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Abstract 

This thesis focuses on the dynamics and transport of flowing polymers in microfluidic devices. 

Using different mesoscopic simulation methods, we explore the dynamics of polymers in dilute 

and non-dilute, but unentangled, solutions under flow in confined geometries, namely periodic 

pressure-driven sudden contraction-expansion channel with contraction dimension comparable to 

Rg , the polymer radius of gyration.  

We first choose the method Stochastic Rotation Dynamics (SRD) to study this problem. But 

before SRD can be confidently used for quantitative calculations,there is a need to benchmark 

SRD for both fluid dynamics and polymer dynamics. We first examine the accuracy of SRD for 

contraction flow against results from the finite element method. We show that SRD results are 

influenced by unphysical compressibility effects due to the ghost-like SRD fluid particles, and 

we can minimize this effect by lowering the Mach number via adjusting different SRD 

parameters. We next examine the accuracy of SRD for isolated polymers against standard 

theoretical and Brownian dynamics (BD) results. We show that the main error is due to an 

inertial effect that finite bead mass has on polymer hydrodynamics, and we find that this effect is 

negilible at g 0.1ML R   , where LM is the distance over which polymer bead inertia is lost due to 

collisions with solvent. 

 We finally apply SRD to study polymer migration in microfluidic contraction flow. The 

similarity in results from SRD and BD without hydrodynamic interaction (HI) at low 

Weissenberg number Wi (<10) indicates that HI has only a weak effect on polymer migration in 

our geometry. We find that the polymer migration is primarily due to streamline curvature on a 

length scale comparable to the polymer radius of gyration, which produces a migration velocity 



 

xx 
 

that is proportional to Wi
2
. And using the central limit theorem, we show that streamline-

curvature-induced (SCI) migration can, in long periodic geometries, lead to clear separation of 

polymers by molecular length. We find that while there are other mechanisms that can also cause 

polymer migration, SCI migration is the dominant mechanism for the polymer migration in our 

contraction flow at Wi<10. 
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Chapter 1 

Introduction 

Learning to think on an entirely different scale is always a new and exciting challenge to fulfill 

the curiosity of human beings. We are not satisfied with understanding the small, yet already 

colorful enough world around us. Owe to the advanced technology, we are either raising the head 

to the starry sky, the vast universe up to the scale of light-years, where the theory of relative is 

revealed; or dropping the head to the electron sea, the teeny world down to the scale of 

nanometers, where quantum mechanism is discovered. While in the field of fluid mechanism, we 

don’t need to go too far, just down to the micrometer scale, there are already exhibiting exciting 

physics. This is the novel field of microfluidics, emerging in the beginning of 1980s, which 

attributes to the advances in the microfabrication.  

The development in the recent soft lithography enables the microfluidic devices to be fabricated 

inexpensively and reliably with tailored geometries where the small-scale flows can be precisely 

controlled. Several schematics of microfluidic devices are shown in Figure 1.1[Mai et al. (2012)]. 

The flows in the micro-geometry are commonly driven by moving boundaries, pressure gradients, 

or electric field gradients. The microfluidic devices provide a powerful platform to study the 

dynamics of soft materials. Meanwhile they are also used as powerful tools for a wide variety of 

applications, especially in the biological systems, such as geonomics[Jing, et al.(1998), Zhou, et 

al.(2003)], blood analysis and separations[Faivre et al.(2006)]. In this thesis, we are particularly 
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interested in the device of a pressure-driven planar contraction channel ( similar to the schematic 

(b) in Figure 1.1), since it holds a promising potential application of to the separation of 

polymers, cells, emulsion droplets and other deformable objects.  

The most conventional and widely used polymer separation technique is size-exclusion 

chromatography (SEC), which was first developed in 1955 by Lathe and Ruthven (1956). A 

typical SEC method is gel permeation chromatography (GPC), which can be traced back to 

Moore (1964). The GPC techniques separate based on polymer size or radius of gyration. Due to 

the size exclusion, the large molecules explore fewer areas than the smaller ones do as they pass 

the column, and thus go through faster, resulting in the separation. The flow rates in GPC 

columns are typically too small to deform the polymer molecules; that is the Weissenberg 

number Wi, which is the characteristic shear rate multiplied by the polymer relaxation time, is 

usually very small, much less than unity ( < 10
-2 

) [Moore(1964)].  

Meanwhile, techniques for separating biological molecules of different sizes have been 

developed in parallel with the evolution of molecular biology. Decades ago, Dill and Zimm 

[Dill(1979), Dill and Zimm(1979)] proposed a rheological separation method for DNA 

molecules based on the radial migration of the DNA that occurs when DNA solutions are 

subjected to flow between rotating concentric cylinders or cones. This radial migration is 

actually caused by streamline curvature. We will discuss this mechanism in detail later in this 

thesis. However this technique has not been widely used ever since. But DNA separation is an 

active area, since it is important for numerous applications in biotechnology and medicine, for 

example, the sequencing of genomes, and genetic arrays to identify diseases. The use of the 

microfluidic devices for micro-scale DNA separation have been increasingly studied, since those 

devices provide great advantage in reducing separation time, sample volume and cost per 
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analysis. DNA molecules are charged polymers, and so far the dominant micro-scale separation 

strategy is through micro-capillary electrophoresis (CE). With different separation matrices, 

CE can separate DNAs with length ranging from tens of base pair (bp) up to 1000 bp, and the 

typical separation time is about 63 minutes to 96 minutes with a resolution as high as ~0.35 

[Ashton et al. (2003)], or even faster at a cost of lowering separation resolution period. For 

example, Xu et al. (2002) reported that using hydroxypropylmethylcellulose (HPMC) with 

polyhydroxy additives, DNA between 72 bp and 1353 bp could be separated in 170 seconds with 

a resolution of 10. Meanwhile novel separation strategies using entropic traps, arrays of pillars 

and Brownian ratchets are also being developed. For more detailed review on development of 

DNA separation since 2001, please refer to Ashton et al. (2003). 

Hydrodynamics interaction (HI) was found to play an important role in microfluidic devices. 

Jendrejack et al. (2004) used Brownian Dynamics (BD) to study the polymer migration in a 

square straight channel and found that the HI between the polymer and wall can significantly 

thicken the depletion layer beyond that resulting from the size-induced depletion from the wall. 

The thickness of the depletion layer due to this wall-hydrodynamics-induced migration depends 

on the Weissenberg number, and thus can also be used for polymer separation.  

Most recently, Faivre et al. (2006) reported that in a contraction channel, size exclusion of the 

cells from the wall can be enhanced via the contraction geometry, and proposed an application of 

such focusing effect for separation of the red blood cells from the suspending plasma. This effect 

actually results from a depletion-convection coupling. That is the depletion layer whose 

thickness is the size of the colloids in the narrow region of the contraction channel is convected 

along the streamline into the wide region. Within a certain distance in the wide region, the 
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colloids are depleted from a zone near the wall whose size is much larger than the size of the 

colloids, because the colloids don’t have the time to diffuse across the convected depletion layer. 

For separating biological cells based on their size or flexibility, the method we demonstrate in 

this thesis for prediction of polymer separation and then it can be further applied to design 

microfluidic devices for this purpose.  

Among various mesoscopic methods, we first choose Stochastic Rotation Dynamics (SRD) to 

study the problem of polymer migration in a contraction flow. We choose this problem to 

illustrate to important two aspects: 1) the geometry and boundary conditions are complex; 2) the 

fluctuating or time-dependent hydrodynamic interactions (HI) are potentially important. To solve 

the flow field in a complex geometry, the finite element method (FEM) is excellent, but it is 

unsuitable for resolving fluctuating hydrodynamic interactions.  Brownian dynamics (BD) with 

full HI is well developed for describing fluctuating hydrodynamic interactions, but becomes very 

cumbersome when HI is important in complex geometries. And thus in problems that contain a 

combination of aspects 1) and 2), SRD a promising method. However before SRD can be 

confidently used for quantitative calcualtions,there is a need to benchmark SRD for both fluid 

dynamics and polymer dynamics. We first examine the accuracy of SRD for contraction flow 

against results from FEM in Chapter 2. And then we examine the accuracy of SRD for isolated 

polymers against standard theoretical and BD results in Chapter 3. With the findings in the first 

two chapters, we then safely use SRD for studying polymer migration in a periodic pressure-

driven contraction flow with contraction dimension comparable to the polymer radius of gyration. 

To charaterize the influence of the HI, we compare the results from SRD with those from BD 

simulations without HI. Interestingly, the similarity in results from those two simulations 

indicates HI has only a weak effect on polymer migration in this geometry at low Weissenberg 
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number Wi (<10), and inexpensive BD simulations without HI are adequate to predict the single 

polymer migration accurately in the contraction problem studied here. And using central limit 

theorem, we demonstrate the potential application of this microfluidic device for polymer 

separation. Finally in Chapter 5, we further investigate the influence of polymer concentration on 

the polymer migration and separation. We conclude and discuss the outlook in Chapter 6.  
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Figure 1.1: Schematics of several microfluidic platforms. For each schematic, the direction of 

fluid flow is indicated by the arrows.(a) Straight channel; (b) planar micro-contraction; (c) planar 

90 bend; (d) channel-based micro-curvilinear flow device; (e) hyperbolic contraction;(f) linear 

converging channels; (g) cross-slot geometry; (h) single obstacle; (i) ordered array of obstacles; 

and (j) slit-like confinement. Adapted from Mai et al., Soft Matter 8, 10506 (2012). 

 

 

 

 

 

 



 

8 
 

Chapter 2 

Stochastic Rotation Dynamics Simulation of Fluid 

In this chapter, the algorithm of Stochastic Rotation Dynamics (SRD) is introduced. And the 

accuracy of SRD simulations on the fluid dynamics is carefully examined. One main issue with 

SRD fluid is that, since SRD is uses soft particles to carry momentum, it contains unphysical 

high compressibility. To assess this effect, compressible SRD fluid is explored in a periodic 

pressure-driven planar contraction channel. We find that the SRD results are influenced by 

compressibility effects due to the relatively large value of Ma, the Mach number, in SRD 

simulations. Ma can be lowered by either increasing the temperature, decreasing the kinematic 

viscosity or scaling up the system dimension, while keeping fixed Re, the Reynolds number. By 

varying the SRD parameters, we can reduce density variations to less than 2%, and the error of 

the flow field, compare with the results from finite element methods, are only around 1%. 

2.1. Introduction 

The Stochastic Rotation Dynamics (SRD) particle-based simulation method was developed by 

Malevanets and Kapral [Malevanets and Kapral (1999)] a decade ago, and is now frequently 

referred to as multi-particle collision (MPC) dynamics. It treats the fluid elements as particles 

governed by simple interaction rules that preserve linear momentum and energy. (Note that in 

SRD, angular momentum is not generally conserved. For a detailed discussion of this topic, 

please refer to Gӧtze et al. (2007). The SRD method leads to a significant algorithmic 

simplification relative to methods that treat the solvent as a continuum (such as the finite element 
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method (FEM) or Brownian dynamics (BD) simulations), for problems that require tracking the 

transfer of momentum between fluid, walls or boundaries, and Brownian objects, such as 

colloids, polymer molecules, bacteria, etc. [Hecht et al. (2005); Ali and Yeomans (2005); Lee 

and Karpral (2005); Earl et al. (2007); Yeomans (2006); Watari et al. (2007)]. SRD is especially 

promising for situations where fluctuating or time-dependent hydrodynamic interactions are 

important (which makes FEM unattractive), but the geometry or boundary conditions are 

complex (which makes BD cumbersome.). Before the SRD is applied to study such problems, 

the accuracy of SRD simulations on both the fluid dyanmics and polymer dynamics need to be 

examined. In this chapter, we benchmark SRD for the Poiseuille and contraction flow against 

analytical and finite element method (FEM). 

2.2. SRD algorithm  

In SRD, the fluid is modeled by N particles, each of which is characterized by its position ri
 and 

velocity v i , with i=1,2…N. For simplicity, all the fluid particles are assigned the same mass m. 

The algorithm consists of two steps: a streaming step followed by a collision step after a discrete 

time step t . We refer to this t  as the collision time, and note that in SRD the time step t  is 

not purely a computational parameter, since its value influences the physical properties of the 

fluid, such as the fluid viscosity. It does this because sets the mean free path of a fluid “particle” 

between collisions with other fluid particles, and therefore influences rates of momentum 

transfer. We will discuss this in greater detail after we summarize how the system evolves in the 

streaming and collision steps.  

In the streaming step, the fluid particles without external force simply follow Newton’s law, with 

the positions updated as:  
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    ( ) ( ) ( )i i it t t t t   r r v                                                     (2.2.1)              

In the collision step, the particles are sorted into the cells of a d-dimensional cubic lattice (where 

typically 3d  ) with lattice spacing a. The collision is carried out by first taking the difference 

between each particle’s velocity and the center-of-mass velocity of all particles in the cell, and 

then rotating this velocity difference around a random rotation axis through a rotational angle .  

Then the center-of-mass velocity is added back. Thus,  

CoM, CoM,( ) ( ) ( ) ([ ])( )v v v v iiit t t t     i                                  (2.2.2) 

where ( )  is a stochastic rotation matrix, /t   refers to the time after/before the collision and 

( ) ( )

CoM,v ( v )
i i

i jj j
m m   is the center of mass velocity of all particles in the collision cell 

where the i-th particle is located.  

To guarantee Galilean invariance, a random shift of the collision cells before executing the 

collision step has to be performed, and after the collision step, the particles are shifted back to 

their original positions. Details of this process are described in [Ihle and Kroll (2001)]. 

To avoid development of a spurious temperature profile, after the collision step and the random 

shift of particles is reversed, a thermostat is applied to each collision cell to adjust the local 

collision cell temperature to the desired system temperature T [Watari et al. (2007)]. Although in 

Ref. [Watari et al. (2007)], the thermostat is applied after the streaming step, we found for 

polymer dynamics at equilibrium, the point in the computational cycle at which the thermostat is 

applied makes little difference in the results. (The dynamic quantities for the polymer chains we 

tested agree within the statistical error.) Detailed discussion of this cell-level thermostat is 

described in [Huang et al. (2010)]. 
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2.2.1. SRD parameters 

In the collision step, collisions with a large rotational angle dominate the collision contribution to 

the viscosity. The time the system takes to relax to the equilibrium state, i.e. time required for the 

particles velocities to relax to their Maxwell-Boltzmann velocity distribution is proportional to 

2  [Ihle and Kroll (2001)]. 

The Schmidt number Sc, which is the ratio of the kinematic viscosity of the solvent to the 

diffusivity of the fluid particles, can be estimated as [Ripoll et al. (2005)]: 

2 2
2 2

B

1 1
Sc= (1 ) ( )

108

ma

D k T t

 


 


                                       (2.2.1.1) 

where   is the rotational angle in radians,   is the kinematic viscosity and D  is the self-

diffusion coefficient. Liquids typically have high Sc, which therefore requires a small t . Note 

that the mean free path, Bt k T m  , thus  
2

Sc a  . Actually depending on the mean free 

path , two distinct regimes are identified [Ripoll et al. (2005)]: 1) In the “particle regime” for 

which  a  (a is the size of the collision cell), i.e. Sc 1 , the molecular-chaos assumption 

holds, and the dynamics is gas-like; 2) In the “collective regime” for which  a , i.e. Sc 1, 

many-body correlations occur, leading to strong hydrodynamic interactions, and the dynamics is 

fluid-like.  

Using kinetic theory, the viscosity   can be calculated theoretically and the validity of this 

calculation has been checked against SRD simulations [Kikuchi et al. (2003); Ihle and Kroll 

(2003); Ihle et al. (2005)]. The momentum transfer in the streaming and collision steps both 

contribute to the viscosity. Therefore in 3D, kin col    :   
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B
kin 3

5 1

( )(4 2cos 2cos 2 ) 2

k T t

a e 

 


  

 
  

   
                          (2.2.1.2) 

col

(1 cos
( )

18

m
e

a t


   

 


                                             (2.2.1.3)                  

where kin/col is the kinetic/collisional contribution to viscosity from the streaming/collision step 

and is the average number of fluid particles per collision cell, i.e. their number density.  

In the simulations, we choose units such that B1, 1, 1a m k T    and scale the length and time as

2
ˆˆ , Bk T

x x a t t
ma

  . Thus, the length unit (LU), time unit (TU), and mass unit (MU) in our 

SRD simulations are 
2

B

LU ,TU maa
k T

   and MU m  respectively.  

2.2.2. No-slip boundary condition 

To apply a no-slip boundary condition in simulating SRD fluid, we assign wall cells (as those 

cubes on the edges of the geometry shown in Figure. 2.4) along the wall boundaries. To realize 

the no-slip boundary condition, in the streaming step the bounce-back rule is applied. That is, if a 

particle intersects the boundary at time t t   during a collision time step t, the particle 

velocity relative to the wall wall v v v is completely reversed, i.e. v v  , so that the average 

relative velocity of the fluid near boundary is zero. And in the remainder of the collision time 

step, the particle is propagated from the point of contact with the boundary using this new 

velocity [Whitmer and Luijten (2010)]. For simplicity, we replace t  with its average value 
2

t
  

so that at the end of streaming step after the bounce-back, the position of the particle is updated 

as, 
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wall( ) ( )
2

i i

t
t t t


  r r v                                                  (2.2.2.1) 

 
wall( ) ( )i it t t  v v v                                                  (2.2.2.2) 

where vwall the velocity of a moving wall. For a stationary boundary, the particle simply restores 

to its original position at the beginning of the streaming step, and its velocity is reversed. 

