissolved methane content.  Influent and bioreactor content 

were collected every two to four days to measure COD and VFAs, and weekly for TSS and VSS. 

Biogas content was determined every two to four days. Samples for soluble COD, VFA, and sulfate 

analyses were immediately filtered through a 0.2 m-filter after sampling and preserved using 

concentrated sulfuric acid (COD) or 1 M sodium hydroxide (VFAs and sulfate) and stored at 4°C 

for up to 10 days.  

4.3.2 Nucleic acids extraction 

Suspended biomass samples from the AnMBR were taken on days 0, 26, 52, 76, 100, and 138 of 

operation, pelletized by centrifugation at 5,000 x g for 5 min at 4°C, and immediately stored at -

80°C after decanting the supernatant. Biofilm biomass samples were gently scraped from the 

membrane surface of P1 (LF), P2 (MF), and P3 (HF) on day 138 using sterile lazy-l spreaders, 

pelletized, decanted, and immediately stored at -80°C. P1 (LF) had limited biofilm biomass, which 



87 

was only loosely associated with the membrane consistent with the low fouling condition. Biomass 

samples for RNA extraction were prepared similarly except for the addition of RNAlater (Qiagen, 

Valencia, California) prior to storage. DNA extraction from pelletized biomass was performed by 

three 2-min bead beating steps (Mini-Beadbeater-96, BioSpec Products, Bartlesville, OK) with 0.1 

mm diameter silicon beads in lysis buffer, proteinase K digestion, and automated extraction using 

the Maxwell 16 Blood LEV kit according to manufacturer’s instruction (Promega, Madison, WI). 

RNA extraction was performed by three 2-min bead beating steps with 0.1 mm diameter silicon 

beads in 1-thiolyglycerol homogenization buffer and automated extraction using the Maxwell 16 

simplyRNA tissue kit according to manufacturer’s instructions except that 10 µL of DNase 1 

(instead of 5 µL) was used. DNA and RNA quality and quantity were assessed via 

spectrophotometry (Nanodrop 1000, Thermo Fisher Scientific, Wilmington, DE) and the 

Quantifluor dsDNA and RNA systems (Promega, Madison, WI), respectively, with a 

fluorospectrometer (Nanodrop 3000, Thermo Fisher Scientific, Wilmington, DE). Select RNA 

extracts were further analyzed for quality via automated electrophoresis using the Experion RNA 

analysis kit (Bio-Rad, Hercules, CA).  

4.3.3 RT-qPCR 

An in silico analysis of primers targeting the mcrA gene (Juottonen et al. 2006, Steinberg and 

Regan 2009, 2008, Zeleke et al. 2013) was performed in MEGA (Tamura et al. 2013) using partial 

mcrA sequences available in GenBank (NCBI, Bethesda, MD) and back-translated full-length 

mcrA protein sequences generated by EMBOSS Backtranseq with the Methanothermobacter 

thermautotrophicus strain Delta H codon usage table (EMBL-EBI, Hinxton, UK). Based on the in 

silico analysis, additional primer degeneracies were incorporated into forward primer mlas 

(Steinberg and Regan 2009) to provide greater coverage (5’-
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GGYGGTGTMGGNTTCACHCARTA-3’). Primer specificity was assessed using MFE-primer 

2.0 (Qu et al. 2012). Reverse primer mcra-rev was used as reported in the literature (5’-

CGTTCATBGCGTAGTTVGGRTAGT-3’) (Steinberg and Regan 2008). A detailed discussion of 

primer design and characterization is provided elsewhere (Clancy et al. 2014). Universal primers 

targeting the V4 region of the 16S rDNA (Caporaso et al. 2011) were used to quantify 16S rRNA 

for normalization of mcrA transcript quantification. Coverage of 16S rRNA primers was verified 

using TestPrime 1.0 (Klindworth et al. 2012) (Tables S4-1 and S4-2 in Appendix B).  

Reverse transcription to generate single-stranded complementary DNA (cDNA) from RNA 

extracts was performed using the SuperScript VILO cDNA Synthesis Kit according to 

manufacturer’s instruction (Life Technologies, Grand Island, NY). Two-step RT-qPCR, as 

opposed to one-step in which cDNA synthesis and qPCR occur sequentially in one reaction, was 

done to allow for sequencing of synthesized cDNA (described below).  

Standards for RT-qPCR were prepared by amplifying mcrA and 16S rRNA genes and cDNA 

synthesized transcripts from a pool of 21 DNA and 21 cDNA samples from the bench-scale 

AnMBR pooled by equal mass (He and McMahon 2011, Sonthiphand et al. 2013). PCR to prepare 

RT-qPCR standards was performed in 20 L reactions using the above described primer sets at 

500 nM, 0.5 ng of pooled template, 0.3 mg/mL bovine serum albumin (BSA), 10 L Phusion High-

Fidelity Master Mix (NEB, Ipswich, MA), and ultra-pure nuclease free water. Thermocycling 

conditions to prepare RT-qPCR standards consisted of an initial 2 min denaturation at 95°C, 

followed by 30 cycles of denaturing at 95°C for 20 s, annealing at 55°C for 15 s, and extension at 

72°C for 30 s, followed by a final extension at 72°C for 5 min. PCR products were run on a 1.5% 

agarose gel, and bands were excised with a sterile scalpel and purified using the QIAquick Gel 

Extraction Kit (Qiagen, Valencia, CA). The purified amplicon pool was quantified via Quantifluor 
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dsDNA system and fluorospectrometry. Serial dilutions of the purified amplicon pools were 

prepared as RT-qPCR standards from 108 to 103 copies. RT-qPCR was conducted on a 

Mastercycler realplex ep (Eppendorf, Hamburg, Germany) with a total reaction volume of 20 µL. 

Samples were quantified in triplicate using serial dilutions of template. All standards and a no 

template control were run in triplicate. Each reaction contained 2 µL template, 500 nM forward 

and reverse primers, 10 µL 2X Fast-Plus EvaGreen Master Mix (Biotium, Hayward, CA), and 

ultra-pure nuclease free water. Thermocycling conditions for RT-qPCR targeting 16S rRNA of 

samples were the same as described above for standards preparation, except that 50 cycles were 

performed instead of 30. For mcrA quantification in samples, thermocycling conditions consisted 

of an initial 2 min denaturation at 95°C, followed by 5 cycles of denaturing at 95°C for 20 s, 

annealing at 55°C for 15 s, a temperature ramp at a rate of 0.1°C/s to 72°C to aid in annealing due 

to the highly degenerate nature of the primer set (Luton et al. 2002, Morris et al. 2014), and 

extension at 72°C for 30 s, followed by 45 cycles without the temperature ramp and lastly, a final 

extension at 72°C for 5 min.  In addition, a melt curve analysis was performed to verify qPCR 

specificity. The R2 and efficiencies for mcrA and 16S rRNA standard curves were 0.991 and 0.997 

and 75 and 71%, respectively.  

4.3.4 16S rDNA and rRNA sequencing 

PCR, multiplexing, and sequencing via Illumina MiSeq (San Diego, CA) of 16S rDNA and rRNA 

was performed by the Center for Microbial Systems (University of Michigan, Ann Arbor, MI) 

using the above described universal 16S rDNA primer set targeting the V4 region (Caporaso et al. 

2011) barcoded and using sequencing primers described in Kozich et al. (2013). PCR reactions 

were 20 µL and included primers at 500 nM, 10 µL 2x Accuprime buffer 11 (Invitrogen, Carlsbad, 

CA), 0.15 µL Accuprime TAQ, 0.5 ng template, and nuclease-free water. Thermocycling 
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conditions consisted of an initial 2 min denaturation at 95°C, followed by 30 cycles of denaturing 

at 95°C for 20 s, annealing at 55°C for 15 s, and extension at 72°C for 5 min, followed by a final 

extension at 72°C for 5 min. Amplicons were pooled by equal mass using the SequalPrep 

Normalization Plate Kit (Life Technologies, Grand Island, NY). Multiplexed amplicons were 

sequenced via Illumina MiSeq using the MiSeq Reagent Kit V2 (2x250 bp reads) and sequencing 

primers described in Kozich et al. (2013).  16,587 paired-end reads (2x250 bp) per sample were 

generated after quality filtering and subsampling. The resulting sequences were processed with 

mothur (Schloss et al. 2009) following  the Schloss MiSeq SOP and classified using the Ribosomal 

Database Project (Maidak et al., 1997) and Basic Local Alignment Search Tool (BLAST; NCBI, 

Bethesda, MD). 

4.4 Results and Discussion 

4.4.1 Slow startup after inoculating the psychrophilic AnMBR with 
mesophilic sludge 

In a previous study,  we inoculated a psychrophilic AnMBR with a mixture of two mesophilic 

sources and one psychrophilic source (Smith et al. 2013). Pyrosequencing of 16S rDNA in each 

inoculum and AnMBR biomass samples collected after one year of operation suggested that the 

AnMBR microbial community structures were most similar to the mesophilic inocula. Therefore, 

we elected to inoculate the AnMBR in the current study with mesophilic sludge only. COD 

removal during the first 99 days of operation (Phase 1) was limited, averaging 57 ± 12%. Although 

a downward trend in permeate COD concentrations was apparent, the levels were rarely below 

100 mg/L (Figure S4-1, Appendix B). Methane production was consistent with the limited COD 

removal and approximately half of the methane produced in the system remained dissolved in the 

permeate (Figure S4-2). The majority of the permeate COD was comprised of acetate and 

propionate averaging 70 ± 19 and 52 ± 18 mg/L as the compound, respectively (Figure S4-3). 
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Concentrations of acetate and propionate in the bioreactor and permeate were nearly identical (data 

not reported) indicating negligible removal across the membranes. Inoculating the system solely 

with a mesophilic sludge source may have contributed to the slow startup. When using more 

diverse inoculum sources including biomass from a psychrophilic environment in our previous 

study, the startup was much faster (Smith et al., 2013). However, membrane fouling was less 

controlled during our previous study potentially allowing for biofilm treatment. 

Soluble COD in the bioreactor (defined as COD passing through a 0.2 µm filter, the same pore 

size as the membranes in the AnMBR) was consistently greater than permeate COD with an 

average difference of 110 ± 22 mg/L. Dissolved methane concentrations in the permeate were only 

slightly greater than equilibrium concentrations predicted by applying Henry’s Law and the 

measured methane partial pressure in the biogas (averaging 1.2 times the predicted equilibrium 

concentration).  Biological removal by the biofilm commensurate with the observed COD 

difference would have resulted in substantially higher methane oversaturation (discussed further 

below). Based on this, we hypothesize that the observed COD removal was by physicochemical 

mechanisms. Nearly complete sulfate reduction consistently occurred in the system with influent 

and permeate sulfate concentrations averaging 18 ± 2.0 and 0.32 ± 0.57 mg/L, respectively. TSS 

and VSS concentrations initially declined but then remained stable, suggesting an initial die-off of 

biomass after inoculating, likely in response to the psychrophilic temperature and low OLR which 

was unable to support the initial biomass concentration (Figure S4-4). Negligible net biomass 

growth occurred thereafter. The initial decline in biomass inventory corresponded to a decrease in 

microbial community diversity based on 16S rDNA sequencing (Figure S4-4) suggesting that the 

psychrophilic temperature or other extrinsic conditions disproportionately affected specific 

members of the inocula.  
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Our previous study reported a significantly higher COD removal of 92 ± 5% and soluble COD 

removal by the membrane biofilm accounted for 21 ± 8% of total COD removal (Smith et al. 

2013).  We further reported that increased membrane fouling resulted in greater soluble COD 

removal across the membrane, possibly due to biological activity in the foulant layer (Smith et al. 

2013). However, the improvement in COD removal when promoting membrane fouling was low, 

10 ± 4 mg/L (Smith et al. 2013), likely because most of the readily biodegradable substrate was 

already removed by the suspended biomass. We hypothesized that development of a membrane 

biofilm would improve effluent quality to a greater extent when the permeate contained residual 

biodegradable substrates (e.g., acetate or propionate) and used this strategy to attempt to improve 

AnMBR performance in the current study.    

4.4.2 Biofilm promotion improves effluent quality but results in 
dissolved methane oversaturation 

To improve permeate quality, a controlled membrane fouling experiment was conducted to 

encourage biofilm development on P2 and P3 by independently reducing the biogas sparging flow 

rates (Phase 2). Three different levels of membrane fouling were targeted, low fouling (LF; P1), 

medium fouling (MF; P2), and high fouling (HF; P3). During Phase 2, P1, P2, and P3 TMP 

averaged -0.96 ± 1.5, 27 ± 9.0, and 45 ± 8.9 kPa, respectively, indicating the targeted fouling levels 

were achieved (Figure 4-1). Hereafter, P1, P2, and P3 are referred to based on their fouling level 

(LF, MF, and HF, respectively). 

Differences in permeate COD concentrations were observed throughout Phase 2 and corresponded 

to the level of membrane fouling (Figure 4-2a). HF permeate consistently had the lowest COD 

with a concentration of 22 mg/L at the end of Phase 2. Permeate VFA levels showed a similar 

trend with differences in acetate and propionate concentrations as high as 37 mg/L and 25 mg/L, 

respectively, between MF and HF permeate (Figures 4-2b and 4-2c). Acetate and propionate 
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concentrations in HF permeate at the end of Phase 2 were 3.5 and 3.6 mg/L, respectively. The 

VFA concentrations in the bioreactor and LF permeate were similar throughout Phase 2 indicating 

minimal biological activity across the membrane with limited fouling. These observations indicate 

that controlled membrane fouling can substantially improve effluent quality in AnMBR and further 

suggest that the activity of syntrophic propionate oxidizing populations and their methanogenic 

partners can be promoted through membrane biofilm development (see below). 
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Figure 4-2. Effect of different degrees of biofilm development (Low Fouling, Medium Fouling, 

and High Fouling) on permeate quality during Phase 2 of AnMBR operation. (a) Bioreactor 

(soluble) and permeate COD concentrations. (b) Bioreactor and permeate acetate concentrations. 

Error bars represent the standard deviation of triplicate IC injections. (c) Bioreactor and permeate 

propionate concentrations. Error bars represent the standard deviation of triplicate IC injections. 

(d) Dissolved methane oversaturation in permeate assuming a Henry’s law constant of 34,300 

atm at 15°C (Tchobanoglous et al. 2003) and methane partial pressure in the biogas. The 

methane content of the biogas was approximately 90% with the balance being carbon dioxide. 

The high methane content was likely due to high carbon dioxide solubility at the psychrophilic 

temperature and/or the feed composition (Aiyuk and Verstraete 2004).Error bars represent the 

standard deviation of duplicate dissolved methane extractions and triplicate GC injections of 

each dissolved methane extract. 
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Consistent with this, dissolved methane concentrations in MF and HF permeates indicated 

significant oversaturation of methane (Figure 4-2d) suggesting that methanogenesis occurred in 

the biofilm and that methane produced in the biofilm left the system in the dissolved form. From 

days 107-138, dissolved methane concentrations in LF, MF, and HF permeate averaged 1.1 ± 0.22, 

1.7 ± 0.44, and 2.6 ± 0.30 times the concentrations predicted by Henry’s Law, respectively. The 

dissolved methane concentration in the bioreactor (not measured) was likely near saturation due 

to vigorous biogas sparging. The observation that the dissolved methane concentration in LF 

permeate was close to saturation during phase 2, as it was during phase 1 for all three permeates, 

provided further evidence of minimal biological activity during low fouling conditions. Given the 

high degree of methane oversaturation in MF and HF permeates, a tradeoff was apparent between 

improved effluent quality and increased effluent dissolved methane. Dissolved methane may be 

challenging to recover downstream of an AnMBR without substantial energy input (Bandara et al. 

2011) and off-gas from a recovery process may be unsuitable for electricity production via 

cogeneration due to low methane content (Cookney et al. 2012). If released to the atmosphere, this 

“lost” energy source could be a potent greenhouse gas emission (Smith et al. 2014). 

4.4.3 Biofilm promotion leads to a specialized microbial community 
enriched in active methanogens 

The complexity of anaerobic microbial communities and reported differences in suspended and 

biofilm AnMBR community structure (Gao et al. 2010, Ma et al. 2013, Smith et al. 2013, Yu et al. 

2012) suggest that careful monitoring of community structure during development of AnMBR 

operational strategies, such as the promotion of controlled membrane fouling discussed above, is 

important. RNA-based approaches targeting either 16S rRNA (e.g., (Eichler et al. 2006, Foesel et 

al. 2013, Hunt et al. 2013, Männistö et al. 2013)) or transcripts of functional genes (e.g., the methyl 

coenzyme-M reductase [mcrA] gene in methanogens (Freitag and Prosser 2009)) may be more 
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useful than DNA-based approaches in characterizing microbial community function in AnMBRs 

given the slow growth rates and low biomass yields of anaerobic microbes, high biomass retention 

provided by membrane separation, and relatively short operational periods commonly studied in 

AnMBRs. We therefore applied high throughput sequencing of both 16S rDNA and 16S rRNA 

and confirmed methanogenic activity data with RT-qPCR targeting the mcrA gene while studying 

controlled membrane fouling during Phase 2. 

Substantial differences between microbial community structure (16S rDNA) and activity (16S 

rRNA) were observed in suspended and biofilm biomass (Figure 4-3). The 16S rDNA sequence 

data indicated that the suspended and biofilm community comprised <10% methanogens. The 

hydrogenotrophic methanogens were more abundant than the aceticlastic methanogens in the 

suspended biomass 26 days after startup and in the biofilm biomass at the end of Phase 2 (Figure 

S4-5a) suggesting the hydrogen utilization pathway became more important after biomass 

adaptation to the psychrophilic temperature. A shift towards hydrogenotrophic methanogenesis 

has also been observed previously in other anaerobic systems when transitioning from mesophilic 

to psychrophilic conditions using DNA-based molecular analyses and specific methanogenic 

activity assays (Collins et al. 2006, Connaughton et al. 2006, McHugh et al. 2004) and has been 

explained by increased hydrogen solubility and thus increased substrate availability for 

hydrogenotrophic metabolisms (Lettinga et al. 2001). In our system, 16S rRNA sequencing 

indicated that the relative importance of the aceticlastic and hydrogenotrophic methanogenesis 

pathways was similar (Figure S4-5b). Further, a substantially greater relative activity of 

methanogens was observed in the MF and HF biofilms relative to the suspended biomass or LF 

biofilm on day 138. Specifically, methanogens represented 33 and 34% relative activity in MF and 

HF biofilms, respectively, in comparison to only 15% in the suspended biomass and the LF biofilm 
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(Figure 4-3). These observations correlated with the low levels of acetate and propionate and high 

dissolved methane oversaturation by the end of Phase 2 (Figure 4-2) and suggest that a high level 

of methanogenesis occurred in the MF and HF biofilms.  

 

 Figure 4-3. (a) Relative abundance of methanogens identified to the genus level based on 16S 

rDNA sequencing and (b) relative activity of methanogens identified to the genus level based on 

16S rRNA sequencing in suspended biomass from startup to the end of Phase 2 and in biofilms 

at the end of Phase 2. Data are expressed as a percentage and were normalized using the total 

number of 16S rDNA sequences (a) and 16S rRNA sequences (b) (including both Bacteria and 

Archaea). Numbers within bars in (b) represent the relative activity of Methanosaeta spp. to all 

Archaea. A truncated y-axis (0 to 35%) is shown to accentuate changes in methanogen 

abundance and activity. 
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Methanosaeta is the only methanogen that exclusively produces methane through the aceticlastic 

pathway (Smith and Ingram-Smith 2007) and does not rely on syntrophy with a bacterial partner. 

In the suspended biomass, the relative abundance of Methanosaeta spp. decreased from 1.6% on 

day 0 to 0.55% on day 138 (Figure 4.3a). However, their relative activity was fairly stable (Figure 

4-3b) resulting in an increase in the activity/abundance ratio over time. The consistently low 

relative abundance and high relative activity of Methanosaeta spp. in the suspended biomass 

suggests that growth was negligible, possibly due to the psychrophilic temperature. The lack of 

convergence between 16S rDNA and rRNA sequencing of Methanosaeta spp. and stable biomass 

inventory (Figure S4-4) over 138 days supports this notion.  

Methanosarcina produces methane from acetate, hydrogen, and other C1 compounds 

(Mladenovska and Ahring 1997, Welander and Metcalf 2005) and has thus been categorized as 

mixotrophic. Relative activity of Methanosarcina spp. increased over time in suspended biomass 

and comprised 18 and 21% of relative methanogenic activity in MF and HF biofilm biomass, 

respectively. Methanosarcina spp. were either not detected or detected at ≤0.23% relative 

abundance in all biomass using 16S rDNA sequencing. Methanosarcina spp. were not detected 

via 16S rDNA sequencing in another psychrophilic AnMBR study (Bandara et al. 2012) and were 

detected at <0.50% of the archaeal community in our previous work at 15°C (Smith et al. 2013). 

Methanosarcina has a greater maximum growth rate and half-saturation coefficient than 

Methanosaeta which often leads to the dominance of Methanosaeta when acetate concentrations 

are low such as in continuously fed anaerobic digestion (Conklin et al. 2006) or during low-

strength wastewater treatment. It is unclear why the activity of Methanosarcina was high in this 

study, particularly in the biologically active biofilms, as the acetate concentration was near the 
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threshold level at which Methanosarcina spp. are typically inactive (11 – 71 mg/L acetate, (Jetten 

et al. 1992)). Psychrotolerant Methanosarcina spp. have been observed in the environment 

(Simankova et al. 2001, von Klein et al. 2002) but a specific mechanism for low-temperature 

adaptation that would give a competitive advantage over Methanosaeta or other methanogens in 

psychrophilic AnMBR is unclear. However, Methanosarcina has a unique surface structure 

containing hundreds of distinct proteins (De Vrieze et al. 2012, Francoleon et al. 2009), as opposed 

to the typical one or two abundant proteins in a cell’s surface layer, that may aid in cell attachment 

to fixed-surfaces and other cells (De Vrieze et al. 2012). We hypothesize that Methanosarcina’s 

metabolic flexibility and unique surface structure potentially gave it a metabolic and physical 

advantage in the biofilm relative to other methanogens, leading to the observed high activity.  

