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Abstract 

RNA undergoes large-scale conformational transitions in response to cellular cues, including 

changes in physiological conditions such as temperature and pH, recognition of proteins and 

ligand molecules, and RNA synthesis itself to perform a wide range of regulatory functions. A 

predictive understanding of how RNAs carry out their functions requires studies that go beyond 

static structure determination toward characterization of dynamic ensembles representing the 

broad RNA structure landscape. This thesis describes the development and application of 

Nuclear Magnetic Resonance techniques that rely on measurements of residual dipolar couplings 

(RDCs) for partially oriented RNAs in determination of dynamic ensembles.  

The ability to assess methods for ensemble determination hinges on the ability to compare 

the similarity between two ensembles. We have developed a new method that successfully 

captures both population overlap and structural similarity that relies on measuring population 

overlap as a function of the bin size used to bin ensemble distributions. Using this new method, 

we showed fundamental limitations in conventional approaches for measuring ensemble 

similarity and also find unexpected similarities between ensembles determined for HIV-1 TAR 

RNA with the use of NMR RDCs and computational molecular dynamics simulations.  

Using the new method for measuring ensemble similarity, we examined the accuracy with 

which ensembles can be determined with the use of RDCs under ideal conditions involving two 

domains and five perfectly orthogonal datasets. We found that the two factors resulting in 

uncertainty in determined dynamic ensembles of RNA are the experimental uncertainty of 

measured RDC as well as the ensemble size used to construct the ensemble. We developed an 

approach that takes into account these sources of uncertainty and applied it in the determination 

of ensembles for the bulge containing HIV-1 TAR in free state and ligand-bound states, for a 
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TAR mutant with distinct dynamics, and for the HIV-1 ESS3 RNA containing an AC wobble 

base pair. 
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  Chapter 1

Introduction 

1.1 RNA Dynamics 

1.1.1 Roles of RNA Dynamics in Biology  

RNA is conventionally categorized into three types: messenger RNA (mRNA), transfer 

RNA (tRNA) and ribosomal RNA (rRNA). These RNAs play essential roles in protein synthesis. 

However, over the past three decades, many new non-coding RNAs (ncRNAs) have been 

discovered such as riboswitches and microRNAs (miRNA)1-5 that play essential roles in 

regulating the expression of genes. Such ncRNAs have significantly broadened the role of RNA 

in biology, spurring new biotechnological applications, including RNA-targeted drug discovery6-

10 and the design of RNA-based devices such as sensors11-13. 

Many coding and non-coding RNAs carry out functions through large changes in the 

RNA conformation that are typically trigged by cellular cues including recognition of protein 

and ligands, changes in physiological conditions such as temperature and pH or even RNA 

synthesis itself14-22. A quintessential example of the relationship between the conformation 

transition and the biological function of RNA is the Tetrahymena group I intron20,23, which is a 

400 nucleotides (nt) ribozyme that catalyzes its own excision from the corresponding pre-

mRNA. In the self-splicing reaction, the 5’-splice site of the intron base pairs with its internal 

guidance sequence (IGS) to form the P1 helix, connecting to the rest of the intron through a 

single stranded junction J1/2. The self-splicing reaction initiates with the change of the 

orientation of P1 helix, which docks into the intron’s conserved catalytic core through tertiary 

interactions, forming the “closed state” of the intron that allows the ligation of the exons as the 

following step. After the catalytic reaction, another undocking transition allows the P1 helix to 

return to the “open state” (the conformation without tertiary interactions with catalytic core) 
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(Figure 1.1). The rate of the interconversion between “open” and “closed” state is slow (~s-1) and 

in some cases is the rate-limiting step of the entire self-splicing reaction20.  

Another well-characterized example of conformation changes in RNA is the hierarchical 

assembly of the central domain of 30S subunit of ribosome of prokaryote, which is a typical 

ribonucleoprotein (RNP) complex. The binding of ribosomal protein S15 to 16S rRNA induces 

the change of relative orientations of different helical domains that favor the subsequent binding 

of ribosomal protein S6 and S18 and therefore initiates the ordered assembly of the central 

domain of the 30S ribosomal subunit24-30 (Figure 1.1). Premature binding of S6 and S18 to the 

unbound 16S rRNA may be disfavored partially because of the entropic penalty that has to be 

compensated due to the change of the inter-helical orientations in 16S rRNA22.    

  

Figure 1.1 RNA conformation transitions. (A) Docking of P1 helix of Tetrahemena group I 
intron into catalytic core as the initial step of the self-splicing13; (B) hierarchical assembly of 
central domain of the 30S ribosomal subunit induced by ribosomal protein S15. 
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RNA dynamics can be complex, involving changes at the secondary and tertiary structure 

level as well as local changes in base-pairing and jittering dynamics18,20,22,31-34. However, studies 

have shown that RNA structure is very hierarchical composed of reoccurring motifs that often 

fold independently of tertiary context. Thus, RNA structure can be divided into different building 

blocks35, allowing characterization of RNA structure in a divide-and-conquer manner. 

Analogously, the dynamics of these building blocks can be studied to obtain insights into the 

overall dynamic behavior of RNA and the properties that enable large conformational transitions 

to take place in a robust biologically specific manner35-37. Therefore characterization of the 

dynamics of different building blocks of RNA and the correlations between them is the basic and 

key step for understanding RNA dynamics. 

 

1.1.2 Helix-Junction-Helix (HJH) Motif 

In the hierarchical RNA structures, helix-junction-helix (HJH) motifs, composed of 

helices adjoined by intervening junctions, are fundamental and ubiquitous building blocks36-39. 

HJH motifs such as bulges, internal loops and higher order junctions39 (Figure 1.2) direct the 

orientation of helices and changes in inter-helical orientation that are often observed in RNA 

directed functions40-45 (Figure 1.1).  



4  

    

  

Figure 1.2 Secondary structure and schematic graph of helix-junction-helix motifs with 
different types of junctions. (A) HIV I TAR with bulge junction; (B) exon splicing silencer 3 
(ESS3) with non-canonical base pair as the junction; (C) P6b domain of P4P6 segment in 
Tetrahymena group I intron with internal loop as the junction. For simplicity, the unpaired 
nucleotides in junction are shown as closed circles and only three base pairs are shown for each 
HJH motif in the corresponding schematic graph. 
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due to finite length of connecting single-strands37. These constraints alone restrict the allowed 

orientation of helices, as described using three Euler angles, to <15% of the total allowed 

space37-39. These studies suggest that topological constraints encoded by the topology of HJH 

motifs strongly help define the range of inter-helical orientations that can be sampled. A coarse 

grain model has been developed recently that makes it possible to simulate the allowed inter-

helical space for a given HJH motif50. However, in order to achieve a predictive understanding 

regarding RNA dynamic behavior and changes in inter-helical orientation, it is important to also 

measure the relative free energies of conformations within this allowed space; or alternatively, to 

determine dynamic ensembles of RNA describing the population-weighted distributions of inter-

helical orientations.     

1.2 Construction of Dynamic Ensembles of RNA 

1.2.1 Introduction and Historical Perspective 

Guided by the principle of “structure determines function”, much effort has been directed 

toward characterizing structures of RNA. Although encouraging results have been reported, it 

was recognized in recent two decades that a single static structure is not sufficient for dissecting 

the biological functions of an RNA molecule because it requires large rearrangements of RNA 

conformation that can only be captured by an ensemble of conformations18,19. 

 Many dynamic properties of RNA are encoded in the free energy landscape, which 

provides both thermodynamic and kinetic descriptions of the ensemble of conformations 

sampled by a RNA molecule in solution51,52. The population of a given conformation in an 

ensemble depends on its relative free energy, while the rates at which two conformations inter-

convert is determined by their free energy barrier of separation. Cellular cues perturb the free 

energy landscape and trigger conformation transitions of RNA that lead to performance of 

biological functions. Insights into the free energy landscape can be obtained by detecting global 

and local motions of RNA over a broad range of timescales, which can provide direct 

information regarding the populations of different conformations and the rates of inter-

conversion between them. Determining the entire free energy landscape and all details of the 

conformational ensemble is generally not feasible, because it is very challenging if not 
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impossible to measure the rates of transitions between many conformations exist in low 

abundance and/or for short periods of time that disallow experimental detection. Alternatively, 

studies have attempted to describe the distribution of the most populated conformations 

(typically >1%) representing the lowest energy minima along the free energy landscape. The 

focus has been primarily on the populations of these relatively highly populated conformations 

but less on the rates at which they interconvert that has proven to be challenging to detect 

experimentally.  

Determining conformational ensembles for complex biomolecules or even their building 

blocks presents a significant challenge compared to characterization of high-resolution static 

structure using techniques such as X-ray diffraction. This is because: first, a much larger number 

of parameters need to be defined for an ensemble of conformations compared to a static 

structure, and measuring these parameters is in general challenging53; second, many 

conformations in a dynamic ensemble exist in low abundance and/or for very short periods of 

time, and therefore are challenging to detect experimentally54; finally, it can be very difficult to 

assess the accuracy and precision of a determined ensemble55. To overcome these challenges and 

furthermore accurately determine conformational ensembles of biomolecules, efficient ensemble 

determination methods utilizing proper experimental constraints and effective methods for 

evaluating the accuracy of the determined conformational ensemble are necessary.      

1.2.2 Experimental Constraints 

Experimental data used in ensemble determination as constraints have to meet three 

requirements. First, the data have to be sensitive to the structural degrees of freedom and time 

scale of the dynamics that are of interest. In general, the experimental parameters measured may 

be sensitive to different aspects of structure, e.g. global versus local structure, or rotational 

versus translational degrees of freedom. Construction of an accurate ensemble often requires the 

combination of different types of data, and this in it of itself, can be a challenge. Second, the 

experimental data must can be robustly computed for a given conformational ensemble. 

Depending on the type of data, it may be necessary to have additional information regarding for 

example constants that factor into the measurements. Finally, different types of data may be 
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sensitive to different timescales, complicating their combination in the ensemble determination. 

Several types of experimental data that are frequently used in ensemble determination are 

introduced below for which both advantages and disadvantages are discussed.  

Small Angle X-ray Scattering  

Small-Angle X-ray Scattering (SAXS) is an ideal tool to characterize global aspects of 

conformational ensembles of biomolecules. It is a technique in which the elastic scattering of X-

rays is measured at very low angles (typically 0.1º-10º), thus providing information about the 

overall shape and size of biomolecules that are 5 nm to 25 nm in size, with lower scattering 

angles allowing larger dimensions to be resolved. Unlike X-ray crystallography, SAXS does not 

require a crystalline sample and can be performed under a variety of solution conditions56. 

Recent developments in SAXS by attaching nano-probes to specific segments of biomolecules, 

for example helices of nucleic acids, allow detection of conformation transition of biomolecules 

at sub-domain level, which dramatically enhance the spatial sensitivity of SAXS. However, in 

general owing to the random reorientation and vibration of molecules, ensemble averaging leads 

to structural information of lower resolution as compared to X-ray crystallography.  

For a biomolecule interconverting between several conformations, the SAXS profiles will 

in principle represent the sum of contributions from each conformation in the sample, because 

the light matter interaction occurs at timescales much faster than the conformation changes. This 

renders SAXS insensitive to the precise timescales of the motion, allowing for easier 

interpretation in constructing ensembles57. However, due to its low resolution, for biomolecules 

that do not exhibit large conformation changes, the observed scattering profile can often be 

interpreted using a single conformation56.  

Chemical Shifts 

The Nuclear Magnetic Spectroscopy (NMR) chemical shift (CS) is one of the simplest 

but most important parameters to measure using solution state NMR. The chemical shift is the 

resonant frequency of a nucleus of a biomolecule relative to a reference frequency. It is 

determined by the effective magnetic field experienced by a given nucleus. Besides the applied 
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magnetic field, a given nucleus also experiences local magnetic fields induced by currents arising 

from movements of electrons in molecular orbitals. For a given nucleus (1H, 13C, 15N and 31P), 

this electronic distribution and corresponding electronic movement depend on local aspects of 

the structure, including bond lengths, dihedral angles, hydrogen bonding as well as ring current 

effects arising due to circulation of π-electrons in the local conjugate groups (e.g. aromatic 

nucleobases in RNA), magnetic anisotropy, and other electrostatic effects58. For a dynamic 

ensemble of conformations, the observed CS of a given nucleus corresponds to a population-

weighted average of the corresponding CS over all conformations given that the inter-conversion 

between conformations is faster than the corresponding difference between their chemical shifts 

(fast exchange limit).  CSs are accurate probes of local structure and dynamics, but generally 

provide very limited information about long-range structure and dynamics.  

Powerful methods for computing chemical shifts based on 3D structure have been well 

developed for determination of protein conformational ensembles59,60, attributing to the growth 

in the database of protein structures with corresponding NMR 1H, 13C, and 15N resonance 

assignments. In contrast, the database of nucleic acid structures with corresponding NMR 

resonance assignments is relatively small. Therefore, methods to compute CSs from a given 

nucleic acid structure remain challenging and difficult to test rigorously. Several approaches 

have been developed to compute 1H61-63 based on nucleic acid structure and the accuracy with 

which chemical shifts can be computed from structure based on these approaches is sufficiently 

high, allowing determination of 3D structure and characterization of motions in locally mobile 

regions64. One drawback in some of these approaches is that the experimental CS database is 

parameterized assuming single static structures, making it more challenging to identify the cases 

in which dynamics is not negligible.  

Scalar Couplings 

NMR scalar couplings arise from coupled interactions between the electrons and nuclear 

spins of two bonded nuclei, which result in the splitting of NMR resonances. The magnitude of 

scalar couplings depends on the nuclei involved, the number of bonds separating the nuclei and 

the intervening dihedral angle for three bond scalar couplings (3J). Three bond scalar couplings 
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3JHH, 3JHC, 3JHP, and 3JCP have been used in probing dihedral angles involving the sugar, base, 

and phosphodiester backbone and are often used in NMR structure determination of RNA65,66 

using appropriately parameterized Karplus equations. Challenges in parameterizing Karplus 

relations using databases containing averaged scalar couplings, along with their limited structural 

resolution and inherent degeneracies have limited their widespread application. In general, scalar 

couplings exhibit similar sensitivities to the timescales of motional averaging (up to the 

millisecond) as RDCs (see below) and CSs.  

RDCs and RCSAs 

Many NMR interactions such as dipolar couplings and chemical shift anisotropy (CSA) 

are second rank interactions that depend on the orientation of dipolar and CSA tensors centered 

on nuclei of interest relative to the applied magnetic field. In solution NMR, a given nucleus i 

experiences the sum of the external magnetic field as well as the magnetic field generated by a 

directly bonded nucleus j and other nuclei in the vicinity. The latter contribution inversely 

proportional to the cube of the distance separating the two nuclei, which is the bond length for 

directly bonded spins, as well as on the angle, 𝜃, between the inter-nuclear bond vector and the 

applied magnetic field, as described by the angular term !!"#
!!!!
!

. In isotropic solution, this 

magnetic dipole-dipole interaction, and in particular the angular term, averages to zero due to 

random Brownian rotational diffusion, and indeed, the loss of these otherwise very large 

interactions is one of the main reasons solution NMR exhibits high-resolution and sharp lines53. 

However, by introducing a small degree of alignment on a biomolecule, corresponding to 

alignment level of ~10-3, one can break the isotropic averaging and re-introduce a small fraction 

of the dipolar interaction while retaining the high quality of solution state NMR spectra. This 

dipolar interaction manifests as an additional contribution to one-bond 1J-couplings for two 

directly bonded nuclei and is referred to as a ‘residual dipolar coupling’ (RDC). RNA samples 

and in general nucleic acid samples can be aligned spontaneously upon applying external 

magnetic field due to interactions with the magnetic field itself67,68, or by dissolution in an 

alignment medium such as filamentous bacteriophage69,70. The most commonly measured RDCs 

are usually the ones between two directly bonded nuclei71. As the distance between two directly 
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bonded nuclei can be well approximated as a constant72,73, RDCs solely provide useful 

orientation information of the bond vector relative to the external magnetic field but are not 

sensitive to any translational degree of freedom. More detailed introduction about RDCs will be 

provided in section 1.3.   

Partial alignment also leads to incomplete average of the anisotropic component of the 

chemical shift, allowing measurements of residual chemical shift anisotropies (RCSAs) as 

changes in chemical shift relative to the isotropic case74,75. These data report on the orientation of 

the CSA tensor, centered on the nucleus of interest, relative to the alignment tensor frame. For 

RNA molecules, RCSAs of backbone 31P 76 and nucleobase 13C 72,77 provide complementary 

information to RDCs but the interpretation of RCSAs generally requires accurate knowledge of 

the chemical shift anisotropy (CSA) tensor, which vary from site to site, and are very challenging 

if not impossible to determine a priori. 

Other types of data 

There are other types of data that have been used in structure but not in ensemble 

determination or in other biomolecules such as proteins but not in RNA that we expect will play 

important roles in the determination of RNA ensembles in the future. NMR data include 

measurements of 15N and 13C spin relaxation that report primarily on the dynamics of bond 

vectors in biomolecules occurring at picosecond to nanosecond timescales78; Paramagnetic 

Relaxation Enhancements (PREs) which depend on the distance between a given nucleus and an 

attached paramagnetic probe, and can report on low populated short-lived conformations in an 

ensemble79,80; and Nuclear Overhauser Effect based cross-relaxations (NOEs) that report on the 

network of proton-proton distances (and orientations for anisotropic overall diffusion) in a 

qualitative manner81,82. Such relaxation data not only depend on the distribution of 

conformations in the ensemble, but also have a complex correlation with the rates with which 

conformations interconvert and the timescales for overall rotational diffusion. Although this 

additional information could be involved in the future to extract timescale information, it 

currently complicates ensemble determination. In addition, NMR relaxation dispersion 
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techniques83,84 allow for visualization of low-populated (<10%) and/or short-lived (lifetimes in 

the range of millisecond to microseconds) conformations in RNA54. 

Förster Resonance Energy Transfer (FRET)32,85 and Electron Paramagnetic Resonance 

(EPR)86 can be used to obtain distance information between fluorophores and spin labels 

respectively that are specifically attached to RNA. These data also depend on the orientation and 

dynamics of the fluorophores or spin labels, and approximations often have to be made to extract 

distance information86-91. Powerful single molecule approaches, such as single molecule FRET 

(smFRET) can be used to directly measure transitions within a single molecule and obtain 

information about the underlying conformations and their rates of inter-conversion that is 

difficult to obtain from ensembles32,88,92.  

1.2.3 Ensemble Determination Methods 

Thus far, two approaches (see below) have been developed to construct conformational 

ensembles of biomolecules based on experimental measurements. In one approach, the 

experimental data is directly incorporated in generating the conformational ensemble while in the 

other approach, the experimental information is introduced as constraints in a second step after 

the generation of a conformation pool a priori. Both approaches heavily rely on proper 

parameterization in either computational modeling or simulation force fields. Although there are 

a growing number of studies showing that long-timescale or enhanced MD simulations 

quantitatively predict experimental data measured in proteins93, nucleic acid force fields remain 

underdeveloped and poorly tested. The challenges include proper treatment of electrostatic 

effects and polarization involving the phosophodiester backbone and interactions with metal 

ions94,95.  

Restrained Molecular Dynamics  

Restrained molecular dynamics provides a way to directly incorporate experimental data 

into molecular dynamic force fields. In this approach, experimental constraints are included in 

term of additional penalty functions or pseudo-energies terms in the default force field. Here, the 

data reproduction is only assessed on average, over the ensemble of conformations determined at 
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each step of the procedure, or sometimes over a time window in a trajectory. The expressions 

used for the penalty function vary depending on the type of experimental data, but they often 

assume a quadratic form96: 

𝐸! = 𝑤! 𝐷!"#! − 𝐷!"# !
!           (1.1) 

where 𝑤! represents the weight of a given data set j and D correspond to different experimental 

data points in this dataset. The simulation is therefore guided by the incorporated experimental 

data and results in an ensemble of conformations that can reproduce the experimental data 

possibly within experimental uncertainty.  

By introducing an experimental pseudo-potential, this approach can direct the sampling 

towards conformations that may otherwise not be favored by the force field, but it also remains 

limited to the use of experimental data that can be efficiently computed at each step of the 

simulation. Moreover the number of degree of freedom in the calculated ensemble tend to be 

larger than the number of experimental constraints, leaving open the possibility of overfitting of 

experimental data, in which noises instead of experimental data are fitted. Therefore those 

procedures are optimal when there is sufficient experimental data for not only defining the 

number of degrees of freedom but also allowing for cross-validation. Another disadvantage is 

that the introduction of experimental pseudo-potential can potentially introduce perturbations 

without clear physical significance to the free energy landscape, which direct the simulation in 

an unpredictable way and prevent convincing interpretation of the resulting conformational 

ensemble97. 