However since a pure bounce-back rule fails to guarantee no-slip boundary conditions, further 

treatment is needed in the collision step. If n, the number of fluidic beads shifted into a wall cell 

after the random shift is less than , the average number of the fluidic beads per cell, then  

“phantom” beads with velocities drawn from a Maxwell-Boltzmann distribution of zero average 

velocity and temperature T are added to that wall cell to participate in the collision for 

momentum exchange [Lamura  et al. (2001)]. After this collision, these “phantom” beads are 

destroyed. New ones created with new random velocities whenever they are needed for collisions 

in the wall cells.  

2.3. Numerical results 

2.3.1. Effect of discretization of the geometry 

In SRD, the geometry is gridded into cubic collision cells, and the kinetic energy and linear 

momentum are conserved in each collision cell during the collision step. So to accurately 

simulate the flow field, there needs to be enough collision cells to represent the geometry.  

Here, we investigate this issue using Poiseuille flow in a channel with x the gap direction, and 

pressure drop applied along the y-direction. The boundaries are represented by two lines of wall 

cells. No-slip boundary conditions are imposed on the channel walls as described in Section 

n 
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2.2.2. With this no-slip boundary condition, the flow field doesn’t extrapolate to zero at the 

boundary but rather half way into the wall cells. Therefore the wall cell contributes half of its 

width to the width of the channel. In Figure 2.1, the solid curve is the theoretical Poiseuille flow 

calculated using the channel width with the contribution from the wall cell, which matches the 

SRD predictions, given by circles.  

Figure 2.2 shows how the error reduces to zero as the number of the collision cells across the slit 

in the x-direction increases, where the error is calculated as  

0

0

| |
Error

Q Q

Q


                                                                (2.3.1.1)  

Here Q and Q0 are the volumetric velocity per unit channel depth, i.e. in the z-direction, from the 

SRD simulation and theory respectively. We can see that with only three collision cells, the error 

is still only about 10%. The error depends on the number of collision cells across the slit, not on 

how finely we grid the geometry for calculating the velocity of the fluid at each grid cell (i.e. the 

grid size for the flow field can be less than a, the size of collision cell). As shown in Figure 2.1), 

the squares, for which the resolution of the flow field is a, agree with the cross-dashed curve, for 

which the resolution is a/4; both of them is below the solid theoretical curve, since for both there 

are only three collision cells along x-direction to represent the slit channel. 

2.3.2. Effect of Schmidt number on the solvent viscosity 

As Sc decreases, the SRD fluid becomes more gas-like, with one consequence that the fluid 

viscosity predicted by Eq. (2.2.1.2-2.2.1.3) becomes less accurate. Figure 2.3 shows that if Sc is 

reduced from 40 to 10 by either increasing the temperature T, or increasing the collision time t , 

the simulated flow fields deviate slightly away, about 7%, from that predicted using the 
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analytical viscosity. Hence the viscosity that would be obtained by fitting the flow profile to the 

analytic one is about 7% higher than the analytical value.   

2.3.3. Effect of compressibility of SRD fluid 

SRD uses phantom particles to carry momentum and recovers the Navier-Stokes equation with 

an ideal-gas equation of state according to an H-theorem; therefore SRD fluid is highly 

compressible [Malevanets and Kapral (1999)]. The non-uniformity of the solvent density in a 

complex geometry resulting from this compressibility was shown by Gӧtze et al. (2007). Zhao et 

al. (2013) compared the compressible SRD fluid with the DPD fluid, by studying an electro-

osmotic flow along inhomogeneously charged surfaces, where the compressibility is caused by 

the complex flow in a simple geometry. 

Here we investigate the compressibility of the SRD fluid in a complex geometry, a periodic 

pressure-driven planar contraction channel, shown in Figure 2.4 The simulation box has 

dimensions 1 2 3L L L  , where L3 is the out-of-plane dimension, not shown in Figure 2.4 The 

lower and upper wide chambers are connected by a narrow channel with width w and length h. A 

constant acceleration g is applied along the y direction to drive the flow.  We apply periodic 

boundary conditions along y and z directions, and no-slip boundary conditions at the walls ( i.e. 

those cubes on the edges of the geometry ).  

We set the dimensions of the simulation box to be L1=21, L2=18, L3=20 and the narrow channel 

is given dimensions of w=3, h=6. Taking into account the size contribution from the wall cells, 

the contraction ratio is (21+1)/(3+1) = 5.5. We run the simulation with the parameters  = 5 and 

 = 150°. We first choose T = 1, t = 0.05, and impose the acceleration g=0.02.  The circles in 

Figure 2.5 show the resulting solvent density n along the y-direction (and averaged over the other 
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dimensions of the geometry). We can see, due to the compressibility, in the wide chamber the 

solvent density is about 10% lower than the average solvent density, at the slit exit (dash line 

(2) in Figure 2.4), gradually increases and finally accumulates to about 10% higher than at the 

slit entrance (dash line (1) in Figure 2.4). 

The compressibility is controlled by Ma, the Mach number, which is the ratio of the 

characteristic flow speed V to the sound speed Vsound. The sound speed for the SRD fluid is 

B
sound

5
3

k T
V

m
  [Tüzel et al. (2006)]. We take the characteristic flow speed to be 

2

8
gw

V


 , 

the maximum speed of the Poiseuille flow in a slit with the same width as the narrow part of the 

contraction channel, where is the kinematic viscosity. Therefore Ma,  as defined here is: 

   
2

B

8
Ma

5 3

gw

k T m


                                                       (2.3.3.1)  

Note due to the contraction, the maximum speed of the contraction flow will be larger  than 

2

8
gw


; thus the actual Ma in the system will be higher than the value from Eq. (2.3.3.1). To 

lower the compressibility without otherwise changing the flow field, we want to lower Ma but 

keep Re, the Reynolds number, the same. Using the characteristic speed discussed above to 

define Re,  

3

2
Re

8

wV gw

 
                                                          (2.3.3.2) 
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which is actually one eighth of the so-called “Galilei number,” 
3

2
Ga

gw


  . From Eq. (2.3.3.2), 

Ma is related to Re as 
B

Ma Re
5 3

w

k T m


 . Therefore, keeping the same Re by adjusting 

acceleration g correspondingly, the Mach number can be lowered either by decreasing the 

kinematic viscosity  or increasing the temperature T, or increasing the system size, i.e. w, which 

will be at the cost of increasing the simulation time. Follow the discussion above, we lower Ma 

by half via those three methods. As shown in Fig. 2.5, we thereby get a much more uniform 

solvent density. And at the slit entrance and exit, where the fluid is most compressed, the 

deviation in solvent density from the average value is reduced from 10%  to only about 3%. 

In addition, as discussed in Section 2.3.1, the limited number of collision cells across the narrow 

channel introduces some error. Despite these two sources of error, the SRD flow field at Ma = 

0.02 as shown in Figure 2.7 is in good agreement with the nearly exact Stokes flow obtained 

from a finite element method (FEM) at Re = 0 as shown in Figure 2.8. And the error of the flow 

field calculated from Eq. (2.3.1.1) is less than 1%. 

2.4. Summary 

In this chapter, we benchmark SRD for simulating contraction flow against finite element 

method (FEM). SRD algorithm implies at least three aspects may affect the accuracy of the 

solved flow field.  

1) The discretization of the SRD flow field. Because of the geometry is gridded into collision 

cells, to accurately simulate the flow field, there expects to need to be enough collision cells 

to represent the geometry. We find the accuracy of the flow field is weakly affected by this 

discretization.  We test SRD by simulation the Poiseuille flow in a slit channel, and find with 
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a minimum three collision cells along the slit to present the channel, the error is only within 

10%. 

2) The Schmidt number Sc. Sc determines the dynamic regime SRD simulates. When Sc 1 , 

the dynamics is gas-like, and when Sc 1 , the dynamics is fluid-like. We find if Sc > 10, the 

fluid viscosity predicted by the analytic expression from kinetic theory is within 10% away 

from the viscosity calculated from fitting the parabolic slit Poiseuille flow profile. 

3) The compressibility of the SRD fluid. Since SRD uses soft particles to model the fluid, the 

compressibility is unavoidable in a complex geometry, and will influence the flow field. We 

quantify this influence in a contraction flow. The compressibility is controlled by Mach 

number Ma. At Ma = 0.02, the error of the flow field from the accurate flow field from FEM 

is less than 10%. The maximum deviation of the solvent density from the average solvent 

density at the entrance and exit of the narrow region of the contraction channel is about 10%. 

And if we lower Ma to 0.01 while keeping Reynolds number the same via increasing 

temperature, lowering kinematic viscosity or scaling up the geometry, the compressibility is 

lowered so that the density deviation is lowered to less than 2%. 
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Figure 2.1: Flow profile normalized by v0,max, the maximum velocity of Poiseille flow, calculated 

using the analytical viscosity from Eq. (2.2.1.2-2.2.1.3). Solid curve: theoretical parabolic profile; 

circles: SRD results with 15 collision cells across the slit; squares: SRD results with 3 collision 

cells across the slit; crosses and dashed curve: the same as for squares, but the resolution of the 

flow field is a/4, where a is the size of the collision cell. 
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Figure 2.2: Error as calculated by Eq.(2.3.1.1) versus the number n of collision cells across the 

slit. 
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Figure 2.3: Poiseuille flow profiles with 15 collision cells across the slit at different Sc. Solid 

curve: theoretical parabolic profile; circles: Sc = 40 (T = 1, t = 0.05); squares: Sc = 10 (T = 4, 

t = 0.05); crosses: Sc = 10, (T = 1, t = 0.1).  
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Figure 2.4: Geometry of the planar contraction channel 
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Figure 2.5: Solvent density n normalized by  the average solvent density, along y-direction at 

Re = 0.06, averaged over the x and z dimensions of the geometry. (1) / (2) corresponds to the slit 

entrance/exit as shown by the dashed line (1) / (2) in Fig. 3. Circles: Ma = 0.02 ( T = 1, t = 0.05, 

w = 4 ); squares: Ma = 0.01 ( T = 4, t = 0.05, w = 4 ); crosses: Ma = 0.01 ( T = 1, t = 0.1, w = 

4 ); triangles: Ma = 0.01 ( T = 1, t = 0.05, w = 8 ); where the value of w takes into account the 

contribution from the wall cells. Dashed lines are guides for the eyes. 
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Figure 2.6 Flow field (arrows) and streamlines (black curves) in the wide chamber of the 

contraction channel at Re = 0.0 from FEM. The length of the arrow is proportional to the 

magnitude of flow field.  
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Figure 2.7: The same as Figure 2.6, expect the results are from SRD at Re = 0.06 with Ma = 0.02. 
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Chapter 3 

Mesoscopic Simulations of Single Polymer Chain Dynamics 

In this chapter, we examine carefully the accuracy of stochastic rotational dynamics (SRD) 

simulations for isolated polymer chains in a solvent, where SRD incorporates hydrodynamic 

interaction through momentum exchange (“collisions”) between polymer beads and solvent 

beads, both of which are assigned mass. We show that the main error is due to the inertial effect 

that finite bead mass has on polymer hydrodynamics. We find that the inertial effect is negligible 

when gR , the radius of gyration of the polymer chain is much larger than ML , the distance over 

which bead inertia is lost due to collisions with solvent. For moderate hydrodynamic interaction 

(HI) good agreement is found between the rotational relaxation time simulated by SRD with that 

from normal mode analysis, and from Brownian dynamics (BD) simulations, even for short 5-

bead chains. For dominant HI, for short chains, we can minimize the inertial effect by varying 

the ratio of polymer to solvent bead mass. For long chains ( g MR L ) SRD and BD relaxation 

times agree, but are larger than those from normal mode analysis due to neglect of fluctuating HI 

in the latter. We also find that, using the same parameters, the SRD method can reproduce the 

BD results obtained by Jendrajack et al. for a -DNA chain in viscosified water.  
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3.1 Introduction 

As discussed in the last chapter, SRD hold promising potential for solving problem where 

fluctuating or time-dependent hydrodynamic interactions are important , but the geometry or 

boundary conditions are complex. Before SRD can be confidently used for quantitative 

calcualtions of such problems, besides examining the accuracy of SRD simulations on fluid 

dynamics as we have done in the last chapter, there is also a need to benchmark SRD for isolated 

polymers against standard theoretical and Brownian dynamics (BD) results for such chains. We 

will do so in this chapter.  

In the last chapter, we have briefly discussed the algorithm we use for SRD simulations of the 

fluid and how some relevant physical properties associated with the simulation parameters are 

set in SRD and the consequences of the choices made for these parameters. For more details and 

a comprehensive review of the SRD method, please refer to Gompper et al. (2008). In the 

following, we describe the simulation methods for polymers in both SRD and BD in Section 3.2, 

the method of determining the strength of HI in the SRD method in Section 3.3, the results from 

simulating isolated polymer chains in Section 3.4, and we summarize in Section 3.5. 

3.2. Mesoscopic methods to simulate polymer 

3.2.1. SRD-MD hybrid method 

As usual, the polymer is modeled as a chain of bN  monomer beads connected by s b 1N N   

springs. To study polymer dynamics using SRD, we follow previous work and couple a 

molecular dynamics (MD) simulation of the polymer to an SRD simulation of the fluid by 

numerically integrating Newton’s equation of motion for the polymer chain using the velocity 

Verlet algorithm between collisions with a smaller time step MDt . The polymer beads interact 
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with the solvent beads in the collision step. In this step, the solvent and any polymer beads that 

are in the same cell exchange momentum through the same collision rule as described above for 

the solvent beads; thus, the center of mass velocity of the cell CoM,v i  in Eq. (2.2.2) includes the 

polymer beads[Malevanets and Yeomans (2000)]. 

In SRD simulation, a polymer chain inevitably has a finite mass. While polymer behavior is 

usually considered in the Stokes regime where the inertial effect is negligible, in SRD the inertia 

may affect the polymer dynamics because the method relies on the inertia of relatively few 

polymer and solvent beads (relative to the number of molecules in a real system) to carry 

momentum, and so the bead inertia in SRD must be much larger than that of any real molecules. 

Here we seek to quantify the effect of this inertia and learn how to minimize its influence on 

polymer dynamics.   

3.2.2. Brownian dynamics (BD) method 

To compare with our SRD simulations, we also carried out standard Brownian dynamics 

simulations, with hydrodynamic interactions (HI) described by the Rotne-Prager tensor.  The 

method is described thoroughly in other publications [Larson (2005)] and won’t be discussed 

further here. 

3.3. Determination of Hydrodynamic Radius 

The coupling between the monomer and the solvent can be characterized by the hydrodynamic 

radius Ha  of a polymer bead, which is related to the friction coefficient by Ha   . In 

Kikuchi et al. (2003), from the discretized Langevin equation of a monomer, an analytic 

expression for the friction coefficient was derived:  
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                                                     (3.3.1)                        

where M and v are the mass and velocity of the monomer respectively. In this expression, only 

the velocity correlation between the 1
st
 collision and 0

th
 collision is considered. For the first 

collision time step, the molecular-chaos assumption holds, but as mentioned in the previous 

section, hydrodynamic interactions emerge at longer times from the many-body correlation. 

Therefore to capture the hydrodynamics at long times, we have to go beyond the molecular-

chaos assumption. The many-body correlations of the fluid particles and the monomer bead 

enhances 0D , the self-diffusion coefficient of a single free monomer, and according to the 

Stokes-Einstein relation, results in a smaller friction coefficient than predicted by Eq. (3.3.1). For 

simulations of polymer dynamics, it is the long-time bead diffusion coefficient (or equivalently 

the long-time drag coefficient) that sets the relaxation dynamics of the chain, and hence is of 

most relevance for our simulations.  

Due to inertia, in SRD, several collisions are required to enter the Stokes regime where the 

friction coefficient reaches its long-time asymptote. The velocity auto-correlation function 

(VCF), ( ) (0)t v v  of a single free monomer bead with mass M is shown in Fig.1 for the 

simulation with parameters chosen to be 0.1, 150t     in SRD units and M = 10m. 

