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ABSTRACT

Quantum technology with atomic, molecular and optical systems has advanced to a stage that

single particles can be manipulated precisely so that quantum information processing is no longer

elusive. In fact, a great number of quantum information protocols have been demonstrated with

small scaled systems. The remaining task is to build large scale practical devices. However it turns

out that scaling up is highly nontrivial in the quantum world. A protocol valid in principle could

face enormous technical challenges when the system size is increased. Therefore new ideas and

smart designs that bypass the technical obstacles are extremely useful in this field.

In this dissertation we tackle several specific problems in quantum information processing

with trapped ions and cold atomics gases. For ions, we first present a scalable implementation

scheme for the recently proposed concept of Boson sampling, which holds the promise of outper-

forming classical computers in the near future. The scheme is based on the technically mature

linear Paul trap and the transverse motional phonons of the ions are manipulated with laser to

perform sampling. A complete recipe is provided and the technical requirements are discussed.

Then we go back to the conventional circuit model for computation and discuss a method to

perform individual ion addressing quantum gates with Gaussian beams. We describe the so-called

spatial refocusing technique to significantly narrow down the beams with coherent interference.

We also extend the original quantum gate formalism to include the effect of micromotion. We

xi



demonstrate high fidelity gates in the presence of significant micromotion. This paves the way to

the development of a two dimensional ion crystal quantum processor with hundreds of ions inside

a single trap.

On the other hand, we explore precision measurement with a cold atom interferometer. Com-

bining a spin-spin interaction Hamiltonian and coherent spin rotation pulses, we construct opti-

mized pulse sequences for spin squeezing to approach the Heisenberg limit of noise.

Finally we investigate the general problem of state detection with faulty detectors. We develop

a statistical procedure to recover the true correlation from noisy data.
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CHAPTER I

Introduction

1.1 Motivation

From abacuses to transistors, various physical systems have been used to construct devices for

computing–computers. It is natural to assume that physical laws of the world we are in deter-

mine the capabilities of the computing machines, which as part of the physical world are certainly

governed by those laws. However, starting in the 1930s, Alan Turing and Alonzo Church’s foun-

dational work in the theory of computation established the belief that all kinds of physical devices

essentially have the same level of computing power. Thus physics and computation had remained

two diverged roads. An interesting turn of the situation started in 1970s, when researchers tried

to generalize classical information theory to quantum systems. The ideas of universal quantum

computers and quantum simulators were envisioned by pioneers like Feynman and Deutsch in the

1980s [1, 2]. Research along this direction led to a series of discoveries, to name a few, quantum

cryptography [3], fast quantum algorithms [4], and the celebrated Shor’s algorithm [5]. Inspired by

these exciting discoveries, quantum information science has become a burgeoning interdisciplinary
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field, uniting the efforts of the physics and computer science communities.

Just as any other interdisciplinary field, researchers with different background and interest ap-

proach the subject from different perspectives. In the field of quantum information, there are

quantum algorithm designers, quantum communication protocol designers, investigaters of funda-

mental properties of entanglement, experimentalists constructing quantum-enhanced measurement

devices, quantum computer builders, etc. This dissertation focuses on problems in the physical re-

alization of quantum information processing with Atomic, Molecular and Optical (AMO) systems,

in particular with trapped ions and cold atom gases. Major topics covered include implementa-

tion of a non-traditional paradigm of quantum computing–boson sampling, trapped ion phase gate

design and improvement, efficient spin squeezing for precision measurement and quantum state

reconstruction.

1.2 Background

Before we dive into detailed discussions of the major topics, we briefly review the physical plat-

forms considered, i.e. trapped ions and cold atom gases. Both systems have been utilized for a

wide range of purposes from quantum simulation/computation to testing the foundations of quan-

tum mechanics. We will only touch an extremely small part of the knowledge that is most relevant

for this dissertation. For trapped ions, the introduction emphasizes quantum gate design and for

cold gases the application in precision measurement is the focus.
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1.2.1 Trapped Ion Quantum Gates

Trapped atomic ions have proven to be an ideal platform for quantum information processing.

Electric fields are engineered to form a three dimensional trap for charged atomic ions. Suppose

the electric potential has the form Φ(x, ,y, z) = αx2 + βy2 + γz2. One of Maxwell’s equations

in a region with no charge says ∇2Φ = 0, which means α + β + γ = 0. Thus there exists no

real three dimensional electric trapping potential. Experimentally radio frequency (r.f.) electric

fields are employed to generate an effective trap within the x− y plane and the potential along

the other direction z is a pure static trapping potential. The overall potential is Φ(x, ,y, z) =

α cos(Ωt)(x2− y2)− γ

2(x
2 + y2)+ γz2 where Ω is in the radio frequency regime (around 1GHz)

and γ > 0. If one integrates out the high frequency dynamics and focus on the low frequency effec-

tive physics, such an r.f. potential results in a trap along both x and y directions, i.e. Φ(x, ,y, z)≈

Φ̄(x, ,y, z) = α ′(x2+y2)+γz2 where α� α ′ > 0 and Φ̄(xy, z) is a time independent harmonic po-

tential. Typically α ′ and γ are on the order of 1−10MHz level. See [6] for a more experimentally

oriented account of ion traps. For ions sitting close to the z-axis, i.e. x, y≈ 0, the micromotion with

a characteristic frequency Ω in the r.f. regime becomes negligible and the harmonic approximation

is very accurate. So typically traps are designed so that α ′ > γ and ions will crystallize along the

z-axis when cooled, as shown in Fig. 1.2.1.

Usually atomic species with two valence electrons are used. After loosing one electron the internal

level structure of the ion is similar to that of a single valence electron atom. One then identifies

two internal levels as the qubit states, resulting in a chain of qubits well separated in space. Using

laser beams with appropriate frequency one can manipulate the states of the qubits, for example,

initializing all the qubits to the same state through optical pumping, rotating the qubits’ states on

the Bloch sphere, reading out the qubit state, etc. If the laser beams are focused to single qubits,
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Figure 1.2.1: Illustration of a linear ion trap.

all these operations can be performed on one of the qubits without touching the rest.

For the purpose of universal quantum computing, one still needs a two-qubit entangling operation.

This can be done by utilizing the Coulomb interaction between the ions. The earliest proposal

is due to Cirac and Zoller [7] and was demonstrated experimentally one decade ago [8]. There

exists a more robust type of gate called Molmer Sorensen gate [9] which requires no ground state

cooling and thus became more popular than the original Cirac-Zoller gate. In this dissertation we

will mainly work with the fast and scalable controlled phase gate mediated by transverse motional

modes proposed in [10,11]. We outline the basic idea below. The key ingredient is a laser induced

spin-dependent force described by the Hamiltonian

H =
N

∑
n=1

h̄Ωn cos(∆k · xn +µt)σ
z
n (1.2.1)

where xn is the n-th ion’s displacement operator along x-direction (perpendicular to the trap axis

z) and σ z
n acts on the qubit space of the n-th ion. The force is induced by a pair of Raman beams

with effective wave-vector ∆~k =~k1−~k2 = ∆k x̂ and detuning µ = |ω1−ω2|. We can expand the

Coulomb interaction upto second order and together with the external trapping the toal potential
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energy is ~x†A~x/2 where ~x denotes the vector of x-coordinates. Using a canonical transformation

to diagonalize the potential [12] we obtain normal coordinates ~q defined by ~x†A~x/2 = ~q†D~q/2

with D a diagonal matrix satisfying AV = V D, i.e. A = V DV †. The diagonal elements of D gives

the normal mode frequencies Dkk = Mω2
k (M is the mass of one ion). Now we can expand the

x-coordinates with the normal mode operators

∆k · xn = ∆k ·
N

∑
k=1

Vnkqk

= ∆k ·
N

∑
k=1

Vnk
√

h̄/(2Mωk)
(

ak +a†
k

)

≡
N

∑
k=1

Vnkηk

(
ak +a†

k

)

≡
N

∑
k=1

gk
n

(
ak +a†

k

)

where we defined the Lamb-Dicke parameter for mode k as ηk ≡ |∆k|
√

h̄/2Mωk and the coupling

constant between the n-th ion and the k-th normal mode gk
n ≡ Vnkηk. Assuming the Lamb-Dicke

condition ηk = |∆k|
√

h̄/2Mωk� 1, we can use ηk as small parameters to expand the Hamiltonian

Eq. (1.2.1) and keep only terms linear in ηk,

H =
N

∑
n=1

h̄Ωn cos(∆k · xn +µt)σ
z
n

=
N

∑
n=1

N

∑
k=1

h̄Ωn cos
(

Vnkηk

(
ak +a†

k

)
+µt

)
σ

z
n

= −
N

∑
n=1

N

∑
k=1

h̄Ωn sin(µt)Vnkηk

(
ak +a†

k

)
σ

z
n +O

(
η

2
k
)
.

Switching to the interaction picture with respect to H0 = ∑k
Mω2

k
2 a†

kak, we replace ak and a†
k with

5



ake−iωkt and a†
keiωkt ,

HI ≈ −
N

∑
n=1

N

∑
k=1

h̄Fn(t)gk
n

(
a†

keiωkt +ake−iωkt
)

σ
z
n (1.2.2)

where we defined Fn(t)≡Ωn sin(µt) for convenience.

From the Magnus formula we know that the evolution operator corresponding to the Hamiltonian

Eq. (1.2.2) contains in its exponent only the following terms, a†
kσ z

n, akσ z
n, and

[
akσ

z
l , a†

kσ z
n

]
=

σ
z
l σ z

n. We can then write down the evolution operator as

U(τ) = exp[i∑
n

φn(τ)σ
z
n + i ∑

l<n
φln(τ)σ

z
l σ

z
n] (1.2.3)

with φn(τ) and φln(τ) to be determined from the Schrödinger equation i∂U
∂ t = HI ·U . After some

calculation we obtain

φn(τ) =
1
i ∑

k
[αk

na†
k−α

k∗
n ak]

with αk
n(τ) = i

´
τ

0 Fn(t)gk
neiωktdt and

φln = 2
ˆ

τ

0

ˆ t2

0
∑
k

Fl(t2)gk
l gk

nFn(t1)sin[ωk(t2− t1)]dt1dt2.

The conditional phase flip gate (CPF) is defined to be UCPF ≡ exp
(

iσ z
i σ

z
j π/4

)
. Comparing to

Eq.(1.2.3) we should engineer the pulse shape Ωn(t) and choose an appropriate gate time τ and

Raman detuning µ so that φn(τ) = 0 for all n and φln(τ) = π/4 if the set {l, n} is idential to {i, j}

and φln(τ) = 0 otherwise. In practice this can be done by choosing a parametric form of Ωn(t),

e.g. a piecewise constant function, and optimizing the gate fidelity over the parmeter space. With

6



the evolution operator Eq.(1.2.3) in hand it is straightforward to calculate the gate fidelity. There

are different definitions of the fidelity and we will use

F = 〈Ψ0|(UCPF)
†
ρrUCPF |Ψ0〉

where |Ψ0〉 is the initial state before applying the gate (usually taken to be the product state |+〉i⊗

|+〉 j) and ρr = trm{U(τ) |Ψ0〉〈Ψ0|U(τ)†} is the actual spin state after the operation of U(τ),

with the motional states traced over. The complication comes from the finite temperature of the

motional degrees of freedom. We will offer a simple treatment in Appendix A.

1.2.2 Precision Measurement with Cold Atom Gases

Trapped cold atom interferometers have turned out a suitable platform for precision measurement.

In contrast to trapped ions, neutral atoms cannot be confined with electric fields. One instead uses

optical or magnetic fields to cool and trap the atoms. Typically around 105 atoms form a cloud

inside a trap. We also identify two internal atomic levels as the bases for interferometry, analogous

to the two ports of an optical interferometer. Note that precision measurement schemes for cold

gases also apply to trapped ions but cold gases are more favorable since the particle number is a

lot larger, resulting in a larger precision gain as we will see later. Each two level system is often

mapped to a spin with S = 1/2 which is a more intuitive object. So the trapped gas is equivalent

to a collection of about N ≈ 105 spins. Due to the lack of distinguishability the system remains

in the permutation invariant subspace with total spin J = N/2, i.e. spanned by |J = N/2, Jz〉 with

Jz = −J,−J + 1, · · · , J. If the particles are not entangled, for example in a spin coherent state

with all the spins pointing to the x+ direction, the tip of the total spin vector fluctuates quantum

mechanically with magnitude ∆Jy = ∆Jz =
√

J/2, see Fig. 1.2.2 left panel for example. This noise
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Figure 1.2.2: Quasi-probability distribution of the spin vector for a spin coherent state (left panel)
and a spin squeezed state (right panel).

gives rise to the standard quantum limit for the measurement precision of the spin rotation angle

around the y or z axis. Although quantum mechanics places the constraint that ∆Jy ·∆Jz ≥ J/2

we can redistribute the noise between y and z directions such that ∆Jz <
√

J/2 and ∆Jy >
√

J/2

to achieve a higher rotation sensitivity along the y axis, as shown in Fig.1.2.2 right panel. One

figure of merit is the squeezing parameter ξ 2 = N 〈J
2
z 〉
〈Jx〉2

, inversely proportional to the signal-noise

ratio squared. For the spin coherent state ξ 2 = 1. Interferometry conducted with a squeezed state

satisfying ξ 2 < 1 can surpass the stand quantum limit. This is the motivation for creating the

so-called spin squeezed states.

Since Hamiltonians linear in the spin operators Sx, Sy, Sz only induce rotation of the spin vector,

a nonlinear interaction S2
i is a necessary ingredient for squeezing. Ideally the two-axis twisting

Hamiltonian HTAT = χ

(
S2

i −S2
j

)
where i and j are orthgonal directions can create a squeezed

state that saturates the Heisenberg limit, i.e. ξ 2 ∝ 1/N. However such an interaction is usually not

naturally present in cold gases. The simpler one-axis twisting Hamiltonian HOAT = χS2
i that cor-

responds to two-body spin-spin interaction can produce a slightly inferior state with ξ 2 ∝ 1/N2/3.

We will cover a novel technique to enhance HOAT to approach the performance of HTAT in Chap-
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ter V.

1.3 Outline of Dissertation

To orient the readers, we provide a brief outline of the contents of this dissertation. Chapters II,

III and IV focus on the trapped ion platform. Chapter II discusses the implementation of a boson

sampler which is a novel special-purpose analog quantum computer dedicated to the task of boson

sampling. A boson sampler holds the promise of outperforming classical computers in the near

future and is currently attracting a lot of interest. Our proposal can hopefully help the trapped

ion community scale up the sampler size. In Chapter III we consider the issue of individual ion

optical addressing and analyze the spatial refocusing approach which is to construct narrow pulses

with a few Gaussian wavepackets. Advantages and limitations of the new approach are discussed.

Chapter IV extends the quantum gate formalism to the regime with significant micromotion. Tra-

ditionally ion micromotion induced by AC electric fields has to be avoided because it is hard to

control. This limits the ions to the saddle points/line of the trap. We will demonstrate how the

micromotion can be taken into account in the design of quantum gates so that we no longer need

to avoid micromotion. This opens up the possibility of holding a lot more ions inside a single trap

and could become a new paradigm for trapped ion quantum computers.

Chapter V discusses spin squeezing for cold atom precision measurement. We will make better

use of the Hamiltonian components available to enhance squeezing. Numerical optimization tech-

niques are employed to find a pulse sequence that squeezes much better than the naive approach.

The technique does not require complicated experimental setup and can apply readily in experi-

ments. Chapter VI deals with the general issue of correcting measurement errors in state detection.

Statistical analysis is performed to figure out the distortion of data brought by faulty detectors and
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simple methods to reconstruct the state are presented.

The last chapter will conclude the dissertation and discuss future directions for the topics covered.
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CHAPTER II

Boson Sampling with Trapped Ions

2.1 Introduction

What is the ultimate computational power of physical devices? That is a deep question of great

importance for both physics and computer science. The famous extended Church-Turing the-

sis (ECTT) postulates that a (classical) probabilistic Turing machine can efficiently simulate the

computational power of any physical devices ("efficiently" here means with a polynomial over-

head) [13]. The recent development in quantum computation brings doubt to the ECTT with

discovery of superfast quantum algorithms. The most well known example is Shor’s algorithm to

factorize a large number in polynomial time with a quantum computer [5]. Classically, whether

factoring is hard is not settled (a "hard" problem means its solution requires exponential time).

No efficient classical algorithm has been found yet to solve factoring, but it wouldn’t be very sur-

prising if one finds one as this will not induce dramatic change to the computational complexity

theory.