Data guided selection of conformational ensemble from a pool  

An alternative approach involves using the experimental data to guide the selection of 

conformations from a pool that is generated using computational methods, such as MD 

simulations or structure based exhaustive search37-39,98. The approach involves two steps: (1) 

generation of a pool of conformations that sufficiently sample the free energy landscape and (2) 

selection of a sub-ensemble that can reproduce experimental data from the conformation 

pool81,94. This approach is referred to as ‘sample and select’ (SAS)94.  
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The success of SAS-based approaches highly depends on sampling of the starting 

conformation pool. For example, if a native conformation is not included in the starting pool, it 

will never be included in any determined ensemble. For RNA molecules, starting pools have 

been generated using standard MD simulations19,99, replica exchange molecular dynamics 

simulations for enhancing sampling100, and by performing an exhaustive grid-search when 

determining inter-helical ensembles involving a small number of structural degrees of freedom18. 

Monte-Carlo based approaches have been used in estimating RNA dynamic amplitudes but so far 

have not been used to construct conformation pools that can be used in SAS-based approaches 

for explicitly construction of conformational ensemble of RNA101. 

In the second step, sub-ensembles that can reproduce experimental data are selected from 

the conformation pool. The selection procedure can be accomplished using a variety of search 

algorithms including simulated annealing18,19,94,99 and genetic algorithms57,102,103. For example, in 

the simulated annealing approach, N conformations are randomly selected from the conformation 

pool to generate trial sub-ensembles and the agreement between measured and predicted data is 

computed. Next, one of the conformations in the trial sub-ensemble is randomly chosen and 

replaced by another conformation randomly chosen from the remaining conformation pool, and 

the agreement with measured data is re-examined. The newly selected conformation is either 

accepted or rejected based on the Metropolis criteria and several iterations are carried out until 

convergence is reached, defined as achieving agreement with the measured data that is equal to 

or smaller than the experimental error. The ensemble size (N) is then incrementally increased in 

steps of 1 from N=1 until the convergence is reached and proper ensemble sizes are selected for 

constructing the ensemble (see Chapter 2 and 3). Given a selected ensemble size, this procedure 

can be repeated for sufficient iterations, with the conformations selected over all runs pooled 

together to obtain a final population-weighted conformational ensemble (Figure 1.3).  

The SAS approach provides a natural means for evaluating nucleic acid force fields and 

for identifying potential pitfalls that can be addressed in future developments19,99. As nucleic acid 

force fields improve, we can anticipate that the SAS approach can be extended to include 

experimental data that are sensitive to broader timescales. The disadvantage is that, as stated 
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above, the quality of the determined ensemble strongly relies on the sampling of the 

conformation pool.  

Other approaches for constructing ensembles 

Although not yet implemented for nucleic acids, several approaches have been developed 

to improve sampling in MD simulations in characterizing protein dynamics. Enhanced sampling 

is particularly important when using NMR RDCs and SAXS data, which have timescale 

sensitivities that generally exceed those accessible by conventional MD simulations. These 

approaches include Accelerated Molecular Dynamics (AMD)97,104, in which the rates of 

transition between distinct conformations is increased by adding a continuous non-negative bias 

potential to the energy surface and replica exchange molecular dynamics (REMD)168, in which 

several simulations are run in parallel at different temperatures and allowed to exchange 

population or energy distribution according to certain algorithms. The resulting structural 

ensemble from both approaches can be used alone or as a relevant conformation pool for a SAS 

protocol.  
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Figure 1.3 Flowchart of SAS approach. 

  

1.2.4 Assessing Accuracy of Dynamic Ensembles 

The construction of ensembles using experimental data represents an ill-defined problem 

because many different ensembles can reproduce the experimental observable. It is therefore 

important to assess accuracy and precision in the determined ensembles when interpreting the 

determined ensembles.  

Cross-validation 

Cross-validation is one of the most commonly used approaches for testing the quality of a 

determined ensemble. In this method, a subset (typically 10%) of the total experimental data is 

excluded from the ensemble determination process and the accuracy of the determined 

ensembles is assessed by how well it predicts the excluded data105. This provides a 

straightforward approach for identifying cases where the data is overfitted and for testing how 

well a given set of data can uniquely define an ensemble99,103,106,107. An important aspect of 

cross-validation is the choice of the excluded dataset. In general, the excluded data can either 
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correspond to data drawn randomly across all different types of data or correspond to one type of 

data among many. Regardless of the approach, the data used in ensemble determination have to 

carry the information needed to build a reasonable ensemble. On the other hand, choosing 

excluded data that is highly correlated to data used in ensemble determination should be avoided, 

as it may not provide stringent tests, e.g. two sets of highly correlated RDCs data sets (resulting 

from very similar alignments, see section 1.3.2). 

A notable disadvantage of cross-validation is that it is probably unable to distinguish 

distinct ensembles that can reproduce the experimental data at a similar accuracy level. This is 

because cross-validation is an indirect test of the accuracy of the predicted ensembles, providing 

little direct information about the ensemble distributions and therefore can hardly avoid the 

degeneracy problem, which is very common in ensemble determination (see Chapter 3).  

Tests on synthetic data 

An alternate approach for assessing the ability of a given experimental data set to 

determine any aspect of an ensemble is to run simulations in which the synthetic data, 

corresponding to the same data that is measured experimentally, is used to reconstruct a known 

‘target ensemble’. The target ensemble should represent a reasonable challenge to the data. For 

example, target ensembles that are simply generated by randomly selecting conformations from a 

pool present a simpler sampling problem to ensemble determination methods as compared to 

selecting target ensembles that over emphasize low-populated regions in the conformation pool. 

In addition, the experimental data has to be properly noise corrupted to reflect experimental 

uncertainties and the noise-corrupted synthetic data is then evaluated for its ability to reproduce 

the target ensemble. A wide variety of approaches such as the S-matrix and Jensen-Shannon 

Divergence (JSD) have been used to quantitatively assess the similarity between two ensembles 

by comparing the histogram distribution of the degree of freedom of interest with specific bin 

sizes and therefore to assess how well a given set of data reproduces a target ensemble55,108-111. 

However it is shown by a recent study that these conventional metrics or methods do not fully 

capture ensemble similarities as they are insensitive to the magnitude of the structural differences 

in non-overlapping ensemble distributions, which can potentially result in wrong conclusions. 
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This problem can be largely resolved using recently developed REsemble method112 in which the 

conventional metrics are calculated at systematically varied bin sizes instead of a arbitrarily 

chosen bin size (see Chapter 2).  

Monte Carlo Analysis 

Monte Carlo analysis is a very general procedure to indirectly assess the accuracy and the 

precision of a given model and can therefore be applied to the sampling of a conformational 

ensemble106. Here, an experimentally determined ensemble of conformations is typically treated 

as a target ensemble and used to generate noise-corrupted synthetic data. Next, the target 

ensemble is determined using several rounds of ensemble determination using synthetic data 

corresponding to the values calculated from the target ensemble and noise-corrupted 

independently for each simulations. The uncertainties of the degrees of freedom are then 

evaluated from the target and corresponding predicted values. Although this method can be 

computationally expensive and does not provide direct comparison of the distributions of the 

target and predicted parameters, Monte Carlo simulations can be applied for any determined 

ensemble to estimate the uncertainties in each determined structural parameter99,106. 

  

1.3 Probing RNA Dynamics Using Residual Dipolar Couplings (RDCs) 

1.3.1 Theory of RDCs 

Among biophysical techniques that have been developed and applied to study RNA 

dynamics22,32,58,113, the measurement of residual dipolar couplings (RDCs) in partially aligned 

systems67,114,115 is providing new insights into previously poorly understood aspects of RNA 

dynamics. There are several factors that make RDCs attractive probes of RNA dynamics. First, 

RDCs are sensitive to dynamics of a broad timescale ranging from picoseconds to milliseconds, 

which allows RDCs to capture both local structural motions as well as global conformation 

transitions and thereby provide very rich information of RNA dynamics58. Second, although one 

single RDC is only sensitive to the change of the angle between the internuclear vector and the 
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external magnetic field (see Dipolar interactions), collection of RDCs of various internuclear 

vectors in a RNA molecule can provide accurate information of long-range interhelical 

orientations of RNA, which is highly complementary to the measurements of NOE or PRE that 

provide relatively short-range distance information18,67. Third, RDCs can be measured in great 

abundance between nuclei in base, sugar and backbone moieties and can be straightforwardly 

computed based on just weak coupling assumption that can be applied in most dipolar 

interactions under partially aligned conditions53. Finally, by changing the alignment of a RNA 

molecule, more than one RDC data sets can be measured, which allows RDCs to give 

comprehensive and unbiased information of dynamics with high spatial resolution99,116. 

Dipolar Interactions 

Analogous to a pair of bar magnets, nuclear dipole-dipole interactions originate from the 

through-space magnetic interaction between two nuclei, where the local magnetic field at a given 

nucleus is perturbed by the magnetic field of the other nucleus. Unlike J-coupling, dipolar 

interactions do not involve the interaction or correlation between the nucleus and the electrons. 

The Hamiltonian of dipolar interaction between spins I and S can be expressed as117,118:   

𝐻!! =
!!
!!

!!!!!!

!!!
!∙!
!!"
! −

!∙!!" !∙!!"
!!"
!               (1.2) 

where 𝐼 and 𝑆 are the spin angular momentum operators of spin I and S respectively; 𝛾! and 𝛾! 

are the gyromagnetic ratios of spin I and S respectively; 𝜇! is the magnetic permittivity of 

vacuum; ℎ is the Plank’s constant; 𝑟!" and 𝑟!" are the separation between spin I and S and its 

corresponding position operator (Figure 1.2).  

In solution NMR, heteronuclear dipolar couplings, in which case I and S are two distinct spins, 

are the most commonly and efficiently used dipolar couplings. It has been demonstrated that the 

weak coupling condition can be generally applied to most of such heteronucler dipolar 

interactions, in which case the eigenvectors of the Hamiltonian of dipolar interaction can be very 

well approximated by the eigenvectors of Hamiltonian of spin I and S without dipolar 
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interactions. This approximation is termed as “secular approximation” under which equation 1.2 

for heteronuclear dipolar couplings can be simplified as shown in equation 1.3117. 

𝐻!! = − !!
!!

!!!!!!

!!!!!"
!

!!"#!!!!
!

𝐼!𝑆!         (1.3) 

where 𝜃 represents the angle between the internuclear vector connecting spin I and S and the 

external magnetic field (Figure 1.2)67. 

  

Figure 1.4 Relative orientation between internuclear vector (CH bond vector as an 
example) and the magnetic field. 

 

Dynamics of the molecule leads to the change of the orientation of the dipolar coupling and 

therefore results in the averaged Hamiltonian of dipolar couplings as shown in equation 1.4117. 

𝐻!! = − !!
!!

!!!!!!

!!!!!"
!

!!"#!!!!
!

𝐼!𝑆!        (1.4) 

This leads to the heteronuclear dipolar coupling between spin I and S that can be directly 

measured from NMR119. 

𝐷!" = − !!
!!

!!!!!
!!!!!"

!
!!"#!!!!

!
         (1.5) 

Under isotropic solutions, the averaged angular part in the equation 1.5 equal zero, which can be 

understood as an integral of the angular term over the entire orientation space (equation 1.6). 

Hence there are no net dipolar couplings in isotropic solutions.  
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!!"#!!!!
!

= !!"#!!!!
!

!
!

!!
! 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑 = 0        (1.6) 

However, in a weakly aligned and therefore anisotropic solution where the molecules cannot 

freely tumble but meanwhile the weak coupling condition can still be satisfied (see Partial 

Alignment of Nucleic Acids), the averaged angular term in equation 1.5 is non-zero and the 

values of these dipolar couplings in such anisotropic solutions are termed as residual dipolar 

couplings (RDCs)67,68.  

The Alignment Tensor 

Although the angular dependence of dipolar couplings as shown in equation 1.5 has been 

known almost a century ago, it takes another half century for biophysicists to give the 

mathematical explanation of this angular dependence. It is first recognized by Saupe that the 

averaged angular term in equation 1.5 can be decomposed into a sum of the geometric terms 

describing the orientation of the internuclear vectors and the average tensor describing the nature 

of the alignment of the whole molecule in the magnetic field (equation 1.7)120,121. 

!!"#!!!!
!

= 𝑆!"𝑐𝑜𝑠 𝛼!!"!!"# 𝑐𝑜𝑠 𝛼!           (1.7) 

where 𝛼!represents the angle between the corresponding internuclear vector and the nth axis of 

the arbitrarily chosen molecular frame; 𝑆!" represents the klth element of the 3 by 3 alignment 

tensor S describing the alignment of the molecule in the external magnetic field (Figure1.3) and 

can be calculated using equation 1.8.  
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Figure 1.5 Angular dependence of bond vector and magnetic field in molecular frame. 
Interpretation of angular dependence of RDC in terms of the orientation of the internuclear 
vector (CH bond vector as an example) and the alignment tensor that can be calculated from the 
orientation of the external magnetic field (B0) using equation 1.8. The frame (gray) is an 
arbitrarily chosen molecular frame. 

 

𝑆!" =
!
!
𝑐𝑜𝑠 𝛽! 𝑐𝑜𝑠 𝛽! − !

!
𝛿!"            (1.8) 

where 𝛽! represents the angle between the direction of the external magnetic field and the nth 

axis of the arbitrarily chosen molecular frame; 𝛿!" is the Kronecker symbol that equals zero if 

and only if k=l. Here the whole alignment tensor S can be expressed in Cartesian representation 

as shown in equation 1.9115,120,122,123. 

𝑆 =
𝑆!! 𝑆!" 𝑆!"
𝑆!" 𝑆!! 𝑆!"
𝑆!" 𝑆!" 𝑆!!

                 (1.9) 

Because S is a real, symmetric (𝑆!"=𝑆!") and traceless (𝑆!! + 𝑆!! + 𝑆!!=0) matrix, therefore 

there are only five independent elements in this matrix: a principal element 𝑆!! (see below), an 

asymmetric parameter 𝜂 = !!!!!!!
!!!

 and three off-diagonal elements 𝑆!", 𝑆!" and 𝑆!"73. Another 
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very useful parameter termed as generalized degree of order (GDO, 𝜗)122 that describes the 

amplitude of the motions encoded in the alignment tensor can be defined as shown below: 

𝜗 = !
!

𝑆!"!!"!!"#            (1.10) 

and the amplitude of the relative dynamics between two segments or domains (e.g. domain 1 and 

2) of a molecule can be defined as the internal generalized degree of order (GDOint, 𝜗!"#), which 

can be calculated using the expression below: 

𝜗!"# =
!!
!!

             (1.11) 

Because the alignment tensors are real symmetric matrices, therefore they can always be 

diagonalized through a linear transformation from the current molecular frame to its principal 

axis system (PAS) in which only the eigenvalues of the alignment tensor,𝑆!!(𝑃𝐴𝑆), 𝑆!!(𝑃𝐴𝑆) 

and 𝑆!!(𝑃𝐴𝑆) are non-zero115. 

𝑆(𝑃𝐴𝑆) =
𝑆!!(𝑃𝐴𝑆) 0 0

0 𝑆!!(𝑃𝐴𝑆) 0
0 0 𝑆!!(𝑃𝐴𝑆)

            (1.12) 

The PAS and the eigenvalues of the alignment tensor S are independent of the molecular frame 

in which S is appearing and therefore provide a unique and robust way to assess the alignment of 

the molecule. It has to be noticed that the values of tensor elements 𝑆!!(𝑃𝐴𝑆), 𝑆!!(𝑃𝐴𝑆) and 

𝑆!!(𝑃𝐴𝑆) in equation 1.10 are probably different from the corresponding ones in equation 1.9 

due to the fact that they are calculated in different frames but the traceless property of alignment 

tensor S is not affected. Additionally, it should not be misunderstood that although there are only 

two independent elements in the form of alignment tensor S expressed in PAS (equation 1.10), 

the other three independent elements are encoded in the linear transformation in terms of the 

three rotation angles that transform the alignment tensor S from an arbitrary molecular frame to 

its PAS. 𝑆!! is defined as the principal element of the alignment tensor S, which has the largest 
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magnitude ( 𝑆!!(𝑃𝐴𝑆) ≥ 𝑆!!(𝑃𝐴𝑆) ≥ 𝑆!!(𝑃𝐴𝑆) ) in its PAS, and the direction of which is 

defined to be the principal direction of the alignment of the molecule in magnetic field. 

As alignment tensor S plays the key role in connecting the orientation and RDC of every 

internuclear vector of a molecule, it is of central importance to accurately determine or calculate 

alignment tensors in analysis of experimentally measured RDCs. Several software for calculating 

the alignment tensor of biomolecule have been published and recent studies have demonstrated 

their robustness. For example, RAMAH developed by Al-Hashimi and co-workers72 has been 

demonstrated to be very robust for calculating the experimental alignment tensor of biomolecules 

from measured RDCs using equation 1.7 and singular value decomposition (SVD) algorithm. 

Recently, two modeling-based software PALES124 and PATL125 have been developed to predict 

alignment tensor of biomolecule solely based on their structure and charge distribution without 

any experimental input. These methods can be applied as useful tools to predict the alignments 

and furthermore RDCs of a biomolecule in magnetic field. Encouraging results have been 

reported by a recent study99 using these methods in determination of RNA dynamics, although 

the accuracy of the alignment tensors predicted using these methods could still be further 

improved.    

1.3.2 Measurement of RDCs 

Partial Alignment of Biomolecules in Magnetic Field 

Measurement of RDCs under solution conditions requires introducing partial alignment 

of the biomolecule in solution126, either by dissolving the biomolecule in an alignment 

medium115 or in the case of nucleic acids and paramagnetic proteins, through direct interactions 

with the external magnetic field itself67,127,128. Using either aligning strategy, the alignment level 

of the biomolecule is of central importance in measurement of RDCs. Alignment levels higher 

than 10-2 (analogous to one out of one hundred molecules is completely aligned) give rise to 

extensive dipolar couplings that compromise the spectral resolution required for analyzing large 

biomolecules and possibly break the weak coupling condition that disables the expression of 

RDCs using equation 1.5 and results in unnecessary complexity in considering higher order 
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interactions that are otherwise negligible; alignment levels lower than 10-5 lead to RDCs that are 

too small compared to the width of the resonance peaks and therefore prevent precise 

measurements. In general, alignment levels ~10-3 is optimal115,126, which lead to sufficiently 

large RDC values affording precise measurements with maintained appropriate spectral 

resolution.  

Aligning biomolecules by dissolving them in an inert alignment medium is very 

straightforward and therefore very commonly used in measuring RDCs. The alignment level of 

the biomolecule of interest can easily achieve the optimal alignment level (~10-3) and can be 

adjusted by simply changing the concentration of the alignment medium. Bax and co-workers 

first experimentally demonstrated the medium-induced alignment in solution using liquid-

crystalline disc-shaped phospholipids “bicelles”115. Since then, several media or combinations of 

media have been introduced for partially aligning biomolecules in solution71. In particular, Pf1 

phage, a 7.4kb rod-like shape single-stranded DNA genome with one coat protein per nucleotide, 

is the most favorable alignment medium for aligning nucleic acids129. This is because the 

identical coat proteins of Pf1 phage are negatively charged, largely reducing the undesired 

extensive attractive interaction between Pf1 and the nucleic acids130,131. Pf1 phage generally 

aligns nucleic acids with the principal direction of alignment tensor orientated along the long 

axis of the molecule. Unlike proteins, the alignment of which can be altered by changing the 

alignment media132,133, alignment of nucleic acids can be hardly changed by altering the 

alignment media134. This is because the negative charges of nucleic acids primarily concentrate 

on the backbone phosphate atoms, resulting in a semi-uniform charge distribution on the surface 

of nucleic acids and giving rise to highly similar interactions with different alignment media that 

leads to highly correlated alignments of nucleic acids130,135.  
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Figure 1.6 Partially aligning biomolecules (RNA as an example) in solution. (A) Medium-
induced and (B) field-induced alignment of RNA in solution. 

 

Another effective strategy for aligning biomolecule and in particular nucleic acids and 

paramagnetic proteins67,136-139 is to induce spontaneous alignment by magnetic field itself, taking 

advantage of the interaction between the bulk external magnetic field and large magnetic 

susceptibility anisotropies (Δχ) of the biomolecules136,137. The alignment level using this strategy 

is proportional to the square of the strength of the external magnetic field. In general, the 

alignment level induced by magnetic field is very small and therefore high magnetic field 

strength is more favorable for inducing alignment of nucleic acids and paramagnetic proteins. 