Methanoregula spp. and Methanospirillum spp. were the dominantly active hydrogenotrophic 

methanogens classified in suspended and biofilm biomass comprising 24 and 14% of methanogens 

in 16S rRNA characterization of HF biofilm biomass, respectively. Based on 16S rDNA 

sequencing, Methanospirillum spp. comprised only 5.5 and 6.4% relative abundance of 

methanogens in MF and HF biofilm biomass, respectively, whereas Methanoregula spp. was 

detected as the dominant methanogen comprising 70 and 73% relative abundance of methanogens 

in MF and HF biofilm biomass, respectively. Methanoregula spp., a mesophilic hydrogenotrophic 

methanogen, was only recently cultivated from a full-scale UASB (Yashiro et al. 2011) and an 

acidic peat bog (Bräuer et al. 2011). Growth for both cultivated species was demonstrated at 

temperatures as low as 10°C suggesting tolerance to psychrophilic temperature. The 

activity/abundance ratio of Methanoregula spp. was 0.41 and 0.33 in MF and HF biofilm biomass, 

respectively, whereas the ratio for Methanospirillum spp. was 2.5 and 2.0 in MF and HF biofilm 

biomass, respectively, suggesting that Methanospirillum spp. activity per cell was significantly 
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greater than Methanoregula spp. in the biofilm biomass. 16S rRNA operon numbers (described 

further below) for Candidatus Methanoregula and Methanospirillum hungatei have been reported 

as 1 and 4 per genome (Lee et al. 2009), respectively, which would only exacerbate the differences 

in activity/abundance if taken into account. The low activity/abundance ratio of Methanoregula 

spp. suggests that their colonization of the biofilm was by physical means such as attachment to 

the membrane surface or to other cells rather than a metabolic strategy.  

It is important to note the limitations of our approach to infer microbial abundance and activity. 

16S rRNA operon number varies from 1-15 copies per genome (Klappenbach et al. 2000), which 

can lead to over or under-representation of specific phylogenies if a constant operon number is 

assumed across all phylogenies (Větrovský and Baldrian 2013). Normalization of sequencing 

results to operon number is still challenging given databases such as the Ribosomal RNA Database 

(rrnDB) are still in development (Lee et al. 2009). Further, 16S rRNA abundance varies between 

phylogenies based on cell size and other factors. Its abundance is also not directly linked to a 

specific cellular function (e.g., methanogenesis) and does not always correlate well with activity 

even with pure cultures under steady-state conditions (Blazewicz et al. 2013). Further, inactive or 

dormant microorganisms can contain high amounts of rRNA (Sukenik et al. 2012). Another 

limitation of our study is the lack of absolute abundance or gene expression. Doing so requires 

accurate quantitative nucleic acid extraction which can be challenging from sludge samples. 

Differences in suspended and biofilm biomass composition such as elevated concentrations of 

extracellular polymeric substances (EPS)  in biofilm biomass (Smith et al. 2013) likely reduce 

extraction efficiency and quality of nucleic acids extracted which could subsequently reduce PCR 

efficiency. These matrix effects may influence microbial characterization due to biases in nucleic 

acids extraction, PCR, reverse transcription, or other steps (Martin-Laurent et al. 2001). These 
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concerns were motivation for validating our approach by monitoring changes in the expression of 

the mcrA gene.  The mcrA gene codes for the final step in methanogenesis (Thauer 1998) and has 

been used as a phylogenetic marker for methanogenic communities (Juottonen et al. 2006, Luton 

et al. 2002, Rastogi et al. 2008). Very few studies have targeted mcrA transcripts to infer activity 

of methanogens (Freitag and Prosser 2009, Ma et al. 2012, Morris et al. 2014). 

RT-qPCR results quantifying mcrA transcripts correlated well with performance observations and 

16S rRNA sequencing indicating significantly higher methanogenic activity in MF and HF biofilm 

biomass relative to suspended or LF biofilm biomass (Figure 4-4). Taken together, these results 

provide strong evidence that a specialized microbial community was promoted in the biofilm 

enriched in highly active aceticlastic and hydrogenotrophic methanogens. 
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Figure 4-4. Relative expression of mcrA transcript copies to 16S rRNA copies in suspended and 

biofilm biomass. Expression was normalized to the suspended biomass on day 0. Error bars 

represent the standard deviation of the ratio of triplicate qPCR reactions at serial dilutions of 

cDNA template concentration. 

4.4.4 Phylogenetically distinct syntrophic bacterial OTU was highly 
active in the biofilm  

Relative activity of fatty acid-oxidizing obligately syntrophic bacteria exhibited a similar 

correlation with performance observations (Figure 4-5). On day 0, a high level of activity of 

syntrophs was observed in suspended biomass which quickly fell to 0.33% activity of total bacteria 

by day 26, likely due to the mesophilic inoculum responding to the psychrophilic operational 

temperature. In addition, high shear induced by biogas sparging may have disrupted cell aggregates 

in syntrophic association. We calculated an average velocity gradient (g) in our system of 410 s-1 

which is much higher than recommended values for effective anaerobic digestion, 50-80 s-1 
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(Tchobanoglous et al. 2003). Research has suggested that high shear can be detrimental to 

anaerobic digester performance under high loading rates due to increased hydrolysis and 

fermentation resulting in acidification (Stroot et al. 2001, Vavilin and Angelidaki 2005). In 

AnMBR under very low loading rates, high shear may be inhibitory instead through disruption of 

syntrophic interactions. High shear at a similar intensity to our system has been found to favor 

Methanosarcina spp. over Methanosaeta concilii (Hoffmann et al. 2008) and likely has 

implications on syntrophic partners. Activity of syntrophic bacteria was regained in suspended 

biomass by day 76. Relative to the suspended biomass on day 138, syntrophs were less active in 

LF biofilm biomass, similarly active in MF biofilm biomass, and more active in HF biofilm 

biomass. Relative abundance of syntrophic bacteria was substantially lower than relative activity. 

Relative abundance of syntrophic bacteria in suspended biomass quickly fell and was not regained 

throughout the experimental period. Relative abundance of syntrophic bacteria to total bacteria in 

suspended, LF, MF, and HF biofilm biomass on day 138 was 0.57, 0.23, 0.53, and 0.40%, 

respectively. The stark differences observed between 16S rDNA and rRNA analyses reflects the 

importance of using RNA-based approaches for molecular characterization of microbial 

communities in systems where growth is limited and biomass retention is high such as low-

temperature AnMBR.  

An OTU unclassified at the genus level according to RDP belonging to family 

Syntrophomonadaceae comprised a significant proportion of the relative activity of syntrophs in 

MF and HF biofilm biomass (i.e., 72 and 64%, respectively) but comprised only 7.7% relative 

activity of syntrophs in the suspended biomass on day 138. A representative sequence from the 

OTU had 95% identity with Syntrophomonas zehnderi, an obligately syntrophic microorganism 

(Sousa et al. 2007), according to BLAST. Interestingly, genera in Syntrophomonadaceae have only 
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been observed to syntrophically oxidize C4 compounds (e.g., butyrate) and higher order organics 

(Stams et al. 2012). In our system, butyrate was non-detectable and thus it is surprising that a 

butyrate oxidizing syntroph would have such high activity in the biofilm particularly relative to 

propionate oxidizing syntrophs (e.g., Smithella) given the significant propionate removal in the 

biofilm. The unclassified OTU may be a yet to be described species of Syntrophomonadaceae 

capable of C3 oxidation. Alternatively, Gan et al. (2012) using DNA-based stable isotope probing 

(SIP) proposed a novel pathway in which Smithella spp. first dismutates propionate to acetate and 

butyrate followed by butyrate oxidation by Syntrophomonas spp. via a trophic interaction. Based 

on the significant removal of propionate in the biofilm, non-detectable levels of butyrate in the 

bioreactor, and activity of both Smithella spp. and the unclassified OTU belonging to 

Syntrophomonadaceae, it is feasible that this novel pathway occurred here. In this hypothetical 

scenario, butyrate may remain non-detectable acting as a transient metabolite. This scenario would 

require cooperation between two syntrophic bacteria and a hydrogenotrophic methanogen and thus 

may benefit from the hypothesized increase in spatial organization afforded to the biofilm 

community relative to suspended biomass. The unclassified OTU may also be more active in the 

biofilm than suspended biomass due to differential preferences in growth mode (i.e., suspended 

versus attached).  
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Figure 4-5. (a) Relative abundance of syntrophic bacteria at the genus level to bacteria based on 

16S rDNA sequencing and (b) relative activity of syntrophic bacteria at the genus level to 

bacteria based on 16S rRNA sequencing in suspended and biofilm biomass. A truncated y-axis 

(0 to 4.5%) is shown to accentuate changes in abundance and activity.  

 

Known syntrophic acetate oxidizing bacteria (Hattori 2008) were not detected in suspended or 

biofilm biomass. This is consistent with previous observations of their presence primarily under 

thermophilic conditions (Hao et al. 2010, Mayumi et al. 2011, Rui et al. 2011) due to the 
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thermodynamic efficiencies gained at higher temperatures in their metabolism. Acetate removal 

in the biofilm of the AnMBR likely occurred exclusively through the aceticlastic methanogenic 

pathway via Methanosaeta spp. and Methanosarcina spp. However, our knowledge on syntrophic 

acetate oxidizers is expanding (e.g., a novel acetate-oxidizing member of Synergistes group 4 was 

recently identified (Ito et al. 2011)) and this metabolism cannot be excluded from AnMBR without 

further experimental evidence (e.g., DNA/RNA-SIP with 13C-labeled acetate).  

The AnMBR biofilm may support other syntrophic interactions. The sulfate reducer Desulfovibrio 

vulgaris has been identified as capable of growth syntrophically with a hydrogenotrophic 

methanogen on lactate in the absence of sulfate (Scholten et al. 2007). The majority of sulfate 

reduction in our system occurred in suspended biomass with sulfate concentrations <1 mg/L in the 

bioreactor at the end of Phase 2 (prior to biofilm biomass sampling). Relative activity of certain 

known sulfate reducers correlated well with performance data. For example, Desulfobulbus spp. 

had a relative activity of 2.2% in the suspended biomass but only 0.25% in HF biofilm biomass 

(Figure S4-6). However, Desulfovibrio spp. relative activity was greater in the biofilm biomass, 

7.2 versus 4.3% in HF biofilm and suspended biomass, respectively, despite limited measured 

sulfate reduction occurring by the biofilm. It is possible that in the absence of sulfate, members of 

Desulfovibrio transition to syntrophic metabolisms that are potentially supported in the biofilm 

due to lower intercellular distances or more generally, spatial organization of the community.  

The biofilm may provide an environment conducive to direct interspecies electron transfer (DIET) 

via nanowires or direct cell-to-cell electron transfer (Summers et al. 2010) as opposed to transfer 

of other intermediates such as hydrogen or formate (Rotaru et al. 2012). In fact, DIET has been 

proposed as a potential pathway in methanogenic aggregates (Morita et al. 2011). However, 

Geobacter spp., a genus with members likely to participate in DIET through syntrophic ethanol 
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degradation (Summers et al. 2010), had lower relative activity in the biofilm than suspended 

biomass. The highly active unclassified Syntrophomadaceae OTU observed in LF and HF biofilm 

biomass could potentially be involved in DIET although genome sequencing of Syntrophomonas 

wolfei did not identify the outer membrane cytochromes believed to be necessary for DIET (Sieber 

et al. 2010). DIET may occur between other unidentified syntrophic partners in the biofilm or 

hydrogen/formate electron transfer may be more prevalent in this system. We hypothesize that 

reduced mass-transfer limitations, increased substrate availability, and spatial organization of the 

biofilm community all play a role in the high microbial activity observed. Future research should 

evaluate the relative contribution of these potential explanations.  

4.4.5 Biofilm treatment is maintained in the absence of TMP 

During Phases 3 and 4, biogas sparging on HF was increased to evaluate if biological treatment in 

the biofilm could be maintained without high TMP (i.e., high fouling operation was switched to 

low fouling operation; HF-LF). HF-LF permeate COD during Phases 3 and 4 averaged 24 ± 7.1 

mg/L (Figure S4-7), a similar effluent quality to that obtained at the end of Phase 2. Further, HF-

LF permeate propionate concentration was below detection by the start of Phase 4 (Figure S4-8) 

implying that the activity of syntrophic propionate oxidizers improved during this time period, 

despite low TMP. Dissolved methane oversaturation remained high, averaging 2.2 ± 0.49, and was 

thus primarily driven by biological activity in the biofilm rather than high TMP or a combination 

of the two. One concern with our comparative evaluation is that pump slippage from high TMP 

resulted in reduced flux for HF which increased substrate contact time in the biofilm which could 

have affected our observations. However, HF flux was restored after returning TMP to near zero 

suggesting that the potentially higher substrate contact time did not impact our comparison. These 

results demonstrate that biofilm treatment can be maintained in the absence of TMP and suggest 
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that the active microbial community in the biofilm is tightly adhered to the membrane surface. The 

active community is either distinct from the layer of foulants contributing to high TMP or has 

sufficient biological activity to maintain treatment under low fouling conditions (i.e., less 

biomass).  

After restoring MF TMP to near zero (Phase 3), fouling was increased in attempt to replicate the 

performance obtained previously with HF (Figure 4-1). Medium fouling to high fouling (MF-HF) 

permeate COD during Phase 4 was 37 ± 7.0 mg/L, approaching a similar effluent quality to HF 

permeate in Phase 2. Dissolved methane oversaturation in MF-HF permeate increased, averaging 

2.6 ± 0.68. These observations provide evidence that biofilm promotion via reduced biogas 

sparging to enhance treatment performance is replicable.  

Because we were able to maintain biological activity after returning to near zero TMP, biofilm 

promotion strategies may only require an inoculation period in which the membrane is colonized 

from the suspended biomass and can then be operated at low TMP. Long-term operation with 

membrane fouling is undesirable from an operations standpoint and thus our demonstration of 

biofilm treatment at low TMP is encouraging. However, the industry’s current reliance on 

aggressive chemical cleaning in membrane installations is a concern. Chemical cleaning might 

disrupt the active biofilm community and treatment benefits would not be maintained although 

this has yet to be determined experimentally. It is important to note that we were able to return to 

a low TMP after extended periods of fouling by solely adjusting biogas sparging flow rate without 

chemical cleaning. In a full-scale system, fouling control could be accomplished without chemical 

cleaning using this approach or an alternative strategy that sustains biological activity in the 

biofilm. The energy demands of a higher biogas sparging flow rate to do so need to be weighed 

against the benefits of operation without chemical cleaning.  
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4.4.6 Biofilm treatment is an attractive operational strategy for low-
temperature AnMBR 

We have shown that by rethinking common perceptions of membrane fouling, we can improve 

effluent quality in AnMBR domestic wastewater treatment. However, improved effluent quality 

was at the cost of elevated dissolved methane concentrations in the permeate. Dissolved methane 

recovery from the permeate would be necessary to recover this potential energy source and prevent 

greenhouse gas emissions. Multiple lines of evidence (i.e., 16S rRNA sequencing, RT-qPCR 

targeting the mcrA gene, and performance observations) show that controlled membrane fouling 

leads to development of a biologically active membrane biofilm enriched in highly active 

aceticlastic and hydrogenotrophic methanogens and syntrophic bacteria. DNA-based molecular 

analyses were insufficient to describe microbial community activity and functional significance in 

this study. Conversely, RNA-based analyses were consistent with performance observations and 

we thus recommend a combination of RNA and DNA approaches to evaluate microbial community 

dynamics in systems with low growth and high biomass retention such as low-temperature 

AnMBR. Future research should evaluate the underlying mechanisms behind the biofilm 

community’s high biological activity (e.g., reduced mass transfer limitations, lower intercellular 

distances, or other factors), the impact of biofilm promotion strategies on long-term membrane 

fouling, and the biofilm’s response to chemical membrane cleaning. Operating without chemical 

membrane cleaning may be preferable if treatment performance is reliant on the biofilm. A 

biologically active biofilm may also have additional unexplored benefits in AnMBR such as 

removal of antibiotic resistance genes (e.g., as demonstrated in aerobic MBR (Riquelme Breazeal 

et al. 2012)) or other micropollutants. Finally, future research is necessary to develop low-energy 

dissolved methane recovery technologies capable of a high degree of dissolved methane recovery 

at a usable methane content. This is crucial under conditions of high dissolved methane 
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oversaturation that may prevail in AnMBR particularly considering on-going efforts to reduce 

fouling control energy demands. 
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Chapter 5. Anaerobic Membrane Bioreactor Treatment of 
Domestic Wastewater at Psychrophilic Temperatures 
Ranging from 12 to 3°C 
 

5.1 Abstract 

Anaerobic membrane bioreactor (AnMBR) treatment of a simulated domestic wastewater was 

evaluated at psychrophilic temperatures of 12, 9, 6, and 3°C. Chemical oxygen demand (COD) 

removal > 95% was maintained at temperatures as low as 6°C, but fell to 86 ± 4.0% at 3°C. The 

membrane biofilm’s contribution to biological treatment increased as temperature decreased in 

response to a decrease in suspended biomass treatment. High dissolved methane oversaturation 

occurred due to an increase in methanogenesis in the biofilm at lower temperatures. High-

throughput sequencing of 16S rRNA to infer microbial activity in the biofilm and performance 

observations suggested that a diversification of metabolisms in the biofilm (i.e., methanogenesis 

and syntrophic VFA oxidation as well as fermentation of more complex organics) occurred as 

temperature decreased. Hydrogenotrophic methanogenesis as opposed to aceticlastic 

methanogenesis was the preferred pathway in the biofilm but not in suspended biomass, possibly 

due to better spatial microbial organization in the biofilm supporting syntrophy. Membrane fouling 

became more severe as temperature decreased indicating a potential barrier to AnMBR 

implementation at such low temperatures. This research demonstrated that AnMBR treatment of 

domestic wastewater at very low temperatures is feasible. Future research in fouling control, 

dissolved methane recovery, and improving suspended biomass treatment to reduce reliance on 
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biofilm treatment and limit methane oversaturation are necessary to justify AnMBR treatment at 

such low temperatures. 

5.2 Introduction 

With few exceptions, anaerobic biological waste treatment processes to date are operated at 

mesophilic (30-40°C; (Lettinga et al. 2001)) or thermophilic (50-60°C; (Kim et al. 2002)) 

temperatures.  However, given the low energy content of domestic wastewater, the energy demand 

to maintain a mesophilic reactor temperature for anaerobic treatment of domestic wastewater far 

outweighs the energy recovery possible in most climates (Martin et al. 2011). Thus, for anaerobic 

treatment of domestic wastewater to become a reality, operation at ambient temperatures is 

necessary. In the U.S., the annual mean temperature of untreated domestic wastewater varies from 

approximately 3 to 27°C, with a nationwide average of about 16°C (Tchobanoglous et al. 2003). 

Globally, a large portion of the population lives in temperate climates and low domestic 

wastewater temperatures are common in winter months. The seasonal temperature fluctuations in 

these climates require treatment technologies with a high degree of resilience to ensure effluent 

discharge criteria are consistently met. Anaerobic membrane bioreactor (AnMBR) systems have 

recently come to the forefront as promising options for mainstream anaerobic treatment of 

domestic wastewater at various temperatures (Lin et al. 2013, Ozgun et al. 2013, Smith et al. 2012). 

Understanding the lower temperature limits for AnMBR treatment is imperative to determine 

climate-based barriers to implementation.  

Despite the importance of assessing AnMBR operation at psychrophilic temperatures (< 20°), only 

a few studies have evaluated performance in this temperature range (Chu et al. 2005, Ho and Sung 

2010, Martinez-Sosa et al. 2012, Shin et al. 2014, Smith et al. 2014a, Smith et al. 2013, Wen et al. 

1999) and no studies to date have explored temperatures less than 8°C. Chemical oxygen demand 
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(COD) removal greater than 85% has been reported at temperatures as low as 15°C (Chu et al. 

2005, Ho and Sung 2010, Smith et al. 2014a, Smith et al. 2013, Wen et al. 1999). However, Chu 

et al. (2005) observed COD removals of only 76-81% at 11°C. A few studies reported an increase 

in the amount of COD removal across the membrane when the operational temperature decreased 

(Chu et al. 2005, Ho and Sung 2010, Wen et al. 1999) suggesting the membrane biofilm as opposed 

to the suspended biomass is more important for COD removal at psychrophilic conditions. Chue 

at al. (2005) also evaluated an increase in the hydraulic retention time (HRT) to improve treatment 

performance at low temperatures. 

In addition to understanding the impact of lower temperature on AnMBR treatment performance, 

recognizing the impact of lower temperature operation on the distribution of methane in the gas 

versus the liquid phase is important to achieve AnMBR implementation for domestic wastewater 

treatment. Failing to recover dissolved methane from AnMBR permeate impairs the energy 

balance while also allowing the release of a potent greenhouse gas to the atmosphere, increasing 

the global warming potential of treatment (Smith et al. 2014b). Multiple AnMBR studies have 

reported dissolved methane oversaturation (Kim et al. 2011, Smith et al. 2013, Yeo and Lee 2013) 

and we established a positive correlation between dissolved methane oversaturation and 

methanogenic activity in the membrane biofilm (Smith et al. 2014a). Lower operational 

temperatures result in increased methane solubility resulting in greater dissolved methane losses. 

The potential for greater reliance on the membrane biofilm as opposed to the suspended biomass 

for treatment at psychrophilic conditions as indicated above could exacerbate this concern by 

increasing dissolved methane oversaturation. Research on dissolved methane recovery is still 

developing, but to date dissolved methane recovery is energy intensive and may not produce an 

off-gas of sufficient methane content for cogeneration (Bandara et al. 2011, Cookney et al. 2012). 
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Regardless, understanding methane fate in AnMBR, especially for low temperature operation, is 

necessary to gauge the practicality of AnMBR implementation. 

Understanding the impact of psychrophilic conditions on AnMBR treatment performance and on 

methane fate cannot be accomplished without appreciating the structure and activity of the diverse 

microbial populations in the suspended biomass and the membrane biofilm of the AnMBR. In low 

temperature anaerobic treatment, propionate oxidation and methanogenesis are typically 

considered rate-limiting metabolisms (Bialek et al. 2013, Rebac et al. 1995). Further, aceticlastic 

methanogens have been reported as more strongly affected by low temperature than their 

hydrogenotrophic counterparts (Lettinga et al. 1999, Nozhevnikova et al. 1997). A shift towards 

hydrogenotrophic methanogenesis in anaerobic treatment at psychrophilic temperatures has been 

reported using DNA-based molecular analyses and specific methanogenic activity assays (Collins 

et al. 2006, Connaughton et al. 2006, McHugh et al. 2004). This shift may occur due to increased 

hydrogen solubility which increases substrate availability and thermodynamically reduces energy 

requirements for hydrogenotrophic methanogenesis (Lettinga et al. 2001). Given the complexity 

of anaerobic microbial communities involved in degrading complex and undefined mixtures of 

organics present in domestic wastewater in general, challenges specific to AnMBRs due to the 

development of distinct microbial communities in the suspended biomass and membrane biofilm 

(Smith et al. 2014a), and the temperature dependent impact of the availability of hydrogen and the 

distribution of methane, evaluating the metabolic pathways and response of specific microbial 

populations to temperature changes is critical to understand operational strategies to improve 

AnMBR performance. 