Recently, Ref. [13] introduces another problem, called Boson sampling, which is hard for classi-
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cal computers but can be solved efficiently with a quantum machine. Boson sampling is defined

as a problem to predict the probabilities of the measurement outcomes in the Fock basis for M

Bosonic modes, which start in definite Fock states and undergo a series of mode mixing defined

in general by a unitary matrix. By definition, this problem can be efficiently solved with a quan-

tum machine, but classically its solution requires sampling of a probability distribution given by

matrix permanents with an exponentially large number of possible outcomes. Computation of the

matrix permanent is known to be #P-hard (much harder than the more well-known class of the

NP-hard problems) [14]. Ref. [13] rigorously proved that Boson sampling is classically intractable

unless the so-called polynomial hierarchy in the computational complexity theory collapses, which

is believed to be extremely unlikely. In this sense, compared with the factoring problem, although

Boson sampling has no immediate practical applications, it is a problem much harder for classical

computers to solve. A demonstration of Boson sampling with a quantum machine thus constitutes

an effective disproof of the famous ECTT. Because of this far-reaching theoretical implication,

experimental demonstration of the Boson sampling has raised strong interest recently. Several

publications this year have reported proof-of-principle demonstrations of the Boson sampling with

up to three photons [15–18]. The key challenge for the next-step experiments is to scale up the

number of Bosons. The demonstration using photons based on the spontaneous parametric down

conversion source has difficulty in terms of scalability [15–18]. The success probability decreases

very rapidly with the number of photons due to the probabilistic nature of the single-photon source

and the significant photon loss caused by the detector and the coupling inefficiencies. This, in prac-

tice, limits the number of Bosons below 10, which is still within the simulation range of classical

computers.

In this chapter, we describe a scalable scheme to realize Boson sampling using the transverse

phonon modes of trapped ions. Compared with the implementation using photons, this scheme
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has the following desirable features: First, the Fock states of the phonons can be prepared in a

deterministic fashion and there is no limitation to the number of Bosons that one can realize with

this system. We encode the Bosons using the local transverse phonon modes [11], and the state

initialization can be done through simple Doppler cooling and one step of the sideband cooling

that applies to any number of ions. Second, we find a technique to do projective detection of the

phonon numbers for all the ions through sequential spin quantum jump measurements. This gives

an implementation of number-resolving phonon detectors with near perfect efficiency, much higher

than the efficiency of typical single-photon detectors. Finally, we prove that universal coherent

mixing of different phonon modes can be achieved through a combination of the inherent Coulomb

interaction and simple laser-induced phase shifts of the ions. Through this scheme, it is feasible to

realize Boson sampling for tens of phonons with the state-of-the-art trapped ion technology. This

scale has gone beyond the simulation capability of any classical computers and corresponds to the

most interesting experimental region for test of the ECTT [19, 20].

2.2 Basic Idea

The problem of Boson sampling is defined as follows: we have M input Bosonic modes ai (i =

1, 2, ..., M), which undergo coherent mode mixing described in general by a unitary matrix Λ,

with the output modes given by bi = ∑
M
j Λi ja j. The input modes are prepared in a Fock (number)

state |T〉 = |t1, t2, ..., tM〉, where ti is an integer denoting the occupation number of the mode ai.

We measure the output modes bi in the Fock basis and the probability to get the outcome |S〉 =
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|s1, s2, ..., sM〉 is given by [13, 21]

P(S|T) =

∣∣∣Per
(

Λ(S,T)
)∣∣∣

2

∏
M
j=1 s j! ∏

M
i ti!

(2.2.1)

where Per(·) denotes the matrix permanent and Λ(S,T) is a sub-matrix of Λ formed by taking s j

copies of the j-th column and ti copies of the i-th row of the matrix Λ. Since the total number of

Bosons is conserved N = ∑
M
i a†

i ai = ∑
M
j b†

jb j, the sub-matrix Λ(S,T) has dimension N×N. Due to

the hardness to calculate the matrix permanent, it becomes impossible to sample the probability

distribution P(S|T) with any classical computer when the number of Bosons N increases beyond

20∼ 30. An experimental demonstration of a quantum machine that can successfully perform this

job therefore provides strong evidence against the ECTT.

2.3 Trapped Ion Realization

To realize Boson sampling with trapped ions, we consider a chain of ions in a linear Paul trap

with the transverse trapping frequency ωx significantly large than the axial one ωz. The Bosons are

represented by the local transverse phonon modes ai associated with each ion i (i = 1, 2, ..., M),

all with the oscillation frequency ωx. The Coulomb interaction between the ions introduces a

small perturbation to the oscillation frequency of the local phonon modes, with the interaction

Hamiltonian described by [22, 23]

Hc = ∑
1≤i< j≤M

h̄ti, j
(

a†
i a j +aia

†
j

)
, (2.3.1)
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where the hopping rates ti, j = t0/
∣∣zi0− z j0

∣∣3 and t0 = e2/(8πε0mωx). Here, zi0 denotes the axial

equilibrium position of the ith ion with mass m and charge e. The Hamiltonian (1) is valid under

the condition ti, j� ωx, which is always satisfied for the parameters considered in this chapter. To

make the scheme more scalable and eliminate the challenging requirement of resolving phonon

sidebands for a large ion chain, we use the local transverse phonon modes to represent the target

Bosons instead of the conventional normal modes.

To initialize the local phonon modes ai to the desired Fock states, first we cool them to the ground

state by laser cooling. The routine Doppler cooling achieves a temperature TD∼ h̄Γ/(2kB) (Γ is the

natural bandwidth of the excited state and kB is the Boltzmann constant), with the corresponding

thermal phonon number n̄x = kBTD/h̄ωz ∼ Γ/(2ωx), which is about 1 ∼ 2 under typical values

of ωx ≈ 2π × (5 ∼ 10) MHz and Γ ≈ 2π × 20 MHz. The sideband cooling can further push the

transverse modes to the ground state with n̄x ≈ 0 [24–27]. For the axial modes, we only require

their thermal motion to be much less than the ion spacing, which is satisfied already under routine

Doppler cooling. As all the local transverse modes have the same frequency (with ti, j � ωx), we

only need to apply one step of the sideband cooling independent of the number of ions, with the

laser detuning set at −ωx. The off-resonant process in the sideband cooling limits n̄x ∼ γ/ωx,

where γ is the rate of the sideband cooling which needs to be comparable with the phonon hopping

rate ti,i+1. For a harmonic trap, we take l0 =
[
e2/
(
4πε0mω2

z
)]1/3 as the length unit so that the

ion spacings in this unit take universal dimensionless values (of the order of 1) independent of

the ion species and the trap frequency [12]. The hopping rate ti,i+1 ∼ t0/l3
0 = ω2

z /(2ωx) and the

thermal phonon number after the sideband cooling n̄x ∼ ti,i+1/ωx ∼ ω2
z /
(
2ω2

x
)
< 10−2 with a

typical ωz ≈ 2π × (0.3∼ 1) MHz. After cooling of all the transverse modes to the ground state,

we can then set them to any desired Fock states through a sequence of laser pulses blue detuned at

ωx [28]. Note that the ion spacing is about or larger than 10 µm under our choice of the parameters,
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and under such a spacing it is reasonable to assume individual addressing of different ions with

focused laser beams. The focused beam can prepare different local modes ai to different Fock

states |ni〉. For implementation of the Boson sampling, without loss of generality we actually

can choose ni = 1, which requires only one pulse for preparation. To make the phonon hopping

negligible during the preparation step, the sideband Rabi frequency Ω needs to be large compared

with the hopping rate ti,i+1 ∼ ω2
z /(2ωx) ∼ 2π × (10∼ 100) kHz, which is easy to satisfy under

typical laser power.

After the state initialization, we need to coherently mix different phonon modes. The inherent

Coulomb interaction described by the Hamiltonian (1) serves this purpose, however, it is con-

stantly on without a tuning knob and we need to introduce additional control parameters to realize

different unitary transformations between the M modes. To achieve this goal, we introduce a sim-

ple operation which induces a controllable phase shift for any local phonon mode at any desired

time. A laser pulse with duration tp and detuning δ to the sideband induces an additional Hamil-

tonian Hi = h̄
(
Ω2

i /δ
)

a†
i ai (Ωi is the sideband Rabi frequency applied to the target ion i), which

gives a phase shift Uφi = eiφia
†
i ai to the mode ai with φi = Ω2

i tp/δ . We choose Ω2
i /δ � ti,i+1 so that

the pulse can be considered to be instantaneous over the time scale of phonon tunneling.

The operation Uφi and the Coulomb interaction Hc together are universal in the sense that a com-

bination of them can make any unitary transformation on the M phonon modes represented by the

M×M matrix Λ. Now we prove this statement. It is known that any unitary transformation Λ on M

Bosonic modes can be decomposed as a sequence of neighboring beam-splitter-type of operations

and individual phase shifts [29]. The beam splitter operation for the modes ( j, j+1) is represented

by the Hamiltonian H( j)
bs = h̄t j, j+1

(
a ja

†
j+1 +a j+1a†

j

)
. To realize H( j)

bs , we just need to cut off all

the other interaction terms in the Coulomb Hamiltonian given by Eq. (2.3.1) except for a specific

pair ( j, j+1). This can be achieved through the idea of dynamical decoupling using the fast phase
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shifts Uφi with φi = π [30]. Note that a Hamiltonian term Hi j = h̄ti, j
(

aia
†
j +a ja

†
i

)
can be effec-

tively turned off for an evolution time t if we apply an instantaneous π-phase shift Uφi=π at time

t/2 to the mode ai to flip the sign of Hi j to −Hi j for the second half period of the evolution. The

interaction Hamiltonian Hc has long-range tunneling, but it decays fast with distance d through

1/d3 scaling. If we take the first order approximation to keep only the nearest neighbor tunneling,

the Hamiltonian has the form HNN = ∑
M−1
i=1 h̄ti,i+1

(
a†

i ai+1 +aia
†
i+1

)
. The Hamiltonian HNN can

be used to realize the required coupling H( j)
bs for an arbitrary j if we apply π phase shifts at time

t/2 to every other modes in the ion chain except for the pair ( j, j+1) as illustrated in Fig. 2.3.1(a).

This kind of decoupling can be extended and we can simulate the Hamiltonian HNN (and thus

H( j)
bs ) with the original long range Hamiltonian Hc to an arbitrary order of approximation. Suppose

we cut the interaction range in Hc to the kth order (i.e., we neglect the terms in Hc that scale as

1/d3
i j with |i− j|> k), we can shrink the interaction range from k to k−1 by applying one step of

dynamical decoupling with the pattern of π-phase shifts illustrated in Fig. 2.3.1(b). This step can

be continued until one reaches HNN through concatenation of the dynamical decoupling [30]. This

proves that the Coulomb interaction Hamiltonian Hc, together with the phase shifts Uφi on single

ions, can realize any beam splitter operations and thus be universal for construction of arbitrary

unitary operations on the M phononic modes.

We should note that the above proof of universality based on the idea of dynamical decoupling is

intuitively straight-forward but may be cumbersome to realize in practice. For a real experiment

we suggest using optimization methods to design the control sequence for any given unitary. Alter-

natively, one can randomly generate a sequence of phase shifters and insert them to the evolution

to sample unitaries from the group SU(N) randomly (see Appendix B for a demonstration). Due

to the universality of the device we are guaranteed to reach almost any corner of the space SU(N).

In both approaches, the truncation of Coulomb interaction range is not necessary.
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Figure 2.3.1: Control of the tunneling Hamiltonian through the dynamical decoupling. The neg-
ative signs in (a,b) denote the set of ions to be applied a π phase shift at half of the evolution
time while the positive signs denote the ions left intact. (a) The π-phase pattern to turn off other
tunneling terms in HNN except for a neighboring pair j, j+1; (b) The π-phase pattern to shrink the
tunneling range of the Hamiltonian from k to k−1.

The final step of the Boson sampling is detection of all the phononic modes in the Fock basis. The

conventional method of measuring the phonon number distribution of a single mode by recording

the spin oscillation from red or blue sideband pulses is not applicable here as it cannot measure

correlation of different phonon modes in the Fock basis [28]. What we need is a projective mea-

surement of each mode in the Fock basis which gives information of arbitrary high order correla-

tions between different modes. For trapped ions, a projective measurement of its spin (internal)

state can be done with a very high efficiency through the quantum jump technique using a cy-

cling transition. However, the spin detection gives only binary measurement outcomes ("dark"

or "bright"). We need to figure out a way to perform projective measurements of the Fock states

(with multiple possible outcomes) for each phonon mode through the binary spin detection. This

is achieved through a consecutive detection scheme with the following steps: (1) First, to illustrate

the idea, we consider a single ion with its phonon mode in an arbitrary state ∑n cn |n〉 and its spin

prepared in the dark state |D〉 (see Fig. 2.3.2(a)). (2) Through the well known adiabatic transi-

tion technique [31], we make a complete population transfer from |n+1〉 |D〉 to |n〉 |B〉 for all the

Fock components |n〉 by chirping the frequency of a laser pulse across the red detuning at −ωx
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(see Fig. 2.3.2(b) for the population distribution after this step). (3) We make a carrier transition

|n〉 |D〉� |n〉 |B〉 with a π−pulse to flip the dark and the bright states (see Fig. 2.3.2(c)). (4) After

this step, we immediately measure the spin state of the ion through the quantum jump detection.

With probability |c0|2, the outcome is "bright". In this case the measurement is finished and we

know the phonon is in the |n = 0〉 state. Otherwise, the spin is in the dark state and the phonon is

in the |n≥ 1〉 components (see Fig. 2.3.2(d) for the population distribution in this case). When the

spin is in the dark state, the ion does not scatter any photons during the quantum jump measure-

ment. So its phonon state will not be influenced by this measurement. This feature is important for

this consecutive measurement scheme. (5) Now with the phonons in the |n≥ 1〉 components, we

just repeat the steps (2)-(3)-(4) until finally we get the outcome "bright" for the spin detection. We

conclude that the phonon is in the Fock state |n = l〉 if the outcome "bright" occurs (with proba-

bility |cl|2) after l repetitions of the above steps. (6) The above consecutive measurement scheme

can be extended straightforwardly to measure M local phonon modes in the Fock basis indepen-

dently with M ions. The only requirement is that the phonon tunneling between different modes is

negligible during the measurement process. The slowest step of the measurement is the quantum

jump detection of the ion spin state. Recently, there has been experimental report of high efficiency

(> 99%) spin state detection within 10 µs detection time [32]. The typical phonon hopping rate

between the neighboring ions in our scheme is in the range of ti,i+1 ∼ 2π × (10∼ 100) kHz, and

this hopping rate can be significantly reduced during the detection through either an expansion of

the ion chain along the z direction right before the direction by lowering the axial trap frequency

or application of a few dynamical decoupling pulses to turn off the neighboring tunneling during

the detection. As the hopping scales as 1/d3, a moderate increase of the effective distance d will

significantly reduce the tunneling and push it below the kHz level. We should note that for the Bo-

son sampling algorithm, the output phonon number per mode is typically small (the conventional
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Figure 2.3.2: A consecutive measurement scheme to perform projective detection of the phonon
mode in the Fock basis. (a) The initial state configuration right before the measurement. (b-d) The
state configuration after the blue sideband transition, the carrier transition, and the quantum jump
detection. These three steps are repeated until one finally registers the "bright" state (see the text
for details).

photon detectors actually can only distinguish 0 and 1 photons), and the number of repetitions in

our consecutive measurement scheme is either zero or very few in most cases.

2.4 Chapter Summary

In summary, we have proposed a scalable scheme to realize the Boson sampling algorithm by use

of the local transverse phonon modes of trapped ions. The scheme allows deterministic preparation

and high-efficiency readout of the phonon Fock states and universal manipulation of the phonon

modes through a combination of inherent Coulomb interaction and individual phase shifts. Several

dozens of ions have been successfully trapped experimentally to form a linear chain, and in prin-

ciple there is no limitation to the number of ions that can be manipulated in a linear Paul trap by

use of anharmonic axial potentials [33]. This scheme thus opens the perspective to realize Boson

sampling for dozens of phonons with the state-of-the-art trapped ion technology, which would beat

the capability of any classical computers and give the first serious experimental test of the extended

Church-Turing thesis.
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CHAPTER III

Individual Addressing with Spatial Refocusing

3.1 Introduction

Performing useful quantum computation and simulation in the presence of unavoidable noise has

been a goal long sought after. Many solid steps have been taken on different physical platforms

in the past decade, demonstrating for small systems elementary quantum logic [34–39], simple al-

gorithms [40–42], error correction [43,44] and quantum simulation [45–48]. While the celebrated

error threshold theorem [49] guarantees the fault tolerance of a large scale quantum computer when

each single operation error is reduced below a certain limit, this threshold is very hard to satisfy

in a typical multi-qubit setting. To fully control the state evolution of the quantum information

processor, one needs to pinpoint any individual qubit at will and manipulate it while keeping the

others intact. This is a stringent requirement for almost all physical platforms. A lot of efforts have

been devoted to the development of individual addressing optical beam delivery and imaging sys-

tems [50–53]. Assuming a Gaussian profile of the beam, single qubit addressing typically requires

the beam waist to be much smaller than the inter-qubit spacing, which is half the wavelength of the
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trapping laser in optical lattices and around one micron in a linear trapped ion chain. So subwave-

length focusing beyond the diffraction limit is usually required and this makes it experimentally

very challenging.

