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Abstract 
 Double strand breaks (DSBs) represent one of the most dangerous forms 

of DNA damage. DSBs are generated during normal metabolic processes, such 

as DNA replication, or upon exposure of cells to exogenous agents, such as 

ionizing radiation.  In addition, DSBs are formed as intermediates during 

programmed DNA rearrangements that occur during early B and T lymphocyte 

development, a process known as V(D)J recombination. Unrepaired or mis-

repaired DNA ends can engender detrimental outcomes for cells and organisms 

such as aberrant genomic events like chromosomal translocations. The classical 

nonhomologous end joining (cNHEJ) pathway is one of the major DNA DSB 

repair pathways operative in mammalian cells and is required for both general 

DSB repair and V(D)J recombination.  

 The studies of my dissertation investigate the functions of DNA nucleases 

in the repair of double strand breaks during V(D)J recombination.  I have 

undertaken two independent, but related, lines of investigation to address this 

question.  One project sought to elucidate the regulation of the ARTEMIS 

nuclease during V(D)J recombination. I examined the molecular mechanisms 

underlying tumorigenesis caused by an Artemis hypomorphic disease allele and 

identified that the ARTEMIS C-terminus suppresses tumorigenesis associated 

with misrepair of DNA DSBs generated during V(D)J recombination. My findings 

raise the possibility that particular defects in ARTEMIS that result in partial loss of 

function, can predispose to lymphoma, but not complete immunodeficiency. 

 The second project focused on determining the interplay between the 

ARTEMIS and MRE11 nuclease in facilitating normal and aberrant V(D)J 

rearrangements. My results indicate that mutation of the MRE11 complex 

prevents tumorigenesis associated with aberrant end joining of V(D)J loci, an in
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 turn, implicates the MRE11 complex in promoting tumorigenesis associated with 

DNA damage. Both projects have led to a greater understanding of the 

mechanisms underlying human lymphoma caused by impaired ARTEMIS 

nuclease activity, and additionally, identified the MRE11 complex as a possible 

chemotherapeutic target for improved treatment for lymphoid malignancies.



 1 

I. CHAPTER 1 Introduction  

A. DNA double strand break repair in genome stability and development 

 DNA double strand breaks (DSBs) are amongst the most cytotoxic lesions 

to a cell. These dangerous DNA lesions are generated as a result of exposure to 

exogenous DNA damaging agents and endogenous products resulting from 

cellular metabolism. In addition, programmed DSBs arise by highly regulated 

processes, such as V(D)J recombination, which is necessary for the 

development of mature T- and B-cells.  If unrepaired or misrepaired, DSBs can 

lead to an accumulation of mutations and/or chromosomal aberrations such as  

chromosomal translocations, which can then play an initiating role in 

carcinogenesis. Therefore, understanding the mechanisms that result in efficient 

repair of DNA damage is critical to our understanding of genome stability and 

cancer. 

 A1.1 DNA double strand break repair response 

 The DNA double stand break (DSB) response can be modeled as a three-

tiered signaling cascade. The signal transduction mechanism that disseminates 

the DNA damage alarm begins with sensor proteins that senses the damage or 

chromatin alterations emanating from it and mediate the activation of 

transducers, that in turn, convey the alarm to numerous downstream effectors 

involved in specific mechanisms that induce cell cycle checkpoints, repair the 

damage, or if the damage is too great, induce senescence or apoptosis, 

depending on the type of damage and cell type (Figure 1.1) (1). One of the main 

sensors of DSBs consists of the MRE11/RAD50/NBS1 complex best known as 

the MRN complex or the MRE11 complex (Figures 1.1 and 1.3). The MRE11 

complex is a critical component of DSB repair and plays multiple roles during the 

repair of broken DNA ends such as DNA damaging sensing, checkpoint 

activation, and repair (2). In response to DSBs, the MRE11 complex initiates the 
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DNA damage response via activation of the ataxia telangiectasia mutated (ATM) 

protein kinase also recognized as the primary transducer of the DSB alarm 

(Figures 1.1 and 1.3) (3, 4).    

 ATM is a member of the phosphoinositide 3-kinase (PI3K)-related protein 

kinase (PIKK) family, which also includes ATM and RAD3-RELATED protein 

(ATR), and the catalytic subunit of DNA-DEPENDENT PROTEIN KINASE (DNA-

PKcs), among others (5). Activated ATM phosphorylates numerous ‘effector’ 

substrates that are key factors in the DNA damage response pathway like 

chromatin-associated repair factors (e.g., H2AX, SMC1, and Kap1) and members 

of the cNHEJ pathway (e.g., KU, XRCC4, LIG4, and ARTEMIS (4, 6). 

Additionally, ATM phosphorylates DNA-PKcs suggesting that this 

phosphorylation event may serve to regulate DNA-PKcs function (7). 

 ATM has been documented primarily as a critical component to the 

response to DSBs; however, crosstalk between ATM and DNA-PKcs can occur 

during the DNA DSB response (8). The exact interplay between ATM and DNA-

PKcs is still unclear; however, recent studies highlighted the functional overlap of 

these kinases in the repair of DSB intermediates and in the DNA damage 

response (8-12). Thus, mice deficient in either DNA-PKcs or ATM are live born, 

but DNA-PKcs and ATM double deficiency lead to early embryonic lethality (12, 

13). Ablation of both kinase activities in cells undergoing immunoglobulin class 

switch recombination, lymphocyte-specific DNA rearrangement, lead to 

compound defects in switching and a synergistic increase in chromosomal 

aberrations. The phenotypes were attributed, in part, to the requirement of both 

kinases to phosphorylate p53 and induce p53-dependent apoptosis of cells 

harboring aberrant events (11). Additionally, the overlapping activities of ATM 

and DNA-PKcs have been implicated in joining endonuclease-induced DSBs 

during lymphocyte development (9). 

 In response to DNA damage, distinct DNA damage sensors regulate ATR, 

ATM, and DNA-PKcs. ATM is recruited to the DNA break and activated by the 

DNA end-binding complex composed of MRE11, RAD50, and NBS1, whereas 

DNA-PKcs is recruited to the DNA break and activated by the DNA end-binding 
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complex composed of the KU70-KU80 heterodimer (Figure 1.3) (14, 15). ATR, 

through ATRIP, recognizes ssDNA at sites of DNA damage or stressed 

replication forks (16). In this way, particular kinases are activated as a result of 

particular types of DNA damage.  

 The ATM kinase phosphorylates numerous downstream substrates to 

disseminate the DNA DSB repair response; however, the phosphorylation of the 

histone variant H2AX by ATM is critical for eliciting DNA repair (3, 17). Original 

observations by the Bonner lab identified by chromatin immunoprecipitation 

(ChiP) assays in the yeast strain S. cerevisiae, that phosphorylation of H2AX 

(γH2AX) was induced when an HO endonuclease-inducible break was unable to 

be repaired (18). Work in mammalian cells identified that γH2AX is spread over 

several hundred kilobases from the break whether it be induced by the 

lymphocyte-specific endonuclease, RAG1/2, or triggered by the accumulation of 

unprocessed DNA ends (18, 19).  ATM is the major kinase responsible for 

histone H2AX phosphorylation as a result of DSBs; however, other PIKK kinases, 

such as DNA-PKcs also participate (8). The resultant phosphorylation of histone 

H2AX is thought to recruit ‘docking’ proteins such as MDC1 to damaged ends, 

which in turn recruit effector proteins such as 53BP1 to regulate DNA repair 

pathway choice (Figure 1.3) (18).  

 The efficient repair of DSBs relies on a complex signaling network which 

involves a tiered signaling cascade involving sensor’ proteins that sense DNA 

damage and/or chromatin alteration, transducer’s which convey the signal, and 

numerous downstream ‘effectors’ involved in the DNA DSB response including 

cell cycle checkpoint activation, senescence or apoptosis, and repair. 

 A1.2 DNA Damage Repair Pathways 

 Specific types of DNA lesions are repaired by dedicated pathways (Figure 

1.2). A subset of pathways removes damaged and/or mis-matched DNA bases.  

For example, chemical alterations of bases that occur due to by-products of 

normal cellular metabolism, helix distorting lesions such as cyclobutane 

pyrimidine dimers that are induced by ultraviolet light, and interstrand crosslinks 

that are produced by agents such as cisplatin are repaired by base excision 
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repair, nucleotide excision repair and interstrand crosslink repair, respectively 

(20, 21). Mismatch repair primarily repairs DNA bases that have been improperly 

added during DNA replication as well as small DNA loops (20). Generally, when 

a base(s) is removed it is followed by polymerase addition to fill in the resulting 

gap and ligation. 

 DSBs represent one of the most dangerous forms of DNA damage. 

Indeed, defective DSB repair is associated with various developmental, 

immunological, and neurological disorders, and can be a major driver in cancer 

(22, 23).  DSBs can also arise pathologically such as following exposure to 

exogenous agents, like ionizing radiation and when DNA replication forks 

encounter unrepaired DNA lesions, triggering fork collapse (24).  In some 

instances, the cell programs DSBs. During the first meiotic prophase, the 

evolutionary conserved SPO11 protein induces hundreds of DNA DSBs along 

chromosomes in order to promote homologous recombination between homologs 

during meiosis (25). These DSBs are essential for correct chromosome 

segregation at the first meiotic division and generates gametes with allele 

combinations distinct from the parental germline (26).  DSB-induced 

rearrangements at immunoglobulin genes are also critical for the multiplicity of 

antigen receptor diversity (27).  Typically, molecular events at damage sites 

ensure that developmental programmed DSBs are steered toward the 

appropriate repair outcome, yet upon misrepair of the developmental DSBs, 

aberrant repair events may result (28). 

 The two major DSB repair pathways that have been studied extensively 

are homologous recombination (HR) and nonhomologous end joining (NHEJ) 

(Figure 1.3).  As their names imply, NHEJ involves direct ligation of the broken 

ends; in contrast HR requires an undamaged homologous sequence to serve as 

a template for repair of broken strands. There is very efficient error-free NHEJ 

and error-prone NHEJ associated with small insertions, deletions, or substitutions 

at the break point junction (29). Studies in human cells using linearized plasmids 

with complementary, blunt ends and non-complementary ends of various 

configurations demonstrated that although the efficiency of the plasmid 
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substrates were similar, the plasmids containing complementary or blunt ends 

were repaired at earlier time points as compared to the plasmids with non-

complementary ends suggesting that non-complementary ends require additional 

processing time prior to ligation. Additionally, human cells with linearized non-

complementary plasmids treated with wortmannin, a PIKK inhibitor, blocked the 

repair of non-complementary plasmids. DNA-PKcs is a PIKK protein kinase and 

the authors hypothesized that the wortmannin treatment inhibited DNA-PKcs 

activities resulting in inhibition of recruitment of downstream DNA end processing 

factors such as nucleases, polymerases, and ligases to the break (30). Indeed, 

activated DNA-PKcs interacts with nucleases such as ARTEMIS and the NHEJ 

ligation complex (31-35). 

 Another modality of end joining, microhomology-mediated end joining 

(MMEJ), has come to be appreciated (Figure 1.3).  MMEJ utilizes annealing of 

short homologous sequences (2-20 bp in length), revealed by DNA end-

resection, to align ends prior to ligation (36). Since the activities of MMEJ have 

been observed when NHEJ is deficient, MMEJ is referred to as an alternative 

end joining mechanism. Recent observations of chromosomal translocation 

junctions have identified microhomology at the junction suggesting MMEJ 

contributes to chromosomal translocations. Thus MMEJ is error-prone and 

contributes to genome instabilities but its use and regulation is poorly 

understood. 

 A1.3 Homologous Recombination 

 Research studies have shown that the choice among these DNA repair 

pathways depends on the DSB end structure mediated by resection (37-39). 

Once a DSB is resected to generate 3′ single stranded DNA, it must be repaired 

by homologous recombination (HR) or by single-strand annealing, which relies 

on sequence homology between the broken DNA ends (Figure 1.3) (40).   

 Factors within the Rad52 epistasis group including Mre11, Rad50 and 

Xrs2 were identified due to their inability to repair ionizing irradiation-induced 

damage in S. cerevisiae (41). Subsequent biochemical and yeast two-hybrid 

studies identified that Mre11, Rad50, and Xrs2 exist in a complex known as the 
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MRX or Mre11 complex that promotes homologous recombination in DNA repair 

and cellular replication (41, 42). The Rad52 epistasis group is highly conserved 

among eukaryotes (41); however, Xrs2 is less well conserved and is divergent 

from its mammalian counterpart, NBS1. Nonetheless, NBS1 associates with 

mammalian MRE11 and mammalian RAD50 to form the MRN or MRE11 

complex that is functionally analogous to yeast MRX in its role in HR (41, 43).  

 Although the purified MRE11 protein exhibits 3’- 5’ exonuclease and 

endonuclease activities in vitro, MRE11 is implicated in the 5’-3’ resection at DNA 

ends necessary for HR (40, 42). This was a conundrum in the field for years 

because HR requires resection of 5'-termini to generate 3'-single-strand DNA and 

the nuclease activities of MRE11 were incongruent with its role in HR-mediated 

resection (44, 45). However, studies from the Neale lab proposed a working 

model that suggested use of bidirectional end resection instead of unidirectional 

resection at a DSB. The data from the group suggests that MRE11 can nick the 

strand to be resected up to 300 nucleotides from the 5′-terminus of the DSB 

subsequently enabling resection in a bidirectional manner, using another 

nuclease, EXO1. The Neale lab then suggests EXO1 nuclease activities chew 

DNA ends in the 5′–3′ direction away from the DSB, and MRE11 in the 3′–5′ 

direction towards the DSB end resulting in 5’-3’ resection at the DSB and a 3’ 

single stranded DNA end (46).  

 Subsequent to the 5’-3’ resection, RPA coats single stranded DNA ends to 

protect them from degradation whereby later RPA is replaced by RAD51 

filaments.  RAD51-single stranded DNA filaments perform one of the central 

functions of HR: strand invasion, homology search, and DNA strand exchange 

(47).  Oftentimes, a sister chromatid rather than a homolog serves as a template 

for these processes, thus restoring the original sequence before damage (40, 

47).  It is likely cohesion of the sister chromatids facilitates this preference (47). 

These observations suggests HR is most active in the phases of the cell cycle 

where a sister chromatid is present, in S- and G2 phases of the cell cycle (47). 

Overall, HR occurs in several distinct steps that prepare a broken DNA substrate 
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for strand invasion into a homologous template and eventual resolution of strand 

invasion intermediates. 

 A1.4 Classical nonhomologous end joining 

 DNA end-to-end joining mechanisms, by which DNA DSBs are repaired, 

has been studied in mammalian cells for over 30 years. Early studies using the 

simian virus 40 (SV40) genome demonstrated that by creating chimeras of the 

genome with plasmids, subsequent cellular survival depended upon deletion of 

the plasmid sequence without altering the viral sequence.  Sequence analysis 

identified that the deletional/joining events relied upon end-to-end joining at a 

relatively high frequency (48). Subsequent studies identified similar results in 

mammals (49). 

 The efficient repair of DNA DSBs by the ubiquitously expressed classical 

nonhomologous end joining (cNHEJ) factors requires the intricate coordination of 

multiple events at DNA ends. After DSB generation, mammalian KU70/KU80 

heterodimer binds selectively to the DNA ends (Figure 1.3) (50, 51).  KU70/KU80 

is highly abundant within the mammalian cell and was originally identified as an 

antigen found in sera from various autoimmune patients (52). Therefore, initially it 

was thought that KU70/KU80 played a role in mediating autoimmune disease. 

However, subsequent studies identified the KU70/KU80 heterodimer as a DNA 

end-binding protein owing to the fact that KU70/KU80 binds specifically to DSBs 

as well as other discontinuities in the DNA double helix (53). The KU70/KU80 

heterodimer binds DNA ends with a high affinity and translocates along the DNA 

break and acts as the targeting subunit for the DNA PROTEIN KINASE 

CATALYTIC SUBUNIT (DNA-PKcs) to make the holoenzyme DNA-PK (51, 53-

55).  

 DNA-PKcs is a nuclear protein a part of the PIKK family of 

serine/threonine protein kinases.  It is active when it is bound to DNA through the 

KU70/KU80 heterodimer (53, 56). In this bound state, DNA-PK facilitates DNA 

end synapsis and autophosphorylation of DNA-PK proceeds (57-59). 

Autophosphorylation of DNA-PK causes a conformational change within the 

protein complex to allow accessibility of the DNA ends to additional factors for 
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processing. In addition to its DNA end binding capabilities, DNA-PK (DNA-PKcs) 

recruits and phosphorylates the nuclease, ARTEMIS (Figure 1.3). The 

ARTEMIS:DNA-PKcs complex induces ARTEMIS endonucleolytic activity critical 

for DNA hairpin opening and 3’ and 5’ overhang processing on a subset of DNA 

ends to prepare ends for ligation (60, 61). 

 Direct end-to-end ligation proceeds when the ligation complex consisting 

of LIG4:XRCC4:XLF ligates the DNA ends together (62, 63). During this process, 

DNA end-to-end synapsis is facilitated by the DNA-PK complex and DNA-PK not 

only autophosphorylates its subunits but also the ligation complex (35). 

LIG4:XRCC4:XLF is capable of ligating incompatible DNA ends as well as over 

gaps (64). Therefore, the ligation junction of non-compatible DNA ends can be 

altered by nucleotide deletion or nucleotide addition by polymerases such as 

polymerase mu and X which have been shown to interact with LIG4:XRCC4 and 

KU70/KU80 (65, 66). Although, cNHEJ repair does not necessarily result in 

modification at the break point junction as ligation of compatible DNAs can be 

directly re-ligated and thus, the break point junction conserved. 