For example, the alignment level can reach ~10-4 at 800MHz but this is still one degree of 

magnitude lower than the optimal alignment level (~10-3). Hence the resulting RDCs measured 

under field-induced alignment are relatively small (magnitude < 10Hz).  However, field-induced 

alignment prevents any perturbations from alignment media. More importantly, the principal 

direction of field-induced alignment is approximately perpendicular to the magnetic field that is 

completely different from medium-induced alignment, of which the principal direction is 

approximately along the magnetic field (Figure 1.4). Therefore field-induced alignment strategy 

can provide a unique and independent alignment from medium-induced alignment for 

biomolecules and in particular for nucleic acids, which is very challenging if not impossible to 

achieve by changing or modifying alignment media140,141.   
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NMR Experiments for Measuring RDCs 

Several experimental strategies have been developed to measure a wide variety of RDCs 

of both proteins and nucleic acids. Most if not all of the experiments are subject to a two-step 

procedure: 1) measure J couplings alone in isotropic solution; 2) measure J+D couplings in 

partially alignment solution and then calculate RDCs by taking the difference between the values 

obtained from these two steps. In step one, the resonance peak of a spin-pair of interest splits into 

a doublet solely due to J coupling which can be measured by taking the difference of the 

frequencies between the doublet peaks; in step two, the splitting of the same spin-pair is due to 

both J coupling and dipolar coupling D arising from the partial alignment of the biomolecule 

(Figure 1.5). These two steps are implemented using the same NMR experiments and other 

solution conditions except the alignment level. Here only the NMR experiments used for 

measuring RDCs in nucleic acids will be discussed in detail and the experiments for measuring 

RDCs of proteins are designed based on the same principles and can be easily found in a series 

of review articles.  

  

Figure 1.7 Measurement of J coupling and RDC. In step one, the J coupling is measured in 
isotropic solution (left); in step two, both J coupling and dipolar coupling (D) are measured in 
partially aligned anisotropic solution (right). 
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The most commonly measured RDCs in nucleic acids are those between directly bonded 

CH and NH nuclei (C2H2, C5H5, C6H6, C8H8, N1H1 and N3H3) in nucleobases and C1’H1’ in 

sugar moieties. For small nucleic acids for which the resonance overlap is not serious, the RDCs 

can be measured using 2D HSQC–type experiments that employ inphase-antiphase (IPAP) 

scheme142 to encode the individual components of the doublet along the 1H, 13C and 15N 

dimensions. For large nucleic acids for which the short transverse relaxation time (T2) causes 

much broader or even diminished resonance peaks, transverse relaxation optimized spectroscopy 

(TROSY) is the advantageous method for measuring RDCs due to the fact that relaxation 

interference between dipolar couplings of CH or NH spin pairs and sizable CSAs of 13C or 15N 

can effectively cancel each other and give rise to longer transverse relaxation time, resulting in 

remarkably narrower resonance peaks and much enhanced spectral sensitivity143-150. Multi-

dimensional experiments that employ HCN or E-COSY methods with spin-state-selective 

excitation (S3E) scheme can also be used to improve the spectral sensitivity as well as resolution 

especially for C6H6, C8H8 in nucleobases and C1’H1’ in sugar moieties151-157.  

However, in general, the measurement of CH RDCs in sugar moieties (e.g. C2'H2', 

C3'H3', C4'H4', C5'H5', C5'H5'') is dramatically more challenging because of severe spectral 

overlap in 2D CH experiments. Experiments are underdevelopment for exploiting better 

resolutions in measuring C2'H2' and C3'H3' RDCs158. Likewise, severe spectral overlap also 

complicates the measurement of RDCs between 31P and sugar protons159,160 which otherwise can 

provide unique information on backbone geometry. The spectral overlap for 31P is due to the 

sizeable 31P CSA relaxation that causes very short transverse relaxation time, yielding broad 

resonance peaks and low signal-to-noise ratio72.  

1.3.3 Dynamic Interpretation of RDCs 

The utility of RDCs in studies of dynamics arises chiefly from the angular dependence in 

equation 1.5. To appreciate the full angular dynamic information contained within RDCs, it is 

useful and more convenient to use a spherical representation to express the measured time-

averaged alignment tensors. For a single internuclear vector, due to the axial symmetry, the 
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direction of its PAS is always along the internuclear vector and only one of the five independent 

alignment tensor elements 𝐷!!  expressed using spherical representation in PAS is non-zero. 

This only non-zero element can be expressed in terms of the overall alignment tensor, , of the 

entire molecule and five out of twenty-five time-averaged Wigner rotation elements, 𝐷!!! 𝛽𝛾  

that are functions of the Euler angles (βγ) describing the orientation of the internuclear vector 

relative to the molecular frame (Figure 1.6)18,49,161:  

𝐷!! ! = 𝑂!! 𝑃𝐴𝑆 !!
!!!!

!
!!!! 𝐷!"! 𝜃! 𝐷!!! 𝛽𝛾        (1.13) 

Here, 𝑂!! 𝑃𝐴𝑆 !are elements of the lth overall alignment tensor describing averaging of 

the dipolar interaction due to overall motions (e.g. tumbling of molecule) expressed in the PAS 

of the tensor.   are elements of a time-independent Wigner rotation matrix that transform 

the PAS of the lth overall tensor into a common molecular frame. Importantly, equation 1.11 

assumes that the internal and overall motions of the molecule are uncorrelated18,116. 

The information regarding internal motions is contained within the five time-average 

Wigner elements 𝐷!!! 𝛽𝛾     ({n}=-2, -1, 0, 1, 2) which are functions of two Euler angles 

describing the orientation of the internuclear vector relative to the molecular frame (Table 1.1). 

The five time-averaged Wigner elements can be determined experimentally for each internuclear 

vector provided the measurement of RDCs under five linearly independent alignment conditions, 

as shown elegantly by Griesinger and Tolman162,163. These five parameters specify the average 

orientation of the internuclear vector relative to the molecular frame, the amplitude of any 

internal motions, as well as the extent and direction of motional asymmetry. Note that due to the 

inherent axial symmetry of the internuclear vector and thereby the alignment tensor of the 

internuclear vector, there is no sensitivity to internal motions that lead to rotations about the 

internuclear vector itself (which can be described by another Euler angle α), therefore limiting 

sensitivity to only two of the three Euler angles (Equation 1.13).  
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n/k 2 1 0 -1 -2 
2      

1      

0      

-1      

-2      

Table 1.1 Elements of the second rank Wigner rotation matrix 

 

The internuclear vector type analysis of RDCs has been successfully applied to proteins  
121,132,139,162-164 but has not to be applied to nucleic acids. Such applications are challenging 

because of the difficulty in varying the overall alignment of nucleic acids as stated in section 

1.3.2; in addition, it is generally more difficult to measure the required number of spatially 

independent RDCs to simultaneously determine both internal and overall tensor parameters. As 

mentioned above, this type of analysis also assumes that internal and overall motions are not 

correlated to one another, which is not generally applicable for highly flexible RNAs, although 

recently developed domain elongation approaches overcome this problem for simple two-domain 

RNAs18,165. 
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Figure 1.8 Angular dynamic information contained in RDCs. The dependence between the 
overall alignment tensor and the local alignment tensor can be decomposed into (A) 
transformation of overall alignment from its PAS to the molecular frame and (B) transformation 
of the transformed overall alignment from molecular frame to PAS of the internuclear vector or 
chiral domain. 

 

In principle, much greater dynamic information can be obtained from analyzing 

collections of five or more spatially independent RDCs measured in a semi-rigid chiral fragment, 

such as an A-form helix in RNA33,73. Here, one can use the RDCs to determine all five elements 

of a time-averaged alignment tensor 𝑇!! ! (Figure 1.6) describing the alignment of a chiral 

fragment relative to the magnetic field, which can also be expressed in terms of the overall 

alignment tensor of the molecule 𝑂!! 𝑃𝐴𝑆 !  and time-averaged Wigner rotation 

elements,   𝐷!"! 𝛼𝛽𝛾   

𝑇!! ! = 𝑂!! 𝑃𝐴𝑆 !!
!!!!

!
!!!! 𝐷!"! 𝜃! 𝐷!"! 𝛼𝛽𝛾      (1.14) 

where all twenty-five time-average Wigner elements 𝐷!"! 𝛼𝛽𝛾  ({n,k}=-2, -1, 0, 1, 2) (Table 

1.1) can theoretically be determined, provided the measurement of RDCs and 𝑇!! !under five 

linearly independent alignments116. These twenty-five time-averaged Wigner elements represent 

the theoretical maximum dynamic angular information due to internal motions that can be 

obtained from RDCs116. Here, the sensitivity extends to all three Euler angles, including α, as 

well as co-variations among the three Euler angles (Table 1.1), given the simultaneous 
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dependence of many Wigner terms on all three Euler angles18,116. The above approach is well-

suited in analyzing RNA chiral helices and nine out of twenty-five Wigner elements have been 

experimentally determined in the HIV 1 TAR RNA system by using the domain elongation 

strategy18. The measurement of all twenty-five Wigner elements in RNA remains to be an 

important challenge for the future, which requires robust methods for varying alignment as 

discussed in section 1.3.2. 

 

Some contents in this chapter are published in Annu. Rev. Phys. Chem. (Salmon L., Yang S. & 

Al-Hashimi H.M.)53 and Recent Developments in Biomolecular NMR (Eichhorn C.D., Yang S. 

& Al-Hashimi H.M.)166. 
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  Chapter 2

Measuring Similarity Between Dynamic Ensembles 

2.1 Introduction 

There is growing interest in moving beyond a static description of biomolecules towards 

a dynamic description in terms of conformational ensembles1-8 in which a biomolecule is 

represented as a population-weighted distribution of many conformations. Studies indicate that 

biomolecules employ this broad pool of conformations during folding and when carrying out 

their biological functions9. An ensemble description of biomolecules can also help quantify 

thermodynamically important conformational entropy10 and define a broad range of receptors 

that can be targeted in drug discovery11. 

Methods to assess similarity between static structures are well developed and widely used 

in classifying biomolecules, understanding evolutionary relationships between them, and in 

predicting their structures and functions12,13. New methods are needed to compare dynamic 

ensembles of biomolecules14. This is important not only for helping establish dynamics-function 

relationships9, but also in assessing the quality of ensembles determined using experimental and 

computational methods3,14. Among many approaches for comparing probability distributions, the 

Jensen-Shannon Divergence (Ω2)2,14 and S-score (S)15 have been used to compare dynamic 

ensembles of biomolecules. While these approaches provide quantitative information regarding 

ensemble similarity, particularly with regards to the population overlap between two 

distributions, they do not quantify the extent of structural similarity for non-overlapping 

conformations.  

For example, based on Ω2 or S-score, two very similar yet non-overlapping 

conformational ensembles (gray and green in Figure 2.1a) are measured as having zero 

similarity. The same level of similarity is assigned to two conformational ensembles that differ 
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much more substantially (gray and magenta ensembles in Figure 2.1a). The underlying problem 

is that non-overlapping conformations in two distributions contribute to Ω2 and S in manner 

independent of the extent of structural similarity (see Methods). Other common measures of 

similarity or distance between probability distributions suffer from the same limitation including 

the χ2 and the Bhattacharyya distance. In addition, in application to ensembles, Ω2 and S-score 

are typically reported for an arbitrarily chosen bin size used to describe a given structural 

variable. However, these measures of similarity are highly dependent on bin size or method used 

to cluster conformations in an ensemble2,14. Other approaches for comparing ensembles that 

involve computing the pairwise RMSD in atomic positions between every pair of conformations 

in two ensembles (eRMSD)16 do not capture the population overlap, cannot be generally used to 

dissect individual structural degrees of freedom, and can be obscured by outliers. 

We developed an approach for simultaneously quantifying population overlap and 

structural similarity between ensembles. Here, the overlap between two distributions is evaluated 

using methods such as Ω2 and S-score as a function of increasing the bin size used to build the 

histogram describing a given structural variable, such as a torsion angle or distance. This 

approach captures improvements in the quality of ensembles determined using increasing input 

experimental data that go undetected using conventional methods and reveals unexpected 

similarities between RNA ensembles determined using NMR and molecular dynamics 

simulations. 

2.2 Methods 

2.2.1 Jensen-Shannon Divergence (Ω2) and S-score 

Mathematical expressions for the Jensen-Shannon Divergence (Ω2) and S-score are given by 

Equations 1 and 2, respectively: 

Ω! 𝑤!! 𝑚 ,𝑤!! 𝑚 = 𝑆 !!
! ! !!!

! !
!

− !
!
𝑆 𝑤!! 𝑚 + 𝑆 𝑤!! 𝑚        (2.1) 

𝑆 𝑤!! 𝑚 ,𝑤!! 𝑚 = !
!

𝑤!! 𝑚 − 𝑤!! 𝑚!
!!!              (2.2) 
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in which  {wi
T(m)}  and  {wi

P(m)}  represent the population weights for the ith bin in ensemble T and 

P, respectively for a given bin size, m. S(wi)=-Σwi(m)log2wi(m)  in  Equation 2 is the information 

entropy. Ω2 and S vary between 0 and 1 for maximum and minimum similarity, and are equal to 

zero if and only if {wi
T(m)} = {wi

P(m)}. Equations 1 and 2 show that for non-overlapping regions 

in two distributions, defined as cases in which {wi
T(m)}=0; {wi

P(m)}≠0  or {wi
T(m)}  ≠0; {wi

P(m)}=0, 

the contribution to Ω2 and S is independent of the extent of structural similarity.  

The sum of population overlap over all bin sizes (K) normalized relative to values expected 

for worst predictions (Ω = 1 for all bin sizes or random selection) provides a convenient single-

value measure of population overlap and structural similarity which we refer to as ΣKΩ(wT, wP) 

that ranges between 0 and 1 for perfect and zero similarity, respectively,  

Ω 𝑤! ,𝑤! =
! !!

! ! ,!!
! !!

!!                                 (2.3) 

Note that ΣKΩ(wT, wP) is also a metric, and therefore symmetric ΣKΩ(wT, wP)  = ΣKΩ(wP, wT) and 

equal to zero if and only if two distributions are identical at all bin sizes or {wT} = {wP}.  

2.2.2 Sample and Select (SAS) approach 

In the SAS approach18-20, experimental RDCs are used to guide construction of an 

ensemble by selecting N conformations from a conformational pool that minimize the following 

χ2 function, 

𝜒! = 𝐷!!"#! − 𝐷!
!"# !/𝐿!

!!!                                    (2.4) 

in which L is the total number of RDCs used in SAS, Di
calc  and Di

exp are calculated and 

experimentally measured RDCs, respectively. In our implementation of SAS, first an initial 

ensemble of N conformations is randomly selected from the pool. Then at each step (k) of the 

selection procedure one conformation in the ensemble is randomly chosen and replaced by a 

conformation randomly selected from the rest of the pool. The change from step k to k+1 is 

accepted if χ 2(k+1) < χ 2(k); if χ 2(k+1) ≥ χ 2(k) with a probability P=exp((χ2(k)- χ2(k+1))/T), where 
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T is an effective temperature that is linearly decreased using a simulated-annealing scheme18. 

The initial effective temperature is set to sufficiently high so that >99% of the conformations can 

be replaced and slowly decreased until the acceptance probability is smaller than 10-5. At each 

effective temperature, 200,000 steps were implemented followed by a decrease of effective 

temperature using Ti+1=0.9Ti. A MATLAB script (Appendix 1) was used to implement this SAS-

based ensemble construction.  

2.2.3 Evaluating quality of inter-helical ensembles determined with increasing input 

RDCs  

The capability of RDCs to reconstruct inter-helical ensembles using the SAS approach was 

investigated using synthetic RDC data, using up to five RDC data sets corresponding to five 

perfectly orthogonal alignment tensors. In these simulations, a given conformation is represented 

using three inter-helical Euler angles (αh, βh, γh) describing the relative orientation of the two 

idealized A-form helices representing the TAR helices connected by a trinucleotide bulge 

(Figure 2.2a). The conformational pool necessary for the SAS selection was generated by using 

the corresponding topologically allowed space. This space corresponds to all possible inter-

helical orientations that satisfy basic steric and connectivity restraints imposed by the bulge21. 

The pool was generated using a 5º-resolution grid (i.e. each conformation differs from its closest 

neighbor by a 5º change in one of the three Euler angles). For a trinucleotide bulge, the pool 

represents ~10% of the total possible inter-helical orientations. A target ensemble containing five 

distinct conformations (N=5) was then randomly selected from this topologically allowed pool. 

Five orthogonal alignment tensors arbitrarily fixed on the reference helix were then generated 

using the Gram-Schmidt procedure22. For each of the five alignment tensors, all possible one 

bond CH RDC were computed for the target ensemble. For each alignment tensor, the RDCs for 

the five conformations were averaged and error-corrupted assuming 2Hz RDC error.  

The SAS approach was then implemented to select an ensemble of N=5 distinct 

conformations using one, two, three, four and five sets of input RDCs to guide selection. The 

target and the predicted ensemble were then compared using similarity measurements including 

Ω, S-score, χ2 and Bhattacharyya distance at various bin sizes as described below. The same 
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process was repeated 50 times and the similarity between target and predicted ensembles were 

averaged over these 50 comparisons at each bin size. For the RDC cross-validation analysis, 

ensembles determined using one, two, three and four RDC data sets in the SAS selection were 

used to predict a fifth RDC data set that was not used in the selection. The resultant RMSD 

between the RDCs for this fifth data set and values back-calculated from the predicted ensemble 

was then computed.  

2.2.4 Binning inter-helical orientations 

The Cartesian distance in the Euler space, ((αhA- αhB) 2 + (βhA- βhB)2 + (γhA- γhB)2)1/2 between 

two sets of Euler angles A and B defining two distinct inter-helical orientations does not provide 

a measure of structural similarity between the two conformations21. First, there are inherent 

degeneracies (αh’=αh+180, βh’=-βh, γh’=γh+180; αh’=αh-180, βh’=-βh, γh’=γh-180; αh’=αh+180, 

βh’=-βh, γh’=γh-180; αh’=αh-180, βh’=-βh, γh’=γh+180) that map several sets of distinct inter-

helical Euler angles to the same conformation21. This problem was overcome by using a 

restricted grid of Euler angles devoid of any degeneracy21. Second, even after taking into account 

the above degeneracy, the Cartesian distance between two sets of Euler angles does not provide a 

faithful measurement of structural similarity. For example, the Cartesian distances between (0, 0, 

0) and (5, 5, 5) is ~9o in the Euler space whereas the two conformations differ by single axis 

rotation with amplitude ~11o. Likewise, the conformations (5, 5, 0) and (170, -10, 170) differ by 

a Cartesian distance of ~237o but the two conformations differ by a single axis rotation with 

amplitude ~25o. More generally, the Cartesian distance between Euler angles can be smaller 

than, equal to or larger than the actual difference between two conformations. Therefore we used 

the amplitude of single axis rotation to bin inter-helical orientations together and measure 

similarity between ensembles21 (see below).  

The binning grid points are constructed by picking a binning origin, defined by minimum 

value of each of the three Euler angle in the two ensembles upon comparison, and then 

incrementing each Euler angles by an amount defined by the bin size to cover the entire non-

degenerate 3D Euler space. Changing in the binning origin has minimal effects on the resulting 

analysis (data not shown). Next, the amplitude of a single axis rotation (ω) connecting a given 
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conformation in the ensemble defined by Euler angles (αh1, βh1, γh1) and a point on the grid (αh2, 

βh2, γh2) is computed, 

𝑅 𝛼!!,𝛽!!, 𝛾!! = 𝑂 𝑥,𝑦, 𝑧,𝜔 𝑅 𝛼!!,𝛽!!, 𝛾!!                          (2.5) 

in which O(x, y, z, ω) represents a single axis rotation about a unit vector (x, y ,z) with amplitude 

(ω). O(x, y, z, ω) can also be expressed by a 3 by 3 matrix in terms of x, y, z  and ω 

𝑂 𝑥,𝑦, 𝑧,𝜔 =
𝑐𝑜𝑠𝜔 + 𝑥!(1− 𝑐𝑜𝑠𝜔) 𝑥𝑦 1− 𝑐𝑜𝑠𝜔 − 𝑧𝑠𝑖𝑛𝜔 𝑥𝑧 1− 𝑐𝑜𝑠𝜔 + 𝑦𝑠𝑖𝑛𝜔
𝑥𝑦 1− 𝑐𝑜𝑠𝜔 + 𝑧𝑠𝑖𝑛𝜔 𝑐𝑜𝑠𝜔 + 𝑦!(1− 𝑐𝑜𝑠𝜔) 𝑦𝑧 1− 𝑐𝑜𝑠𝜔 − 𝑥𝑠𝑖𝑛𝜔
𝑥𝑧 1− 𝑐𝑜𝑠𝜔 − 𝑦𝑠𝑖𝑛𝜔 𝑥𝑦 1− 𝑐𝑜𝑠𝜔 + 𝑥𝑠𝑖𝑛𝜔 𝑐𝑜𝑠𝜔 + 𝑧!(1− 𝑐𝑜𝑠𝜔)

          

(2.6) 

And the rotation amplitude ω is given by, 

𝜔 = 𝑎𝑟𝑐𝑐𝑜𝑠 !!!!!!!!!!!!!
!

                              (2.7) 

in which O11, O22 and O33 are the three diagonal elements of O(x, y, z, ω). 