From Figure 3.1, we can see that the VCF drops to almost zero after about 20 collisions, after 

which the monomer bead almost enters the Stokes regime. But we can see the self-diffusivity of 

the monomer still keeps increasing very slowly as it approaches its long-time asymptote value 

  22.16 0.02 10   in SRD units for the inertial effect to vanish. In Fig. 1, the squares are from 

instantaneous diffusivity defined as 
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     0

( )
( )

6

MSD n t
D n t

n t


 


                                                           (3.3.2) 

where n represents the n-th collision, and  
2

0
( ) d ( ) ( )R RMSD n t t t n t t



      is the mean-

square distance (MSD) of the monomer bead, where ( )R t  is the position of the monomer 

position at time t. From Eq. (3.3.2), we can derive the following expression for 0( )D n t : 

0 0
( ) ( ) (0) O( )

3

n

i

t n i
D n t t t

n

 
      v v                                   (3.3.3) 

where O( )= (0) (0)
6

t
t


 v v . After taking the limit n, Eq. (2.3) reduces to the discrete 

Green-Kubo relation [Ihle et al. (2005)]. The dashed line in Figure 3.1 is calculated from Eq. 

(3.3.3), and it agrees with the square symbols from the MSD. Note the first square on the left in 

Figure 3.1 is the diffusivity obtained from the short-time velocity correlation between the 1
st
 

collision and the 0
th 

collision; its value is only 22% of that of the long-time diffusivity; and the 

short-time friction coefficient of Eq. (3.3.1) is 32% larger than the long-time drag coefficient 

calculated from 0D  via the Stokes-Einstein relation. 

From Figure 3.1, we can see it takes the monomer multiple time steps to enter the Stokes regime 

where its VCF drops to zero. This velocity autocorrelation time scale for a monomer with mass 

M can be estimated by dimensional analysis to be
M

M


 . This characteristic time 

corresponds to a characteristic bead displacement length ML  over which the inertia of the 

monomer is lost to the solvent. ML can be estimated as: 
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                                       (3.3.4) 

where B3
( ) (0)

k T
t

M
  v v  is the monomer’s instantaneous velocity squared. The circles in 

Figure 3.2 show how ML  depends on the monomer mass M. The more massive the monomer, 

the larger the ML is. 

With the long-time self-diffusion coefficient 0D  of a single free monomer bead obtained 

numerically, the hydrodynamic bead radius aH can be calculated via the following relation 

B 0 Hk T D a    . If we hold the mass ratio M
m




  fixed, aH has a weak dependence on 

the simulation parameters , ,t   . Either decreasing t, or increasing or results in more 

efficient collisions, and an increase in However, more efficient collisions result in a larger 

viscosity and this partly cancels out the effect on aH, which is given by a ratio of  to 

Therefore, to control aH, we adjust M
m




 , the ratio of polymer bead mass to solvent mass. 

The squares in Figure 3.2 show how aH depends on The larger the  is, the larger aH will be, 

because the heavier the monomer, the less diffusive it is, while the viscosity is kept the same. 

To summarize, the hydrodynamic radius aH in SRD is obtained by first numerically determining 

the monomer’s diffusivity D0 and then calculating the hydrodynamic radius via 

B 0 Hk T D a    . Note that aH is sensitive to the mass ratio M
m




 ; the larger the  is, 

the larger aH will be.  
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3.4. Relaxation Dynamics of Polymer Chains at Equilibrium 

To determine whether SRD captures accurately hydrodynamic interaction (HI) in polymer 

dynamics, we first study Gaussian chains in a theta solvent, i.e. with no excluded volume, at 

different HI strength. We compute the rotational relaxation time 1  and the self-diffusivity D 

from SRD simulations and directly compare these values with those obtained from a normal 

mode analysis [Bird et al. (1987)] instead of considering only the power-law exponent for the 

dependence of 1  and D on chain length, as in the previous work [Watari et al. (2007); Ripoll et 

al. (2004)]. For the short Gaussian chains used here ( b 100N  ) in a theta solvent, the power-law 

exponents for the dependences of 1  and D on sN  differ somewhat from the values of 1.5 for 1 , 

and -0.5 for D, which should be attained in the limit of dominant HI. Instead, these exponents 

depend on the strength of HI [Thurston (1974)]. 

We obtain the self-diffusivity D from the simulations by fitting the MSD of the center of mass, 

with ( ) 6MSD t Dt . (Note in the expressions above, t is not the instantaneous time, but the time 

delay, the same as in the following expression of the auto-correlation of the 1
st
 normal mode.) 

And to fit D, we exclude the early transient period prior to the Stokes regime (as shown in Fig. 1) 

from the fit region. The rotational relaxation time 1  is the decay time of the auto-correlation of 

the 1
st
 normal mode, 1 1 1( ) ( ) (0)N t t   , where the 1

st
 normal mode is obtained from the 

polymer bead coordinates as follows: 

    b

1 1
b b

2 1

2

N

ii
t t i

N N




  
   

  
 R                                      (3.4.1) 
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where bN  is the number of beads, and ( )Ri t  is the position of i-th bead at time t. For a normal 

mode analysis of a linear stochastic equation (For example, the Rouse limit), the normalized 

auto-correlation of the 1
st
 normal mode 

   

   
1 1

1

1 1

0

0 0

t
n 

 

 
 decays as  1exp t  , i.e. a strictly 

single exponential decay, thus the instantaneous rotational relaxation time defined as 

1

1

( )
ln[ ( )]

t
t

n t
    should be a constant over delay time t. Figure 3.3 plots the 1( )t  of a 20-spring 

Gaussian chain from both SRD and BD simulations. We can see that due to inertia, 1  starts 

from a larger initial value because of the smaller instantaneous D, and quickly decays, but 

undershoots its steady-state value, which is attained at long time in the SRD simulation. The 

initial inertial regime is missing from the BD results, as expected, since the BD simulations 

contain no inertia, but the rise at later times also occurs in the BD simulations, similar to what is 

found in the SRD simulations. The rise in 1  is presumably due to a non-linear effect induced by 

HI. Because of HI, the 1
st
 normal mode of the Gaussian chain calculated from Eq. (3.4.1) is no 

longer a pure eigenmode of the equations, but includes some nonlinear mixing from higher order 

eigenmodes. Due to mixing with these faster eigenmodes, 1  starts from a lower value, and then 

relaxes to its steady-state value. Therefore, to obtain 1 , we exclude the early transient period 

from the fit region, and fit 1( )N t  to 1exp( / )A t  . 

The angular brackets  in the expressions of ( )MSD t and 1( )N t  refer to an ensemble average. 

Simulations with different random seeds yield different runs used to build up the ensemble. We 

run N  simulations for each case and for each of these simulations we run for a total time of simt  
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with sim 110t  . For different polymer chains, we run enough simulations so that we can see a 

smooth transition of 1( )t  to its long-time steady value as shown in Figure 4.3. The initial 

configuration of a polymer chain is set by fixing the separation of adjacent beads to the value sR , 

the root mean square end-to-end length of a spring, and randomizing the orientation of the 

springs. Further randomization of the chain is achieved before averaging data by discarding the 

portion of the simulation data from the first period of 110 , which is 10 times the polymer 

rotational relaxation time. As an alternative for Gaussian chains, because we set the initial 

overall chain configuration to be a random walk, only randomization of the separation of the 

adjacent beads, and not the whole chain configuration, is required before collecting data. 

Therefore, to discard less data and save simulation time, especially for long Gaussian chains 

( s 40N  ), we only discard initial data up to the time 1 . To test this method, for short chains 

( s 20N  ), we used both randomization for a time 1  and randomization for 110  and showed 

that results from these two ways of randomization agree within statistical error. When we 

simulate DNA chains with excluded volume, however, the use of an initial random walk 

configuration is no longer appropriate, and so we always discard data for the first 110 , instead of 

only 1 . Because a single short run gives a response that is too noisy to estimate the relaxation 

time, we average multiple runs together (which is equivalent to a single long run, but faster using 

parallel computing) before computing 1  and D. To estimate the statistical error of our results, 

we divide the N repeat simulations with different random seeds into four groups, and compute 1  

and D for each of the four groups. We then take the mean and standard deviation of the four data 

points for both 1  and D, and then calculate the standard error, which for this case is just the 
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standard deviation divided by square root of 4. Then we randomize the N simulations and divide 

them into another four groups, follow the same steps to compute another standard error, and then 

use the larger of the two standard errors as the estimation of the true standard error.  In principle 

a better approach would be to use a larger number of groups (>10), so that the standard error for 

a single grouping would be more accurate.  But then each group would be an average over fewer 

runs, and therefore each average would remains too noisy to extract a reasonable value of 1  or 

D. Hence, we obtain the standard error as the larger of the values from two different ways of 

grouping the runs into a small number of groups (4).  In this way, it is much less likely that the 

standard error is artificially low due to the small number of groups.  

We put the polymer chains in a cubic periodic simulation box of length g10R  as in Ripoll et al. 

(2004), where gR  is the radius of gyration of a polymer chain.  

3.4.1. Short 10-spring Gaussian chains with different mass ratios M
m
 

In this sub-section, we consider the 10-spring Gaussian chains with different bead masses, and 

different strengths of HI. The strength of HI is characterized by the hydrodynamic coefficient *h . 

For a Gaussian chain with the equilibrium spring root-mean-square length sR , *h  is defined as 

* H

s

3 a
h

R
 . Therefore, with Ha  obtained numerically as discussed in Section II, we can vary *h  

by varying sR . We choose to study two values of *h : 0.24, representing dominant HI; and 0.16, 

for moderate HI. 



 

37 
 

The SRD simulation parameters are chosen to be 0.1, 150t    and we study the 

dynamics of Gaussian chains of monomer mass 0.1,0.2,0.5,1.0,2.0,5.0M
m




  . The MD 

time step MDt  is chosen to be 410  ( 310 t  ) and all the values above are in SRD units. Due to 

the heavier mass assigned to the polymer bead, one might expect that one could take 
MDt to be 

at least as large as t . We checked in several cases that the results do in fact converge when we 

take 
MDt t  

.
 (Here “convergence” means that the results agree within statistical error with 

results obtained for smaller 
MDt .) Although convergence is achieved even for larger MD time 

steps, for extra assurance, we chose to use a very small value of 
4

MD 10t   , since the MD 

integration is fast, and by far the slowest step of the simulation is the collision step, which occurs 

with time step t .  

Figure 3.4 shows that diffusivities from SRD are in good agreement with those from the normal 

mode analysis at both * 0.24h   & * 0.16h  . Bead inertia evidently has a very weak effect on 

the diffusivity. 

To compare rotational relaxation times, we scale them with the Rouse values. The quantities 

1 H B, ,a k T   form a dimensionless group 1 0t  , with 
3

H
0

B

a
t

k T


 . The Rouse rotational 

relaxation time in these units is given by R 0Ct  , where 

2

*

b

3
sin

2 2
C h

N




 
  

 
.   

Figure 3.5 plots 1  versus mass ratio This shows:  
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1) at * 0.24h  (left figure), 1  from BD simulations deviates from analytical normal-mode (or 

Zimm) values in the direction of the Rouse values. This disagreement between BD and normal-

mode results is likely explained by fluctuations in HI, which are neglected by the normal mode 

analysis, since the normal-mode analysis pre-averages the HI tensor over the polymer’s 

conformations. It was shown in previous work that inclusion of HI fluctuations lowers 1  below 

the Zimm value for a dumbbell [Zylka and Ӧttinger (1989)].  

2) 1 from SRD simulations at * 0.24h   also deviates from analytical Zimm values from the 

normal-mode analysis in the direction of the Rouse values, but reaches a minimum at 0.5  , 

where it agrees with that from BD simulations within statistical error. This trend can be 

understood by consideration of the inertial effect. In Section 3.3, we estimated ML , the 

characteristic length of inertia for a polymer bead with a mass M; negligible inertia requires that

g

1ML
R

. Since for fixed *h , g HR a , and as seen in Figure 3.2, both ML
 
and Ha  increase with 

, we expect an optimum  at which the inertial effect is minimized. As shown by circles in 

Figure 3.6, at around 0.5  , the ratio 
g

ML
R

 reaches a minimum below 0.1, which is evidently 

small enough that inertia is negligible.  

3) At * 0.16h  , the squares in Figure 3.6 show that 
g

ML
R

 is below that for * 0.24h  . Under 

these conditions, as shown in Figure 3.5 (right), 1  from SRD and BD simulations agree well. 

Meanwhile HI fluctuations have less effect, so that 1  from BD simulations agree well with the 

analytical Zimm value. Nevertheless, 1  from SRD tends to be somewhat smaller than from BD. 
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It is difficult to trace the source of this small difference. It might result because the 

hydrodynamic near-field is not well resolved in either BD or SRD. In BD, the HI is described by 

a far-field Rotne-Prager tensor, and the expression in the Rotne-Prager tensor for small bead 

separation is not accurate. In SRD, during the collision step, two polymer beads have a 

probability to be sorted into the same cell and collide, and this distorts the hydrodynamic 

couplings between bead movements, limiting the accuracy of hydrodynamic near-field. Possibly 

some other inaccuracy in the SRD method might be responsible, however, and we did not pursue 

the source of this small discrepancy any further here. 

The key finding of this sub-section is that for short Gaussian chains (10-spring), at moderate HI, 

since M

g

0.1
L

R
 , the inertial effect is negligible; hence SRD results are in good agreement with 

those of BD. And at dominant HI, one can minimize the inertial effect by adjusting the mass 

ratio M
m




  to minimize the ratio 
g

ML
R

. 

3.4.2. Gaussian chains of different lengths at fixed mass ratio 1.0M
m
  

In this sub-section, we fix  mass ratio M
m




  at 1.0 and vary sN , the number of springs, to 

determine the polymer dynamics at * 0.24h   & * 0.16h  . 

For the diffusivity D, we can see from Figure 3.7 that the results from SRD are in good 

agreement with those from the normal mode analysis at both * 0.24h   and * 0.16h  . 

For the rotational relaxation time 1 : 1) At * 0.16h  , the condition 
L
M

R
g

1 holds, and hence, 

as shown in Figure 3.8 (right) good agreement is obtained between the results from SRD and the 



 

40 
 

corresponding results from an analytical normal mode analysis, and with those from BD 

simulations. 2) At * 0.24h  , by increasing sN ,
L
M

R
g

1 can also be reached. We can see in 

Figure 3.8(left), for short chains ( s 5N  ), that 1  
from SRD deviates by 24% from the Zimm 

value and 19% from the BD value. As sN  increases, the SRD results converge to the BD results 

and finally agree within the statistical error. The simulation results from both BD and SRD 

deviate from the analytical Zimm values in the direction of Rouse due to the HI fluctuation. 

From Figure 3.8 (right), we can also see that for all chain lengths ( b 100N  ), with * 0.16h  , 1  

does not follow the expected power law with respect to sN  as shown by the disagreement 

between the solid line and the points. As *h  increases to approach the dominant HI limit, the 

analytical Zimm values get closer to the solid line as shown in Figure 3.8 (left).  (For long 

Gaussian chains, N
s

1, without HI, 
2.0

R sN  , while in a theta solvent in the limit of dominant 

HI, 
1.5

Z sN  . Therefore 
0.5

Z R sN    as given by the solid line shown in Figure 3.7.) 

We now take a closer look at the results of 1  by scaling the simulation results with the 

analytical Zimm values as shown in Figure 3.9. We can see that as the coil size gets bigger, the 

BD results deviate more from the Zimm values, possibly because the HI fluctuations have more 

influence on the relaxation. On the other hand, for SRD simulations, as the coil size gets bigger, 

the inertial effect has less influence on the relaxation. As the inertial effect becomes negligible in 

SRD, there may be a crossover between the BD and SRD, though it is within the standard error. 

Note that due to the many-body correlation and inertia, the thermal fluctuations in SRD are 

actually “colored” noise, in contrast to the white-noise fluctuations in BD. When the HI 
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fluctuations have increased influence on the polymer dynamics, this crossover may indicate that 

different types of fluctuation in SRD and BD may result in somewhat different polymer 

dynamics.  

Last but not the least, we vary the SRD simulation parameters , ,t   , and check the resulting 

polymer dynamics for several cases. The results agree within the statistical error when the mass 

ratio  is fixed, presumably suggesting that the inertial effect is controlled by the mass ratio 

rather than the polymer mass itself. This is reasonable because the efficiency of the momentum 

transfer from polymer to solvent ought to be determined by the mass ratio, not the mass alone. 

But to confirm this conclusion, more detailed study may be required, which is beyond the scope 

of this chapter.  

The key finding of this sub-section is that at dominant HI, the inertial effect is negligible for 

chains with enough beads that the condition 
g

0.1ML
R

  is reached, and then SRD and BD 

simulations agree. 

To summarize findings up to this section as a recap of parameters and results for SRD 

simulations of polymer chains. We choose a set of general SRD parameters 

0.1, 150t    for simulating the relaxation of polymer chains in the absence of flow. 

And we studied systematically the mass ratios 0.1,0.2,0.5,1.0,2.0,5.0M
m




  . For dominant 

HI represented by * 0.24h  , and short chains (10-spring) SRD gave the best agreement with BD 

at    ; when chains are with 20 or more springs, good agreement was obtained at any mass 

ratio. For moderate HI, represented by * 0.16h   in this paper, SRD agrees with BD at all mass 

ratios. We expect these parameters to be generally applicable not only for Gaussian chains, but 
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also when chains are finitely extensible and/or excluded volume interactions are present between 

beads. 