 A1.5 Alternative nonhomologous end joining 

 Inhibition of cNHEJ by use of KU- or LIG4-deficient cells revealed end 

joining activity later referred to as alternative NHEJ (aNHEJ) (67, 68). This 

activity likely reflects an alternative mode of repair that probably comprises 

several mechanisms, where one of which includes MMEJ (Figure 1.3). Of these, 

only MMEJ requires DNA end resection (69, 70). Initially, aNHEJ was first 

thought to be a backup repair pathway operating only in the absence of cNHEJ; 

however, recent studies indicate that aNHEJ works even when cNHEJ is 

functional (37, 38, 71).   

 Unlike cNHEJ, MMEJ (within aNHEJ) requires limited resection and 

always results in deletions flanking the original breaks (69). The genes required 

for MMEJ in mammals and budding yeast include MRE11, RAD50, NBS1 (Xrs2), 

CTIP (Sae2), and ATM (Tel1), indicating that resection initiation is an essential 

step. Consistent with the yeast studies, the MRE11 complex/CTIP pathway 

promotes MMEJ in mammalian cells (37, 39, 72, 73). 
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 The development of chromosomal reporters to measure the repair of 

DSBs has been advantageous for the identification of DNA repair genes involved 

in resection-mediated repair. One such assay using the Direct repeat–green 

fluorescent protein (DR-GFP), measures HR by the ability of the GFP reporter to 

be repaired subsequent to endonuclease damage. Specifically, DR-GFP is 

composed of two differentially mutated green fluorescent protein (GFP) genes 

oriented as direct repeats. The upstream repeat contains the recognition site for 

the rare-cutting I-SceI endonuclease and the downstream repeat is a 5′ and 3′ 

truncated GFP fragment. Transient expression of I-SceI leads to a DSB in the 

upstream GFP gene. HR-mediated repair of the I-SceI-induced DSB results in 

GFP+ cells, which are quantified by flow cytometry (74). Thus, this system allows 

for the monitoring of repair pathways requiring end resection in rodent and 

human cells such as homology-dependent repair, single-strand annealing, and 

MMEJ (39, 72, 75-77). However, this system only measures imperfect repair 

(repair requiring resection) and thus, limits its use. Although, reporter constructs 

developed in the Jeremy Stark lab have improved detection of NHEJ events by 

creating a construct whereby the GFP promoter region is separated by a puro 

gene flanked by I-SceI cut sites (39). When I-SceI is expressed, the puro gene is 

excised leaving 3’ overhangs, and if repaired by NHEJ, result in restoration of the 

regulatory region of GFP and thus, expression of GFP (i.e. green cells) (39). 

Alternatively, NHEJ could fail to restore the I-SceI site, leading to an I-SceI-

resistant site. These constructs are advantageous as flow cytometric analysis 

can sort both GFP+ and GFP- populations and the junctional sequences analyzed 

to infer what type of NHEJ-mediated repair event occurred. 

 Downregulation of MRE11 via siRNA depletion or molecule inhibition with 

mirin, resulted in a decrease in MMEJ capacity in Xrcc4−/− cells defective in 

cNHEJ as measured using a plasmid substrate (72). These results indicate that 

MRE11 is important for MMEJ activity within aNHEJ (or just aNHEJ in general), 

when cNHEJ is deficient (72). Likewise, using a different reporter specific for 

MMEJ, inactivation of NBS1 or CTIP decreased MMEJ repair (39, 75).  Together, 
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these data suggest that resection by the CTIP/MRE11 pathway is critical during 

MMEJ and this likely facilitates MMEJ of DNA DSBs within the aNHEJ pathway. 

 Several lines of evidence suggest that the cNHEJ nuclease, ARTEMIS, 

and the aNHEJ nuclease, MRE11, may act in concert during the repair of DNA 

DSBs. Upon exposure of cells to DSB inducing agents, ARTEMIS undergoes 

hyperphosphorylation that is dependent on the NBS1 component of the MRE11 

complex and the ATM protein kinase (78-80). This hyperphosphorylated form of 

ARTEMIS physically interacts with the MRE11 complex (79).  ARTEMIS is 

required to repair a subset of modified DNA ends in the context of the cNHEJ 

pathway during the G1 phase of the cell cycle, and likewise, the MRE11 complex 

also functions in G1 DSB repair events and has been implicated in cNHEJ repair 

(72, 77, 81, 82).  In addition, recent evidence suggests that ARTEMIS also has 

significant roles in HR during the G2 phase of the cell cycle (83). However, the 

functional interactions between ARTEMIS and the MRE11 complex remain 

unclear. Additionally, the interplay between aNHEJ and cNHEJ is still poorly 

understood. Therefore, the major goals of my dissertation have been to better 

understand the molecular and functional interactions that control DNA end 

processing focusing on ARTEMIS and the MRE11 complex.  

 A1.6 The MRE11/RAD50/NBS1 complex 

 The MRE11 complex is a sensor of DSBs that binds DNA ends in a DNA 

damage-dependent manner and controls the DNA damage response by 

governing the activation of the central transducing kinase, ATM (15, 84-87). 

Additionally, the MRE11 complex has multiple roles in the metabolism of DSBs 

that involve both its enzymatic and structural functions. The 3′–5′ exonuclease 

and ssDNA endonuclease activities of MRE11 do not depend on RAD50 and 

NBS1 but are enhanced when complexed with RAD50 and NBS1 (42). Thus, 

MRE11 possesses intrinsic nuclease activity that is enhanced when MRE11 is a 

part of the MRE11 complex.  

 A non-enzymatic, but structural role for MRE11 via its interaction with 

RAD50 supports a role for the MRE11 complex in bringing together long 

stretches of DNA, namely during HR. Electron microscopic and atomic force 
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imaging indicated that DNA-bound heterotetrameric, MRE112RAD502, bridges 

DNA ends via two arrangements: DNA binding within one MRE112RAD502 DNA-

binding head for “short-range” bridging of DNA ends (also MRE11:MRE11 dimers 

coordinate “short-range” bridging) and via the RAD50 hook domain assembly 

erects two (MRE112RAD502)2 scaffolds to tether DNA ends over “long-distances” 

(88, 89). 

 During both meiotic and mitotic repair, the MRE11 complex influences 

DSB repair structurally, by forming various protein complexes (i.e. 

MRE11:MRE11 dimers—end bridging, the MRE112RAD502  heterotetramer—

“short range” DNA end binding, and the (MRE112RAD502)2 conformation—“long 

range” DNA end binding/tethering) appropriate for bringing DNA ends together 

and then to subsequently enzymatically process the ends to promote end 

resection and resection-mediated repair, such as HR and MMEJ (2, 15, 42, 89).  

 Another component of the MRE11 complex, NBS1, is important for the 

regulation of the MRE11 complex, influencing DNA binding, nuclease activity, 

and the propagation of the DNA damage response via the NBS1 subunit (42). 

Patient cell cultures with Nijmegen breakage syndrome (NBS, NBS1 

hypomorphism) and ataxia-telangiectasia-like disorder (ATLD, MRE11 

hypomorphism) exhibit checkpoint defects in S-phase and at the G2/M transition, 

while the G1/S transition is largely unaffected indicating the MRE11 complex 

mediates S- and G2/M checkpoint activation. These checkpoint defects are 

associated with reduced MRE11 complex chromatin association in both human 

and mouse cells of NBS and ATLD (87, 90-92). Molecular and genetic 

observations provide support for the role of the MRE11 complex particularly in 

the S- and G2 phases of the cell cycle (42). The MRE11 complex can also 

regulate DSB repair, through HR and both c/aNHEJ (42, 72, 77, 82). 

 Studies have identified a role of the MRE11 complex in both cNHEJ and 

aNHEJ (72, 77, 82). These studies support a model in which the nuclease activity 

of MRE11, which is required for the generation of ssDNA during HR, can also 

favor aNHEJ associated with MMEJ by initiating ssDNA resection. It is thought 

that the MRE11 complex (with additional nucleases such as EXO1 and CTIP can 
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initiate resection, which then can be followed by HR or aNHEJ associated with 

MMEJ, depending on the presence of homologous sequences, cell cycle phase 

and the size of the resection (72, 77). 

 The role of the MRE11 complex in cNHEJ is less clear. Most studies that 

have investigated the contribution of the MRE11 complex to cNHEJ have used 

plasmid substrates and observed an increase in cNHEJ-mediated events (72, 

77). Or, they have observed a decrease in cNHEJ-mediated events when the 

MRE11 complex is deficient (82). However, few, if any studies, have investigated 

how the MRE11 complex promotes cNHEJ with other cNHEJ factors. Thus, it is 

poorly understood how the MRE11 complex promotes cNHEJ alongside critical 

cNHEJ factors such as KU70/KU80, DNA-PKcs, ARTEMIS, and the ligation 

complex. One of the studies of my dissertation focuses on better understanding 

the contribution of the MRE11 complex to cNHEJ-mediated events and provides 

novel observations that will be the groundwork for future investigations. 

 A1.7 ARTEMIS is a part of the metallo-β-lactamase/βCASP 

 superfamily of enzymes 

 ARTEMIS (DCLRE1C, DNA crosslink repair 1C, OMIM#605988, but 

conventionally ARTEMIS is used) was initially identified as the gene mutated in a 

human T-B- severe combined immunodeficiency associated with cellular 

radiosensitivity (RS-SCID) (93-95). It was later identified that ARTEMIS activity is 

important for V(D)J recombination, a lymphocyte-specific DNA rearrangement 

that occurs in both B- and T-cells and is necessary to create antigen receptor 

multiplicity (93).  

 The V(D)J recombination/DNA repair factor, ARTEMIS, belongs to the 

metallo-β-lactamase superfamily of enzymes (Figure 1.4). Three regions 

comprise the ARTEMIS protein: 1) the β-Lact homology domain, which is 

adjacent to 2) the β-CASP region (78). The β-CASP region is specific to 

members of the β-Lact superfamily of enzymes that acts on nucleic acids. The 

third domain is the COOH-terminal domain (Figure 1.4B) (96, 97). Metallo-β-

lactamases are enzymes that were first described in bacteria due to their 

cleavage of the β-lactam ring of certain antibiotics. Particular sequence motifs 
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within ARTEMIS designate its catalytic core with sequence motifs mostly 

comprising histidine and aspartic acids (Figure1.4B). The metallo-β-lactamase 

and β-CASP motifs are conserved in ARTEMIS and in other nucleases such as 

SNM1A, SNM1B, PSO2 (Snm1a), (involved in DNA repair) and the RNA 

cleavage and polyadenylation-specific factor, CPSF (Figure 1.4B) (96, 98). 

Based on these homologies, the de Villartay group named this new domain the 

β-CASP domain (98). This domain, which is conserved in all living organisms, is 

associated with the metallo-β-lactamase domain (97, 98).  

 When ARTEMIS was initially discovered to be the gene mutated in RS-

SCID, much of its biological activity was initially inferred from the patient 

phenotypes (93). Specifically, its role in general DSB and in lymphocyte 

development, namely during V(D)J recombination. RS-SCID patients possess 

defects in V(D)J recombination leading to an early arrest of B- and T-cell 

maturation and defects in general DSB repair resulting in cellular sensitivity to 

DNA damaging agents (93). Given the potential enzymatic function of its metallo-

β-lactamase/β-CASP domain, it was hypothesized that ARTEMIS could be 

involved in nucleolytic processing of DSB intermediates during V(D)J 

recombination and in the repair of general cellular DNA damage. The Lieber 

group demonstrated that ARTEMIS indeed possesses endonucleolytic and 

exonucleolyic activity. However, the exonucleolytic activity of ARTEMIS is 

unclear as the Turchi group was able to purify ARTEMIS without exonucleolytic 

activity and demonstrated that enzymatic activity was likely a contaminant (99). 

Although the intrinsic nucleolytic activity of ARTEMIS still remains to be further 

defined, when in complex with DNA-PKcs, ARTEMIS is capable of opening and 

processing hairpin structures generated by the lymphocyte-specific 

endonuclease, RAG1/2, as well as endonucleolytically cleaving overhangs (60, 

100). 
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B. Antigen receptor gene diversification 

 B1.1 V(D)J Recombination 

 In 1976, Hozumi and Tonegawa reported the first direct evidence for 

somatic rearrangement of immunoglobulin genes, a process now referred to as 

V(D)J recombination (101). Seven loci (α, β, γ, and δ for T cell receptors (TCR) 

and heavy and light chain—κ and λ for immunoglobulins) undergo V(D)J 

recombination during lymphocyte development. These loci have similar gene 

rearrangements consisting of variable (V), diversity (D, present only in β, δ, and 

µ), and joining (J) gene segments that combinatorially recombine to form the 

diverse exons that encode for the variable regions of antigen receptors 

expressed on the cellular surface of both T- and B-cells.  

 During early B-cell development, rearrangement of the heavy chain locus 

initiates in the bone marrow (Figure 1.5A). Only one gene locus is rearranged at 

time, in a fixed sequence of events: for B-cells this is the immunoglobulin heavy 

chain (IgH) locus (102). Productive rearrangements allow the cells to progress to 

the next stage. Rearrangement of a D gene segment to a JH gene segment 

occurs in early pro-B cells, generating late pro-B cells in which VH to DJH 

rearrangement occurs. A successful VH-DJH rearrangement leads to the 

expression of a complete immunoglobulin heavy chain as part of the pre-B-cell 

receptor that stimulates the cell to become a pre-B-cell. Here, the light chain 

rearranges and upon successful light chain gene assembly, a cell becomes an 

immature B-cell that expresses a complete IgM molecule composed of the 

rearranged light and heavy chains (Figure 1.5A) (102). This somatic 

recombination event generates a variable region that determines antigen 

recognition and specificity. The constant region is encoded by separate exons 

located downstream of the variable region many kilobases away. 

 T-cell lymphoid progenitors are located in the thymus and are designated 

as double negative (DN) for CD4 and CD8 surface expression (Figure 1.5B). 

There are various stages to DN thymocyte development that correspond to the 

rearrangement status of the TCRβ chain (in this instance, rather than the TCRα, 

TCRγ or TCRδ). DN2 cells begin to rearrange D-Jβ gene segments and progress 
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to the DN3 stage. DN3 cells are arrested until they productively rearrange Vβ-

DJβ gene segments. Then, the in in-frame β chain pairs with a surrogate chain 

called the pre-T-cell receptor and is expressed on the cell surface triggering entry 

into the cell cycle. Expression of the surrogate chain signals the cessation of β-

chain gene rearrangement and initiates cell proliferation. The cells are then 

known as DN4 cells where eventually these cells cease to proliferate and CD4 

and CD8 are co-expressed on the cell surface. The small CD4+CD8+ double-

positive (DP) cells begin rearrangement at the α-chain locus. The cells then 

express α:β TCR, CD4 or CD8, and are ready for selection and migration to 

peripheral lymphoid organs (Figure 1.5B) (102). Similar to B-cell gene 

rearrangement, productive rearrangements at each stage allow the cells to 

proceed to the next developmental stage.    

 Conserved sequence motifs known as recombination signal sequences 

(RSSs) flank one or both sides of V, D, or J gene segments (Figure 1.5C).  The 

genomic architecture of the RSS is characterized by palindromic heptamer 

sequences directly adjacent to the coding element and an A/T rich nonamer 

separated from the heptamer by spacer nucleotides containing nonconserved 

sequences (103).  The heptamer of the recombination signal is critical for precise 

and efficient targeting of cleavage. In contrast, the nonamer plays an important 

role in initial sequence specific DNA binding (104). The length of the spacer 

defines two types of RSSs, either by 12(±1) or 23(±1) nucleotides, with efficient 

joining requiring one RSS of each type that is reflected in the gene structure of 

joining partners (Figure 1.5C) (104).   

 V(D)J recombination is initiated in progenitor lymphocytes by the 

recombination activating genes 1 and 2 comprising the endonucleolytic RAG1/2 

core complex (Figure 1.5C) (103-105). The RAG1/2 complex is quite unique. In 

most vertebrate animals, RAG1 and RAG2 are located tandemly along the 

chromosome and are comprised of one large exon each (104).  Although similar 

in their enzymatic properties, the RAG1 and RAG2 proteins do not share 

sequence identity suggesting that the two proteins have co-evolved to function 

during V(D)J recombination. It has been proposed that the antigen receptor 
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genes, and the RAG1 and RAG2 proteins that mediate their rearrangement, may 

have evolved from an ancestral transposon (106, 107). The presence of RSSs 

facing in opposite directions is similar to the inverted repeat architecture of many 

transposon ends, thus, the RAG1/2 proteins could have originated from genes 

encoded by a transposon. If so, perhaps, after the initial invasion, such a 

transposon must have lost its ability to reintegrate after excision.  