In this manner, the amplitude of the single axis rotation connecting a given conformation in 

an ensemble to every grid point is computed, and the conformation is binned to the grid point 

that leads to the minimum single axis rotation amplitude ω. The population of each grid point is 

then calculated to be the number of conformations binned divided by the total number of 

conformations in the ensemble. In our case, binning of the target and the predicted ensemble led 

to two population distributions on the same binning grid for a given bin size, and the value of Ω 

between the two ensembles at the given bin size is then calculated using equation 2. This 

procedure was repeated as a function of increasing bin size. This analysis was performed using a 

MATLAB script (Appendix 2).  

2.2.5 Analysis of MD-trajectory-based ensembles  

An in-house perl script was used to compute inter-helical angles (αh, βh, γh) describing the 

relative orientation of two A-form helices21. All intra- and inter- base-pair parameters were 

computed using Curves+23 and all the local torsion angles defining the sugar and backbone 
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geometry were computed using an in-house C script. The resulting inter-helical orientations 

defined by three Euler angles were binned and analyzed as described above. Distributions of 

base-pair parameters, sugar and backbone torsion angles were directly binned to a binning grid 

ranging between 0o and 360o with evenly distributed increments defined by the bin size. The 

value of Ω was calculated at each given bin size for each parameter/angle distribution using 

Equation 1 and the values of ΣΩ are calculated using Equation 3 for distributions of inter-helical 

orientation, base-pair parameter, sugar, and backbone torsion angles. 

2.3 Results and Discussion 

The results show that increasing the bin size effectively reduces the ‘structural resolution’ 

with which a given structural variable is defined, and thereby increases the probability of binning 

conformations in two ensembles into common bins (Figure 2.1). Ensembles that differ 

substantially in structural terms will require larger bin sizes to overlap. We assess overlap using 

the square root of Ω2 because it provides several desirable properties, including being a proven 

metric2. The value of Ω comparing two ensembles either stays constant (barring statistical noise) 

or decreases with increasing bin size, and always plateaus at Ω=0 at some bin size cut-off. The 

plot of Ω versus bin size (REsemble) then provides a rich 2D description of ensemble similarity 

that simultaneously captures population overlap and structural similarity, with the latter encoded 

in the steepness with which Ω drops with bin size. The approach readily accommodates outliers, 

which result in long lasting near-zero Ω plateaus, without compromising the ability to detect 

similarity in other regions of the ensemble (Figure 2.2). Summing the values of Ω over K bin 

sizes and normalizing relative to values expected for zero overlap yields a single-value metric 

ΣKΩ(wT, wP) which ranges between 0 and 1 for perfect and zero similarity, respectively (see 

Methods). 
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Figure 2.1 Measuring population overlap and structural similarity between ensembles. (a) 
Three discrete ensembles (gray, green, and magenta) described in terms of an arbitrary structural 
variable are shown as a function of increasing bin size used to build the histogram distribution. 
Dashed magenta and solid green boxes around the gray ensemble indicate the portion of magenta 
and green ensemble respectively that are binned together with the gray ensemble. (b) Plots of Ω 
as a function of increasing bin size comparing the gray vs. green (green line) and gray vs. 
magenta (magenta line) ensembles. 

 

Applying this approach to our previous examples (Figure 2.1a), the structurally similar but 

non-overlapping ensembles (gray and green) start with Ω = 1 for small bin sizes implying zero 

similarity, but Ω rapidly drops to zero with increasing bin size indicating strong structural 

similarity (Figure 2.1b). The drop in Ω with bin size is far less steep for the structurally more 

dissimilar ensembles (gray and magenta) (Figure 2.1b). ΣΩ is clearly different in the two cases 

(0.05 and 0.40, Figure 2.1b) and captures the structural differences between the two ensembles.  
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Figure 2.2 Measuring similarity between ensembles containing outliers. (a) Binning of two 
identical ensembles (gray and red) with the exception of a single outlier. (b) 2D Ω versus bin 
size plots measuring the similarity between the two ensembles. The relatively low Ω values at 
very small bin sizes accurately capture sharp similarities within the ensemble, the long lasting 
plateau captures the outlier and its structural dissimilarity, while the sharp drop in the Ω value to 
=0 at large bin size indicates that any outlier(s) are narrowly distributed. 

  

Having the ability to measure ensemble similarity is fundamentally important for testing 

approaches currently under development for constructing ensembles of biomolecules using 

experimental data3-8,18. A common ensemble construction approach uses ‘Sample and Select’ 

(SAS)18 (see Methods) or similar scheme19 to guide selection of conformations from a 

computationally generated pool and construct ensembles that satisfy experimental data. Methods 

such as cross-validation4,7,20 have been used to show that the quality of constructed ensembles 

generally improves with increasing input experimental data; however no study has directly 

quantified the extent or nature of the improvement.  

We used our approach to measure the similarity between a known target ensemble (N=5) 

constructed by randomly selecting five conformations from a pool of ~40,000 conformations and 

ensembles reconstructed using SAS and up to five independent sets of synthetic residual dipolar 

couplings (RDCs)24,25 (see Methods). For simplicity, we focused on determining ensembles 

describing the relative orientation of two chiral domains (in this case A-form RNA helices) as 

defined using three Euler angles (Figure 2.3a). Here, the conformational pool represents the 

topologically allowed orientations of two A-form helices linked by a trinucleotide bulge. As 
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described previously21, we measure similarity in terms of the amplitude of single axis rotations 

(see Methods). 

  

Figure 2.3 Prediction of ensembles using increasing RDC input sets. (a) The relative 
orientation of two helices (or domains) is defined using three Euler angles (αh, βh, γh). Shown are 
two RNA helices linked by a trinucleotide bulge. (b) Ω versus bin size comparing the inter-
helical angle distributions about a trinucleotide bulge linker between a target ensemble (N=5) 
and ensembles (N=5) that are selected from the pool randomly (black) or using increasing 
number of input RDC data sets in SAS selections (color-coded, see inset). (c) The value of Ω at 
bin size ~0o (magenta squares) and  ΣΩ (black squares) as a function of number of RDC data 
sets used in ensemble reconstruction. Also shown is the root-mean-square-deviation (RMSD) in 
leave-out cross-validation in which a constructed ensemble is used to predict a common left out 
set of RDCs (green circles). The dashed circle represents the optimum RMSD when the left-out 
data set itself is included in the selection and the flat dashed line denotes the assigned 2-Hz RDC 
error. 

 

The conventional Ω value computed between the target and SAS reconstructed ensemble at 

the smallest bin size of ≈0o (see Methods) ranges between 0.87 and 0.99 (Figure 2.3b). This 

implies a very poor level of similarity that is comparable to that observed when comparing the 

target ensemble with an ensemble (N=5) constructed by randomly selecting conformations from 

the same pool without guidance from RDC data (Ω=0.99) (Figure 2.3b). Moreover, Ω changes 

insignificantly when increasing the number of RDC data sets used to reconstruct the ensemble 

(Figure 2.3c). Similar results are obtained using the S-score, χ2 (Figure 4) and Bhattacharyya 

distance (data not shown). These results are at odds with cross-validation analysis (see Methods), 
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which shows substantial improvements in the quality of ensembles determined with increasing 

RDC data sets as judged based on their ability to predict a common fifth RDC data set that is left 

out from the ensemble construction. The root-mean-square-deviation (RMSD) between measured 

and predicted RDCs approaches the assigned RDC error when using four RDC data sets, 

implying strong similarity between the target and reconstructed ensembles (Figure 2.3c). This 

improvement in ensemble construction with increasing RDC data sets is perfectly captured when 

computing Ω as a function of increasing bin size. Ω decreases with increasing bin size and this 

reduction occurs more rapidly when a larger number of RDC data sets is used in the ensemble 

construction (Figure 2.3c). This decrease is much less steep for the randomly selected ensemble 

(Figure 2.3b) resulting in ΣΩ values that decrease with increasing input RDC data sets, in 

excellent agreement with the cross-validation results (Figure 2.3c).  

  

Figure 2.4 Measuring similarity between ensembles using S-score (S) and χ2. Comparison is 
as in Figure 2.3c but using the normalized (a) S-score as measure of similarity between the target 
and the reconstructed ensemble. (b) Similar results are obtained when χ2 is used as the measure 
of similarity between ensembles. 
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Figure 2.5 Comparing MD-generated and NMR-RDC selected ensembles of HIV-1 TAR. 
(a) Secondary structure of HIV-1 TAR RNA. The highly flexible junction A22-U40 base pair is 
indicated using a dashed line. (b) Ω versus bin size plots comparing the inter-helical angle 
distribution in the MD and RDC-selected (N=20) ensembles. The binning is performed in terms 
of single-axis rotation amplitudes (see Methods). (c-e) ΣΩ value comparing the distributions of 
(c) base-pair parameters, (d) sugar and (e) backbone torsion angles between the MD and the 
RDC selected ensemble. The intra-base-pair parameters for the flexible junction A22-U40 base 
pair are shown using open symbols and dashed lines and inter-base-pair parameters are not 
shown for the junction G26-C39 base pair because they are ill-defined due to presence of the 
bulge between G26-C39 and A22-U40.   

 

We also used our approach to assess the quality of an ensemble determined for the 

transactivation response element (TAR) RNA (Figure 2.5a) from the human immunodeficiency 

virus type 1 (HIV-1) using molecular dynamics simulations. We previously reported20 poor 

agreement (RMSD = 8.6 Hz; experimental uncertainty ~ 2 Hz) between four independent sets of 

RDCs measured in TAR (Figure 2.6) and RDCs predicted for a TAR ensemble obtained from an 

8.2 µs MD simulation computed on Anton supercomputer using the CHARMM36 force field20. 

The specific degrees of structural freedom that underlie this disagreement remain unclear and are 

difficult to resolve given that RDCs report on both local and global aspects of structure24,25.  
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Figure 2.6 Comparison of experimentally measured and calculated RDCs using Anton MD 
trajectory, randomly selected ensemble, and SAS selected ensemble. The RDCs are 
calculated from and averaged over the entire 8.2 µs Anton MD trajectory (left panel), by 
combining 10 sets of 20 random conformers  (middle panel) and by selecting 20 conformers 
using SAS approach (right panel) and compared with the experimentally measured RDCs. 

 

We previously showed20 that using the SAS approach, a TAR ensemble that much better 

satisfies the four sets of RDCs could be constructed from the MD-generated pool (Figure 2.6). 

To assess the source of discrepancy between the MD simulation and measured RDCs, we used 

our approach to directly compare the MD trajectory and the SAS-based RDC-selected ensemble. 

We observed substantial differences (ΣΩ= 0.40) in the inter-helical angle distributions between 

the two ensembles (Figure 2.5b). This discrepancy alone is expected to affect all RDCs measured 

in TAR because changes in inter-helical orientation lead to changes in the global structure and 

overall alignment of the molecule. The observed differences in inter-helical angle distributions 

are not surprising given that longer simulations are likely needed to properly sample 

conformational space, and that the TAR inter-helical orientation strongly depends on ionic 

strength26.   

In contrast, we observed much better agreement for local angle parameters, including base-

pair parameters (Figure 2.5c), sugar (Figure 2.5d) and phosphodiester backbone torsion angles 

(Figure 2.5e) where on average ΣΩ < 0.2. Cases with ΣΩ > 0.2 are rare and tend to be 
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concentrated in the junction A22-U40 base-pair and bulge residues which have previously been 

shown to be flexible by NMR spin relaxation27, and the phosphodiester backbone torsion angles 

α and ζ  which show broad distributions in the MD-ensemble. The deviations in α and ζ at the 

bulge linker, and in base-pair parameters for residues surrounding the bulge are likely linked to 

the deviations observed in the inter-helical angle distributions (Figure 2.5b). The ability of RDCs 

to define all the above angles during the SAS selection was confirmed by simulation tests 

(Figure 2.7).  In the simulation tests, substantial improvement in the prediction of inter-helical 

orientation is observed for the SAS selected ensemble (for both N=20 or 100), leading to  
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Figure 2.7 Investigating the selection power of the SAS approach. A Monte-Carlo based 
scheme was used to investigate the selection power of SAS approach. The SAS selected TAR 
ensemble20 is used as the target ensemble for which 163 independently noise corrupted RDC data 
sets are generated corresponding to the experimentally available RDC dataset. The SAS 
approach was implemented to predict the target ensemble using N=20 and N=100. A 
corresponding random selected ensemble is also presented. The comparison between the target 
versus RDC-selected (N=20 and N=100) and target versus randomly selected ensembles is 
shown in magenta, green and black respectively using Ω and ΣΩ for (a) inter-helical orientation 
and ΣΩ for (b) base-pair parameters, (c) sugar, and (d) backbone torsion angles. The intra-base-
pair parameters for the flexible junction A22-U40 base pair are shown using open symbols and 
dashed lines and inter-base-pair parameters are not shown for the junction G26-C39 base-pair 
because they are ill-defined due to the presence of the bulge between G26-C39 and A22-U40.   

 

corresponding ΣΩ values that indicate a good level of prediction (similar as local angles). The 

prediction of base-pair parameters (Figure 2.7b), sugar (Figure 2.7c) and backbone (Figure 2.7d) 

torsion angles consistently show that the SAS approach provides better predictions than the 

randomly selected ensemble. It is interesting to note that by defining inter-helical orientation and 

helical parameters, RDCs indirectly help define phosphodiester backbone torsion angles in and 

around the bulge. These results suggest that even though the MD trajectory yields poor 

agreements with RDCs measured throughout TAR, the main source of disagreement is the inter-

helical angle distribution. 

2.4 Conclusion 

In conclusion, we have developed a simple and robust method, REsemble, to measure the 

similarity between dynamic ensembles that overcomes limitations in conventional methods that 

primarily capture population overlap at a single bin size and thereby fail to measure structural 

similarity. The approach can be used in conjunction with many other appropriate metrics for 

measuring ensemble similarity to compare any structural variable of interest. We anticipate many 

useful applications of this approach in dynamics-function studies. 
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This work is published in Nat. Methods28. The idea was conceived by Yang, S., Salmon L. 
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M. Yang, S., Salmon L. wrote the scripts for analysis of the results. 

 

2.5 References 

(1) Shi, X.; Herschlag, D.; Harbury, P. A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E1444. 
(2) Fisher, C. K.; Huang, A.; Stultz, C. M. J. Am. Chem. Soc. 2010, 132, 14919. 
(3) Marsh, J. A.; Teichmann, S. A.; Forman-Kay, J. D. Curr. Opin. Struct. Biol. 2012, 22, 

643. 
(4) Jensen, M. R.; Markwick, P. R.; Meier, S.; Griesinger, C.; Zweckstetter, M.; Grzesiek, S.; 

Bernado, P.; Blackledge, M. Structure 2009, 17, 1169. 
(5) Showalter, S. A.; Johnson, E.; Rance, M.; Bruschweiler, R. J. Am. Chem. Soc. 2007, 129, 

14146. 
(6) Best, R. B.; Lindorff-Larsen, K.; DePristo, M. A.; Vendruscolo, M. Proc. Natl. Acad. Sci. 

U. S. A. 2006, 103, 10901. 
(7) Clore, G. M.; Schwieters, C. D. Biochemistry 2004, 43, 10678. 
(8) Salmon, L.; Yang, S.; Al-Hashimi, H. M. Annu. Rev. Phys. Chem. 2013. 
(9) Boehr, D. D.; Nussinov, R.; Wright, P. E. Nat. Chem. Biol. 2009, 5, 789. 
(10) Wand, A. J. Curr. Opin. Struct. Biol. 2013, 23, 75. 
(11) Stelzer, A. C.; Frank, A. T.; Kratz, J. D.; Swanson, M. D.; Gonzalez-Hernandez, M. J.; 

Lee, J.; Andricioaei, I.; Markovitz, D. M.; Al-Hashimi, H. M. Nat. Chem. Biol. 2011, 7, 
553. 

(12) Richardson, J. S.; Richardson, D. C. Annu. Rev. Biophys. 2013, 42, 1. 
(13) Erdin, S.; Lisewski, A. M.; Lichtarge, O. Curr. Opin. Struct. Biol. 2011, 21, 180. 
(14) Lindorff-Larsen, K.; Ferkinghoff-Borg, J. PLoS One 2009, 4, e4203. 
(15) De Simone, A.; Richter, B.; Salvatella, X.; Vendruscolo, M. J. Am. Chem. Soc. 2009, 

131, 3810. 
(16) Bruschweiler, R. Proteins 2003, 50, 26. 
(17) Cha, S.H. International Journal of Mathematical Models and Methods in Applied 

Sciences. 2007, 1, 300. 
(18) Frank, A. T.; Stelzer, A. C.; Al-Hashimi, H. M.; Andricioaei, I. Nucleic Acids Res. 2009, 

37, 3670. 
(19) Chen, Y.; Campbell, S. L.; Dokholyan, N. V. Biophys. J. 2007, 93, 2300. 
(20) Salmon, L.; Bascom, G.; Andricioaei, I.; Al-Hashimi, H. M. J. Am. Chem. Soc. 2013, 

135, 5457. 
(21) Bailor, M. H.; Mustoe, A. M.; Brooks, C. L., 3rd; Al-Hashimi, H. M. Nat. Protoc. 2011, 

6, 1536. 
(22) Fisher, C. K.; Zhang, Q.; Stelzer, A.; Al-Hashimi, H. M. J. Phys. Chem. B 2008, 112, 

16815. 



55  

  

(23) Lavery, R.; Sklenar, H. J. Biomol. Struct. Dyn. 1989, 6, 655. 
(24) Tolman, J. R.; Flanagan, J. M.; Kennedy, M. A.; Prestegard, J. H. Proc. Natl. Acad. Sci. 

U. S. A. 1995, 92, 9279. 
(25) Tjandra, N.; Bax, A. Science 1997, 278, 1111. 
(26) Casiano-Negroni, A.; Sun, X.; Al-Hashimi, H. M. Biochemistry 2007, 46, 6525. 
(27) Zhang, Q.; Sun, X.; Watt, E. D.; Al-Hashimi, H. M. Science 2006, 311, 653. 
(28) Yang, S.; Salmon, L.; Al-Hashimi, H. M. Nat. Methods 2014, Advance Online 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



56  

  

  Chapter 3

Characterizing Uncertainty in Dynamic Ensembles of Biomolecules Determined Using 

Residual Dipolar Couplings 

3.1 Introduction 

An outstanding challenge in biophysics is to reconstruct the dynamics of biomolecules on 

the basis of experimental measurements1-7. Significant efforts have been directed in recent years 

towards constructing dynamic ensembles of biomolecules on the basis of ensemble-averaged 

experimental data, including several NMR interactions such as the Nuclear Overhauser effect 

(NOE)8, paramagnetic relaxation enhancements (PRE)9, chemical shifts (CS)10,11 and residual 

dipolar couplings (RDC)12-14 and small angle X-ray scattering (SAXS) data15,16. Here, one tries 

to solve for a conformational ensemble that accurately reproduces the measured averaged data in 

cases where a single static structure fails to reproduce the data within experimental error.  

The determination of dynamic ensembles based on time- or ensemble-averaged data 

presents several challenges. The one we would like to examine in this study has to do with the 

fact that many distinct ensembles can often satisfy a given set of experimental data, which is an 

intrinsic limit in ensemble determination that can dramatically decrease the accuracy of the 

determined ensemble. While it can be trivial to find ensemble of conformations that satisfy 

experimental data within error4, enumerating all possible ensembles that can equally satisfy the 

data and select the one that represents “reality” remains to be a challenging and largely 

unexplored problem.  

Here, we seek to explore the accuracy with which conformational ensembles of 

biomolecules can be determined on the basis of ensemble-averaged experimental data and 

specifically NMR RDCs. There has been great interest in recent years in harnessing the broad 

time-scale and rich spatial sensitivity of RDCs in determining dynamic ensemble of 
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biomolecules, including globular proteins17, intrinsically disordered proteins18 and RNA5,19. We 

focus specifically on the problem of determining an ensemble of conformations describing the 

inter-helical orientation distribution of a simple RNA helix-junction-helix (HJH) motif, which 

can be defined and represented by only three Euler rotation angles20,21. Previous studies have 

shown that the helices composed of Watson-Crick base-pars can be very well approximated by a 

rigid idealized A-form geometry in which individual bond vectors experience uniform isotropic 

motions22.  

Determining the ensemble orientation of idealized helices represents an ideal ensemble 

determination problem for several reasons. First, one can pool a large number of RDCs measured 

on various vectors in a helix to characterize only three inter-helical Euler angles. Thus, there are 

much fewer degrees of freedom that have to be specified as compared to determining an atomic-

resolution ensembles in which RDCs are used to determine distributions for both local and global 

degrees of freedom3,4. This provides a basis for illuminating the sources of uncertainty in 

ensemble determination. Second, the entire range of orientations that can be sampled by two 

helices can be defined a priori in an unbiased manner on the basis of topological constraints. 