3.4.3. Finitely extensible chains with excluded volume (EV) 

Finally, we include finite extensibility by replacing the Hookean spring with a wormlike spring, 

which is frequently chosen to model DNA chains [Marko and Siggia (1995)]: 

2

B
, 1

K s s

1
1

2 4

ij ij ij

ij i j

ij

R Rk T

b L L R






  
     
   

R
f                                   (3.4.3.1)  

where fij  refers to the spring force on the i-th bead resulting from the j-th bead; R R Rij j i  , 

R i  is the coordinate of the i-th bead; sL  is the maximum spring length, s DNA s K,s KL L N N b  , 

DNAL  is the contour length of the DNA chain, Kb  the Kuhn length, and K,sN  the number of Kuhn 

segments per spring.  

To model solvent quality, we include the following EV repulsive potential between pairs of 

polymer beads [Jendrejack et al. (2002)]: 

2 3 2
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B N,s 2 2

s s

91 9
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2 2 2
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R
U vk TN

R R

  
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   

                                       (3.4.3.2)                 

where
2 2

s N,s KR N b  is the mean-square end-to-end length of a spring, and v is the excluded 

volume parameter. 

We wish to see whether our SRD simulations of a DNA chain can reproduce the experimental 

results as reviewed by Jendrejack et al. (2002). In Jendrejack et al. (2002), to model a YOYO-1 

stained 21 m -phage DNA in a 43.4 cP solvent (water viscosified with sucrose) at room 
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temperature 23C and reproduce the experimental results, the BD parameters: { DNA s K H, , , ,L N b a v } 

were set to the following values: {21 m, 10, 0.106 m, 0.077 m, 0.0012 m
3
}. To check 

whether these results can be reproduced using SRD simulations, we map these parameter values 

into SRD units, i.e. {
(BD) (BD) (BD) 3 (BD)

DNA s K H, , , ,L N b a v    }, where 
(SRD) (BD)

H Ha a  , and SRD (BD) 

stands for SRD (BD) simulations, respectively. The corresponding SRD values turn out to be 

{67.0, 10, 0.338, 0.246, 0.0390} in SRD units with 0.1, ,t     . 

We first simulate a single DNA chain at equilibrium. The diffusivity from SRD simulations is 

  2 21.16 0.02 10 m /s  , reproducing the experimental value 
2 21.15 10 m /s [Jendrejack et al. 

(2002)]. Note EV is another non-linear effect that can mix higher order eigenmodes into the 1
st
 

normal mode, and here it dominates the HI. The values of 1 R   are 1.52 0.03  from BD 

simulations and 1.49 0.07  from SRD simulations; they agree within statistical error.  

Next we compare the experimental longest relaxation time, ,with that from the simulations. In 

the simulations, we have three ways to determine the longest relaxation time. The first method is 

to calculate it from the rotational relaxation time 1  via the relation 
1 2  [Doi and Edwards 

(1986)]. The second method is as described in Jendrejack et al. (2002), in which a stretched 

DNA chain is allowed to relax to equilibrium and is determined from a fit over the final 10% 

decay in the average chain stretch length squared 2X  to 
2 exp( )X A t B    . Here X, the 

stretch of the DNA molecule, is defined as the distance between the upstream-most portion of the 

DNA and the downstream-most portion, i.e. , ,max( ) min( )R Ri x i xX   , where R i  is the position 

of i-th bead, and the x-direction is the stretching direction. The third method is the same as the 

second, except that only the last 1% of the chain stretch squared is used. Since we focus here on 
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the dynamics near equilibrium, it does not matter much what the initial stretch of the DNA is or 

how we stretch the DNA. In our simulations, we stretch the DNA chain to 75% of its contour 

length, with beads separated evenly along a line. Because the trajectories are very noisy, we 

compute 2X  from an average over an ensemble of 1000 runs, where the standard error is 

estimated as described at the beginning of this Section. 

To compare with the experimental data, we convert the results from the simulation into values in 

SI units. The comparison is given in Table 3.1.  

From Table 3.1, we can see: 1) (1,3)  values from SRD simulations agree with those from BD 

simulations within statistical error. 2) For the BD and SRD simulations, (1)  is closer to (3) , but 

is significantly larger than (2) . This difference arises because even if the fitting to the relaxation 

of chain stretch only includes stretch that is 10% or less that of the contour length, there still is a 

significant contribution from the faster modes to the rate of relaxation. Also note, for the 

stretched DNA, the polymer beads are well separated, so that EV has less effect on the polymer 

dynamics for the stretched DNA than for the DNA chains at equilibrium, which also leads to 

faster relaxation. 3) The results from simulations show reasonable agreement with the 

experimental data. The inertia in SRD presumably slows the decay of the faster modes, resulting 

in relatively more contribution from faster modes left in the final 10% decay; therefore (2)  from 

SRD is smaller than that from BD. The experimental value is in between the SRD and BD values.  

For completeness, we also compare the BD and SRD simulations with different  at dominant HI 

( * 0.24h  ) for polymer chains with finite extensible spring and EV. To set * 0.24h  , we hold 

the Kuhn length the same and reduce the number of Kuhn segments per spring. This corresponds 

to a DNA chain with a shorter contour length, but with more beads and hence more drag per unit 
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length. We keep the excluded volume parameter per bead the same. The results are shown in 

Figure 3.10. We can see the best agreement between BD and SRD tends to shift to 1.0  . 

Nevertheless, it is not significant, since the difference is almost within the statistical error. This is 

presumably due to the EV, because bead radius from EV is about 2-3 times of LM , so that EV 

keeps the polymer beads separated by a distance greater than the distance LM required for the 

inertia effect to die out. Therefore with EV, inertia has less effect on the polymer dynamics at 

* 0.24h  than that without EV. 

The key finding of this sub-section is that SRD simulates DNA chains well. When computed 

from the relaxation of stretched DNA chains as experiments do, SRD gives a relaxation time in 

reasonable agreement with experiment. The discrepancy is presumably due to the effect of inertia 

and EV. 

3.5. Conclusions and Perspective 

We carefully explored the ability of stochastic rotational dynamics (SRD) to simulate accurately 

the self-diffusivity and the rotational relaxation time of polymer chains with Hookean and non-

Hookean springs, by comparing SRD results to those from Brownian dynamics simulations and 

(for Hookean springs) to those from normal mode analyses. We obtained the longest relaxation 

time from the SRD and Brownian dynamics simulations using the auto-correlation function of 

the slowest normal mode.  

In SRD, the polymer chains have finite mass. Hence, the diffusivity reaches its long-time steady 

value only after the inertial effect dies out. The slowest normal mode, beyond this transient 

period due to inertia, still does not decay by a single exponential due to the non-linear mode 

coupling induced by HI and additional excluded volume effects for DNA chains), and the 
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rotational relaxation time reaches its long-time steady value after the coupled faster modes die 

out.  

The simulation results show that the inertia has a very weak effect on the diffusivity; therefore 

the diffusivity from SRD agrees with the analytical Zimm value from normal mode analysis very 

well. For the rotational relaxation time, the inertial effect is negligible when 
g

0.1ML
R

  (where 

ML  is the characteristic displacement distance over which inertia dies out for a polymer bead 

with a given mass M). This condition usually holds for moderate HI, represented by * 0.16h   in 

this paper, even for chains with only 10 springs, and hence the SRD results for the relaxation 

time agree well with results from a normal mode analysis, and from Brownian dynamics 

simulations. For dominant HI, represented by * 0.24h  , for short chains ( s 10N  ), the inertial 

effect can be minimized by adjusting the mass ratio M
m




 . When the mass ratio is fixed at a 

relative large value ( 1  ), 
g

0.1ML
R

  can be reached for long chains ( s 20N  ), and then 

relaxation times from SRD and BD simulations agree, but are greater than those from a normal 

mode analysis. This deviation can be attributed to fluctuating hydrodynamic interactions, which 

is not included in the pre-averaged normal mode analysis. 

Finally we applied the SRD method to simulate DNA using a wormlike-chain spring law and 

excluded volume. The SRD reproduces the experimental diffusivity, the relaxation time from the 

BD simulations ( * 0.16h  ), and is in reasonable agreement with the experimental relaxation 

time.  
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In general, we find that the SRD model adequately captures hydrodynamic interactions and 

excluded volume interactions, and is therefore suitable for simulating polymer chains in confined, 

complex, geometries. 
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Figure 3.1: Velocity auto-correlation (circles and solid curve) and self-diffusivity D0 (squares and 

dashed curve) of a single free monomer versus number of collisions. Squares: D0 calculated from 

Eq. (3.3.2). Dashed curve: D0 calculated from Eq. (3.3.3). Simulation parameters: 

, 0.1, 150 , 1.t M m       
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Figure 3.2: LM (circles) and Ha  (squares) versus mass ratio M m   with simulation 

parameters , 0.1, 150t     .   
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Figure 3.3: Instantaneous rotational relaxation time  1 1( ) ln ( )t t n t    versus delay time t of a 

20-spring Gaussian chain at * 0.24h  . Solid curve is from BD simulations, dashed curve is from 

SRD simulations with simulation parameters , 0.1, 150 , 10t M m      . 
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Figure 3.4: Diffusivity D versus mass ratio M m   of a 10-spring Gaussian chain with 

simulation parameters , 0.1, 150t     ; upper (lower) dashed line is the Zimm normal 

mode value at h
*
 = 0.24(0.16), circles (squares) with error bars are the values from SRD 

simulations at h
*
 = 0.24(0.16). 
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Figure 3.5: Rotational relaxation time 1  versus mass ratio M m   of a 10-spring Gaussian 

chain with simulation parameters , 0.1, 150t     ; left (right) figure contains the results 

at h
*
 = 0.24(0.16); dashed lines are the Zimm values, the gray areas are the values from BD 

simulations bounded with its standard error; circles with error bars are the values from SRD 

simulations. 
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Figure 3.6: Ratio gML R  versus mass ratio M m   of a 10-spring Gaussian chain at h
*
 = 

0.24 (circles) and h
*
 = 0.16 (squares) with simulation parameters , 0.1, 150t     . 
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Figure 3.7: Diffusivity D of Gaussian chains versus number Ns of Hookean springs with 

simulation parameters , 0.1, 150t     . Pluses (crosses) guided by the dashed curves are 

values from normal mode analysis at h
*
 = 0.24(0.16), circles (squares) are the values from SRD 

simulations at h
*
 = 0.24(0.16). The estimated statistical errors in the SRD and BD results are less 

than the size of the symbols. 
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Figure 3.8: Rotational relaxation time of Gaussian chains at h
*
 = 0.24 (left) and h

*
 = 0.16 (right) 

as a function of the number sN  of Hookean springs. Squares & dashed line: analytical Zimm 

values normalized by analytical Rouse values, both of which are from normal mode analysis; 

solid line:
0.5

s s
( )f N N


 which is the power law of Z R

   for the dominant HI limit. Circles: 

values from BD simulations; pluses: values from SRD simulations. The estimated statistical 

errors in the SRD and BD results are less than the size of the symbols. 
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Figure 3.9: Rotational relaxation time of Gaussian chains at h
*
 = 0.24 as a function of the number 

Ns of Hookean springs. Circles: values from BD simulations; pluses: values from SRD 

simulations. The values are normalized by analytical Zimm values from normal mode analysis. 
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Figure 3.10: Rotational relaxation time 1 versus mass ratio M m   of a “modified” DNA 

chain with h
*
 = 0.24 and simulation parametersc; the gray areas are the values from BD 

simulations bounded with its standard error; circles with error bars are the values from SRD 

simulations 
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Table 3.1: Comparison of estimates of longest relaxation time,   (in sec) 

 Experiment BD SRD 

(1)   10.7 0.2   10.5 0.9  

(2)  4.1 4.5 0.0   3.5 0.0   

(3)   7.7 0.3   7.7 0.5   

 

1. 
(1)  from half the rotational relaxation time. 

2. 
(2)  from a fit to the last 10% decay of 

2 2

DNAX L . 

3. (3)  from a fit to the last 1% decay of 
2 2

DNAX L . 
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Chapter 4 

Single Polymer Chain Dynamics in a Microfluidic Contraction Flow 

In this chapter, we study polymer migration in a periodic pressure-driven sudden contraction-

expansion flow with contraction dimension comparable to the polymer radius of gyration. We 

use both Stochastic Rotation Dynamics (SRD), which includes hydrodynamic interaction (HI), 

and simple Brownian dynamics (BD), with HI omitted and flow field given by finite element 

analysis. The similarity in results from SRD and BD at low Weissenberg number Wi (<10, where 

Wi is based on the shear rate in the narrow region of the contraction channel) shows that HI has 

only a weak effect on polymer migration, and inexpensive BD simulations without HI are 

adequate to predict the migration accurately at low Wi (<10). After it is deformed during its 

passage through the narrow region, the polymer migrates towards the center streamline in the 

wide region. This migration is induced by polymer stretching along curved streamlines, with 

migration velocity proportional to the square of the Weissenberg number Wi
2
. This  migration 

affects the residence time distribution for a polymer to pass through the contraction channel 

periodically, and using the central limit theorem, we can accurately predict the position and 

width of a band of polymer passing through N periodic contractions. We thereby demonstrate the 

potential for polymer length-dependent migration as a mechanism of size separation in a multi-

step planar contraction channel. We find that the best separation is achieved at Wi around 2, 

where the streamline-curvature-induced migration has the greatest resolving power between 

polymers of different size. We find a separate mechanism at low Wi less than unity, where the 
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chains with large radius of gyration are delayed in their entry to the thin channel, relative to 

shorter polymers. This “blockage” separation mechanism differs from that of size-exclusion 

chromatography, and yields faster migration by the shorter chains. Our strategy of combining 

simulation methods with the central limit theorem could also be used to predict separation 

efficiencies of a wide variety of polymers and colloids in microfluidic geometries. 

4.1. Introduction 

Owing to recent advances in micro-fabrication technology, microfluidic devices can be 

fabricated inexpensively and reliably with tailored complex geometries. These devices 

commonly rely on pressure-driven or electrokinetically-driven flows to stretch polymer chains 

far from equilibrium. Such geometries provide a powerful platform to study non-equilibrium 

polymer dynamics, polymer-solvent interactions, and macromolecular transport phenomena. A 

comprehensive understanding of polymer dynamics in micro-fluidic devices is important for 

many potential applications, including polymer or DNA separation.  

The most conventional and widely used polymer separation technique is size-exclusion 

chromatography (SEC), which was first developed in 1955 by Lathe and Ruthven (1956) . A 

typical SEC method is gel permeation chromatography (GPC), which can be traced back to 

Moore (1964). GPC techniques separate based on polymer size or radius of gyration. The flow 

rates in GPC columns are typically too small to deform the polymer molecules; that is the 

Weissenberg number Wi, which is the characteristic shear rate multiplied by the polymer 

relaxation time, is usually very small, much less than unity ( < 10
-2 

) [Moore(1964)]. 

Meanwhile, techniques for separating biological molecules of different sizes have been 

developed in parallel with the evolution of molecular biology. Decades ago, Dill and Zimm 
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[Dill(1979), Dill and Zimm(1979)] proposed a rheological separation method for DNA 

molecules based on the radial migration of the DNA that occurs when DNA solutions are 

subjected to flow between rotating concentric cylinders or cones. 

In this paper, we study polymer migration and separation in a multi-step planar contraction 

channel using two mesoscopic simulation methods.  The first method is Stochastic Rotation 

Dynamics (SRD), which is a particle-based method of solving for polymer and fluid dynamics 

simultaneously, including the effects of hydrodynamic interaction (HI) within individual chains, 

between different chains, and between chains and the walls of the geometry. The SRD method is 

briefly described below in Section 4.2. The second method is Brownian dynamics (BD), in 

which we use the flow field in the absence of polymer, drawn either from a finite element 

solution or from SRD, as the convection term in a Langevin differential equation that, as used 

here, neglects all hydrodynamic interactions and also neglects the modification in the flow field 

produced indirectly by the polymer molecules through the momentum balance equation.   In 

Section 4.3, by comparing results from SRD with those from Brownian dynamics (BD) for a 

single polymer chain without HI, we show that HI has only a weak effect on the polymer 

dynamics, and that BD simulations without HI predict the polymer migration accurately. We 

investigate in Section 4.4 the migration mechanism, which determines the spatial distribution and 

residence time distribution of the polymer, and show that the polymer migration toward the 

center of the channel observed in both SRD and BD simulations is due to the curvature of the 

contraction flow streamlines. Finally, in Section 4.5, using the central limit theorem, we 

demonstrate the potential of such flows for producing polymer separation using curvature-

induced migration, which is a different mechanism for separation than the common size-
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exclusion mechanism typical in flowing polymer solutions through columns with complex 

geometries.  We summarize our results in Section 4.6. 

4.2.Migration of a single polymer chain with HI, simulated using SRD  

In this section, we investigate migration of single polymer chains with HI using Stochastic 

Rotation Dynamics (SRD). SRD is an especially promising method for situations in which 

fluctuating or time-dependent HI is potentially important, but the geometry is so complex that 

Brownian dynamics with full HI is difficult to implement. Earlier studies [Ripoll et al. (2004), 

Jiang et al. (2013)] have shown that SRD can accurately capture HI in the relaxation dynamics of 

an isolated chain in the absence of flow. Studies[Watari et al. (2007), Cannavacciuolo et al. 