 Initial DNA recognition occurs by RAG1 via the nonamer sequence and 

the RAG1 complex is stabilized to an RSS via RAG2 binding to the heptamer 

sequence using the 12/23 rule whereby coupled cleavage combines a RSS with 

a 12(±) nucleotide spacer and a 23(±) nucleotide spacer (104). The RAG1/2 

complex initiates V(D)J recombination by nicking DNA ends located at the RSSs 

adjacent to numerous V, D and J coding exons (Figure 1.5C) (108, 109). At each 

RSS, a nick is first introduced on one strand using water as the nucleophile to 

generate a 3′-hydroxyl group and a 5′-phosphate. The 3′-hydroxyl then attacks a 

phosphodiester bond on the other strand in a trans-esterification reaction. This 

process of hydrolysis (nicking) followed by strand transfer yields two dissimilar 

ends: a blunt end that terminates in the heptamer of the RSS (referred to as the 

signal end) and a covalently sealed “hairpin” end that terminates in the last 

residues of the V, D, or J coding segment (and hence is referred to as a coding 

end) (109). The two step trans-esterification reaction for the RAG1/2-mediated 

DNA cleavage, the ability of alcohols to serve as the nucleophile in the nicking 

reaction, and the ability of the RAG1/2 complex to reverse the hairpin formation 

step by using the 3′-hydroxyl of the signal end to attack a hairpin coding end, all 

strongly resembled aspects of DNA cleavage and joining by transposases and 

retroviral integrases (107). This mechanistic convergence of V(D)J recombination 

and transposition was supported with the discovery that the RAG1/2 complex is 

capable of performing transposition of pairs of signal ends in vitro (107). 

 The RAG1/2 complex generates four broken DNA ends in a post cleavage 

complex (PCC) that facilitates DNA repair pathway-choice control (110-113). The 

resultant DNA DSBs within the PCC contain two distinct end structures, blunt, 5' 

phosphorylated recombination signal (RS) ends and covalently closed, hairpin 
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coding ends (Figure 1.5C) (114). One model posits that the PCC forms a 

scaffold, retaining broken DNA ends to facilitate proper repair by cNHEJ and 

discourage repair by HR and aNHEJ (113, 115, 116). 

 The broken ends are then processed and joined by the ubiquitously 

expressed cNHEJ DNA repair factors, including KU70, KU80, DNA-PKcs, 

ARTEMIS, DNA LIG4, XRCC4 and XLF (117). The blunt RS ends are precisely 

ligated without further processing; however, nucleotide additions and deletions 

can occur at a subset of ends (118-120). The hairpin coding ends are nicked by 

the ARTEMIS:DNA-PKcs complex and cleavage at positions located away from 

the apex can result in addition of palindromic, "P", nucleotides within the 

junctions (60). In addition, non-templated, "N", nucleotides can be added by the 

pol X family, lymphoid-specific DNA polymerase, terminal deoxynucleotidyl 

transferase (TdT), and nucleotides can also be deleted (121, 122). DNA 

polymerase mu (pol µ), a close homolog of TdT that displays template-dependent 

polymerase activity, participates in the end processing of the immunoglobulin 

light chain, but not of heavy chain junctions (123). Rather, DNA polymerase 

lamda (pol λ), another close homolog to TdT that belongs to the pol X family and 

possesses template-dependent polymerase activity, participates in the end 

processing of the immunoglobulin heavy chain, likely before TdT (124). 

 V(D)J recombination is regulated in part, by cell cycle regulation of RAG2.  

The RAG2 C-terminus is phosphorylated by CDK to shuttle it for degradation 

during the G1 to S cell transition (125). RAG enzymatic activity is significantly 

diminished with only the enzymatic activity of RAG1 remaining (126). In vitro 

studies have shown that RAG1 and RAG2 co-expression increases V(D)J 

recombination 1000-fold indicating that the in vivo RAG1 and RAG2 complex act 

together as the core RAG1/2 complex to initiate V(D)J recombination (104, 126). 

 B1.2 Hairpin coding end processing by the ARTEMIS endonuclease 

 Biochemical studies indicate that ARTEMIS possesses intrinsic robust 5' 

to 3' single strand exonucleolytic activity and is activated as an endonuclease 

upon interaction with DNA-PKcs (60). However, a recent paper by the Turchi 

group found that a purified product of ARTEMIS lacked the exonucleolytic 
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activity, yet, maintained its endonucleolytic activities when bound with DNA-PKcs 

putting into question the exonucleolytic activities of ARTEMIS (99). In contrast, 

the Lieber group recently identified that the exonucleolytic activity of ARTEMIS 

was intrinsic and that it is not dependent upon interaction with DNA-PKcs (127). 

The intrinsic exonuclease activities of ARTEMIS remain to be fully elucidated. 

Nonetheless, it is clear that ARTEMIS possesses robust endonucleolytic activity 

on 5’ and 3’ overhangs, hairpins, loops, and flaps (100, 128). The 

ARTEMIS:DNA-PKcs complex is likely the active form of the nuclease that 

functions during V(D)J recombination and general DNA DSB repair (60). The 

ARTEMIS C-terminal domain interacts with and is phosphorylated by DNA-PKcs; 

however, the functional importance of ARTEMIS phosphorylation in vivo is not 

clear (78, 128, 129). In this regard, although first proposed to be required for 

regulation of intrinsic nuclease activities, biochemical and cellular studies of 

mutant ARTEMIS proteins have provided evidence that phosphorylation by DNA-

PKcs is not necessary for activation of endonucleolytic activities (32, 130, 131). 

In addition, in vitro cellular assays examining the V(D)J recombination and DNA 

repair activities of exogenously expressed C-terminally truncated ARTEMIS 

proteins that lack DNA-PKcs phosphorylation sites, or mutant forms that cannot 

bind DNA-PKcs, have suggested that DNA-PKcs-dependent phosphorylation of 

the ARTEMIS C-terminus is dispensable for complete activation (78).  Thus, 

although the DNA-PKcs interaction is clearly required for activation of ARTEMIS 

endonucleolytic activity, the mechanism by which this occurs is not well 

understood and thus, was a focus of my dissertation in chapter 2.   

 B1.3 Defective V(D)J recombination and human disease   
 There are approximately 150 inherited primary immunodeficiency 

diseases, and the genetic defects underlying these diseases have been identified 

in more than 100 disorders (132).  Mutations in nearly all of the known genes that 

play central roles in V(D)J recombination have been identified in human 

combined immunodeficiency patients, including RAG1, RAG2, PRKDC (DNA-

PKcs), LIG4, XLF, and DCLRE1C (ARTEMIS) (Figure1.6A) and result in T-B- 

SCID (81, 93, 98, 130, 133-135) associated with radiosensitivity. 
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 In addition, defective V(D)J recombination can lead to chromosomal 

translocations that juxtapose loci that undergo V(D)J rearrangements and cellular 

oncogenes are associated with human lymphoid malignancies (136, 137). One 

mechanism that results in oncogenic chromosomal rearrangements is misrepair 

of RAG1/2 generated DSBs (109, 138). In normal cells, the cNHEJ pathway 

ensures that DSBs are properly repaired; however, checkpoint failure and 

defects in processing and joining broken ends can render them available for 

repair by alternative pathways (Figure 1.6B) (115, 138). Mutations in cNHEJ 

genes can alter the fate of the DSBs and lead to chromosomal instability, 

including oncogenic translocations.  Indeed, hypomorphic mutations in LIG4 and 

ARTEMIS have been found in human patients with lymphoid malignancies 

(Figure 1.6A) (81) (98). In addition, mouse models harboring inactivating 

mutations in Ku70, Ku80, DNA-PKcs (Prkdc, convention is to annotate as DNA-

Pkcs), Xrcc4, Lig4 and Artemis in the context of p53 mutation are predisposed to 

early onset pro-B lymphoma associated with oncogenic chromosomal 

translocations involving the IgH locus (Figure 1.6) (139-147). Thus, the cNHEJ 

factors play critical roles in suppressing tumorigenesis. 

 The mechanisms of oncogenic translocation formation resulting from 

aberrant V(D)J recombination are not well understood. Chromosomal 

translocations associated with spontaneous human lymphoid malignancies are 

mediated by short regions of sequence homology (microhomology) at the 

breakpoint junction. Moreover, translocation breakpoints in the lymphomas 

arising in cNHEJ/p53 double null mice contain microhomologies. The hallmark 

features of this error prone pathway, MMEJ, are deletions of flanking sequence 

and short homologies of 1 to 25 bases at the junctions that serve to align the 

DNA ends prior to joining. In addition to its apparent importance in the etiology of 

human cancers, MMEJ also appears to play a significant role in therapy-induced 

oncogenic chromosomal translocations. 
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 B1.4 Recombination activating genes 1 and 2 (Rag1/2) and 

immunodeficiency 
 Null mutations of RAG1/RAG2 are associated with SCID as no productive 

rearrangements at either the T- or B-cell receptor rearranging loci can be 

detected in patients. In contrast RAG1/RAG2 mutations that result in 

hypomorphic alleles are associated with less severe immunodeficiency disorders 

such as Omenn Syndrome and leaky SCID that produces an oligoclonal 

population of circulating lymphocytes (Figure 1.7) (148).  

 Heterozygous and homozygous mutations in RAG1/RAG2 associated with 

immunodeficiency disorders impact various domains of the proteins. Although not 

essential for catalytic activity, the N-terminus of RAG1 consists of a basic region, 

a nuclear localization signal, a recombination signal sequence recognition 

domain and a dimerization domain defined by a C2H2 Zinc finger and a C3HC4 

zinc binding motif described as a RING motif associated with E3 ligases. RAG1 

missense mutations in the nuclear localization domain impair recombination 

signal sequence recognition and cleavage (149, 150). Omenn Syndrome patients 

have been found to bear missense mutations in the RAG1 nuclear localization 

domain, thus strengthening the importance of this region, spanning only 4% of 

the molecule (151). Omenn Syndrome was first described in 1965 and is 

characterized by early-onset generalized erythroderma, failure to thrive, 

protracted diarrhea, hepatosplenomegaly, and lymphadenopathy and is inherited 

in an autosomal recessive manner associated with autoimmunity (152).  

 The C-terminus of RAG1 contains the enzymatic activity for both nicking 

and hairpin formation in addition to sites for RAG2 protein interaction. 

Homozygous or compound heterozygous mutations in the region of RAG1 

mediating interaction with RAG2 can result in decreased RAG1/RAG2 interaction 

and hence in reduced recombinational activity on extrachromosomal substrates 

while mutations in the catalytic domain, give rise to proteins highly inefficient in 

DNA nicking (149, 150). 

 RAG2 largely consists of an N-terminal β-propeller structure, which 

comprises the catalytic core. The C-terminus of RAG2 includes a plant 
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homeodomain (PHD). The stretch of amino acids falling between the core and 

the PHD-like region has been defined as the ‘‘hinge’’ or linker, holding the two 

structural domains together. The biological importance of the β-propeller 

structure and PHD fingers is demonstrated by the fact that heterozygous or 

homozygous mutations in these domains are reported to be responsible for 

diseases such as Omenn Syndrome and SCID in humans. Those mutations that 

are associated with functional null RAG1/RAG2 mutations cluster within the 

RAG2 or RAG1 binding domain as well as the heptamer binding domain (RAG1) 

suggesting this region is essential to enzymatic activity at RSSs. Mutations that 

are associated with less severe immunodeficiency disorders such as Omenn 

syndrome, cluster mostly within the nonamer binding and the C-terminus (RAG1) 

and within the acidic hinge (RAG2) suggesting these regions are not essential for 

full enzymatic activity of the RAG1/2 complex. 

 B1.5 Mouse models of RAG1/RAG2 

 David Schatz and Margi Oettinger were the first to demonstrate the 

dependence of the RAG1/2 endonuclease to lymphoid development (105). The 

crucial role played by RAG1 and RAG2 in lymphoid cell development was 

demonstrated in vivo by results of gene targeting in mouse (153, 154). In fact 

Rag1– /– and Rag2– /– mice share an identical phenotype, with a severe and early 

block in differentiation of both T- (at the triple negative [CD3–CD4–CD8–]CD25+ 

stage) and B-cells (at the B220loCD43+ IgM–, pro-B stage), at the stage of 

development when V(D)J rearrangements are initiated (153, 154). In 1996, The 

Bartram lab showed that a portion of patients with a clinical picture of SCID with 

natural killer cells but no B and T lymphocytes (6 out of 14 cases analyzed) bear 

mutations in either RAG1 or RAG2 genes (155). All the mutations identified 

(missense, nonsense, deletion) proved to be devoid of recombinational activity 

(0.1–1.0% of wild-type), when assayed in transient transfection experiments with 

artificial extrachromosomal rearrangement substrates. The few signal and 

coding-joints that were detected appeared qualitatively normal, indicating that the 

RAG1/2-generated DSBs are repaired via the mechanisms of DSB repair and are 

unaffected in RAG1/2-deficient subjects (155). 
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 Hypomorphic Rag1 or Rag2 murine mutations recapitulate Omenn 

syndrome and in one case in particular, predisposed to tumorigenesis (156) 

(157). The RAG1-S723C mouse is the only animal model currently available to 

investigate the contribution of hypomorphic Rag mutations to Omenn Syndrome 

and established that hypomorphic rag mutations in mice and humans are 

associated with autoantibody production (158). The RAG1-S723C knock-in 

mouse model exhibited impaired lymphocyte development and decreased V(D)J 

rearrangements; however, distinct from RAG nullizygosity, the RAG1-S723C 

hypomorph resulted in aberrant DNA breaks within rearranging loci that 

ultimately predisposed the mice to thymic lymphoma in a p53 deficient 

background (156, 159). RAG1/2 mutations had previously been identified in 

human tumors and this study provided in vivo evidence for the role of the 

RAG1/2 complex not only in lymphocyte development but also in suppressing 

tumorigenesis. 

 B1.6 DNA-PK deficiency in man and mice 

 The KU heterodimer, consisting of KU70 and KU80, can associate with 

DNA-PKcs to form the DNA-PK holoenzyme in turn activating the kinase 

activities of DNA-PKcs (57, 58). The ubiquitously expressed cNHEJ factor, 

KU70/KU80, serves as a sensor of DSBs during cNHEJ in the context of DNA 

DSB repair, including that incorporated into the V(D)J recombination reaction in 

developing lymphocytes.  

 Based on its intrinsic activities, KU may have a specific role in DNA end 

processing (160). On the other hand, KU may function primarily by recruiting and 

activating DNA-PKcs to form a synaptic complex (involving KU, DNA-PKcs, and 

DNA ends) that then recruits other factors involved in the reaction (161, 162). 

However, the differential effects of KU80 deficiency and the DNA-PKcs mutation 

on recombination signal joining during V(D)J recombination suggest the 

possibility of unique functions for the two molecules. In this regard, KU80-

deficient mice have a phenotype that is distinctly different from that of DNA-PKcs-

/- mice. Both deficiencies lead to severe combined immune deficiency (SCID). 

However, mice harboring a missense mutation in the C-terminus of DNA-PKcs 
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that results truncation of the C-terminus known as SCID (DNA-PKcsScid/Scid ) mice 

are “leaky,” with some mature lymphocytes accumulating in older mice, whereas 

KU80-deficient mice (Ku80−/− mice) have thus far been found to be non-leaky, 

with B- and T- cell development arrested at an early progenitor stage (161, 163-

165). Furthermore, Ku80−/− mice, unlike SCID mice, are smaller than their wild 

type or heterozygous littermates, and their cells show early senescence, 

suggesting a link between KU80 and growth control (164). The reason for the 

phenotypic differences between DNA-PKcsScid/Scid and KU80-deficient mice is 

unknown. It may be that KU80 has functions distinct from its role as a DNA-

binding subunit for DNA-PKcs or that the DNA-PKcsScid/Scid murine mutation and 

the DNA-PKcsScid/Scid chinese hamster cell line mutation, V-3, does not totally 

inactivate all DNA-PKcs functions (161) (166). Although DNA-PKcs-/- mice are 

severely impaired at the progenitor B- and T- cell stages of lymphocyte 

development, DNA-PKcs-/- mice largely recapitulate the SCID mouse phenotype 

except for the lymphocyte “leakiness” suggesting residual DNA-PKcs activity of 

the SCID mutation (147, 167-169). However, Ku70-/- mice are similarly small like 

their Ku80-/- counterparts and are characterized with defects in the joining phase 

of V(D)J recombination (170). Interestingly, although the DNA-PKcsScid/Scid and 

the Ku80-/- mouse have some non-overlapping phenotypes, Ku70-/- mice have 

similar “leaky” lymphocyte development as DNA-PKcsScid/Scid mice (164, 165, 

170). Regardless of the overlapping and/or non-overlapping roles of these factors 

in cNHEJ during V(D)J recombination, it is clear from the animal studies the 

importance of these factors to process broken DNA end intermediates during 

V(D)J recombination. 

 There has yet to be patients identified with KU70/KU80 mutations, but 

there have been patients with DNA-PKcs mutations reported (Figure 1.6A). The 

first human mutation in the gene encoding DNA-PKcs (PRKDC) was identified by 

the van Gent group in 2009 (171). The patient presented with radiosensitivity and 

few circulating T- and B-cells. As DNA-PKcs is not only important for the repair of 

RAG1/2-generated DSBs during lymphocyte development but also general DSBs 

that occur during normal cellular process, the patient also presented with 
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radiosensitivity to DNA damaging agents. Although SCID consists of a 

heterogeneous group of diseases, it is immunologically characterized by the 

absence or dysfunctioning of lymphocytes. Patients who are diagnosed with RS-

SCID are additionally sensitive to DNA damaging agents (93), therefore, the 

patient was diagnosed with RS-SCID (171). The hypomorphic missense mutation 

(L3062R) did not result in decreased protein expression or reduced 

(auto)phosphorylation. Rather the mutation was shown to have defects in 

recruiting downstream effector proteins necessary for appropriate DNA repair 

(171). Recently a compound heterozygous patient was identified by the Jeggo 

group with PRKDC mutations (allele 1, splice site mutation resulting in skipping 

of exon 16, and allele 2, A3574V) where one allele resulted in an inactivating 

allele (A3574V, mutation in a well-conserved FAT domain), and the other 

severely reduced DNA-PKcs activity (Δ exon 16). Strikingly, this patient was 

marked with severe neurological abnormalities such as microcephaly-associated 

cortical and hippocampal dysplasia and seizures (172). Although loss of DNA-

PKcs in mice, dogs, and horses was previously shown not to impair neuronal 

development, the findings from the Jeggo lab implicate a stringent requirement 

for DNA-PKcs during human neuronal development and suggest that high DNA-

PK protein expression is required to sustain efficient pre- and postnatal 

neurogenesis (147, 172-174). This is quite interesting as it suggests roles for 

cNHEJ during neuronal development, which is not unfounded as other cNHEJ 

genes have been implicated during this process such as KU70/KU80, LIG4 and 

XRCC4 (175, 176). 