Finally, it obviates the need to rely on conformational pools derived form other methods such as 

MD simulation in which correlations between degrees of freedom can affect data analysis. 

Besides providing a theoretical basis for assessing the accuracy of ensembles determined using 

RDCs, having the ability to determine ensembles of HJH motifs is very important for 

understanding RNA dynamics-function relationships.  

Here we introduce a method for evaluating accuracy of determined ensemble of RNA 

inter-helical orientation using RDCs. The results reveal that although ensemble-averaged RDCs 

can be applied to reconstruct population-weighted ensembles that recover the underlying inter-

helical distribution at a useful level of accuracy, even under ideal conditions, significant 

uncertainty remains. The uncertainty mainly results from experimental error and difficulties in 

establishing the optimal ensemble size used to construct the ensemble.  The uncertainty arising 

from experimental error can be effectively suppressed by improving data collection/analysis 

schemes; however, the uncertainty arising from ensemble size used in ensemble determination is 
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very challenging if not impossible to suppress. Our results therefore suggest that dynamic 

ensembles of biomolecules should be determined using different ensemble sizes instead of only 

using the smallest ensemble size that can satisfy the experimental error (Nmin) as commonly 

applied in most current ensemble determination strategies. The degenerate ensembles that cannot 

be distinguished by current experimental data should be further analyzed or validated using new 

experimental data in the future. Although the HJH model used in this study is RNA-based, our 

method is not model limited and can be generally applied to various biomolecules including 

DNA, protein and other biopolymers. 

3.2 Methods 

3.2.1 Constructing ensembles using Sample and Select (SAS)  

We use the SAS approach19,23 to construct population-weighted ensembles using RDCs. 

Here RDCs guide selection of conformations from a conformational pool containing thousands 

of conformations   generated by molecular dynamics (MD) simulations or corresponding to an 

exhaustive set of allowed conformations (see Results and Discussion). In this approach, sub-

ensembles with increasing size (number of distinct conformations) are constructed in an attempt 

to find number of distinct conformations (N) required to satisfy the measured RDCs. Here, N 

conformations are randomly selected from the pool and the agreement between measured and 

predicted RDCs is computed using equation 2.4 in Chapter 2.  

Next, one of the conformations is replaced randomly by another conformation from the 

remaining conformations in the pool, and the agreement with measured RDCs is re-examined 

and the newly selected conformation is either accepted or rejected based on the Metropolis 

criteria: at each step (k) of the selection procedure, the change from step k to k+1 is accepted if 

χ 2(k+1) < χ 2(k); if χ 2(k+1) ≥ χ 2(k) with a probability P=exp((χ2(k)- χ2(k+1))/T), where T is an 

effective temperature that is linearly decreased using a simulated-annealing scheme19. The initial 

effective temperature is set sufficiently high so that >99% of the conformations can be replaced 

and slowly decreased until the acceptance probability is smaller than 10-5. At each effective 

temperature, 200,000 steps were implemented followed by a decrease of effective temperature 

using Ti+1=0.9Ti.  Using such a simulated annealing based approach, many iterations are carried 
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out until the penalty function shown in equation 1 is minimized, defined as achieving the best 

agreement with the measured RDCs at ensemble size N.  

The ensemble size is then incrementally increased in steps of 1 from N=1 until 

convergence is reached. Ensemble size N is chosen from the ensemble sizes that can reproduce 

the RDC within experimental error and the same SAS procedure was repeated using N for 

sufficient number of iterations until the population-weighted distribution reaches convergence. 

The population-weighted ensemble was then constructed by combining the sub-ensembles from 

all SAS iterations. 

3.2.2 Determining accuracy of predicted ensembles 

The accuracy of predicted ensemble is evaluated using recently developed REsemble24 

method as shown in Chapter 2 by calculating the similarity between the target and predicted 

ensembles at different bin sizes using the square root of Jensen-Shannon divergence (JSD)  4, Ω, 

as shown in equation 2.1 in Chapter 2. The similarity between target and predicted ensembles are 

measured using the same binning and comparison scheme as described in section 2.2.3 and 2.2.4 

in Chapter 2. 

3.3 Results and Discussion 

3.3.1 Conformation pool 

It has been emphasized in a recent review1 that the accuracy of the dynamic ensemble 

determined using SAS approach highly depends on the conformation pool from which the 

conformations are selected. Many recent studies use conformation pools generated from 

molecular dynamics (MD) simulation3,17,25. Such MD-generated conformation pools, although 

provide encouraging results, could result in biased sampling of conformation space, which can 

possibly guide the prediction to degenerate ensembles that are far from target ensemble26. In this 

study, we used recently developed junction-topology allowed conformation space for rigid 

idealized two-way HJH motif of RNA in which the three Euler angles describing the inter-helical 

orientation are restricted and defined by imposing steric and connectivity constraints at the 

junction20,21,27. This junction-topology allowed space samples all possible inter-helical 
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orientations of the HJH motif in an unbiased manner and therefore largely avoids sampling 

imperfection that is commonly encountered in conformation space generated by MD simulations. 

Another advantage of this unbiased junction-topology allowed conformation space is that it only 

makes up <10% of all inter-helical orientations, which can remarkably improve the efficiency of 

computation.  

3.3.2 Experimental error based uncertainty  

To test the uncertainty in determined ensemble arising from experimental error, we 

constructed three different types of target ensembles: (1) ensembles in which all three Euler 

angles are defined by a Gaussian distribution with standard deviation equal to 10o; (2) ensembles 

in which all three Euler angles are defined by a Gaussian distribution with standard deviation 

equal to 30o; (3) ensembles randomly selected from the junction-topology allowed space. For 

each ensemble type, we generated eight different target ensembles containing 1, 2, 3, 4, 5, 10, 20 

and 100 distinct and equally populated conformations. Five sets of linearly independent RDCs 

were then computed for each target ensemble assuming five orthogonal alignment tensors. 

Random RDC error of 0.5, 2, 4 and 8 Hz were assigned to the calculated RDCs of each target 

ensemble by assigning each RDC a number randomly selected from a normal distribution with 

standard deviation equal to the RDC error. SAS approach was then implemented to predict each 

target ensemble under these four different RDC uncertainties assuming number of distinct 

conformations (N) in target ensemble is known. 

The target and predicted ensembles using SAS approach were then compared using 

REsemble24. The comparison  between the target and the randomly selected ensemble ΣΩr is 

used as the reference to normalize ΣΩ/ΣΩr   value between target and predicted ensemble. The 

results revealed that for all target ensembles, the ΣΩ/ΣΩr   value constantly increases with 

increasing RDC error indicating the fact that larger RDC errors lead to larger uncertainties in 

predicted ensembles as expected (Figure 3.1A-C). In particular, for single conformation target 

ensemble (N=1), only 8Hz RDC error results in ΣΩ/ΣΩr   value slightly larger than 0. This is 

probably because the RDC RMSD resulted from two distinct conformations in junction-topology 

allowed space are larger than 4Hz and therefore the target conformation is the only conformation 
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that can satisfy the RDC RMSD in the junction-topology allowed space. However, there are 

some cases in which the RMSD between RDCs resulted from two distinct conformations are less 

than 8Hz, allowing these degenerate conformations to be selected in SAS approach that leads to 

ΣΩ/ΣΩr   value larger than 0. This result suggests that smaller experimental error leads to smaller 

uncertainty in determined ensembles and therefore the uncertainty arising from experimental 

error can be effectively suppressed by improving experimental scheme leading to smaller 

experimental errors.  

We also observed that as the width of the target ensemble increases (Gaussian 

distribution with standard deviation equal to from 10o to infinitely large for random selection), 

the ΣΩ/ΣΩr  value sharply increases (Figure 3.1A-C). This is because a broader region of 

conformation space from which the target ensemble is constructed contains more distinct 

conformations and therefore provides more combinations of conformations that can possibly 

form more degenerate predicted ensembles. This result reveals that a narrow ensemble 

distribution can likely be more accurately predicted than a broad ensemble distribution.   
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Figure 3.1 Uncertainty in determined ensembles arising from experimental errors. 
Predictions of target ensembles with all three Euler angles defined by Gaussian distribution with 
standard deviation equal to (A) 10o, (B) 30o and (C) randomly selected from junction-topology 
allowed space containing 1, 2, 3, 4, 5, 10, 20 and 100 conformations. The RDC errors mimicking 
experimental errors used in each target ensemble are 0.5Hz, 2Hz, 4Hz and 8Hz. All predictions 
were carried out assuming ensemble size N is known. 

 

3.3.3 Ensemble size based uncertainty  

In the analysis, we also observed that at a constant RDC error, ΣΩ/ΣΩr  value increases 

with increasing ensemble size indicating that as the number of conformations in the target 

ensemble increases, there are more degenerate ensembles that can reproduce the RDCs within 

experimental error resulting in larger uncertainty in the determined ensemble. The only 

exception is the prediction of target ensemble containing 100 distinct conformations at 0.5Hz 

RDC error. For this prediction, the ΣΩ/ΣΩr  value decreases compared with the one calculated 

from the prediction of the same type of target ensemble containing 20 distinct conformations 

(Figure 3.1A). This is likely because the number of distinct conformations in the narrow region 

of conformation space defined by the Gaussian distribution with standard deviation equal to 10o 

is around or smaller than 100 and 0.5Hz RDC error highly directs the SAS selection to this 

specific region with very low tolerance for conformations outside this region. Therefore this 

prediction selects most of the conformations in the same region from which the target ensemble 

is constructed and thereby has a better agreement with the target ensemble than the predicted 
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ensembles in the cases where the target ensemble makes up only a small portion of conformation 

space.  

Although it is clear that larger ensemble size can result in more degeneracy and thus 

larger uncertainty in predicted ensembles from the prediction assuming ensemble sizes (N) is 

known as shown above, in practice the number of distinct conformations in a target or real 

dynamic ensemble cannot be known a priori and hence we can only construct the ensembles 

using an estimated optimal ensemble size. In current ensemble determination strategies, this 

optimal ensemble size Nopt is mostly chosen to be the smallest ensemble size that satisfies 

experimental error (Nmin) and larger ensemble sizes are usually simply ignored due to the risk of 

overfitting of the experimental data. However, comparison between ensembles constructed using 

small and large ensemble sizes for which the risk of overfitting can be excluded has never been 

explicitly established and therefore whether Nopt is necessarily Nmin is an open question. To 

address this question, we predict the target ensemble defined by Gaussian distribution with 

standard deviation equal to 10o and 30o and a random target ensemble containing 2, 5, 10, 100 

conformations and 2Hz RDC error. Each target ensemble is predicted using Nmin and an 

ensemble size Nmax that is larger than Nreal (Nmax=500 for all predictions in this test). We then 

compared the resulting ΣΩ  values from predictions using Nmin and Nmax with the corresponding 

ΣΩ  values from prediction assuming Nreal is known calculating the ratio ΣΩ/ΣΩ(Nreal). The 

results reveal that for all predictions, Nreal provide the most accurate predicted ensembles, as the 

ratio ΣΩ/ΣΩ(Nreal) is equal to or larger than 1 for all predictions (Figure 3.2) although we cannot 

rule out the possibility that Nmin and Nmax can give more accurate predicted ensembles. For very 

small ensemble sizes, for example N=2, ΣΩ  values resulted from Nmin are the same as the ones 

from Nreal likely because in these cases Nmin=Nreal, but ΣΩ  values resulted from Nmax are much 

larger because they give relative broad distributions instead of discrete ensembles. However for 

target ensembles with more distinct conformations, both Nmin and Nmax in general give larger 

ΣΩ  values and hence worse predictions compared to the ensembles predicted using Nreal (Figure 

3.2). Interestingly, we observed that for target ensembles containing large number of distinct 

conformations (e.g. Nreal = 100), Nmax gives more accurate predicted ensembles compared to the 
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ones predicted using Nmin regardless of the width of the target ensemble (Figure 3.2). This result 

implies that Nmin can also possibly result in larger uncertainties in predicted ensemble and Nopt is 

not necessarily Nmin. Therefore it suggests that dynamic ensembles of RNA or more general 

biomolecules should be determined using different ensemble sizes instead of Nmin only.  

  

Figure 3.2 Uncertainty in determined ensembles arising from ensemble size. Prediction of 
target ensembles with all three Euler angles defined by Gaussian distribution with standard 
deviation equal to (A) 10o, (B) 30o and (C) randomly selected from junction-topology allowed 
space containing 2, 5, 10 and 100 distinct conformations. Each target ensemble was plotted using 
Nmin (black), Nreal and Nmax=500 (red). The ratio ΣΩ/ΣΩ(Nreal) for N=2 predicted using Nmax 
(open circles) is not plotted according to the ratio because it approaches infinity in these 
predictions. All predictions were carried out using 2Hz RDC error. 

 

To further explore the uncertainty in predicted ensemble arising from ensemble size, we 

used MD trajectory of HIV 1 TAR (8.2µs generated by Anton supercomputer and the 

CHARMM36 force field) as a more realistic target ensemble. We then used the inter-helical pool 

constructed from the junction-topology in the SAS approach and assumed RDC error of 2Hz. 

Once again, we find that the RDCs can be adequately back predicted in the SAS selection for 

N≥4 (Figure 3.3A). Thus we constructed ensembles assuming Nmin=4 and an arbitrarily chosen 

N=100 as a second value of N. We find that the N=100 ensemble is a slightly better reproduction 

(ΣΩ=0.12) than Nmin=4 (ΣΩ=0.18) (Figure 3.3B). In particular, the Ω  values for N=100 are 
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smaller than those for Nmin=4 at the small bin sizes (<80o) indicating that N=100 gives more 

accurate ensemble; at large ensemble bin sizes (>80o), Ω  given by N=100 are slightly larger than 

the ones given by Nmin=4 likely due to that the ensemble predicted using N=100 includes some 

lowly populated outliers, which can be seen from 1D distribution (Figure 3.3D) and 2D 

correlations (Figure 3.3E-G) of the Euler angles. We also tested the reproducibility of the SAS-

determined ensembles by repeating predictions using Nmin=4 and N=100 respectively and 

measuring the similarity between the predicted ensemble and the repeatedly predicted ensemble. 

The results reveal very high similarity between the predicted and repeatedly predicted ensembles 

using both Nmin=4 and N=100, demonstrating that the determined ensembles are stable and 

reproducible (Figure 3.3C).  
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Figure 3.3 Prediction of MD trajectory of HIV 1 TAR. (A) RDC RMSD versus ensemble size 
(N); (B) Ω as a function of increasing bin size between the target ensemble and ensemble 
predicted using Nmin=4 and N=100;  (C) Test of reproducibility of predicted ensembles using 
Nmin=4 (closed green circles) and N=100 (closed magenta circles). Random selected ensembles 
were plotted as references (open circles); (D) 1D distributions and (E-G) 2D correlations of three 
Euler angles of the target ensemble (MD trajectory of HIV 1 TAR) and predicted ensemble using 
Nmin=4 and N=100. 
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3.3.4 Applications 

Based on our benchmark studies, we developed a general approach for determining 

ensembles of inter-helical orientations for HJH motifs using RDCs and the topologically allowed 

inter-helical orientations. We accommodate the uncertainty in N by considering collections of 

ensembles determined with variable N that equally satisfy the RDC data. This approach is 

demonstrated in the determination of inter-helical ensembles for HIV-1 TAR in free and ligand 

bound forms.      

HIV 1 TAR  

RDCs of HIV 1 TAR were carefully measured in several recent studies12-14,28. Previous 

measured RDCs in domain 1 (EI-TAR) and domain 2 (EII-TAR) elongated TAR were used in 

combination to determine HIV 1 TAR dynamic ensemble from junction-topology allowed space. 

Here, RDCs belonging to junction base-pair A22-U40 were excluded due to high local 

flexibility19,29. The RDC RMSD versus N plots show that Nmin=3 but that the RDCs can also be 

satisfied with much larger N value. We determined ensembles for Nmin=3 and for N=100, both of 

which can reproduce the experimental RDCs with RMSD=2.8Hz (Figure 3.4A, B). To determine 

the dynamic ensemble of HIV 1 TAR, we repeated the SAS approach 300 times using Nmin=3 

and 9 times using N=100 and combined sub-ensembles selected in all SAS iterations in each 

prediction to form 900-conformation dynamic ensembles for both predictions. We found that the 

determination of Nmin=3 and N=100 ensembles to be highly reproducible (Figure 3.4C). Both 

ensembles also pass two different cross-validations with similar accuracy: the leave-out cross-

validation in which each RDC was omitted from the prediction of dynamic ensemble and then 

back-calculated from the resulting ensemble and compared to the corresponding measured RDC 

(Figure 3.4D); and the comparison between the measured RDCs of non-elongated HIV 1 TAR 

and RDCs calculated from the ensemble predicted using Nmin=3 and N=100 and non-elongated 

HIV 1 TAR structure (Figure 3.4E). Therefore it is difficult to determine which ensemble more 

accurately captures the inter-helical orientation dynamics of HIV 1 TAR.  

1D (Figure 3.4F) and 2D (Figure 3.4G, H) distributions of the three Euler angles clearly show 

that the Nmin=3 and N=100 ensembles populate similar inter-helical Euler angles. Moreover, in 
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both cases, the RNA structure is not rigid, but rather samples a wide range of angles with small 

correlations observed between α and γ in the two cases (Figure 3.4G,H). Despite these 

similarities, the N=100 ensemble samples a relatively broader distribution of conformations as 

compared to the Nmin=3 ensemble.  
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Figure 3.4 Prediction of inter-helical dynamic ensemble of HIV 1 TAR. (A) RMSD versus 
ensemble size (N); (B) correlation between experimental RDCs and RDCs calculated from 
ensembles predicted using Nmin=3 (green) and N=100 (magenta); (C) test of reproducibility of 
ensemble predicted using Nmin=3 (green, closed circle) and N=100 (magenta, closed circle). The 
comparison between randomly selected ensemble and ensemble predicted using Nmin=3 (green, 
open circle) and N=100 (magenta, open circle) are shown as the references; (D) 1D distributions 
of three Euler angles predicted using Nmin=3 (green) and N=100 (magenta). The distribution of 
three Euler angles in junction-topology allowed space is plotted as references; (E) 2D 
correlations of three Euler angles predicted using Nmin=3; (F) 2D correlations of three Euler 
angles predicted using Nmin=3; (G) leave-out cross-validation of ensemble predicted using Nmin=3 
(green) and N=100 (magenta); (H) correlation between measured RDCs of non-elongated HIV 1 
TAR and corresponding calculated RDCs calculated from ensemble predicted using Nmin=3 
(green) and N=100 (magenta). 

 

Argininamide bound HIV-1 TAR 

Prior studies have shown that the amino acid argininamide (ARG) can be used as a ligand 

mimic of TAR’s cognate protein target, the transactivator protein Tat. Prior NMR studies have 

shown that ARG bind to TAR, arrests inter-helical motions stabilizing a coaxial inter-helical 

conformation12,28,30,31. We applied the SAS approach to the previously reported 19 RDCs on 

ARG bound EI TAR12 and the results of the analysis show that RMSD has no significant change 

after Nmin=2. Therefore SAS was run 400 times using Nmin=2 and 8 times using N=100 to form 

800-conformational ensembles for both predictions. The RDCs calculated from both ensembles 

were in great agreement with measured RDCs (RMSD=2.2 Hz). Different from free state of HIV 

1 TAR, ensembles determined using both ensemble sizes are very similar and in particular both 

ensembles give the identical narrow distribution of β around β=-10o (Figure 3.5A), the magnitude 

of which is consistent with previously determined experimental results (β=8o). The internal 

generalized degree of order (ϑint), which ranges from 0 to 1 indicating largest and smallest inter-

helical flexibility respectively, were calculated from both predicted ensembles and the results for 

both predicted ensembles are similar (ϑint =0.99) and highly consistent with experimentally 

determined result (ϑint=1.09). Compared to determined ensembles of free state HIV 1 TAR, 

ensembles of ARG-bound state of HIV 1 TAR adopt much narrower distributions in all three 

Euler angles, indicating the fact that ARG arrests a rigid and coaxial conformation of HIV 1 
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TAR. These results also mirror the benchmark analysis, which shows that the uncertainty in N is 

less significant for narrower ensembles or ensembles containing relatively less distinct 

conformations. 

  

Figure 3.5 Secondary structure and 1D distributions of predicted ensembles of the three 
Euler angles of ARG bound and A22G-U40C HIV 1 TAR. (A) Argininamide (ARG) bound 
HIV 1 TAR; (B) A22G-U40C HIV 1 TAR. Each construct is predicted using Nmin=2 (green) and 
arbitrarily chosen N=100 (magenta). The distributions of three Euler angels in the junction-
topology allowed conformation space is plotted (black) as references. 