The objective of this study was to evaluate AnMBR operation at decreasing temperatures to assess 

the potential for AnMBR treatment of domestic wastewater in temperate climates. A bench-scale 
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AnMBR with a history of operation with controlled fouling to allow for membrane biofilm 

treatment at 15oC, was operated for five to six weeks each at 12, 9, 6, and 3°C. Illumina sequencing 

of 16S rRNA genes (rDNA) and 16S rRNAs was applied to evaluate microbial community 

structure and activity dynamics in suspended and biofilm biomass in response to the decrease in 

operational temperature. 

5.3 Materials and Methods 

5.3.1 AnMBR Operation and Chemical Assays 

A bench-scale AnMBR (Smith et al. 2014a) was operated to evaluate system performance at 

varying psychrophilic temperatures while treating a simulated domestic wastewater (Aiyuk and 

Verstraete 2004, Smith et al. 2013). The bench-scale AnMBR was previously operated at 15°C for 

172 days (Smith et al. 2014a). Reactor temperature was controlled using a water jacket connected 

to a Polystat 6-L recirculating water bath (Cole-Parmer, Vernon Hills, IL). Water bath temperature 

was adjusted based on temperature measurement of a submerged probe located in close proximity 

to the membrane surface. The bench-scale AnMBR contained three individual membrane 

housings, designated P1, P2, and P3, and generated three permeate streams.  

The AnMBR temperature was reduced from 15 to 12ºC on day 173, then to 9ºC on day 216, 6ºC 

on day 252, and 3ºC  on day 286 (Table 5-1) to represent a range of potential temperatures 

experienced during winter in a domestic wastewater treatment plant in a temperate climate. The 

bench-scale AnMBR was initially operated at an HRT of 17 ± 1.0 h, that corresponded to an 

organic loading rate (OLR) of 630 mg COD/L•d. However, membrane fouling became more severe 

throughout the operational period resulting in flux reduction due to pump slippage and an increase 

in HRT (Table 5-1). Biomass was only removed from the AnMBR for sampling purposes, which 

resulted in a solids retention time (SRT) of approximately 300 days. The biogas sparging flow rate 
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for P3 was 3.0 L/min (5.8 m3/h•m2). The biogas sparging flow rate for P1 and P2 was decreased 

to 1.5 – 2.0 L/min from days 173 to 200 to permit biofilm development (described further below) 

and 3.0 L/min from days 201 to 313. Backflushing was performed for 30 s every 10 min of 

bioreactor operation initially but was modified on day 253 in attempt to improve flux and lower 

HRT by increasing the duration to 1 min and decreasing the interval time to 5 min.  

Influent, permeate, biogas, and bioreactor content sampling, sample preservation, and storage were 

performed as described previously (Smith et al. 2014a). COD, total suspended solids (TSS), and 

volatile suspended solids (VSS) were determined using procedures outlined in Standard Methods 

(APHA 2005). Soluble COD was determined by filtering samples through a 0.2 µm filter to 

replicate the physical removal of the membrane (same pore size). Concentrations of volatile fatty 

acids (VFAs) (acetate, propionate, formate, butyrate, and valerate) and sulfate were determined by 

ion chromatography (ICS-1600, Dionex, Sunnyvale, CA) (Smith et al. 2014a).  

Biogas methane content and dissolved methane concentration were measured with a gas 

chromatograph (Gow-Mac, Bethlehem, PA) (Smith et al. 2014a). Biogas production was measured 

by collecting gas in a 1-L Tedlar bag and quantifying the production daily using a wet-type gas 

meter (Actaris Metering Systems, Dordrecht, The Netherlands). 
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Table 5-1. AnMBR operational temperature, HRT (average ± standard deviation), OLR, and flux (average ± standard deviation). 

      Flux (LMH)  

Days from Startup  Temperature (°C)  HRT (h) OLR (mg COD/L•d) P1 P2 P3  

173-215  12  17 ± 1.0 630 2.5 ± 0.23 2.2 ± 0.21 2.5 ± 0.14  

216-251  9  19 ± 1.3 560 2.2 ± 0.16 2.1 ± 0.15 2.1 ± 0.14  

252-285  6  26 ± 3.5 410 1.9 ± 0.22 1.8 ± 0.21 1.2 ± 0.17  

286-313  3  29 ± 2.2 370 1.6 ± 0.16 1.5 ± 0.15 1.2 ± 0.10  
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5.3.1 Nucleic acids extraction and cDNA synthesis 

Suspended and biofilm biomass samples from the AnMBR were collected (Smith et al. 2014a) on 

days 215, 251, 285, and 313 at the end of each temperature phase, pelletized by centrifugation at 

5,000 x g for 5 min at 4°C, decanted, and immediately stored at -80°C. Biomass samples for RNA 

extraction were prepared similarly except for the addition of RNAlater (Qiagen, Valencia, 

California) prior to storage. DNA and RNA were extracted from pelletized biomass and DNA and 

RNA quality and quantity were assessed as described previously (Smith et al. 2014a). Reverse 

transcription to generate single-stranded complementary DNA (cDNA) from RNA extracts was 

performed using the SuperScript VILO cDNA Synthesis Kit (Life Technologies, Grand Island, 

NY).  

5.3.2 16S rDNA and rRNA sequencing 

Universal primers targeting the V4 region (Caporaso et al. 2011) were used to amplify 16S rDNA 

and rRNA as described previously (Smith et al. 2014a). PCR of 16S rDNA and rRNA from DNA 

extracts and synthesized cDNA, respectively, taken during reactor operation at 12, 9, and 6°C was 

performed by the Center for Microbial Systems (University of Michigan, Ann Arbor, MI). PCR 

conditions included 20 µL reactions with the aforementioned primers at 500 nM, 10 µL 2x 

Accuprime buffer 11, 0.15 µL Accuprime TAQ (Invitrogen, Carlsbad, CA), 0.5 ng template, and 

nuclease-free water. Thermocycling conditions consisted of an initial 2 min denaturation at 95°C, 

followed by 30 cycles of denaturing at 95°C for 20 s, annealing at 55°C for 15 s, and extension at 

72°C for 5 min, followed by a final extension at 72°C for 5 min. DNA and cDNA from 3°C  

biomass was amplified using the above described primer sets at 500nM, 0.3 mg/mL bovine serum 

albumin (BSA), 10 µL 2x Phusion High-Fidelity Master Mix (NEB, Ipswich, MA), 0.5 ng 

template, and nuclease-free water. Thermocycling conditions consisted of an initial 2 min 
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denaturation at 95°C, followed by 30 cycles of denaturing at 95°C for 20 s, annealing at 55°C for 

15 s, and extension at 72°C for 30 s, followed by a final extension at 72°C for 5 min. Amplicons 

were pooled by equal mass using the SequalPrep Normalization Plate Kit (Life Technologies, 

Grand Island, NY). Multiplexed amplicons were sequenced by the Center for Microbial Systems 

via Illumina MiSeq using the MiSeq Reagent Kit V2 (samples from 12, 9, and 6°C; 2x250 bp 

reads) and V3 (samples from 3°C; 2x300 bp reads). 13,922 paired-end reads per sample were 

generated after quality filtering and subsampling. The resulting sequences were processed with 

mothur (Schloss et al. 2009) following the Schloss MiSeq SOP and classified using the Ribosomal 

Database Project (Maidak et al., 1997) and Basic Local Alignment Search Tool (BLAST; NCBI, 

Bethesda, MD). 

5.4 Results and Discussion 

5.4.1 COD removal remained excellent when reducing the AnMBR 
temperature from 12°C to 6°C, but was impacted at 3°C 

The bench-scale AnMBR was previously operated for 172 days at 15°C (Smith et al. 2014a). 

During the last phase of that operational period, COD removal was > 95%, a substantial fraction 

of which was accomplished by the membrane biofilm. P1, P2, and P3 were operated under varying 

levels of membrane fouling by adjusting biogas sparging flow rates during days 100-138 to 

evaluate the effect of differential fouling levels on biofilm treatment (Smith et al. 2014a). We 

observed a decrease in permeate COD greater than 50 mg/L, primarily due to acetate and 

propionate removal, when membranes were operated under high fouling conditions based on 

transmembrane pressure (TMP). We also observed a limited impact on biofilm treatment after 

reducing TMP to near zero once a biologically active biofilm had been developed. This implies 

that membranes can be inoculated by operating at a high TMP temporarily and thereafter, 

membrane fouling can be reduced without loss of biofilm treatment. At the end this study, P3 had 
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a mature biofilm and P2 was in the process of developing a biologically active biofilm. During the 

current study, we elected to also operate P1 under conditions supporting biofilm development to 

maximize overall treatment performance. Because of the membranes’ different histories, permeate 

COD was initially different but converged over time as a mature biofilm was formed on each 

membrane. The overall COD removal was largely unchanged as temperature was reduced to 12, 

9, and even 6°C, averaging 95 ± 1.5%. However, a decrease in microbial activity in the suspended 

biomass was observed suggested by a steady increase in soluble COD in the bioreactor (Figure 5-

1). Biofilm activity was critical to maintain the high total COD removal as temperature decreased. 

At 3°C, the suspended biomass was primarily hydrolyzing particulate COD as indicated by similar 

influent total and bioreactor soluble COD concentrations at this temperature (Figure 5-1). These 

data suggest that fermentation, syntrophic VFA oxidation, and methanogenesis primarily took 

place within the biofilm biomass. Permeate COD averaged 70 ± 21 mg/L during operation at 3°C 

corresponding to a COD removal of 86 ± 4.0%.  
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Figure 5-1. Influent (total and soluble), bioreactor (soluble), and permeate (P1, P2, and P3) COD 

concentration from days 173-313. 

VFA removal was similarly unaffected by temperature decrease from 12 to 6°C. The average 

permeate acetate and propionate concentrations for each of the first three temperature periods was 

< 5 mg/L (Figure 5-2). Other VFAs (formate, butyrate, and valerate) were below their detection 

limits (Figure S5-1, Appendix C). Concentrations of acetate and propionate in P3 permeate were 

initially lower than P1 and P2 permeate due to the different membrane histories described above. 

As with COD, acetate and propionate concentrations in P1, P2, and P3, converged over time after 

P1 and P2 developed mature biofilms. At 3°C, an increase in acetate, propionate, and formate 

concentrations in the permeate was observed. Immediately after the temperature decrease from 6 

to 3°C, permeate acetate and propionate concentrations exceeded those in the bioreactor likely 

because the biofilm was fermenting organic compounds and methanogens and syntrophic bacteria 

in the biofilm had yet to adapt to the temperature decrease. Acetate and propionate concentrations 

0

100

200

300

400

500

600

173 193 213 233 253 273 293 313

C
O

D
 (

m
g/

L)

Days from Startup

Influent total Influent soluble Bioreactor soluble P1 P2 P3

12°C 9°C 6°C 3°C 



130 

in the permeate were similar during operation at 3°C suggesting temperature based inhibition 

occurred for aceticlastic methanogens as well as syntrophic propionate oxidizing bacteria in the 

biofilm. However, the differences in acetate and propionate concentrations in the bioreactor and 

permeates indicated that biological removal of acetate and propionate by the biofilm still occurred 

at 3°C (Figure 5-2) and therefore, these specific populations were not completely inhibited. 
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Figure 5-2. Bioreactor (soluble) and permeate (P1, P2, and P3) concentrations of (a) acetate and 

(b) propionate. Error bars represent the standard deviation of triplicate IC injections. 

COD removal was potentially impacted by the increase in HRT as temperature decreased, 

particularly at 6 and 3°C (Table 5-1). A relationship between COD removal and HRT in AnMBR 

has previously been reported at low temperatures (Chu et al. 2005). The increase in HRT in this 

study was due to membrane fouling and the correspondingly high TMP, which reduced the flux 
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due to pump slippage. For each 3°C temperature decrease, the TMP increased ~20 kPa over the 

course of several hours. Membrane fouling concerns such as extracellular polymer substances 

(EPS) have been shown to increase as temperatures decrease in aerobic MBRs (Wang et al. 2009). 

However, the inverse has been shown in AnMBRs in a comparison of mesophilic and 

psychrophilic temperatures (Robles et al. 2013). The rapid onset of fouling observed here suggests 

that the fouling may have been non-biological in nature. Future work is necessary to evaluate 

membrane fouling at such low temperatures and at higher, more realistic fluxes.  

5.4.2 The reliance on the biofilm for treatment lead to significant 
dissolved methane oversaturation 

Dissolved methane concentrations in the permeate were indicative of significant methanogenic 

activity in the biofilm. An increase in methane oversaturation (calculated by measuring the 

dissolved methane concentrations in the permeate and by calculating the equilibrium 

concentrations predicted by applying Henry’s law using constants of 32,400, 30,600, 28,800, and 

27,100 atm (Tchobanoglous et al. 2003) for 12, 9, 6, and 3°C, respectively, and the measured 

methane partial pressure in the headspace) was observed as temperature decreased (Figure 5-3) 

with an average methane oversaturation of 2.0 ± 0.41, 2.9 ± 0.48, 3.6 ± 0.87, and 4.1 ± 1.2 at 12, 

9, 6, and 3°C, respectively. We previously reported methane oversaturation as high as 3.1 during 

operation at 15°C. We hypothesize that the higher oversaturation reported here resulted from an 

increased dependence on the biofilm for treatment and therefore, relatively greater methane 

production in the biofilm. A high degree of variability in methane oversaturation was apparent as 

temperature decreased (e.g, between approximately 2 and 7 times oversaturation during operation 

at 3°C; Figure 5-3). Oversaturation positively correlated with the biofilm’s contribution to COD 

removal (Figure 5-4) as a function of temperature indicating a strong link between dependence on 

the biofilm for COD removal and additional dissolved methane in the permeate.  
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Figure 5-3. Permeate (P1, P2, and P3) dissolved methane oversaturation. Error bars represent the 

standard deviations of duplicate dissolved methane extractions and triplicate GC injections of 

each extract. Saturation was calculated according to Henry’s law using constants of 32,400, 

30,600, 28,800, and 27,100 atm (Tchobanoglous et al. 2003) for 12, 9, 6, and 3°C, respectively, 

and the measured methane partial pressure in the headspace. A value of 1 indicates saturation of 

methane whereas a value of 2 indicates two times the concentration at saturation. 
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Figure 5-4. Average COD removal (total, bioreactor, and biofilm) on primary y-axis and 

dissolved methane oversaturation in permeate on secondary y-axis as a function of operational 

temperature. Total COD removal is the summation of bioreactor and biofilm COD removal. 

Error bars represent the standard deviation of all measurements at each temperature.  

Dissolved methane was the major constituent of CODout in the COD mass balance at all operational 

temperatures comprising on average 59 ± 13%, 61 ± 6.4%, 75 ± 7.7%, and 62 ± 9.5% at 12, 9, 6, 

and 3°C, respectively (Figure S5-2). The high contribution of dissolved methane to CODout was 

partly due to the high methane content in the headspace, > 90% at 12, 9, and 6°C. The high methane 

content may have been due to high carbon dioxide solubility at low temperatures and/or influenced 

by the synthetic wastewater composition (Aiyuk and Verstraete 2004). The decrease in 

contribution of dissolved methane to CODout at 3°C was primarily a result of elevated permeate 

COD relative to other operational temperatures. Biogas production at 3°C was erratic and largely 

negligible in the overall COD mass balance. The lack of biogas production at 3°C resulted in 

declining headspace methane content over time. Suspended solids concentrations in the bioreactor 

remained stable throughout operation (Figure S5-3) suggesting negligible net biomass growth. 
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This further suggests that influent particulates did not accumulate in the system and were 

hydrolyzed.  

Biofilm treatment may be a requirement at low operational temperatures for AnMBR to achieve 

effluent discharge criteria. Therefore, significant methane oversaturation may be unavoidable. 

Alternatively, extended operation at low temperatures beyond what was done in this study may 

provide sufficient time for adaptation by the suspended biomass. However, prolonged periods for 

psychrophilic biomass adaptation are unrealistic at the full-scale. Another strategy may be to 

inoculate AnMBRs with a psychrophilic or psychrotolerant biomass as opposed to only a 

mesophilic biomass. Currently, psychrophilic or psychrotolerant anaerobic biomass is rare in 

engineered systems as most are operated in the mesophilic temperature range. This has prompted 

researchers to investigate seeding anaerobic systems with psychrophilic biomass from the 

environment (Petropoulos et al. 2013). Future work should evaluate these approaches and others 

to improve suspended biomass treatment and limit dissolved methane oversaturation caused by 

biofilm treatment. Downstream treatment technologies for dissolved methane recovery should also 

be explored as an alternative. 

5.4.3 RNA-based 16S rRNA sequencing revealed significant 
changes in the functional microbial community  

RNA-based methods to assess microbial activity, as opposed to DNA-based methods evaluating 

microbial community structure, may be particularly helpful in environments with low microbial 

growth and high biomass retention, such as in psychrophilic AnMBRs. DNA-based approaches 

would likely only be representative of the functional microbial community after considerable 

operational time which is a limitation in bench or pilot-scale studies. Further, DNA-based 

approaches may detect extracellular DNA and DNA from inactive community members. We 

previously explored AnMBR at 15°C using this microbial characterization approach and observed 
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significant differences between 16S rDNA and rRNA sequences, especially for methanogens and 

syntrophic bacteria. Lower temperatures further reduce microbial growth and could further reduce 

the sensitivity of DNA-based molecular methods.  

Although 16S rRNA sequencing to infer microbial activity has a number of limitations (e.g., poor 

correlation between growth rate and rRNA concentration in some instances, rRNA presence in 

dormant cells, and limited information on non-growth activities and rRNA concentration; 

(Blazewicz et al. 2013)), we believe that the comparative evaluation taken here between suspended 

and biofilm biomass and over time is still useful and more informative than 16S rDNA sequencing 

alone. Quantifying functional gene expression may be a more accurate method to determine 

activity of specific populations. However, using this approach is challenging to assess the whole 

community given the high diversity in AnMBR biomass. 16S rRNA sequencing is thus a valuable 

tool to broadly characterize active members of a microbial community, despite the methodological 

limitations. We also previously verified that methanogenic activity based on 16S rRNA sequencing 

and expression of the methyl coenzyme-M reductase (mcrA) gene, a functional gene in 

methanogens, correlated well (Smith et al. 2014a) suggesting that 16S rRNA sequencing is a valid 

tool to study psychrophilic AnMBR communities.  

Sequencing results at 12, 9, 6, and 3°C supported the notion that 16S rRNA sequencing is more 

suitable than 16S rDNA sequencing at describing the functional microbial community in low-

temperature AnMBR. Relative methanogenic activity based on 16S rRNA in all biomass was > 2x 

the relative abundance based on 16S rDNA (Figure 5-5). However, 16S rDNA sequencing did 

reveal changes in the methanogenic community as temperature decreased. For example, 

Methanoregula spp., a mesophilic hydrogenotrophic methanogen (Bräuer et al. 2011), was the 

dominant methanogen in terms of abundance at 12°C comprising 46% and 60 ± 14% of Archaea 
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in suspended biomass and biofilm biomass, respectively. However, at 9°C Methanoregula spp. 

comprised only 9% of Archaea in suspended biomass and less than 8.0% in biofilm biomass 

suggesting abrupt inhibition between these temperatures. 16S rRNA sequencing supported this 

conclusion with a decrease in relative activity of Methanoregula spp. in the biofilm from 27 ± 

8.2% to 3.6 ± 1.4% as temperature decreased from 12 to 9°C. Methanoregula spp. activity 

remained low thereafter. Two studies that cultivated Methanoregula observed growth at 

temperatures as low as 10°C but not at 4°C (Bräuer et al. 2011, Yashiro et al. 2011). 16S rDNA 

and rRNA sequencing here confirms temperature based inhibition between 12 and 9°C. Shifts in 

relative activity of other methanogens were less severe as temperature decreased and therefore, 

temperature based inhibition may have been less prevalent than in Methanoregula. It is important 

to note that Methanoregula was represented by 36 OTUs over all biomass samples whereas other 

dominant methanogens such as Methanospirillum, Methanosaeta, and Methanosarcina were 

represented by 45, 61, and 39 OTUs, respectively, suggesting greater intragenus diversity and 

potentially more temperature based resilience. For example, the diversity of Methanospirillum 

according to the inverse of Simpson’s Diversity Index (Hunter and Gaston 1988) increased in 

suspended biomass as temperature decreased implying that OTUs within the genus had differing 

response to the temperature decrease. 
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Figure 5-5. (a) Relative abundance based on 16S rDNA sequencing and (b) relative activity 

based on 16S rRNA sequencing of methanogens to total community in suspended (S) and 

biofilm (P1, P2, and P3) biomass at operational temperatures of 12, 9, 6, and 3°C. 

The declining relative activity of methanogens in biofilm biomass as temperature decreased 

suggests a diversification of microbial metabolisms in the biofilm. The increasing contribution of 

dissolved methane to CODout (Figure S5-2) indicates that methanogenic activity in the biofilm 

increased as temperatures decreased to 6°C whereas the increase in soluble bioreactor COD 

indicates a decrease in suspended biomass activity. This suggests that the absolute activity of 

biofilm biomass and temperature were negatively correlated. Therefore, the observed decline in 
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relative activity of methanogens signifies an increase in its range of microbial metabolisms (e.g., 

fermentations in addition to methanogenesis and syntrophic VFA oxidation) rather than a 

reduction in methanogenic activity in the biofilm. We hypothesize that biofilm biomass is more 

active and resilient to temperature than suspended biomass due to increased spatial organization 

of the microbial community enhancing syntrophy and/or reduced mass-transport limitations and 

increased substrate availability in the biofilm. 