There have already been many proposals and/or demonstrations in the context of cold atoms in

optical lattices [54–61] and linearly trapped ions [62, 63]. To name a few, interference of several

Bessel beams were proposed to form a pattern such that all but one atom locate at the nodes of

laser profile in [54]; the sharp nonlinear atomic response and position dependent dark states in

an electromagnetically induced transparency (EIT) setting was exploited to enable subwavelength

selectivity in various proposals [55–59] and experimentally demonstrated very recently [60]; single

spin manipulation in an optical lattice with the combination of a well focused level shifting beam

and a microwave pulse was demonstrated in [61]. The adaptation of composite pulse refocusing

technique widely used in nuclear magnetic resonance [64] and quantum information [30] to trapped

ions was considered for single-qubit operation [62] and two-qubit operation with a special form

of interaction [63]. Note the two-qubit correction scheme depends on the physical operation being

carried out and requires specific form of controllable interaction, and does not reduce error for

certain gate realizations.

Our approach is along the line of [54] but in a different setting. We propose and provide detailed

analysis for a scheme to reduce crosstalk error and achieve individual addressing with several

imperfectly focused laser beams. By applying an array of beams centered at different qubits and

controlling their relative amplitudes, we can achieve quantum gates with ideal fidelity even when

the beam waist is comparable with or slightly larger than the inter-qubit distance. A reduction of

the crosstalk error by several orders of magnitude can be achieved with only moderate increase of

the required laser power. The basic idea is reminiscent of the refocusing in NMR, but works in

the spatial domain using multiple beams instead of in the time domain. So we call this technique
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spatial refocusing. Unlike [63], this technique is universal and works for any quantum gate. We

believe it is a valuable addition to the existing toolbox of subwavelength addressing.

3.2 Mathematical formulation

We consider an array of qubits with even spacing a located at the positions xi (i = 1,2, · · · ,N). The

laser beam used to manipulate the qubits is assumed to have a spatial profile denoted by g(x− xi)

when it is centered at xi. To have individual addressing, normally we assume the laser is strongly

focused so that g(x j− xi)→ 0 for any j 6= i (i.e., g(x j− xi) = δi j). It remains experimentally chal-

lenging to achieve this condition in multi-qubit quantum computing platforms where the spacing

a needs to be small to have sufficiently strong interaction. Here, instead of strong focusing, we

assume that the laser beams applied to different qubits have relative coherence. To address a single

qubit, say qubit i at position xi, instead of just shining this qubit with g(x−xi), we apply a number

of identical beams centered on its nearby qubits with relative amplitudes denoted by f (x j− xi).

The total effective laser profile is then the convolution

G(x− xi) = ∑
j

g(x− x j) f (x j− xi). (3.2.1)

For a given g(x− xi), we want to find an envelop function f (x j− xi) to make G(x j− xi)→ 0 for

any j 6= i. It is desirable that f (x j− xi) is fast decaying so that in practice we can cut off j in the

summation of Eq. (3.2.1) and apply laser beams to only a few of its neighbors. If we take the

normalization g(0) = G(0) = 1, f (0) then determines the relative increase of the required laser

light amplitude, which is desired to be moderate for practical applications.

The solution depends on the laser profile g(x− xi). To show that the idea works, first we look
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at a toy model by assuming g(x− xi) given by an exponential decay g(x− xi) = e−α|x−xi|. In

this case, two correction beams applied to its nearest neighbors xi−1 and xi+1 perfectly cancel the

residue laser amplitude for all the qubits j 6= i. To see this, let us take f (0) = β0, f (x j− xi) =

β1 for j = i± 1, and all other f (x j− xi) = 0. If we choose β0 =
(
1+λ 2)/

(
1−λ 2) and β1 =

−λ/
(
1−λ 2), where λ ≡ e−αa, we immediately have G(x j − xi) = δi j. The required increase

of the laser power f (0) =
(
1+λ 2)/

(
1−λ 2) is moderate even when the original laser profile

g(x− xi) has a significant residue amplitude λ = e−αa on the neighboring qubits.

For a general laser profile g(x−xi), if the number of qubits is large or if the envelop function f (xi)

is fast decaying so that the boundary condition is irrelevant, we can formally solve Eq. (3.2.1) by

assuming the periodic boundary condition for the array. In this case, we can take a discrete Fourier

transformation of Eq. (3.2.1), which yields g(k) f (k) = G(k). As the target profile G(x− xi) needs

to be a δ -function, G(k) = 1, and a formal solution of Eq. (3.2.1) is

f (x j− xi) =
1
N ∑

k

1
g(k)

eik(x j−xi)/a, (3.2.2)

where the summation is over k = πn/N with n =−N/2,−N/2+1, · · · ,N/2. In the limit of large

N, f (x j− xi)≈ (1/2π)
´

π

−π
dk [1/g(k)]eik(x j−xi)/a.

Now we apply this formalism to practical Gaussian beams, for which g(x−xi)= exp
[
−(x− xi)

2 /w2
]
,

where w characterizes the width of the beam. The discrete Fourier transformation of g(x−xi) gives

g(k) = ∑
n∈Z

exp[−(na)2 /w2]exp(−ikn) = θ3(k/2,γ) (3.2.3)

where γ ≡ e−a2/w2
< 1, and θ3(z,q) ≡ 1+ 2∑

∞
n=1 qn2

cos(2nz) is the Jacobi elliptic function. We

can do a series expansion with γ , and up to the order of γ2, g(k) ≈ 1+ 2γ cos(k) +O(γ4) and
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f (x j− xi) ≈
(
1+2γ2)δi j− γδi±1, j + γ2δi±2, j. One can see that the envelop function f (x j− xi)

decays exponentially by the factor −γ as one moves away from the target qubit. This result holds

in general. To show this, we write Eq. (3.2.1) into a matrix form ∑ j Mn j f ji = δn,i, denoting x as

xn = na and g(xn− x j) as Mn j = e−(n− j)2a2/w2
= γ(n− j)2

, where n, j are integers between 1 and

N. For large enough positive integers m, γm� 1 , so we can always cut off at certain m and set

terms O
(
γm+1) in Mn j to zero. The resulting Mn j is then a Toeplitz band matrix with bandwidth

2m+1 [65]. The solution f ji contains several exponential decay components with different decay

constants (see Appendix C for details), but |−γ| characterizes the largest decay constant and in the

limit of large | j− i| a single term wins out with f ji ≡ f (x j− xi) ∼ (−γ)| j−i|. Numerical solution

of the matrix equation confirms this (see Fig. 3.2.1(a)). An important implication of this result

is that we can set a truncation tolerance error ε and only apply correction beams to those qubits

with
∣∣ f ji
∣∣> ε . That will require about 2 logε/ logγ = 2(w/a)2 log(1/ε) beams, independent of the

system size. We expect this qualitative behavior to persist for any beam profile that decays quickly

with the increase of distance from its center.

The amplitude f (0), characterizing the required laser power, is plotted in Fig. 3.2.1(b) as a function

of w/a from exact numerical solution of Eq. (3.2.1). When w/a . 1, γ is small and from a trun-

cation of Eq. (3.2.2) g(k)≈ 1+2γ cos(k), we find f (0)≈ (1/2π)
´

π

−π
dk [1/g(k)]≈ 1/

√
1−4γ2.

In the other region with w/a& 1, the summation in Eq. (3.2.3) can be approximated with an inte-

gration, which yields g(k)≈
√

πw2/a2e−k2w2/(4a2) and therefore f (0)≈ 2a3

π5/2w3 eπ2w2/(4a2). These

two analytic expressions, also drawn in Fig. 3.2.1(b) agree well with the exact solution in their

respective regions. Note that for w/a . 1, f (0) is close to unity and the cost in the laser power

in negligible. For w/a & 1, f (0) increases exponentially with w2/a2, and the scheme becomes

impractical when w2/a2� 1. Our scheme is most effective in the region w/a∼ 1, where it allows

a reduction of the crosstalk error by several orders of magnitude with just a few correction beams
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Figure 3.2.1: (a) Envelope function f ji under different Gaussian beam waist (w/a = 1.5,1.0,0.5
for curves from top to bottom), calculated for a homogeneous chain of 401 qubits. Near the center
j− i = 0, f ji has co-existing components with different decay constants so

∣∣ f ji
∣∣ = (−1) j−i f ji

deviates from a straight line on the log plot. Only a few lattice sites away,
∣∣ f ji
∣∣ straightens and

the slope matches that of γ | j−i| precisely. (b) Amplitude f (0) versus the beam waist w/a. For
visibility f (0)− 1 is plotted. Black solid line is from numerical exact integration of Eq. (3.2.2)
and the blue dash-dot (red dashed) line is from the analytic approximation f (0) = 1/

√
1−4γ2

( f (0) = 2
π5/2w3 eπ2w2/4), valid for the region w/a. 1 (w/a& 1).

while keeping the cost in the laser power still negligible.

The above analysis extends straightforwardly to higher dimensional systems. Moreover, neither

the assumption of homogeneous spacing nor that correction beams center around each qubit is

essential. We can always treat the qubits as equidistant if we effectively modify the beam profile

g(x− xi) or Mn j according to the actual qubit spacings and the focus positions of the correction

lasers. For multi-qubit operations, the relative overhead of spatial refocusing usually becomes

lower. For instance, the quantum simulation of arbitrary Ising interaction with N trapped ion qubits

requires N2 well focused laser beams in Ref. [66]. Without perfect focusing, using the scheme here

we still only need N2 beams.
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3.3 Spectral refocusing

Instead of using localized beams, an alternative for spatial refocusing is to spectrally decompose

the desired amplitude profile and use broad beams of travelling plane waves with varying wave-

vectors k to reconstruct a focused beam. Note here we do not use light beams with different

frequencies. We simply tilt the traveling wave direction so that the effective spatial periodicity

is varied along the system axis. The desired spatial profile G(x j− xi) = δi j, transformed to the

momentum space, is a constant function. For N qubits, one can use N plane waves with k evenly

spread in the Brillouin zone [−π/a,π/a] to reconstruct the profile δi j. We may tilt a travelling

wave with a fixed k by different angles with respect to the qubit array to get a varying wave-vector

component kx along the axis. For ion qubits in a harmonic trap, the spacing is inhomogeneous

and the exact amplitudes of the components are not even, but can be obtained using the matrix

formalism of Eq. (3.2.1). For the plane wave with wave vector k j
x, the amplitude at position xn

is Mn j = exp(i k j
x xn). To get a perfectly focused beam at position xi, the amplitude f ji for the

k j
x component is given by the solution of the matrix equation ∑ j Mn j f ji = δni. The maximum

k j
x = k sin(θm) needs to be comparable withπ/a, so we require the laser angle is tunable over

a window [−θm, θm], where θm ≈ sin(θm) ≈ π/ka is typically small. For instance, in an ion trap

quantum computer, the ion spacing is about 5µm and the laser has wavelength about 0.4µm, which

gives θm ∼ 0.04∼ 2.3◦. In Fig. 3.3.1(a), we show the amplitude distribution f
(

k j
x

)
for 21 ions in

a harmonic trap and the associated profile G(x), which is basically a δ -function at ions’ positions

albeit with small wiggles at other location. This spectral decomposition approach is particularly

convenient for quantum simulation where we need to simultaneously apply focused laser beams

on each ion [66]. With spectral decomposition, we only need to apply a number of broad plane

wave beams that cover all the ions, with their angles tunable in a small window [−θm, θm].
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Figure 3.3.1: (a) Intensity (amplitude modulus squared) profile of superposition of 21 plane waves
with different wave vector components k j

x along the chain. Blue circles indicate ions’ positions.

The unit of position x is l =
(

Z2e2

4πε0Mω2
z

)1/3
, where Ze and M are the charge and mass of each ion,

ε0 the free space permittivity and ωz the trap frequency along z axis. (b) Amplitudes of spectral
components. Here amin is the smallest spacing of ions in the middle of the chain.

3.4 Application example

As an example of application, we consider two-qubit quantum gates in an ion chain. With spatial

refocusing, we can perform high fidelity entangling gates even when the Gaussian beam width is

comparable with the ion spacing, which significantly simplifies the experimental realization. For

two-qubit operations, we need to illuminate only two target ions in the chain. To be concrete,

we consider the conditional phase flip (CPF) gate UCPF
jn = exp(iπσ

z
j σ

z
n/4) mediated by transverse

phonon modes as introduced in Chapter I of this dissertation. For the sake of convenience we list

the essential formula used again here and for detailed derivation we point the readers to Chapter I.

From a practical point of view, one only needs to have Eq. (3.4.1) below in hand to understand this

example. We define the trap axis to be the z-direction. The gate is achieved by applying a state-

dependent ac-Stark shift on the ions, induced by a pair of Raman beams with frequency detuning µ

and wave vector difference ∆k along the transverse direction x. The effective Hamiltonian for the
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laser-ion interaction is H = ∑
N
j=1 h̄Ω j cos

(
∆k ·q j +µt

)
σ

z
j where q j is the j-th ion’s displacement

operator along x-direction and σ
z
j acts on the qubit space of the j-th ion. Expanding q j with

normal phonon modes [12] q j = ∑k bk
j

√
h̄/2Mωk(ak+a†

k) and assuming Lamb Dicke regime ηk =

|∆k|
√

h̄/2Mωk� 1, the interaction picture Hamiltonian under the rotating wave approximation is

HI = −∑
N
j,k=1 h̄χ j(t)gk

j

(
a†

keiωkt +ake−iωkt
)

σ
z
j , where gk

j = ηkbk
j, χ j(t) = Ω j(t)sin(µt), bk

j is the

normal mode wavefunction, M is the ion mass, and ωk is the frequency of the kth motional mode.

The associated evolution operator is [10, 11]

U(τ) = exp

(
i∑

j
φ j(τ)σ

z
j + i ∑

j<n
φ jn(τ)σ

z
j σ

z
n

)
, (3.4.1)

where

φ j(τ) = ∑
k

(
α

k
j (τ)a

†
k +h.c.

)

α
k
j (τ) =

ˆ
τ

0
χ j(t)gk

je
iωktdt

φ jn(τ) = 2
ˆ

τ

0
dt2

ˆ t2

0
dt1×

∑
k

χ j(t2)gk
jg

k
nχn(t1)sin [ωk(t2− t1)]

This is the key equation of this gate example so let us give more comments to clarify the picture.

The evolution operator contains single-spin and two-spin part. The coefficients of the single-spin

part φ j(τ) are operators acting on the motional degree of freedom. They give ions an internal

state dependent displacement of the motion. This would entangle the spin and motional degrees

of freedom. Since we care only about the spin part without measuring the motional states, spin-

motion entanglement reduces the purity of the spin states. To get a high fidelity gate we desire

a vanishing single-spin part. The coefficients of two-spin part of evolution φ jn(τ) are c-numbers
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and they only add a phase to the state. Both φ j(τ) and φ jn(τ) can be tuned by varying the Raman

detuning µ , the gate time τ , and the time-dependent laser Rabi frequency Ω j(t). By definition

of a controled phase flip gate between ion j and n, one should have φ jn(τ) = π/4 with every

other single-spin and two-spin coefficient being zero. To perform such a gate, we shine lasers to

ions j and n only, i.e. Ωi = 0 for i 6= j,n, and optimize over µ so that the effective evolution

best approximates UCPF
jn . For simplicity, here we assume a time independent Ω and pick a rela-

tively long gate time τ = 180τ0 (τ0 ≡ 2π/ωz is the trap period). The gate fidelity is quantified by

F = Trm
〈
Ψ f
∣∣U(τ) |Ψ0〉〈Ψ0|U†(τ)

∣∣Ψ f
〉
, where |Ψ0〉= 1

2 (|0〉+ |1〉)⊗ (|0〉+ |1〉) is the assumed

initial state,
∣∣Ψ f

〉
≡UCPF

jn |Ψ0〉 is the ideal final state and Trm indicates tracing over all the motional

modes.