 B1.7 ARTEMIS mutations and immunodeficiency syndromes  
 DCLRE1C (ARTEMIS) mutation is associated with human 

immunodeficiency disorders and was initially discovered as the gene mutated in 

human RS-SCID (93, 94, 177). The majority of ARTEMIS mutations that cause 

RS-SCID are located within a highly conserved, metallo-β-lactamase/β-CASP 

catalytic domain (residues 1-385 of 692 aa) that distinguishes this family of 

proteins (Figure 1.8) (94). These mutations include genomic exon deletions, 

nucleotide deletions, nonsense and missence mutations and are presumed to 
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inactivate protein function.  Inherited hypomorphic ARTEMIS alleles have also 

been identified in patients and cause combined immunodeficiency syndromes of 

varying severity, including Omenn syndrome  (Figure 1.8) (133, 178, 179). One 

particularly interesting subset of inherited hypomorphic ARTEMIS alleles results 

in premature translation termination and is associated with partial 

immunodeficiency and lymphoma (Figure 1.8) (178). The patients harboring 

these mutations are predisposed to mature B lymphomas characterized by 

chromosomal aberrations, including translocations (178). The ARTEMIS C-

terminal domain interacts with and is phosphorylated by DNA-PKcs; however, the 

functional importance of the ARTEMIS C-terminus during V(D)J recombination is 

not clear (78, 100, 129). Investigating the association between lymphoma and 

the hypomorphic ARTEMIS alleles that delete the C-terminus was a major focus 

of my thesis (Chapter 2) and my studies provided the first evidence that the 

ARTEMIS C-terminus suppresses tumorigenesis. 

 The Alt lab used gene targeting to disrupt the murine Artemis locus in a 

fashion analogous to a mutation found in human RS-SCID patients to elucidate 

the potential functions of ARTEMIS in V(D)J recombination and general DSB 

repair (93). Artemis-/- mice recapitulated the ARTEMIS inactivating patient 

phenotype and DNA-PKcs-/- mice, including normal size and cellular proliferation, 

severe combined immunodeficiency, a specific defect in V(D)J coding, and 

increased cellular sensitivity to ionizing radiation. Moreover, impaired T-cell 

development is associated with the accumulation of unresolved hairpin 

intermediates in Artemis-/- thymocytes, strongly supporting the ARTEMIS 

functions in processing hairpin coding ends. Interestingly, similar to DNA-

PKcsScid/Scid and Ku70-/- mice, a significant subset of young Artemis-/- mice 

showed “leaky” lymphocyte development (163, 170, 180). Like DNA-PKcsScid/Scid 

or KU70-deficient mice, it is likely that the leakiness of Artemis-/- lymphocytes 

results from a low but significant level of productive V(D)J rearrangements 

suggesting the involvement of a nuclease other than ARTEMIS than can open 

hairpin coding ends. 
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 Another mouse model of ARTEMIS deficiency sought to address the role 

of the ARTEMIS C-terminus in lymphocyte development and tumor suppression. 

ARTEMIS hypomorphic mutations that result in the deletion of the ARTEMIS C-

terminus present with partial immunodeficiency and predisposition to lymphoma. 

This phenotype is quite distinct from the ARTEMIS inactivating patient mutations 

that completely block lymphocyte development, yet are not tumor prone. Prior to 

my dissertation work, the mechanistic basis for the distinct disease outcomes 

resulting from specific ARTEMIS mutations was not well understood.  

Furthermore, the regulation of ARTEMIS in vivo functions had not yet been fully 

elucidated. Together, my dissertation work in chapter 2 provided insight into the 

mechanisms that maintain genome stability and prevent the formation of 

lymphoma-associated chromosomal translocations associated with ARTEMIS 

mutations that diminish, but do not severely abrogate lymphocyte development. 

 B1.8 The ligation complex and immunodeficiency 

 The cNHEJ ligation complex consists of LIG4, XRCC4, and XLF. The 

ligation complex is an essential part of cNHEJ during V(D)J recombination as 

deficiency in any component of the complex results in immunodeficiency 

syndromes of varying severity in patients and animal models (81, 134, 140, 181-

185). The ligation complex, specifically LIG4 and XRCC4 interact with DNA-PK 

and ARTEMIS in a complex containing XLF to facilitate ligation and repair of 

broken DNA ends (186). This close physical connection between the cNHEJ 

factors during V(D)J recombination results in dynamic and rapid repair of 

RAG1/2-induced DSBs. 

 XRCC4 deficiency in cells results in proliferation defects, DSB repair 

defects, and inability to support either the coding or RSS end-joining processes 

required to complete the V(D)J recombination reaction (176). These defects are 

quite similar to those observed with KU- and LIG4–deficient cells and likely result 

from impairment of an end-joining reaction that employs all of these proteins. 

However, XRCC4, in contrast to KU, is required for normal embryonic 

development, with XRCC4-deficient and LIG4-deficient embryos dying over a 

relatively broad period in late gestation (176). Analyses of the mutant embryos 
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revealed defects only in lymphocyte and neuronal development; massive 

apoptotic cell death of newly generated, post mitotic neurons was the only 

potential cause of death identified. Strikingly, LIG4 deficiency results in similar 

neuronal developmental defects. Therefore, this neuronal death phenotype 

almost certainly results from the absence of a shared XRCC4 and LIG4 function. 

 Among the patients with cNHEJ deficiencies, 16 cases with mutations in 

LIG4 have been described to date with phenotypes varying from malignancy in 

developmentally normal individuals, to severe combined immunodeficiency early 

mortality, and developmental delay (Figure 1.6a, Figure 1.9) (184). Most patients 

developed thrombocytopenia and leucopenia later in childhood and were found 

to have previously unrecognized immunodeficiency following molecular diagnosis 

(184). Genotype-phenotype correlations can be ascribed to the position of 

truncating mutations corresponding to disease severity. For example, mutations 

associated with severe abrogation of LIG4 activity (located within the catalytic 

region of the protein—N-terminus) can result in SCID whereas other mutations 

(that disrupt the XRCC4/LIG4 interacting domain—C-terminus) can predispose to 

lymphoma (81, 187, 188). As of yet, there have not been XRCC4 patients 

identified (Figure 1.6a), but given the close interaction between LIG4 and 

XRCC4, any XRCC4-deficient patients could share many of the LIG4-deficient 

phenotypes. 

 The involvement of a third protein in the DNA LIG4 complex was first 

suggested by discovery of the yeast cNHEJ protein Nej1p (XLF) and the 

observation that it interacts with yeast Lif1p (XRCC4) (189-193). The inability of 

standard computational approaches to reveal apparent Nej1p (XLF homologues 

outside of budding yeasts, led to the idea that Nej1p was not a universally 

conserved cNHEJ protein. However, it was recently discovered that people with a 

form of V(D)J recombination/cNHEJ deficiency lack the protein XLF (also called 

Cernunnos) (Figure 1.6) (63, 134). XLF/CERNUNNOS was identified when a 

radiosensitive SCID condition (patient 2BN) without mutation in any of the known 

cNHEJ genes was identified (134). Various DNA repair assays detected in-check 

cell cycle checkpoints and DNA damage response post clastogen exposure. 
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Plasmid substrates transfected into patient fibroblasts revealed reduced V(D)J 

recombination indicating a defect in cNHEJ. Notably, the V(D)J deficiency 

observed in XLF-deficient patients was less severe than what was observed in 

RS-SCID patients with ARTEMIS mutations. Strikingly, the clinical phenotype of 

XLF-deficient patients shares several characteristics with Nijmegen breakage 

syndrome (NBS) and LIG4 deficiency such as combined immunodeficiency, 

microcephaly, growth retardation, and sensitivity to ionizing radiation (134, 188, 

194). However, XLF deficiency does not lead to impaired cell-cycle checkpoints, 

as observed in NBS, a genome instability condition, but leads rather to a cNHEJ 

defect as observed in LIG4 deficiency, albeit less severe (87, 188). 

 Like Nej1p, XLF interacts directly with XRCC4 and is required for cNHEJ. 

Indeed, detailed computational analyses aided by this information and new 

genome sequences verified that Nej1p and XLF are ancestrally related, despite 

their low primary sequence conservation (195-197). Even more strikingly, these 

computational approaches indicated that XLF, and by inference Nej1p, are 

distantly related to XRCC4 (in yeast, Lif1p), and that these genes likely arose by 

an ancestral duplication (63, 196). The collected results from the literature 

support a model in both budding yeast and humans in which LIG4 (in yeast, 

Dnl4p) is predominantly bound to XRCC4 (in yeast, Lif1p), with XLF (in yeast, 

Nej1p) providing a further supporting role via direct contacts to both LIG4 and 

XRCC4. However, observable differences in these interactions between species, 

the relatedness of XRCC4 and XLF, and the weak and non-uniform conservation 

of these proteins all suggest a substantial flexibility in their use during cNHEJ 

(198). 

 B1.9 Ataxia-telangiectasia (AT) and human disease 

 Ataxia-telangiectasia (AT) is caused by mutations in the ATM gene and is 

inherited in a homozygously recessive manner (194). It is characterized by 

cerebellar ataxia and other developmental defects such as immunodeficiency 

that typically results in low immunoglobulin IgA, low IgG2, and lymphopenia, 

especially of the naive CD4 cells, and radiosensitivity. Approximately one-third of 

AT patients develop malignancies, with lymphomas and leukemias of T-cell origin 
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being predominant (Figure 1.9) (194).  B-cell neoplasias are less common. The 

T-cell receptor loci, at chromosomes 7p14, 7q34, and 14q11, are often 

abnormally rearranged in a high proportion of T-cells from AT individuals, even 

before the onset of malignancy (194). The high incidence of T cell cancers and 

frequent involvement of the TCR loci in chromosomal rearrangements suggests 

that the tumorigenic trigger in AT is provided by impaired V(D)J recombination. 

Murine models of AT largely recapitulate the patient phenotype and present with 

defects in lymphocyte development such as a reduction in the number of mature 

naïve CD4 and CD8 T-cells, cell cycle checkpoint defects, and cancer 

predisposition (199). It is puzzling that the cerebellar defects are not 

recapitulated in mouse models of AT (199). 

C. Mouse models of the MRE11 complex and human disease 

 Null mutations of Mre11, Rad50, and Nbs1 are not viable in mouse 

models and presently no patient has been identified harboring null alleles. 

Therefore, this has necessitated the use of conditional murine alleles and 

hypomorphic alleles. 

 C1.1 Nijmegen breakage syndrome (NBS) 
 The Nijmegen breakage syndrome (NBS) was first described in two 

brothers with microcephaly, mental retardation, facial erythema, café-au-lait 

spots, IgA deficiency, and chromosomal instability (200). Molecular analysis of 

the mutation identified hypomorphic mutations in the NBN (Nbs1) gene inherited 

in a homozygously recessive manner (200). NBS patients are characterized by 

lymphopenia of B- and T-cells, short stature, ‘bird-like’ features, and have an 

increased risk for development of non-Hodgkins lymphomas with the majority 

being of B-cell origin (Figure 1.9) (201). Although each disease also has unique 

features (AT results in cerebellar ataxia and telangiectasia which is absent in 

NBS), NBS patients’ phenotypes overlap with those of patients with mutations in 

ATM such as increased sensitivity to DNA damaging agents, predisposition to 

malignancy harboring clonal translocations with rearranging loci (ch. 7 and ch. 

14), and mental impairment (194). The overlapping phenotypes suggest a 
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functional relationship between the ATM protein and the NBS1 protein (42, 194, 

201). Indeed, ATM phosphorylates NBS1 in response to damage, and this has 

been proposed to be a prerequisite for checkpoint activation by the MRE11 

complex (42). 

 Hypomorphic mouse models of NBS interestingly are unique and do not 

completely recapitulate the ATM signaling defects observed in cells (Figure 1.10) 

(42). However, conditional and hypomorphic mutations (that truncate either the 

N- or C-terminus of NBS1) of NBS demonstrate defects in the cell cycle (S/G2), 

sensitivity to DNA damaging agents, chromosomal sensitivity, and defects in 

class switch recombination (CSR), a lymphocyte-specific DNA rearrangement 

(Figure 1.10) (42). 

 C1.2 RAD50 and human disease (NBS-like disorder) 

 Until recently, no human patient had been identified that harbored mutant 

alleles of RAD50 so much of the biological understanding of the RAD50 protein 

came from model organisms. However, in 2009, an individual previously 

diagnosed with NBS due to short stature, ‘bird-like’ features, and microcephaly 

was identified to be compound heterozygous for RAD50 (maternal allele: 

R1093X, suggested to be functionally null; paternal allele: A3939T, larger, 

unstable protein probably a hypomorph) (202). The lack of cancer predisposition 

in this individual spurred additional molecular characterization and resulted in 

identification of the RAD50-associated NBS-like disorder (NBSLD). 

 Conditional knock-out mice of Rad50 largely present with an increase in 

genomic instability resulting in precipitous death of cultured cells, decrease in 

proliferation, and increase in DNA damage (Figure 1.10) (42). Other RAD50 

murine mutations contain phenotypes ranging from embryonic lethality (Rad50S, 

Rad50Δ), bone marrow failure, and cancer predisposition to chromosomal 

instability (Rad50 conditional allele) (Figure1.10) (42). 

 C1.3 MRE11 and human genome instability disorders 

 As deficiency in ATM results in cerebellar ataxia, increased DNA damage, 

chromosomal radiosensitivity in lymphocytes and cancer predisposition (among 
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other phenotypes), another disorder similar to AT, is caused by hypomorphic 

mutations in MRE11 and is aptly named ataxia-telangiectasia like disorder 

(ATLD) (90). The clinical features of patients with ATLD are very similar to those 

of AT. The clearest similarity being with the progressive cerebellar ataxia that the 

ATLD patients show. In contrast to AT, ATLD patients show no telangiectasia nor 

immunodeficiency or cancer (203, 204). Compared with AT, ATLD is 

characterized by a later onset of the neurological features, and slower 

progression of the disorder to give the overall appearance of a milder condition 

than AT in the early years (205). ATLD patients also show normal levels of total 

immunoglobulins such as IgG, IgA and IgM although there may be reduced 

levels of specific functional antibodies (205). Since MRE11 is a component of a 

protein complex with NBS1 and RAD50, it is perhaps surprising that a deficiency 

in MRE11 gives rise to an AT-like disorder rather than a more NBS-like disorder 

(206, 207). Nonetheless, the patient phenotypes highlight the importance of 

MRE11 in DSB repair, as the patient clinical findings are associated with 

developmental defects that rely on rapid cellular proliferation and the repair of 

DNA breaks. Mouse models of different ATLD mutations recapitulate patient 

molecular findings including checkpoint defects, chromosomal defects, DNA 

damage sensitivity, and lack of malignancy (Figure 1.10) (42, 91). 

 The MRE11 component of the MRE11 complex possesses intrinsic 

nuclease activity whereby MRE11 is an endonuclease and also a 3’-5’ 

exonuclease (208). Additionally, the nuclease domain of MRE11 is highly 

conserved suggesting the nuclease activities of MRE11 are essential (89). Early 

studies in yeast identified that the nuclease activities of MRE11 are essential to 

DNA repair (209). The Ferguson lab corroborated the yeast findings and 

observed that the mammalian MRE11 nuclease activities are essential to DNA 

repair as well as in checkpoint activation (15). In its homozygous state, both the 

Mre11 null allele and the nuclease dead allele of Mre11, Mre11H129N, resulted in 

embryonic lethality indicating essential roles for the MRE11 complex and the 

nuclease activities of MRE11 during development (15). Interestingly, even though 

the Mre11H129N allele is molecularly distinct from the Mre11 null allele, the 
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Mre11H129N allele shares similar DNA repair phenotypes such as rapid cellular 

senescence, cellular sensitivity to DNA damaging agents, increase in 

chromosomal aberrations, and HR deficiency (Figure 1.10) (15). However, 

uniquely, the Mre11H129N allele is able to activate ATM while the Mre11 null allele 

destabilizes the MRE11 complex resulting in loss of both RAD50 and NBS1 

cellularly resulting in loss of ATM activation (15). 

 C1.4 The MRE11 complex and lymphocyte development 

 Conditional NBS1 or MRE11 deletion in B lymphocytes results in defects 

in class switch recombination (CSR), a lymphocyte-specific rearrangement that 

occurs in B-cells, raising the possibility that MRE11 or the MRE11 complex has a 

role in CSR (Figure 1.10) (82, 210). The nuclease-deficient Mre11H129N allele also 

resulted in deficient CSR, and it has been suggested that defects in resection 

may underlie this phenotype (82). It has been observed that mice expressing the 

Nbs1ΔB and Mre11ATLD1 alleles, hypomorphic C-terminal truncations with 

substantial defects in MRE11 complex formation and function, showed an 

increase in aberrant joining such as trans-rearrangements caused by abnormal 

V(D)J recombination (91, 92)  Additionally, increased levels of unrepaired DNA 

were detected in these and similar animal models, suggesting a subtler defect in 

the fidelity of end joining (Figure 1.10) (91, 211). Taken together, the data 

suggest a role for the MRE11 complex in the repair of lymphocyte-specific DSBs 

that occur during developmental programs like V(D)J recombination and CSR. 