A limitation of this study is the lack of absolute abundance or activity in our molecular 

characterization. Quantitative nucleic acid extraction from sludge is challenging particularly when 

matrix differences such as those between suspended biomass and biofilm biomass are unavoidable. 

Constituents such as EPS, which we previously reported as higher in biofilm biomass from fouled 

membranes (Smith et al. 2013), can decrease extraction efficiency and extract quality which makes 

quantitative characterization difficult. Constituents such as EPS and other microbial products may 

also vary as a function of temperature (Wang et al. 2009) creating additional complications. 

Therefore, here we rely on relative molecular characterization and process performance data to 

make inferences regarding absolute activity.   

A ThetaYC-based (Yue and Clayton 2005) principal coordinate analysis (PCoA) of 16S rRNA 

revealed significant changes in the biofilm community as temperature decreased. High variability 

(i.e., poor clustering) between biofilm biomass was observed at 12 and 9°C but not at 6 and 3°C 

which is consistent with the three biofilms converging performance-wise over time based on 

effluent quality as each biofilm matured. The suspended biomass community was distinct from the 

biofilm community but remained relatively constant at the varying temperatures suggesting limited 

changes in the community’s membership or individual relative activity of each member as a 
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function of temperature (Figure 5-6). This suggests that the temperature decrease non-specifically 

reduced activity of the suspended biomass community. 

 

Figure 5-6. ThetaYC-based PCoA of microbial community based on 16S rRNA sequencing of 

suspended (S) and biofilm (P1, P2, and P3) biomass at operational temperatures of 12, 9, 6, and 

3°C. The x and y-axes represent 45 and 20% of the variation, respectively. The top 20 classified 

phylotypes are shown in Figure S5-5. 

 

5.4.4 The dominant type of methanogenic pathway is specific for 
suspended and biofilm biomass at all temperatures 

Hydrogenotrophic and aceticlastic methanogenic pathways were favored in biofilm and suspended 

biomass, respectively (Figure S5-4). Higher activity of hydrogenotrophic methanogens relative to 

their aceticlastic counterparts in biofilm biomass suggests a metabolic advantage, possibly due to 

spatial organization of the community supporting syntrophic interactions. However, syntrophic 

bacterial activity was almost always higher in the suspended biomass which contradicts this 

hypothesis (Figure 5-7). It is important to again mention that our molecular approach to infer 
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activity is relative. If overall absolute microbial activity is significantly higher in biofilm biomass 

compared to suspended biomass, absolute syntrophic bacterial activity could indeed be higher in 

the biofilm than the suspended biomass. At all operational temperatures except 9°C, an 

unclassified OTU belonging to family Syntrophomonadaceae was significantly more active in the 

biofilm than the suspended biomass. Syntrophomonadaceae typically only oxidize C4 and higher 

order organic compounds (Stams et al. 2012) and therefore, its high activity in the biofilm given 

that butyrate and valerate were non-detectable in the bioreactor is remarkable. We previously 

hypothesized that this unclassified OTU may instead play a role in a novel pathway in which 

Smithella spp., a propionate oxidizing syntroph, first dismutates propionate to acetate and butyrate 

followed by butyrate oxidation by Syntrophomonas spp. via a trophic interaction (Gan et al. 2012) 

or alternatively that this species possesses a unique capability of C3 oxidation that is unknown in 

other members of its family.  
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Figure 5-7. (a) Relative abundance based on 16S rDNA sequencing and (b) relative activity 

based on 16S rRNA sequencing of syntrophic VFA oxidizing bacteria to total community in 

suspended (S) and biofilm (P1, P2, and P3) biomass at operational temperatures of 12, 9, 6, and 

3°C. 

It is important to note that Methansarcina, a mixotrophic methanogen capable of metabolizing 

acetate, hydrogen, and other C1 compounds (Mladenovska and Ahring 1997), increased activity 

in suspended biomass as temperature decreased. The molecular methods employed here are not 

resolute enough to determine substrate utilization of Methanosarcina. We hypothesize that 
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Methanosarcina may have an advantage over other methanogens in low temperatures due to its 

metabolic flexibility. For example, Methanosarcina might have the capability to transition from 

aceticlastic to hydrogenotrophic methanogenesis as temperature decreases and the 

thermodynamics of hydrogenotrophic methanogenesis become more favorable (Lettinga et al. 

2001). Typically, Methanosarcina is thought to outcompete Methanosaeta when acetate 

concentrations are high due to its higher growth rate but lower substrate affinity (Conklin et al. 

2006). The high activity of Methanosarcina in suspended biomass in our system is unusual given 

acetate concentrations were always low which should theoretically favor Methanosaeta. 

Competition between Methanosarcina and Methanosaeta at such low temperatures has yet to be 

reported and therefore, it is difficult to conclude which selective pressures (e.g., temperature or 

substrate availability) led to the functional methanogenic community observed here.  

5.4.5 Biofilm treatment may be a prerequisite for AnMBR domestic 
wastewater treatment at low psychrophilic temperatures 

This study assessed the lower temperature limits for AnMBR treatment of domestic wastewater. 

COD removal > 95% was maintained at temperatures as low as 6°C. However, this high treatment 

performance would not have been possible without biological treatment in the biofilm. We 

hypothesize that biofilm biomass is more resilient than suspended biomass to decreases in 

operational temperature, possibly because of spatial organization of the microbial community 

enhancing syntrophy and resulting in a metabolic advantage. This hypothesis was supported by 

16S rRNA sequencing in which hydrogenotrophic methanogenesis was the dominant 

methanogenic pathway in the biofilm biomass, but not suspended biomass. Future work could 

explore this possibility using fluorescence in situ hybridization (FISH) targeting syntrophic 

bacteria and hydrogenotrophic methanogens in the biofilm and suspended biomass to visually 

investigate spatial juxtapositioning. Alternatively, the biofilm could have a metabolic advantage 
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relative to suspended biomass due to reduced mass-transport limitations and increased substrate 

availability. Biofilm treatment, however, introduces concerns regarding long-term and potentially 

irreversible membrane fouling, a need for chemical cleaning in membrane installations, and high 

methane oversaturation. Low operational temperature is detrimental to the AnMBR energy balance 

without the development of low-energy dissolved methane recovery technologies. Future work 

should evaluate strategies to improve suspended biomass treatment at low temperature to decrease 

the reliance on the biofilm thereby decreasing dissolved methane oversaturation and the 

aforementioned concerns. We have demonstrated that AnMBR treatment at temperatures down to 

6°C is feasible but future research is necessary to establish the practicality of doing so.    
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Chapter 6. Navigating Wastewater Energy Recovery 
Strategies: A Life Cycle Comparison of Anaerobic Membrane 
Bioreactor and Conventional Treatment Systems with 
Anaerobic Digestion 
 

6.1 Abstract 

The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) 

technology in comparison with conventional wastewater energy recovery technologies. 

Wastewater treatment process modeling and systems analyses were combined to evaluate the 

conditions under which AnMBR may produce more net energy and have lower life cycle 

environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), 

conventional activated sludge with anaerobic digestion (CAS+AD), and aerobic membrane 

bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater 

treatment under baseline assumptions at 15°C, AnMBR recovered 49% more energy as biogas 

than HRAS+AD, the most energy positive conventional technology considered, but had 

significantly higher energy demands and environmental emissions. Global warming impacts 

associated with AnMBR were largely due to emissions of effluent dissolved methane. For high 

strength domestic wastewater treatment, AnMBR recovered 15% more net energy than 

HRAS+AD and the environmental emissions gap between the two systems was reduced. Future 

developments of AnMBR technology in low energy fouling control, increased flux, and 

management of effluent methane emissions would make AnMBR competitive with HRAS+AD. 
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Rapid advancements in AnMBR technology must continue to achieve its full economic and 

environmental potential as an energy recovery strategy for domestic wastewater. 

6.2 Introduction 

Anaerobic processes that recover energy in the form of biogas are gaining attention in the 

wastewater treatment industry. Anaerobic membrane bioreactor (AnMBR) systems are emerging 

as a promising technology for mainstream (as opposed to sidestream) treatment of domestic 

wastewater because they can generate a high-quality effluent during operation at reasonable 

hydraulic retention times (HRT < 8 hours) and low temperatures (~15°C), while producing a 

fraction of the sludge compared to aerobic treatment (Chu et al. 2005, Ho and Sung 2010, Smith 

et al. 2013, Wen et al. 1999). AnMBRs generate methane-rich biogas directly through anaerobic 

conversion of organics in domestic wastewater. This energy recovery must be balanced against 

system energy consumption to reduce net energy use. Although AnMBRs eliminate aeration and 

associated energy demands, substantial energy is currently needed to prevent membrane fouling. 

A previous energy balance (Martin et al. 2011) and cost analysis (Lin et al. 2011) on AnMBRs 

concluded that fouling control contributes significantly to overall energy demand and operational 

costs. Dissolved methane in AnMBR effluent represents another concern as both a lost energy 

source and a greenhouse gas emission if not recovered. Recently, research on AnMBRs has 

expanded substantially (Lin et al. 2013, Ozgun et al. 2013, Smith et al. 2012), including several 

pilot-scale demonstrations (Dagnew et al. 2011, El-Mashad and Zhang 2010, Gimenez et al. 2011, 

Martinez-Sosa et al. 2011b). To date however, AnMBR has not been evaluated from a systems 

perspective against more established technologies. A comprehensive comparison of AnMBR and 

established wastewater energy recovery technologies is needed to prioritize future research on 

AnMBRs. 
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A high rate activated sludge system followed by anaerobic digestion of produced sludge 

(HRAS+AD) is an established treatment strategy capable of energy recovery. HRAS research 

began in the 1940s (Wuhrmann 1954) and today many full-scale HRAS systems exist. Similarly, 

AD of sewage sludge has been in practice for over 100 years (Speece 2008). Interest in HRAS+AD 

has recently increased due to its compatibility with emerging low-energy nitrogen removal 

processes (Miller et al. 2012) (e.g., mainstream ammonia oxidation [nitritation] and anaerobic 

ammonia oxidation (Kartal et al. 2010)). In contrast to AnMBR, biogas in HRAS+AD is generated 

during AD of sludge rather than directly from wastewater. HRAS+AD is operated at a short HRT 

of 1.5 – 3 hours and solids retention time (SRT) of <2 days (Tchobanoglous et al. 2003), thereby 

maximizing sludge production while minimizing oxygen demand. Therefore, the total energy 

recovery possible through anaerobic digestion is maximized while aeration energy demands are 

minimized. However, limitations exist to HRAS treatment such as poor settleability of mixed 

liquor and low BOD5 removal, particularly at SRTs less than 1.5 days, which can limit the use of 

HRAS for direct discharge (Bisogni and Lawrence 1971, Shao et al. 1992). These limitations 

become less of a concern when implemented in conjunction with downstream low-energy nutrient 

removal processes (e.g., A-stage of A/B processes). 

This paper compares AnMBR and HRAS+AD technologies through the application of wastewater 

treatment process modeling, life cycle costing (LCC), net energy balance (NEB), and life cycle 

assessment (LCA) methods. Despite their different approaches to energy recovery, AnMBR and 

HRAS+AD generate effluents with similar five-day biochemical oxygen demand (BOD5) and 

ammonia concentrations (no nitrification), thus providing reasonably equivalent functional units 

as needed for life cycle comparisons.  The comparisons may be impacted by factors such as 

wastewater temperature, strength, and sludge disposal practice. For instance, lower wastewater 
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temperature affects the energy balance by increasing oxygen transfer efficiency (positive impact 

on NEB) and methane solubility (negative impact on NEB). Higher strength wastewater increases 

oxygen demand during aerobic treatment and energy recovery. The comparisons are also affected 

by sludge management practices since HRAS+AD and AnMBR vary in quantity of sludge 

produced.  

In this work we address these factors via an extensive sensitivity analysis on uncertain parameters. 

Scenarios varying wastewater temperature, strength, and sludge disposal practice are discussed. 

Monte Carlo simulation was employed to address uncertainty and sensitivity to model parameters 

(Table S8 of the Supplementary Information (SI) in Appendix D) that would affect the comparison 

of HRAS+AD and AnMBR from cost, energy, and environmental impact perspectives. To project 

the development of AnMBR technology as it evolves to full-scale, a set of uncertainty parameters 

was created considering best-case efficiency gains that could be achieved in the next decade. We 

start with a comparison of AnMBR  performing as reported in the literature (pilot and lab-scale 

systems) and then compare AnMBR as it may exist after future development (full-scale 

implementation) through the uncertainty analysis. 

6.3 Methods 

6.3.1 System Boundary and Functional Unit 

The ISO 14040 framework (Finkbeiner et al. 2006) was used to compare the environmental 

attributes of AnMBR and HRAS+AD. As additional points of reference, aerobic membrane 

bioreactor with anaerobic digestion (AeMBR+AD) and conventional activated sludge with 

anaerobic digestion (CAS+AD) were included in the study. CAS+AD and AeMBR+AD employ 

similar solids separation processes to HRAS+AD and AnMBR, respectively, but are not 

specifically designed to enhance energy recovery. Thus, these additional comparisons illustrate the 
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effect of converting to systems designed for enhanced energy recovery. The comparison of 

AnMBR and AeMBR+AD is also relevant for water reuse schemes in which a solids-free effluent 

is desirable. Process flow diagrams are provided in Figures S6-2 - S6-5 of SI. In total, 16 scenarios 

for each treatment system were evaluated: two domestic wastewater strengths (430 mg/L and 800 

mg/L chemical oxygen demand (COD)) (Tchobanoglous et al. 2003), two wastewater temperatures 

(15 and 25°C), and four sludge disposal practices (landfilling, land application, incineration, and 

an aggregate that represents average U.S. sludge disposal practices). The baseline scenario was 

defined as the treatment of medium strength domestic wastewater at 15°C using the aggregate 

sludge disposal practice (13% landfilling, 62% land application, 25% incineration (U.S. 

Environmental Protection Agency 1999)), and the operational parameter values specified in Table 

6-1. It was verified that construction phase environmental impacts are negligible relative to life 

cycle impacts as reported by Renou et al. (2008), and thus only the use-phase impacts were 

included. The unit processes included in the system boundary are summarized in Figure 6-1, with 

details provided in Section 3 of the SI.  
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Figure 6-1. System Boundary of AnMBR and HRAS+AD. CAS+AD and AeMBR+AD system 

boundaries are presented in Figure S1. 

The functional unit was defined as the treatment of 5 million gallons per day (MGD) (18,950 m3d-

1) of domestic wastewater to achieve at a minimum U.S. EPA secondary treatment effluent 

standards (<30 mg L-1 BOD5 and 30 mg L-1 total suspended solids (TSS) (U.S. Environmental 

Protection Agency 1988)). Energy recovery was assumed to occur via on-site biogas combustion 

using combined heat and power (CHP), or cogeneration. Treatment capacity was selected based 

on the U.S. EPA’s CHP Partnership 2007 report, which suggested that influent flow rates greater 

than 5 MGD are required to produce biogas via anaerobic digestion in quantities sufficient for 

economically feasible CHP systems (Naik-Dhungel 2010).  

6.3.2 System Design and Modeling for Life Cycle Inventory 

HRAS+AD, CAS+AD, and AeMBR+AD were modeled using GPS-X (Hydromantis, Inc.) as 

discussed in the SI. AnMBR was modeled based on the performance of several existing pilot and 

lab-scale systems (Baek et al. 2010, Chu et al. 2005, Ho and Sung 2009, Hu and Stuckey 2006, 
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Huang et al. 2011, Martin et al. 2011) and using steady-state equations described in SI Equations 

1-3. This approach was used because no verified AnMBR performance model is yet available and 

existing anaerobic digestion models (e.g., ADM1 (Batstone et al. 2002)) do not accurately simulate 

low temperature, low strength AnMBR treatment. The baseline scenario for this analysis uses the 

model process parameters provided in Table 6-1. Although each system achieves the effluent 

standards defined by the functional unit, differences do exist, especially in effluent suspended 

solids concentration and nitrogen speciation (Table S6-6).  
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Table 6-1. Model Process Parameters for Baseline Scenario (15°C medium strength wastewater). 

System SRT HRT Recycle Ratio Flux SGD 

 (d) (h)  (L m-2 h-1; LMH) (m3 m-2 h-1) 

CAS 10 8 -- -- -- 

HRAS 1.5 2 -- -- -- 

AeMBR 10 8 2Q 20 0.082 

AnMBR 200 8 2Q 10 0.23 

SRT=solids retention time; HRT=hydraulic retention time; Q=influent flow rate; SGD=specific gas demand. 

Table 6-2. Uncertainty parameter values for current versus future AnMBR. 

 Baseline Current Future 

Parameter* Value Worst Case Best Case Worst Case Best Case 

Flux (LMH) 10 7 17 10 30 

Sparging (SGD; m3 m-2 h-1/frequency; % on) 0.23/100 0.50/100 0.10/100 0.23/100 0.082/25 

Dissolved methane recovered (%) 0 0 0 0 100 

*Only parameters differing between the current and future AnMBR uncertainty are shown. All uncertainty parameters are shown in 

Table S6-8. 
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The membrane properties used for AnMBR and AeMBR were based on hollow fiber membranes. 

Manufacturing information was used to determine materials and weights of the membrane 

components and chemical cleaning requirements (specifications provided in Table S6-3). 

Permeate pumping energy was calculated assuming a transmembrane pressure of 10 kPa. 

Membrane lifetimes were assumed to be 10 years. The specific gas demand (SGD), which is the 

gas flow required for membrane sparging to prevent fouling, was assumed to be 0.23 m3 m-2 h-1 for 

AnMBR based on pilot-scale evaluation of membrane fouling at different SGDs (Robles et al. 

2012). Reported pilot-scale AnMBR SGDs vary widely (0.10 – 1.2 m3 m-2 h-1) and have not yet 

been optimized for energy. An SGD of 0.23 m3 m-2 h-1 was selected from the only long-term study 

that compared multiple SGDs at reasonably high fluxes (10 LMH) (Robles et al. 2012). For 

AeMBR an SGD of 0.082 m3 m-2 h-1 was selected based on manufacturer full-scale 

recommendations for hollow fiber membranes (Hong 2012). 

Wastewater strength is known to impact mixed liquor characteristics and concentration, however 

its influence on membrane fouling is poorly understood (Lousada-Ferreira et al. 2010), particularly 

for AnMBR. Therefore it was assumed that membrane fouling control requirements were 

independent of wastewater strength. Membrane fluxes of 10 and 20 LMH were assumed for 

AnMBR and AeMBR, respectively, based on pilot-scale AnMBR (Gimenez et al. 2011, Martinez-

Sosa et al. 2011a, Robles et al. 2012) and full-scale AeMBR data (Judd 2010). Much effort is being 

directed to understanding MBR fouling and optimizing fouling control strategies (e.g. reducing 

SGD, use of intermittent sparging and large bubble scour). These efforts were incorporated into 

this work by performing uncertainty and sensitivity analyses to evaluate the impact of SGD, 

intermittent sparging, and flux on energy and environmental impacts using the values and ranges 
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reported in Table 6-2. For the current AnMBR uncertainty parameter ranges, SGD and flux values 

were assumed based on reported operation of pilot-scale AnMBRs (Dagnew et al. 2011, Gimenez 

et al. 2011, Martinez-Sosa et al. 2011b, Pretel et al. 2013, Robles et al. 2012). Future AnMBR 

uncertainty parameter ranges assumed SGD, sparging intervals, and flux will approach that of 

current AeMBR operation in the best case, while worst case values were the baseline current 

AnMBR values (Table 6-2). 

AnMBR methane production was calculated assuming 350 L of methane was produced per kg 

COD removed at standard temperature and pressure and was adjusted for the different wastewater 

temperatures (Grady et al. 2011). Sulfate reduction, which reduces the COD available for 

conversion to methane (Gimenez et al. 2011, Smith et al. 2013), was taken into account when 

calculating methane generation. Several studies using anaerobic bioreactors for domestic 

wastewater treatment with and without membrane separation have reported methane 

oversaturation in the effluent (Hartley and Lant 2006, Kim et al. 2011, Singh et al. 1996, Smith et 

al. 2013). The dissolved methane concentration in AnMBR effluent was calculated using Henry’s 

Law and assumed to be 1.5 times oversaturation, which represents the average oversaturation 

reported to date (Bandara et al. 2012, Kim et al. 2011, Smith et al. 2013). It was further assumed 

that dissolved methane in AnMBR effluent would eventually be released to the atmosphere. We 

considered the future possibility that complete dissolved methane recovery and its subsequent use 

for energy generation becomes technically and economically feasible (Table 6-2).  

Waste activated sludge was assumed to be thickened using a gravity belt-filter press with polymer 

addition for all systems. Primary and waste activated sludge were blended prior to anaerobic 

digestion for HRAS and CAS. Blended sludge (HRAS and CAS) and waste activated sludge 

(AeMBR) were anaerobically digested at a 20 day SRT and 35°C to achieve Class B biosolids 
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(Tchobanoglous et al. 2003, U.S. Environmental Protection Agency 1993). The dissolved methane 

concentration in AD effluent was calculated assuming five times oversaturation (Pauss et al. 1990) 

relative to Henry’s Law and considered a direct emission. Sludge was dewatered by centrifugation 

with polymer addition for all systems. Since AnMBR sludge would not benefit from stabilization 

using anaerobic digestion, dewatered AnMBR sludge was lime stabilized to achieve Class B 

biosolids (U.S. Environmental Protection Agency 1993) for landfilling and land application, 

whereas for incineration AnMBR sludge was only dewatered.  

NEB was calculated as the sum of all electrical energy demands for treatment minus electricity 

generated via CHP. Electricity requirements for pumps, blowers, and mixing were estimated using 

SI Equations 4 and 5. The electricity requirements for gravity belt thickening and centrifuge 

dewatering were estimated using equations adapted from CAPDETWorks (Guest 2012). Heat 

generated by CHP was used to heat the digesters to 35°C and any excess heat was considered 

waste. The electricity generated was used to offset average U.S. grid electricity. Non-electrical 

energy demands such as those incurred outside of the treatment plant for sludge transportation and 

disposal (e.g., diesel) were included as environmental impacts but not included in NEB. Emissions 

data for U.S. grid electricity and other unit processes within the system boundary were collected 

from U.S. LCI (Norris 2004), Ecoinvent (Frischknecht et al. 2005), and ELCD (European 

Commission Joint Research Centre 2010) databases.  