Similar to real experiments, we apply Gaussian beams to the target ions j,n. We consider two

entangling CPF gates in a 20-ion chain with ωx/ωz = 10, one for two center ions and the other

for two ions on one edge, with the beam width about 15% larger than the separation of the two

center ions and 2/3 of separation of the two edge ions. The ion spacings and laser beam width are

fixed throughout the calculation. Clearly the condition w/a� 1 is violated in both cases. All the

transverse phonon modes are assumed to be initially in thermal states with the same temperature

T such that the center of mass mode has one phonon on average, a typical situation after Doppler

cooling. We scan over the Raman detuning µ and for each µ optimize over Ω j and Ωn to find the

best possible gate fidelity. As expected, without applying correction beams the fidelity of the gate

is rather low (see the top curves in Fig. 3.4.1 (a) and (b)). However, keeping all other parameters

fixed, the gate error is largely reduced by including only one correction beam and including two

correction beams the fidelity gets very close to the ideal case. For the center ions, three correction

beams on both sides already reduce the gate error by nearly three orders of magnitude. As shown

in Fig 3.4.1(c), the gate infidelity (t1-fidelity) caused by the crosstalk error decreases exponentially
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Figure 3.4.1: Panel (a), (b): Infidelity (δF ≡ 1−F) of the CPF gate vesus the Raman detuning
µ for (a) two ions in the center and (b) two ions on one edge in a 20-ion chain. Vertical dashed
lines indicate the position of the transverse phonon modes. The beam waist is set to 15% larger
than the minimum spacing (at the center) of ions and about 2/3 of the maximum spacing (at the
edge) of the chain. In (a), curves from top to bottom are for the cases with 0,2,4,6,8 correction
beams, respectively; in (b), curves from top to bottom are for the cases with 0,1,2,3 correction
beams. Panel. (c): Infidelity under a fixed Raman detuning µ = 9.9888ωz for center ions and
µ = 9.9387ωz for edge ions, as a function of the number of correction beams ncorr. Dashed lines
denote the infidelity under perfect focusing (with zero crosstalk error).

with the number of correction beams, until one approaches the optimal value set by other error

sources. Note that with time constant Ω j and Ωn, there is an intrinsic gate fidelity due to the lack

of control knobs, shown in Fig 3.4.1(c) as dashed lines.

3.5 Experimental implementation and error resistance

The proposed spatial refocusing technique is ready to implement in many quantum computation ar-

chitectures, such as harmonically trapped ion crystals [33,45–48] or arrays of micro-traps [67,68],

Rydberg atoms in optical lattices [69], arrays of optical tweezers [70, 71], etc. After measurement

of qubit positions, laser focusing positions, and the laser beam profile, one only needs to apply the

inverse linear transformation M−1
n j to the target beam profile G j and use the result as input to the

beam delivery device. Removing the need of strong focusing, this scheme should significantly sim-

plify the required optics. Another nice feature is that we do not even require each beam to center
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at each qubit, as long as the beam positions are known and fixed. The scheme requires coherence

between the correction beams. Since Raman beams are used we only need to stabilize the relative

phase between the Raman beams. We also note that in small scale systems, the log(1/ε) scaling

of the number of required correction beams ncorr with truncation error is often irrelevant. An array

of N coherent pulses should always suffice for the generation of arbitrary laser strength profile for

N qubits. So one would never need 10 beams to address 5 qubits.

In practice, spatial refocusing is subject to several types of experimental noise. First of all, the ions

are not stationary point particles. Their positions fluctuate thermally and quantum mechanically.

Second, the amplitudes and phases of each beam in the array may deviate from the prescription.

It is unclear whether the interference is robust to these deviations. We first estimate the position

fluctuations of the ions. Take a 21 ion chain as example, the ion spacing vary between 1.02µm and

1.78µm with the smallest spacing in the middle of the chain. Among the axial motional modes the

center of mass mode has the lowest frequency, about 2π×1MHz and the corresponding oscillator

length is
√

h̄/2Mωz ≈ 5.4nm. The other axial modes all have higher frequencies and the oscillator

lengths are even smaller. Assuming the Doppler cooling limit, i.e. with temperature given by

kBT = h̄Γ/2 and the cooling transition linewidth Γ≈ 2π×20MHz, the center of mass mode along

z contains on average kBT
h̄ωz
≈ 10 phonons for a trap with ωz = 2π × 1MHz. With these realistic

data, exact numerical calculation taking all the axial modes into account shows that for each ion

the standard deviation of position ranges from 6.5nm to 10nm, at least two orders of magnitude

smaller than the inter-ion spacing. So for our purpose here the noise caused by ions’ thermal

motion is negligible. For the second problem, since the laser beams superpose linearly to give the

final refocused pulse, an arbitrary deviation of the j-th pulse’s amplitude δ f (x j−xi) only add noise

δ f (x j− xi)g(x− x j) to the final amplitude distribution G(x− xi). To consider both strength and

phase error of the laser, we allow the deviation δ f (x j− xi) to be a complex number. To quantify
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the effect of δ f (x j− xi), we parametrize the deviation as follows

f (x j− xi)+δ f (x j− xi) = f (x j− xi)(1+ r j)exp(iφ j) (3.5.1)

where the real numbers r j and φ j measure respectively the relative amplitude error and phase error

of the beam on ion j. Each r j/φ j is sampled from the normal distribution with zero mean and

standard deviation ∆r/∆φ , i.e. r j ∼N (0,σ2 = ∆r2) and φ j ∼N (0,σ2 = ∆φ 2). We define the

quantity

ε =
1
N ∑

j

∣∣∣
∣∣G(x j− xi)

∣∣2−
∣∣G̃(x j− xi)

∣∣2
∣∣∣ (3.5.2)

to measure the difference of actual and ideal intensity distribution. We now do a numerical simu-

lation to investigte the robustness of the interference. We take a 21-ion chain harmonically trapped

and try to address the central ion, i = 11. The ideal target is G(x j − x11) = δ j,11. Assume the

addressing beams have a Gaussian profile with width the same as the distance between 11-th and

12-th ion. We randomly sample r j and φ j 5000 times, calculate ε for each sample and plot the

average ε̄ as a function of ∆r and ∆φ , in Fig 3.5.1. We found that the interference pattern is pretty

robust. For 5% standard amplitude error and 0.2 radians phase error, the average intensity error ε̄

is still below 1%. In terms of gate infidelity, we did numerical experiments and found that 1% in-

tensity error induces on the order of 10−2 (10−3) infidelity for two center ions with ncorr = 8 (edge

ions with ncorr = 5), with every other parameter the same as described in caption of Fig 3.4.1. For

0.5% intensity error, both infidelities are on the 10−3 level.
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Figure 3.5.1: Average intensity error ε̄ as a function of standard amplitude/phase error ∆r/∆φ . The
color encodes value of ε̄ . Each point is obtained with 5000 random samples of r j ∼N (0,σ2 =
∆r2) and φ j ∼N (0,σ2 = ∆φ 2).

3.6 Chapter Summary

In summary, we have proposed a spatial refocusing technique to achieve effective individual ad-

dressing and reduce crosstalk error in a general multi-qubit platform. The scheme is efficient as

the crosstalk error decreases exponentially with the number of correction beams, and the cost in

the laser power is modest even when the beam width is comparable with the qubit separation. The

scheme works universally for any type of quantum gates and can apply to any quantum computa-

tional platform.
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CHAPTER IV

Trapped Ion Quantum Gate Design

in Presence of Micromotion

4.1 Introduction

Two or three dimensional Paul traps can confine a large number of ions forming a Wigner crys-

tal, which would provide an ideal architecture for scalable quantum computation except for the

micromotion, an issue that is widely believed to be the killer for any high fidelity quantum gates.

Surprisingly, here we show that the micromotion is not an obstacle at all for design of high fidelity

quantum gates, even though the magnitude of the micromotion is significantly beyond the require-

ment of the Lamb-Dicke condition. Through exact solution of the quantum Mathieu equations, we

demonstrate the principle of the gate design under micromotion using two ions in a quadrupole

Paul trap as an example. The proposed micromotion quantum gates can be extended to the many

ion case and pave a new way for scalable trapped ion quantum computation.

Trapped ions constitute one of the most promising systems for realization of quantum computation.

All the quantum information processing experiments so far are actually done in linear Paul traps,
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where the ions from a one-dimensional crystal along the trap axis [8, 45, 46, 48, 72–77]. In this

configuration, the external radio-frequency (r.f.) Paul trap can be well approximated by a static

trapping potential, and the micromotion along the trap axis can be neglected, which is believed to

be critical for design of high fidelity quantum gates. However, in terms of scalability, the linear

configuration is not the optimal one for realization of large scale quantum computation: first, the

number of ions in a linear trap is limited [78, 79]; and second, the linear configuration is not

convenient for realization of fault-tolerant quantum computation. The effective qubit coupling in a

large ion chain is dominated by the dipole interaction, which is only good for short-range quantum

gates because of its fast decay with distance. In a linear chain with short range quantum gates, the

error threshold for fault tolerance is very tough and hard to be met experimentally [80, 81].

From a scalability point of view for quantum computation, two or three dimensional Paul traps

would be much better than a linear chain, where one can hold a large number of qubits with a

high error threshold for fault tolerance, in the range of a percent level, even with just the nearest

neighbor quantum gates [81]. Thousands to millions of ions have been successfully trapped to

form two or three dimensional Wigner crystals in a Paul trap [82–85] . However, there is a critical

problem to use this system for quantum computation, i.e., the micromotion issue. In this high

dimensional configuration., the micromotion can not be compensated, and the magnitude of the

micromotion for each ion can be significantly beyond the optical wavelength (i.e., outside of the

Lamb-Dicke region). As the micromotion is from the driving force of the Paul trap, it cannot be

laser cooled. The messy and large-magnitude micromotion well beyond the Lamb-Dicke condition

is believed to be a critical hurdle for design of any quantum gate operations in this architecture.

In this chapter, we show that the micromotion surprisingly is not an obstacle at all for design of

high-fidelity quantum gates. When the ions form a crystal in a time-dependent Paul trap, they will

be described by a set of Mathieu equations. We solve exactly the quantum Mathieu equations in
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general with an inhomogeneous driving term and find that the micromotion is dominated by a well-

defined classical trajectory with no quantum fluctuation. This large classical motion is significantly

outside of the Lamb-Dicke region, however, it does not lead to infidelity of quantum gates if it is

appropriately taken into account in the gate design. The quantum part of the Mathieu equation

is described by the secular mode with micromotion correction to its mode function. This part of

motion still satisfies the Lamb-Dicke condition at the Doppler temperature, which is routine for

experiments. We use two ions a quadrupole trap, which have a lot of micromotion, as an example

to show the principle of the gate design, and give the explicit gate scheme both in the slow and

the fast gate regions using multi-segment laser pulses [10, 11], with the intrinsic gate infidelity

approaching zero under large micromotion. We discuss general procedure of the gate design under

micromotion, which can work for any number of ions with important implication for large-scale

quantum computation.

4.2 Two-Ion Case

To illustrate the general feature of micromotion in Paul traps and the principle of the gate design

under micromotion, we consider a three-dimensional (3D) anisotropic quadrupole trap with a time

dependent potential Φ(x, y, z) = (U0 +V0 cos(ΩT t))
(

x2+y2−2z2

d2
0

)
≡ α(t)(x2 + y2− 2z2) from an

electric field oscillating at the r.f. ΩT , where U0,V0 are voltages for the d.c. and a.c. components

and d0 characterizes the size of the trap. We choose a positive U0 to reduce the effective trap

strength along the z direction so that the two ions align along the z-axis. Since the motions in

different directions do not couple to each other under quadratic expansion, we focus our attention
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on the z direction. The total potential energy of two ions (each with charge e and mass m) is

V (z1, z2) =−2eα(t)
(
z2

1 + z2
2
)
+

e2

4πε0 |z1− z2|
. (4.2.1)

Define center-of-mass (CM) coordinate ucm = (z1 + z2)/2 and relative coordinate ur = z1− z2.

Without loss of generality, we assume ur > 0 and its average ūr = u0. We assume the magnitude

of the ion motion is significantly less than the ion separation, which is always true for the ions in a

crystal phase. The Coulomb interaction can then be expanded around the average distance ūr up to

the second order of |ur−u0|. Under this expansion, the total Hamiltonian H = p2
cm/4m+ p2

r /m+

V (z1, z2) is quadratic (although time-dependent) in terms of the coordinate operators ucm,ur and the

corresponding momentum operators pcm = p1 + p2, pr = (p1− p2)/2. The Heisenberg equations

under this Hamiltonian H yield the following quantum Mathieu equations respectively for the

coordinate operators ucm and ur

d2ucm

dξ 2 +(acm−2qcm cos(2ξ ))ucm = 0 (4.2.2)

d2ur

dξ 2 +(ar−2qr cos(2ξ ))ur = f0 (4.2.3)

where the dimensionless parameters acm = −16eU0/
(
md2

0Ω2
T
)
, ar = acm + 4e2/

(
πε0mu3

0Ω2
T
)
,

qcm = qr = 8eV0/
(
md2

0Ω2
T
)

and the dimensionless time ξ = ΩT t/2. The driving term f0 =

6e2/
(
πε0mu2

0Ω2
T
)
. The quantum operators ucm and ur satisfy the same form of the Mathieu equa-

tions (except for the driving term f0) as for the classical variables. As these equations are linear,

we can use the solutions known for the classical Mathieu equation to construct a quantum solution

that takes into account of the quantum fluctuation.

It is well known that the solution to the classical Mathieu equation d2

dξ 2 v+(a−2qcos(2ξ ))v = 0 is
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a combination of Mathieu sine S(a, q, ξ ) and Mathieu cosine C(a, q, ξ ) functions, which reduce to

the conventional sine and cosine functions when micromotion is neglected [86]. The solution to a

homogeneous quantum Mathieu equation d2

dξ 2 û+(a−2qcos(2ξ )) û= 0 can be described using the

reference oscillator technique [6, 87–89]. From the classical solution v and the quantum operator

û, one can introduce the following annihilation operator of a reference oscillator (remember that

ξ = ΩT t/2 is the dimensionless time)

â(t) =
√

m
2h̄ω

i
(
v(t) ˙̂u(t)− v̇(t)û(t)

)
, (4.2.4)

where ω is a normalization constant typically taken as the secular motion frequency of the corre-

sponding Mathieu equation. In addition, we impose the initial condition for v(t) with v(t)|t=0 = 1

and v̇(t)|t=0 = iω . The position operator û(t) and its conjugate momentum p̂(t) ≡ m ˙̂u(t) satisfy

the commutator [û(t), p̂(t)] = ih̄. From the above definition, one can easily check that d
dt â(t) ∝

v d2

dξ 2 û− û d2

dξ 2 v = 0, so â(t)≡ â is a constant of motion. Furthermore, â and â† satisfy the standard

commutator
[
â, â†

]
= (m/2h̄ω)(ih̄/m) (v(t)v̇∗(t)− v∗(t)v̇(t))|t=0 = 1.

When micromotion is neglected, v(t) = eiωt and â reduces to the annihilation operator of a har-

monic oscillator. In presence of micromotion, v(t) =C(a, q, ξ )+ iS(a, q, ξ ). The solution to the

position operator û takes the form

û(t) = u0

(
v∗(t)â+ v(t)â†

)
(4.2.5)

where u0 ≡
√

h̄/2mω is the oscillator length.
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The above solution gives a complete description of the center-of-mass motion with the operator

ucm(t) = u0cm

(
v∗cm(t)âcm + vcm(t)â†

cm

)
, (4.2.6)

where u0cm ≡
√

h̄/2mωcm. The relative motion ur satisfies the inhomogeneous quantum Mathieu

equation (4.2.3). To solve it, we let ur = u′r + ūr, where u′r is an operator that inherits the commu-

tators for ur and satisfies the homogenous quantum Mathieu equation and ūr is a classical variable

corresponding to a special solution of the Mathieu equation d2ūr
dξ 2 +(ar−2qr cos(2ξ )) ūr = f0. The

special solution ūr can be found through the series expansion ūr = f0 ∑
+∞

n=0 cn cos(2nξ ), where the

expansion coefficients cn satisfy the recursion relations arc0−qrc1 = 1 and cn =Dn (cn−1 + cn+1 + c0δn,1)

for n≥ 1 with Dn ≡−qr/
(
4n2−ar

)
. When ar� 1 and qr� 1, which is typically true under real

experimental configurations, cn rapidly decays to zero with |cn+1/cn| ≈ qr/4(n+1)2 and we can

keep only the first few terms in the expansion and obtain an analytical expression for ūr (see Ap-

pendix D for details). The complete solution of ur is therefore given by

ur(t) = u0r

(
v∗r (t)âr + vr(t)â†

r

)
+ ūr(t), (4.2.7)

where u0r ≡
√

h̄/2mωr.