 The MRE11 complex also functions in an end-joining pathway denoted as 

aNHEJ (71, 72, 77, 82). DNA-PKcsscid/scidNbs1ΔB/ΔB mice are nearly inviable, but a 

limited number of double-mutant mice and cells have allowed the role of the 

MRE11 complex in cells lacking a primary component of cNHEJ to be 

investigated. Using a hyperactive RAG1/2 protein to initiate DNA breaks, it was 

demonstrated that an aNHEJ pathway could be activated in cells lacking DNA-

PKcs (113). This system revealed that the MRE11 complex could facilitate 

aNHEJ-mediated joining of V(D)J substrates (71, 113). This study provided 

evidence for the role of the MRE11 complex in facilitating RAG1/2 DNA DSBs 

during V(D)J using aNHEJ. This finding is somewhat confusing as studies have 
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also cited a role for the MRE11 complex in facilitating cNHEJ to repair DNA DSB 

intermediates that occur during lymphocyte development during CSR (82), 

therefore, it is unclear how the MRE11 complex directly promotes end joining in 

both the cNHEJ and aNHEJ pathways during V(D)J recombination and thus, is a 

major focus of my dissertation, specifically in Chapter 4. 

 The MRE11 complex clearly plays a key role in DNA DSB repair 

processes that also involve the activities of the cNHEJ factors, including 

ARTEMIS; however, the interplay between these critical repair activities is not 

well understood and represents a focus of this thesis. 

 C1.5 Using the mouse model as a model organism to study V(D)J 

 recombination and disease 
 The mouse is a highly relevant model system to better understand 

lymphocyte development and furthermore serves as an excellent model of 

various maladies associated with V(D)J recombination. The high relative 

sequence conservation of nonhomologous end joining genes between humans 

and mouse makes this organism appealing in a genetic context. The existence of 

inbred mouse strains with isogenic backgrounds is a strong advantage of using 

the mouse as a model system. In addition, the ability to rear mice in defined 

conditions permits control of potential environmental components that may 

impact V(D)J recombination. 

 The lack of large cohorts of individuals with V(D)J defects hampers large-

scale studies to evaluate the causality of V(D)J mutations associated with 

primary immunodeficiencies. Therefore, molecular immunologists have relied 

heavily on the use of engineered mouse models with customizable alleles (i.e. 

deletions, knock-in of orthologous human mutations, and temporally or spatially 

conditional mutations), which I take full advantage of in the studies of my 

dissertation. These engineered mouse models that I used for my studies were 

integral to the novel studies within my dissertation. 
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D. Summary 

 Factors critical in the repair of DNA DSBs are important in preventing 

accumulation of unwanted mutations and also immune system development 

evidenced by patient mutations that predispose to tumorigenesis and 

immunodeficiency disorders of varying severity.  

 As we are able to gain more information on residues important for protein-

protein interaction and protein-DNA interaction, it is becoming increasingly clear 

the intricate coordination of repair factors at DNA ends is specific and fine tuned 

to harmoniously repair damage. However, questions still remain how the 

intricacies behind the DNA damage response interplays with DNA repair pathway 

choice to ensure normal cellular function. In addition, questions remain about 

functions of factors within the DNA damage response and the consequences of 

disease associated alleles.  

 My dissertation seeks to further define these questions by focusing on the 

in vivo roles of the ARTEMIS DNA nuclease in maintaining genome stability, 

preventing oncogenic chromosomal translocations and ensuring proper immune 

system development. The precise mechanisms by which ARTEMIS activities are 

regulated in vivo are not well understood. To this end, I investigate the in vivo 

functions of the ARTEMIS C-terminus in preventing aberrant events associated 

with chromosomal translocations. Additionally, I investigate how other nucleases, 

such as MRE11, regulate ARTEMIS activity and the importance of nucleases 

such as ARTEMIS and MRE11 on the suppression or generation of oncogenic 

events associated with cancer. As a result, my dissertation has resulted in novel 

findings that have contributed to the DNA repair field. My studies lay critical 

foundation to future investigations into the interplay between ARTEMIS and 

MRE11, cNHEJ and aNHEJ, and HR and NHEJ. My thesis work has moved the 

DNA repair field closer to better understanding the coordination of DNA end 

processing events important to cellular development and in cancer prevention.  
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Figure 1.1 DNA damage occurs via exogenous or endogenous insults.  
DNA damage can occur as a result of exogenous insults such as radiation or as 
a result of endogenous insults such as due to cellular metabolism or replication 
errors. After initial damage, the resulting lesion is sensed and bound by particular 
DNA end-binding factors (KU70/80 or MRN) which help to mediate the DNA 
damage response and activate kinases (KU70/80 activate DNA-PKcs and MRN 
activates ATM) that are capable of transducing the DNA damage signal to 
effector proteins that mediate a response such as cell cycle check point 
activation, transcriptional program activation, DNA repair, and cellular apoptosis 
(1). 
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Figure 1.2 DNA repair mechanisms.  
The cellular response to various DNA damage is complex and includes multiple 
pathways that repair certain types of lesions. Summarized above are the multiple 
DNA repair pathways that repair specific types of lesions and the factors 
involved. Summarized from (20, 21, 212). 
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Figure 1.3 The bulk of DSB repair utilizes homologous recombination and 
nonhomologous end joining. Diagrammed above is a simple schematic of the 
homology directed repair (HDR) or homologous recombination pathway which 
utilizes a homologous template (sister chromatid) to direct repair of DSBs. Also 
illustrated are the classical nonhomologous end joining (cNHEJ) and alternative 
nonhomologous end joining (aNHEJ) pathways that direct repair via direct end-
to-end binding and/or using regions of short homology, respectively. In this 
figure, MRN denotes the MRE11 complex. 
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Figure 1.4 ARTEMIS is a part of the Metallo-β-lactamase/β-CASP family of 
enzymes. (A) ARTEMIS has three recognizable motifs: 1) the β-Lact homology 
domain 2) the β-CASP region and 3) the COOH-terminal domain. The β-CASP 
region is specific to members of the β-Lact superfamily of enzymes that acts on 
nucleic acids while metallo-β-lactamases are enzymes that were first described 
in bacteria due to their cleavage of the β-lactam ring of certain antibiotics. These 
domains of ARTEMIS comprise its catalytic core where ARTEMIS is responsible 
for ‘nicking’ open hairpin DNA ends and endonucleolytic cleavage of overhangs. 
(B) The metallo-β-lactamase/β-CASP domain is present in ARTEMIS and other 
DNA repair factors such as SNM1 and SNM1B, both critical in DNA repair 
mechanisms. This suggests a common role of these nucleases in processing 
DNA ends during DNA repair. (96). 
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A. B-cell 

development 

B. T-cell 

development 
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Figure 1.5 V(D)J recombination is initiated by the RAG1/2 complex.  
(A) B-cell development occurs early in development and is a highly regulated 
process that begins with rearrangement of V, D, or J gene segments, mediated 
by RAG1/2. Productive rearrangement of both the heavy and light chain results in 
expression of the variable region of the antigen receptor on the cell surface. (B) 
T-cell development relies upon productive rearrangements to progress to various 
developmental stages, initiated by the RAG1/2 complex. Productive 
rearrangements result in expression of an antigen receptor on the cell surface. 
(C) V, D, or J gene segments are flanked by a 12 recombination signal sequence 
(12RSS) or by a 23RSS. RAG proteins bind to the 12RSS/23RSS, forming the 
12/23 signal complex, respectively. Capture of the second RSS (a process 
termed synapsis) results in the formation of the paired complex, within which the 
RAG proteins introduce DSBs between the gene segments and the RSSs 
resulting in two different DNA end structures that are repaired by cNHEJ (102) 
(109). 

C. RAG1/2 
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Figure 1.6 cNHEJ gene mutations result in immunodeficiency syndromes 
and cancer predisposition. (A) NHEJ factors are critical in the repair of 
RAG1/2-generated DSBs during V(D)J recombination as deficiency of any factor 
results in a developmental block in antigen receptor gene assembly and thus, 
antigen receptor expression. Murine mouse models of NHEJ patient mutations 
recapitulate the patient phenotype of immunodeficiency. (B) Combined 
cNHEJ/p53 mouse models are hypothesized to be predisposed to pro-B 
lymphoma due to defective checkpoints and misrepair of unrepaired RAG1/2-
generated DSBs. In this figure, immunocomp is short for immunocompromised. 

A. 

B. 
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Figure 1.7 Diagram of RAG1 and RAG2 proteins with annotated patient 
mutations. (A) and (B) RAG1/2 mutations have been identified that cause a 
complete or partial loss of physiological V(D)J recombination activity and are 
associated with a spectrum of severe immune deficiency disorders ranging from 
classical T-B-SCID (T-B-) to slightly milder variants, such as complete or 
incomplete Omenn syndrome (OS), and RAG deficiency with γδ T cell expansion 
(A-S), granuloma formation, or maternofetal engraftment (S-MFT) (148). 



 58 

 
Figure 1.8 Schematic representation of the ARTEMIS protein with 
mutations annotated. Mutations cluster within the metallo-β-lactamase/β-CASP 
domain (aa 1-385) that comprises the nucleolytic core of ARTEMIS. A subset of 
mutations within this region result in inactivating, null ARTEMIS mutations. Some 
mutations outside of this region cluster within the non-conserved ARTEMIS C-
terminus. These mutations result in partial immunodeficiency and predisposition 
to lymphoma (93, 152, 178, 213). Pt, point mutation. Mutations in violet result in 
immunodeficiency syndromes of varying severity. Mutations in bright turquoise 
result in Omenn syndrome, an autoimmunity disorder. 
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Figure 1.9 Deficiencies in DNA repair factors important for lymphocyte 
development can predispose to primary immunodeficiencies and 
lymphomas/leukemias. Summarized above is a list of DNA repair genes 
important for V(D)J recombination and CSR. The primary immunodeficiency 
phenotype largely affects both T- and B-cell development. Most deficiencies lead 
to cancer associated with translocations to the immunoglobulin (Ig) or T-cell 
receptor (TCR) loci (130, 134, 178, 201). 
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Figure 1.10 Mre11 complex alleles and their associated phenotypes. Above 
is a summary explaining the various Mre11 complex alleles and their associated 
phenotypes. Null alleles of the Mre11 complex result in embryonic lethality. 
Conditional or hypomorphic Mre11 complex alleles have enabled further 
characterization highlighting the importance of the complex in checkpoint 
activation, chromosomal stability, and lymphocyte development (42). 
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Abstract  
 The ARTEMIS gene encodes a DNA nuclease that plays important roles 

in classical nonhomologous end joining (cNHEJ), a major double strand break 

(DSB) repair pathway in mammalian cells. cNHEJ factors repair general DSBs as 

well as programmed breaks generated during the lymphoid-specific DNA 

rearrangement, V(D)J recombination, which is required for lymphocyte 

development. Mutations that inactivate ARTEMIS cause a human severe 

combined immunodeficiency syndrome associated with cellular radiosensitivity. 

In contrast, hypomorphic ARTEMIS mutations result in combined 

immunodeficiency syndromes of varying severity, but, in addition, are 

hypothesized to predispose to lymphoid malignancy. To elucidate the distinct 

molecular defects caused by hypomorphic compared with inactivating ARTEMIS 

mutations, we examined tumor predisposition in a mouse model harboring a 

targeted partial loss-of-function disease allele. We find that, in contrast to Artemis 

nullizygosity, the hypomorphic mutation leads to increased aberrant intra- and 

interchromosomal V(D)J joining events. We also observe that dysfunctional 

ARTEMIS activity combined with p53 inactivation predominantly predisposes to 

thymic lymphomas harboring clonal translocations distinct from those observed in 

Artemis nullizygosity. Thus, the Artemis hypomorphic allele results in unique 

molecular defects, tumor spectrum and oncogenic chromosomal 

rearrangements. Our findings have significant implications for disease outcomes 

and treatment of patients with different ARTEMIS mutations. 
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Introduction 
 ARTEMIS (DCLRE1C, DNA crosslink repair 1C, OMIM#605988, but by 

convention it is annotated as ARTEMIS) was initially identified as the gene 

mutated in a human T-B- severe combined immunodeficiency associated with 

cellular radiosensitivity (RS-SCID) (1-3).  ARTEMIS is a DNA nuclease that plays 

critical roles in the context of the classical nonhomologous end joining (cNHEJ) 

pathway of DNA double strand break repair (DSB) (4).  The cNHEJ factors are 

required for processing and joining chromosomal ends during general DSB repair 

as well as V(D)J recombination, a lymphoid-specific DNA rearrangement (5, 6). 

V(D)J recombination is the process by which the vast array of antigen receptor 

genes are assembled from component V, D and J coding exons.  During early 

lymphocyte development, the RAG1/2 endonuclease generates DSBs at specific 

recombination signal sequences (RSSs) that flank the numerous rearranging 

segments (6-8). Cleavage by RAG1/2 produces two end structures: covalently 

closed hairpin coding ends and 5′ phosphorylated, blunt RS ends. Prior to 

ligation, the hairpin coding ends are nicked open by the ARTEMIS endonuclease, 

which is activated upon interaction with the DNA-dependent protein kinase 

catalytic subunit (DNA-PKcs), a central cNHEJ factor (9).  In the absence of 

ARTEMIS function, unopened hairpin coding ends accumulate in developing 

lymphocytes and remain unjoined (10). Thus, mutations that abrogate or reduce 

ARTEMIS activity result in defective V(D)J recombination and impaired B and T 

lymphocyte development. 

 Various mutant ARTEMIS alleles have been identified in association with 

inherited combined immunodeficiency syndromes, including missense, splice-site 

and nonsense mutations, gross exonic and smaller deletions and a small 

insertion (2, 11). The majority of mutations are located within a region encoding a 

highly conserved metallo-β-lactamase/βCASP N-terminal domain (aa 1–385) 

(12).  A smaller subset of ARTEMIS alleles resides within a nonconserved C-
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terminus (aa 386–692), and these mutations are small nucleotide deletions or 

insertions resulting in frameshifts followed by premature translation termination 

(12). Patients harboring null mutations suffer from an absence of B and T 

lymphocytes, whereas partial loss-of-function ARTEMIS alleles are associated 

with immunodeficiency syndromes of varying severity, including B-/lowT-/low SCID, 

B-/low SCID, chronic inflammatory bowel disease and Omenn syndrome  (1, 11-

24).   

 The unjoined DNA ends that accumulate in lymphocytes due to defects in 

the cNHEJ pathway can be misrepaired via alternative repair pathways, thereby 

leading to genome instability and potentially detrimental chromosomal 

aberrations, including oncogenic translocations (25). In this regard, partial B and 

T immunodeficiency and aggressive B cell lymphoma was observed in patients 

harboring a premature translation termination ARTEMIS mutation within exon 14, 

which encodes the non-conserved C-terminal domain (D451fsX10, referred to as 

P70, herein) (12). These lymphoid tumors were associated with Epstein-Barr 

virus. However, molecular analyses revealed that the lymphomas were of clonal 

origin, as evidenced by the rearrangement status of the immunoglobulin heavy 

chain locus, and also harbored chromosomal anomalies and increased genome 

instability (12). These features suggest that aberrant ARTEMIS activity 

contributes to oncogenesis; however, it has not yet been established whether 

hypomorphic ARTEMIS mutations can predispose to tumorigenesis. To date, 

patients harboring null ARTEMIS alleles have not been reported to exhibit 

lymphoid malignancies. These findings raise the possibility that partial loss of 

ARTEMIS alleles that lead to truncation of the nonconserved C-terminus may 

have greater oncogenic potential compared with complete null alleles. 

 ARTEMIS forms a complex with DNA-PKcs, a serine–threonine protein 

kinase, via interactions within the C-terminal domain (9). The ARTEMIS:DNA-

PKcs complex possesses intrinsic endonucleolytic activities that can cleave DNA 

at single-to-double-strand transitions, including hairpins and 5′ or 3′ overhangs, 

as well as single strands (4, 9, 26-28). The ARTEMIS C-terminus undergoes 

extensive phosphorylation by DNA-PKcs (29-31). In vitro biochemical studies 
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with mutant forms of ARTEMIS harboring site-specific mutations revealed that 

DNA-PKcs-dependent phosphorylation is not required for activation of 

endonucleolytic activity (29). However, C-terminally truncated forms of ARTEMIS 

that retain stable interaction with DNA-PKcs but that lack the majority of 

phosphorylation sites, including the lymphoma-associated ART-P70 protein, 

exhibit reduced DNA-PKcs-dependent endonucleolytic activity (26, 32). In 

previous studies, we demonstrated that a mouse model harboring the ART-P70 

mutation recapitulated the partial B and T immunodeficiency phenotypes 

observed in patients (32).  We determined that lymphocyte development was 

impaired due to substantially reduced, but not abrogated, hairpin opening activity 

catalyzed by the ART-P70 mutant protein. Together, these results indicate that 

the ARTEMIS C-terminal domain plays important roles in modulating biochemical 

and in vivo ARTEMIS activities, in addition to facilitating DNA-PKcs interaction.   