6.3.3 Impact Assessment 

Environmental impacts were characterized using Tools for the Reduction and Assessment of 

Chemical and Other Environmental Impacts (TRACI) developed by the U.S. EPA (Bare et al. 

2002). Except for gaseous emissions of dissolved methane, all impacts to the environment caused 

by the effluent were excluded from the analysis. Direct emissions of methane from AnMBR and 
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AD effluents were evaluated assuming a global warming potential 25 times that of an equivalent 

mass of carbon dioxide (IPCC 2007). Biogenic carbon dioxide emissions during treatment were 

not included in the impact assessment as they are not considered to contribute to net greenhouse 

gas effects (Monteith et al. 2005). 

6.3.4 Uncertainty and Sensitivity Analysis 

The aggregate impacts of data uncertainty were evaluated by Monte Carlo analysis (50,000 

simulations). Table S6-8 lists the 14 uncertainty parameters, which represent variations in 

efficiency, technology, membrane performance, and sludge transport distance. The majority of the 

uncertainty parameters were associated with AnMBR due to the emerging status of the technology 

relative to HRAS+AD. Two sets of uncertainty parameter ranges, representing current and future 

development, were evaluated for AnMBR as shown in Table 6-2. Uncertainty parameter values 

for HRAS+AD, CAS+AD, AeMBR+AD, and current AnMBR were assigned using either 

literature values or conservatively estimated values when literature data were not available. The 

set of parameters for future AnMBR development were assigned assuming it could achieve 

operating conditions comparable to full-scale AeMBRs today. Uncertainty parameter distributions 

were assumed as triangular when data were available to suggest a likely midpoint value. Uniform 

distributions were used in the absence of midpoint estimates. A sensitivity analysis was performed 

to determine the sensitivity of net energy demand and emissions categories to each uncertainty 

parameter. A category was defined as “sensitive” to an uncertainty parameter if the resulting 

correlation coefficient had an absolute value greater than 0.6. 

6.3.5 Life Cycle Costing 

LCC was performed for AnMBR, HRAS+AD, CAS+AD, and AeMBR+AD assuming a treatment 

plant life of 40 years. CAPDETWorks (Hydromantis, Inc.) was used to estimate the capital and 
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operational costs of each system (Tables S6-11 – S6-16). Supplemental costs added to 

CAPDETWorks estimations included membrane-related costs (materials and chemicals), AnMBR 

cover and gas handling equipment, biogas CHP units, and quicklime for AnMBR sludge 

stabilization. LCC was applied and net present value determined at three discount rates: 5%, 8%, 

and 10%.  

6.4 Results and Discussion 

6.4.1 Life Cycle Costs of Energy Recovery Systems are Lower than 
Conventional Systems 

It was first observed that the sludge disposal practice was a key determinant as to whether AnMBR 

or HRAS+AD had a lower life cycle cost (in terms of net present value). Although AnMBR capital 

costs were greater than HRAS+AD, HRAS+AD produced more sludge and the higher sludge 

disposal cost of HRAS+AD off-set the higher capital cost of AnMBR when sludge was landfilled 

(Figure 6-2). HRAS+AD had the lowest life cycle cost when sludge was land applied or 

incinerated. 

Both HRAS+AD and AnMBR had lower life cycle costs than their reference systems (CAS+AD 

and AeMBR+AD, respectively) for all sludge disposal practices. Despite CAS+AD having 

comparable capital costs to HRAS+AD, CAS+AD had higher life cycle costs due to electricity 

costs associated with aeration. AeMBR+AD had the highest life cycle cost for all sludge disposal 

practices primarily because of higher capital costs due to the combination of the membrane system 

and anaerobic digester, as well as higher electricity costs for aeration. In situations where 

membrane separation and energy recovery are both required, AnMBR is more economical than 

AeMBR+AD for all sludge disposal practices. 
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As AnMBR technology improves, its capital and operational costs are likely to decrease. For 

instance, increasing flux from 10 to 20 LMH reduces membrane capital costs by 46%. If one 

assumes that chemical and energy use per unit membrane area remain constant, then operational 

costs for membrane cleaning and fouling control also decrease with increasing flux. In this case, 

doubling the flux reduces life cycle AnMBR costs by 12-13%, resulting in a lower life cycle cost 

as compared with HRAS+AD when solids are landfilled or incinerated and comparable when 

solids are land applied. 

 

Figure 6-2. Net present value of HRAS+AD, AnMBR, CAS+AD, and AeMBR+AD at 15°C for 

each sludge disposal practice. Bars represent a discount rate of 8%. Triangles ( , ) represent a 

discount rate of 5% and 10%.  
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6.4.2 Future Developments are needed for AnMBR to be Energy 
Competitive with HRAS+AD 

HRAS+AD was the only system to achieve a positive NEB, meaning it created more energy than 

it consumed, in the baseline scenario. Despite AnMBR recovering more energy than HRAS+AD, 

AnMBR consumed almost 4 times as much energy (Figure 6-3). AnMBR energy demand was 

primarily attributable to gas recirculation (i.e., sparging) energy for fouling control which 

represented 86% of the energy demand. This energy consumption was 5 times greater than the 

blower energy demand for HRAS+AD aeration. Energy consumption by AnMBR was highly 

sensitive to SGD and flux, as described later. Energy demands for sludge thickening and 

dewatering were three times greater for HRAS+AD, accounting for 22% of HRAS+AD energy 

demand, whereas they accounted for <2% of AnMBR energy demand.  

A higher wastewater temperature of 25°C decreased the NEB of HRAS+AD, CAS+AD, and 

AeMBR+AD due to increased aeration energy demands arising from lower oxygen transfer 

efficiencies. However, the higher temperature lowered AD heating requirements. This is because 

waste heat from CHP was sufficient for heating the digesters at 25°C, whereas biogas was required 

for heating at a wastewater temperature of 15°C that would otherwise have been used to generate 

electricity. Taken together, the positive NEB of HRAS+AD decreased by 13% at 25°C. The 

negative NEB of AnMBR reduced by 21%, primarily due to lower methane solubility leading to 

increased collection of biogas (Figure S6-6).  

Systems designed for enhanced energy recovery achieved better NEBs than their respective 

reference systems (HRAS+AD > CAS+AD and AnMBR > AeMBR+AD). Unlike HRAS+AD, 

CAS+AD did not achieve a positive NEB, mostly because it required more energy for aeration 

given its SRT of 10 days versus 1.5 days for HRAS. CAS+AD also recovered less energy because 
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a significant fraction of the energy contained in the soluble and particulate fractions of wastewater, 

as well as the energy contained in the biomass formed during treatment, were oxidized at the longer 

SRT rather than converted to biogas in AD. AeMBR+AD NEB was lower than AnMBR because 

AeMBR+AD recovered significantly less energy and required energy for aeration in addition to 

sparging energy. Among all treatment systems, AeMBR+AD had the worst NEB. 

The uncertainty analysis for AnMBR resulted in a broad 95% confidence interval for the NEB 

(Figure 6-3) due to the potential for future AnMBR development as it progresses to full-scale 

(Table 6-2). For the treatment of medium strength wastewater, there is significant potential for 

AnMBR to have a more positive NEB than HRAS+AD if the energy required for sparging is 

reduced (i.e., lower SGD and/or biogas sparging frequency) or flux is increased. For example, 

reducing SGD from 0.23 m3 m-2 hr-1 to that of AeMBR (0.082 N m3 m-2 hr-1) would result in 

comparable NEBs for AnMBR and HRAS +AD.  Alternatively, flux could be increased from 10 

to 28 LMH to attain comparable NEBs. Achieving modest improvements in SGD, sparging 

frequency, and flux simultaneously is a more realistic approach than focusing on any one 

parameter alone. For example, if SGD were to remain the same but sparging frequency was 

reduced from 100% to 50% “on” and flux increased from 10 LMH to 15 LMH, AnMBR would 

yield a more positive NEB than HRAS+AD.  

Improvements in AnMBR operational parameters are likely as it evolves to full-scale operation. 

Pilot AnMBRs have already been successfully operated at fluxes of 15 LMH and greater (Dagnew 

et al. 2011, Robles et al. 2012), although fluxes in the range of 8-10 LMH are more common 

(Smith et al. 2012). There are also full-scale AeMBRs that operate using cyclic sparging (on for 

10 seconds and off for 30 seconds). Improvements in AeMBR sparging, such as intermittent and 

large-bubble sparging, are still evolving and have yet to be explored in AnMBR. Granular 
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activated carbon (GAC) in a fluidized bed has been proposed as an alternative strategy to 

membrane fouling control that may significantly reduce energy demand by eliminating the need 

for membrane sparging entirely (Kim et al. 2011). However, this strategy must also be evaluated 

for its impact on membrane lifetime and additional energy demands for GAC fluidization. Other 

novel approaches to membrane fouling control, such as rotating ceramic disc membranes (Jaffrin 

2008), or emerging membrane materials such as electrospun nanofibers (Bjorge et al. 2009), have 

yet to be evaluated in AnMBR. Recovery of effluent dissolved methane could also improve the 

AnMBR NEB significantly as discussed below. As AnMBR technology matures, research will 

shift from focusing on performance feasibility to minimizing energy demands and maximizing 

energy recovery, making it more competitive relative to HRAS+AD for energy recovery from 

medium strength wastewater.  

For high strength domestic wastewater, AnMBR achieved a more positive NEB than HRAS+AD. 

HRAS+AD energy demand was dependent on wastewater strength, increasing 80% relative to 

medium strength wastewater due to increased aeration requirements. AnMBR energy consumption 

increased less than 1% for high strength versus medium strength wastewater because membrane 

sparging, which made up the majority of AnMBR energy demand, was assumed to be independent 

of wastewater strength. In addition, energy recovery increased by 130% for AnMBR but only by 

89% for HRAS+AD. AnMBR energy recovery was more sensitive to wastewater strength because 

AnMBR converts a greater fraction of organics in wastewater to methane. Further, dissolved 

methane in AnMBR effluent was not assumed to increase at higher wastewater strength because 

AnMBR mixed liquor was methane-saturated and changes in strength likely do not change 

methane solubility. Therefore, methane losses in the effluent were not assumed to increase and all 

methane generated from the additional organics in higher strength wastewater was recoverable 
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biogas. Even without future development, AnMBR has a more positive NEB than HRAS+AD for 

high strength domestic wastewater and the margins will only increase with further AnMBR 

developments to reduce energy consumption. 

 

Figure 6-3. Net energy balance (NEB) for HRAS+AD, AnMBR, CAS+AD, and AeMBR+AD 

for medium strength (MS) and high strength (HS) wastewater treatment at 15°C. Triangles ( , ) 

represent the 95% confidence interval of net energy demand from the uncertainty analysis. For 

AnMBR, triangles represent uncertainty based on the future parameter values.  

6.4.3 Environmental Impacts of AnMBR Require Attention 

AnMBR featured the highest global warming (GW) impact compared with all other systems for 

medium strength wastewater (Figure 6-4). Seventy-five percent of this impact was from effluent 

dissolved methane. The magnitude of these emissions is primarily due to mainstream anaerobic 

treatment (i.e., the volume of effluent generated containing dissolved methane) rather than a 

function of operational temperature. GW impact decreased only 16% when the temperature was 

increased from 15 to 25°C (data not shown). Most of the remaining AnMBR GW impact was from 



167 

electricity use (19%) which will decrease significantly if AnMBR becomes operationally closer to 

AeMBR. For HRAS+AD, CAS+AD, and AeMBR+AD, nearly all GW impact was caused by 

electricity use which resulted in a linear relationship between GW and NEB (Figure 6-4). Effluent 

AnMBR methane emissions must be avoided for AnMBR to approach the limiting linear 

relationship between GW and net energy demand seen in Figure 6-4.  

Effluent dissolved methane handling has emerged as a key concern for mainstream anaerobic 

treatment processes. One approach is to recover the dissolved fraction for additional energy 

generation. However, no energetically and economically feasible approach for methane recovery 

has been demonstrated to date. Membrane degasification of dissolved methane from anaerobic 

effluents has been demonstrated (Bandara et al. 2011, Cookney et al. 2012). In one study the 

recovered gas had a low methane content (approximately 20%), which was not suitable for 

cogeneration and the process was also energy intensive, requiring two orders of magnitude more 

energy than could be theoretically recovered (Bandara et al. 2011) Another study estimated a 

substantially lower energy requirement but did not experimentally verify their assumptions 

(Cookney et al. 2012). A simpler approach may involve stripping dissolved methane during re-

aeration, which would be required prior to discharge for an anaerobic effluent, using a covered 

process to capture the off-gas. Relatively minor aeration energy would be required as the effluent 

contains minimal biological activity. With any non-selective dissolved gas recovery system, 

carbon dioxide, which is significantly more soluble than methane, may also be stripped and dilute 

recovered methane. The stripped biogas could theoretically be blended with the bioreactor biogas 

to generate a biogas suitable for cogeneration. This gap in current understanding suggests that 

research efforts should focus on demonstrating low-energy methane recovery strategies and 

quantifying their impact on the AnMBR NEB.  
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Until efficient recovery technologies are developed, other options may be more energetically 

favorable for mitigating GW impact. In principle, a downstream process could biologically oxidize 

dissolved methane while achieving nitrification and/or nitrogen removal. For example, nitritation 

to convert ammonia to nitrite, coupled with anaerobic oxidation of methane using nitrite as the 

electron acceptor (Waki et al. 2009) could be feasible for downstream AnMBR treatment. 

Dissolved methane could reduce or eliminate the need for an exogenous electron donor and carbon 

source otherwise required in denitrification. Nitritation/anammox could also be applied 

downstream of AnMBR or HRAS+AD, as both produce effluents with low carbon-to-nitrogen 

(C:N) ratio. Nitritation followed by anammox consumes less energy than conventional 

nitrification-denitrification and does not require an additional electron donor and carbon source. 

However, the majority of dissolved methane would likely be oxidized by aerobic methanotrophs 

rather than stripped during nitritation (Daelman et al. 2012) and could exert a significant oxygen 

demand.  
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Figure 6-4. Global warming versus net energy balance (NEB) for HRAS+AD, AnMBR, 

CAS+AD, and AeMBR+AD for medium strength wastewater at 15°C. Open markers represent 

the baseline conditions. Colored dots indicate the values outputted by Monte Carlo simulations 

for HRAS+AD, AnMBR (current and future), CAS+AD, and AeMBR+AD. 

In addition to GW impact, AnMBR had greater environmental impacts in all other categories 

relative to HRAS+AD (Figure 6-5). This was primarily because of greater electricity use 

associated with high sparging requirements (Tables S6-8 – S6-11). As with energy, environmental 

impacts were highly sensitive to SGD and flux which are expected to improve as the technology 

matures. Other significant environmental impacts arose due to membrane cleaning (50% of 

eutrophication impacts), membrane manufacturing (24% of carcinogenics and 23% of ecotoxicity 

impacts), and cogeneration. Negative eutrophication impacts for HRAS+AD and CAS+AD were 

derived from fertilizer offset, which was a function of the quantity of sludge that was land applied. 

With respect to eutrophication potential, AnMBR was disadvantaged by generating less sludge 

than HRAS+AD. Assuming future development in-line with AeMBR efficiency gains and effluent 



170 

methane management, AnMBR can have comparable environmental impacts in all TRACI 

categories except eutrophication relative to HRAS+AD for medium strength wastewater.  

When treating high strength domestic wastewater, AnMBR achieved lower environmental impacts 

than CAS+AD in five of the nine TRACI impact categories (acidification, non-carcinogens, 

respiratory effects, ecotoxicity, and smog) and exhibited comparable impacts to HRAS+AD 

(Figure 6-5). If effluent dissolved methane can be managed along with more energy-efficient 

fouling control, AnMBR becomes an even more attractive option for higher strength domestic 

wastewater.  
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Figure 6-5. Environmental impacts compared by TRACI impact category for HRAS+AD and 

AnMBR at 15 °C and aggregate sludge disposal practice for (A) medium strength domestic 

wastewater and (B) high strength domestic wastewater. HRAS+AD and AnMBR impacts are 

normalized to CAS+AD impacts (emissions factor) as it represents a conventional technology for 

comparison. The dashed line represents CAS+AD emissions. The emissions factor for CAS+AD 

is 1 in all categories except eutrophication, which is -1, based on negative impacts from artificial 

fertilizer offset. Triangles ( , ) represent the 95% confidence interval from the uncertainty 

analysis. Numbers above AnMBR bars in (A) indicate absolute value of that impact. Percentages 

in parentheses above AnMBR bars in (A) indicate percentage of that impact from grid electricity. 
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6.4.4 AnMBR could have Benefits beyond Energy Recovery 

Membrane solids separation as opposed to gravity separation (as used in HRAS) has distinct 

benefits in certain applications. For example, AnMBR might be advantageous in potable reuse 

applications as it provides an effluent low in suspended solids and colloidal material compatible 

with downstream reverse osmosis treatment (Tam et al. 2007). AnMBR effluent could also be used 

in non-potable reuse applications such as agricultural irrigation given its effluent is rich in 

nutrients. Further, membrane separation may have additional benefits beyond producing a low-

solids effluent, such as mitigating the release of antibiotic resistant bacteria and antibiotic 

resistance genes in receiving waters (Riquelme Breazeal et al. 2012). On the other hand, if 

downstream treatment with a suspended growth process is needed for nutrient and methane 

removal these potential advantages could be lost.  

Decentralization of wastewater treatment is one strategy for addressing urban development without 

massive infrastructure overhaul. AnMBR is worth considering in this context given the higher 

strength of domestic wastewater in decentralized systems (Libralato 2013). These advantages must 

be weighed against implementation of small-scale or microturbine CHP systems which may be 

less cost effective and less efficient relative to larger CHP systems implemented in centralized 

wastewater treatment plants.  

6.4.5 AnMBR must be Developed Further to Achieve Cost and 
Environmental Benefits 

AnMBR will be competitive with HRAS+AD for medium strength domestic wastewater and the 

clear choice for energy recovery from higher strength domestic wastewater as reductions in 

AnMBR energy demands are realized along with strategies to address GW concerns. This will 

require improvements in SGD, use of intermittent sparging, increased flux, and dissolved methane 

management. Future AnMBR research should prioritize these areas while broadening the system 
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boundary to consider downstream treatment and alternative wastewater reuse applications ranging 

from irrigation to drinking water production.  
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Chapter 7. Conclusions and Engineering Significance 
 
7.1 Overview 

The primary objective of this dissertation was to expand and advance available tools to recover 

resources from wastewater. The dissertation specifically focused on using anaerobic 

biotechnology for direct energy recovery from domestic wastewater, a waste stream that has long 

been considered incompatible with the goal of direct energy recovery. This work began with a 

preliminary investigation of anaerobic membrane bioreactor (AnMBR) treatment of simulated 

domestic wastewater and actual domestic wastewater at 15°C (Chapter 3; (Smith et al. 2013)). 

This work suggested that the membrane foulant layer or biofilm may play a role in treatment and 

motivated an in-depth investigation of the biofilm’s ability to improve effluent quality (Chapter 4; 

(Smith et al. 2014b)). We then applied this approach to gauge the lower temperature limits of 

AnMBR domestic wastewater treatment (Chapter 5; (Smith et al. 2014a)). Finally, an assessment 

framework was developed to assess the life cycle environmental and economic impacts of AnMBR 

systems compared to conventional wastewater treatment systems with a focus on highlighting 

operational and design targets AnMBR needs to achieve for the technology to move to full-scale 

(Chapter 6; (Smith et al. 2014c)).   

7.2 The membrane biofilm can significantly improve AnMBR treatment  

The primary objective of AnMBR is to treat wastewater to protect the aquatic environment while 

recovering energy. This requires that AnMBR consistently produces a high quality effluent under 

stresses such as variable wastewater strength and composition, and seasonal and daily temperature 

fluctuations. One approach to improve treatment and increase operational resilience is to provide 
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an additional barrier of treatment such as a membrane biofilm. We originally observed an 

indication that fouled membranes improve effluent quality (Chapter 3; (Smith et al. 2013)). 

However, improvements in effluent quality were minor, likely due to the limited biodegradable 

substrates (e.g., acetate and propionate) available during this operational period. We hypothesized 

that the biofilm could significantly improve treatment under conditions in which biodegradable 

substrates are more available such as when suspended biomass treatment is inadequate due to low 

temperature, a sharp increase in organic loading rate (OLR), or other factors.  

Improving AnMBR treatment through biofilm development was explored by operating a bench-

scale AnMBR with independent membrane housings under different levels of fouling as 

determined by transmembrane pressure (TMP) (Chapter 4; (Smith et al. 2014b)). During this 

operational period, the AnMBR was running under conditions that led to relatively high 

availability of acetate and propionate to the biofilm due to insufficient treatment by suspended 

biomass. Membranes with the highest level of fouling almost completely removed acetate and 

propionate and significantly decreased permeate chemical oxygen demand (COD) relative to 

membranes operated under low fouling conditions. However, COD removal in the biofilm 

corresponded to substantial dissolved methane oversaturation in the permeate, suggesting a 

downside to this approach to improve effluent quality.  

16S rRNA sequencing indicated that controlled membrane fouling led to development of a 

biologically active membrane biofilm enriched in highly active aceticlastic and hydrogenotrophic 

methanogens and syntrophic bacteria. The increase in methanogenic activity was confirmed using 

reverse transcription quantitative PCR (RT-qPCR) targeting the methyl coenzyme-M reductase 

(mcrA) gene. DNA-based molecular analyses (16S rDNA sequencing) were insufficient to 

describe microbial community activity and functional significance in this study. This work enabled 
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us to recommend a combinations of RNA and DNA-based molecular analyses to study AnMBR 

and other systems in which microbial growth is limited due to low temperatures, low OLR, or 

other factors. 

Membranes operated under the highest level of membrane fouling were returned to a near zero 

TMP to evaluate if biological activity in the biofilm could be maintained in the absence of TMP. 

Low effluent COD was maintained in further operation indicating a negligible impact on biofilm 

treatment. This suggests that the active biofilm is tightly adhered to the membrane surface and 

potentially distinct from the layer of foulants contributing to high TMP. Dissolved methane 

oversaturation persisted suggesting that oversaturation is primarily driven by methanogenesis in 

the biofilm and not by high TMP.  

