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ABSTRACT

Adaptive Estimation of Thermal Dynamics and Charge Imbalance
in Battery Strings

by

Xinfan Lin

Chair: Prof. Anna G. Stefanopoulou

Effective battery management relies on accurate monitoring of battery states, includ-

ing temperature, state of charge, and voltage among others. The large number of cells

used in battery packs for vehicle applications require expensive monitoring hardware,

which includes sensors, wiring, data acquisition and computation capacity. Due to the

cost and complexity of the hardware, reduced sensing with limited and non-intrusive

measurements is pursued by all manufacturers. In this dissertation, first, the monitor-

ing of battery thermal dynamics based on only a limited number of sensors mounted

on the surface of few cells is considered. Such scheme is augmented with model-based

estimation techniques to capture the temperature gradient both across a single cell

and among cells in the battery pack. Second, for lithium ion battery, the voltage of

every single cell is currently measured to prevent overcharge and overdischarge. This

dissertation develops nonlinear estimation techniques for reducing the individual cell

voltage sensing requirement.

Specifically, in the first part of this dissertation, a model-based estimator using

surface temperature measurement and continuously identified parameters is designed

for adaptive prediction of the cell core temperature. The model-based estimation is

then extended for the thermal network of cells inside a pack. Based on the battery

string thermal model, the number of sensors and their location required for full ob-

servability is investigated, followed by an optimal observer design under the frugal

sensor allocation and cell-to-cell variability.

In the second part of this dissertation, reduced voltage sensing, which relies on

measuring the total voltage of multiple cells, is considered to replace the existing

xiii



single-cell voltage sensing system. The feasibility of state of charge estimation under

reduced voltage sensing is first investigated based on observability analysis. Nonlinear

observers are then designed for SOC estimation and validated by experiments. The

results are later extended to the case when both SOC and capacity imbalance exist in

the battery string due to non-uniform cell self-discharge rates, cell degradation, and

manufacturing variability. The developed estimation technique provides the potential

of reducing the voltage sensing in battery packs by half.

xiv



CHAPTER I

Introduction

1.1 Background on Lithium-ion Batteries

The past few decades have seen rapid increase in global energy consumption and

deteriorating environmental conditions. Specifically, the energy consumption and the

(energy-related) CO2 emission increased by about 48% and 50% respectively over the

past 20 years around the world [1]. The resulted energy and environmental issues

have been some of the biggest challenges facing mankind today. One of the major

contributor to these issues is the transportation sector, which accounted for about

70% of the oil consumption and 24% of the CO2 emission in the U.S. in 2013 [2].

Vehicle electrification, including application of hybrid electric vehicles (HEV), plug-in

electric vehicles (PHEV) and battery electric vehicles (BEV), has been considered as a

promising way to reduce the fuel consumption and CO2 emission in the transportation

sector.

Batteries, which are the most common onboard energy storage system, are a major

component of most electric vehicles (EV). Among all types of batteries, lithium ion

batteries are nowadays widely used in EVs. Compared with other battery chemistries,

such as lead acid and nickel metal hydride, lithium ion batteries have advantages over

the following aspects [3, 4, 5, 6, 7]:

• higher energy density (> 150Wh/kg), which allows driving range between

charges or reduce weight under the same driving range;

• higher open circuit voltage (> 3.2V ), indicating higher power delivery;

• higher charge efficiency (97 - 99%) and lower self-discharge rate (5 - 10% per

month), which equates to less energy waste;
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• longer cycle life, which prolongs the lifetime and reduce the maintenance/replacement

cost of the battery pack over vehicle life;

• no memory effect, avoiding significant capacity shrink due to repeated shallow

charging and discharging.

Due to the above advantages, lithium ion battery has seen rapid growth in popularity.

Nowadays, almost all major automakers have production electric vehicles powered by

lithium ion battery [8, 9]. Besides in electric vehicles, lithium ion battery is also

being considered for applications in conventional vehicles, e.g. in the engine start-

stop system and as the replacement of the lead acid battery for the engine starter

battery [10, 11, 12]. The global automotive lithium ion battery market is projected

to reach $9 billion by 2015 [13].

Apart from automotive industry, lithium ion battery has also been widely applied

in other fields. For example, it has a long history of being used as the main energy

storage medium for consumer electronics and medical devices [14, 15]. It has also

served as the backup or auxiliary power sources in aircraft and space applications

[16, 17, 18]. Other applications include power generation plant, grid, power tools

among others [19, 20].

1.2 Challenges Facing Automotive Lithium Ion Batteries

Some practical challenges prevent lithium ion battery-powered electric vehicles

from replacing conventional internal combustion-powered vehicles at this time. Two

of the prominent ones are safety and cost.

One of the important safety concerns is overcharge and overdischarge, which can

be hazardous. Overcharge might lead to lithium deposition and electrolyte solvent

decomposition, resulting in fire or even explosion [7, 21, 22]. Overdischarge may

short the battery by causing copper dissolution and formation of dendrites [21, 22].

The other major safety concern is the vulnerability of lithium ion batteries to high

temperature. Elevated temperature may trigger highly exothermic reactions, which

will in turn increase the temperature further [3]. Such process occurring beyond

certain temperature thresholds is referred to as thermal runaway [3, 23] and could

lead to fire eventually.