 In this study, we examine the impact of the Art-P70 hypomorphic allele on 

predisposition to tumorigenesis. We observe that loss of a functional region 

within the nonconserved ARTEMIS C-terminus leads to aberrant intra- and 

interchromosomal rearrangements within the antigen receptor loci. In addition, 

we find that the Art-P70 allele in the context of p53 inactivation predisposes to a 

spectrum of B and T lymphoid malignancies that is distinct from that observed in 

Artemis nullizygosity. The tumors arising in an Art-P70/p53 background are 

associated with clonal chromosomal translocations involving the rearranging loci 

due to misrepair of RAG1/2-generated DNA breaks. Together, these findings 

provide insights into the molecular basis of tumorigenesis associated with 

defective, but not abrogated, V(D)J recombination activity. In addition, the results 

uncover potential roles for ARTEMIS function in contributing to DNA end complex 

stability of RAG1/2-generated chromosomal breaks 
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Results 

The Artemis-P70 mutation results in elevated interchromosomal V(D)J 

rearrangements 
 We previously observed that the Art-P70 homozygous mutation led to an 

accumulation of hairpin coding ends in developing lymphocytes; however, the 

levels were notably lower compared with Artemis nullizygosity (32). The 

presence of coding ends led us to determine whether the unjoined DSB 

intermediates engage in aberrant chromosomal rearrangements.  To this end, we 

employed a nested polymerase chain reaction (PCR) approach to examine the 

levels of interchromosomal V(D)J rearrangements between the TCRβ (chr. 6) 

and TCRγ (chr. 13) loci in ArtemisP70/P70 and Artemis-/- thymocytes, followed by 

Southern blot analysis. Interchromosomal trans-rearrangement is a global 

predictor of chromosomal translocation (33, 34) and occurs at elevated 

frequencies in lymphocytes harboring mutations in genes that predispose to 

lymphoid neoplasia, including Atm (35-39), Prkdcs (DNA-Pkcs) (34), Nbs1 (33, 

38), and 53bp1 (40). 

 Initially, we examined levels of normal TCRγ V-to-J and TCRβ D-to-J 

rearrangements by PCR amplification. As previously reported, we observed that 

TCRβ D-to-J rearrangements in ArtemisP70/P70 thymocytes were reduced and 

were not readily detected in Artemis-/- thymocytes (Figure 1A) (10, 32). In 

comparison, products corresponding to TCRγ intrachromosomal V-to-J 

rearrangements were not significantly decreased in ArtemisP70/P70 and Artemis-/- 

thymocytes compared with controls.  These findings indicate that the 

ArtemisP70/P70 and Artemis-/- mutations impair rearrangement at the TCRγ locus to 

a lesser extent compared with TCRβ rearrangements, as has been observed at 

the TCRδ locus in cNHEJ-deficient backgrounds, including Artemis nullizygosity 

(41-44). 



 67 

 Next, we determined whether trans-rearrangement occurs between loci on 

different chromosomes using PCR primers located upstream of TCRγV3S1 and 

downstream of TCRβJ2.  As anticipated, we detected robust levels of trans-

rearrangement between TCRγ and TCRβ in Atm null thymocytes (35-39). PCR 

products corresponding to interchromosomal V(D)J rearrangements in wild type 

or p53-/- thymocytes were not readily observed, as previously reported (Figure 

2.1A) (33, 38, 45). Similar to Atm-/- lymphocytes, we detected substantially 

increased levels of interchromosomal events involving TCRγV3S1 and TCRβJ2 

in ArtemisP70/P70 thymocytes (n=5) compared with controls, despite harboring 

lower levels of Dβ2-to-Jβ2 intrachromosomal rearrangements (Figure 2.1A, data 

not shown). On the contrary, we observed a lower frequency of trans-

rearrangement in Artemis-/- thymocytes. In this regard, two of seven Artemis null 

mice harbored PCR products corresponding to TCRγ-to-TCRβ interchromosomal 

rearrangements (Figure 2.1A, data not shown), and the events appeared to be 

clonal as only a single band was observed, compared with multiple bands 

observed in ArtemisP70/P70 and Atm-/- thymocytes. Thus, the ART-P70 mutation 

increases the propensity of unrepaired coding ends to engage in aberrant 

interchromosomal translocations involving rearranging V(D)J loci. Moreover, this 

phenotype is distinct from that observed in Artemis null thymocytes which exhibit 

infrequent trans-rearrangements despite harboring a higher level of unjoined 

hairpin coding ends. 

 We next examined the frequency of interchromosomal rearrangements in 

Art-P70 heterozygous thymocytes to determine whether the hypomorphic 

mutation results in a dominant phenotype. TCRγV3S1 to TCRβJ2 trans-

rearrangements were readily detected in Artemis+/P70 thymocytes in more than 

half (six of ten) of the mice examined (Figure 2.1B). However, fewer PCR 

products corresponding to distinct rearrangements and lower levels of 

interchromosomal events were observed in Artemis+/P70 compared with 

ArtemisP70/P70 and Atm-/- thymocytes. The levels of TCRβ D-to-J rearrangements 

in Artemis+/P70 thymocytes were similar to those observed in wild-type controls 

(Figure 2.1B). These findings indicate that the C-terminally truncated ART-P70 
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protein does not substantially disrupt proper coding end processing and joining, 

yet increases chromosomal anomalies, even when the wild-type enzyme is 

present. 

 The nested PCR products from ART-P70 mutant thymocytes were cloned 

and sequenced in order to verify that they represent the predicted 

interchromosomal events. We obtained several unique clones from four 

ArtemisP70/P70 mice containing flanking sequence from TCRγV3S1 and TCRβJ2, 

thereby indicating that the PCR primers indeed amplified V(D)J trans-

rearrangements (Figure 2.1C). The junctions contained non-templated (N) and 

palindromic (P) nucleotides and small deletions, similar to the coding 

joints analyzed from intrachromosomal V(D)J recombination events in the 

ArtemisP70/P70 mice (32). We also cloned and sequenced the PCR products 

corresponding to the interchromosomal rearrangements obtained from Artemis-/- 

thymocytes. Sequencing of multiple clones yielded one unique sequence, 

thereby indicating that the single PCR product likely represents a clonal event 

(Figure 2.1C). These results support the notion that aberrant end processing due 

to the hypomorphic ArtemisP70/P70 mutation generates V(D)J ends that engage in 

chromosomal translocations at an elevated frequency compared with a complete 

absence of ARTEMIS. 

The Artemis-P70 mutation results in increased deletional chromosomal 

hybrid joining 
 Hybrid joint formation occurs between a coding and an RSS end and 

represents an unproductive V(D)J rearrangement. Inversional chromosomal 

rearrangements require that the two coding and two RSS ends generated by the 

RAG1/2 endonuclease are maintained in proximity in order to facilitate 

coordinated processing and ligation. Increased levels of deletional chromosomal 

hybrid joining during inversional V(D)J rearrangement are hypothesized to result 

from inappropriate release of RAG1/2-generated ends from DNA end complexes, 

thereby leading to the loss of the intervening genomic fragment (41, 46, 47). Our 

observations of increased interchromosomal rearrangements in ArtemisP70/P70, 

but not Artemis-/- lymphocytes, led us to examine the frequency of deletional 
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hybrid joining in these mutant backgrounds. To this end, we examined hybrid 

joint formation during IgL-k locus rearrangements in splenocytes. Productive 

rearrangement between Vk and Jk segments occurs via inversion; thus, hybrid 

joining results in deletion of the intervening DNA segment (Figure 2.2A). Using a 

nested PCR approach, we readily detected Vk to Jk hybrid joints in ArtemisP70/P70 

splenocytes in the majority (three of four) of mutant mice analyzed (Figure 2.2A). 

The levels were lower than those observed in ATM deficiency, but markedly 

higher compared with wild type and Artemis-/- splenocytes. We also observed 

decreased levels of Vk to Jk coding joining in ART-P70 mutant splenocytes 

compared with controls; therefore, the relative frequency of deletional hybrid 

joining compared with inversional coding joining within the IgLk locus is 

substantially increased by the ART-P70 mutation. Within the TCRβ locus, Vβ14-

to-DJβ2 rearrangements also occur via inversion; thus, we examined deletional 

hybrid joining between Vβ14 and Dβ2 via nested PCR. We detected increased 

levels of Vβ14–Dβ2 hybrid joints in ArtemisP70/P70 thymocytes (two of four), albeit 

at lower levels compared with ATM deficiency (Figure 2.2B). Hybrid joints were 

not detected in Artemis-/- thymocytes, as previously reported (Figure 2.2B) (48). 

Given our findings that interchromosomal rearrangements were detected in 

Artemis+/P70 thymocytes, we assessed the impact of Artemis-P70 heterozygosity 

on Vβ14–Dβ2 hybrid joining (Figure 2.2B). We also detected hybrid joints in a 

subset of Artemis+/P70 mice examined (two of five), thereby providing additional 

evidence that the Artemis-P70 allele may have a dominant effect in promoting 

aberrant rearrangements. 

Examination of ATM- and MRN-dependent DNA damage responses in 
ARTEMIS-P70 cells 

 The increased levels of interchromosomal rearrangements and deletional 

hybrid joining observed in ArtemisP70/P70 lymphocytes parallel the phenotypes 

observed in Atm, Mre11 and Nbs1 mutant lymphocytes (41, 46, 47). These 

findings raise the possibility that the Artemis-P70 allele impairs ATM-dependent 

responses to DNA DSBs and/or disrupts the functional MRE11/RAD50/NBS1 

(MRN) complex. To address these questions, I examined key ATM-dependent 
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cellular responses to ionizing radiation (IR)-induced DSBs in ArtemisP70/P70 

murine embryonic fibroblasts (MEFs). Upon exposure to IR, the ATM protein 

kinase undergoes autophosphorylation in an MRN-dependent manner (49, 50) 

and subsequently phosphorylates downstream targets, including the histone 

variant, H2AX (38, 51) and the transcriptional co-repressor, KAP1 (52). I 

examined the levels of phospho-ATM (p-ATM), phospho-H2AX (γH2AX) and 

phospho-KAP-1 (p-KAP1) in ArtemisP70/P70, Artemis-/- and wild type MEFs at 1 h 

post-irradiation by western blotting. I observed similar levels of IR-induced 

phosphorylation of ATM, H2AX and KAP1 in wild type, ArtemisP70/P70 and Artemis-

/- cells (Figure 2.3A). These findings indicate that the Artemis-P70 and null alleles 

do not significantly impair ATM-dependent responses to DSBs. We next 

assessed the impact of the Artemis-P70 allele on the stability and localization of 

the MRN complex. We examined the levels of MRE11, RAD50 and NBS1 in 

whole-cell lysates and upon immunoprecipitation of the complex using anti-

MRE11 antibodies in ArtemisP70/P70 MEFs and wild type controls by western 

blotting. We observed that the overall levels of MRE11, RAD50 and NBS1 in 

ArtemisP70/P70 MEFs were not different from those observed in control cells 

(Figure 2.3B). Furthermore, we observe similar levels of MRE11, RAD50 and 

NBS1 upon co-immunoprecipitation of MRE11 from ArtemisP70/P70 and wild type 

cells, thereby indicating that the MRN complex was not disrupted by the Artemis-

P70 allele (Figure 2.3B). 

 During repair of IR-induced DSBs, MRE11 localizes to sites of damage 

and forms repair foci that can be visualized as punctate staining by 

immunofluorescence (49, 53). It is thought that these foci gather at damaged 

DNA and represent large macromolecular complexes comprised of DNA repair 

factors in the DNA damage response. MRE11 foci formation requires the 

presence of an intact and functional MRN complex (49). I exposed ArtemisP70/P70, 

Artemis-/- and wild type MEFs to IR and quantitated the number of untreated and 

irradiated cells containing MRE11 foci. I observed that the ArtemisP70/P70 and 

Artemis null alleles did not reduce IR-induced MRE11 foci formation (Figure 

2.3C). These results indicate that the ART-P70 mutation does not impair ATM- 
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and MRN-dependent DNA damage responses. Thus, these findings are 

consistent with the notion that the aberrant rearrangements observed in 

ArtemisP70/P70 lymphocytes are due to defects in ARTEMIS function at RAG1/2-

generated DSBs. 

Artemis-P70 predisposes to lymphoma in a p53 mutant background 

 The increased levels of aberrant rearrangements in ArtemisP70/P70 

lymphocytes suggested that the ART-P70 mutation may increase the frequency 

of RAG1/2-generated DNA ends that engage in oncogenic translocations. To 

address this question, we examined cohorts of ArtemisP70/P70, Artemis-/- and wild 

type mice over a period of 12 months to determine whether the ART-P70 

mutation predisposes to lymphoid or other tumors.  We observed that two of 

fourteen ArtemisP70/P70 mice became moribund at 7 and 9 months of age as a 

result of large thymic masses (Figure 2.4A). Flow cytometric analyses revealed 

that the thymic lymphomas were primarily of a CD4+CD8+TCRβ- origin (Figure 

2.4B). In comparison, the wild type and Artemis-/- control cohorts survived tumor-

free within the 12-month period, which is consistent with previous reports (54, 

55). To further assess the oncogenic potential of the Artemis-P70 hypomorphic 

allele, we examined the impact of p53 mutation on tumor predisposition through 

mouse breeding. The experimental cohorts were on a closely matched 

129Sv/C57BL6 background, thereby minimizing potential strain background 

effects. However, a subtle impact of genetic background cannot be entirely ruled 

out. Inactivation of the p53-dependent cell-cycle checkpoint in ARTEMIS mutant 

lymphocytes allows cells harboring unrepaired DSBs or activated oncogenes to 

survive (56-60). We observed that Artemis-P70/p53 double mutant mice exhibit 

significantly decreased survival compared with p53-/- controls (median survival of 

11 and 18 weeks, respectively; p=0.001; Figure 2.4A). As previously reported, we 

found that Artemis-/-p53-/- mice also exhibited decreased survival compared with 

p53 null controls, and the median survival (13 weeks) was similar to that 

observed for Art-P70/p53 double-deficient cohort (Figure 2.4A). We found that 

the Artemis-/-p53-/- and ArtemisP70/P70p53-/- mice succumbed to lymphoid tumors. 

Flow cytometric analysis of the tumors revealed that Artemis-/-p53-/- mice were 
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predominantly predisposed to disseminated B220+CD43+IgM- pro-B lymphomas, 

as has been previously reported (Figure 2.4B) (55). In contrast, the majority of 

tumors that arose in the Art-P70/p53 double mutant background were CD4+CD8+ 

TCRβ- thymic lymphomas (Figure 2.4B). B220+CD43+IgM- pro-B lymphomas 

were also observed in ArtemisP70/P70p53-/- mice, similar to Artemis/p53 double null 

mice (Figure 2.4B) (55) albeit at a significantly lower frequency (p=0.014; two-

tailed Fisher’s exact test).  These findings indicate that the Artemis-P70 allele 

predisposes to lymphoid malignancies in a p53-deficient background, and the 

lymphoma spectrum observed in ArtemisP70/P70p53-/- mice is distinct from that 

observed in most cNHEJ/p53 double null backgrounds, including Artemis-/-p53-/- 

mice (55, 60). 

Distinct chromosomal anomalies associated with Art-P70/p53 lymphoid 

tumors 
 I next examined the status of the rearranging TCRβ and IgH loci in the 

lymphomas that arose in the ArtemisP70/P70p53-/- and ArtemisP70/P70 mice. 

Genomic DNA isolated from the primary tumors was digested with EcoRI and 

analyzed by Southern blotting. I used a probe located within the TCR Dβ1 to Jβ1 

region to examine rearrangement status of the TCRβ locus. I observed that the 

ArtemisP70/P70p53-/- thymic tumors exhibited clonal rearrangements on one or both 

alleles, as evidenced by hybridization of specific bands that are distinct from the 

germline, unrearranged band or deletion of the hybridizing region (Figure 2.5A). 

Similarly, the two ArtemisP70/P70 tumors exhibited clonal D to Jβ rearrangements 

(data not shown). These results indicate that the thymic lymphomas emanated 

from a clonal event within the population of developing ART-P70 mutant 

thymocytes. 

 I also analyzed the rearrangement status of the IgH locus in Art-P70/p53 

pro-B lymphomas by Southern blotting EcoRI digested genomic DNA from 

primary tumors (Figure 2.5B). Previous analyses of Artemis-/-p53-/- pro-B 

lymphomas by Southern blotting revealed clonal rearrangements and 

amplification of the JH locus. I observed these similar events in one 

ArtemisP70/P70p53-/- pro-B lymphoma (C263). However, pro-B tumors, C219 and 
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C318, did not exhibit clonal IgH rearrangement or amplification, as only the 

germline band was present. It is possible that the region encompassing the probe 

was deleted from one of the two rearranging IgH alleles. Thus, I further analyzed 

the molecular events occurring in the Art-P70/p53 double mutant tumors. One 

recurrent event within the IgH locus observed in Artemis-/-p53-/- pro-B lymphomas 

is amplification of regions downstream of the JH region. I used probes comprised 

the Cµ constant region and 3′ enhancer regulatory region located approximately 

5 and 170 kb, respectively, from the rearranging JH segments. I observed 

amplification with the more distal probes in tumor C263, but not in the other 

ArtemisP70/P70p53-/- pro-B lymphomas analyzed (Figure 2.5B). I next examined the 

status of the c-myc and n-myc loci, as amplification of either genomic region is 

associated with Artemis-/-p53-/- pro-B tumors. Southern blotting revealed genomic 

amplification of the n-myc locus in tumor C263 (Figure 2.5B), and I determined 

that N-MYC expression was elevated by northern blot and semi-quantitative RT-

PCR analyses (Figure 2.5C, data not shown). Thus, this ArtemisP70/P70p53-/- pro-B 

lymphoma harbors the established hallmark events observed in Art/p53 double-

mutant tumors, i.e. increased copy number of the IgH and n-myc genomic loci. 