7.3 AnMBR can produce a high quality effluent at temperatures as low 

as 6°C 

Increasing the potential adoption of AnMBR technology requires demonstration of treatment at 

low temperatures, which occur during winter in most temperate climates. We explored the lower 

temperature limits of AnMBR treatment of domestic wastewater by operating a bench-scale 

AnMBR at temperatures of 12, 9, 6, and 3°C (Chapter 5; (Smith et al. 2014a)). Membranes were 

operated under conditions that supported biofilm development based on previous observations 

(Chapter 4; (Smith et al. 2014b)) to maximize overall treatment performance. 

COD removal > 95% was maintained at temperatures as low as 6°C. COD removal was not 

affected until temperature was reduced to 3°C, after which it fell to 86 ± 4.0%. An increase in the 

biofilm’s role in treatment was observed as temperature decreased suggesting that suspended 

biomass was more sensitive than the biofilm to temperature decreases. This greater reliance on the 

biofilm for treatment led to an increase in dissolved methane oversaturation due to greater 
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methanogenesis in the biofilm. Membrane fouling became more severe as temperature decreased 

indicating a potential concern for AnMBR implementation at such low temperatures.  

High-throughput sequencing of 16S rRNA indicated a diversification of metabolisms as 

temperature decreased (i.e., reduced relative activity of methanogens and syntrophic bacteria and 

increased relative activity of fermenters). A concurrent increase in permeate dissolved methane 

oversaturation as temperature decreased suggests that methanogenesis in the biofilm increased, 

despite lower relative activity of methanogens, and therefore, that the overall biological activity in 

the biofilm also increased. Hydrogenotrophic methanogenesis as opposed to aceticlastic 

methanogenesis was the preferred pathway in the biofilm but not in suspended biomass, possibly 

due to better spatial microbial organization in the biofilm supporting syntrophy.  

7.4 Full-scale implementation requires dissolved methane recovery 

and reduction in membrane fouling control energy demands 

Dissolved methane in AnMBR permeate represents a significant fraction of the energy produced 

during treatment and would result in greenhouse gas emissions if released to the atmosphere. 

Failing to recover dissolved methane from AnMBR permeate thus decreases the favorability of the 

energy balance while also increasing concerns regarding the environmental impacts of treatment. 

During a preliminary investigation of AnMBR domestic wastewater treatment at 15°C, dissolved 

methane oversaturation of approximately 1.5 times that predicted by Henry’s Law was observed 

(Chapter 3; (Smith et al. 2013)). Due to this level of oversaturation, dissolved methane represented 

40-50% of methane produced during treatment. We further linked dissolved methane 

oversaturation directly to methanogenesis in the biofilm by operating a bench-scale AnMBR under 

different levels of fouling (i.e., biofilm treatment). Dissolved methane oversaturation as high as 3 

times that predicted by Henry’s Law was observed under the highest level of biofilm treatment 
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(Chapter 4; (Smith et al. 2014b)). We further observed a strong dependence of dissolved methane 

oversaturation on operational temperature when relying on biofilm treatment (Chapter 5; (Smith 

et al. 2014a)). Dissolved methane concentration in the effluent increased both because of the 

decrease in temperature, which increased methane solubility, and the increase in oversaturation. 

Dissolved methane oversaturation approached 7 times that predicted by Henry’s Law during 

operation at 3°C. Essentially all of the methane produced at this temperature remained in the 

dissolved form. Therefore, both biofilm treatment and low operational temperature are detrimental 

to energy recovery and global warming potential of AnMBR if adequate dissolved methane 

recovery technologies are not in place.  

An environmental and economic evaluation framework was established to compare AnMBR with 

conventional aerobic wastewater treatment systems considering the impacts related to dissolved 

methane release to the atmosphere (Chapter 6; (Smith et al. 2014c)). AnMBR had significantly 

greater global warming impact than aerobic treatment systems with 75% of this impact from 

effluent dissolved methane. This analysis considered a dissolved methane oversaturation of 1.5 

times. Therefore, AnMBR could potentially have even greater global warming impacts based on 

the work described above. 

The environmental and economic evaluation framework also highlighted the significance of 

fouling control energy demands in AnMBR. During treatment of medium strength domestic 

wastewater, AnMBR was unable to recover net energy because energy recovery was far 

outweighed by energy demands associated with biogas sparging. AnMBR is currently better suited 

to higher strength domestic wastewater treatment. For medium strength domestic wastewater, 

biogas sparging flow rates need to be reduced to those currently used in full-scale aerobic 
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membrane bioreactors to achieve net energy recovery. Alternatively, employing intermittent 

biogas sparging or increasing membrane flux could achieve net energy recovery.  

7.5 Future research directions 

This dissertation research demonstrated that AnMBR can produce a high quality effluent at 

temperatures as low as 6°C through membrane biofilm development. The practicality of doing so, 

considering the majority of methane remains dissolved in the effluent, is questionable if efficient 

dissolved methane recovery is not in place. One option to reduce dissolved methane concentration 

is to limit the reliance on biofilm treatment. To do so, novel approaches to improve suspended 

biomass activity need to be developed such that a high quality effluent can be produced at low 

temperatures without biofilm treatment.  

One approach could include supplying biofilm carriers within the reactor (e.g., granular activated 

carbon (GAC) as previously demonstrated (Yoo et al. 2012) or a plastic media such as those used 

in moving bed biofilm bioreactors). However, the underlying mechanisms behind the high 

biological activity observed in the biofilm, particularly at such low temperatures, is poorly 

understood. We hypothesize that spatial organization of microbes within the biofilm enhances 

syntrophic interactions by reducing intercellular distances between syntrophic bacteria and 

hydrogenotrophic methanogens. High shear within suspended biomass due to biogas sparging may 

concurrently disrupt these syntrophic relationships in suspension. This hypothesis should be 

explored using fluorescence in situ hybridization (FISH) targeting these specific populations and 

comparing their spatial juxtapositioning in suspended and biofilm biomass. However, mass 

transfer limitations and substrate availability may also play a role or may even be the primary 

driver in the high biofilm activity observed. If so, adding biofilm carriers to an AnMBR may not 

appreciably improve suspended biomass activity. Alternative approaches to improving activity by 
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enhancing these syntrophic interactions beyond biofilm development may be more valuable. For 

example, it may be possible that direct interspecies electron transfer (DIET) (Morita et al. 2011) 

plays a role in AnMBR and that incorporating electrically conductive materials such as GAC (Liu 

et al. 2012), biochar (Chen et al. 2014), or other materials in AnMBR could enhance syntrophy 

and enable sufficient treatment without the membrane biofilm to limit dissolved methane 

oversaturation. 

A different approach to improve suspended biomass activity may involve rethinking inoculum and 

startup strategies for AnMBRs. We observed a rapid startup when inoculating a bench-scale 

AnMBR with a mixture of psychrotolerant and mesophilic biomass. After prolonged operation, 

the suspended and biofilm communities most closely resembled the mesophilic inocula suggesting 

that the psychrotolerant inoculum was unnecessary. However, we did not evaluate the suspended 

and biofilm communities at other time points during startup. There may have been an early reliance 

on the psychrotolerant inoculum for treatment performance. Startup was significantly slower in 

future work when we inoculated with only mesophilic biomass. Future research should investigate 

AnMBR inoculation strategies in more detail. One approach may be to test startup using different 

mixtures of psychrophilic/psychrotolerant and mesophilic biomass and evaluate performance at a 

range of operational temperatures. Another approach may be to inoculate an AnMBR solely with 

biofilm biomass cultured in another system. Modifying operational strategies during startup could 

also be beneficial in improving syntrophic bacteria and methanogen activity in suspended biomass. 

For example, an AnMBR could be supplemented with high concentrations of acetate and 

propionate during startup to rapidly increase the activity of syntrophic bacteria and methanogens 

in suspended biomass.  
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Although limiting dissolved methane oversaturation reduces global warming potential, it is 

insufficient for AnMBR to compete with the global warming potential of existing aerobic 

treatment processes. AnMBR has a significantly greater global warming potential even under 

conditions in which dissolved methane is near saturation (Chapter 6; (Smith et al. 2014c)). 

Although wastewater treatment plants are not currently regulated on greenhouse gas emissions, 

implementing an AnMBR would be environmentally irresponsible without adequate dissolved 

methane recovery technologies in place. Current approaches to dissolved methane recovery are 

energy intensive and produce an off-gas of relatively low methane content which is not suitable 

for energy recovery via cogeneration (Bandara et al. 2011, Cookney et al. 2012). Therefore, future 

research is required to advance our ability to recover dissolved methane from AnMBR effluent by 

developing low-energy dissolved methane recovery technologies that effectively recover a usable 

off-gas. Future research could also investigate the use of a biological downstream system for 

dissolved methane removal. For example, methanotrophs in a downstream system could 

biologically oxidize effluent dissolved methane to carbon dioxide (Hatamoto et al. 2011). 

Alternatively, anaerobic oxidation of methane coupled to denitrification could be used in a 

downstream system to remove dissolved methane and use it as an electron donor in nitrogen 

removal (Luesken et al. 2011). Based on the life cycle evaluation of AnMBR (Chapter 6; (Smith 

et al. 2014c)), a dissolved methane management solution needs to be low cost and energy to reduce 

global warming potential without significantly increasing life cycle costs or worsening the net 

energy balance.  

Finally, the net energy balance of AnMBR treatment needs to be improved significantly to warrant 

full-scale implementation. Energy demands for fouling control, namely high biogas sparging rates 

currently demonstrated in pilot-scale AnMBR studies, prevent net energy recovery from being 
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achieved. Future research should evaluate approaches to limit these energy demands such as 

reducing biogas sparging flow rates, intermittently sparging, and/or increasing membrane flux. 

Alternatively, research should focus on novel methods of fouling control such as GAC (Shin et al. 

2014), rotating ceramic discs (Jaffrin 2008), and alternative membrane materials such as 

electrospun nanofibers (Bjorge et al. 2009). Future research could also consider improving the net 

energy balance by supplementing domestic wastewater with another high-strength waste stream 

such as food waste. 

Implementation of AnMBR requires assessment of local and regional water quality concerns and 

water demands. For example, utilities in the Chesapeake Bay area are currently facing extremely 

stringent nitrogen regulations (Howarth and Marino 2006). Implementing AnMBR here would 

require extensive downstream nitrogen removal not yet well researched. This combined system 

may not be economically viable compared to an activated sludge process with advanced biological 

nitrogen removal. AnMBR effluent could be used for irrigation purposes rather than direct 

discharge in which the presence of nutrients may be beneficial. However, water supplies in much 

of the U.S. are sufficient such that water reuse is unnecessary. The logistics and economic 

investments required to transport effluent from a wastewater treatment plant to agricultural land 

are major barriers to implementing water reuse in regions where water is plentiful and undervalued. 

Reuse of AnMBR effluent for irrigation may be more feasible in draught-prone regions of the U.S. 

such as southern California, where water reuse is becoming increasingly attractive. The Monterey 

County Water Recycling Project (MCWRP) (Haddad 2002) in California was established in 1998 

and has practiced irrigational reuse of highly treated wastewater to minimize groundwater draw 

and limit saltwater intrusion into aquifers. AnMBR may have the greatest potential in these 

scenarios in which a highly treated effluent rich in nutrients can be valued for reuse. 
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Success of AnMBR in domestic wastewater treatment clearly hinges on not only improvements in 

AnMBR but also in developing a greater system of integrated technologies to meet location-

specific needs. Development of AnMBR compatible technologies for dissolved methane 

management, nutrient removal/recovery, and water reuse (e.g., reverse osmosis or advanced 

biofiltration) is needed to expand the opportunities for AnMBR implementation. AnMBR research 

activity has been high over the past decade and has substantially increased in the past few years.  

While this research interest is warranted, it should expand to consider a greater system of treatment 

technologies to better suit a variety of location-specific needs. AnMBR is competitive but not yet 

an improvement over activated sludge processes based on life cycle economic and environmental 

impacts. However, activated sludge processes have reached maturity and are limiting our ability 

to recover resources and adapt to changing water needs. AnMBR is a key opportunity to achieve 

net energy positive wastewater treatment, provide water reuse opportunities, and even offset 

carbon with further technological development.  
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Appendix A. Supplementary Information for Chapter 3 
 

Table S3-1. Recipe for concentrated feed solution used to prepare the synthetic domestic 

wastewater (DWW) (diluted feed). This recipe was modified from the SYNTHES recipe 

originally presented by Aiyuk and Verstraete (2004).  

Component Concentrated 

feed (mg/L) 

Diluted feed 

(mg/L) 

Chemical Compounds 

Urea 550 63.8 

NH4Cl 150 17.4 

Na-acetate∙ 3H2O 350 40.6 

Peptone 150 17.4 
*MgHPO4∙ 3H2O --- 29.2 
*K2HPO4∙ 3H2O --- 13.3 

FeSO4∙ 7H2O 400 46.4 

CaCl2 600 69.6 
*NaHCO3 --- 265 

Food Ingredients 

Starch 1500 174 

Milk powder 1500 174 

Dried yeast 600 69.6 

Soy oil 250 29.0 

Trace Metals 

Cr(NO3)3 ∙9H2O 8 0.93 

CuCl2∙ 2H2O 5 0.58 

MnSO4∙ H2O 10 1.16 

NiSO4∙ 6H2O 3 0.35 

PbCl2 1 0.12 

ZnCl2 3 0.35 

*In dilution water only 
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Table S3-2. Number of sequences obtained per sample after quality screening. The sequences 

were quality filtered to allow a maximum of 4 bp mismatch with the reverse primer, 0 

mismatches with the barcode, 0 ambiguous bases, and an average quality score of 25 over a 

sliding window of 50 bp over the read length. All reads quality trimmed below 200 bp length 

were removed. Chimeras were detected and removed from the remaining sequences using the 

Chimera Slayer algorithm in Mothur. 

Sample Archaea Bacteria 

AnMBR Biofilm 1080 1227 

AnMBR Suspended Biomass 1370 836 

UASB 6503 405 

Anaerobic Digester 86 537 

Anaerobic Lagoon 97 227 
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Appendix B. Supplementary Information for Chapter 4 

Table S4-1. Primer coverage of Archaea for 16S rRNA primers F515 

(GTGCCAGCMGCCGCGGTAA) and R806 (GGACTACHVGGGTWTCTAAT) targeting the 

V4 region (Caporaso et al. 2011) according to TestPrime 1.0. TestPrime 1.0 evaluates the 

coverage of primer pairs by running an in silico PCR using the SILVA databases. Zero primer 

mismatches were allowed. 
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Table S4-2. Primer coverage of Bacteria for 16S rRNA primers targeting the V4 region 

according to TestPrime 1.0 (see Table S4-1 legend for additional details). The coverage of taxa 

in which known fatty acid-oxidizing syntrophic bacteria group is specified down to the genus or 

family levels.  
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Figure S4-1. Influent (total and soluble), bioreactor (soluble), and permeate COD during days 1-

100. 
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Figure S4-2. COD mass balance for days 100-138. Total CODout is the summation of measured 

permeate COD, measured dissolved methane, measured gaseous methane, theoretical COD 

removal from measured sulfate reduction, and theoretical COD from measured biomass wasting. 

 

Figure S4-3. P1 VFA concentrations (concentrations are expressed as the actual compound, not 

as COD), theoretical COD contribution from measured VFAs, and measured COD during days 

1-100. Total as COD is the calculated theoretical COD contribution from measured VFAs.  

Results for P2 and P3 were very similar (data not reported). Error bars represent standard 

deviations of triplicate IC injections.  

 

0

100

200

300

400

500

600

100 105 110 115 120 125 130 135

C
O

D
 (

m
g/

L)

Days from Startup

CODin Total CODout Permeate Sulfate Reduction

Biomass Wasting Dissolved CH4 Gaseous CH4

0

50

100

150

200

250

300

350

0 20 40 60 80 100

V
FA

 o
r 

C
O

D
 (

m
g/

L)

Days from Startup

Measured COD Total as COD Acetate Propionate

Formate Butyrate Valerate



197 

 

Figure S4-4. Total and volatile suspended solids (TSS; VSS) in the bioreactor during days 1-173 

(primary y-axis) and inverse Simpson index in suspended biomass based on 16S rDNA 

sequencing (secondary y-axis). Error bars represent standard deviation of triplicate sample 

analysis. 
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Figure S4-5. (a) Relative abundance of methanogens identified to the genus level based on 16S 

rDNA sequencing and (b) relative activity of methanogens identified to the genus level based on 

16S rRNA sequencing in suspended biomass from startup to the end of Phase 2 and in biofilms 

at the end of Phase 2. Data are expressed as a percentage and were normalized using the total 

Archaeal 16S rDNA sequences (a) and 16S rRNA sequences (b). 
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Figure S4-6. (a) Relative abundance of sulfate reducing bacteria identified to the genus level 

based on 16S rDNA sequencing and (b) relative activity of sulfate reducing bacteria identified to 

the genus level based on 16S rRNA sequencing in suspended biomass from startup to the end of 

Phase 2 and in biofilms at the end of Phase 2. Data are expressed as a percentage and were 

normalized using the total 16S rDNA sequences (a) and 16S rRNA sequences (b) (including 

Archaeal and Bacterial sequences). A truncated y-axis (0 to 8%) is shown to accentuate changes 

in abundance and activity. 
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Figure S4-7. Influent (total and soluble), bioreactor (soluble), and permeate COD during Phases 

3 and 4. 
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Figure S4-8. P1, P2, and P3 permeate VFA concentrations (concentrations are expressed as the 

actual compound, not as COD), theoretical COD contribution from measured VFAs, and 

measured COD during Phases 3 and 4. Total as COD is the calculated theoretical COD 

contribution from measured VFAs.  Error bars represent standard deviations of triplicate IC 

injections. 
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Appendix C. Supplementary Information for Chapter 5 

 

Figure S5-1. P1, P2, and P3 permeate VFA concentrations (concentrations are expressed as the 

actual compound, not as COD), theoretical COD contribution from measured VFAs, and 

measured COD during days 173-313. Total as COD is the calculated theoretical COD 

contribution from measured VFAs.  Error bars represent standard deviations of triplicate IC 

injections. 
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Figure S5-2. COD mass balance for days 173-313. Total CODout is the summation of measured 

permeate COD, measured dissolved methane, measured gaseous methane, theoretical COD 

removal from measured sulfate reduction, and theoretical COD from measured biomass wasting. 

An issue with the biogas collection system during days 173-205 prevented accurate measurement 

of biogas production during that time. 
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Figure S5-3. Total and suspended volatile solids (TSS, VSS) in the bioreactor during days 173-

313. Error bars represent the standard deviation of triplicate measurements. 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

173 183 193 203 213 223 233 243 253 263 273 283 293 303 313

Su
sp

e
n

d
e

d
 S

o
lid

s 
(m

g/
L)

Days from Startup

TSS VSS



206 

 

Figure S5-4. Relative activity of Archaea in suspended (S) and biofilm (P1, P2, and P3) biomass 

at operational temperatures of 12, 9, 6, and 3°C.  
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Figure S5-5. (a) Relative abundance based on 16S rDNA sequencing and (b) relative activity 

based on 16S rRNA sequencing of the top 20 phylotypes to total community in suspended (S) 

and biofilm (P1, P2, and P3) biomass at operational temperatures of 12, 9, 6, and 3°C. 
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1) Treatment Scenarios 

This section outlines the main assumptions and sources of data used for modeling the different 

treatment scenarios. It includes system boundaries and flow diagrams for the treatment scenarios 

not shown in the research article (CAS+AD and AeMBR+AD, Figure S6-1). The influent 

wastewater for each system was assumed to be medium strength domestic wastewater, as defined 

by Metcalf & Eddy (2003) (Table S6-1). Grit removal was assumed to remove 90% of inert solids 

in the influent.  
 

 

 

Figure S6-1. System boundary of CAS+AD and AeMBR+AD. 

Table S6-1. Typical composition of untreated domestic wastewater. 

  

Concentration(Tchobanoglous et 

al. 2003) 

Contaminants Unit Medium strength High strength 

Solids, total (TS) mg/L 720 1230 

Dissolved, total (TDS) mg/L 500 860 

Fixed mg/L 300 520 

Volatile mg/L 200 340 

Suspended solids, total (TSS) mg/L 210 400 

Fixed mg/L 50 85 

Volatile mg/L 160 315 

Settleable solids mg/L 10 20 
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Biochemical oxygen demand, 5-d mg/L 190 350 

Total organic carbon (TOC) mg/L 140 260 

Chemical oxygen demand (COD) mg/L 430 800 

Nitrogen (total as N) mg/L 40 70 

Organic mg/L 15 25 

Free ammonia mg/L 25 45 

Nitrites mg/L 0 0 

Nitrates mg/L 0 0 

Phosphorus (total as P) mg/L 7 12 

Organic mg/L 2 4 

Inorganic mg/L 5 8 

Chlorides mg/L 50 90 

Sulfate mg/L 30 50 

 

A. Anaerobic Membrane Bioreactor (AnMBR) 

The process flow diagram for AnMBR is shown in Figure S6-2. AnMBR performance was based 

on published performance results from pilot and lab scale systems. Specifically, AnMBR COD 

removal was assumed to be 90% at 25°C (Chu et al. 2005, Ho and Sung 2009, Lew et al. 2009) 

and 85% at 15°C (Chu et al. 2005, Ho and Sung 2010, Smith et al. 2013) for medium and high 

strength domestic wastewater. It was not modeled using GPS-X, which uses deterministic models, 

because the current anaerobic models (e.g., ADM1) are not accurate for direct anaerobic treatment 

of domestic wastewater at ambient temperatures as they were designed for high strength 

wastewater and sludge treatment at mesophilic and thermophilic temperatures. The ratio of COD 

to BOD5 in the effluent was assumed to be 3.04:1, based on bench-scale results (Smith et al. 2013). 

The kinetic and stoichiometric constants used to describe the biomass inventory are given in Table 

S6-2. The amount of sludge wasted to achieve a 200-day SRT was calculated based on equation 1 

from Grady et al. (2011) The mixed liquor suspended solids (MLSS) concentration was calculated 

using equation 2.  

 
Figure S6-2. Process flow diagram for AnMBR. 
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Table S6-2. Kinetic parameters used for AnMBR biomass inventory. 