Now we show how to design high fidelity quantum gates under micromotion. To perform the

controlled phase flip (CPF) gate as introduced in Chapter I of this dissertation, we apply laser

induced spin dependent force on the ions, with the interaction Hamiltonian described by [11]

H =
2

∑
j=1

h̄Ω j cos
(
kδ z j +µδ t +φ j

)
σ

z
j . (4.2.8)

where kδ is the wave vector difference of the two Raman beams along the z direction, µδ is the
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two-photon Raman detuning, Ω j (real) is the Raman Rabi frequency for the ion j, and φ j is the cor-

responding initial phase. In terms of the normal modes, the position operator z j = ucm−(−1) jur/2,

where ucm, ur are given by Eqs. (4.2.6) and (4.2.7). We introduce three Lamb-Dicke parameters,

ηcm ≡ kδ ucm
0 for the CM mode, ηr ≡ kδ ur

0/2 for the relative mode, and ηmm ≡ kδ ūr/2 for pure

micromotion. Under typical experimental configurations, ηcm ∼ ηr� 1. The parameter ηmm is a

classical variable that oscillates rapidly with time by multiples of the micromotion frequency ΩT .

In Fig. 4.2.1(a), we show a typical trajectory of ηmm (t). The magnitude of variation of ηmm is

considerably larger than 1. In Fig. 4.2.1(b), we also plot the function vcm(t), which is dominated

by the oscillation at the secular motion frequency ωcm with small correction from the micromo-

tion. The magnitude of vcm(t) is bounded by a constant slightly largher than1. The function vr(t)

has very similar behavior except that ωcm is replaced by ωr. From this consideration of parame-

ters, we can expand the term cos
(
kδ z j +µt +φ j

)
with small parameters ηcm,ηr, but ηmm is a big

term which needs to be treated exactly. After the expansion, to leading order in ηcm and ηr, the

Hamiltonian H takes the form

H ≈−
[
χ1(t)σ z

1 +χ2(t)σ z
2
]

f̂cm−
[
χ1(t)σ z

1−χ2(t)σ z
2
]

f̂r, (4.2.9)

where we have defined

f̂µ ≡ ηµ

(
v∗

µ
(t)âµ + vµ(t)â†

µ

)
, (4.2.10)

χ j(t) ≡ h̄Ω j sin
[
µδ t +φ j− (−1) j

ηmm (t)
]
,

where the subscript µ = cm, r. In Eq. (4.2.9), we have dropped the term cos
(
µδ t +φ j±ηmm

)

which induces single-bit phase shift but is irrelevant for the CPF gate. The evolution operator at
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Figure 4.2.1: (a) The time dependent parameter ηmm(t) and (b) the functionvcm(t). The
real/imaginary part (blue/red curves) of vcm(t) has even/odd parity as a function of time and looks
similar to cos/sin function. Unit of time is the trap frequency Tz = 2π/ωcm. The parameters used
are: ion mass m = 9u (u is the atomic mass unit); r.f. trap frequency ΩT = 2π×240MHz; the char-
acteristic electrode size is d0 = 200 µm; AC/DC voltages, V0/U0 are 300V and 21V respectively.
The resulting secular trap frequencies are ωcm = 2π×0.965MHz , ωr = 2π×3.62MHz along the
z-axis, and ωx = ωy = 2π×20.8MHz along x- and y-axis.

the gate time τ generated by the Hamiltonian H can be expressed as

U(τ) = Dcm(αcm)Dr(αr)exp
[
i(γr− γcm)σ

z
1σ

z
2
]
, (4.2.11)

where the displacement operator Dµ(αµ)≡ exp
(

αµ â†
µ −α∗µ âµ

)
(µ = cm, r). Let jµ = 1 for µ =

cm and jµ =−1 for µ = r. The displacement αµ and the accumulated phase γµ have the following

expression

αµ = iηµ

ˆ
τ

0

(
χ1(t)σ z

1 + jµ χ2(t)σ z
2
)

uµ(t)dt (4.2.12)

γµ = i
(
ηµ

)2
ˆ

τ

0
dt1

ˆ t1

0
dt2S [χ1χ2]Im

[
uµ(t1)u∗µ(t2)

]

where S [χ1χ2]≡ χ1(t1)χ2(t2)+χ1(t2)χ2(t1).

To realize the CPF gate, we require αµ = 0 and γr− γcm = π/4. We normally take Ω1 = Ω2 ≡Ω.
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Note that even in this case χ1(t1) 6= χ2(t2) with the micromotion term ηmm (t). This is different

from the case of a static trap. From Eq. (4.2.12), we see that αµ = 0 for a fixed µ gives two

complex and thus four real constraints. With excitation of N motional modes, the total number of

(real) constraints to realize the CPF gate is therefore 4N + 1 (the condition γr− γcm = π/4 gives

one constraint). To satisfy these constraints, we divide the Rabi frequency Ω(t) (0≤ t ≤ τ) into m

equal-time segments, and take a constant Ωβ (β = 1,2, · · · ,m) for the β th segment [10, 11]. This

kind of modulation can be conveniently done through an acoustic optical modulator in experiments

[90]. The Rabi frequencies are our control parameters. For the two ion case, under fixed detuning

µδ and gate time τ , in general we can find a solution for the CPF gate with m = 9 segments. For

some specific detuning µδ very close to a secular mode frequency, off-resonant excitations become

negligible and a solution is possible under one segment of pulse by tuning of the gate time τ , which

corresponds to the case of the Mølmer-Sørensen gate [9] generalized to include the micromotion

correction.

To characterize the quality of the gate, we use the fidelity F ≡ trµ

[
ρµ

∣∣∣〈Ψ0|U†
CPFU(τ) |Ψ0〉

∣∣∣
2
]

,

defined as the overlap of the evolution operator U(τ) with the perfect one UCPF ≡ eiπσ
z
1σ

z
2/4 under

the initial state |Ψ0〉 for the ion spins and the thermal state ρµ for both of the phonon modes. In

our calculation, without loss of generality, we take |Ψ0〉= (|0〉+ |1〉)⊗ (|0〉+ |1〉)/2.

The essential integral in evaluating αcm/r has the form I =
´

χ(t)v(t)dt =
´

sin(µt + φ1 + ∆k ·

ūrel(t)/2)v(t)dt. Here v(t) and ūrel(t) contain multiple frequency components. The classical tra-

jectory ūr(t) contains the secular frequency ω , micro-motion frequencies nΩ, nΩ±ω for integer

n; v(t) contains a potentially different secular frequency ω ′ and micromotion frequencies nΩ±ω ′.

Here Ω is the radio frequency and Ω� ω, ω ′. Henceforth we keep only terms with frequencies

around Ω and ignore those with frequencies nΩ, nΩ±ω for n≥ 2. Since the integral contains two

well separated time scale, we can first integrate over a small time period, resulting a slowly varying
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integrand. Quantitatively, consider for example the integral I1 =
´

τ

0 sin(a0(t)+a1(t)cos(Ωt +φ(t)))b0(t)dt,

where a0(t), a1(t), b0(t), φ(t) are real and vary in a much longer time scale than 1/Ω. So dur-

ing a period of the micromotion, cos(Ωt + φ), a0(t), a1(t), b0(t) and φ(t) remain approximately

constant. We find that

I1 ≈
ˆ

τ

0
dt

Ω

2π

ˆ t+2π/Ω

t
dt1 sin(a0(t)+a1(t)cos(Ωt1 +φ))b0(t)

=

ˆ
τ

0
dt

1
2π

ˆ
π

−π

dt ′ sin
(
a0(t)+a1(t)cos(t ′)

)
b0(t)

= Im
[ˆ

τ

0
dt exp(ia0(t))

1
2π

ˆ
π

−π

dt ′ exp
(
ia1 cos(t ′)

)
b0(t)

]

Im
[ˆ

τ

0
dt exp(ia0(t))J0(a1)b0(t)

]

=

ˆ
τ

0
dt sin(a0(t))b0(t)J0(a1(t))

where J0 is a Bessel function of the first kind. Looking at the longer time scale, the existence of

the fast oscillating term contributes only a modulation factor J0(a1(t)). Effectively one can think

of the laser amplitude being modulated by J0(a1(t)). Note I1 takes into account the secular part of

v(t) only. We can perform similar time average to get the contribution from the micromotion part

of v(t), I2, which is typically much smaller than I1

I2 =

ˆ
τ

0
dt sin(a0(t)+a1(t)cos(Ωt +φ))b1(t)cos(Ωt +ϕ(t))

≈
ˆ

τ

0
dt

Ω

2π

ˆ t+2π/Ω

t
dt1 sin(a0(t)+a1(t)cos(Ωt1 +φ))b1(t)cos(Ωt1 +ϕ)

=

ˆ
τ

0
dt cos(a0(t))cos(ϕ−φ)J1(a1(t))
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Similar to the case of I1, here micromotion gives rise to a slowly varying modulation factor cos(ϕ−

φ)J1(a1(t)). In addition the phase of the original integrand is also shifted, sin(a0(t))→ cos(a0(t)).

These approximate treatments reveal the fact that micromotion merely modulate the laser ampli-

tude seen by the ions by a slowly varying factor, typically around the secular frequency. Therefore

the previous quantum gate formalism [10, 11] only requires minor modification to work in the

case with significant micromotion. We now quantitively demonstrate a two-qubit phase gate. We

consider two Berrylium ions with 9u where u is the atomic mass unit. The r.f. trap frequency is

ΩT = 2π × 240 MHz; the characteristic electrode size is d0 = 200 µm; AC/DC voltages, V0/U0

are 300V and 21V respectively. The resulting secular trap frequencies are ωcm = 2π×0.965MHz ,

ωr = 2π × 3.62MHz along the z-axis, and ωx = ωy = 2π × 20.8MHz along x- and y-axis. Both

motional degrees of freedom are assumed to have a temparture kBT = 10h̄ωcm. The effective laser

wave vector is chosen to be ∆k = 8µm−1 so that the quantum motion is within the Lamb-Dicke

regime, with ηcm ≈ 0.12 and ηr ≈ 0.061. However the micromotion amplitude ∆ūr is large com-

pared to the laser wavelength, with the Lamb-Dicke parameter ∆k ·∆ūr ≈ 15.8. In principle for

any chosen laser detuning, there are certain time points at which the motional displacements for

both modes αcm/r are zero (or approximately zero), which means that spin and motion are disen-

tangled. Different laser Rabi frequency would induce different motional amplitudes in the phase

space but does not affect motional frequencies. A mode with frequency ωk driven by a laser with

detuning µ will have frequency components |µ±ωk|, corresponding to period T±k = 2π/ |µ−ωk|.

With a single segment laser pulse with constant Rabi frequency (Mølmer-Sørensen gate), at the

common multiple of all the T±k , all the modes are disentangled with the spin. To get the desired

phase flip gate one then chooses the Rabi frequency so that the accumulated spin dependent phase

is π/4. We show the gate fidelities as a function of gate time for µ = 0.95ωcm in Fig. 4.2.2. The

center of mass mode is excited much more strongy than the relative mode. The (approximate) least
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common multiples of all the periods involved happens to be around 20Tz = 20×2π/ωcm for this

case. We compared the cases with and without micromotion, and the results obtained by applying

the parameters calculated for the case without micromotion to that with the micromotion. We no-

tice that ignoring micromotion in the gate design would cause the fidelity to be rather low. While

following our treatment we obtained results very similar to the case where micromotion is absent.

For a general value of detuning, segmented pulses are usually needed to close all the motional tra-

jectories. In the case without micromotion, the two ions can experience an identical laser force, i.e.

χ1(t) = χ2(t) = χ(t) and there are N complex valued motional integrals of the form
´

τ

0 χ(t)uk(t)dt

to be set to 0. In the presence of micromotion χ1(t) 6= χ2(t) as we mentioned earlier and there are

2N such complex valued integrals. Considering also requirement that the total phase be π/4 we

will need 4N+1 degrees of freedom to have a perfect phase gate, although in practice a pulse with

5 or 11 segments may suffice. Here we show the results with 9-segment pulses for an arbitrarily

chosen µ = 1.4ωcm and a series of different gate times τ . In theory the optimal fidelities are 1. We

compare the Rabi frequencies required by the case with/without micromotion, in Fig. 4.2.3. Since

micromotion causes a reduction of the effective Rabi frequency, typically we need to apply a laser

with Rabi frequency 5 times larger to compensate that.

4.3 Extension to 2D Ion Crystals

The techniques demonstrated above can also be extended to the many-ion case, e.g. a two dimen-

sional planer ion crystal in a Paul trap. First we adopt the static harmonic trap approximation and

solve for the equilibrium positions of all the ions in the crystal. Then we expand the Coulomb

potential up to second order for each ion, and find all the normal modes of motion. It is important

to note that the normal mode structure is determined by the equilibrium positions only, and the
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Figure 4.2.2: (a) The fidelity of a two-ion conditional phase flip gate as a function of gate time,
where the units of time is the period of the center of mass motion along z-direction Tz = 2π/ωcm.
The detuning was chosen to be µ = 0.95ωcm. Blue solid line indicates the optimal results with
micromotion taken into account; red dashed line is the result for a genuine static harmonic trap
without micromotion; gray dotted line is obtained by applying the optimal solution for a static
harmonic trap to the case with micromotion, which results in poor performance. (b) The infidelity
(1-fidelity) near the optimal evolution time, eseentially a zoom-in of panel (a) near t = 20Tz. Green
dots in (b) show the time points that are an integral multiple of the micromotion period. Other
parameters used are: temperature of both motional degrees of freedom kBT = 10h̄ωcm; effective
laser wave vector ∆k = 8µm−1 so ηcm ≈ 0.12 and ηr ≈ 0.061.
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Figure 4.2.3: (a) The waveform of the optimal segmented pulse calculated for the gate with dura-
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introduction of a time dependent single-body potential does not change it. Therefore we can now

introduce the r.f. potential to the equations of motion for each normal mode as we have done in the

two-ion case and get the micromotion corrected equilibrium positions. These two steps need to be

done in a self-consistent manner to find out the true equilibrium positions. Then we can calculate

the motional integrals and accumulated phases and go through the segmented pulse optimization

procedure to obtain high fidelity gates.

4.4 Chapter Summary

In summary, in this chapter we solved the quantum mechanical motion of ions inside a r.f. trap and

demonstrated that the original conditional phase flip gate with optimized segmented pulse can be

extended to the case with significant ion micromotion. Our formalism applies to ion crystals with

a general 1D or 2D structure. We believe this work will open up new possibilities in designing a

new scalable trapped ion quantum computer architecture.

48



CHAPTER V

Efficient Spin Squeezing with

Optimized Pulse Sequences

5.1 Introduction

Spin squeezed states are a class of entangled states of spins that have practical applications to

precision measurements. In recent years spin squeezing with one-axis twisting (OAT) has been

demonstrated experimentally with spinor BECs with more than 103 atoms. Although the noise is

below the standard quantum limit, the OAT scheme cannot reduce the noise down to the ultimate

Heisenberg limit. Here we propose an experimentally feasible scheme based on optimized quantum

control to greatly enhance the performance of OAT to approach the Heisenberg limit, requiring only

an OAT Hamiltonian and the use of several coherent driving pulses. The scheme is robust against

technical noise and can be readily implemented for spinor BECs or trapped ions with current

technology.

Spin squeezed states [91] have attracted a lot of interest due to both its role in the fundamental study

of many-particle entanglement and its practical application to precision measurements with Ram-

49



sey interferometers [92–97]. In recent years, much progress has been made on the experimental

squeezing of a large number (103 ∼ 106) of ultracold atoms [98–102]. Many of these experiments

follow the so-called one-axis twisting (OAT) scheme, which is known to reduce the noise/signal

ratio from the classical case by a amount that scales as N−2/3with the particle number N [91]. This

reduction is not optimal yet and still above the so-called Heisenberg limit which scales as N−1.

There have been several theoretical proposals to enhance the OAT [103, 104]. For example, one

of the approaches [103] involves inducing a better squeezing Hamiltonian, the so called two-axis

twisting (TAT) Hamiltonian, with Raman assisted coupling for trapped spinor BECs. This is a

hardware level engineering, requiring modification of a particular experimental setup and does not

apply to other physical systems. Another approach [104] employs a digital quantum simulation

technique to convert an OAT Hamiltonian to an effective TAT Hamiltonian by stroboscopically

applying a large number of pulses. This software level solution is universal but sensitive to the

accumulation of control errors. None of these proposals have been experimentally tested yet due

to various difficulties.