(2008)] have also shown that SRD captures the HI between the solid boundaries and the polymer 

in shearing flows. In principle it should also capture the influence of polymeric stresses on the 

flow field. 

4.2.1. Algorithm, geometry and boundary condition 

In SRD simulations, the fluid is modeled by N solvent beads. The polymer is, as usual, modeled 

as a chain of Nb polymer beads connected by s b 1N N   springs. The algorithm consists of two 

steps: a streaming step followed by a collision step after a discrete time step , which is referred 

as the collision time. In the streaming step, the solvent/polymer beads simply follow Newton’s 

law, with the positions ri and velocities vi determined by integration using the velocity Verlet 

algorithm: 

                                    (4.2.1.1) 

                                  (4.2.1.2) 
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where  is the force exerted on the i-th bead and m is the bead mass. The masses of the solvent 

and polymer beads are not the same, and the mass ratio is chosen to optimize transport of 

momentum from the polymer to the solvent so that hydrodynamic interactions are most 

accurately captured [Jiang et al. (2013)]. Usually the polymer beads are more massive than the 

solvent beads, so that the integration time step for the polymer beads can be the same as  

without losing accuracy at the relatively low shear rate applied in SRD simulations in this paper. 

In the collision step, the solvent/polymer beads are sorted into the cells of a d-dimensional cubic 

lattice (where typically ) with lattice spacing a. The beads exchange momentum following 

a “collision” rule in which their velocities are updated after the collision as follows: 

         CoM CoM,,i i i it t t t    





 v vv v                                    (4.2.1.3) 

where    is a stochastic rotation matrix which rotates the velocity vector in a random 

direction through an angle α, refers to the time after/before the collision and CoM,v i is the 

center of mass velocity of all beads in the collision cell where the i-th bead is located. This 

collision rule ensures that the kinetic energy and linear momentum in the cell are conserved 

during the collision. Therefore in SRD the flow field is discretized with a resolution determined 

by the cell size a. After each collision step, a thermostat is applied to adjust the local temperature 

of each collision cell to the imposed temperature [Watari et al. (2007), Huang et al. (2010)]. To 

guarantee Galilean invariance over long runs, a random shift of particles before executing the 

collision step has to be performed, and after the collision step, the particles are shifted back to 

their original positions [Ihle and Kroll (2001)]. 

fi

t

3d 

/t  
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The geometry of a planar contraction channel in our simulation is shown in Figure 4.1. The 

simulation box has dimensions 1 2 3L L L  , where L3  is the out-of-plane dimension, not shown in 

Figure 4.1 The lower and upper wide chambers are connected by a narrow channel with width w 

and length h. A constant acceleration g is applied along the y direction to drive the flow.   

Along the y and z directions, we apply periodic boundary conditions; thus the geometry between 

the dashed lines shown in Figure 4.1 is extended infinitely along those directions. Therefore we 

are actually simulating a multi-step contraction channel. The flow field is invariant along the z-

direction and thus 2-dimensional, although in SRD we solve the problem in three dimensions to 

allow isotropic random velocity fluctuations from Brownian motion. Along the walls, we apply a 

no-slip boundary condition. To realize the no-slip boundary condition, in the streaming step the 

bounce-back rule is applied. That is, if a bead intersects the boundary at time t t   during a 

Verlet time step t, the bead velocity at  is completely reversed, i.e. 

, and in the remainder of the Verlet time step, the bead is propagated 

from the point of contact with the boundary using this new velocity [Whitmer and Luijten 

(2010)]. For simplicity, we replace with its average value , so that at the end of streaming 

step after the bounce-back, the bead is restored to its original position at the beginning of the 

streaming step, and the velocity is updated as: 

                                        (4.2.1.4) 

However since a pure bounce-back rule fails to guarantee no-slip boundary conditions, further 

treatment is needed in the collision step. If n, the number of solvent beads shifted into a wall cell 

(which are the cubes on the edges of the geometry shown in Figure 4.1) after the random shift is 
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less than , the average number of the solvent beads per cell, then  “phantom” beads with 

velocities drawn from a Maxwell-Boltzmann distribution of zero average velocity and 

temperature T are added to that wall cell to participate in the collision for momentum exchange 

[Lamura et al. (2001)]. After this collision, these “phantom” beads are destroyed. New ones 

created with new random velocities whenever they are needed for collisions in the wall cells.  

4.2.2. Simulation parameters and results 

We set the dimensions of the simulation box to be L1=21, L2=18, L3=20 and the narrow part of 

the channel is given dimensions of w=3, h=6. Taking into account the contribution from the wall 

cells, the contraction ratio is (21+1)/(3+1) = 5.5.  For the SRD simulation, the parameters are 

chosen as following: the average number of solvent beads per cell is  = 5, the collision time is 

t = 0.05 and the rotation angle is   . The mass of the polymer bead is set to be M = 2.5 

to minimize the inertial effect on hydrodynamic interaction [Jiang et al. (2013)]. All these values 

are typical ones for SRD, chosen to optimize accuracy and computational speed [Gompper et al. 

(2008)]. The above values are in SRD units chosen so that the cell size is a = 1, the mass of the 

solvent bead is m = 1 and kBT = 1. In these units, the imposed acceleration is g = 0.02, chosen so 

that the polymers are well stretched under the flow, while the SRD fluid is not badly compressed 

(at most around 10%). 

To model DNA polymer chains, we use the wormlike spring law [Marko and Siggia (1995)]: 

                                        (4.2.2.1)  
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where fij  refers to the spring force on the i-th bead resulting from the j-th bead; R R Rij j i  , 

R i  is the coordinate of the i-th bead; sL  is the maximum spring length, s DNA s K,s KL L N N b  , 

DNAL  is the contour length of the DNA chain, 
Kb  the Kuhn length, and K,sN  the number of Kuhn 

segments per spring. We obtain specific values for these parameters by mapping the values from 

the BD bead-spring model of Jendrejack et al. (2002) into SRD units, as discussed in Jiang et al. 

(2013), yielding {bK, Ls} to be {0.380, 7.534} in SRD units, corresponding to {0.106m, 2.1m} 

in Jendrejack et al. The length of the chain is chosen such that its radius of gyration is 

comparable to w, the width of the narrow channel. 

To characterize the migration of a single polymer chain in the contraction channel, we compute 

its residence time distribution (RTD), i.e. the distribution of time a polymer chain takes to pass 

through one periodic image of the geometry defined as the region between the dashed lines 

shown in Figure 4.1. While a single chain can pass multiple times through the channel because of 

the periodic boundary condition, it would nevertheless require a long computational time to 

collect statistics on the RTD for a single chain.  For SRD, a single-chain calculation is 

computationally very inefficient, since most of the simulation time is spent on simulating the 

fluid beads. Thus, we simulate multiple chains distributed throughout the fluid, but keep the 

number of chains low enough that their influence on each other is negligible and the RTD 

becomes insensitive to chain concentration, which then corresponds to the dilute limit.  Of course, 

this is the procedure followed in most experiments; i.e., a dilute solution rather than an isolated 

chain is used to obtain good chain statistics. 

We are also interested in the spatial distribution of the polymer’s center-of-mass. To calculate 

this, since the planar contraction flow is symmetric along the z-direction, we grid the contraction 



 

68 
 

channel in the x-y plane into cells of size b. (For simplicity, b is set to 1, the same as a, the size 

of the cubic collision cell by default.) The cells are indexed as (l1,l2), which are integers given by 

(l1,l2) =(x,y)/b, and (x,y) is position of the  lower left corner of the cell. From the simulation, we 

can calculate 
1 2P( , )l l , the probability that the polymer’s center-of-mass is located in cell  (l1,l2). 

So the spatial probability density (or concentration) at coordinate  1 20.5, 0.5l l b    is given 

by 2

1 2P( , )l l b . In this paper, we typically consider distribution functions averaged over the wide 

region, or “chamber” of the contraction channel.  The one-dimensional spatial distribution along 

x and averaged over y in the wide chamber is then defined by 

2

2

chamber 1 2 1

chamber

( ) | P( , ) ,  ( 0.5)X

l

f x l l b x l b


   , while the spatial distribution along y (averaged 

over x) in the chamber is 
2

1

2

chamber 1 2 2 chamber( ) | P( , ) ,  ( 0.5) |Y l

l

f y l l b y l b    . 

We normalize the residence time of an individual polymer molecule with f, the mean residence 

time of a fluid element, that is with 
f A Q  , where A is the channel area (including wide and 

narrow regions) in the x-y plane, and Q is the volumetric flow rate per unit depth of the channel.  

We denote this normalized polymer residence time as . Figure 4.2 shows the RTD of this 

normalized time for a 10-spring chain with radius of gyration Rg = 2.1. Note that the distribution 

obtained by simulating 75 chains simultaneously agrees with the cruder distribution obtained 

from simulating 5 chains simultaneously. Their mean and standard deviations agree to within the 

statistical error. The spatial distributions of polymer in these two simulations also superimpose to 

within error. The only difference is that with more chains, the viscosity of the solvent is 

increased, which results in slower polymer migration, but that is canceled out by the larger f, 

which normalizes the values of .  
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4.3.Migration of single chain without HI, simulated by BD   

To investigate the effect of hydrodynamic interaction (HI), we compare results from SRD to 

those from Brownian dynamics (BD) simulations that neglect HI. The discretized Langevin 

equation for the BD chain simulation is as following,  

sp B( ) ( ) ( ) ( )i i i

t
t t t t t




     r r v F F                                                    (4.3.1) 

where ri is the position of the i-th polymer bead, and F
sp

 is the spring force. 
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the Brownian force, where n is a random three-dimensional vector each component of which has 

a magnitude uniformly distributed in the interval . The thermal energy kBT, and polymer 

bead friction coefficient   are set to be the same as in SRD. We grid the contraction channel in 

the x-y plane in the way described in Section 4.2.2, with cell size a. ( )i tv  is the velocity of the i-

th polymer bead at time t. If the bead is located in the cell with index (l1,l2) in the x-y plane at 

time t, then   1 2( ) ,i t l lv v , where  1 2,l lv  is the solvent velocity at cell  (l1,l2). For the 

boundary condition, we apply the bounce-back rule as described in Section 4.2.2.  

4.3.1. Effect of hydrodynamic interaction  

To determine the effect of HI on the dynamics, we set a=1 and use in BD simulations the solvent 

velocity obtained from the SRD simulation of pure solvent.  Note that the parameters used in 

Jendrejack et al. (2002) correspond to a chain with moderate HI, h
*
 =0.16. Here we also consider 

a chain with dominant HI, achieved by using shorter springs, but with the same Rg, obtained by 

increasing the number of beads per chain. Thus, to model dominant HI, we set  by 

holding the Kuhn length fixed and reducing the number of Kuhn segments per spring, i.e., by 

 1,1

* 0.27h 
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decreasing Ls, the fully extended spring length. With the shorter spring, the number of beads is 

set to 29 so that Rg is kept the same.  

Figure 4.3 (left) shows that for h
*
 =0.16, the RTDs from the SRD and BD simulations almost 

superimpose and so do the spatial distributions of the polymer’s center of mass along x in the 

wide chamber in Figure 4.4 (left). This indicates that HI has negligible effect on the polymer 

dynamics at moderate HI. For dominant HI, the chain slightly concentrates more around the 

centerline than the chain without HI as shown in Figure 4.4 (right). This might be due to HI-

induced migration [Jendrejack et al. (2004)], but, if so, the effect is weak. Meanwhile the RTD 

has a thinner tail with HI than without it as shown in Figure 4.3 (right). The main difference is 

that there is a somewhat larger accumulation of polymer near the entrance to the narrow channel 

(corresponding to y=12) in the BD simulations than that in the SRD simulations as shown in 

Figure 4.5. We will discuss this difference in Section 4.3.2. Table 4.1 shows that the mean and 

standard deviations of the RTD’s from SRD and BD simulations agree well for moderate HI with 

h
*
 =0.16, and show a slight difference for dominant HI with h

*
 =0.27. Overall, HI has only a 

weak effect on the RTD even for strong HI, and for moderate HI, the SRD simulation is 

reproduced almost perfectly by the BD simulation with no HI. 

4.3.2. Errors caused by the inaccuracy of the SRD flow field  

The flow field from SRD is not as accurate as that from the finite element method (FEM), 

because an SRD fluid is somewhat compressible [Malevanets and Kapral (1999)], causing the 

solvent density in the contraction channel to be somewhat non-uniform (by about 10% at the 

entrance of the narrow channel where the SRD fluid is most compressed) and thus modestly 

distorting the flow field. Due to this compressibility, the solvent density in SRD rises above the 

average density at the upstream side of the narrow channel. Thus the SRD fluid gradually slows 
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down on average as it moves towards the entrance of the narrow channel because of the mass 

balance.  

In addition, the resolution of the flow field in SRD is determined by the collision cell size a. 

With a=1 in SRD, at each value of y there are only 3 positions across the narrow channel at 

which the flow field can be evaluated, and this crude discretization in SRD will also cause 

inaccuracy in the flow field.  

To determine how such errors from the inaccuracy of the flow field in SRD affect the polymer 

migration, we obtain the solvent velocity from finite element simulations and use these, rather 

than the SRD velocities, in the BD simulations and then compare the results with those obtained 

by using the SRD flow field in the BD simulations. In addition, using the flow field from FEM, 

we can grid the channel more finely by using a value of a less than 1 to see how the 

discretization of the flow field affects the results. 

Another issue with SRD simulations is that the flow field does not extrapolate to zero at the 

boundary but rather half way into the wall cells, into which the polymer can not penetrate. Thus 

the boundaries for polymer beads and for the fluid do not precisely match, and the polymers see 

a slightly narrower contraction channel than the fluid does. To determine the error arising from 

this, in our BD simulations we modify the boundary for the polymer beads and let them bounce 

back at the boundary where the flow field drops to zero and compare the results to those from the 

previous simulations.  

Overall, the results show that there are only slight discrepancies among all the discussed 

simulations above.  Table 4.2 shows that the mean and standard deviation of the RTD’s from 

SRD at moderate HI (h*=0.16) and from BD simulations with different approximations to the 
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flow field for 10-spring chains agree well. The standard deviation in the last row in Table 4.2 

deviates most from that in SRD, implying the main error is from the mismatch of the boundaries 

for the polymer beads and for the flow field. Nevertheless, as shown in Figure 4.6 and 4.7, the 

RTD and spatial distribution from the BD simulations with the modified boundary almost 

overlap with those from SRD simulations. And we can see in Figure 4.7 (bottom) that with the 

most accurate flow field from FEM, the discrepancy shown in Figure 4.5 in spatial distributions 

along y near the entrance (y = 12) to the narrow channel  is almost eliminated. BD simulations 

with the flow field taken from FEM simulations with a resolution of a=0.2 reproduce both the 

RTD and the spatial distribution obtained using a lower FEM resolution, a=1. This implies that 

three points adequately sample the flow profile across the narrow channel, at least for the 

purpose of determining the RTD and the spatial distribution of polymer in the chamber. 

In summary, HI has only a weak effect on the RTD and the spatial distribution. BD simulations 

without HI with an accurate flow field from FEM are adequate to predict polymer migration. The 

main error comes from the boundary for the polymer beads in SRD not matching that for the 

flow field, whereas in the BD simulations we can modify the boundary for the polymer beads to 

correct this error. In the rest of this paper, we will derive all results from BD simulations without 

HI and with the accurate flow field with resolution a=0.2 from FEM simulations, using the 

modified boundary for the polymer beads. 

4.4.The mean and standard deviation of the residence time 

We are particularly interested in the mean and standard deviation  of the residence time 

distribution, since these quantities control the separation efficiency of polymer chains of 

different length, as we will see.  
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4.4.1. Polymer migration due to curvature of the streamlines 

In a straight micro-channel, extensive studies [Watari et al.(2007), Cannavacciuolo et al.(2008), 

Jendrejack et al.(2004), Usta et al.(2005), Hernández-Ortiz et al.(2007), Hernández-Ortiz et 

al.(2008)], using different mesoscopic simulations, including SRD, show that HI between 

polymer and the wall causes the chains to migrate slowly towards the channel centerline. Ma and 

Graham (2005) developed a continuum theory for bead-spring dumbbell models in dilute 

polymer solutions near solid surfaces, giving the flux j of polymer chains as,  

 p

,bulk: :
8

K

c
c c     j v qq v D

                                    (4.4.1.1) 

where c is the polymer number density, v  is the bulk fluid velocity field, q is the dumbbell 

end-to-end vector, is a third order tensor [Ma and Graham (2005)], p is the polymer stress 

tensor and DK,bulk is the Kirkwood diffusivity tensor evaluated in an unbounded domain. Biased 

migration towards the centerline of a straight channel due to the HI between the polymer and 

wall arises from the third term in Eq. (4.4.1.1). This migration becomes significant at a 

Weissenberg number (Wi) of the order of 10 [Cannavacciuolo et al.(2008), Jendrejack et al.(2004), 

Usta et al.(2005)]. However in our contraction geometry, apparently HI is not the dominant 

mechanism for migration since the chain without HI also migrates towards the center as shown 

in Figure 4.4 (left). Moreover this migration, in either BD or SRD simulations occurs even 

though Wi is only 2.5 in the narrow channel and an order of magnitude smaller than this in the 

wide chamber. In this chapter, Wi is always based on the shear rate in the narrow channel, unless 

otherwise specified.  
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The last term in Eq. (4.4.1.1) is simply diffusive transport, which carries mass down a 

concentration gradient and cannot produce a spatial inhomogeneity in polymer concentration and 

the first term on the right side is convection, which also is unable to produce concentration 

inhomogeneities. Thus, the spatial inhomogeneities we observe are predominantly due to the 

second-order gradient term, which is the second term on the right side of Eq. (4.4.1.1). This term 

describes the migration that occurs in dilute solutions owing to polymer deformation coupling to 

streamline curvature.  Dill and Zimm (1979) reported that DNA migration can arise from such a 

term in a curvilinear shearing flow, produced for example by torsional shearing between a cone 

and plate, which has also been experimentally confirmed for polystyrene solutions by 

MacDonald and Muller (1996). Watari et al. (2008) reported that in a Taylor vortex flow or an 

electro-osmotic flow, such migration can even lead to a fluidic trapping of deformable polymers. 