 

A22G-U40C HIV-1 TAR 

It has previously been shown that the flexible junction A22-U40 base pair of HIV 1 TAR 

plays important role activating inter-helical motions and that replacement of this base-pair with a 

more stable GC base pair results in an arrest of inter-helical motions and a coaxial conformation 

similar to that observed for the TAR-ARG complex. We therefore used our approach to 

determine the dynamic ensemble for the A22G-U40C mutant HIV-1 TAR (TARGC). The 

analysis of the 28 previously measured RDCs for TARGC28 shows that Nmin=2. Dynamic 

ensemble of TARGC was determined using Nmin=2 and N=100, both of which yield the same 
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RDC RMSD = 4Hz. SAS approach was repeated for 400 and 8 times for Nmin=2 and N=100 

respectively to form 800-conformational ensembles. As expected, both ensembles reveal similar 

narrow distributions in all three Euler angles and in particular a very confined distribution of 

β around β=5o (Figure 3.5B) that is consistent with experimental results (β=12o). The inter-

helical flexibility calculated from both predicted ensembles are also similar (ϑint =1.01) and 

consistent with experimentally determined result (ϑint=1.04), demonstrating that TARGC is highly 

stabilized by G22C40 base pair and adopts a rigid and coaxial inter-helical orientation that is 

similar to ARG-bound state of HIV 1 TAR.  

 

3.4 Conclusions 

In conclusion, we assessed the capability of RDCs as experimental constraints in 

ensemble determination by using the SAS approach utilizing rigid idealized A-form HJH model. 

As the rigid idealized A-form HJH can be described by simply three Euler rotation angles, it 

allows us to explicitly characterize the uncertainty of determined ensembles describing inter-

helical orientation distributions using SAS approach and RDCs, which is prevented in studies 

that tried to characterize atomic-resolution ensembles due to astronomically large number of 

degrees of freedom. We demonstrated that experimental error and ensemble sizes used to 

determine dynamic ensembles are the two main factors that result in uncertainty in determined 

dynamic ensembles. The uncertainty arising from experimental error can be largely suppressed 

by lowering the experimental error; however uncertainty arising from ensemble size cannot be 

easily suppressed unless new experimental data are involved. Therefore the dynamic ensembles 

of RNA should be determined using different ensemble sizes and all the resulting ensembles that 

cannot be distinguished by current experimental data require further tests and validations using 

new experimental data in the future. 
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  Chapter 4

Preliminary NMR Study of Dynamics of exon splicing silencer 3 of HIV 1 RNA 

4.1 Introduction 

The human immunodeficientcy virus type 1 (HIV 1) requires balanced expression of nine 

regulatory proteins from the polycistronic RNA for replication1. The gene activity of HIV 1 is 

highly regulated during transcription initiation or posttranscriptional processing2-4. Successful 

production of virus requires well-regulated splicing pattern of HIV 1 RNA, which lead to 

excision of non-coding introns and ligation of coding exons from HIV 1 RNA5. Studies show 

that the splicing pattern of HIV 1 RNA is retained through a combination of non-conservative 

cores and splicing regulatory elements (SREs)6,7, which activate or repress the splicing through 

either splicing enhancers or splicing silencers. Depending on the function of the sites, splicing 

enhancer and silencer can be categorized as exon splicing enhancer (ESE), exon splicing silencer 

(ESS) and intron splicing silencer (ISE)8. As a general mechanism, SREs arrest host factors, 

typically heterogeneous nuclear ribonucleoproteins (hnRNPs), which function as trans activators 

of splicing by stabilizing the components of the spliceosome at the non-consensus cores6-8. 

Previous studies have confirmed that hnRNP A1 protein can effectively attenuate the splicing 

activity at 3’ splice site A2, A3 and A7 of HIV 1 RNA9-14. In particular, A7 site located at the 

terminal of 3’ splice site of HIV 1 RNA where its activity is of central importance for regulating 

the excision of the intron and ligation of the exons. A complex of regulation elements including 

an ISS, ESS (ESS3) and ESE (ESE3) systematically establish the splicing pattern at A7 of HIV 1 

RNA15,16. It has been shown that hnRNP A1 protein has the highest binding affinity to the ESS3 

element of A7 splice site of HIV 1 RNA, which is a 25-nucleotide stem loop consisting of a 7-

nucleotide apical loop and a 9-base-pair helix.  
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The three dimensional structure of ESS3 in solution has been determined by Tolbert and 

co-workers using NMR spectroscopy1. A key feature of determined ESS3 solution structure is a 

non-canonical AC wobble base pair disrupting the helix of ESS3, which is pH sensitive17 and 

thereby can give rise to distinct dynamics of ESS3 under different pH conditions1. It is well 

known that under sufficiently low pH conditions, A+C forms a wobble base pair in which 

adenine is protonated. However, at high pH, deprotonation of the adenine can break the 

hydrogen bond in A+C base pair, distort the wobble base pair and them more like a internal loop. 

The purpose of this study is to use NMR RDCs to characterize the dynamic properties of ESS3 at 

different pH conditions as a starting point for applying ensemble-based screening approaches to 

search for small molecules that modulate HIV 1 RNA splicing.  

4.2 Materials and Methods 

4.2.1 Preparation of ESS3 sample 

Uniformly 13C/15N labeled ESS3 samples for NMR studies was prepared by in vitro 

transcription utilizing T7 RNA polymerase (Takara Mirus Bio, Inc.), synthetic DNA templates 

with 5’-TTAATACGACTCACTATA-3’ promoter (complementary promoter sequence was 

included in the complementary DNA sequence) (Integrated DNA Technologies, Inc.) and 15mL 

reaction volumes containing uniformly 13C/15N labeled ribonucleotide triphosphates (Cambridge 

Isotope Labs). Following the synthesis, ESS3 was purified on 20% denaturing polyacrylamide 

gel electrophoresis containing 8 M urea and 1XTBE (89mM Tris-borate, 89mM boric acid and 

2mM EDTA), excised from the gel and electroeluted followed by overnight ethanol-

precipitation. The RNA pellet was dissolved in water, annealed by heating to 95oC for 5min, 

rapid cooling on ice and repeatedly exchanged into NMR buffer (15 mM sodium phosphate, 25 

mM sodium chloride, 0.1 mM EDTA, and pH ~ 6.4) using a Centricon Ultra-4 concentrator 

(Millipore Corp.). The concentration of NMR sample (~1mM) was measured using Nanodrop 

2000c spectrometer  (Thermo Scientific Inc.). 10% D2O was added into NMR sample after the 

measurement of NMR sample concentration. 
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4.2.2 NMR spectroscopy 

All NMR experiments were performed on Agilent 600MHz NMR spectrometer equipped 

with a 5mm triple-resonance cryogenic probe at 298K. All NMR spectra were processed using 

NMRPipe/NMRDraw, analyzed using NMRDraw and overlaid using Sparky. Resonance 

assignments for ESS3 (pH=5.5) were obtained from previous study1 and re-measured using non-

constant time 1H-13C and 1H-15N HSQC experiments. The J couplings in nucleobase and sugar 
1H–13C(15N) were measured from the difference between the upfield and downfield components 

of the 1H–13C(15N) doublet along the 1H dimension using the narrow transverse relaxation-

optimized spectroscopy (TROSY) component in the 13C(15N) dimension as implemented in 2D 
1H–13C(15N) S3CT-heteronuclear single-quantum correlation (HSQC) experiments for sample 

dissolved in isotropic NMR buffer. The J coupling plus residual dipolar coupling (D) for each 

resonance were measured by repeating the measurements described above for sample dissolved 

in anisotropic NMR buffer with Pf1 phage (25mg/mL). The RDCs of each resonance were then 

calculated from the difference between the couplings measured in isotropic and anisotropic 

samples.  

4.2.3 Analysis of measured RDCs 

A in-house program RAMAH18 was used to calculate the alignment tensor and 

corresponding predicted RDCs by fitting the measured RDCs to idealized A-form helices of 

ESS3 helix 1 and 2 (see Results and Discussion) and the Model 1 in the structural ensemble 

(PDB 2LDL) of ESS3 determined using NMR spectroscopy by Tolbert and co-workers1. The A-

form helices were generated using 3DNA (version 2.1)19 and the protons were added using 

REDUCE (version 3.23)20. SAS approach, as described in Chapter 1, was utilized to construct 

the dynamic ensembles of ESS3 using the measured RDCs. Two MD trajectories generated using 

AMBER 12 force field ff10 and Model 1 of the NMR structural ensemble of ESS3 as the starting 

coordinates were used as the conformation pool in determination of dynamic ensemble of ESS3: 

a 400ns trajectory without experimental constraints and a 535ns trajectory using previously 

measured NMR NOEs1 as experimental constraints that contain 400 and 535 conformations 

respectively. 
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4.3 Results and Discussion 

Prior NOE-based NMR studies of ESS3 indicated that at pH=5.5, A7 forms an A7+C21 

base pair while at higher pH = 6.5, this wobble base pair is deprotonated and this is coupled to 

the increased flexibility in the lower helix of ESS3 as measured by melting experiments1. For 

simplicity, we define the helix below A7C21 as helix 1 and the one above as helix 2 (Figure 

4.1A). Here, we carried out detailed NMR chemical shift mapping and RDC experiments to 

more quantitatively characterize the structural dynamics of ESS3 and the impact of changing pH 

in altering dynamics of ESS3. 

Chemical shift mapping experiments 

We prepared uniformly 13C/15N labeled samples of ESS3 (Figure 4.1) and confirmed the 

assignments previously published through the measurements of NOESY and 2D HCN 

experiments. In Figure 4.1, we compare the 2D HSQC spectra of ESS3 at pH=5.5 and 6.51. We 

observe the characteristic large changes in the chemical shift of A7-C2H2 upon lowering the pH 

that are consistent with protonation of adenine and formation of the A7+C21 base pair (Figure 

4.1). However, we also observed significant changes in chemical shifts for A7-C8H8, A7-

C1’H1’, C21-C5H5 and C21-C1’H1’ (Figure 4.1). Interestingly, the chemical shift perturbations 

are not localized at the A7-C21 base pair. Rather, we also observe significant perturbations at 

neighboring residues U8 (C5H5 and N3H3) and G22 (C8H8 and N1H1), which likely reflect a 

conformation change that accompanies formation of the A7+C21 wobble base pair and 

perturbations in the flexible apical loop adenines. 

In the imino-HSQC spectrum, we observed two additional resonances in the guanine 

region at pH=6.5, indicating that new base pair(s) forms at pH=6.5 (Figure 4.1C). Because all the 

resonances of guanines in helix 1 and 2 are accounted for in the imino-HSQC spectrum, these 

new resonances must either reflect new new base pair(s) in the apical loop of ESS3 or a minor 

species involving helical guanine residues possibly involving an alternative secondary structure 

for the destabilized lower helix.      
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Figure 4.1 Secondary structure and resonance assignments of ESS3. (A) Secondary structure 
of ESS3; (B)-(F): HSQC assignments of C2H2 (B); NH (imino)  (C); C6H6/C8H8 (D); C1’H1’ 
(E) and C5H5 (F) resonances. The questioning marks in (C) indicate the new guanine peaks in 
imino HSQC; the red circles indicate the significant changes of the chemical shift in A7 and 
C21. 
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G1(C1’H1’) -- 3.5 

G2(C8H8) 14.1 -- 

G2(N1H1) -1.9 -- 

U4(N3H3) -5.5 -9.6 

A7(C8H8) 38.1 32.8 

A7(C2H2) 35.9 -- 

A7(C1’H1’) -39.6 -44.8 

U8(C5H5) 22.8 24.4 

U8(N3H3) -12.8 -- 

U9(C6H6) 26.1 21.6 

U9(C5H5) 21.5 24.0 

U9(N3H3) -9.7 -13.5 

G11(C1’H1’) 0.6 -- 

A12(C8H8) 11.0 9.2 

A12(C2H2) 4.3 3.9 

A12(C1’H1’) -12.0 -11.0 

U13(C6H6) -- 4.8 

U13(C5H5) 11.9 11.7 

U14(C6H6) 6.3 5.4 

U14(C5H5) 5.0 2.2 

A15(C8H8) 13.1 11.1 

A15(C2H2) 11.8 10.3 

A15(C1’H1’) -1.5 -0.7 

G16(C8H8) 15.6 14.3 

U17(C6H6) 9.1 8.1 

U17(C1’H1’) -7.4 -6.3 

U17(C5H5) -1.7 -1.1 

G18(C8H8) 28.4 24.7 

G18(N1H1) -- -13.1 

A19(C2H2) 28.0 24.4 

A20(C8H8) 30.2 26.7 

A20(C2H2) 30.9 26.7 

C21(C6H6) 38.5 29.8 

C21(C1’H1’) -8.1 -7.4 

C21(C5H5) 22.1 -- 

G22(C8H8) 36.7 33.2 

G23(C8H8) 40.9 34.2 

G23(C1’H1’) -- -7.3 

G23(N1H1) -13.8 -- 
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U25(N3H3) -- -8.9 

Table 4.1 RDCs of ESS3 measured at 25oC under pH=5.5 and 6.5. 

  

RDC measurements 

To gain further insights into the structural dynamics of ESS3, we measured RDCs at pH 

= 5.5 and 6.5 using Pf1-phage as the ordering medium. In Figure 4.2, we compared the RDCs 

measured at the two pH conditions. We find very good agreement implying that formation of the 

A7+C21 base pair does not significantly affect the global structure and dynamics of ESS3. 

Nevertheless, we do note that the RDCs measured for residues A7 and C21 differ by >2 Hz 

possibly indicating a pH-dependent change in structure and/or dynamics at this wobble base pair. 

Examination of the measured RDCs at pH =5.5 and 6.5 as a function of the ESS3 

secondary structure reveals that large RDCs are consistently observed for the long helix 1. 

Relative to helix 1, RDCs measured in helix 2 are slightly smaller in magnitude, and 

substantially smaller for the apical loop residues at both pH=5.5 and 6.5 (Table 4.1 and Figure 

4.3). Surprisingly the magnitude of RDCs measured at A7 are inconsistently larger than 

counterparts measured in neighboring residues under both pH conditions, implying a unique 

local conformation of A7 in the A7-C21 base-pair. By contrast, the RDCs measured for C21 are 

consistent with counterparts measured in neighboring residues under both pH conditions, 

implying that C21 is less structurally perturbed relative to Watson-Crick geometry.  
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Figure 4.2 Correlation between RDCs measured under pH=5.5 and 6.5. Only the RDCs 
measured under both pH conditions are shown. 

 

To gain further insights into how the AC wobble base pair modifies or perturbs the A-

form helix of ESS3, we subjected all RDCs measured in the helix (excluding two terminal end 

base pairs) to an order tensor analysis utilizing an assumed idealized A-form helix. Prior studies 

have shown that the Watson-Crick base pairs surrounded by Watson-Crick base pairs can be 

accurately modeled using A-form helix geometry. Strikingly, for both pH conditions, we observe 

very poor correlation (RMSD = 5-8 Hz) between measured RDCs and values back-calculated 

using the best-fit order tensor implying that the A7+C21 wobble base pair induces structure 

and/or dynamic perturbations to the ESS3 helix. We therefore repeated the fit excluding RDCs 

measured for base pairs surrounding the A7+C21 base pair which deviate from A-form geometry 

due to the A7+C21 base pair as suggested by chemical shift mapping data. This leads to much 

better agreement with RMSD = 2.0 and 1.7 Hz at pH=5.5 and 6.5 respectively. This suggests that 

the non-terminal helical base pairs largely adopt A-form geometry and the A7+C21 wobble base 

pair induces perturbations to the A-form helix in a manner that is not strongly dependent upon 

pH. In principle, one can subject the upper and lower helix to independent order tensor analyses 

and thereby derive information about inter-helical structure and dynamics. However, severe 

overlap particular in the sugar moiety precluded measurement of sufficient RDCs for the short 

upper helix.  
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Figure 4.3 RDCs measured under pH=5.5 (purple) and 6.5 (orange) as a function of 
secondary structure of ESS3. 

 

To gain insights into the structural dynamics of the apical loop, we also carried out an 

order tensor analysis by fitting the RDCs measured in the upper helix and apical loop to the 

available NMR structure. Not too surprisingly, we observed a poor fit (RMSD=12.0Hz and 

10.6Hz for pH=5.5 and 6.5 respectively) most likely due to dynamics in the apical loop, which 

leads to attenuation of the measured RDCs. However, it was surprising that we obtained a poor 

fit to all RDCs against the NMR ESS3 structure even when excluding the apical loop 

(RMSD=8.7Hz and 10.0Hz for pH=5.5 and 6.5 respectively). These results suggest that there 

may be uncertainty in the NMR structure, including possibly dynamic contributions to the RDCs 

that need to be taken into account.   
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Figure 4.4 Ensemble size test for constructing population-weighted ensemble of ESS3. The 
r.m.s deviations between the measured and calculated RDCs averaged from ensembles 
constructed from (A) 400ns MD trajectory without experimental constraints and (B) 535ns MD 
trajectory using NMR NOEs as experimental constraints are plot as a function of ensemble sizes. 
Ensemble sizes N=1, 2, 3, 4, 5, 10, 20, 30, 40 and 100 are used in both tests. 

  

To characterize the reason for the large deviation in the fitting of RDCs to NMR 

structure, we implemented a series of SAS calculations using varied ensemble sizes (N ranges 

from 1 to 100) to select the optimized ensembles of distinct conformations from the two MD 

trajectories that minimize the deviation between the measured and calculated RDCs. This 

simulation is only implemented for RDCs measured under pH=5.5 at which is NMR structure of 

ESS3 is determined. The results reveal that for both MD trajectories, N=1 gives very large RDC 

deviations (>10Hz) and N~10 gives the smallest deviation (Figure 4.4), indicating that ESS3 

under pH=5.5 is nor certain rigid and cannot be described by a single static structure although the 

A7+C21 wobble base pair is protonated and stabilized under this pH condition. However, the 

smallest RDC deviation (~7Hz, Figure 4.4) remained substantially larger than the RDC 

uncertainty. These results strongly suggest that the starting NOE-based NMR structure is 

inaccurate and highlight the importance of having an accurate average structure in the ensemble 

determination process.  
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4.4 Conclusion 

We measured RDCs of ESS3 under pH=5.5 and 6.5 for characterizing its dynamics at 

both global and local levels. Our chemical shift mapping results clearly show the change of 

chemical shift of A7 and C21 involved in the pH-sensitive wobble base pair that is consistent 

with the prior study1. Great agreement was observed between the RDCs measured under pH=5.5 

and 6.5, indicating that the structure of ESS3 does not change significantly upon the increase of 

the pH although the A7+C21 wobble base pair is protonated and stabilized.  

Fitting the measured RDCs to idealized A-form geometry of ESS3 suggests that the 

Watson-Crick base pairs surrounded by other Watson-Crick base pairs largely adopt the 

idealized A-form geometry; while, however, the A7+C21 wobble base pair and its neighboring 

base pairs C6G22 and U8A20 deviate from idealized A-form geometry, which is consistent with 

the chemical shift mapping results. Fitting the measured RDCs to the NMR NOE-based structure 

of ESS3, either the whole structure of ESS3 including apical loop and all non-idealized base 

pairs or the idealized helical base pairs only, leads to very pool agreement between measured and 

back predicted RDCs, indicating that the determined NOE-based structure of ESS3 is inaccurate 

and needs to be refined using more experimental constraints e.g. both NOEs and RDCs. 

 We attempted to construct population-weighted dynamic ensemble of ESS3 using SAS 

approach and measured RDCs from MD trajectory generated with and without NMR NOEs. The 

results suggest that even under pH=5.5 in which case the A7+C21 wobble base pair is protonated 

and stabilized, ESS3 is not certainly rigid and cannot be described by one single static structure. 

In contrast, a larger ensemble size (N~10) yield the smallest RDC RMSD which is however still 

substantially larger than experimental uncertainty of RDCs and therefore disallows accurate 

construction of dynamic ensembles of ESS3. This is likely due to that the NMR NOE-based 

structure of ESS3 is inaccurate and thereby results in incorrect sampling of the MD simulation. 

Hence, to accurately construct the dynamic ensemble of ESS3, the three dimensional solution 

structure of ESS3 has to be first refined using both NOEs and RDCs that provides a better 

starting structure of MD simulation. A new MD trajectory should then be generated using this 
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more accurate structure of ESS3 followed by the construction of dynamic ensemble using SAS 

approach and measured RDCs. 
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    Chapter 5

Conclusions and Future Directions 

5.1 Conclusions and future directions 

Construction of population-weighted ensemble is an effective and feasible way to 

represent RNA dynamics1-3. The constructed ensemble of RNA not only provides a 

straightforward way to display the population distribution of various degrees of freedom of 

interest, but also provides a pool of structures that can be used for other studies such as RNA-

small-molecule docking4 or estimation of thermodynamic properties of RNA5.  