Inspired by the idea of optimized quantum control, we propose an experimentally feasible scheme

to greatly improve the performance of OAT, requiring only two or three additional coherent driv-

ing pulses to carry out collective spin rotations, which is a routine technique with the current

technology. The scheme is shown to be robust to noise and imperfection in control pulses. Us-

ing this scheme, it is possible to generate more spin squeezing and detect a significantly larger

entanglement depth for the many-particle atomic ensemble [94]. This new scheme enhances the

OAT squeezing on the software level and therefore can be applied to any physical system that is

endowed with these operations. The idea of optimized squeezing may also be easily transferred to

cases where the interaction term deviates from the OAT Hamiltonian.
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5.2 Basic Idea

We consider the general scenario of one-axis twisting independent of the underlying physical sys-

tem with the Hamiltonian H = χS2
z (Sz = ∑

N
i si

z) (setting h̄ = 1). The system starts from a collective

spin coherent state polarized along x-axis. As time goes on the initially homogenous spin fluctua-

tion gets distorted and redistributed among different directions and the direction along which spin

fluctuation gets suppressed gradually changes over time. The squeezing is measured by the pa-

rameter ξ 2, defined as ξ 2 = N
〈
S2
~n

〉
/ |〈Sx〉|2, where~n is the direction along which spin fluctuation

is minimized. The decreasing rate of ξ 2 slows down with time, and after the optimal squeez-

ing point, ξ 2 increases again. Aside from the initial state, which is rotationally symmetric about

x-axis, all the subsequent states breaks this symmetry and picks out a special direction, i.e. the

direction along which fluctuation is minimized. It is well known that the two-axis twisting (TAT)

Hamiltonian H2 = χ2
(
S2

x−S2
y
)

can produce better squeezing [91], which, after doing the Trotter

decomposition with an infinitesimal time interval, could be seen as switching the squeezing axis

back and forth very fast between two orthogonal directions [104]. To avoid the noise accumulation

from a large number of switching pulses inherent in the Trotter expansion scheme, we take an

alternative approach based on optimization of a few control pulses to maximize the squeezing of

the final state. We consider an n-step squeezing protocol (where n is typically 2 or 3 for a practical

scheme) defined as follows: at step j ( j = 1, 2, ..., n), we first apply an instantaneous collective

spin rotation around x-axis, U(αi) = exp(−iSxαi), and then let the state evolve under the OAT

Hamiltonian H = χS2
z for a duration Ti. Effectively, we squeeze the state along a different axis

lying in the y− z plane in each step, so the effective evolution operator can be written as

U(θi, Ti) =
1

∏
i=n

exp(−i χS2
θi

Ti), (5.2.1)
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Figure 5.2.1: The squeezing −log(ξ 2) as a function of the control parameters θ2 and T2 for a typ-
ical value of T1, calculated with N=2000 spin-1/2 particles. See Eq. (5.2.1) and text for definition
of θi and Ti. The cross symbol marks the point of optimal squeezing. The horizontal line θ2 = 0
corresponds to the case of the OAT scheme.

where Sθ j ≡ cosθ jSz + sinθ jSy and the factors are arranged from right to left with increase of j.

This evolution operator coincides with that of a quantum kicked-top model with n kicks. Since the

initial state is assumed to be polarized along x-direction, which is symmetric around x-axis, θ1 is

irrelevant and can be chosen to be 0 (so no control pulse is needed for step 1). Therefore, for an

n-step squeezing protocol, there are (2n− 1) tunable parameters: Ti and θi (excluding θ1). The

final squeezing parameter is thus a multi-variable function ξ 2(Ti, θi). Note that as n becomes very

large, our protocol includes the proposed sequence in [104] as a special case and so in principle our

protocol can approach the Heisenberg limit as n grows. Our purpose is to find the best available

squeezing ξ 2(Ti, θi) with a minimum number n of the time steps.
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5.3 Numerical Results

In the case of n = 2 or 3, the landscape of ξ 2(Ti, θi) in the parameter space is quite simple and well

behaved. Take the n= 2 case as an example. For a typical value of T1 smaller than the optimal OAT

squeezing time,−log(ξ 2) as a function of θ2 and T2 is shown in Fig. 5.2.1. The optimal squeezing

point marked by the cross lies way off the OAT trajectory, the horizontal line with θ2 = 0. For the

n = 3 case, with θ2 and T2 fixed near the optimal values of the n = 2 case, −log(ξ 2) as a function

of θ3 and T3 shows a similar landscape. These solutions already exceed that of the OAT scheme

by a large margin. The results indicate that the optimization technique with n as small as 2 or 3

suffices to significantly improve over the OAT scheme.

Next, we investigate performance of the optimized squeezing scheme, focusing on the scaling of

the squeezing ξ 2(Ti, θi) as a function of the total particle number N. For a given set of parameters,

we can numerically calculate the evolution operator in Eq. (5.2.1) by exactly diagonalizing the

effective Hamiltonians S2
θi

and then obtain the squeezing parameter ξ 2. To account for the fact

that in reality the coherent spin rotations cannot be generated instantaneously, in the numerical

simulation we actually keep the OAT Hamiltonian on all the time, even during the spin rotations.

However we do assume the effective magnetific field B effecting the spin rotation to be much

stronger than the squeezing Hamiltonian, B� Nχ , as is the case in experiments. We randomly

sample from the parameter space for a large number of times, use these random samples as initial

guesses to start unconstrained local optimization of the squeezing parameter, and pick the best one

as our solution. Repeating this procedure for every system size N is extremely resource intensive

especially when N gets as large as 105. Taking advantage of the fact that adding several more to

103 particles should not change the solution much, we can feed the previously found non-local

optimal solution as an initial guess to the local optimizer of a larger system and obtain a near
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optimal solution quickly. In this way we managed to obtain (near) optimal solutions for systems

all the way up to N = 105 particles, with only a cost of classical computing time on the order of

tens of hours on a typical multi-core computer. As shown in Fig. 5.3.1, with n = 2, the squeezing

parameter ξ 2 gets reduced by a significant amount already compared with the OAT scheme, and

with n= 3, ξ 2 decreases further. The scaling of ξ 2 with the number of particles shows a clear power

law ξ 2 ∼ 1/Nβ . A simple OAT scheme gives β = 2/3 and the TAT scheme gives β = 1 [91]. The

Heisenberg limit of noise gives a bound β ≤ 1 for the scaling, and this bound is saturated by the

TAT scheme. Remarkably we observe that the optimized n = 2,3 protocols can give β = 0.92

and 0.98, respectively, very close to the ultimate Heisenberg limit. Moreover, the n = 3 optimized

scheme has a smaller multiplicative constant compared with the TAT scheme, so in the realistic

range of particle number N . 106, it actually outperforms the TAT scheme. This shows that a

moderate alternation of the OAT scheme through optimization can significantly increase the spin

squeezing.

We have demonstrated a significant improvement over the conventional OAT by applying very few

optimized control pulses. A cost of the proposed scheme is that it takes longer evolution time to

achieve the optimal squeezing. A typical evolution of ξ 2 with time t is shown in Fig. 5.3. We

notice that in general the (i+ 1)-th squeezing step takes longer time than the i-th step. Since the

time cost in the first step is on the order of the optimal OAT duration, the overall duration of the new

protocol is usually longer than that of the OAT scheme. An excessively long duration would be an

obstacle in systems with short coherence time. The two relevant time scales here are the coherence

time τ and the inverse of interaction strength 1/χ . The time cost of the new scheme is around

0.01/χ ∼ 0.1/χ . If τ & 0.1/χ the new scheme can be implemented without compromise. On

the other hand, if that is not the case, decoherence effect would play a role and our unconstrained

optimization no longer yields the best result. However, we can work around this problem by
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Figure 5.3.1: Scaling of the squeezing parameter ξ 2 with the number of qubits. Curves from top
to bottom are for one-axis twisting (OAT), two-step optimized squeezing, two-axis twisting (TAT)
and three-step optimized squeezing. Inset shows the same curves in log-log scale.

55



χ t

ξ2
10−1

100

10−2

10−3

10−3 10−1
10−2

Figure 5.3.2: Evolution of the squeezing parameter ξ 2 with time, calculated with N=2000 spin-1/2
particles. The dash-dot line is for one-axis twisting (OAT), the dash line for the two-step optimized
squeezing scheme, and the solid line for the three-step optimized squeezing.

performing an optimization with the total duration added as a cost function and get a compromised

optimal pulse sequence. By tuning the weight of the cost function we could obtain a continuous

series of compromised optimal solutions as shown in Fig. 5.3.3. These solutions of two-step and

three-step schemes form two line segments, continuously connecting the optimal OAT squeezing

protocol to that of the unconstrained optima, offering a trade off between the protocol duration and

the squeezing magnitude. For each real experimental setup, one could correspondingly pick up the

best point in accordance with the coherence time of the system. How much one can gain over the

OAT scheme depends on how long the coherence time can reach.
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Figure 5.3.3: Constrained optimization of ξ 2 with the total time duration as a cost function. We
take 1/χ as the time unit. Achievable squeezing ξ 2 as a function of the total duration is shown,
together with one-axis twisting (OAT), calculated with N = 2000 spin-1/2 particles. OPT-2 (3)
stands for optimized squeezing sequence with n = 2(3) segments. Horizontal and vertical dashed
lines are guides to the eye.
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5.4 Noise Resistance and Physical Realization

Next we test noise resistance of the proposed scheme. There are only 3(5) control parameters

in the n = 2(3) scheme, making the accumulation of control noise negligible. We have done

numerical simulation of our scheme adding random pulse area/timing noise and confirmed the

robustness of the squeezing parameter ξ 2 as shown in Fig. 5.4.1. This contrasts to the proposals

[104, 105] requiring a large number of coherent rotation pulses where control errors accumulate

and significantly degrade the performance. Thus our proposed scheme offers a useful alternative

to the previous works. Another practical issue related to control noise is the uncertainty in number

of particles in a real experiment. Our pulse scheme depends on the number of particles N while in

experiments such as ultracold gas we do not typically know the number N exactly. Fortunately we

notice that the control parameters vary slowly with N, e.g. in going from N=1900 to N=2100, the

control parameters only vary by 1%-5%. So a±5% uncertainty in N at N=2000 is equivalent to an

extra noise below 5% in the control parameters, to which ξ 2 is not so sensitive as we have shown

in Fig. 5.4.1.

Finally we discuss possible physical realizations of the scheme proposed here. The scheme only

requires two ingredients, the nonlinear collective spin interaction S2
z and the ability to rotate the

collective spin around an orthogonal axis, say x. Several experimental systems meet these require-

ments, e.g., trapped ions and spinor BECs. In trapped ion systems, depending on the ion species,

one can use bichromatic lasers or two pairs of Raman laser beams (the Mølmer-Sørensen scheme)

to induce the S2
z or S2

x type of interaction. The strength of this interaction χ can reach kHz scale,

giving 1/χ ∼ ms. The coherence time usually exceeds 1/χ and our scheme can apply without

compromise. Collective spin rotation can be simply done by shining laser on all the ions driving

the corresponding single-qubit σx/y or rotation. The rotation pulses have durations much shorter
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Figure 5.4.1: Optimized squeezing in the presence of control noise. We use the three-step opti-
mization scheme as an example and assume all the five control parameters in this scheme have the
same magnitude of relative errors as specified in this figure. The dash line is for the ideal case with
no error in the control parameters, the solid line denotes the average of many random trajectories
(50 random trials) and the shaded area marks the range of those trajectories. In the left panel, the
shaded region is too small to be distinguished from the ideal case.

than 1/χ . While linear Paul traps [46, 73] can now coherently control only about a dozen of ions,

too few for the purpose of spin squeezing, planar Penning traps can manipulate more than 200

ions [106]. For the purpose of precision measurement, 200 ions may seem less impressive than

105 particles, but we show that using our scheme we can create genuine multi-particle entangled

states with a significantly larger entanglement depth. The entanglement depth, defined in [94], is

a way to measure how many particles within the whole sample have been prepared in a genuine

entangled state. Our result is shown in Fig. 5.4.2. In this figure, a point lying below the optimal

squeezing curve of n particles correspond to a state that contains genuine n-particle entanglement.

Our scheme produces states that lie below the OAT states in a large range of 〈Sx〉 values, which

means that experimentally one can achieve a significantly larger entanglement depth by this opti-

mization technique.

Another class of physical system is a spinor Bose-Einstein condensate of atoms with two chosen

internal states mimicking spin-1/2 particles [99, 100]. The desired S2
z interaction is induced by

59



0.2 0.4 0.6 0.8 1

0.01

0.02

0.03

0.04

0.05

〈Sx〉 /S

√
〈S

2 z
〉/
S

 

 

Figure 5.4.2: The entanglement depth achievable with different approaches for 200 spin-1/2 parti-
cles. The solid lines from top to bottom correspond respectively to the OAT scheme, the two-step
optimized squeezing, the TAT, and the three-step optimized squeezing. The dashed lines from top
to bottom correspond to the optimal squeezing for 50, 100, and 200 particles respectively. Lying
below the curve of optimal squeezing for n particles is a certificate of genuine n-particle entangle-
ment.
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spin-dependent s-wave scattering as proposed in [95]. Coherent laser pulses illuminating the whole

condensate can implement spin rotations similar to the trapped ion case. However, the strength of

S2
z interaction is much smaller compared with the trapped ion case, χ = 0.3 ∼ 0.5 Hz as reported

in [99, 100]. The coherence time for the spinor BEC is also shorter. Hence we typically need to

apply the compromised scheme, using the actual coherence time and interaction strength of the

system as input parameters.

5.5 Chapter Summary

In summary, we have proposed a new method based on optimization to significantly enhance spin

squeezing using the one axis twisting Hamiltonian. To achieve significant improvement in spin

squeezing, we need to apply only one or two global rotation pulses at an appropriate evolution

time and with optimized rotation angles. Using two pulses, the final squeezing is very close to

the Heisenberg limit already. Comparing to the previous proposal [104], apart from requiring a

simpler pulse sequence, the major advantage of this new method is the robustness to control noise

due to the very small number of coherent pulses used. A scheme involving a large number of pulses

usually suffers the accumulation and amplification of control errors in each pulse and tolerates only

a very small technical noise. The major drawback that limits the applicability of our proposal is the

longer evolution time compared to [104], although still being faster than adiabatic preparation. We

believe this new proposal can be readily applied in certain experimental systems where coherence

time is not the bottleneck, without significant modification of the setup.

It is an interesting future direction to extend our optimization technique to generate continuous

wave forms, like that reported in [107] where a similar Hamiltonian was considered and optimal

control techniques were used to obtain a continuous wave form of effective magnetic field for the

61



squeezing of a collection of F=3 spins.
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CHAPTER VI

State Detection Error Correction

with Statistical Methods

6.1 Introduction

The prospect of quantum computation and quantum communication [49] strongly stimulates inter-

est in engineering of various non-classical states with multi-partite entanglement as a resource for

quantum information. Due to the volatile and elusive nature of entanglement, verifying it alone

is not a trivial problem. Many approaches to this problem have been proposed (see [108] for a

review). Those detection schemes, e.g. entanglement witnesses, generally involve an inequality of

certain observables, the violation of which indicates entanglement. However there is an issue with

these schemes previously unconsidered, associated with the imperfect efficiency of the detectors

used in real experiments, which causes detection error and potentially false estimation of the state.

In this chapter, we describe a simple method to correct the detection error caused by the detec-

tors, which is practically a significant obstacle to the observation of multipartite entanglement in

quantum state engineering [46, 109, 110]. We show here that this type of error can be corrected at
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any magnitude as long as the error magnitude has been calibrated (for instance, through prior test

experiments). The detection error distorts the experimental data by a transformation that depends

on the magnitudes of various error possibilities. When the relevant error magnitudes have been

calibrated for the detectors by the prior test experiments, the form of the distortion transformation

induced by the detection error is known, and then we can find a way to invert this transformation

to reconstruct the original signal. In this way, we can use imperfect detectors to simulate perfect

detectors as long as their imperfection has been calibrated. The proposed method is straightfor-

ward for experimental implementation as it is based on data processing and does not increase the

complexity of the setup. To correct the detection error, we only require to repeat the same experi-

ments by some additional rounds to have small statistical error for the inverse transformation. To

illustrate its applications, the method is used to significantly improve the detection of multi-qubit

entanglement and spin squeezing. In many cases, the signal of multipartite entanglement only be-

comes visible after the proposed correction of the detection error, in particular when the number

of qubits is large.

6.2 Mathematical Formulation

Any measurements in quantum information can be reduced to population measurements in certain

bases (including possibly several complementary bases). If we want to measure properties asso-

ciated with a state ρ (generally mixed) of n qubits, for each chosen measurement basis, there are

2n possible measurement outcomes. By performing measurements we determine the probability fi

associated with each outcome i (i = 1,2, · · · ,2n). For instance, if we repeat the same experiment N

times and get the ith outcome Ni times, we estimate the probability fi by fi = Ni/N and its standard

deviation (the error bar) by ∆ fi =
√

fi(1− fi)/N using the binomial distribution. If the detectors
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are perfect, the measured probabilities fi just give the distribution gi ≡ 〈i|ρ |i〉 of the state ρ in the

measurement basis {|i〉}. In reality, however, the detectors always have errors, which distort the

distribution gi, potentially making the measured distribution fi significantly different from gi. The

purpose of this chapter is to show how to reconstruct the real distribution gi from the measured

distorted probabilities fi.