A second order velocity gradient term also is present in flow through a channel with a groove 

along the side, and, indeed, polymer migration also occurs in simulations in this geometry, even 

in the absence of hydrodynamic interactions [Hernández-Ortiz et al.(2008)]. In strictly rectilinear 

flows, for example Poiseuille flows in a slit or square straight channel, no streamline curvature 

exists to produce cross-streamline migration. However, as shown in Figure 4.8, in our 

contraction flow, one component of the curvature points toward the centerline, which could drive 

polymer migration in that direction. Dill (1979) estimated the migration rate vr in the torsional 

shearing flow  to be,  

2
5s
0

B

~rv R
rk T
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                                                                  (4.4.1.2) 

where r is the radial position, R0  is the root-mean-square end-to-end vector of the polymer coil at 

equilibrium, s is the solvent viscosity and   is the shear rate. In our contraction flow, there are 
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curved streamlines as shown in Figure 4.8, and the observed polymer migration towards the 

channel centerline is presumably due to the curvature of the streamlines. From Eq. (4.4.1.2), we 

can work out a dimensionless group 

5
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Rv r

D k TD


  , where 0

g
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R
R   and D are the radius of 

gyration and the center-of-mass diffusivity of the polymer chain, respectively. Note in Zimm 

theory, the relaxation time of the polymer is approximately 

3
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D
 , and 

therefore 2~ Wi .  If we change Ns, the length of the polymer chain, we can hold 2~ Wi  

fixed by adjusting the acceleration g, thus adjusting the shear rate   to offset the change in 

relaxation time produced by the change in Ns.  Note that in the BD simulation without HI, the 

chains are Rouse chains for which D is inversely proportional to the product of the chain length 

Ns and the bead drag coefficient, rather than scaling as B

s g

~
k T

D
R

 , as in Zimm theory with 

dominant HI. So to hold fixed, in addition to adjusting g, we also adjust D through 

adjustments of the bead drag coefficient, so that D scales with Ns as in the Zimm theory. One can 

see in Figure 4.9 that, at the same Wi (i.e., the same the spatial distributions of chains of 

different lengths almost overlap. The small discrepancies between them at the right and left 

edges are because of the difference in the sizes of the wall depletion zones for these chains of 

different lengths. We expect the polymer chain with the largest Wi to migrate the most towards 

the centerline of the channel as is indeed shown in Figure 4.10. At low Wi (Wi=0.25), the 

polymer distribution is almost flat, while at large Wi (Wi=7.5), the migration becomes so strong 

that most of the polymer resides near the centerline in a zone of width comparable to that of the 

narrow channel.  
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The mean residence time is determined by the spatial distribution, i.e. how the polymer 

samples the flow field. From Figure 4.11, one can see that when the streamline-curvature-

induced migration becomes important (Wi > 1), values of normalized with f(the mean 

residence time of a fluid element) for different chain lengths converge to almost the same value 

due to the similarity of their spatial distributions. As Wi increases, the polymer distribution 

becomes more and more confined to a zone of width similar to that of the narrow channel, and 

then becomes insensitive to further increases in Wi; thus  also ceases to decrease with 

increasing Wi, as shown in Figure 4.11  However, we note that for short chains (Ns=5), as Wi is 

driven even higher,  starts to rise. This results from the widening of the spatial distribution and 

the dip that appears at the center of the channel as shown in Figure 4.12 The longer the chain, the 

larger the Wi at which such dip occurs. For Ns=15, the dip appears at Wi 75 . Such a dip was 

also observed in other studies for which HI was present [Cannavacciuolo et al.(2008), Jendrejack 

et al.(2004), Usta et al.(2005), Hernández-Ortiz et al.(2007), Hernández-Ortiz et al.(2008)]. In 

these previous works, the dip occurred because the less stretched polymer at the center had a 

higher diffusivity (due to internal HI within the chain) than the more stretched polymer located 

slightly off the center [Butler et al.(2007)]. In our BD simulations, however, there is no HI, and 

the polymer conformation will not affect its diffusivity. We confirm this by carrying out BD 

simulations in a uniformly straight channel, for which we find that, outside of the polymer 

depletion zones near the wall, the polymer distributes uniformly across the channel. This dip in 

our contraction flow is thus presumably due to spatial variation in the rate of the streamline-

induced-migration. Near the centerline, the streamline curvature is reduced and so is the 

migration rate. At this point, however, we cannot give a detailed explanation for the dip beyond 

attributing it to the entry effect combined with streamline curvature.   
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When Wi exceeds 10, migration induced by wall HI starts to take effect [Jendrejack et al.(2004)]. 

However such migration takes time to build up, and the time scale required for it to lead to a 

significant concentration difference, as estimated from Jendrejack et al.(2004), is much larger 

than the residence time of the polymer chain in either the narrow channel or the wide chamber, 

and so the effect of migration due to HI should be small. Moreover, in the wide chamber, Wi is 

one order of magnitude smaller than in the narrow channel, so the migration due to HI is still 

small even when Wi ~ 30 in the narrow channel. Thus, streamline-curvature induced migration 

dominates in our simulations. Therefore, we expect that predictions from BD simulations  would 

not change much if full HI were taken into account at moderate Wi (10 ~ 30).  

4.4.2. Taylor Dispersion 

The effective longitudinal diffusivity of a Brownian object along a channel can be much larger 

than its center-of-mass diffusivity D, because of the variation of velocity with distance from the 

center of the channel. Molecules on different streamlines are convected at different rates, which 

increases their longitudinal spreading, while cross-stream diffusion mixes molecules between 

streamlines, thus reducing their longitudinal spreading. Hence, an increased molecular diffusivity 

actually leads to a smaller longitudinal spreading.  The longitudinal spreading becomes Gaussian 

in a long enough tube or channel and is referred as Taylor dispersion [Taylor (1953)].  

At steady state, the longitudinal effective diffusivity Deff (or dispersivity) is related to the 

standard deviation of the residence time   as 
2

L
eff

( )1

2

v
D




 , where Lv  is the average velocity 

of the polymer along the longitudinal direction and  is the mean residence time. Taylor 

dispersion is controlled by the Peclet number Pe which for a channel flow is given by Pe
Q

D
  , 

where Q is the volumetric flow rate per unit depth of the channel, and D is the center-of-mass 
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diffusivity. We followed Taylor (1953), and derived the effective diffusivity Deff for a slit channel, 

depending on Pe as: 

2

eff Pe
1

D

D 
                                                                   (4.4.2.1) 
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w is the width of the narrow channel, and Rg is the radius of gyration of the polymer. 

As a reference, we first consider Taylor dispersion in a straight planar channel, for which the 

value is obtained from analytical theory. As expected, 
effD D  for a monomer as a 

function of Pe obtained from the BD simulations exactly follows the theoretical curve, as shown 

in Figure 4.13. Due to size-induced depletion from the wall, polymers cannot fully sample the 

flow field near the wall; therefore the Taylor dispersion of polymers is smaller than that of the 

monomers, i.e. their dispersion is characterized by a larger than for monomers. We can 

estimate the value of for polymers in a slit channel of width w by assuming that the polymer 

center of mass is uniform across the channel except for a wall zone of width equal to the polymer 

radius of gyration Rg from which the polymers are completely excluded. With this assumption, 

the expression for  as a function of gR w   is given in Eq. (4.4.2.2), from which we 

calculated the values appearing in the last column of Table 3.  The other values of  in Table 4.3 

are from fits of the data in Figure 4.13 to Eq. (4.4.2.1). The fitted is smaller than the analytical 
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value, presumably because the polymer is not completely excluded from the depletion zone. We 

note that as the chain gets longer, the fitted value approaches more closely the analytical one. 

This might be expected, since chains with more beads will be more completely excluded from 

the wall region.  

In a straight channel, the longitudinal Taylor dispersivity Deff reduces to the molecular diffusivity 

D as Pe becomes small. In the contraction channel however, as the velocity approaches zero, the 

dispersivity actually drops below D, as in Figure 4.14. This may occur because in the contraction 

geometry, the average path length for diffusion is longer than the longitudinal distance down the 

channel, and this effect evidently is greater than any additional spreading that results from the 

higher variability in particle path lengths due to the contraction, at least for the particular aspect 

ratio considered.   

For chains at low Pe, where Wi is also low since 

2

g
Wi ~ Pe

R

w

 
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 

, the chains are undeformed and 

their dispersion curves follow that of the monomer as shown in Figure 4.14. As Pe increases, so 

that Wi exceeds 2 (at points indicated by the arrows in Figure 4.14). the chains are able to deform 

significantly in the flow, and we can see their dispersion curves start to “roll off” from that of the 

monomer. Note that it is at Wi 2  that streamline-curvature-induced migration starts to become 

important. Therefore as Wi increases above this value, the polymers become increasingly 

confined near the centerline and thus the dispersion is reduced. However a larger Wi also means 

that Pe increases, which tends to increase the dispersion. The balance between these two 

mechanisms may account for the saturation of the dispersivity for long chains (Ns = 15). 

However for the short chains (Ns = 5), before reaching the balance mentioned above, their spatial 

distribution starts to widen as shown in Figure 4.12; therefore their dispersion keeps increasing 

even at high Pe. For longer chains (Ns = 10 or 15), after the dispersivity begins to saturate at high 
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Pe, at still higher Pe it begins to increase again.  This occurs at the point that the polymer chains 

have become largely concentrated in a zone at the center of the chamber, hardly wider than the 

thin channel.  This appears to be the condition for saturation of the effect of migration induced 

by streamline curvature; further increases in Pe are not able to increase the confinement of the 

chain. Thus, from this point, upon further increase of Pe, the dispersion behaves similarly to that 

in the straight channel and starts to rise again. Moreover, since for Taylor dispersion 

2eff ~ Pe
D

D
 at high Pe and 

2

g

sWi ~ Pe ~ Pe
R

N
w

 
 
 

, we expect that the quantity 
2

s effN D
D

 for 

chains of different length should collapse if plotted against Wi, which is the case as shown in 

Figure 4.15. 

4.5.Polymer separation 

In this section, we show the potential for polymer separation in a multi-step contraction channel 

using the principle of the central limit theorem (CLT).  

For the same pressure drop, and thus the same shear rate, a longer chain has a larger Wi and 

migrates more towards the centerline of the channel as shown in Figure 4.17, and therefore has a 

shorter mean residence time. So to separate two polymers of different length, one needs the 

standard deviations of the residence time to be smaller than the difference of their means. If this 

is not the case in a one-pass contraction geometry as shown in Figure 4.16, then, based on central 

limit theorem, it can be realized in a multi-step contraction channel. 

Let 
 n

 denote the n-pass residence time, that is the time a polymer takes to pass n sequential 

contractions, which is equivalent to passing the one-step contraction channel periodically n times. 

To predict the RTD in a multi-step channel using the CLT, first we need to know the value of n 

at which sequential 
 n

  values become de-correlated, namely at which their auto-correlation 
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becomes almost zero. This auto-correlation can be written as 

              
2

n n n
j j n j n j              

   
, where j    is the time at which the 

polymer passes the j-th contraction and 
 n

   is the average n-pass residence time.  This auto-

correlation function will become almost zero when n is large enough, and the larger Wi is, the 

larger this n will be. As shown in Figure 4.18, at Wi = 2.5 (obtained for a 10-spring chain at g = 

0.02), the auto-correlation between sequential 1-pass residence time is less than 10%, and the 2-

pass residence time shows an even smaller correlation, about 2%. This indicates the residence 

time of every 2 sequential passages is almost completely un-correlated. However, at Wi = 12.5, 7 

passages are required for the correlation to drop below 2%.  To calculate Deff, defined in the 

previous section, one has to use the standard deviation of an uncorrelated n-pass residence time. 

In addition, since the residence time has a long tail at long times as shown in Figure 4.16, to get 

an accurate standard deviation, one has to run the simulation long enough to sample fairly the tail 

of the distribution. For this purpose the BD simulation method is more attractive than SRD, due 

to the high computational efficiency of BD simulation, which is about 15 times faster than SRD.  

The histogram in Figure 4.19 shows the RTD of a 100-step contraction channel for a 10-spring 

chain at Wi = 2.5. The solid line is the Gaussian distribution expected for the 100-pass RTD, 

namely
(2)

(2)( , )
/ 2N


N , where (2) (2),   are the mean and standard deviation of the 2-pass 

residence time distribution normalized by the mean residence time of a fluid element. Here

/ 2 50N   is the number of independent sequential double-passes in the run of 100 passes, 

leading to a standard deviation of 
(2)

/ 2N


 for the 100-pass distribution, according to the central 
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limit theorem.  Also plotted in Figure 4.19 is the actual RTD obtained by simulating directly an 

entire 100-pass run, giving the RTD of a long channel with 100- contraction steps. Figure 4.19 

shows that this RTD histogram is almost Gaussian-like, although still a little skewed, with 

skewness of 0.6, reduced greatly from the skewness of 6.4 of the highly skewed 1-pass RTD 

shown as the dashed curve in Figure 4.19 (Skewness is the sample third central moment 

normalized by the cube of the standard deviation.) Figure 4.19 indicates that at Wi = 2.5, the 

assumption of statistical independence of the residence time after two passes through the 

geometry is a good approximation, and that 50 repeats of the two passes is enough to sample the 

distribution of residence times well enough for the initially skewed distribution to revert nearly 

to a Gaussian, as expected from the central limit theorem.  

This convergence to the Gaussian predicted by the central limit theorem allows us to predict the 

RTD’s for a polymer passing through an N-step contraction channels, using the RTD for a much 

shorter n-step contraction, by simply using 
( )

( )( , )
n

n

N n


N .  

Figure 4.20 shows the residence time distribution of 600-step contraction channel predicted by 

central limit theorem for polymer chains of 5,10, and 15 springs at the same shear rate (same 

value of g). We can see that we can expect 5-spring and 10-spring chains to be very well 

separated after 600 contraction steps. The 10-spring and 15-spring chains are also reasonably 

well separated.  

We now define ij(N), the efficiency of separation of i-spring chains from j-spring chains in an 

N-step contraction channel, as, 
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  
( ) ( )

( ) ( )

| |

| |

n n

i j

ij n n

i j

N
N

n

 


 





                                                   (4.5.1) 

where ( ) ( ),n n
i i  are the mean and standard deviation respectively of the uncorrelated n-pass RTD 

of an i-spring chain. By adjusting the flow rate, it is interesting to see in Figure 4.21 that the best 

separation is achieved at Wi around 2, which is the value of Wi at which the chains transition 

from un-stretched to stretched as discuss in the previous Section 4.4.2. 

If we decrease the shear rate so that Wi drops below unity, the chains are no longer stretched. 

Since their radii of gyration are comparable to the width of the narrow channel, the longer chain 

(Ns=15, g 1.6w R  ) will find it more difficult to enter the narrow channel than the shorter chains 

(Ns=10, g 1.9w R  ). So at low Wi, this blockage effect can also separate the polymers as shown 

in Figure 4.22(bottom). However the longer 15-spring chains migrate slower than the 10-spring 

chains do, rather than migrating faster than the shorter chains as is the case at high Wi, shown in 

Figure 4.22(top). From the figure, we can also see that the blockage effect gives a better 

separation between 10-spring and 15-spring chains than does the curvature-induced migration, 

and that the separation will be even better if we further shrink the width of the narrow channel. 

But it takes a 100-fold longer time to achieve this better separation because of the reduced flow 

rate, since the acceleration g is reduced from 22 10  to 42 10 . 