Parameter Symbol Units Value Arrhenius Reference 

Decay coefficient fD mgTSS mgTSS-1 0.2 1 (Grady et al. 2011) 

Decay rate bH day-1 0.02 (at 35 °C) 1.04 (Grady et al. 2011) 

Yield YTSS mgTSS mgCOD-1 0.076 1 (Hu and Stuckey 

2006) 

 

 

  𝑊𝑇𝑂𝑇𝐴𝐿,𝑇 =
𝑄

106
(𝑋𝐼,𝑂 +

(1+𝑓𝐷𝑏𝐻𝜃)𝑌𝑇(𝑆𝑆,𝑂−𝑆𝑆)

(1+𝑏𝐻𝜃)
)  (eq. 1) 

 

 WTOTAL,T = Biomass wastage, kgTSS day-1 

 Q = Influent flow, L day-1 

 XI,O = Influent inert solids, mg L-1 

 YT = Yield, mgTSS mgCOD-1 

 θ = SRT, days 

 fD = Decay coefficient, mgTSS mgTSS-1 

 bH = Decay rate, day-1 

 SS,O = Influent soluble carbon, mg L-1 

 SS = Effluent soluble carbon, mg L-1  

 

 𝑋𝑀,𝑇 = (
𝜃

𝜏
) [𝑋𝐼,𝑂 +

(1+𝑓𝐷𝑏𝐻𝜃)(𝑌𝑇)(𝑆𝑆,𝑂−𝑆𝑆)

1+𝑏𝐻𝜃
]   (eq. 2) 

  

 XM,T = MLSS, mgTSS L-1 

 XI,O = Influent inert solids, mg L-1 

 YT = Yield, mgTSS mgCOD-1 

 θ = SRT, days 

 τ = HRT, days 

 fD = Decay coefficient, mgTSS mgTSS-1 

 bH = Decay rate, day-1 

 SS,O = Influent soluble carbon, mg L-1 

 SS = Effluent soluble carbon, mg L-1  

 

Biogas production from the AnMBR was calculated by subtracting the COD used for sulfate 

reduction and the COD associated with biomass from the total COD removed. Dissolved 

methane was calculated using Henry’s law (equation 3) and assuming an oversaturation of 1.5 

times (Smith et al. 2013).  

 

  𝐶𝐻4,𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 = (
𝑃𝐶𝐻4 

𝐻𝐶𝐻4

) (𝑀)(𝑀𝑊𝐶𝐻4
)(𝑂𝑆)(1000)  (eq. 3) 

 

CH4,dissolved = dissolved methane concentration, mg L-1 

PCH4 = partial pressure of methane, atm 

HCH4 = Henry’s constant for methane, atm 

M = Molarity of solution, mol L-1 

MWCH4 = molecular weight of methane, g mol-1 

OS = Oversaturation (assumed 1.5) 
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The membranes were assumed to be GE ZeeWeed 500D hollow fiber membranes (HFMs). The 

membranes themselves were the only materials accounted for in the LCA as they were the only 

component of the membrane unit replaced at the end of the membranes’ life. The membranes 

were made of polyvinylidene fluoride (PVDF), a thermoplastic material. Material quantities were 

estimated based on HFM dimensions, PVDF density, and membrane area required to achieve a 

given flux. ZeeWeed 500D HFM specifications are given in Table S6-2.  
 

Table S6-3. GE ZeeWeed 500D hollow fiber membrane specifications. 

Parameter Value Units 

Outer diameter 0.0019 m 

Inner diameter 0.0008 m 

Density, PVDF 1.78 g (cm3)-1 

 

Membrane cleaning requirements were based on GE recommendations for their ZeeWeed 500D 

units (Hong 2012). Membranes were cleaned in-situ by back flushing with 12% sodium 

hypochlorite and citric acid. Recovery cleans involved removing the membranes from the system 

and soaking them in a bath of 12% sodium hypochlorite followed by a soak in citric acid. 

 

 

 

B. High Rate Activated Sludge with Anaerobic Digestion (HRAS+AD) 

HRAS+AD was modeled using GPS-X (Hydromantis, Inc.). The process flow diagram is given 

in Figure S6-3. Kinetic and stoichiometric parameters used in the model are shown in Table S6-4 

and were taken from Grady et al. (2011) The parameters were based on measurements made 

using biomass from CAS systems. HRAS, which operates at a significantly shorter SRT than 

CAS, might select for different organisms than CAS with slightly different kinetics and yields. 

However, because there is limited information published on kinetic parameters specific to 

HRAS, CAS parameters were used in the model. While this is a limitation in that it may not 

accurately capture sCOD uptake and storage, COD oxidation, and bioflocculation, the 

performance of the modeled HRAS was consistent with real systems’ performances.  The 

nitrifier parameters were of limited importance in the HRAS system as the SRT is 1.5 days, 

which is below the minimum SRT for nitrifying populations (ammonia and nitrite oxidizing 

bacteria). A sludge volume index (SVI) of 210 ml/mg, consistent with the selected SRT, was 

used for modeling secondary clarification. The kinetic parameters in Table S6-4 were also used 

to model the CAS and AeMBR. Effluent quality for HRAS+AD, CAS+AD, and AeMBR+AD 

were based on GPS-X outputs. 
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Table S6-4. Kinetic and stoichiometric parameters for heterotrophs (H) and nitrifiers (N) used in GPS-X 

models (μ = specific growth rate; K = half saturation coefficient; Y = yield; b = decay rate; fD = decay 

coefficient). 

Parameter Units Value at 25°C Arrhenius 

µH, max day-1 6.00 1.094 

Ks mg-COD L-1  20.0 1 

YH,T mg-TSS mg-COD-1 0.50 1 

bH day-1 0.396 1.029 

fD mg-TSS mg-TSS-1 0.20  

    

µN, max day-1 0.77 1.114 

KNH mg-N L-1 1.93 1 

KO,N mg- O2 L-1 0.74 1 

YN,T mg-N L-1 0.20 1 

bN day-1 0.10 1.029 

 

The anaerobic digester (AD) was designed with a retention time of 20 days and a side-depth of 6 

m. AD temperature was assumed to be 35 °C. In the 15 °C scenario, the earth and air 

temperatures were assumed to be 10 and 0 °C, respectively. In the 25 °C scenario, the earth and 

air temperatures were assumed to be 10 and 17 °C, respectively. Heat loss coefficients for the 

walls, floor, and cover of the digester and the specific heat of sludge are given in Table S6-5 (all 

values taken from Metcalf & Eddy (Tchobanoglous et al. 2003)). The heat required to heat the 

digester to 35 °C was calculated based on the sludge capacity of the digester, the specific heat of 

the sludge, and the heat lost via the walls, roof, and floor of the digester. Waste heat from 

cogeneration was used to heat the digester. If additional heat was needed, biogas was used 

directly for heating the digester and was calculated assuming an energy content of biogas of 

0.0338 m3 MJ-1. 

 
Table S6-5. Heat loss coefficients and specific heat of sludge for AD design. 

Parameter Value Units 

Walls with insulation 0.7 W m-2 C-1 

Floor in contact with moist earth 2.85 W m-2 C-1 

Floating cover with insulation 0.95 W m-2 C-1 

Specific heat of sludge 4,200 J kg-1 C-1 
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Figure S6-3. Process flow diagram for HRAS+AD. 
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C. Conventional Activated Sludge with Anaerobic Digestion (CAS+AD) 

The CAS+AD process flow diagram is presented in Figure S6-4. An SRT of 10 days was 

assumed, allowing for nitrification. The kinetic parameters used to model the CAS are given in 

Table S6-3. The AD used to digest the sludge was designed as described for HRAS+AD. 

 

 

 

D. Aerobic Membrane Bioreactor with Anaerobic Digestion (AeMBR+AD) 

AeMBR+AD process flow diagram is presented in Figure S6-5. The membrane materials and 

cleaning requirements were estimated as described for AnMBR. The SRT was assumed to be 10 

days for the AeMBR, which was sufficient for nitrification to occur, to be consistent with 

CAS+AD. The kinetic parameters used to model the AeMBR are given in Table S6-3. The AD 

was designed as described for the HRAS+AD.  
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Figure S6-4. Process flow diagram for CAS+AD. 
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Figure S6-5. Process flow diagram for AeMBR+AD. 
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E. Summary of System Modeling 

 
Table S6-6. Model Process Parameters and Effluent Quality for Baseline Scenario (15°C medium strength 

wastewater). 

 

System SRT HRT MLSS 

 

cBOD5 

 

COD 

 

Ammonia 

 

Nitrate + 

Nitrite 

 

TSS 

 

 (d) (hr) (mg L-1) (mg O2 L
-1) (mg O2 L

-1) (mg N L-1) (mg N L-1) (mg L-1) 

CAS 10 8 1,380 10.1 53.9 0.5 26.9 18.7 

HRAS 1.5 2 1,210 14.8 57.3 30.7 0.0 18.3 

AeMBR 10 8 3,240 0.8 29.0 0.3 27.0 0.0 

AnMBR 200 8 14,020 21.2* 64.5 40.0 0.0 0.0 

SRT=solids retention time; HRT=hydraulic retention time; MLSS=mixed liquor suspended solids; Q=influent flow rate; 

SGD=specific gas demand; cBOD5=carbonaceous five-day biochemical oxygen demand; COD=chemical oxygen demand; 

TSS=total suspended solids. 

*BOD5 

 

2) Sludge Handling Scenarios 

In all treatment scenarios, the sludge underwent gravity belt thickening and centrifuge 

dewatering. Centrifuge dewatering was assumed to produce a cake with 20% solids 

(Tchobanoglous et al. 2003). In the HRAS and CAS scenarios, primary sludge and thickened 

waste activated sludge (WAS) were blended before AD. Polymer (acrylonitrile) was dosed at 5 g 

per kg of dry solids in both the thickening and dewatering processes (Tchobanoglous et al. 

2003).  

 

A. Landfill 

For HRAS+AD, CAS+AD, and AeMBR+AD, sludge was stabilized by AD and AnMBR sludge 

was lime stabilized.  

  

B. Land application 

Sludge was stabilized for each system as described in the landfill scenario to meet class B 

biosolids specifications. Nutrients present in land-applied biosolids were assumed to offset 

artificial nitrogen and phosphorus fertilizer use. Biosolids was assumed to offset 0.0196 g of 

artificial nitrogen fertilizer and 0.0274 g of artificial phosphorus fertilizer per g VSS of biosolids 

applied (Hospido et al. 2010). Electricity consumption and diesel for biosolids application was 

assumed to be 58.5 kWh and 0.73 kg per dry ton of biosolids (Hospido et al. 2005).  

 

C. Incineration 

Incineration was assumed to be an on-site fluidized bed incinerator. The ash produced was 

hauled to a landfill for disposal.  
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3) Emissions 

 

A. Life Cycle Inventory 

 

Energy calculations 

Use-phase electrical energy requirements were calculated for each treatment scenario. Pumping 

energy requirements were calculated using equation 3.2 from Judd et al. (2010) Blower energy 

requirements were calculated using equation 5-56a from Metcalf & Eddy (Tchobanoglous et al. 

2003). Gravity belt thickening and centrifuge dewatering energy requirements were calculated 

using equations 4 and 5, which were adapted from CAPDETWorks (Guest 2012). Mechanical 

mixing energy requirements in the AnMBR were based on anoxic reactor mixing requirements 

(8 kW/ 103 m3, Metcalf & Eddy (Tchobanoglous et al. 2003)) and assuming that the mixer was 

only “on” a fraction of the time because some degree of mixing results from the production of 

biogas. Blend tank design and mixing energy were based on Qasim (1998) (section 16-9).  

 𝐺𝐵𝑇𝐸𝐸 , 𝑘𝑊ℎ/𝑑𝑎𝑦 =
(422,832 

𝑘𝑊ℎ

𝑦𝑟
)(𝐺𝐵𝑇 𝑖𝑛𝑓,𝑀𝐺𝐷)0.9248

365.25 𝑑𝑎𝑦𝑠/𝑦𝑟
    (eq. 4) 

 𝐶𝐸𝑁𝑇𝐸𝐸 , 𝑘𝑊ℎ/𝑑𝑎𝑦 =
(5,024,825 𝑘𝑊ℎ/𝑦𝑟)(𝐶𝐸𝑁𝑇 𝑖𝑛𝑓,𝑀𝐺𝐷)+39,693 𝑘𝑊ℎ/𝑦𝑟

365.25 𝑑𝑎𝑦𝑠/𝑦𝑟
 (eq. 5) 

 

Unit Processes Included 

Table S6-6 lists the unit processes considered in the life cycle inventory. Emissions data were 

taken from Ecoinvent (Frischknecht et al. 2005), U.S. LCI (Norris 2004), and ELCD (2010). 

Table S6-6 also indicates when modifications were made to the original database’s emissions 

and where U.S. data were substituted for European data. Emissions data for PVDF production 

were not available in any life cycle inventory databases, so emissions for polyvinylidene chloride 

(PVDC) production, a similarly structured thermoplastic, were used instead. Citric acid, one of 

the membrane cleaning solutions, was also not found in any of the life cycle inventory databases. 

Organic chemical production (from the Ecoinvent database, which averages emissions from the 

top 20 organic chemicals produced) was used in its place. Land application of biosolids includes 

offset of artificial nitrogen and phosphorus fertilizer production, methane emissions, and diesel 

used during application (Hospido et al. 2010). 
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Table S6-7. Unit processes in life cycle inventory. 

Unit Process Source(s) of Emissions Data 

Electricity generation and distribution (U.S. average) U.S. LCI 

Quicklime production U.S. LCI 

Single unit, diesel powered truck U.S. LCI 

Nitrogen fertilizer production U.S. LCI 

Phosphorus fertilizer production U.S. LCI 

Landfill of sludge, including landfill gas utilization ELCD modified with U.S. electricity from U.S. 

LCI 

Incineration process Ecoinvent 

Sodium hypochlorite production, 15% in water Ecoinvent modified with U.S. electricity from 

U.S. LCI 

Cogeneration with biogas engine  Ecoinvent 

Heat produced using biogas (diffusion absorption heat pump 

4kW) 

Ecoinvent modified with U.S. electricity from 

U.S. LCI 

Acrylonitrile (polymer) production U.S. LCI 

Land application of biosolids Ecoinvent and U.S. LCI 

Organic chemical production (top 20 averaged) Ecoinvent 

Polyvinylidene chloride (PVDC) production Ecoinvent 

 

B. Net energy balance 

Net energy balance (NEB) for each treatment system at the two wastewater temperatures 

considered (15 and 25°C) for medium strength wastewater is shown in Figure S6-6 and for high 

strength wastewater in Figure S6-7. 

 

(A) 
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(B)

 
Figure S6-6. Net energy balance (NEB) for medium strength (A) and high strength (B) domestic wastewater 

at 15 and 25°C. Triangles ( , ) represent the 95% confidence interval of net energy demand from the 

uncertainty analysis. For AnMBR, triangles represent uncertainty based on the developed parameter values.  
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C. Impact Assessment  

(a)  

 
 

(b)  
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(c)  

 
 

(d)  
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(e) 

 
(f)  
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(g)  

 
(h)  
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(i)  

 
Figure S6-7. Environmental impacts of each sludge disposal scenario for medium strength wastewater at 

15°C. 
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D. Uncertainty parameters 

 
Table S6-8. Uncertainty parameters: ranges and data sources. 

Uncertainty parameters Units System Baseline 

value 

Low value High value Distribution 

Recycle flow *Influent flow AnMBR (C&F) 2 2 4 Uniform 

*Influent flow AeMBR 2 2 4 Uniform 

Flux LMH AnMBR (C) 10 7 17 Uniform 

LMH AnMBR (F) 10 10 30  

LMH AeMBR 20 15 30 Uniform 

Membrane lifetime Years AnMBR (C&F) 10 5 15 Triangular 

Years AeMBR 10 5 15 Triangular 

Dissolved methane recovered % AnMBR (F) 0 0 100 Uniform 

Methane oversaturation  AnMBR (C&F) 1.5 1 2 Triangular 

 HRAS-AD 5 1 10 Triangular 

 AeMBR-AD 5 1 10 Triangular 

 CAS-AD 5 1 10 Triangular 

Specific gas demand m3 m-2 h-1 AnMBR (C) 0.23 0.10 0.50 Uniform 

  AnMBR (F) 0.23 0.082 0.23 Uniform 

Intermittent biogas sparging % time on AnMBR (C) 100 100 10000 Uniform 

% time on AnMBR (F) 100 25 100 Uniform 

% time on AeMBR 100 10 200 Uniform 

Mixing % time on AnMBR (C&F) 10 0 100 Uniform 

In-situ membrane cleaning 

frequency 

Times/month AnMBR (C&F) 4.33 1.44 4.33 Uniform 

Times/month AeMBR 4.33 1.44 4.33 Uniform 

Recovery cleaning frequency Times/year AnMBR (C&F) 1 1 2 Uniform 

Times/year AeMBR 1 1 2 Uniform 

Heating efficiency of biogas in AD  HRAS-AD 0.75 0.55 0.95 Triangular 

 AeMBR-AD 0.75 0.55 0.95 Triangular 

 CAS-AD 0.75 0.55 0.95 Triangular 

Sludge transport distance (landfill) km (All) 100 10 160 Uniform 

Sludge transport distance (land 

application) 

km (All) 50 10 160 Uniform 

Sludge transport distance 

(incineration) 

km (All) 50 10 160 Uniform 

Note: AnMBR (C) parameters were varied to reflect uncertainty in AnMBR in its current technological state. AnMBR (F) parameters were varied to reflect 

uncertainty related to potential future development in AnMBR technology.  
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E. Emissions Magnitudes 
Table S6-9. The base case, mean, 2.5th, and 97.5th percentile values from each system’s Monte Carlo simulation (medium strength wastewater, 

aggregate sludge practice). 

   Acid. Car. Eco. Eut. GW NC OD RE Smog 

CAS 

15oC 

Base case 6.95E+02 3.64E-05 1.12E+03 -1.87+00 1.76E+03 1.29E-04 5.37E-05 1.69E+00 1.09E+02 

Mean 7.06E+02 3.67E-05 1.11E+03 -1.85E+00 1.79E+03 1.30E-04 5.39E-05 1.72E+00 1.10E+02 

2.50% 5.58E+02 3.17E-05 8.80E+02 -2.03E+00 1.42E+03 1.03E-04 5.21E-05 1.33E+00 8.56E+01 

97.50% 9.39E+02 4.44E-05 1.37E+03 -1.58E+00 2.33E+03 1.67E-04 5.68E-05 2.38E+00 1.40E+02 

25 oC 

Base case 7.59E+02 3.24E-05 1.17E+03 -1.94E+00 1.89E+03 1.21E-04 5.08E-05 1.85E+00 1.20E+02 

Mean 7.65E+02 3.26E-05 1.16E+03 -1.93E+00 1.91E+03 1.22E-04 5.09E-05 1.87E+00 1.20E+02 

2.50% 7.35E+02 3.15E-05 1.00E+03 -1.97E+00 1.78E+03 1.12E-04 5.06E-05 1.82E+00 1.08E+02 

97.50% 8.48E+02 3.53E-05 1.33E+03 -1.84E+00 2.11E+03 1.36E-04 5.19E-05 2.10E+00 1.33E+02 

HRAS 

15oC 

Base case -9.85E+01 3.59E-05 4.61E+02 -2.02E+00 1.91E+01 7.69E-05 6.13E-05 -4.82E-01 1.94E+00 

Mean -7.87E+01 3.65E-05 4.63E+02 -2.00E+00 7.12E+01 7.94E-05 6.15E-05 -4.22E-01 3.52E+00 

2.50% -2.17E+02 3.19E-05 2.31E+02 -2.15E+00 -2.92E+02 5.40E-05 5.99E-05 -7.84E-01 -2.00E+01 

97.50% 1.76E+02 4.50E-05 7.35E+02 -1.69E+00 6.64E+02 1.20E-04 6.47E-05 3.01E-01 3.64E+01 

25 oC 

Base case -5.48E+01 3.29E-05 5.01E+02 -2.09E+00 1.08E+02 7.07E-05 5.93E-05 -3.76E-01 9.28E+00 

Mean -5.19E+01 3.29E-05 4.88E+02 -2.09E+00 1.22E+02 7.06E-05 5.94E-05 -3.64E-01 8.73E+00 

2.50% -7.91E+01 3.19E-05 3.25E+02 -2.11E+00 -1.13E+01 6.16E-05 5.91E-05 -4.06E-01 -2.74E+00 

97.50% 1.69E+01 3.52E-05 6.53E+02 -2.01E+00 2.94E+02 8.22E-05 6.02E-05 -1.72E-01 2.06E+01 

AeMBR 

15oC 

Base case 2.39E+03 4.37E-05 2.87E+03 -1.44E+00 5.56E+03 2.51E-04 3.15E-05 6.46E+00 3.41E+02 

Mean 2.53E+03 4.24E-05 2.94E+03 -1.47E+00 5.87E+03 2.56E-04 2.88E-05 6.85E+00 3.60E+02 

2.50% 2.07E+03 3.70E-05 2.45E+03 -1.66E+00 4.85E+03 2.20E-04 2.61E-05 5.61E+00 2.97E+02 

97.50% 3.09E+03 5.00E-05 3.57E+03 -1.25E+00 7.10E+03 3.00E-04 3.26E-05 8.35E+00 4.36E+02 

25 oC 

Base case 2.53E+03 4.03E-05 2.98E+03 -1.20E+00 5.85E+03 2.51E-04 2.77E-05 6.83E+00 3.62E+02 

Mean 2.67E+03 3.89E-05 3.04E+03 -1.25E+00 6.15E+03 2.55E-04 2.47E-05 7.20E+00 3.79E+02 

2.50% 2.21E+03 3.31E-05 2.54E+03 -1.44E+00 5.12E+03 2.19E-04 2.17E-05 5.96E+00 3.16E+02 

97.50% 3.23E+03 4.68E-05 3.68E+03 -1.01E+00 7.41E+03 3.00E-04 2.89E-05 8.74E+00 4.57E+02 

AnMBR  

(Current) 
15oC 

Base case 1.76E+03 6.51E-05 2.72E+03 1.04E+00 1.63E+04 2.16E-04 9.70E-05 4.61E+00 2.46E+02 

Mean 2.47E+03 6.30E-05 3.20E+03 1.04E+00 1.78E+04 2.51E-04 9.06E-05 6.47E+00 3.40E+02 
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2.50% 2.46E+02 4.74E-05 1.10E+03 3.47E-01 1.13E+04 9.38E-05 7.85E-05 4.60E-01 3.81E+01 

97.50% 6.01E+03 8.76E-05 6.61E+03 2.15E+00 2.64E+04 5.05E-04 1.04E-04 1.60E+01 8.20E+02 

25 oC 

Base case 1.54E+03 7.08E-05 2.58E+03 1.19E+00 1.38E+04 2.08E-04 1.13E-04 3.92E+00 2.14E+02 

Mean 2.26E+03 6.88E-05 3.08E+03 1.19E+00 1.53E+04 2.45E-04 1.07E-04 5.83E+00 3.10E+02 

2.50% -1.95E+01 5.31E-05 9.28E+02 4.85E-01 9.08E+03 8.29E-05 9.61E-05 -3.20E-01 1.40E+00 

97.50% 5.93E+03 9.38E-05 6.58E+03 2.33E+00 2.39E+04 5.07E-04 1.19E-04 1.58E+01 8.08E+02 

AnMBR 

(Future) 

15oC 

Base case 1.76E+03 6.51E-05 2.72E+03 1.04E+00 1.63E+04 2.16E-04 9.70E-05 4.61E+00 2.46E+02 

Mean -2.57E+02 4.99E-05 6.17E+02 2.99E-01 5.68E+03 6.06E-05 9.87E-05 -9.60E-01 -3.09E+01 

2.50% -1.19E+03 4.00E-05 -2.65E+02 1.29E-02 -1.55E+03 -2.50E-06 8.18E-05 -3.50E+00 -1.57E+02 

97.50% 1.04E+03 6.47E-05 1.97E+03 7.80E-01 1.38E+04 1.57E-04 1.14E-04 2.59E+00 1.46E+02 

25 oC 

Base case 1.54E+03 7.08E-05 2.58E+03 1.19E+00 1.38E+04 2.08E-04 1.13E-04 3.92E+00 2.14E+02 

Mean -5.00E+02 5.48E-05 4.58E+02 4.29E-01 4.09E+03 5.07E-05 1.13E-04 -1.68E+00 -6.51E+01 

2.50% -1.41E+03 4.53E-05 -4.25E+02 1.38E-01 -2.16E+03 -1.25E-05 9.86E-05 -4.17E+00 -1.89E+02 

97.50% 8.37E+02 6.98E-05 1.87E+03 9.30E-01 1.12E+04 1.52E-04 1.27E-04 1.97E+00 1.17E+02 
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Table S6-10. The base case, mean, 2.5th and 97.5th percentile values from each system’s Monte Carlo simulation (high strength wastewater, aggregate 

sludge practice). 