Successful construction of population-weighted ensemble of RNA requires at least three 

key factor3: (1) an efficient ensemble determination method; (2) properly selected experimental 

constraints that cover the timescale of the dynamics of interest; (3) a powerful method to 

evaluate the determined ensemble. This study utilizes the “sample and select” (SAS) 

approach1,2,6, which has proven to be sufficiently efficient for construction of population-

weighted ensembles for RNA.  The conformation pools used in our SAS approach from which 

the ensemble is selected are generated using either molecular dynamics (MD) simulation or RNA 

junction-topology constraints. MD generated conformation pools provide both global and local 

structural details but may suffer sampling imperfection2, which could disallow the native 

conformations to be selected in the SAS approach; junction-topology allowed space overcomes 

the sampling imperfection in MD generated conformation pool, samples each conformation in an 

equally-weighted and thereby unbiased manner and on average makes up only a small portion of 

all possible conformations (<10%), but so far it can only provide global structural information 

(e.g. inter-helical orientation distribution)7-9. Therefore the selection of conformation pool highly 

depends on the degrees of freedom that are of interest and sampling imperfection should be 

carefully tested no matter which conformation pool is used3. RDCs were incorporated in the SAS 
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approach as the experimental constraints for construction of dynamic ensembles of RNA not 

only because RDCs can capture dynamics of a broad timescale10 but also due to the fact that 

RDCs are particularly sensitive to both inter-helical orientations11-13 and local dihedral 

angles2,14,15, which are the focus of this study.  

However, to evaluate the predicted ensemble, although multiple metrics or methods have 

been developed including cross-validation16, Jensen-Shannon divergence17,18 and S-score19-21, 

they either cannot distinguish degenerate ensembles that reproduce RDCs yielding similar 

RMSD or cannot fully capture the structural similarities between ensembles. In Chapter 2, a new 

metric REsemble22 is developed, which can effectively capture the structural similarity between 

two ensembles by comparing the histogram distributions of specific degrees of freedom at 

systematically varied bin sizes. Different from conventional RMSD used for comparing two 

single static structures or ensemble RMSD (eRMSD) for comparing two conformational 

ensembles, REsemble metric does not pursue a pair-wise comparison of coordinates of atoms in 

terms of a single-value RMSD, but carries out the explicit comparisons of the distributions of 

degrees of freedom that the experimental constraints are sensitive to. In this case, REsemble can 

in fact rigorously evaluate the accuracy of each specific degree of freedom from the predicted 

ensemble. These evaluations can collectively report the overall similarity between target and 

predicted conformational ensembles and thereby the accuracy of the predicted dynamic 

ensemble. Although in this study, REsemble was used for comparing ensembles of orientation 

distributions only, it is generally applicable for comparing ensemble distributions of any degree 

of freedom.  

By using REsemble metric developed in Chapter 2, we successfully characterized two 

main factors that result in uncertainties in determination of dynamic ensembles of RNA in 

Chapter 3: experimental error and ensemble size used for constructing dynamic ensembles. In 

particular, our results suggest that dynamic ensembles should be determined using different 

ensemble sizes, instead of only using smallest ensemble size that reproduce the experimental 

data within errors as commonly used in previous studies. Although the ensembles predicted 

using different ensemble sizes probably have similar features, they may encode distinct 
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information of thermodynamic or kinetic properties due to the distinct sampling schemes yielded 

from different ensemble sizes (e.g. small ensemble sizes give more discrete ensemble 

distributions while large ensemble sizes result in more continuous ensemble distributions). 

Thereby, it is important and necessary to further distinguish the ensembles predicted using 

different ensemble sizes using other experimental data. Although in Chapter 3, we focused on the 

analysis of a simplified helix-junction-helix (HJH) model of RNA7-9, the conclusions drawn 

above are generally applicable to any biomolecules.  

In Chapter 4, we carefully measured RDCs of ESS3 under pH=5.5 and 6.5 and attempted 

to determine the atomic-resolution dynamic ensemble of exon splicing silencer 3 (ESS3) of HIV 

1 RNA using the SAS approach, the measured RDCs and different ensemble sizes as suggested 

in Chapter 3. However the fitting of measured RDCs to previously determined solution structure 

of ESS323 reveals very poor agreement likely due to the inaccuracies in the starting NOE-based 

NMR structure. Therefore, to more accurately determine the atomic-resolution dynamic 

ensemble of ESS3, refinement of the NMR structure of ESS3 using combined NOEs and RDCs 

has to be implemented and the resulting structure should be used for MD simulations to generate 

a better-sampled conformational pool for SAS analysis.  

Future studies should focus on addressing remaining limitations in determination and 

evaluation of dynamic ensembles of RNA. Although we have focused on NMR RDCs, there are 

many other sources of data that can be used for determination of dynamic ensembles of 

biomolecules. For example, Al-Hashimi and co-workers have attempted to determine the 

dynamic ensemble of apical loop of HIV 1 TAR using chemical shifts (CS)20; Clore and co-

worker reported determined dynamic ensembles of several proteins using paramagnetic 

relaxation enhancement data (PREs)24,25; Wang and Herschlag were able to construct dynamic 

ensemble of RNA and DNA using conventional and recently developed Au- small angle X-ray 

scattering data (SAXS) respectively26-28; and as a recent major breakthrough, Cheng and co-

workers developed a new electron detection technique as well as a new image processing 

algorithm for Cryo-electron microscopy (Cryo-EM) method29-31 that allow the determination of 

structures of small membrane proteins at near atomic-resolution, which can be potentially used to 
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determine dynamic ensembles of proteins and nucleic acids by simply “counting” flash frozen 

conformations. Although the biophysical techniques mentioned above have yielded many 

encouraging results, they were mostly used as the only experimental constraint in determination 

of dynamic ensembles, which can easily lead to degeneracies that are hard to eliminate. This is 

because a single type of experimental constraint is only sensitive to a specific type of degree of 

freedom or dynamics within narrow time scales, which could severely bias the selection of 

ensemble conformations. Hence combinatorial use of different biophysical techniques is critical 

for construction of comprehensive dynamic ensembles of biomolecules that can represent a 

variety of degrees of freedom as well as dynamics of broader time scales. Two straightforward 

combinations of experimental constraints that are worth attempting in the SAS approach are 

RDCs + CS and RDCs + Au-SAXS: the former combination allows the predicted ensembles to 

be sensitive to both global dynamics probed by RDCs and local dynamics probed by CS; the 

latter combination allows the predicted ensembles to be sensitive to both orientations probed by 

RDCs and translations probed by Au-SAXS data, which can dramatically enhance the spatial 

resolution of the predicted ensemble.  

The REsemble approach for evaluating predicted ensembles can also be further improved 

especially for angular degrees of freedom (e.g. dihedral angles), which may encounter the 

boundary problem. The angles were binned from 0 to 360 degrees using systematically varied 

bin sizes in current study, however it should be noted that angles around the boundary (e.g. 0 and 

360 degrees) could represent very similar or identical conformations that is indistinguishable in 

the current binning scheme. A possible way to overcome this boundary problem is to represent 

the distributions of angles using systematically varied origins (and thereby boundaries), apply 

REsemble to each representation of the distributions and adopt the representation that reports the 

highest similarity. A more straightforward way that can possibly overcome the boundary 

problem is to bin the angles in a circular manner if feasible, in which the boundaries are 

connected and thereby the similarity between these boundary values can be directly captured.  

Another important future direction is to calculate the thermodynamic properties of RNA, 

especially conformational entropy, from determined population-weighted dynamic ensembles. 
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Although previous studies by Wand and co-workers have rigorously shown the relationship 

between order parameters and conformational entropy32 that allows estimation of entropy of 

protein-protein recognition process, this method is still largely empirical and requires many 

theoretical assumptions. As the ensemble determined from our study is population-weighted, it is 

possible for us to develop a more rigorous method to calculate or estimate thermodynamic 

properties from the population distribution of conformations using information theory. Direct 

calculation of free energy from population-weighted ensembles is expected to be challenging, 

because the reference zero energy level of a RNA molecule is uncertain and it is also very 

difficult if not impossible to estimate the reference levels for different RNA molecules involved 

in one process or reaction. However calculation of the conformational entropy of each RNA 

molecule from the corresponding population-weighted ensembles using information theory is 

easier and more practical, because it does not involve the reference zero energy level. To validate 

the calculated entropy, it can be compared to results of isothermal titration calorimetry (ITC) 

experiments, which can simultaneously measure change of entropy, enthalpy and Gibbs free 

energy of a chemical reaction. Understanding conformational entropy of RNA in a predictable 

way from accurately determined population-weighted ensembles will greatly aid our 

understanding of how RNA functions especially for the processes that are hard to detect from 

experiments. 

Finally, the solution structure of ESS3 has to be re-defined using both NOEs and RDCs. 

MD simulations should be carried out using the new solution structure of ESS3 as the starting 

coordinates. The same procedure for testing the accuracy of the structure of ESS3 and the 

sampling of MD trajectory as shown in Chapter 4 should be implemented before using the SAS 

approach to determine the population-weighted ensembles of ESS3. Thus far, RDCs were only 

measured under pH=5.5 and 6.5 and we plan to measure RDCs of ESS3 at pH=7.5 as well to 

probe the dynamic behavior of ESS3 at a pH value that is higher than the pKa of adenine in 

A7+C21 wobble base pair, ensuring the deprotonation of A7 and thereby opening of A7+C21 

wobble base pair. This can be used as a control to clearly show the change of structure and 

dynamics of ESS3 from low to high pH conditions. Population-weighted dynamic ensembles of 

ESS3 under different pH conditions should be determined and compared to expose the change of 
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both inter-helical and local dynamics of ESS3. Specific focus should be on the local structure 

and dynamics of A7+C21 wobble base pair and its neighboring base pairs upon change of pH 

conditions, which likely trigger the change of ESS3 dynamics. Using the determined dynamic 

ensembles of ESS3 as a structural pool, it will be possible to carry out in silico drug screening 

targeting at ESS3, which can potentially aid the development of HIV gene therapy in the future.  
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Appendix 1 

Sample and Select (SAS) Approach 

%{ 
 
USAGE EXPLANATION  
 
This is the main program for SAS.              
pool: the structural pool 
rdc_pool: the rdc pool corresponding to the structural pool 
rdc_ave: input rdcs 
  
%} 
function run_run_RDC_fitting_Szz_off(pool,rdc_pool,rdc_ave)     
     
     
    simu_test=input('Is this a simulation test? y/n [y]   ','s');   
% input the type of calculation, either simulation test (y) or experimental determination (n)  
    if isempty(simu_test) 
         
        simu_test='y'; 
         
    end 
  
    if simu_test=='y'   % Simulation test 
         
        ens_size=input('What is the ensemble size (N)?   '); 
        num_cycles=input('How many cycles will be run?   '); 
        error_sigma=input('What is the RDC error (in Hz)?   '); 
         
        disp('Simulation starts'); 
         
        info=run_RDC_fitting_Szz_off_flex_algn(pool,rdc_pool,ens_size,num_cycles,rdc_ave,error_sigma);   
% implementation of SAS and retrieve the information from SAS  
        ens_pred=info.ens;    % ens_pred is the predicted ensemble 
        ens_serial_num=info.serial_num;  
% ens_serial_num list the serial number of each conformation in ens_pred 
     
        disp('Simulation done!'); 
         
        save output_ensemble.txt ens_pred -ASCII -TABS  
% save predicted ensemble; output_ensemble.txt is the name of the saved predicted ensemble that upon change by 
users 
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        save output_ensemble_serial_number.txt ens_serial_num -ASCII -TABS  
% save serial number of each conformation; output_ensemble_serial_number.txt is the name of the saved serial 
numbers that upon change by users 
       
    else 
         
        if simu_test=='n'  % Experimental determination 
             
            ens_size=input('What is the ensemble size (N)?   '); 
            num_cycles=input('How many cycles will be run?   '); 
             
            disp('Prediction starts'); 
    
            info=run_RDC_fitting_Szz_off(pool,rdc_pool,ens_size,num_cycles,rdc_ave);  
% implementation of SAS and retrieve the information from SAS  
            ens_pred=info.ens;    % ens_pred is the predicted ensemble 
            ens_serial_num=info.ens_serial_num;  
% ens_serial_num list the serial number of each conformation in ens_pred 
     
            disp('Prediction done!'); 
             
            save output_ensemble.txt ens_pred -ASCII -TABS  
% save predicted ensemble; output_ensemble.txt is the name of the saved predicted ensemble that upon change by 
users 
            save output_ensemble_serial_number.txt ens_serial_num -ASCII -TABS  
% save serial number of each conformation; output_ensemble_serial_number.txt is the name of the saved serial 
numbers that upon change by users 
             
        else 
         
            disp('Calculation must be either simulation test (simu_test=y) or real prediction (simu_test=n)!');  
% calculation must be either simulation test or experimental determination, otherwise error is reported 
             
        end 
         
    end 
 
end 
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%{ 
 
USAGE EXPLANATION  
 
pool: the structural pool 
rdc_pool: the rdcs for each conformation in the entire pool 
ens_size: number of conformation in each selected subset (N) 
num_cycles: iterations the SAS will be run 
rdc_noerr: averaged rdcs without assigning any uncertainty 
error_sigma: standard deviation of distribution in error_file 
  
  
rdcs are differetially error corrupted for each SAS iteration 
  
%} 
  
  
  
function info=run_RDC_fitting_Szz_off_flex_algn(pool,rdc_pool,ens_size,num_cycle,rdc_noerr,error_sigma)   
  
    num_rdc=length(rdc_pool(:,1)); % number of rdcs for each conformation 
    ens=zeros(1,length(pool(1,:))); % initialization of predicted ensemble 
    serial_num=0; % initialization of serial number of conformations 
      
    %-----assign error array from which the error values will be selected ------% 
      
    error_file=normrnd(0,error_sigma,10000,1); 
    [mu sigma]=normfit(error_file); 
     
    while (abs(mu)>0.01)||(abs(sigma-error_sigma)>0.05) 
         
        error_file=normrnd(0,error_sigma,10000,1); 
        [mu sigma]=normfit(error_file); 
         
    end 
     
    %----error array is constructed----% 
     
     
    %---- this for loop goes over all SAS iterations ----% 
    for i=1:1:num_cycle 
         
        rdc_err=err_corruption_flex_algn(rdc_noerr,num_rdc,error_file,error_sigma); % assign RDC error  
        RMSD_threshold=sqrt(mean((rdc_noerr-rdc_err).^2)); % real rdc RMSD 
        temp=RDC_fitting_Szz_off_flex_algn(pool,rdc_pool,ens_size,rdc_err);  
% implementation of SAS and retrieve the information from SAS  
        ens_temp=temp.ens; % predicted ensemble 
        ens_rmsd=temp.RMSD; % rdc RMSD from selected ensemble subset 
        ens_serial_num=temp.selected_states; % serial number of each conformation in ensemble 
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        %---- determine whether RMSD is smaller than or equal to real RMSD; 0.001 is added to real RMSD to 
prevent digital error from MATLAB ----%  
        if ens_rmsd<=RMSD_threshold+0.001 
             
            ens=[ens;ens_temp]; 
            serial_num=[serial_num;ens_serial_num]; 
             
        end 
         
        if mod(i,10)==0 
             
            disp(i/10); 
             
        end 
         
    end 
     
    ens(1,:)=[]; % finalization of predicted ensemble 
    serial_num(1)=[]; % finalization of serial number of conformations 
     
    %---- info is the output structure containing both predicted ensemble and serial numbers ----% 
    info.ens=ens; 
    info.serial_num=serial_num; 
  
end 
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%{ 
 
USAGE EXPLANATION  
           
pool: the structural pool 
rdc_pool: the rdc pool corresponding to the structural pool 
ens_size: number of conformation in each selected subset (N) 
num_cycle: iterations the SAS will be run 
rdc_ens: input rdcs 
%} 
 
function info=run_RDC_fitting_Szz_off(pool,rdc_pool,ens_size,num_cycle,rdc_ens)   
  
    ens=zeros(1,3);  % initialization of predicted ensemble 
    ens_serial_num=0; % initialization of serial number of conformations 
    num_rdc=length(rdc_pool(:,1)); % number of rdcs for each conformation 
  
    %---- this for loop goes over all SAS iterations ----% 
    for i=1:1:num_cycle 
         
        temp=RDC_fitting_Szz_off(pool,rdc_pool,ens_size,rdc_ens);  
% implementation of SAS and retrieve the information from SAS  
        ens_temp=temp.ens; % predicted ensemble 
        ens_serialnum=temp.selected_states; % serial number of each conformation in ensemble 
        ens=[ens;ens_temp]; 
        ens_serial_num=[ens_serial_num;ens_serialnum]; 
         
        if mod(i,10)==0 
             
            disp(i/10); 
             
        end 
         
    end 
     
    ens(1,:)=[];  % finalization of predicted ensemble 
    ens_serial_num(1)=[]; % finalization of serial number of conformations 
     
    %---- info is the output structure containing both predicted ensemble and serial numbers ----% 
    info.ens=ens; 
    info.ens_serial_num=ens_serial_num; 
  
end 
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%{ 
 
USAGE EXPLANATION  
 
pool: the structural pool 
rdc_pool: the rdcs for each conformation in the entire pool 
ens_size: number of conformation in each selected subset (N) 
rdc_ens: input rdcs 
  
%} 
 
function info=RDC_fitting_Szz_off_flex_algn(pool,rdc_pool,ens_size,rdc_ens)   
 
    tic; 
    num_bond_vectors=length(rdc_pool(:,1)); % number of rdcs (bond_vectors) in input rdc vector 
    total_snapshots=length(pool(:,1)); % number of conformations in structural pool 
    ensemble_size=ens_size; % ensemble size 
    T_effective_intial=1; % initial temperature of Simulated Annealing scheme 
    MC_steps=2000; % Monte Carlo steps implemented at each effective temperature 
    number_T_increments=100; % number of effective temperatures will be used in SA scheme 
    C_pro=0.90; % scaling factor of effective temperature 
   
    selected_array_old=floor(total_snapshots*rand(ensemble_size,1))+1; % randomly select initial ensemble subset 
  
    D_ij_exp=rdc_ens;% input rdcs 
    
    pre_D_ij_cal=zeros(num_bond_vectors,1); 
     
    %---- this for loop calculate the rdcs of the initial ensemble subset ----%       
    for jjj=1:1:ensemble_size 
                 
        selected_snapshot=selected_array_old(jjj); 
        pre_D_ij_cal=pre_D_ij_cal+rdc_pool(:,selected_snapshot); 
          
    end 
          
    D_ij_cal=pre_D_ij_cal/ensemble_size; 
  
    %---- calculate the panelty function between input and calculated rdcs ----% 
    X2_old=sum((D_ij_cal-D_ij_exp).^2);  
    X2_old=X2_old/(num_bond_vectors); 
  
    T_effective=T_effective_intial; 
     
    %---- the two-fold for loop implement SAS; mm loop goes over effective temperatures; m loop goes over MC 
steps ----%  
     
    for mm=1:1:number_T_increments 
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       for m=1:1:MC_steps 
            
           %---- randomly select a snapshot in the ensemble to be changed ----% 
             
           rand_int=floor(ensemble_size*rand())+1; 
           old_snapshot=selected_array_old(rand_int); 
            
           k=1; 
            
           %---- this while loop replace one conformation in selected 
           %subset by one conformation in the rest of the pool ----% 
            
           while k==1 
               
              rand_int_2=floor(total_snapshots*rand())+1; % randomly select a snapshot to replace  
                
              %---- check whether the selected ensemble is already in ensemble or not ----% 
               
              k=0; 
               
              for j=1:1:ensemble_size 
                   
                  random_test=selected_array_old(j); 
                  if rand_int_2==random_test 
                       
                     k=1; 
                     break; 
                       
                  end 
                   
              end 
                
           end 
            
           new_snapshot=rand_int_2; 
  
           pre_D_ij_cal=pre_D_ij_cal-rdc_pool(:,old_snapshot)+rdc_pool(:,new_snapshot);  
% calculate rdcs of new ensemble 
  
           D_ij_cal_new=pre_D_ij_cal/ensemble_size; 
  
                 
           X2_new=sum((D_ij_cal_new-D_ij_exp).^2); % new scaling factor 
           X2_new=X2_new/(num_bond_vectors); 
            
           r=rand(); % random number between 0 and 1  
       
           if X2_new<=X2_old % accept move if X2_new<X2_old   
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                X2_old=X2_new; 
                    
                selected_array_old(rand_int)=new_snapshot; 
                                               
                D_ij_cal=D_ij_cal_new;  
  
           else  
                       
                if exp((X2_old-X2_new)/T_effective)>r % if X2_new>X2_old, accept if MC_probability<r   
                           
                    X2_old=X2_new; 
                           
                    selected_array_old(rand_int)=new_snapshot;  
                           