6.2.1 Individual Qubit Addressing Case

We first consider the case where the measurements have individual addressing, and each qubit is

measured by an independent detector. For detection on a qubit, the most general error model is

characterized by a 2×2 matrix

D =




1− p0 p1

p0 1− p1


 , (6.2.1)

where p0 (p1) denotes respectively the error probability that the detector gives outcome 1 (0) for

the input signal of 0 (1). For simplicity of notation, we assume the error matrix D has the same

form for detection of each qubit (it is straightforward to generalize the formalism to the case where

the error rates p0 and p1 in the D matrix are qubit-dependent). Furthermore, we assume p0 and p1

have been well calibrated by a prior test experiment. For instance, we may input a known state to

the detector and can calibrate p0 and p1 easily from the measurement data.

For n qubits, the error model for the detection is then characterized by a 2n×2n matrix M =
[
M ji
]
,

with the element M ji corresponding to the probability of recording the outcome j with the input

signal i. Assume the detection error rates on different qubits are independent of each other and the

binary string i has n0 zeros and n1 = n−n0 ones. If we need α flips from 0 to 1 and β flips from 1
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to 0 to change the string from i to j, the matrix element M ji is given by

M ji = (1− p0)
n0−α (1− p0)

n1−β pα
0 pβ

1 . (6.2.2)

The measured probabilities f j are connected with the real distribution gi through the distortion

transformation f j = ∑
2n

i=1 M jigi.To reconstruct the real signal gi from the measured distribution f j,

in principle we only need to invert the matrix M. However, as M is a huge 2n×2n matrix, it is not

clear how to invert this matrix (it is even a question whether the inverse exists).

Our key observation is that the matrix M, with the elements given by Eq. (6.2.2), has a simple

tensor product structure. It is straightforward to show by mathematical induction that

M =
n⊗

k=1

Dk, (6.2.3)

where all the Dk are identical and given by D in Eq. (6.2.1). Therefore, the inverse can be easily

done in an analytic form with

M−1 =
n⊗

k=1

D−1
k =

n⊗

k=1




1− p′0 p′1

p′0 1− p′1




i

, (6.2.4)

where the parameters p′0 and p′1 are given by

p′0 = p0/(p0 + p1−1),

p′1 = p1/(p0 + p1−1). (6.2.5)

Note that with the substitution in Eq. (6.2.5), M−1 and M have the same form except that p′0 and
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p′1 can not be interpreted as error rates any more since in general they are not in the range [0,1].

The formula also shows that the inverse transformation M−1 always exists except for the special

case with p0 + p1 = 1.

6.2.2 Collecive Measurement Case

In some experimental systems we do not have the ability to resolve individual qubits. Instead,

we perform collective measurements on n qubits by detecting how many qubits (denoted by j,

j = 0,1, · · · ,n) are in the state |1〉 in a chosen detection basis (this is equivalent to measurement

of the collective spin operator along a certain direction). In this case, the detection only has n+1

outcomes for an n-qubit system. For collective measurements on n qubits, the detection error

matrix is represented by an (n+1)×(n+1) matrix L =
[
Li j
]
. The matrix element Li j corresponds

to the probability to register outcome i when j qubits are in the |1〉 state. If the detection error

matrix for an individual qubit is still given by D in Eq. (6.2.1), we can directly calculate Li j from

D: from signal j to i, if n10 qubits flip from 0 to 1 and n01 qubits flip from 1 to 0, with the constraints

0≤ n01 ≤ j, 0≤ n10 ≤ n− j and n01−n10 = j− i, Li j is given by

Li j = ∑
0≤n01≤ j,

0≤n10≤n− j,
n01−n10= j−i

B( j, p1,n01)B(n− j, p0,n10)

=
min{i, j}

∑
q=max{0,i+ j−n}

B( j,1− p1,q)B(n− j, p0, i−q), (6.2.6)

where B(n, p,k)≡
(n

k

)
pk(1− p)n−k and we have let q = i−n10, and hence q satisfies the constraint

max{0, i+ j−n} ≤ q≤min{i, j}. As the dimension of the L matrix depends linearly on the qubit
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number n, it is typically not difficult to numerically calculate its inverse matrix L−1 if n is not very

large. As shown in Appendix E, there is also a simple analytic formula for L−1 =
[
L−1

i j

]
: if we

denote the dependence of Li j in Eq. (6.2.6) on p0, p1 as Li j = Li j (p0, p1), we have

L−1
i j = Li j

(
p′0, p′1

)
(6.2.7)

where p′0, p′1 are given by the simple substitution in Eq. (6.2.5). With the inverse matrix L−1, the

real signal gi can be similarly reconstructed from the measured data f j as gi = ∑ j L−1
i j f j.

The above formulation can be extended straightforwardly to qudit (d-dimensional) systems where

the individual detection error matrix D in Eq. (6.2.1) is replaced by a d×d matrix. For independent

detection of n-qudits, the overall error matrix M still has the tensor-product structure as shown by

Eq. (6.2.3), which allows for an easy calculation of M−1 from D−1.

6.2.3 Cost of Error Correction

With the inverse error matrix M−1, it is straightforward to reconstruct the true distribution gi from

the measured data fi. The price we need to pay is that compared with ∆ fi =
√

fi(1− fi)/N,

there is an increase of the standard deviation (error bar) ∆gi in our estimate of gi by the formula

gi = ∑
2n

j=1 M−1
i j f j. With some tedious but straightforward calculation, we find

∆gi =
√
[∑

j
(M−1

i j )2 f j−g2
i ]/N (6.2.8)

As M−1 =
⊗n

k=1 D−1
k and D−1

k has matrix element 1− p′0 ≈ ep > 1 (when p0 ∼ p1 ∼ p� 1),

M−1 has matrix element ∼ enp which leads to exponential increase of the error bar ∆gi with the

qubit number n. To maintain the same error bar ∆gi, the number of repetitions N of the experiment
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eventually needs to increase exponentially with n. For practical applications, this exponential

increase of N by the factor enp is typically not a problem for two reasons. First, as the detection

error rate p is usually at a few percent level, the exponential factor enp remains moderate even

for hundreds of qubits. Second, this exponential increase only applies when we need to measure

each element of the distribution gi. In most of quantum information applications, we only need to

measure certain operators which are expressed as tensor products of a constant number of Pauli

operators for different qubits. In this case, N does not have the exponential increase as we show

now.

Suppose we need to measure an operator Ô, which is expressed as Ô = ⊗n
k=1σ

µk
k , where σ

µk
k is

a component of the Pauli matrices when µk = 1,2,3 or the identity operator when µk = 0. The

number of the Pauli matrices np in the tensor product expansion of Ô is called the support of Ô.

To measure the operator Ô, we choose the measurement basis to be the eigenbasis of σ
µk
k for the

kth qubit. In this measurement basis, Ô is diagonal with the matrix element Ô = ⊗n
k=1diag

(
σ

µk
k

)
,

where diag
(
σ

µk
k

)
= [1,1] for µk = 0 and diag

(
σ

µk
k

)
= [1,−1] for µk = 1,2,3. Under the distribution

gi, the expectation value of Ô is given by
〈
Ô
〉
= ∑i Ôigi = ∑i Ôi ∑ j M−1

i j f j = ∑ j(∑i ÔiM−1
i j ) f j ≡

∑ j Ôc
j f j, where Ôi denotes the diagonal matrix element of Ô. Therefore, by defining a corrected

operator Ôc, we can get the true expectation value
〈
Ô
〉

directly from the experimental data f j.

Using the relation M−1 =
⊗n

k=1 D−1
k , Ôc is expressed as Ôc =

⊗n
k=1
[
diag(σ µk

k )D−1
k

]
. For µk =

1,2,3,
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diag(σ µk
k )D−1

k =

[
1 −1

]



1− p′0 p′1

p′0 1− p′1




=

[
(1−2p′0) −(1−2p′1)

]
(6.2.9)

and for µk = 0, diag(σ µk
k )D−1

k = [1,1]. For simplicity of notation, we take p0 = p1 = p. In

this case, diag(σ µk
k )D−1

k = (1−2p)−1diag(σ µk
k ) for µk = 1,2,3, and the corrected operator Ôc is

related with the original operator Ô by a simple scaling transformation Ôc = (1−2p)−np Ô. The

scaling transformation is independent of the qubit number n, so the error bar of
〈
Ô
〉

does not have

exponential increase with n when the operator Ô has a constant support np.

The scaling transformation also applies to collective operators, but some caution needs to be

taken for calculation of their variance. For instance, if we take the collective spin operator Jz ≡

∑
n
k=1 σ

z
k/2, it is easy to see that Jc

z = (1−2p)−1 Jz as each of the terms of Jz has support np = 1.

However, as J2
z ≡ n/4+∑k 6=l σ

z
kσ

z
l /4 which has non-uniform support for its superposition terms,

one finds that
(
J2

z
)c

= n/4 + (1−2p)−2 (J2
z −n/4

)
= (1−2p)−2 [J2

z −np(1− p)
]
. With this

transformation, we can correct the distortion to the spin squeezing parameter by the detection

error. Assume that the mean value of 〈J〉 is along the x-direction with 〈J〉= 〈Jx〉 and the squeezing

is along the z-direction. The squeezing parameter is given by ξ =
√

n
〈
J2

z
〉
/〈Jx〉2 [93]. Using the

transformation for
(
J2

z
)c and Jc

x , we find that

ξ
c =

√
n
〈(

J2
z
)c〉

/〈Jc
x〉2 =

√
ξ 2−ξ 2

d (6.2.10)

where ξ 2
d = n2 p(1− p)(1− 2p)−2 〈Jx〉−2 is the contribution to ξ 2 by the detection noise. After

correction of the detection error, ξ c gets significantly smaller compared with ξ in particular when
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the qubit number n is large, and thus can be used to verify a much bigger entanglement depth

using the criterion in Ref. [94]. From Eq. (6.2.10), we find that the variation ∆ξ c/∆ξ = ξ/ξ c. As

typically ξ � ξ c, the error bar for ξ c after correction of the detection error gets significantly larger,

and we need to correspondingly increase the rounds of the experiment N to reduce the statistical

error.

6.3 Application Example

To illustrate application of the error correction method here, as an example, we apply it to detection

of genuine multi-partite entanglement in graph states. For a graph state |Gn〉 of n qubits associated

with a q-colorable graph G, the genuine n-party entanglement can be detected with the following

witness operator [108]

WGn = 3I−2

[
q

∑
l=1

(
∏

k∈Ql

(Sk + I)/2

)]
(6.3.1)

where Ql denotes the set of qubits with the lth color (l = 1,2, · · · ,q), I is the identity operator,

and Sk is the stabilizer operator for the kth qubit (which is a tensor product of the Pauli operators

σ x
k for the kth qubit and σ

z
k′ for all it neighbors k′ in the graph G). A state ρ has genuine n-

qubit entanglement if tr (ρWGn) = 〈WGn〉 < 0. For an ideal graph state, all its stabilizer operators

Sk have expectation values 〈Sk〉 = 1. With detection error, the value of 〈Sk〉 gets significantly

degraded. As an example, Fig. 6.3 shows the values of all 〈Sk〉 for two particular 2-colorable

graph states: a 10-qubit GHZ state (GHZ10) and a linear cluster state (LC10). We assume 3%

detection error with p0 = p1 = p = 0.03 for each qubit. With a known magnitude p, the detection

error can be easily corrected by a scaling transformation Sc
k = (1−2p)−npk Sk, where npk is the
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support of the corresponding stabilizer operator Sk. Fig. 6.3 shows that after error correction,
〈
Sc

k

〉
is almost unity. Its error bar increases a bit after the correction, but is still small. To show

the influence on the entanglement detection, we assume the experimentally prepared graph state

ρex corresponds to the ideal target state ρid distorted by small depolarization noise independently

acting on each qubit, so ρex = $̂(ρid), where the noise super-operator $̂ =
⊗n

k=1 $̂k and $̂k (ρid) =

(1− 3pn/4)ρid + pn/4∑µ=x,y,z σ
(µ)
k ρidσ

(µ)
k [111]. In Fig. 6.3, we show the witness 〈WGn〉 as a

function of the preparation error rate pn, both before and after correction of the detection error

(with an error rate p = 3%). For both GHZ10 and LC10 states, without correction of the detection

error, we cannot detect any n-qubit entanglement even for a perfectly prepared state with pn =

0. After correction of the detection error, we can confirm genuine n-qubit entanglement as long

as the preparation error pn . 5%. So, correction of the detection error significantly improves

the experimental performance, and the improvement gets more dramatic when the qubit number

increases.

6.4 Sensitivity on Detector Calibration

We briefly comment on the sensitivity of our error correction method to calibration of the detection

error. In this method, the error magnitude p (or magnitudes pi, i = 0,1, · · · , for general cases) is

assumed to be known. If we have a relative error e in calibration of the magnitude p, .i.e., δ p/p∼ e,

the scaling transformation on the detected operator Ô leads to a relative error in the observed

quantity δ
〈
Ô
〉
/
〈
Ô
〉
∼ 2npδ p(1−2p)−1 ∼ 2np pe. As long as 2np p . 1, which is typically the

case as p� 1, the relative error actually gets reduced and the method here can tolerate some

uncertainty in calibration of the error magnitude p.
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Figure 6.3.1: Values of stabilizers before (lower points) and after (upper points) correction of the
detection error (with the error rate p = 0.03) for the 10-qubit GHZ state (GHZ10) and the linear
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detection error (error rate p = 0.03). The error bars are obtained by assuming N = 5000 rounds of
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6.5 Chapter Summary

In summary, we have shown a method to correct any detection error through simple processing of

the experimental data. The method applies to measurements in general many-particle settings, with

or without separate addressing. Moreover the method does not require change of the experimental

setup and works under arbitrary magnitudes of the detection noise, as long as the error magnitude

has been calibrated. The cost of this method is moderate as it only requires repetition of the same

experiment by some additional rounds to gain enough statistics and thus the method can readily

apply to many experimental settings used in quantum state engineering.
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CHAPTER VII

Conclusions

7.1 Summary

In this dissertation, we have investigated several topics centering around quantum information

processing with atomic, molecular and optical systems. For the trapped ion platform, we first

discussed construction of a scalable boson sampler with the transverse motional phonons of a

chain of ions in a linear Paul trap in Chapter II. We devised a complete scheme for the laser assisted

initialization, universal mode mixing and projective readout of the final state. Our protocol is based

on the conventional Paul trap so we believe it is easier to realize than other protocols based on novel

strucutres like microtrap arrays [112]. Compared to the original optical realization [15–18], our

state initialization is deterministic and does not suffer low Fock state generation rate and should be

much easier to scale up to the interesting regime with 20-30 bosons.

In Chapter III, as a second topic we discussed a spatial refocusing approach to effective achieve

single ion addressing with a few interfering Gaussian beams whose width is comparable to the ion

spacing. We used two-ion quantum gates to demonstrate that typically only a few correction pulses
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are needed to significantly increase the operation fidelity. The cost in additional laser power and

resistance to control noise were analyzed. It turned out that the overhead is moderate as long as

the Gaussian beam width is only slightly larger than the ion spacing.

We then extended the transverse motion mediated conditional phase flip gate to the regime where

ion micromotion is non-negligible in Chapter IV. A rigorous mathematical framework was estab-

lished for the description of ion micromotion and with the two-ion case as an example the design

of quantum gates with micromotion taken into account was demonstrated for the first time. Com-

pared to the case without micromotion, typically the number of control parameters needs to double

to achieve similar performance. However, the upside is that we no longer need to restrict the ion

crystal geometry to be 1D to avoid micromotion. We can now have a 2D crystal and still perform

high fidelity operations to the ions. This might turn out an alternative way to scale up the trapped

ion quantum computer.

In Chapter V we turned to cold atom gas, and explored how to efficiently squeeze a collection of

spins with dynamically applied pulses. We showed that by adding coherent spin rotation pulses,

even a single-axis twisting Hamiltonian can squeeze the spin state to close to the Heisenberg limit,

typically achieved with a two-axis twisting Hamiltonian that is more complicated. The disadvan-

tage compared to the real two-axis twisting case is a longer evolution time. So essentially this

approach offers a trade-off between squeezing quality and evolution time.

Finally in Chapter VI we considered the general problem of state detection with faulty detectors.

Real detectors of any kind have a non-zero error rate. This detector induced noise could render

the genuine entanglement properties in the target system invisible, i.e. entanglement witnesses

may fail to report. However after simple statistical post-processing of data we can reveal the true

entanglement properties without bias, at the expense of increasing the errorbars. In other words

we could remove the systematic bias at the expense of increasing statistical fluctuation. One thus
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needs to increase the number of repetitions to control the uncertainty.

7.2 Outlook

Based on the previous works both presented in this dissertation and in the literature, we now

idenitify several possible directions for future research work in this field.