 

   Acid. Car. Eco. Eut. GW NC OD RE Smog 

CAS 

15oC 

Base case 1.14E+03 5.77E-05 1.92E+03 -2.44E+00 2.85E+03 2.05E-04 9.11E-05 2.71E+00 1.85E+02 

Mean 1.18E+03 5.92E-05 1.94E+03 -2.38E+00 2.96E+03 2.11E-04 9.17E-05 2.85E+00 1.89E+02 

2.50% 1.09E+03 5.60E-05 1.61E+03 -2.48E+00 2.69E+03 1.88E-04 9.08E-05 2.66E+00 1.64E+02 

97.50% 1.44E+03 6.79E-05 2.28E+03 -2.07E+00 3.57E+03 2.53E-04 9.49E-05 3.58E+00 2.26E+02 

25 oC 

Base case 1.43E+03 5.76E-05 2.17E+03 -2.37E+00 3.50E+03 2.23E-04 8.85E-05 3.52E+00 2.25E+02 

Mean 1.43E+03 5.74E-05 2.14E+03 -2.37E+00 3.50E+03 2.21E-04 8.85E-05 3.52E+00 2.23E+02 

2.50% 1.39E+03 5.59E-05 1.85E+03 -2.41E+00 3.33E+03 2.06E-04 8.82E-05 3.47E+00 2.03E+02 

97.50% 1.47E+03 5.90E-05 2.43E+03 -2.33E+00 3.68E+03 2.36E-04 8.87E-05 3.57E+00 2.43E+02 

HRAS 

15oC 

Base case -2.94E+02 5.87E-05 7.54E+02 -2.72E+00 -2.85E+02 1.17E-04 1.06E-04 -1.20E+00 -8.08E+00 

Mean -2.51E+02 6.01E-05 7.61E+02 -2.67E+00 -1.78E+02 1.23E-04 1.06E-04 -1.07E+00 -4.48E+00 

2.50% -3.38E+02 5.70E-05 4.32E+02 -2.78E+00 -4.62E+02 1.00E-04 1.05E-04 -1.25E+00 -3.00E+01 

97.50% 2.94E+01 6.94E-05 1.12E+03 -2.33E+00 4.73E+02 1.68E-04 1.10E-04 -2.78E-01 3.41E+01 

25 oC 

Base case -1.90E+02 5.92E-05 8.50E+02 -2.71E+00 -5.28E+01 1.25E-04 1.06E-04 -9.17E-01 6.37E+00 

Mean -1.94E+02 5.91E-05 8.20E+02 -2.71E+00 -5.12E+01 1.23E-04 1.06E-04 -9.20E-01 4.38E+00 

2.50% -2.36E+02 5.74E-05 5.14E+02 -2.75E+00 -2.42E+02 1.07E-04 1.05E-04 -9.71E-01 -1.66E+01 

97.50% -1.51E+02 6.07E-05 1.13E+03 -2.67E+00 1.44E+02 1.39E-04 1.06E-04 -8.69E-01 2.53E+01 

AeMBR 

15oC 

Base case 3.68E+03 6.13E-05 4.28E+03 -2.06E+00 8.57E+03 3.81E-04 4.48E-05 9.90E+00 5.30E+02 

Mean 3.82E+03 5.99E-05 4.33E+03 -2.10E+00 8.88E+03 3.85E-04 4.21E-05 1.03E+01 5.48E+02 

2.50% 3.35E+03 5.39E-05 3.76E+03 -2.31E+00 7.81E+03 3.43E-04 3.91E-05 8.99E+00 4.80E+02 

97.50% 4.39E+03 6.80E-05 5.01E+03 -1.85E+00 1.01E+04 4.33E-04 4.60E-05 1.18E+01 6.27E+02 

25 oC 

Base case 3.85E+03 5.91E-05 4.41E+03 -1.70E+00 8.92E+03 3.84E-04 4.35E-05 1.03E+01 5.53E+02 

Mean 3.99E+03 5.76E-05 4.47E+03 -1.74E+00 9.22E+03 3.87E-04 4.05E-05 1.07E+01 5.71E+02 

2.50% 3.52E+03 5.05E-05 3.89E+03 -1.98E+00 8.16E+03 3.44E-04 3.71E-05 9.43E+00 5.03E+02 

97.50% 4.57E+03 6.65E-05 5.15E+03 -1.47E+00 1.05E+04 4.37E-04 4.49E-05 1.23E+01 6.51E+02 

AnMBR  

(Current) 
15oC 

Base case -1.50E+02 9.91E-05 1.47E+03 1.16E+00 1.21E+04 1.42E-04 1.98E-04 -9.52E-01 -1.54E+01 

Mean 5.68E+02 9.70E-05 1.96E+03 1.16E+00 1.36E+04 1.79E-04 1.92E-04 9.51E-01 8.01E+01 
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2.50% -1.65E+03 8.13E-05 -1.47E+02 4.70E-01 7.06E+03 2.10E-05 1.80E-04 -5.04E+00 -2.21E+02 

97.50% 4.12E+03 1.21E-04 5.35E+03 2.28E+00 2.21E+04 4.34E-04 2.05E-04 1.06E+01 5.63E+02 

25 oC 

Base case -5.73E+02 1.08E-04 1.19E+03 1.40E+00 9.11E+03 1.25E-04 2.24E-04 -2.20E+00 -7.50E+01 

Mean 1.60E+02 1.06E-04 1.70E+03 1.41E+00 1.07E+04 1.63E-04 2.18E-04 -2.59E-01 2.25E+01 

2.50% -2.13E+03 9.01E-05 -4.70E+02 6.95E-01 4.45E+03 -1.50E-07 2.07E-04 -6.46E+00 -2.89E+02 

97.50% 3.81E+03 1.31E-04 5.18E+03 2.55E+00 1.92E+04 4.24E-04 2.30E-04 9.61E+00 5.18E+02 

AnMBR 

(Future) 

15oC 

Base case -1.50E+02 9.91E-05 1.47E+03 1.16E+00 1.21E+04 1.42E-04 1.98E-04 -9.52E-01 -1.54E+01 

Mean -2.17E+03 8.38E-05 -6.40E+02 4.20E-01 1.42E+03 -1.29E-05 2.00E-04 -6.51E+00 -2.92E+02 

2.50% -3.10E+03 7.39E-05 -1.53E+03 1.30E-01 -5.82E+03 -7.65E-05 1.83E-04 -9.05E+00 -4.19E+02 

97.50% -8.81E+02 9.86E-05 7.26E+02 9.01E-01 9.65E+03 8.36E-05 2.15E-04 -2.99E+00 -1.16E+02 

25 oC 

Base case -5.73E+02 1.08E-04 1.19E+03 1.40E+00 9.11E+03 1.25E-04 2.24E-04 -2.20E+00 -7.50E+01 

Mean -2.61E+03 9.20E-05 -9.36E+02 6.40E-01 -6.08E+02 -3.20E-05 2.24E-04 -7.80E+00 -3.54E+02 

2.50% -3.53E+03 8.24E-05 -1.82E+03 3.45E-01 -6.84E+03 -9.54E-05 2.10E-04 -1.03E+01 -4.79E+02 

97.50% -1.29E+03 1.07E-04 4.60E+02 1.13E+00 6.46E+03 6.79E-05 2.38E-04 -4.19E+00 -1.74E+02 
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Figure S6-8. Global warming versus net energy balance (NEB) for HRAS+AD, AnMBR, CAS+AD, and AeMBR+AD for high strength domestic 

wastewater at 15°C. Open markers represent the baseline conditions. Colored dots indicate the values outputted by Monte Carlo simulations for 

HRAS+AD, AnMBR (current and future), CAS+AD, and AeMBR+AD. 
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F. Sensitivity Analysis 
 

Table S6-11. Medium strength domestic wastewater at 15oC and aggregate sludge handling: Emissions categories sensitive (|ρ|>0.6)* to a particular 

uncertainty parameter. 

Table S6-12. High strength domestic wastewater at 15oC and aggregate sludge handling: Emissions categories sensitive (|ρ|>0.6)* to a particular 

uncertainty parameter. 

  Heating 

efficiency 

Maintenance 

cleaning 

frequency 

Membrane 

lifetime 

Recycle 

ratio 

CH4 

oversaturation 

CH4 

recovery 

Intermittent biogas 

sparging 
Flux 

Sludge transport  

distance for land 

application 

Acid. -CAS, -HRAS      AeMBR, AnMBR(C&F)   

Car. -CAS, -HRAS       
-AeMBR, -

AnMBR(C&F) 
 

Eco. -CAS, -HRAS      AeMBR, AnMBR(C) -AnMBR(F) CAS, HRAS 

Eut. -CAS, -HRAS      AnMBR(C) -AnMBR(C&F)  

GW -CAS, -HRAS     

-

AnMBR(F
) 

AeMBR, AnMBR(C)   

NC -CAS, -HRAS      AeMBR, AnMBR(C&F) -AnMBR(F)  

OD -CAS, -HRAS AeMBR   -AnMBR(C) 
AnMBR(F

) 
 -AeMBR  

RE -CAS, -HRAS      AeMBR, AnMBR(C&F)   

Smog       AeMBR, AnMBR(C&F)   

  Heating 

efficiency 

Maintenance 

cleaning 

frequency 

Membran

e lifetime 

Recycle 

ratio 

CH4 

oversaturatio

n 

CH4 

recovery 

Intermittent biogas 

sparging 
Flux 

Sludge transport  

distance for land 

application 

Acid. -CAS, -HRAS   AeMBR   AeMBR, AnMBR(C&F)   

Car. -CAS       
-AeMBR, -

AnMBR(C&F) 
 

Eco.       AeMBR, AnMBR(C&F) -AnMBR(F) CAS, HRAS, AeMBR 

Eut. -CAS, -HRAS      AnMBR(C) -AnMBR(C&F)  

GW -CAS   AeMBR  
-

AnMBR(F) 
AeMBR, AnMBR(C)   

NC       AeMBR, AnMBR(C&F)  CAS, HRAS, AeMBR 

OD -CAS, -HRAS AeMBR   -AnMBR(C) AnMBR(F)    

RE -CAS, -HRAS   AeMBR   AeMBR, AnMBR(C&F)   

Smog       AeMBR, AnMBR(C&F)  CAS, HRAS, AeMBR 
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Note: *ρ: rank correlation coefficient indicates ranking sensitivity of emissions categories to a particular uncertainty parameter. Negative and positive signs 

indicate correlation. Abbreviations: Acid.=acidification (H+ moles equivalent); Car.=carcinogenics (benzene equivalent); Eco.=ecotoxicity (kg 2,4-D equivalent); 

Eut.=eutrophication (kg nitrogen equivalent); GW=global warming (kg CO2 equivalent); NC =noncarcinogenics (toluene equivalent); OD=ozone depletion (kg CFC-11 

equivalent); RE=respiratory effects (kg PM2.5 equivalent); and Smog=Smog (kg NOX equivalent).
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4) Life Cycle Costing 

 

A. Costs Appended to CAPDETWorks Cost Estimates 

 
Table S6-13. Supplemental costs appended to CAPDETWorks cost estimations 

Supplemental Costs Unit Cost Unit Lifetime (yr) Reference 

Quicklime 0.18 $/lb  (Hydromantis 

Inc. 2010) 

Membranes 4,097,192 $/5MGD 10 (Hong 2012) 

Tank cover 295,487 $/each 40  

Gas safety 76,000 $/each 20 (Hydromantis 

Inc. 2010) 

PLC & cleaning CIP 135,000 $/each 20 (Hong 2012) 

Permeate pump 81,000 $/each 20 (Hong 2012) 

RAS pump (MBRs) 99,900 $/each 20 (Hong 2012) 

Piping (blower & RAS; MBRs) 135,000 $/each 40 (Hong 2012) 

Membrane labor, installation, & 

commissioning 

405,000 $/each 40 (Hong 2012) 

CHP 800 $/kW 20 (Chambers and 

Potter 2002) 

CHP maintenance 0.0134 $/kWh/yr  (Chambers and 

Potter 2002) 

Hypochlorite $0.75 /gallon  (US Peroxide 

2012) 

Citric acid 1.98 $/kg  (Brinckerhoff 

2001) 

 

B. Construction and Equipment Cost Estimates 

 
Table S6-14. Construction and equipment costs for land application and landfill scenarios. 

 HRAS AnMBR CAS AeMBR 

Blower System $55,300.00 $772,000.00 $509,000.00 $677,000.00 

Equalization Basin $0.00 $340,000.00 $0.00 $340,000.00 

Preliminary Treatment $347,000.00 $493,000.00 $347,000.00 $493,000.00 

Primary Clarification $338,000.00 $0.00 $338,000.00 $0.00 

Secondary Clarification $379,000.00 $0.00 $375,000.00 $0.00 

Secondary Treatment $901,000.00 $1,290,000.00 $1,930,000.00 $1,260,000.00 

Anaerobic Digester $2,100,000.00 $0.00 $2,020,000.00 $1,610,000.00 

Gravity Belt Thickener $1,840,000.00 $676,000.00 $1,300,000.00 $1,300,000.00 

Centrifuge $1,920,000.00 $357,000.00 $1,380,000.00 $829,000.00 

Hauling and Landfill $293,000.00 $247,000.00 $291,000.00 $269,000.00 

Membrane System $0.00 $8,204,873.64 $0.00 $4,564,274.71 

CHP $166,426.46 $283,738.39 $140,507.38 $31,571.41 

Cover and Gas Safety $0.00 $387,792.66 $0.00 $0.00 

Mixer $0.00 $8,950.00 $0.00 $0.00 

Blend Tank $39,400.00 $0.00 $24,400.00 $0.00 

Other $14,900,000.00 $14,140,000.00 $15,200,000.00 $16,140,000.00 

Total $23,279,126.46 $27,200,354.70 $23,854,907.38 $27,513,846.13 
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Table S6-15. Construction and equipment costs for incineration scenario. 

 HRAS AnMBR CAS AeMBR 

Blower System $55,300.00 $772,000.00 $509,000.00 $677,000.00 

Equalization Basin $0.00 $340,000.00 $0.00 $340,000.00 

Preliminary Treatment $347,000.00 $493,000.00 $347,000.00 $493,000.00 

Primary Clarification $338,000.00 $0.00 $338,000.00 $0.00 

Secondary Clarification $379,000.00 $0.00 $375,000.00 $0.00 

Secondary Treatment $901,000.00 $1,290,000.00 $1,930,000.00 $1,260,000.00 

Anaerobic Digester $2,100,000.00 $0.00 $2,020,000.00 $1,610,000.00 

Gravity Belt Thickener $1,840,000.00 $676,000.00 $1,300,000.00 $1,300,000.00 

Centrifuge $1,920,000.00 $357,000.00 $1,380,000.00 $829,000.00 

Incinerator $1,730,000.00 $1,570,000.00 $1,730,000.00 $1,610,000.00 

Hauling and Landfill $239,000.00 $238,000.00 $239,000.00 $238,000.00 

Membrane System $0.00 $8,204,873.64 $0.00 $4,564,274.71 

CHP $166,426.46 $283,738.39 $140,507.38 $31,571.41 

Cover and Gas Safety $0.00 $387,792.66 $0.00 $0.00 

Mixer $0.00 $8,950.00 $0.00 $0.00 

Blend Tank $39,400.00 $0.00 $24,400.00 $0.00 

Other $16,200,000.00 $15,240,000.00 $16,400,000.00 $17,340,000.00 

Total $26,255,126.46 $29,861,354.70 $26,732,907.38 $30,292,846.13 
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C. Present Worth, Construction, and Yearly Cost Estimates 
 

Table S6-16. Present worth, construction, and yearly cost estimates for land application scenario (8% discount rate). 

System Present Worth Project Operation (/yr) Maint. (/yr) Material (/yr) Chemical (/yr) Energy (/yr) Total (/yr) 

HRAS 25_Landapp 32,675,208.42 23,279,126.46 453,000.00 125,117.06 193,000.00 28,500.00 -70,027.29 729,589.77 

AnMBR 25_Landapp 37,784,698.89 27,200,354.70 299,000.00 110,502.01 141,000.00 201,711.29 69,643.00 821,856.31 

CAS 25_Landapp 36,350,189.99 23,854,907.38 489,000.00 142,984.05 195,000.00 24,000.00 119,253.38 970,237.42 

AeMBR 25_Landapp 40,652,433.90 27,513,846.13 386,000.00 95,516.77 165,000.00 112,876.39 260,795.82 1,020,188.97 

HRAS 15_Landapp 32,777,576.61 23,279,126.46 453,000.00 123,887.12 193,000.00 28,500.00 -60,848.63 737,538.48 

AnMBR 15_Landapp 38,300,035.07 27,200,354.70 299,000.00 104,405.28 141,000.00 202,324.97 115,141.04 861,871.29 

CAS 15_Landapp 36,455,406.45 23,854,907.38 489,000.00 141,719.89 195,000.00 24,000.00 128,687.42 978,407.30 

AeMBR 15_Landapp 40,711,818.92 27,513,846.13 386,000.00 94,803.26 165,000.00 112,876.39 266,120.47 1,024,800.12 

 
Table S6-17. Present worth, construction, and yearly cost estimates for landfill scenario (8% discount rate). 

System Present Worth Project Operation (/yr) Maint. (/yr) Material (/yr) Chemical (/yr) Energy (/yr) Total (/yr) 

HRAS 25_Landfill 39,603,885.75 23,279,126.46 432,000.00 125,117.06 752,000.00 28,500.00 -70,027.29 1,267,589.77 

AnMBR 25_Landfill 38,286,963.61 27,200,354.70 296,000.00 110,502.01 183,000.00 201,711.29 69,643.00 860,856.31 

CAS 25_Landfill 42,892,509.85 23,854,907.38 470,000.00 142,984.05 722,000.00 24,000.00 119,253.38 1,478,237.42 

AeMBR 25_Landfill 44,103,893.98 27,513,846.13 375,000.00 95,516.77 444,000.00 112,876.39 260,795.82 1,288,188.97 

HRAS 15_Landfill 39,706,253.94 23,279,126.46 432,000.00 123,887.12 752,000.00 28,500.00 -60,848.63 1,275,538.48 

AnMBR 15_Landfill 38,802,299.79 27,200,354.70 296,000.00 104,405.28 183,000.00 202,324.97 115,141.04 900,871.29 

CAS 15_Landfill 42,997,726.31 23,854,907.38 470,000.00 141,719.89 722,000.00 24,000.00 128,687.42 1,486,407.30 

AeMBR 15_Landfill 44,163,279.00 27,513,846.13 375,000.00 94,803.26 444,000.00 112,876.39 266,120.47 1,292,800.12 

 
Table S6-18. Present worth, construction, and yearly cost estimates for incineration scenario (8% discount rate). 

System Present Worth Project Operation (/yr) Maint. (/yr) Material (/yr) Chemical (/yr) Energy (/yr) Total (/yr) 

HRAS 25_Incineration 39,075,623.48 26,255,126.46 474,000.00 148,117.06 190,000.00 28,500.00 154,872.71 995,489.77 

AnMBR 25_Incineration 40,990,997.17 29,861,354.70 320,000.00 121,402.01 125,000.00 190,152.78 107,643.00 864,197.79 

CAS 25_Incineration 42,512,228.50 26,732,907.38 511,000.00 165,984.05 191,000.00 24,000.00 333,253.38 1,225,237.42 

AeMBR 25_Incineration 45,405,720.58 30,292,846.13 409,000.00 112,816.77 152,000.00 112,876.39 386,795.82 1,173,488.97 

HRAS 15_Incineration 39,177,991.67 26,255,126.46 474,000.00 146,887.12 190,000.00 28,500.00 164,051.37 1,003,438.48 

AnMBR 15_Incineration 41,498,430.13 29,861,354.70 320,000.00 115,305.28 125,000.00 190,152.78 153,141.04 903,599.10 

CAS 15_Incineration 42,617,444.96 26,732,907.38 511,000.00 164,719.89 191,000.00 24,000.00 342,687.42 1,233,407.30 

AeMBR 15_Incineration 45,465,105.60 30,292,846.13 409,000.00 112,103.26 152,000.00 112,876.39 392,120.47 1,178,100.12 
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