                    D_ij_cal=D_ij_cal_new;     
                           
                else 
  
                    pre_D_ij_cal=pre_D_ij_cal+rdc_pool(:,old_snapshot)-rdc_pool(:,new_snapshot);   
% reject the move and resume the calculated rdcs 
  
                end 
  
           end 
            
       end 
               
       T_effective=T_effective*C_pro; % change the effective temperature by multiplying scaling factor to the current 
temperature 
         
       if mod(mm,10)==0 
            
           fprintf('%d',mm/10); 
           fprintf(1,'  '); 
            
       end 
    end 
    disp('\n'); 
  
  
    selected_states=pool(selected_array_old,:); 
  
    disp('X2= '); 
    RMSD=sqrt(X2_old); 
    disp(RMSD); % display rdc RMSD 
     
    %---- display the ensemble when N is smaller than or equal to 10 ----%  
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    if ens_size<=10 
            
        disp(selected_states); 
        
    end 
     
    %---- retrive the information of the predicted ensemble ----% 
    info.RMSD=RMSD; 
    info.ens=selected_states; 
    info.selected_states=selected_array_old; 
    info.D_ij_cal=D_ij_cal; 
    
    toc; 
  
end 
 

 

%{ 
 
USAGE EXPLANATION  
  
pool: the structural pool 
rdc_pool: the rdcs for each conformation in the entire pool 
ens_size: number of conformation in each selected subset (N) 
rdc_ens: input rdcs 
  
%} 
  
function info=RDC_fitting_Szz_off(pool,rdc_pool,ens_size,rdc_ens)  
  
    tic; 
     
    num_bond_vectors=length(rdc_ens(:,1)); % number of rdcs (bond_vectors) in input rdc vector 
    total_snapshots=length(pool(:,1));  % number of conformations in structural pool 
    ensemble_size=ens_size; % ensemble size 
    T_effective_intial=1; % initial temperature of Simulated Annealing scheme 
    MC_steps=2000; % Monte Carlo steps implemented at each effective temperature 
    number_T_increments=100; % number of effective temperatures will be used in SA scheme 
    C_pro=0.90; % scaling factor of effective temperature 
  
    D_ij_exp=rdc_ens; % input rdcs 
   
    D_ij_pool=rdc_pool; % rdc pool 
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    selected_array_old=floor(total_snapshots*rand(ensemble_size,1))+1; % randomly select initial ensemble subset 
  
    pre_D_ij_cal=zeros(num_bond_vectors,1); 
     
    %---- this for loop calculate the rdcs of the initial ensemble subset ----%         
    for jjj=1:1:ensemble_size 
                 
        selected_snapshot=selected_array_old(jjj); 
        pre_D_ij_cal=pre_D_ij_cal+D_ij_pool(:,selected_snapshot); 
             
    end 
          
    D_ij_cal=pre_D_ij_cal/ensemble_size; 
         
    L_old=sum(D_ij_exp.*D_ij_cal)/sum(D_ij_cal.^2);   % scaling factor between input and calculated rdcs 
     
    %---- calculate the penalty function between input and calculated rdcs ----% 
    X2_old=sum((D_ij_cal*L_old-D_ij_exp).^2);  
    X2_old=X2_old/(num_bond_vectors); 
  
  
  
    T_effective=T_effective_intial; 
     
    %---- the two-fold for loop implement SAS; mm loop goes over effective temperatures; m loop goes over MC 
steps ----%  
     
    for mm=1:1:number_T_increments 
         
       for m=1:1:MC_steps 
            
           %---- randomly select a snapshot in the ensemble to be changed ----% 
             
           rand_int=floor(ensemble_size*rand())+1; 
           old_snapshot=selected_array_old(rand_int); 
            
           k=1; 
            
           %---- this while loop replace one conformation in selected 
           %subset by one conformation in the rest of the pool ----% 
            
           while k==1 
  
              rand_int_2=floor(total_snapshots*rand())+1; % randomly select a snapshot to replace  
                
              %---- check whether the selected ensemble is already in ensemble or not ----% 
               
              k=0; 
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              for j=1:1:ensemble_size 
                   
                  random_test=selected_array_old(j); 
                  if rand_int_2==random_test 
                       
                     k=1; 
                     break; 
                       
                  end 
                   
              end 
                
           end 
            
           new_snapshot=rand_int_2; 
                          
           pre_D_ij_cal=pre_D_ij_cal-D_ij_pool(:,old_snapshot)+D_ij_pool(:,new_snapshot); 
% calculate rdcs of new ensemble 
           D_ij_cal_new=pre_D_ij_cal/ensemble_size; 
   
           L_new=sum(D_ij_exp.*D_ij_cal_new)/sum(D_ij_cal_new.^2);   % new scaling factor 
        
           X2_new=sum((D_ij_cal_new*L_new-D_ij_exp).^2); % new penalty function      
           X2_new=X2_new/(num_bond_vectors); 
                  
                   
           r=rand(); % random number between 0 and 1  
       
                   
           if X2_new<=X2_old % accept move if X2_new<X2_old   
                       
                X2_old=X2_new;     
                selected_array_old(rand_int)=new_snapshot;                             
                D_ij_cal=D_ij_cal_new;  
                L_old=L_new;     
    
           else  
                       
                if exp((X2_old-X2_new)/T_effective)>r % if X2_new>X2_old, accept if MC_probability<r   
                           
                    X2_old=X2_new; 
                           
                    selected_array_old(rand_int)=new_snapshot;  
                           
                    D_ij_cal=D_ij_cal_new; 
                    L_old=L_new;    
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                else 
              
                    pre_D_ij_cal=pre_D_ij_cal+D_ij_pool(:,old_snapshot)-D_ij_pool(:,new_snapshot); % reject the move 
and resume the calculated rdcs 
                     
                end 
         
          end 
            
       end 
               
       T_effective=T_effective*C_pro; % change the effective temperature by multiplying scaling factor to the current 
temperature 
         
       if mod(mm,10)==0 
            
           fprintf('%d',mm/10); 
           fprintf(1,'  '); 
            
       end 
        
    end 
     
    disp('\n'); 
  
    selected_states=pool(selected_array_old,:);  
    disp('X2= '); 
    RMSD=sqrt(X2_old); % display rdc RMSD 
    disp(RMSD); 
     
    %---- display the ensemble when N is smaller than or equal to 10 ----%  
    if ens_size<=10 
            
            disp(selected_states); 
        
    end 
     
    %---- retrive the information of the predicted ensemble ----% 
    info.RMSD=RMSD; 
    info.ens=selected_states; 
    info.selected_states=selected_array_old; 
    info.D_ij_cal=D_ij_cal; 
    info.L=L_old; 
     
    toc; 
   
end 
 



106  

  

%{ 
 
USAGE EXPLANATION  
  
This program is for assigning uncertainty to input rdcs 
  
rdcs_exp: input averaged rdcs 
num_rdcs: number of rdcs  
err_E1: input error pool 
sigma: standard deviation of distribution in error_file 
  
  
rdcs are differentially error corrupted for each SAS iteration 
  
%} 
 
function rdcs_exp_err=err_corruption_flex_algn(rdcs_exp,num_rdc,err_E1,sigma) 
  
    num_bv_E1=num_rdc;  
   
    num_err_E1=length(err_E1);     
  
         
    error=zeros(num_bv_E1,1);  % initialization of assigned error  
     
     
    error_E1=err_E1(floor(num_err_E1*rand(num_bv_E1,1))+1); % assign uncertainty 
       
    %---- this while loop determines the accuracy of the assigned 
    %uncertainty; generated uncertainty must have the standard deviation 
    %differing from sigma by less than 0.05 Hz 
    while std(error_E1,1)<(sigma-0.05)||std(error_E1,1)>(sigma+0.05) 
         
        error_E1=err_E1(floor(num_err_E1*rand(num_bv_E1,1))+1); 
         
    end 
         
    error=[error error_E1]; 
  
    error(:,1)=[]; % finalization of assigned uncertainty 
    
    rdcs_exp_err=rdcs_exp+error; % assign uncertainty to input rdcs 
 end 
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Appendix 2 

REsemble Algorithm for Measuring Ensemble Similarity 
 

 
 
%{ 
 
USAGE EXPLANATION  
 
Below are REsemble algorithm for inter-helical orientaion  
This is main program for REsemble algorithm for inter-helical orientation  
ens_ref_0: reference ensemble of interhelical orientation 
ens_pred_0: predicted ensemble of interhelical orientation 
  
%} 
 
function reso_record=resolution_calc(ens_ref_0,ens_pred_0)   
    tic; 
    reso_candid=[5 10 15 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180]; % bin width used for 
binning 
    length_reso_candid=length(reso_candid); % number of bin widths that will be used 
    reso_index=1;  
    current_JSD=2;  
    ens_ref=bin_ensemble(ens_ref_0); % pre-bin the ensemble to the grids  
    ens_pred=bin_ensemble(ens_pred_0);  
  
    threshold_JSD=0; 
    reso_record=[reso_candid' zeros(length_reso_candid,1)]; % initialization  
     
    s=1; 
    %---- this while loop goes over all bin widths until JSD is smaller than the threshold ----%  
    while current_JSD>threshold_JSD 
         
        current_reso=reso_candid(reso_index); 
         
        current_JSD=ens_sax_jsd_bin(ens_ref,ens_pred,5,current_reso);  
        reso_record(s,2)=current_JSD; 
        reso_index=reso_index+1;  
        if current_reso==180 
             
            break; 
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        end 
        s=s+1; 
        
    end 
  
    toc; 
  
end 
 

%{ 
 
USAGE EXPLANATION  
 
ens_1, ens_2: two interhelical ensembles upon comparison 
bd: smallest bin width used; the binning grid will be gone over using this bin width 
sax_bd: bin width used for binning according to single axis rotation amplitude  
  
%} 
 
function JSD=ens_sax_jsd_bin(ens_1,ens_2,bd,sax_bd)     
% this program will calculate JSD between ensemble 1 and 2 using bin width sax_bd in term of single axis rotation 
  
    bin_width=bd; 
    sax_bin_width=sax_bd; 
    L_ens_1=length(ens_1(:,1)); 
    L_ens_2=length(ens_2(:,1)); 
  
    a_min=min([min(ens_1(:,1)),min(ens_2(:,1))]); 
    a_max=max([max(ens_1(:,1)),max(ens_2(:,1))]); 
    b_min=min([min(ens_1(:,2)),min(ens_2(:,2))]); 
    b_max=max([max(ens_1(:,2)),max(ens_2(:,2))]); 
    g_min=min([min(ens_1(:,3)),min(ens_2(:,3))]); 
    g_max=max([max(ens_1(:,3)),max(ens_2(:,3))]); 
     
    n_a=floor((a_max-a_min)/bin_width)+1; 
    n_b=floor((b_max-b_min)/bin_width)+1; 
    n_g=floor((g_max-g_min)/bin_width)+1; 
    
    a_max=a_min+bin_width*n_a; 
    b_max=b_min+bin_width*n_b; 
    g_max=g_min+bin_width*n_g; 
   
    a=a_min:bin_width:a_max;  
    b=b_min:bin_width:b_max;  
    g=g_min:bin_width:g_max;  
  
    n_states=n_a*n_b*n_g; 
    population=zeros(2,n_states); 



109  

  

  
    j=1; 
    for i_a=1:1:n_a 
         
        if isempty(ens_1)&&isempty(ens_2) 
                    
                   break; 
                    
        else 
         
            for i_b=1:1:n_b 
             
                if isempty(ens_1)&&isempty(ens_2) 
                    
                    break; 
                    
                else 
             
                    for i_g=1:1:n_g 
                 
                        if isempty(ens_1)&&isempty(ens_2) 
                    
                            break; 
                    
                        else 
  
                            pre_p_1=strmatch([a(i_a) b(i_b) g(i_g)],ens_1); 
                            p_temp_1=length(pre_p_1); 
  
                            pre_p_2=strmatch([a(i_a) b(i_b) g(i_g)],ens_2); 
                            p_temp_2=length(pre_p_2); 
                 
                            if p_temp_1==0&&p_temp_2==0 
                         
                                continue; 
                         
                            else 
  
                                pre_p_1=sax_ens([a(i_a) b(i_b) g(i_g)],ens_1,sax_bin_width);    

%all conformers within single axis bin width are included 
                                pre_p_1_temp=length(pre_p_1); 
                                p_temp_1=pre_p_1_temp; 
  
                                ens_1(pre_p_1,:)=[]; % any counted conformers are deleted 
  
                                pre_p_2=sax_ens([a(i_a) b(i_b) g(i_g)],ens_2,sax_bin_width);    

%all conformers within single axis bin width are included 
                                pre_p_2_temp=length(pre_p_2); 
                                p_temp_2=pre_p_2_temp; 
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                                ens_2(pre_p_2,:)=[];   % any counted conformers are deleted 
  
                                population(1,j)=p_temp_1; 
                                population(2,j)=p_temp_2; 
                     
                            end 
                     
                            j=j+1; 
                 
                        end 
                 
                    end 
             
                end 
             
            end 
         
        end 
         
                 
    end 
     
    %---- calculation of JSD ----% 
    population(1,:)=population(1,:)/L_ens_1; 
    population(2,:)=population(2,:)/L_ens_2; 
     
    P_1=population(1,:); 
    P_2=population(2,:); 
    P_12=mean(population); 
    S_1=0; 
    S_2=0; 
    S_12=0; 
    for i=1:1:n_states 
         
        if P_1(i)>0 
             
            S_1=S_1-P_1(i)*log2(P_1(i)); 
             
        end 
         
        if P_2(i)>0 
             
            S_2=S_2-P_2(i)*log2(P_2(i)); 
             
        end 
         
        if P_12(i)>0 
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            S_12=S_12-P_12(i)*log2(P_12(i)); 
             
        end 
     
    end 
     
    JSD=sqrt(S_12-0.5*S_1-0.5*S_2); 
    
end 
 

 

%{ 
 
USAGE EXPLANATION  
  
ensemble: input ensemble 
  
%} 
  
function ens_new=bin_ensemble(ensemble)  
% this program will put all off-grid conformations to the closest binning grid 
  
    L_ens=length(ensemble(:,1)); 
    ens_new=[0 0 0]; 
     
    for i=1:1:L_ens 
         
       current_state=ensemble(i,:); 
       a=current_state(1); 
       b=current_state(2); 
       g=current_state(3); 
        
       if mod(a,5)==0&&mod(b,5)==0&&mod(g,5)==0 
         
            ens_new=[ens_new;a b g]; 
            continue; 
             
       else 
            
          a_min=5*floor(a/5); 
          b_min=5*floor(b/5); 
          g_min=5*floor(g/5); 
           
          bin_cand=[a_min b_min g_min;a_min+5 b_min g_min; 
              a_min b_min+5 g_min;a_min b_min g_min+5; 
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              a_min+5 b_min+5 g_min;a_min+5 b_min g_min+5; 
              a_min b_min+5 g_min+5;a_min+5 b_min+5 g_min+5]; 
           
          single_axis=0; 
           
          for j=1:1:8 
               
              sax=single_axis_R(bin_cand(j,1),bin_cand(j,2),bin_cand(j,3),a,b,g); 
              single_axis=[single_axis;sax]; 
               
          end 
           
          single_axis(1)=[]; 
          single_axis_min=min(single_axis); 
           
          bin_min=find(single_axis==single_axis_min); 
           
          ens_new=[ens_new;bin_cand(bin_min(1),:)];  
            
       end 
 
end 
 
ens_new(1,:)=[]; 
 
end 
 

 

%{ 
 
USAGE EXPLANATION  
  
a1, b1, g1: rotation angle of conformation 1 (a1, b1, g1) 
a2, b2, g2: rotation angle of conformation 2 (a2, b2, g2) 
  
%} 
  
function theta=single_axis_R(a1,b1,g1,a2,b2,g2)  
% output amplitude of single axis rotation between (a1, b1, g1) and (a2, b2, g2) 
  
    R1_A=rotation(-g1,-b1,-a1);     
    R2=rotation(a2,b2,g2); 
  
    R_total=R1_A*R2; 
     
    theta=acos(0.5*(R_total(1,1)+R_total(2,2)+R_total(3,3)-1))*180/pi; 
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end 
 

%{ 
 
USAGE EXPLANATION  
 
state: current binning grid 
ensemble: the ensemble (distribution) that needs to be binned 
bin_width: width used for binning 
  
%} 
 
function subset_match=sax_ens(state,ensemble,bin_width) % bin all the conformations in ensemble that have the 
amplitude of single axis rotation smaller than bin width to the current binning grid  
  
    L_ens=length(ensemble(:,1)); 
    subset_match=0; 
     
    for i=1:1:L_ens 
         
        if strmatch([200 200 200],ensemble(i,:)) 
             
            continue; 
             
        else 
             
            theta=single_axis_R(state(1),state(2),state(3),ensemble(i,1),ensemble(i,2),ensemble(i,3)); 
             
            if theta<bin_width+0.1 
                 
                subset_match=[subset_match;i]; 
                 
            end 
             
        end 
          
    end 
     
    subset_match(1)=[]; 
  
end 
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%{ 
 
USAGE EXPLANATION  
  
alpha, beta, gamma: Euler rotation angles 
  
%} 
  
function rot=rotation(alpha,beta,gamma) % construct Euler rotation matrix 
  
    a=alpha/180*pi; 
    b=beta/180*pi; 
    g=gamma/180*pi; 
     
    rot_a=[cos(a) -sin(a) 0;sin(a) cos(a) 0;0 0 1]; 
    rot_b=[cos(b) 0 sin(b);0 1 0;-sin(b) 0 cos(b)]; 
    rot_g=[cos(g) -sin(g) 0;sin(g) cos(g) 0;0 0 1]; 
  
    rot=rot_a*rot_b*rot_g; 
  
end 
 

 
%{ 
 
USAGE EXPLANATION  
 
Below are REsemble algorithm for local dihedral orientation  
This is main program for REsemble algorithm for local dihedral orientation 
ens_ref: reference (target) ensemble 
ens_pred: predicted ensemble 
  
%} 
 
function reso_local=run_ens_jsd_local(ens_ref,ens_pred) 
     
    tic; 
    bin_width=10:10:360; % bin width vector that should be chosen and changed by users 
    bin_width_size=length(bin_width); 
    num_angles=length(ens_ref(1,:)); 
  
    reso_local=[bin_width' zeros(bin_width_size,num_angles)]; 
        
    for j=1:1:num_angles 
  
        for i=1:1:bin_width_size 
         
            reso_local(i,j+1)=ens_jsd_local(ens_ref(:,j),ens_pred(:,j),bin_width(i));  
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        end 
         
    end 
  
    toc; 
  
end 
 
 
 
 
 
%{ 
 
USAGE EXPLANATION  
  
ens_ref: reference (target) ensemble 
ens_pred: predicted ensemble 
bin_width: width used for binning two distributions 
  
%} 
  
function JSD=ens_jsd_local(ens_ref,ens_pred,bin_width)  
  
    ens_1=ens_ref+180; % local angles are translated to range from 0 to 360 
    ens_2=ens_pred+180; 
  
    grid_angle=0:bin_width:bin_width*floor(360/bin_width); % construct binning grids 
    grid_size=length(grid_angle); % number of binning grids 
     
    population_size=grid_size;  
    population_array=zeros(2,population_size); % initialization of population distributions under bin_width 
  
    ens_1_size=length(ens_1); % number of conformations in reference ensemble 
     
    %---- binning reference ensemble and construct population distributions ----% 
    for i=1:1:ens_1_size 
         
       current_state=ens_1(i); 
       current_bin_grid=bin_width*floor(current_state/bin_width); 
       ind_angle=find(grid_angle==current_bin_grid); 
       population_array(1,ind_angle)=population_array(1,ind_angle)+1; 
  
    end 
     
     
    ens_2_size=length(ens_2); % number of conformations in predicted ensemble 
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    %---- binning predicted ensemble and construct population distributions ----% 
    for i=1:1:ens_2_size 
         
       current_state=ens_2(i); 
       current_bin_grid=bin_width*floor(current_state/bin_width); 
       ind_angle=find(grid_angle==current_bin_grid); 
       population_array(2,ind_angle)=population_array(2,ind_angle)+1; 
       
    end 
     
    %---- calculation of jsd between reference and predicted ensembles ----% 
    population_sum=sum(population_array); 
    ind_empty=find(population_sum==0); 
     
    population_array(:,ind_empty)=[]; 
     
    population(1,:)=population_array(1,:)/ens_1_size; 
    population(2,:)=population_array(2,:)/ens_2_size; 
     
    P_1=population(1,:); 
    P_2=population(2,:); 
    n_states=length(P_1); 
    P_12=mean(population); 
    S_1=0; 
    S_2=0; 
    S_12=0; 
     
    for i=1:1:n_states 
         
        if P_1(i)>0 
             
            S_1=S_1-P_1(i)*log2(P_1(i)); 
             
        end 
         
        if P_2(i)>0 
             
            S_2=S_2-P_2(i)*log2(P_2(i)); 
             
        end 
     
        S_12=S_12-P_12(i)*log2(P_12(i)); 
     
    end 
     
    JSD=sqrt(S_12-0.5*S_1-0.5*S_2); 
 
 end 