However, I did not observe genomic amplification of either c-myc or n-myc in the 

C219 and C318 ArtemisP70/P70p53-/- pro-B tumors, providing further distinction 

between lymphomas arising in the Artemis-P70 versus Artemis null backgrounds. 

Spectral karyotyping and fluorescence in situ hybridization analyses of Art-

P70/p53 double-mutant lymphomas 
 I next examined the cytogenetic events occurring in Art-P70/p53 double-

mutant lymphomas using spectral karyotyping (SKY) and fluorescence in situ 

hybridization (FISH) analyses. I performed SKY on metaphase spreads from 

seven ArtemisP70/P70p53-/- thymic lymphomas. I observed that all of the Art-

P70/p53 tumors analyzed contained non-reciprocal clonal translocations 

involving chromosomes harboring rearranging loci (Figure 2.6A and 2.6B). In this 

regard, five tumors harbored clonal events involving chr. 14, the location of the 

TCRαδ locus, translocated to chr. 1, 2, 4 or 12 (Figure 2.6A). It is of interest to 

note that the IgH locus is located on chr. 12, and in addition to the t(12;14) 
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translocation in tumor C306, I also observed t(12;11) and t(12;1) clonal events in 

tumors C262 and C268, respectively. One tumor, C227, also harbored clonal 

events involving chr. 13 (TCRγ) translocated to chr. 6 (TCRβ) (Figure 2.6A and 

2.6B). I analyzed one ArtemisP70/P70p53-/- pro-B lymphoma, C219, by SKY and 

observed that, similar to other reported cNHEJ/p53 double null tumors, it 

harbored a t(12;15) non-reciprocal translocation (Figure 2.6A). 

 SKY analyses can effectively identify gross chromosomal anomalies; 

however, genomic loci that may be amplified or co-localized cannot be accurately 

detected using this technique.  Thus, I further analyzed the metaphases from Art-

P70/p53 lymphomas using a two-color FISH approach.  I established that thymic 

lymphomas, C325 and C306, harbored clonal chr. 14 anomalies using bacterial 

artificial chromosome (BAC) probes comprised of genomic sequences located 

upstream and downstream of the rearranging TCRαδ locus. In this regard, I 

observed co-localization of the probes in control metaphases, whereas the two 

probes were clearly located on different chromosomes in metaphases from the 

ArtemisP70/P70p53-/- thymic tumors (Supplementary Material, Figure 2S7). In tumor 

C306, we also observed co-localization of the IgH and TCRαδ BAC probes, as 

anticipated based on the t(12;14) identified by SKY (Figure 2.6C). Likewise, I 

found co-localization of BAC probes containing TCRβ and TCRγ genomic 

sequences in tumor C227. Tumor C262 harbored separated single-copy FISH 

signals using BACs located upstream and downstream of the IgH locus on chr. 

12 (Supplementary Material, Figure 2S7). Thus, the ArtemisP70/P70p53-/- thymic 

lymphomas harbored chromosomal aberrations and translocation events that 

involved the loci undergoing V(D)J recombination. However, I did not observe 

amplification of the rearranging loci examined in the thymic lymphomas (Figure 

2.6C and Supplementary Material, Figure 2S7).  FISH analyses of metaphases 

from Art-P70/p53 pro-B lymphoma, C219, revealed separation of single-copy 

signals using the upstream and downstream IgH probes, thereby suggesting that 

RAG1/2-generated DSBs within the rearranging locus initiated the aberrant 

events (Supplementary Material, Figure 2S7). I also observed co-localization of 

the FISH signals corresponding to c-myc (chr. 15) and IgH loci, as predicted 
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based on the SKY results. However, distinct from the hallmark co-amplification 

observed in other cNHEJ/p53 double null pro-B tumors, no amplification of either 

signal was found (Figure 2.6C). These findings are consistent with the Southern 

blot analyses that did not detect amplification using probes within the c-myc, JH, 

Cµ or HS3A loci.   

 Previous studies of other cNHEJ/p53 double null pro-B lymphomas, 

including Artemis-/-p53-/- tumors, established that genomic amplification of the c-

myc locus was associated with elevated C-MYC expression levels in the tumor 

cells (55, 60). As I did not observe amplification of c-myc by Southern or FISH 

analyses, we sought to determine whether the oncogene may be dysregulated by 

a distinct mechanism in the ArtemisP70/P70p53-/- tumor, C219, which harbored the 

t(12;15) translocation and co-localization of c-myc and IgH FISH probes. Thus, 

we examined expression levels of C-MYC in primary tumor cells compared with 

control cells by semiquantitative RT-PCR (Figure 2.5C). We observed a 

substantial increase in C-MYC expression in the C219 Art-P70/p53 pro-B 

lymphoma, comparable to that observed in a control Artemis-/-p53-/- tumor (C405) 

which harbored the hallmark c-myc and IgH amplicon (Figure 2.5C and 

Supplementary Material, Figure 2S7). These results suggest that elevated C-

MYC expression observed in the Art-P70/p53 mutant background results from a 

mechanism independent of genomic amplification and thus distinct from that 

observed in Artemis-/-p53-/- tumors. 
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Discussion 
 In this study, we demonstrate that a hypomorphic Artemis mutation that 

results in partial B and T immunodeficiency and EBV-associated lymphoma in 

patients increases the frequency of aberrant chromosomal rearrangements in 

primary lymphocytes and predisposes to lymphoid malignancy in a mouse model 

harboring the human disease allele. The ART-P70 mutation, which truncates the 

non-conserved C-terminus, results in elevated levels of V(D)J trans-

rearrangements between loci located on different chromosomes and deletional 

hybrid joining in homozygous and heterozygous mutant lymphocytes. In 

comparison, undetectable or substantially lower levels of these chromosomal 

anomalies are present in Artemis null lymphocytes, thereby indicating that loss of 

functional regions within the C-terminal domain increases the potential for the 

DSB intermediates to engage in aberrant repair events. 

 Previously, we demonstrated that a mutant ARTEMIS protein modeled 

after the Artemis-P70 allele, ART-D451X, interacted stably with DNA-PKcs and 

exhibited reduced DNA-PKcs-dependent endonucleolytic activity (32). In 

addition, we found that loss of the C-terminal 241 amino acids markedly reduced 

DNA-PKcs-dependent phosphorylation due to deletion of the majority of 

phosphorylation sites. We hypothesized that these defects may impair the ability 

of ARTEMIS to associate with and properly act upon DNA ends. Consistent with 

this notion, hairpin coding ends accumulate in ArtemisP70/P70 developing 

lymphocytes, whereas nicked hairpins with blunt or 5′ or 3′ overhanging ends are 

not detected (32). In the current study, we observed increased levels of 

interchromosomal V(D)J rearrangements and deletional hybrid joints within the 

IgLk and TCRβ loci in ArtemisP70/P70 primary lymphocytes. The mechanism 

underlying these events presumably involves inappropriate release of RAG-

generated DNA ends from post-cleavage complexes prior to joining (41, 46, 47). 

In contrast, these aberrant rearrangements occur infrequently in Artemis null 
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lymphocytes (Figure 2.1 and Figure 2.2) (48), despite harboring significantly 

higher levels of hairpin coding ends compared with ART-P70 mutant 

lymphocytes (32). Although open hairpins are not detected in ArtemisP70/P70 

lymphocytes, it is possible that a low level of nicked coding ends is present, and 

these end structures may be more likely to engage in aberrant events. However, 

interchromosomal rearrangements and deletional hybrid joining occur 

infrequently in wild type lymphocytes in which hairpins are efficiently cleaved by 

ARTEMIS.  Likewise, coding ends in normal lymphocytes rarely serve as 

substrates for oncogenic translocations, even in a p53-deficient background 

which permits RAG1/2-generated ends to persist throughout the cell cycle (40, 

41, 55, 56, 61-66). Thus, the Artemis-P70 allele likely causes molecular defects 

in coding end processing and joining beyond impaired hairpin nicking. 

 Mutations in Atm, Mre11 or Nbs1 significantly increase the frequency of 

aberrant chromosomal rearrangements in mutant lymphocytes, including 

interchromosomal trans-rearrangements and deletional hybrid joint formation (33, 

35-37, 39, 41, 42, 46, 47). These observations led to the hypothesis that the ATM 

kinase and MRN complex function during V(D)J recombination to enhance DNA 

end complex stability and promote proper joining of RAG1/2-generated breaks 

(41, 46, 47). Our findings suggest that truncation of the C-terminus impairs 

functions of ARTEMIS within post-cleavage DNA end complexes, thereby leading 

to inappropriate release and altered handling of V(D)J recombination 

intermediates. It is of interest to note that ATM phosphorylates ARTEMIS at 

residues S503, S516 and S645, which are located within the C-terminal region 

that is deleted in the ART-P70 mutant protein (29). ATM does not play a direct 

role in V(D)J recombination per se as ATM-deficient cells exhibit wild-type levels 

of V(D)J recombination on extra-chromosomal plasmid substrates (67). However, 

ATM deficiency in mice leads to accumulation of V(D)J coding end intermediates, 

impaired lymphocyte development and aberrant, potentially oncogenic, 

chromosomal rearrangements (39, 68-72). Although ATM-dependent 

phosphorylation of ARTEMIS is not required to activate intrinsic endonucleolytic 

activity in vitro nor is it required for V(D)J recombination on model plasmid 
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substrates in cells (29), our findings raise the possibility that ATM 

phosphorylation may modulate ARTEMIS functions during chromosomal V(D)J 

rearrangements to facilitate the stabilization of DNA end complexes in vivo. 

 We propose that the ART-P70 mutant protein is recruited to DNA ends via 

interaction with DNA-PKcs (32), and activation of DNA-PKcs upon 

autophosphorylation induces large conformational changes to allow the nuclease 

access to the hairpins (29, 73, 74). Truncation of the ARTEMIS C-terminal region 

that contains ATM and DNA-PKcs phosphorylation sites may prevent stable 

association within conformationally altered DNA end complexes that are poised 

for further end processing events.  Inappropriate release of the RAG1/2-

generated ends from aborted post-cleavage complexes would render the ends 

more susceptible to misrepair, thereby increasing their potential to generate 

chromosomal aberrations, including oncogenic translocations (41). 

 We demonstrate that the ART-P70 mutation in a p53 null background 

accelerates the timing of tumor onset compared with p53 mutation alone. Art-

P70/p53 double mutant mice predominantly succumb to CD4+CD8+TCRβ- thymic 

lymphomas that are associated with clonal chromosomal translocations involving 

the TCR or IgH loci; however, the majority of tumors do not harbor the hallmark 

gene amplification events observed in cNHEJ/p53 double null lymphomas, 

including those arising in Artemis-/-p53-/- mice (55). We found that the 

ArtemisP70/P70p53-/- and Artemis-/-p53-/- lymphomas arise with a similar latency, 

despite our observation of substantially higher levels of aberrant 

interchromosomal rearrangements in ART-P70 mutant lymphocytes. One 

potential explanation for these observations is that the timing of lymphoma 

incidence is influenced by the particular oncogenic events associated with 

tumorigenesis. In this regard, genomic amplification leading to elevated 

expression of c-myc or n-myc in Artemis-/-p53-/- lymphomas may lead to a higher 

proliferative potential compared with oncogenic events in the ArtemisP70/P70p53-/- 

background, thereby accelerating tumorigenesis in Artemis/p53 double null mice. 

 The frequently arising ArtemisP70/P70p53-/- thymic lymphomas are 

associated with clonal translocations involving chr. 6, 12, 13 and 14 which harbor 
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the murine TCRβ, IgH, TCRγ and TCRαδ loci, respectively, with chr. 14 

translocations observed in the majority of the tumors analyzed.  Cytogenetic 

analyses of activated T-cells isolated from human lymphoma patients harboring 

the hypomorphic allele modeled in the ART-P70 mouse and a similar C-terminal 

truncating mutation (T432SfsX16) revealed a translocation of chr. 7 and 14 and 

inversion of chr. 7, respectively (75). In humans, the rearranging IgH and TCRαδ 

loci reside on chr. 14, whereas TCRγ and TCRβ reside on chr. 7. Thus, the 

Artemis-P70 hypomorphic allele results in translocations involving chromosomes 

that undergo V(D)J recombination in both human and murine lymphocytes. 

 The precise mechanisms underlying the distinct molecular events 

observed in Art-P70/p53 lymphomas have not yet been elucidated. Inactivation of 

the p53-dependent cell-cycle checkpoint has been hypothesized to allow 

unrepaired RAG-induced DNA ends generated during G1 to persist throughout 

the cell cycle and undergo mis-repair by alternative DSB repair pathways (56, 60, 

76). We speculate that unjoined coding ends in ArtemisP70/P70 versus Artemis null 

lymphocytes may be repaired by distinct pathways that function during different 

cell-cycle phases. Consistent with this notion, the junctional sequences of both 

intra- and interchromosomal V(D)J rearrangements in ArtemisP70/P70 lymphocytes 

are characteristic of joining mediated by the cNHEJ pathway (Figure 1) (32).  In 

comparison, an alternative pathway generates aberrant V(D)J junctions 

containing large deletions and long P-nucleotide additions in Artemis-/- 

lymphocytes (10) and microhomology mediated translocations in Artemis-/-p53-/- 

lymphomas (55). An alternative, though not mutually exclusive, hypothesis is that 

defects in DNA end complex stability in ART-P70 mutant lymphocytes allow 

unrepaired breaks to be aberrantly localized in three-dimensional space and 

engage in translocations that do not require the chromosomal partner to be 

located in proximity. In this regard, recent studies have provided evidence that 

loci involved in recurrent oncogenic translocations are located in proximity in 

lymphocytes (77-79). This hypothesis does not preclude amplification from 

occurring in the ART-P70 background, and indeed we did observe n-myc 

amplification in one ArtemisP70/P70p53-/- pro-B lymphoma (C263). It will be of 



 80 

significant interest to further define the molecular mechanisms underlying the 

oncogenic translocations in Art-P70/p53 tumors. 

 Together, these studies provide insight into the consequence of truncation 

of the ARTEMIS C-terminal domain on the fate of chromosomal DNA ends during 

endogenous V(D)J rearrangements. Our findings support the notion that loss of 

the ARTEMIS C-terminus impacts the proper processing and joining of DNA 

ends via destabilization of end bound complexes that coordinate recombination 

events. These findings have important clinical implications in the identification 

and treatment of human immunodeficiency patients harboring similar ARTEMIS 

mutations that may predispose to aberrant rearrangements and lymphoid 

malignancy. 
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Materials and Methods 

Mice 

 Gene-targeted Atm null, Artemis null and Artemis-P70 mice (mixed 

129Svev/C57BL6 genetic background) were previously generated (10, 32, 80, 

81). p53 mutant mice (Trp53tm1Tyj) in a 129S2/Sv background were obtained 

from Jackson Laboratory and bred with Artemis-/- and ArtemisP70/P70 animals. 

Double heterozygous Artemis+/-p53+/- and Artemis+/P70p53+/- mice were 

subsequently interbred to generate progeny of the desired genotypes for the 

tumorigenesis studies (i.e. Artemis+/+p53+/+, Artemis-/-p53+/+, Artemis-/-p53-/-, 

ArtemisP70/P70p53+/+, ArtemisP70/P70p53-/- and Artemis+/+p53-/-). The single- and 

double-mutant mice as well as wild type controls used in this study were 

approximately 75% 129Sv and 25% C57Bl6; thus, the experimental cohorts are 

closely strain matched. Mice were housed in a specific pathogen-free facility in a 

room dedicated to immunocompromised animals. 

Interchromosomal V(D)J rearrangements 

 Nested PCR amplification reactions used to detect TCRγ 

intrachromosomal and TCRγ-to-TCRβ interchromosomal trans-rearrangements 

were modified from methods as described previously (34). Genomic DNA (100 

ng) obtained from thymocytes isolated from 4- to 5-week-old mice [Artemis+/+ 

(n=3), Artemis-/- (n=7), ArtemisP70/P70 (n=5), Artemis+/P70 (n=10)] was amplified in 

50 µl of reaction mixture containing set ‘a’primers (10 pmol). The cycling 

conditions were: denaturation at 95°C, 30 cycles of amplification at 95°C for 15 s, 

55°C for 15 s, 72°C for 30 s with a 6-s increment per cycle followed by 10 min 

elongation at 72°C. The products from the first reaction (5 µl) were used in a 

nested PCR reaction with the same conditions using primers set ‘b’. The final 

PCR products (25 µl) were run on a 1.5% agarose gel followed by Southern 

blotting using probes (primers set ‘c’) internal to the primers used for PCR 
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amplification (see Supplementary Material). The second-round PCR products 

were subcloned into pCR 2.1-TOPO (Invitrogen; Carlsbad, CA, USA) and 

individual clones were sequenced. TCRβ Dβ2-to-Jβ2 intrachromosomal 

rearrangements were PCR amplified from thymic genomic DNA (100 ng) at an 

annealing temperature of 62°C (35 cycles). Each experiment was repeated at 

least thrice independently. 