Micromotion in trapped ion quantum computation/simulation. Our demonstration in Chapter

III with two ions has proved that in principle high fidelity operations can be carried in presence

of micromotion. But a more singificant and convincing example would be gate operations in a

real 2D ion crystal. In advancing to 2D there are also several new theoretical challenges. Also the

computation becomes more involved. So we leave the 2D case as future work. On the other hand,

with the mathematical description of ion micromotion we developed, we can study the implications

of micromotion for other applications of the ion platform, e.g. quantum simulation. In most

previous works on quantum simulation with trapped ions micromotion is ignored. We can apply

our formalism to systematically analyze whether micromotion would change the general picture

significantly or bring new features.

Optimal spin squeezing for precision measurement. Although the optimization technique used

in Chapter V enhances squeezing significantly compared to the one-axis twisting scheme, the evo-

lution time is still longer than what experimentalists would like. It is worth further investigation to

find pulse sequences that take less time. Adopting an alternative parametrization of the pulse, in-

creasing the number of control parameters, and constraining the overall evolution time are possible

solutions to try out next.

Boson sampling on other platforms. There now exist two possible platforms for realizing boson
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sampling, photons and phonons in ion crystals. It is possible that there exists more suitable plat-

forms. We can explore boson sampling with neutral atoms/molecules confined in a optical lattice

or other kind of bosons hosted by some artificial solid state structures. The race for building a large

scale boson sampler has just started and it is still an open question which platform will stand out

as the winner.

Statistical methods in quantum information. Our study in Chapter VI is only a minor example

of the application of statistical methods in quantum physics experiments. Quantum mechanics

is probabilistic in nature and the large body of statistics naturally apply to quantum experiments.

In recent years there appeared a lot of works that transfered powerful statistical methods (e.g.

compressed sensing) to the field of quantum information, with successful applications in quantum

state/process tomography and benchmarking [113–122]. We expect a lot more to be done along

this direction.
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APPENDIX A
Trapped Ion Gate Fidelity at Finite Temperature

In this appendix we will show how to calculate the gate fidelity of a trapped ion conditional phase

flip (CPF) gate at finite temperature. For the simplified case where only two ions are illuminated

by laser, i.e. only Fi, Fj 6= 0, which means φk = 0, if k 6= i, j and φpq = 0 unless {p, q} = {i, j}.

The quantities φk and φi j are defined in the main text of Chapter I. The We have a simple form of

U(τ) written with the internal state basis of the illuminated ions i and j |00〉 , |01〉 , |10〉 , |11〉:

U(τ) =




eiΦ00

eiΦ01

eiΦ10

eiΦ11



,

where

iΦ00 = i(φi +φ j +φi j)

iΦ01 = i(φi−φ j−φi j)

iΦ10 = i(−φi +φ j−φi j)

iΦ11 = i(−φi−φ j +φi j)
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And we assume the initial state is |Φ0〉= 1/2(|0〉+ |1〉)⊗ (|0〉+ |1〉). Now we have

U(τ) |Ψ0〉〈Ψ0|U(τ)† =
1
4




ei(Φ00−Φ
†
00) ei(Φ00−Φ

†
01) ei(Φ00−Φ

†
10) ei(Φ00−Φ

†
11)

ei(Φ01−Φ
†
00) ei(Φ01−Φ

†
01) ei(Φ01−Φ

†
10) ei(Φ01−Φ

†
11)

ei(Φ10−Φ
†
00) ei(Φ10−Φ

†
01) ei(Φ10−Φ

†
10) ei(Φ10−Φ

†
11)

ei(Φ11−Φ
†
00) ei(Φ11−Φ

†
01) ei(Φ11−Φ

†
10) ei(Φ11−Φ

†
11)




where in the above we made use of the fact that eiφi is a displacement operator D(α) for a quantum

harmonic oscillator and that D(α)D(β ) = e(αβ ∗−α∗β )D(α +β ). Here our αk
j α

k∗
i are real quantu-

ities so the first factor is zero. resulting D(αk
i )D(αk

j ) = D(αk
i +αk

j ). Notice also that φi j is a real

scalar and φi,φ j are real too. The trace over motional states can be calculated as

trm(ei(Φ00−Φ
†
01)) = trm(e2i(φ j+φi j))

= e2iφi jtrm(e
2∑k[α

k
j a†

k−αk∗
j ak])

= e2iθ
∏

k
trm(D(2α

k
j ))

= e2iθ e−∑k
|2αk

j |2
2 coth(h̄ωk/2kBT )

where θ ≡ φi j for short.

In the above equation we used the handy formula

trm[D(α)] = e−
|α|2

2 coth(h̄ω/2kBT )

81



Denoting Γi( j) = trm[D(2αi( j))] and Γ+(−) = trm[D(2(αi +(−)α j))]. Finally we obtain

ρr = trm{U(τ) |Ψ0〉〈Ψ0|U(τ)†}

=
1
4




1 Γ je2iθ Γie2iθ Γ+

Γ je−2iθ 1 Γ− Γie−2iθ

Γie−2iθ Γ− 1 Γ je−2iθ

Γ+ Γie2iθ Γ je2iθ 1




And the fidelity of the gate is

Fg = 〈Ψ0|(U ideal
i j )†

ρrU ideal
i j |Ψ0〉

=
1
2

(
e−iπ/4 e+iπ/4 e+iπ/4 e−iπ/4

)
1
4




1 Γ je2iθ Γie2iθ Γ+

Γ je−2iθ 1 Γ− Γie−2iθ

Γie−2iθ Γ− 1 Γ je−2iθ

Γ+ Γie2iθ Γ je2iθ 1




1
2




eiπ/4

e−iπ/4

e−iπ/4

eiπ/4




=
1
8
{

2+2(Γi +Γ j)sin(2θ)+Γ++Γ−
}
.

This is a complicated nonlinear function of the effective laser Rabi frequencies Ω and its optimiza-

tion is in general hard. However we can approach it approximately. All the exponentials involved

can be expanded to leading order

e−
|α|2

2 coth(h̄ω/2kBT ) ≈ 1− |α|
2

2
coth(h̄ω/2kBT ).

This approximation is accurate in the high fidelity regime, where αk
j ≈ 0 and Fg ≈ 1. Since α’s are

proportional to Ω’s, Γi, Γ j and Γ± depend on Ω’s quadratically. We also impose the constraint that
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θ = π/4, which is a quadratic constraint on Ω’s. This way we can solve this quadratic optimization

problem to get good solutions, which can then be verified with the exact expression for fidelity.
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APPENDIX B
Demonstration of Boson Sampling

In this appendix we will perform a classical simulation of the Boson sampling experiment to

demonstrate how the proposed scheme works. The hopping Hamiltonian for the local phonons

is

Hhop =
M

∑
i< j

ti, j
(

a†
i a j +aia

†
j

)

=
M

∑
i, j

a†
i Hi ja j.

Combining with the ability to phase shift each oscillator, i.e.

ai→ ai exp(−iθi),

we can generate a series of Hamiltonians

Hhop(~θ) =
M

∑
i, j

a†
i Hi ja j exp

(
i(θi−θ j)

)
.

By tuning the ~θ vector we have the freedom to engineer the effective Hamiltonian. In addition we

are also free to choose the evolution time t for a particular choice of ~θ . So our building block of
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the evolution is

U(~θ , t) = exp
(
−iHhop(~θ)t

)

= exp

(
−i

M

∑
i, j

a†
i Hi j exp

(
i(θi−θ j)

)
a j

)

Noting that the Hamlitonians Hhop(~θ) are quadratic in a and a†, a canonical transformation can be

performed to find the normal modes bi satisfying bi = ui ja j so that

U(~θ , t) = exp

(
−i∑

j
D j jb

†
jb j

)

where D is a diagonal matrix resulting from the canonical transformation. This evolution operator

is nothing more than a set of phase shifters for the phonon modes b j, each of which having a phase

shift D j j. Therefore the overall effect of U(~θ , t) can be described as a three-step process: (1) do a

basis transformation from ai to b j; (2) phase shift each mode b j; (3) transform back to the original

basis. Thus the output of U(~θ , t) can be related to the input as

~a′ = u†diag(e−iD11, e−iD22, · · ·)u~a

= Λ(~θ , t)~a.

The universality of the model was established in the main text of Chapter II, so one can concatinate

the building blocks Λ(θ , t) to form an arbitrary N-dimensional unitary in principle. Notice that the

computation of Λ(θ , t) given parameters~θ and t only requires diagonalizing an N×N matrix so it

can be done very efficiently.

Now let us work out a numerical example and study the effect of control noise in the ~θ vectors.
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We assume N = 10 ions, calculated the equilibrium positions in a trap with aspect ratio ωx/ωz =

10, and found the hopping coefficients ti j = t0/
∣∣∣z0

i − z0
j

∣∣∣
3
. We consider a three stage evolution

U3 = ∏
3
i=1U(~θi, t) with randomly chosen ~θi and fixed t = 1/t0. Following the approach above,

the corresponding Λ3 = ∏
3
i=1 Λ(~θi, t) can be easily found. Then we introduce Gaussian random

additive errors to all the ~θi with zero mean and standard deviation σ . For different values of σ we

calculate the distance between Λ
′
3 with noise and the ideal Λ3. To remove the irrelevant local phase

factors for each mode, we define a distance measure as follows

dist(Λ,Λ
′
)≡ 1− 1

N

N

∑
j=1

∣∣∣∣∣
N

∑
i=1

Λ
∗
i jΛ

′
i j

∣∣∣∣∣ .

This distance measure essentially is determined by the average absolute value of the inner products

of corresponding column vectors from the two unitaries. Only when each column of Λ and Λ
′

is

the same up to a phase factor, the distance is zero. We plot the distance from the ideal unitary as a

function of σ in Fig. B.1. We can see from the figure that Λ3 is quite robust against random noise

in the parameters ~θi.
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Figure B.1: Distance between the transformation with error Λ
′
3 and the ideal transformation Λ3,

as a function of the standard deviation of the noise σ . Each data point is obtained with 1000
randomized simulation of the noise for a fixed set of arbitrary ~θi. The errorbar is show one standard
deviation of the quantity. See text for detailed parameters used for the system.

87



APPENDIX C
Solving the Envelope Function with Toeplitz Matrix Theory

According to the Toeplitz matrix theory, the general solution to the equation Ml j f ji = δli has the

form f ji =∑k c+/−
k (ak)

j−i where c+k and c−k are for the regions j > i and j < i, respectively. Here ak

are the roots of the polynomial Pn(x) = xn
(

1+∑
n
m=1

(
1
/

xm + xm)γm2
)

and c+/−
k are coefficients

to be determined (the band-width of the matrix Ml j is 2n+ 1). Our first observation is that the

roots come in pairs (a , 1/a ) due to the symmetry x↔ 1/x. Thus f ji is composed of terms like

c+/−
k (ak)

j−i decaying (increasing) exponentially with | j− i| if ak < 1 (ak > 1). In the region j > i

( j < i) , boundary condition at | j− i| → ∞ requires ck = 0 for ak > 1 (ak > 1). Note that in the

large | j− i| limit, the ak closest to the unity should dominate since other components die out more

quickly. Next we prove that −γ (and hence −1/γ) is a root of Pn(x) when n is sufficiently large.

Pn(−γ)

(−γ)n = 1+
n

∑
m=1

(−1)m
(

γ
m2+m + γ

m2−m
)

= 1+
n

∑
m=1

(−1)m
γ

m2+m +
n−1

∑
m=0

(−1)m+1
γ

m2+m

= (−1)n
γ

n2+n +
n−1

∑
m=1

(−1)m(1−1)γm2+m

= (−1)n
γ

n2+n→ 0, when n is large.

The characteristic quantities of Pn(x) are γ , γ4, γ9, ..., of which the one closest to the unity is γ .
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This leads us to conjecture (−γ) is the root of Pn(x) closest to 1 in magnitude. This turns out to be

true. Since P̃n(x) = Pn(x)/xn > 0 when x > 0, there is no positive root. Let us focus on the interval

[−1,0). For n = 1, P̃1(x) = 1+ γ(1/x+ x) is monotonically decreasing from P̃1(−1) = 1− 2γ

to P̃1(0−)→ −∞ and there is one root in this interval: −1+
√

1−4γ2

2γ
≈ −1+1−2γ2

2γ
= −γ . When

increasing n by 1, we include one more term Qn+1(x) =
(
1/xn+1 + xn+1)γ(n+1)2

. Due to the small

factor γ(n+1)2
, the contribution of Qn+1 can be comparable with that of Qn only when |x|. γ2n+1.

Since Qn(0−) approaches +∞ for even n and−∞ for odd n and Qn is always monotonic on [−1,0),

adding one more term always introduces one more turning point in P̃n(x) and thus adds one more

root with magnitude much smaller than the previous roots. Therefore (−γ) is the root with the

largest magnitude by far on [−1,0). We therefore conclude f ji ∝ (−γ)| j−i| when | j− i| is large.
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APPENDIX D
Solving Mathieu Equation with a Constant Drive

In this appendix, we show in detail how to solve the Mathieu equation with a constant drive term.

d2u
dξ 2 +(a−2qcos(2ξ ))u = f0

Let us assume that u(ξ ) = ∑
∞
n=0 c2n cos(2nξ ) and insert it into the equation. After re-organization

we get

ac0−qc2 +
∞

∑
n=1

[
(a−4n2)c2n−q(c2n−2 + c2n+2)−qc0δn,1

]
cos(2nt) = f0.

Defining D2n ≡ (a−4n2)/q, we have the following set of linear equations

ac0−qc2 = f0

c2n−
1

D2n
(c2n−2 + c2n+2 + c0δn,1) = 0.
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In matrix form,




a −q 0 · · · 0

− 2
D2

1 − 1
D2

0 − 1
D4

1 − 1
D4

... − 1
D6

1 − 1
D6

. . . . . .

0




·




c0

c2

c4

...




=




f0

0

0
...




. (7.2.1)

The factor 1/D2n decreases very fast as n increases and we can truncate the expansion of u(ξ ) at

a small n. Numerically we observe that typically keeping up toc4 already gives enough accuracy.

We can thus get a very accurate analytical expressions

c0 ≈
64+a(a−20)−q2

(32−3a)q2 +a(a−4)(a−16)
,

c2 ≈
2(a−16)q

(32−3a)q2 +a(a−4)(a−16)
,

c4 ≈
2q2

(32−3a)q2 +a(a−4)(a−16)
.

For the example in the main text of Chapter IV, ar =−0.0388 and qr = 0.283, we have c0 = 1132.8

and ur(ξ ) = c0 [1−0.14cos(2ξ )+0.0025cos(4ξ )+ · · · ] .

The coefficient c0 is the micromotion corrected equilibrium position and should be consistent with

u0 around which we expand the Coulomb potential in the first place. Thus we should determine

u0/c0 self-consistently. Taking the relative motion in the main text of Chapter IV as an example,

since both ar ≡ −16ZeU0
md2

0Ω2
T
+ 4Z2e2

πε0mu3
oΩ2

T
and f0 ≡ 6e2

πε0mu2
0Ω2

T
are functions of u0, then the self-consistent
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equation

u0 = c0 ≈
64+ar(ar−20)−q2

r
(32−3ar)q2

r +ar(ar−4)(ar−16)

gives the correct u0. With hje iterative method it typically takes only a few iterations to converge

to the correct value when starting from a proper initial value of u0.
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APPENDIX E
Proof of Inverse Matrix Formula

In this appendix, we prove the inverse matrix formula Eq. (6.2.7) in the main text of Chapter

VI. We can relate the L matrix to the M matrix defined in Eq. (6.2.3). Denote the space of n-bit

binary strings with i bits of 1 as Si, and Si has dimension
(n

i

)
. The matrix element Mσρ represents

the probability of recording a n-bit binary string ρ as σ , and Li j is the probability of recording a

signal ρ ∈ S j as any string in the Si space. As a collective measurement does not distinguish the

binary strings in the same space Si, Li j is related to Mσρ by Li j = ∑σ∈Si Mσρ .The probability Li j

is apparently independent of the exact form of ρ , as long as ρ belongs to the space S j, so we can

pick up any ρ ∈ S j in Li j = ∑σ∈Si Mσρ without alternation to the result of summation. From Eq.

(6.2.4) in the main text, we know M−1
µν = Mµν

(
p′0, p′1

)
. Let us define

N jk ≡ ∑
µ∈S j

M−1
µν = ∑

µ∈S j

Mµν

(
p′0, p′1

)
= L jk

(
p′0, p′1

)
,

where ν is an arbitrary element in Sk. Now we show that N gives inverse of the matrix L:

∑
j

Li jN jk = ∑
j

∑
σ∈Si,µ∈S j

MσρM−1
µν

= ∑
σ∈Si

∑
j

∑
µ∈S j

Mσ µM−1
µν = ∑

σ∈Si

δσν = δik

In the second line, we have changed the subscript ρ in Mσρ to µ as both ρ,µ belong to S j. This

proves Eq. (6.2.7) in the main text of Chapter VI.
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