In traditional size-exclusion chromatography (SEC), the long chains experience not temporary 

blockage from small pores through which they must eventually pass, but exclusion from side 

regions, thereby speeding their motion through the remaining available pore space. Therefore, in 

SEC, the large polymers move faster than the small ones, as is the case in our simulations at high 

Wi.  However, in our simulations the high-Wi exclusion of large chains from the side regions is 
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not due to polymer size, but to a curvature-induced migration that is sensitive to chain 

deformation and therefore to Weissenberg number. Hence, there are at least three mechanisms of 

separation: size exclusion, blockage, and curvature-induced migration, and in our simulations the 

latter two are dominant. When the blockage effect is dominant, the ratio 
f




is larger than unity, 

where andf are the mean residence time of the polymers and fluid respectively. When 

curvature-induced migration is dominant, 
f




is less than unity.  

4.6.Conclusions and final remarks 

We have simulated the migration of a single polymer chain through a period pressure-driven 

planar contraction channel from low ( ~ 0.03 ) to moderate ( ~ 30 ) Weissenberg numbers (Wi),  

where Wi is defined based on the shear rate in the narrow channel of a contraction channel 

(contraction ratio 5.5). (In the wide chamber of the geometry, the effective Weissenberg number 

is an order of magnitude smaller.) The width of the narrow region of the contraction channel is 

chosen to be comparable to the radius of gyration of the chains studied.  When Wi < 1, and 

chains are un-deformed, we find that the mean residence time of the polymer is smaller than that 

of the fluid and size-dependent blockage of the chain from the thin channel dominates the 

residence time distribution of the polymer, so that long chains migrate slower than short chains. 

For 1 < Wi < 2, the long polymers are modestly stretched, and migrate faster than short chains. 

In this range of Wi, the Taylor dispersion coefficient normalized by the polymer diffusion 

coefficient is higher by an order of magnitude than for undeformable monomers due to 

curvature-induced migration, but depends on Peclet number in a similar way.  The curvature-

induced migration is similar to that reported by Dill and Zimm (1979) and confirmed by 

MacDonald and Muller (1996) in torsional shearing flow. The rate of migration produced by this 
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mechanism is proportional to Wi
2
. For Wi > 2, polymers are highly stretched as they pass into 

the narrow channel and the migration reaches a saturation condition, so that the dispersivity no 

longer increases as rapidly with increasing Wi.  By comparing the spatial distributions and the 

residence time distributions of the polymer chains from SRD simulations, which include 

hydrodynamic interaction (HI), with those from BD simulations without HI, we find that HI has 

only a weak effect on polymer migration. Although Jendrejack et al. (2004) and Kekre et al. 

(2010) have reported that for long straight micro-channels, migration induced by HI between the 

wall and the polymer can produce large concentration gradients across the channel, this effect is 

weak for Wi < 10, and is slow even for much higher Wi. Since the thin channels considered here 

are broken up by intervening large chambers, the influence of wall HI appears to be minimal. 

Thus, for the periodic contraction geometry considered here, fast BD simulations are adequate 

for studying polymer migration in the contraction channel for Wi up to at least around 30.   

Using the central limit theorem, we have demonstrated the potential for polymer separation using 

a multi-step pressure-driven planar contraction channel with a few hundred steps. At low Wi 

where 
f

1


 , the longer chains have a larger mean residence time than the shorter chains do, 

and the polymers separate due to the blockage effect at the entrance to the narrow channel. 

However such separation is very slow because of the slow flow rate needed to avoid chain 

stretch. When Wi is above unity, the polymers are stretched, and in this case the longer chains 

migrate to the center of the wide region of the channel due to streamline-curvature-induced 

migration and therefore have a shorter mean residence time than the longer chains do. For this 

separation mechanism, one can achieve the best separation by adjusting the shear rate to the 

region where Wi is around 2.  
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Figure 4.1: Geometry of the planar contraction channel. The parts above and below the dashed 

lines are periodic images. 
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Figure 4.2: Normalized residence time distribution of 10-spring chain simulated by SRD. Solid 

line is from simulating 75 chains; histogram is from simulating 5 chains.  
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Figure 4.3: Residence time distribution for a 10-spring chain with h
*
 =0.16 (left) or a 28-spring 

chain with h
*
 =0.27 (right). Black solid curves: SRD simulation; red dashed curves: BD 

simulation without HI with flow field from SRD. 
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Figure 4.4: Spatial distribution along x direction in the wide chamber for a 10-spring chain with 

h
*
 =0.16 (left) or a 28-spring chain with h

*
 =0.27 (right). Black solid curves: SRD simulation; 

red dashed curves: BD simulation without HI with flow field from SRD. 
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Figure 4.5: Spatial distribution along y direction in the wide chamber for a 10-spring chain with 

h
*
 =0.16 (left) or a 28-spring chain with h

*
 =0.27 (right). Black solid curves: SRD simulation; 

red dashed curves: BD simulation without HI with flow field from SRD.   
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Figure 4.6: Residence time distribution for 10-spring chains. Black solid curve: SRD simulation 

with h
*
 =0.16; red dashed curve: BD simulation without HI with flow field resolution a=0.2 from 

FEM, using the modified boundary for polymers. 
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Figure 4.7: Spatial distribution along x (top) and y (bottom) in the wide chamber for 10-spring 

chains. Black solid curve: SRD simulation with h
*
 =0.16; red dashed curve: BD simulation 

without HI with flow field resolution a=0.2 from FEM, using the modified boundary for 

polymers. 
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Figure 4.8: Schematic of streamline-curvature-induced migration in the contraction flow. The 

black lines are the streamlines from the FEM simulation; the red is the spatial distribution of a 

10-spring polymer at Wi=2.5, and the blue is a schematic polymer chain; the arrow indicates the 

direction of the migration.   
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Figure 4.9 Spatial distribution along x in the wide chamber for chains of different lengths at 

Wi=2.5; dashed curve: Ns=5, solid curve: Ns=10, dot-dashed curve: Ns=15.  
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Figure 4.10: The same as Figure 4.9 except for 10-spring chains at different Wi; dashed curve: 

Wi=0.25, solid curve: Wi=2.5, dot-dashed curve: Wi=7.5.  
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Figure 4.11: The mean residence time  normalized by f , the mean residence time of a fluid 

element, against Wi for chains of different length; squares: 5-spring chain, circles: 10-spring 

chain, pluses: 15-spring chain, where the dashed lines are all guides to the eye.  
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Figure 4.12: The spatial distribution of a 5-spring chain at different Wi corresponding to the 

arrows in Figure 4.11.   
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Figure 4.13: Taylor dispersivity versus Peclet number Q/D in an infinite straight channel of 

width w. The solid curves are from Eq. (4.4.2.1) using analytical values of derived from Eq. 

(4.4.2.2)The symbols are from simulations; solid circles: monomer, squares: 5-spring chain, 

circles: 10-spring chain, pluses: 15-spring chain; the black line and black symbols: the 

green: the red: where gR w  










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



 

Figure 4.14: Taylor dispersivities in the planar contraction channel versus Pe. Red crosses: 

monomer, squares: 5-spring chain, circles: 10-spring chain, pluses: 15-spring chain, where the 

dashed lines are all guides to the eye.  Black solid curve: monomer in the planar straight channel. 

The arrows point to values of Pe at which Wi = 2 for chains of different lengths, from left to right: 

Ns = 15, 10, 5.  
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Figure 4.15: Taylor dispersivities in the planar contraction channel versus Wi. Squares: 5-spring 

chain, circles: 10-spring chain, pluses: 15-spring chain, where the dashed lines are all guides to 

the eye. 
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Figure 4.16: One-pass residence time distribution of different length polymers at the same shear 

rate by applying an acceleration g = 0.02. Dashed curve: 5-spring chain, solid curve: 10-spring 

chain, dot-dashed curve: 15-spring chain. 
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Figure 4.17: Spatial distribution of different length polymers in the wide chamber at the same 

shear rate by applying an acceleration g = 0.02. Dashed curve: 5-spring chain, solid curve: 10-

spring chain, dot-dashed curve: 15-spring chain. 
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Figure 4.18: Auto-correlation of the n-pass residence time for a 10-spring polymer chain. 

Squares: Wi = 2.5; circles: Wi = 12. The statistical error is about the size of the symbols. 

 

 

 

 

 

 

 

 



 

106 
 

 

 

 

Figure 4.19: Histogram: residence time distribution of a 100-step contraction channel. Solid 

curve: Gaussian distribution predicted by the central limit theorem. Dashed curve: the 

distribution of 1-pass residence times.  
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Figure 4.20: Residence time distributions of polymer chains of different lengths in a 600-step 

contraction channel as predicted by the central limit theorem for an acceleration g = 0.02. 
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Figure 4.21: Dependence of the separation efficiency dependence on narrow-channel shear rate 

in a 600-step contraction channel. For the points from left to right, the shear rate is adjusted by 

applying accelerations g = 0.005, 0.01, 0.015, 0.02, 0.04. The shear rates are converted to 

Weissenberg numbers for each of the chain lengths, as shown, by multiplying by the relaxation 

time corresponding to that chain. Top: separation between 5-spring chains and 10-spring chains; 

bottom: separation between 10-spring chains and 15-spring chains. 
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Figure 4.22: Residence time distributions of different length polymer chains in a 600-step 

contraction channel as predicted by the central limit theorem under different accelerations. Solid 

curves: 10-spring chain, dashed curves: 15-spring chain. Top: 0.02g   for which 
s 10Wi 2.5N   ,

s 15Wi 4.6N   ; bottom: 42 10g    for which
s 10Wi 0.025N   ,

s 15Wi 0.046N    . 
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Table 4.1. Comparison of the mean  and standard deviation of the normalized residence time 

distribution from SRD simulations with different HI strengths to BD simulations without HI with 

flow field from SRD. 

 10-spring chain 28-spring chain 

 SRD w/ h*=0.16 BD  SRD w/ h*=0.27 BD 

 0.51 0.53 0.44 0.47 

 0.47 0.50 0.40 0.44 

 The ratio
g

2w
R

 , where w is the width of the narrow channel.  

 The statistical errors are 0 through the 2
nd

 decimal place.  

 

 

 

 

Table 4.2. Comparison of the mean  and standard deviation of the normalized residence time 

distribution from SRD simulations at h*=0.16 to different BD simulations without HI for 10-

spring chains  

   

SRD 0.51 0.47 

BD w/ flow field from SRD 0.53 0.50 

BD w/ flow field from FEM w/ a=1 0.50 0.49 

BD w/ flow field from FEM w/ a=0.2 0.49 0.48 

BD w/ flow field from FEM w/ a=0.2 and modified 

boundary for polymer beads 

0.53 0.58 

 a is the grid size for the flow field. 

 The statistical errors are 0 through the 2
nd

 decimal. 
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Table 4.3. Values of  obtained by fitting dispersion coefficients from BD simulations to Eq. 

(4.4.2.1) for different length polymers at two values of gR w   

 
s 0N   

s 5N   
s 10N   

s 15N   Theory 

0   216    210 

1 8    689 875 921 1142 

1 2    5083 11064 14645 ∞ 

 The last column is from the analytical theory, given by Eq. (4.4.2.2). 
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Chapter 5 

Stochastic Rotation Dynamics Simulations of Polymer Solution  

In this chapter, Stochastic rotational dynamics (SRD) are used to simulate the dynamics of 

polymers in dilute and non-dilute, but unentangled solutions both at equilibrium and under flow 

in confined geometries. We first propose a way to calculate the viscosity of the polymer solution, 

and find the result agrees well with that from fitting the parabolic flow profile of the Poiseuille 

flow of the polymer solution at different polymer concentration. Then the simulation of polymer 

solution with different concentration in a pressure-driven slit channel is carried out to see SRD 

captures the hydrodynamic interaction (HI) between the polymer and the wall, as well as the 

screening of HI with increased polymer concentration is captured by SRD. The screening of HI 

thins the depletion layer at the wall in slit flow as the polymer concentration increases, consistent 

with previous experimental work and Brownian dynamics simulations with HI [Hernández-Ortiz 

et al., Physics Review Letters 98, 140602 (2007)]. Finally, we use SRD to simulate how semi-

dilute polymer concentration modifies the flow and induces polymer migration in a periodic 

pressure-driven planar contraction channel. The results show that the SRD method is very well 

suited to account for flow-induced polymer deformation, hydrodynamic interactions both within 

the chains and between the chain and the wall, polymer-induced changes in the flow field, and 

flow-induced polymer migration due both to hydrodynamic interactions and due to streamline-

curvature induced migration.  
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5.1.Viscosity of the polymer solution 

When polymers are mixed with solvent, the polymeric stresses contribute to the total stress of the 

solution and change the viscosity. In this section, we describe a method of calculating the 

viscosity of the SRD polymer solution, and determine whether SRD correctly captures the 

influence of the polymer on the fluid viscosity in a concentration regime where entanglement 

effects remain negligible. 

To simulate the polymer solution, we simply add multiple polymer chains in the SRD solvent. 

And the polymer concentration (number density of polymer chains) is reported relative to the 

overlap concentration, at which the chains are concentrated enough so that a random equilibrium 

coil of raduis Rg begins to overlap with nearby coils. This concentration, denoted c
*
, is defined as 

1

* 3

g

4

3
c R




 
  
 

 [Larson (1999)]. 

In this chapter, for the spring, we use the wormlike spring law as in Eq. (3.4.2) in Section 3.4.3, 

which is commonly used for DNA [Marko and Siggia (1995)]. We obtain specific values for 

these parameters by mapping the values in microns from the BD bead-spring model of 

Jendrejack et al. (2002) into SRD length units a = 1 ( a is the size of the collision cell.), as 

discussed in Section 3.4.3. In this chapter, the SRD parameters are chosen to be 

5, 0.05, 150t     , and mass of the polymer bead M = 2.5 to minimize inertial the as 

discussed in Chapter 3. With these parameters, the spring parameters {bK, Ls} are yielded to be 

{0.380, 7.534} in SRD units, corresponding to {0.106m, 2.1m} in Jendrejack et al. (2002). 

For simplicity, we do not consider the excluded volume among the beads; thus the polymer and 

polymer beads can freely penetrate each other. And without excluded volume, the polymer 

radius of gyration Rg at equilibrium is 2.1.  
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The viscosity of the polymer solution can be attributed to the momentum transfer from both the 

streaming and collision steps, as well as from the spring forces. That is kin col spring      . The 

first two parts, kinand col, include the contributions from both the solvent beads and the 

polymer beads. They can be calculated analytically as the viscosity of a mixture of two SRD 

fluids. One fluid consists of solvent beads with mass m, and the other of polymer beads with 

mass M. Thus the resulting viscosity is 

 
kin/col kin/col

(s) (p)

kin/col                                                         (5.1.1) 

where (s)
 and (p)

 are calculated from Eqs. (2.2.1.2-2.2.1.3) listed in Chapter 2 with the bead’s 

mass m and M  respectively, and the rest parameters, such as the number density  and rotation 

angle  , being the same. Here  is mixing ratio, i.e. the ratio of the number of polymer beads to 

the number of the solvent beads. In our simulations, the external force is only applied to the 

solvent beads; otherwise Eq. (5.1.1) should be the average of (s)
 and (p)

  weighted by their 

corresponding numbers of beads. This is confirmed by our simulations when the external force is 

applied on both the solvent and the polymer beads to measure the viscosity. The circles in Fig. 

5.1 are the viscosities from fitting the parabolic flow profile, and the solid line is from Eq. (5.1.1), 

showing  good agreement between the two.  

To calculate the viscosity due to the spring force, spring, we apply the Green-Kubo formula [Lee 

and Kremer (2009)]. The stress due to the spring force at time t is first calculated as 

  p s ( ) ( )

1 1

1 N N mn mn

ij i jm n
t F F

V


 
    , where 

( )mn

iF  is the i-th component of the spring force from the 
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n-th spring of the m-th polymer chain. Then the stress modulus from the auto-correlation of the 

stress tensor is calculated as      
B

0ij ij ij

V
G t t

k T
   . Finally spring is, 

 spring
0

dG t t


                                                      (2.3) 

 where         
1

3
xy xz yzG t G t G t G t    .  

For comparison, we obtain spring  via a second way. We simulate Poiseuille flow of the polymer 

solution between two parallel plates, keeping the Weissenberg number, Wi, as low as 0.5 to 

prevent the polymer from stretching; otherwise the flow profile will deviate from the parabolic 

[Hernández-Ortiz et al. (2007)]. Here Wi =   , with   the shear rate, defined here for the 

Poiseuille flow in the slit as 
4

gw


  and   is the polymer’s stress relaxation time. Then spring 

is obtained by subtracting the kinetic and collision contributions to the viscosity calculated by Eq. 