Hybrid join analysis 

 To analyze the levels of coding and hybrid joints between Vκ6–23 and 

Jκ1, PCR assays were used as described previously (47).  Genomic DNA (0.5 

µg) isolated from mouse splenocytes for each genotype (ArtemisP70/P70; n=4) was 

PCR amplified in 50 µl with 15 pmol of each primer.  PCR conditions were as 

follows: 95°C for 5 min followed by 17 cycles of 94°C (30 s), 64°C (30 s), 72°C 

(30 s).  A second PCR reaction was carried out under the same conditions for 25 

amplification cycles using 4-fold dilutions of the first PCR reaction and nested 

primer pairs.  The HJ and CJ PCR products were transferred to Zetaprobe 

membrane and hybridized with pβg oligonucleotide. For normalization, 4-fold 

dilutions starting with 0.5 µg of genomic DNA were PCR amplified.  For Vβ14 

coding and hybrid joint analysis, genomic DNA (0.5 µg) was isolated from mouse 

thymocytes for each genotype [ArtemisP70/P70 (n=2), Artemis+/P70 (n=5)], and PCR 

analysis was performed as described (47). The PCR products were analyzed by 

Southern blotting using the pβg oligonucleotide as a probe. 

Western blot analysis of ATM-dependent responses to IR 

 Artemis+/+, Artemis-/-, ArtemisP70/P70 and Atm-/- mouse embryonic fibroblasts 

(SV40 large T-antigen immortalized) were plated at a density of 3.5x106 cells per 

10-cm dish then exposed to 10 Gy of γ-rays from a 137Cs source. The cells were 

allowed to recover for 1 hour and then harvested in Laemmli buffer (4% sodium 

dodecyl sulfate, 20% glycerol, 120 mM Tris–HCl, pH 6.8).  Equivalent amounts of 

whole-cell lysates were resolved on either a 12 or 6% sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS–PAGE) gel and transferred to 

polyvinylidene fluoride membrane. Primary antibodies used were: γH2AX S139 
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(1:1000, Millipore; Billerica, MA, USA); pKAP1 S824 (1:500, Bethyl Laboratories; 

Montgomery, TX, USA); pATM S1981 (1:500, Rockland; Gilbertsville, PA, USA).  

This experiment was repeated thrice independently. 

Co-immunoprecipitation of the MRN complex 

 Artemis+/+ and ArtemisP70/P70 mouse embryonic fibroblasts were grown to 

confluency, harvested and then lysed in a buffer containing 25 mM HEPES, pH 

7.4, 150 mM KCl, 10 mM MgCl2, 10% glycerol, 2 mM DTT and protease inhibitors 

(Roche; Basel, Switzerland).  Protein concentrations were determined using the 

Bradford assay. Lysates (6 mg) were pre-cleared for 1 hour with protein G beads 

(GE Healthcare) at 4°C, then incubated with α-MRE11 antibody (4.5 µg; Cell 

Signaling) and protein G beads overnight at 4°C with constant rotation. The 

beads were washed twice with lysis buffer followed by two washes in lysis buffer 

containing 300 mM KCl. The immunoprecipitates were analyzed by 8% SDS–

PAGE followed by western blotting with α-MRE11 (Cell Signaling; Danvers, MA, 

USA), α-Nbs1 (Novus Biologicals; Littleton, CO, USA) and α-Rad50 (Bethyl 

Laboratories; Montgomery, TX, USA) antibodies.  The protein bands were 

visualized using IRDye800CW-conjugated goat anti-rabbit secondary antibody 

(LiCor Biosciences; Lincoln, NE, USA). The co-IPs were repeated thrice 

independently. 

Immunofluorescence analysis of MRE11 foci 

 Artemis+/+, Artemis-/- and ArtemisP70/P70 mouse embryonic fibroblasts 

(SV40 large T-antigen immortalized) were plated at a density of 2x105 cells per 

well of a 12-well dish and then exposed to 10 Gy of γ-rays from a 137Cs source.  

Cells were allowed to recover for 8 hours and then fixed in 4% paraformaldehyde 

solution (4% paraformaldehyde, 2% sucrose, pH 7.5) followed by treatment with 

a permeabilization solution (50 mM NaCl, 3 mM MgCl2, 200 mM sucrose, 10 mM 

HEPES, pH 7.9, 0.5% Triton X-100), as previously described (82). Fixed cells 

were incubated for 1 hour in phosphate buffered saline (PBST), 0.1% Tween-20 

incubated with primary antibody MRE11 (1:500, Cell Signaling; Danvers, MA, 

USA) for 1 hour and then incubated with secondary antibody for 1 hour 
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(AlexaFlour 488, donkey anti-rabbit IgG; Invitrogen).  Images were visualized 

using an Olympus BX-61 microscope. Cells containing greater than 20 Mre11 

foci were considered foci-positive, and approximately 40–50 cells were scored for 

each genotype.  The slides were scored blinded, and the experiment was 

repeated twice independently. 

Characterization of tumors 

 All mice were regularly monitored for tumors and analyzed when 

moribund. Lymphoid tumors were analyzed by flow cytometry with antibodies 

against surface B-cell (CD43, B220, IgM) and T-cell (CD4, CD8, CD3, TCRβ, 

CD44, CD25) markers.  Thymic and pro-B lymphomas were cultured in RPMI 

medium 1640 supplemented with 15% fetal calf serum, 25 U/ml IL-2 (BD 

Biosciences) and 25 ng/ml of IL-7 (PeproTech, Rocky Hill, NJ, USA). The 

proportion of pro-B and thymic lymphomas in the ArtemisP70/P70p53-/- cohort was 

calculated to be statistically significantly different from that observed for Artemis-/-

p53-/- lymphomas (P=0.014, two-tailed Fisher’s exact test).  Data for Artemis-/-

p53-/- tumors also in a mixed 129Sv/C57BL6 genetic background from a previous 

publication (55) were included in the calculation (total of 13 lymphomas: 10 pro-B 

and 3 thymic). 

Chromosomal analyses of tumor metaphases 

 Spectral karyotyping was performed on metaphases from cells derived 

from the primary tumor or early passage cultured tumor cells using an 

interferometer (Applied Spectral Imaging; Vista, CA, USA) and SkyView 

software.  For fluorescent in situ hybridization analyses, early passage tumor 

cultures were exposed to 100 ng/ml Colcemid for 5.5 hour BAC probes for 

fluorescent in situ hybridization analysis were obtained from the RPCI-23 library 

(Children’s Hospital Oakland Research Institute; Oakland, CA, USA) and nick-

translated using biotin-11-dUTP or digoxigenin-16-dUTP by standard procedures 

(Roche; Basel, Switzerland).  BAC probes hybridizing to TCRα/δ are as follows: 

RPCI-23 204N18 (centromeric to TCRα/δ region) and RPCI-23 269E2 (telomeric 

to TCRα/δ region). BAC probe hybridizing to TCRβ are as follows: 
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RPCI-23 216J19 (spans TRBD1–TRBV31).  BAC probe hybridizing to TCRγ are 

as follows: RPCI-23 212N5 (within TCRγ).  BAC probes hybridizing to IgH are as 

follows: N-myc BAC A-10-1[54], Bac199 (hybridizes to Cα), Bac 207 (hybridizes 

to V region). c-myc BAC probe was previously described[83].  At least 10 

metaphases for each tumor were analyzed by spectral karyotyping and at least 

20 metaphases by fluorescent in situ hybridization. 

Southern blot and RT-PCR analyses 

 Genomic DNA (20 µg) isolated from control tissues (tail or kidney) or 

ArtemisP70/P70 p53-/- tumor masses was digested with EcoRI.  Southern blotting 

was performed with previously characterized probes hybridizing within the TCRβ 

locus (Drd1), JH region, HS3a, Cµ, N-myc and c-myc loci. Southern blots were 

visualized using a Phosphorimager.  Band intensities were quantitated using 

Image Quant TL v2005 software, and relative levels were normalized to a non-

lymphoid locus (LR8).  Fold amplification was calculated compared with the 

intensities of bands in the kidney controls on the same membrane.  Reverse 

transcription of total RNA (1 µg) isolated from primary ArtemisP70/P70p53-/- (C219, 

C263) and Artemis-/-p53-/- (C405) pro-B lymphomas and wild type lymphnode 

was performed using a poly-dT (20) primer and MLV-reverse transcriptase 

(Invitrogen).  PCR amplification of cDNAs was performed using gene-specific 

primers to c-myc (exons 1 and 3) and (exons 2 and 3).  cDNA levels were 

normalized to tubulin. Bands were quantitated using AlphaImager 2200 

(Alpha Innotech; Santa Clara, CA, USA). RT-PCR reactions were repeated at 

least four times 
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Figure 2.1 Aberrant rearrangements in Artemis-P70 lymphocytes. (A) 
Examination of V(D)J trans-rearrangements. Intrachromosomal TCRγ V-to-J (chr. 
13) and TCRβ Dβ2-to-Jβ2 (chr 6) rearrangements (top) and interchromosomal 
TCRγV–TCRβJ transrearrangements (bottom) were PCR amplified from genomic 
thymocyte DNA isolated from wild type, ArtemisP70/P70, Artemis−/−, Atm−/− and 
p53−/− mice, as indicated. Nested PCR products were detected by Southern blot 
analysis. Levels of rearrangements were normalized to PCR-amplified non-
rearranging locus. GL, germline, unrearranged band; R, bands corresponding to 
rearrangements; C, PCR amplification of kidney genomic DNA. Representative 
results are shown. (B) Examination of V(D)J trans-rearrangements in Artemis-
P70 heterozygous mice. Nested PCR analyses of intrachromosomal TCRγ V-to-
J, TCRβ Dβ2-to-Jβ2 (top) and interchromosomal TCRγV–TCRβJ trans-
rearrangements (bottom) were performed with genomic DNA isolated from 
Artemis+/P70 thymocytes, as described above. Representative results are shown. 
(C) Sequence analysis of trans-rearrangement PCR products. Trans-
rearrangement PCR products detected from Southern blot analysis were 
subcloned and sequenced. Coding sequences are shown in boxes. Nucleotides 
added include P-nucleotides (underlined) as well as N nucleotides. 
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Figure 2.2 Deletional hybrid joint formation in Art-P70 mutant lymphocytes. 
(A) Left panel: Schematic representation of nested PCR strategy for detecting 
coding and hybrid joints within the IgLκ locus. Relative orientation of Vκ6-23 and 
Jκ1 coding (rectangles) and RSSs (triangles) within the IgLk locus. Inversional 
(CJ) and deletional (HJ) products are depicted. Positions of primers (J = pκJa, A 
= pκ6a, B = pκ6b, C = pκ6c, D = pκ6d) and probe (P) are shown. Right panel: 
PCR analysis of Vκ6-23 to Jκ1 coding joins (CJs) and hybrid joins (HJs). 
Genomic splenocyte DNA was isolated from WT, Atm−/−, Artemis−/− and 
ArtemisP70/P70 mice and amplified using primers (pκJa and pκ6d for CJ and pκJa 
and pκ6a for HJ). Serial 4-fold dilutions of the PCR reaction were amplified using 
nested primer pairs (pκJa and pκ6c for CJ, and pκJa and pκ6b for HJ). CJ and 
HJ bands are 0.6 and 0.25 kb, respectively. (B) Deletional hybrid joining and 
coding joining within the TCRβ locus. Upper panel: Schematic of nested PCR 
strategy. Relative orientation of Vβ14, Dβ2 and Jβ2.3 coding (rectangles) and 
RSSs (triangles) within the TCRβ locus. Positions of primers (I = pβa, II = pβb, III 
= pβc, IV = pβd, V = pβe, VI = pβf) and probe (P = pβg) are shown. Lower panel: 
PCR analysis of Vβ14 to Jβ2 coding and hybrid joints. Left panel shows CJ and 
HJ PCR analyses of genomic thymocyte DNA isolated from WT, Atm−/−, 
Artemis−/− and ArtemisP70/P70 mice. Right panel shows CJ and HJ PCR analyses 
of Art+/P70 and control thymocyte genomic DNA, as indicated. Primers for CJ were 
pβe and pβf. Primary primers for HJ were pβa and pβb. Serial 4-fold dilutions of 
this primary HJ reaction were amplified using primers pβc and pβd. CJ and HJ 
bands are 0.3 and 0.9 kb, respectively. 
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Figure 2.3 ATM- and MRN-dependent responses to IR-induced breaks in 
ART-P70 mutant cells. (A) ART-P70 mutation does not impair ATM-dependent 
DNA damage responses to IR. Artemis+/+, Artemis−/−, ArtemisP70/P70 and Atm−/− 
MEFs, as indicated, were unirradiated (−) or exposed to IR (10 Gy, +) and then 
harvested at 1 h post-irradiation. Whole-cell lysates were analyzed by western 
blotting using the indicated antibodies. Tubulin was used as a loading control. (B) 
The MRN complex is intact in ART-P70 mutant cells. The MRN complex was co-
immunoprecipitated from whole-cell lysates generated from wild type or 
ArtemisP70/P70 MEFs using α-MRE11 antibodies. The immunoprecipitates were 
washed with 300 mM KCl, and the proteins were analyzed on an 8% SDS–PAGE 
followed by western blotting with the indicated antibodies. WCL, whole-cell 
lysate; −, no antibody; +, α-MRE11 antibody. (C) MRE11 foci formation is not 
impaired in ART-P70 mutant cells. Artemis+/+, Artemis−/− and ArtemisP70/P70 MEFs 
were grown on coverslips then irradiated (10 Gy). The irradiated cells and 
unirradiated controls were fixed in paraformaldehyde and then stained with α-
MRE11 antibodies. The number of cells containing >20 Mre11 foci were scored. 
Left panels, representative images of nuclei. Right panels, quantitative results of 
MRE11 foci-positive cells. Average of two independent experiments is shown. 
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Figure 2.4 Art-P70/p53 double-mutant mice are predisposed to thymic 
lymphomas with chromosomal translocations. (A) Decreased survival of Art-
P70/p53 mice. Survival of a cohort of wild type (n= 11), Artemis−/− (n= 10), p53−/− 
(n= 11), ArtemisP70/P70 (n= 14), ArtemisP70/P70p53−/− (n= 13) and Artemis−/−p53−/− 
(n= 9) mice was observed for a period of 40 weeks. Shown are Kaplan–Meier 
survival curves representing the percentage of survival of cohort mice versus age 
in weeks. (B) Distinct tumor spectrum exhibited by Art-P70/p53 mice. Table 
summarizing the number of the different tumor types observed in mice of the 
indicated genotypes. 
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Figure 2.5 Clonal rearrangements involving recombining loci in Art-P70/p53 
tumors. (A) Analysis of TCR rearrangement status in Art-P70/p53 thymic 
lymphomas. Genomic DNA isolated from ArtemisP70/P70p53−/− tumors was 
digested with EcoRI and then analyzed by Southern blotting. Individual tumors 
are indicated (top). Thymus, kidney and bone marrow (BM), control tissues; GL, 
unrearranged, germline band. Amounts of input DNA were normalized to a non-
rearranging locus (LR8). *, pro-B lymphomas (C219, C263, C318). (B) Analysis 
of Art-P70/p53 pro-B lymphomas by Southern blotting. Genomic DNA isolated 
from Art-P70/p53 double-mutant lymphomas was digested with EcoRI and then 
analyzed by Southern blotting. Previously characterized probes that hybridized to 
the JH, Cµ and HS3A regions of the IgH locus, N-myc on chr. 12 and c-myc on 
chr. 15 were used, as indicated. Individual tumors are indicated, top; Thymus, 
kidney, and bone marrow (BM), control tissues; GL, unrearranged, germline 
band. Amounts of input DNA were normalized to a non-rearranging locus (LR8). 
Fold amplification compared with the non-rearranging locus was calculated as 
described in Materials and methods. (C) Semi-quantitative RT-PCR of N-MYC 
and C-MYC transcript levels. Total RNA was isolated from primary tumor cells, 
and RT-PCR was performed. cDNAs were PCR amplified using n-myc (exons 2 
and 3), c-myc (exons 1–3) and tubulin-specific primers. Tumor numbers, as 
indicated; C, total RNA from normal, wild type LN; −, no-RT control. 
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Figure 2.6 Art-P70/p53 tumors harbor clonal chromosomal translocations. 
(A) Table summarizing clonal translocations observed in Art-P70/p53 tumors. 
Metaphases from primary tumor cells or early passage tumor cell cultures were 
analyzed by SKY. At least 10 metaphases from each tumor were scored. (B) 
SKY images of metaphase chromosomes from Art-P70/p53 tumors. DAPI 
staining (left panels) and SKY analysis (right panels) of tumor C325 and C227 
containing clonal t(4;14) and t(6;13) translocations, respectively. Arrows indicate 
translocated chromosomes. (C) FISH analyses of metaphases from Art-P70/p53 
tumors. Representative FISH analyses of metaphases from Art-P70/p53 tumors. 
Left panel, pro-B lymphoma, C219. Left panel, thymic tumor C306. At least 20 
metaphases were scored for each tumor. Diagrams indicate the relative 
chromosomal positions and fluorescent colors of BAC probes. Inset, enlarged 
images of co-localized probes. 
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Supplementary Figure 2S7 

 

 
Supplementary Figure 2S7. FISH analyses of Art-P70/p53 tumor 
metaphases. Chromosomal anomalies in metaphases from primary tumors or 
early passage cultured tumor cells were analyzed by FISH using the indicated 
BAC probes. Red and green fluorescent signals, as diagramed. Artemis-/-p53-/- 

(C405), C219, pro-B lymphomas; C227, C306, C262, thymic lymphomas. 
Representative metaphase images are shown. Percentage of metaphases with 
the indicated anomalies is indicated. At least 20 metaphases from each tumor 
were analyzed. 
 