(5.1.1) from the viscosity obtained by fitting the parabolic flow profile. Note due to the size-

induced depletion from the wall, the polymer concentration is close to zero inside the depletion 

zone, resulting in a lower viscosity than that in the bulk. And thus the Poiseuille flow profile 

outside the polymer’s depletion zone is actually a parabolic profile with a “slippery” boundary 

condition, where the “slippery” boundaries can be assumed to be located at a distance Rg away 

from the wall. Such slipping becomes stronger as the polymer concentration increases. Therefore 

for the fitting, we exclude the flow profile within the depletion zone of size Rg, and fit the 

remainder of the profile to g g( )( )A x R w R x B     , where L is the channel width and the two 

parallel plates are located at 0 and w along the x-direction; A and B are fitting parameters, A is 

related to the kinematic viscosity  by 
g

A


  , and B is the slip velocity at the “slippery” 



 

116 
 

boundary. Due to the “slippery” boundary, the viscosity obtained from fitting the parabolic 

profile is approximate. Nevertheless, Figure 5.2 shows that the values (circles) calculated from 

this method agree well with those from the Green-Kubo calculation, which is shown by the error 

bars.  In the Green-Kubo calculation, we first set the simulation box the same size as that in the 

Poiseille flow simulation while replace the walls with periodic boundary conditions. Next, to 

take into account the influence of the depletion zone on the polymer concentration, we set the 

width of simulation box 2Rg narrower. Thus we get a higher polymer concentration and higher 

viscosity.  The Green-Kubo calculations based on these two different simulation box sizes give 

the error bars shown in the figure. 

5.2.Screening of Hydrodynamic interaction (HI)  

Polymer dynamics in a confined geometry have been widely studied, where one interesting 

finding is the migration of polymers away from the wall due to the HI between the polymer and 

the wall. Different mesoscopic simulations have been performed to study this migration in a 

square or slit micro-channel: Brownian dynamics (BD) simualtions by Jendrejack et al. (2004) in 

a square channel, Lattice-Boltzman simualtions by Usta et al. (2005) in a slit channel, SRD 

simulations by Watari et al. (2007) in a slit channel and by Cannavacciuolo et al. (2008) in a 

square channel. However, all the above studies were for the case of a single chain. Fang and 

Larson (2007) experimentally confirmed that a DNA polymer migrates away from a surface due 

to the HI between the DNA and the wall, and found that this migration is weakened with 

increasing polymer concentration because of the screening of the HI. Meanwhile Hernández-

Ortiz et al. (2007) also demonstrated such an effect using BD simulations. Here we revisit this 

problem and demostrate that SRD also accurately captures the HI screening effect produced by 

an increase of the polymer concentration. 
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We performed our simulations in a slit channel with width w = 7.2Rg, and the channel length 

along the flow direction and the channel depth are chosen to be 25Rg and 10Rg, respectively, to 

avoid the self-interactions of periodic images. Figure 5.3 shows the normalized steady-state 

center-of-mass distribution of the polymer, Pc(x) (  c
0

d 1
w

P x x  , the confinement is along the x-

direction) at different Wi values with polymer concentration c = 0.1c
*
. Because of the symmetry 

with respect to the channel center, only half of the distribution is plotted. The central dip is due 

to gradients in diffusivity, which results in a migration towards the walls [Butler et al. (2007)]. 

As Wi increases, the migration due to the diffusivity gradients gets stronger, and is balanced by 

migration away from the wall due to the HI between the polymer and wall. Therefore the width 

of the wall depletion layer saturates at high Wi as shown in Figure 5.3 Such a saturation was not 

observed in the work of Jendrejack et al. (2004) and of Cannavacciuolo et al. (2008), presumably 

because in those two studies, the polymer was confined in a square channel. This stronger 

confinement than in the slit channel strengthens the migration away from the wall, which may 

overwhelm the migration from the center, or possibly the saturation in the square channel 

happens at a even higher Wi. Resolving this difference is left for future investigation.  

Figure 5.4 shows the influence of the polymer concentration on the polymer density profile. The 

HI between the polymer and wall is expected to be screened as the polymer concentration 

increases, and in fact the thickness of the wall depletion layer decreases with increased 

concentration as shown in Figure 5.4 When the concentration increases up to 1.3c
*
, the thickness 

of the depletion zone decreases to below that at equilibrium. The reduction below the 

equilibrium (no-flow) thickness occurs because without HI, flow decreases the depletion zone 

due to the polymer stretching and alignment. This is shown in the inset using BD simulations 

w/o HI [Chopra and Larson (2002)], where there is no thickening of the wall depletion zone due 
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to hydrodynamic interactions with the wall, and so only the thinning of the depletion zone from 

chain stretch remains. For SRD simulations, which include not only HI, but also its screening at 

c = 1.3c
*
, the wall depletion thickness at Wi = 81 is not as thin as is obtained by BD simulations 

at Wi = 81 in the absence of HI (compare circles to solid line in inset to Fig. 8), so the HI is not 

completely screened at c = 1.3c
*
, possibly because the polymer concentration near the wall is too 

low to produce much screening.  

5.3.Contraction flow of the polymer solution 

It is known that above the very dilute regime, the influence of the polymeric stresses from the 

stretched polymers on the fluid will change the flow field. In a contraction flow, we show in 

Chapter 4 that streamline curvature induces polymer to migrate toward centerline of the channel, 

resulting in non-uniformity of the polymer density within the channel. While the effect of 

polymer on the flow field might be captured by a finite element simulation using an appropriate 

constitutive equation, the added complexity of the flow-induced polymer migration couples the 

fluid flow and mass transfer together, making the problem a very challenging one for continuum-

level analysis. In addition, the polymer molecules in our simulations are comparable in size to 

the geometry, so that concentration and stress gradients have length scales comparable to the 

polymer molecules, making a standard continuum analysis very difficult indeed.  Fortunately, 

mesoscopic methods, such as SRD, are able to capture all of these effects in a relatively simple 

algorithm.  

One issue with using SRD to simulate non-dilute polymer solutions, however, is that, as the 

polymer concentration increases, the number of the polymer beads increases and can become 

comparable to the number of the solvent beads, in which case it becomes doubtful that the 

solvent beads can really represent the fluid hydrodynamics properly. Our simulations show that 
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at 4.7c
*
 (based on the volume of the wide chamber), at which the ratio of the number of polymer 

to solvent beads reaches  = 0.28, the eddies shown in Fig. 5 are wiped out. However, if we 

double the number of the solvent beads, the eddies are recovered. In principle, the exact number 

of solvent beads should not drastically affect the flow, and so we infer that, to avoid artifacts,  

the polymer concentration below 2.4c
*
.  

The geometry of the contraction channel is the same as discussed in Chapter 2 (Figure 2.4) and 

Chapter 4 (Figure 4.1). To show more clearly how polymers change the contraction flow field, 

we increase the length of the wide chamber from 12 to 15.  As shown in Figure 5.5, in this longer 

geometry, the big eddies, shown in Figure 2.6-2.7 in Chapter 2, break into smaller eddies in each 

of the four corners, according to the SRD simulation for pure solvent. However, for the polymer 

solution with 2.0c
*
, and Weissenberg number, Wi = 2, based on the shear rate in the narrow 

channel, we can see in Figure 5.6, that the polymers suppress the eddies in the upper corners, 

while the eddies in the lower corners remain.  

In Chapter 4, we study the single-chain migration in the contraction flow and found that 

streamline-curvature-induced migration dominates the polymer concentration field, while HI has 

a negligible effect on polymer migration. Here, we wish to examine the influence of the polymer 

concentration on the migration. 

Figure 5.8 shows the residence time distribution (RTD) of the10-spring chains. We can see that 

the RTD at 2.4c
*
 has a fatter tail than that at 0.6c

*
. To understand this change, first we note that 

when the polymer concentration increases from 0.6c
*
 to 2.4c

*
, Wi reduces from 3.0 to 2.0. To 

assess the influence from the Wi reduction, we reduce the shear rate at 0.6c
*
 to decrease Wi to 

2.0. We can see from Figure 5.8 that the decrease in Wi significantly fattens the tail of the RTD 

from that in the red curve to that in the green curve. The small remaining difference between the 
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green and black curves is presumably owed to the modification in the flow field produced by the 

polymers. Therefore the influence of the polymer concentration on the polymer migration can 

predominantly be attributed to the Wi reduction, which controls the streamline-curvature-

induced migration. We can see from Figure 5.9, with the same Wi, the polymer density 

distribution at 0.6c
*
 and 2.4c

* 
almost overlap, while the modification of flow field due to the 

polymer concentration makes tiny difference. The findings imply that the streamline-curvature-

induced migration is the dominant mechanism in the polymer migration in the contraction flow 

at Wi<10. 

Next, we replace a fraction of the 10-spring chains with 5-spring and 15-spring chains, with 

N
p,i
R

g,i

3  the same for all three of the chains, where Np,i is the number of polymer chains of type i, 

and Rg,i is the radius of gyration of such chains. The result is a mixture of polymers in solution 

whose number of polymer chains per unit volume is the same as the original polymer solution 

consisting of only 10-spring chains. We apply an acceleration g = 0.02. Using the central limit 

theorem as described in Chapter 4, we predict the RTD of the different length polymers in a 600-

step contraction channel. Figure 5.10 shows that at both c = 0.6c
*
 and c = 2.4c

*
, 5-spring and 10-

spring chains are very well separated, while 10-spring and 15-spring chains have a better 

separation when the polymer contraction increases from 0.6c
*
 to 2.4c

*
. If we look at the 

efficiency of separation of i-spring chains from j-spring chains in an N-step contraction channel , 

i,j(N), as defined in Eq. (4.5.1) in Chapter 4, we find that 10,15(600) increases from 2.2 to 2.4, as 

the concentration increases from c = 0.6c
*
 and c = 2.4c

*
.  Note in Chapter 4, we show that the 

best separation due to streamline-curvature-induced migration is achieved at Wi around 2. Here 

as the polymer concentration increase from 0.6c
*
 to 2.4c

*
, Wi of the 10-spring chain is reduced 
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from 3.0 to 2.0, while 10-spring and 15-spring chains achieve a better separation at the higher 

concentration. 

5.4. Summary 

In this chapter, we studied the SRD simulations of polymer dynamics in dilute and non-dilute, 

but unentangled solutions both at equilibrium and under flow in two confined geometries: 1) a 

simple slit channel; and 2) a periodic pressure-driven contraction channel with the width of its 

narrow region comparable in size to the polymer’s radius of gyration.  

At equilibrium, we propose a way to calculate the viscosity of the polymer solution. The 

viscosity of the SRD polymer solution attributes to the momentum transfer from both the 

streaming and collision steps, as well as from the spring forces. That is kin col spring      . For 

the first two parts, we show that they can be calculated analytically as the viscosity of a mixture 

of two SRD fluids. One fluid consists of solvent beads with mass m, and the other of polymer 

beads with mass M.  For the contribution for the spring, we use Green Kubo formula to calculate 

the spring contribution to the viscosity. And we validate this way to calculate the viscosity by 

comparing with that from fitting the parabolic slit Poiseuille flow profile.  

In the slit Poiseuille flow, we demonstrate the thickness of the depletion layer decreases as 

increase of the polymer concentration, which is consistent with what was reported in the 

experiment [Fang and Larson (2007)]. It is due to the screening of HI between the wall and the 

polymer. And as the polymer concentration further increases, the thickness of the depletion layer 

can be less than that at equilibrium due to the polymer stretching and alignment near the wall.  

In the contraction flow, we show that the influence of polymer concentration on the polymer 

migration can be from the modification of the flow field and the Weissenberg number Wi 
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reduction, while the latter dominates, implying the streamline-curvature-induced migration is the 

dominant mechanism for the polymer migration in our contraction flow at Wi<10. 
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Figure 5.1: the viscosity of a mixture of solvent and polymer beads (without springs connecting 

them) versus the mixing ratio. The solid line is from Eq. (5.1.1), and the circles are from fitting 

the parabolic Poiseuille flow profile of an SRD simulation.   
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Figure 5.2: The contribution to the viscosity of the polymer solution from the spring forces as a 

function of the polymer concentration normalized by the overlap concentration 
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 .  

The error bars are from a Green-Kubo calculation, and the circles are from fitting the parabolic 

Poiseuille flow profile. 
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Figure 5.3: Normalized steady-state center-of-mass distribution Pc(x) for different Wi at a 

polymer concentration of 0.1c
*
. 
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Figure 5.4: Normalized steady-state center-of-mass distribution Pc(x) for polymer concentration 

at Wi=81 and for equilibrium (Wi=0). Blue curve: c=0.1c
*
, green curve: c=0.4c

*
, red curve: 

c=1.3c
*
. Inset: comparison with BD simulations w/o HI. Dashed curve: BD at Wi=0, solid curve: 

BD at Wi=81, crosses: SRD at Wi=0, circles: SRD at Wi=81 and c=1.3c
*
. 
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Figure 5.6: The flow field(arrows) and streamlines(black curves) in the wide chamber of the 

contraction channel from SRD simulation of the pure solvent at  Re = 0.06 and Ma = 0.02.  
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Figure 5.7: The same as Figure 5.6, expect it is from simulating the polymer solution with 2.0c
*
, 

and Wi = 2.  
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Figure 5.8: One-pass residence time distribution of 10-spring chains at different concentrations. 

Black curve: c = 2.4c
*
, Wi = 2.0; Green curve: c = 0.6c

*
, Wi = 2.0; Red curve: c = 0.6c

*
, Wi = 

3.0. 
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Figure 5.9: Normalized steady-state center-of-mass distribution Pc(x) of 10-spring chains at 

different concentrations. Black curve: c = 2.4c
*
, Wi = 2.0; Green curve: c = 0.6c

*
, Wi = 2.0; Red 

curve: c = 0.6c
*
, Wi = 3.0. 
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Figure 5.10: Residence time distributions of polymer chains of different lengths in a 600-step 

contraction channel as predicted by the central limit theorem for an acceleration g = 0.02. Black 

curves: c = 2.4c
*
; Red curves: c = 0.6c

*
. 
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Chapter 6 

Conclusion and Outlook 

In this thesis, we apply multiple mesoscopic methods to study the polymer migration in a 

periodic pressure-driven sudden contraction-expansion flow with contraction dimension 

comparable to the polymer radius of gyration. We demonstrate the potential application of this 

microfluidic device for the polymer separation.  Not limited to polymer separation, more 

generally, we have demonstrated a method for predicting complex separation phenomena over 

large distances and time scales, using a combination of methods.  First, we use Stochastic 

Rotation Dynamics (SRD) simulations to examine the effects of hydrodynamic interactions.  We 

demonstrated in the contraction problem studied here that HI is not important, by comparing 

predictions of polymer concentration and residence time distribution from SRD with HI to what 

is obtained from Brownian dynamics (BD) simulations without HI.  In such cases where HI is 

not important at the flow rates considered, we can therefore use the 15-fold faster BD 

simulations to obtain accurate residence time distributions (RTD’s) over a few periodic 

contractions by averaging over hundreds or thousands of molecules simulated by BD (about 

1000 chains in our simulations).  Once the residence time autocorrelation distance is determined, 

we can convert such small-scale RTD’s into RTD’s for flow through arbitrary numbers of 

periodic contractions using the central limit theorem. In this way, we can determine the 

separation efficiency and separation mechanisms at work in complex geometries, by efficiently 

spanning from molecular-scale simulations up to macro-scale devices.  As computational power 
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increases, the separation of more complex objects, including flexible, stiff, and branched 

polymers, colloids of various shapes, and biological cells, can be predicted using similar methods. 

Especially we think this method holds promising potential for designing microfluidic devices to 

separate different type cells in the developing field of cell sorting.   

In this thesis it turns out that SRD can be replaced by the inexpensive BD simulations without HI 

in predicting the polymer migration, because in the special geometry we used here, HI plays an 

unimportant role. However SRD is a promising technique for studying the hydrodynamics of 

complex fluids.  Though it is a novel method introduced by Malevanets and Kapral (1999) only 

decades ago, within this short period, enormous progress has been made, successful applications 

to problems dealing with various soft matter hydrodynamics have been carried out. In this thesis, 

SRD has been benchmarked for both fluid dynamics and polymer dynamics, and applied to more 

complex systems, in which thermal fluctuation and time-dependent hydrodynamic interaction are 

important. As commented by Gommper et al. (2006): “In such systems, the method (SRD) can 

play out its strengths, because the interactions of colloids, polymers, and membranes with the 

mesoscale solvent can all be treated on the same basis.”  

SRD can be used for simulating soft, deformable objects, such as capsules, vesicles, cells and et 

al., to understand and predict their behaviors in hydrodynamics flows, which is very important in 

science and technology. For example, capsules and vesicles can be used for drug carriers. Flow 

behavior of red blood cell (RBC) in the blood stream draws lots of research interest, e.g. under 

certain flow condition, RBCs may coagulate or be torn apart; to deliver the oxygen cargo, RBCs 

have to squeeze through narrow capillaries. To get a thorough understanding of these behaviors 

may help in the design of medical devices for various purposes.  
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To model soft and deformable objects of different shapes, a dynamically triangulated surface 

model [Ho and Baumgӓrtner (1990), Kroll and Gompper (1992), Gompper and Kroll (1997)] has 

been developed. Since SRD efficiently coarse grains the solvent with fluid particles and self-

consistently captures HI, combining SRD and the solvent-free models and triangulated surfaces, 

the membrane hydrodynamics behavior can be efficiently and correctly described. Noguchi and 

Gompper(2004,2005,2006) have showed success of this approach to simulate vesicles in 

hydrodynamic flows. And we expect more applications of SRD for simulations in this direction.  
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