As far as the cost is concerned, apart from that associated with materials and

fabrication, issues related to management and design of battery systems add to the

high price of EVs. First, because of the vulnerability of the lithium ion batteries,

2



safety measures are required for individual cells. The battery module of the Ford

C-max hybrid electric vehicle is shown in Figure 1.1, where the cells are connected

in series. It can be seen that the voltage of every single cell is measured to alert

overcharge and overdischarge. Since the battery packs often consist of hundreds

and even thousands of cells connected in series, single-cell voltage monitoring adds

significant costs to the battery management system (BMS), including sensors, wiring

and labor. Second, battery packs usually need to be sized with more energy and

Figure 1.1: Battery Module of the Ford C-Max Hybrid.

power capacity than the requirement to accommodate degradation. As the battery

ages, its internal resistance increases [16, 24] while its capacity shrinks [24, 25, 26].

Consequently, power and energy capacity of the battery will be reduced. In order to

achieve the desired performance throughout the vehicle/battery life, the battery pack

needs to be sized with redundant capacity in the design phase. The increase in the

number or the size of the cells adds to the cost of the battery system.
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1.3 Motivation

This dissertation is dedicated to exploring methods to enhance the safety of the

lithium ion battery pack as well as reduce the cost of the battery management system.

First, better ways for monitoring the temperature of cylindrical batteries will be

investigated. So far most BMSs only measure the surface temperature of some cells

in the pack, but in fact the core temperature can be much higher, especially when

the cells are operating under high currents. Measured surface temperature, Ts, and

core temperature, Tc, of a 2.3 Ah A123 26650 LiFePO4/graphite battery under a

realistic automotive drive cycle are shown in Figure 1.2. The maximum observed
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Figure 1.2: Battery surface and core temperatures under a drive cycle. (top: current
profile of the drive cycle; bottom: surface and core temperatures)

temperature difference is more than 4 oC, which can be larger under higher current

[27, 28]. Underestimating the temperature will put the battery at the risk of over-

heating. Apart from the safety concern, temperature monitoring is also the basis

for battery thermal management strategies aiming at extending battery lifetime. It

has been noticed that battery degradation is temperature dependent as the capacity

and power fade is much more prominent at high temperature [3, 29, 30, 31]. There-

fore, correct estimation of the battery core temperature can better assist the BMS

strategy to avoid operation under high temperature [32]. In addition to serving the
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thermal management, estimation of battery thermal dynamics can also be used for

state of health (SOH) monitoring. As the internal resistance of the battery increases

due to degradation, more heat will be generated during battery operation, resulting

in temperature elevation. Therefore, it is possible to detect the growth in internal

resistance through temperature monitoring. The identified resistance growth can be

used to evaluate the SOH of the battery, and provide a reference for the life-extending

battery management strategies.

Second, feasibility of reducing voltage sensing in BMS will be investigated. It has

been mentioned that monitoring the voltages of all cells adds significant cost to the

BMS. This cost may be reduced significantly if the cell voltage monitoring interval

can be increased. For example, production HEVs with NiMH batteries typically only

measure the total voltage of every 5 to 16 cells in series, and lead acid batteries

are measured at every 6 cells or more. However, for lithium ion batteries, the need

to prevent overcharge requires that reduced sensing should be pursued only if the

individual cell SOCs and voltages can still be inferred accurately.

1.4 Estimation of Thermal Dynamics in Cylindrical Lithium

Ion Batteries

In this section, problems concerning temperature monitoring of cylindrical lithium

ion batteries are discussed. State of art of thermal modeling is first reviewed, and the

two-state model is chosen as the best fit for cylindrical batteries. Parameterization

of the two-state model is then identified as an issue to be addressed. In vehicle

applications, a battery pack thermal model is needed for temperature estimation on

the pack level, and temperature sensor deployment strategy can be investigated based

on the model observability.

1.4.1 Existing Thermal Models for Cylindrical Batteries

Since temperature monitoring is a critical issue for lithium ion batteries, substan-

tial efforts have been devoted to modeling the battery thermal dynamics.

Existing high fidelity thermal models can predict the detailed temperature distri-

bution throughout a cell [33, 34, 35, 36]. In these models, an electrochemical model

is often used to compute the heat generation by chemical reactions occurring during

battery operation, and partial differential equations (PDE) are employed to calculate

the resulting spatial and temporal temperature distribution. However, due to their
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high computational load and limited capacity of the onboard processors, these models

are not currently used in BMSs, where large numbers of cells need to be monitored.

At the other end of the spectrum in modeling complexity, single-state thermal

models, featuring only the bulk (or average) temperature, are also widely used to

capture the lumped thermal dynamics of the cell [36, 37, 38, 39]. This type of model

has been adopted in onboard BMSs [40, 41] due to its computational efficiency. How-

ever, lumping the battery thermal dynamics to a single temperature might lead to

over-simplification since the temperature in the battery core can be much higher than

in the surface for cylindrical batteries [27]. Such temperature difference can be caused

by various reasons. First, during battery operation, the battery core is exposed to

the heat generated inside the cell while the battery casing is cooled down by the

outside coolant. Second, physical properties of the electrode assembly and the bat-

tery casing, such as the heat capacity, are different. Thermal dynamics of the casing,

which is usually made of metal, are much faster than those of the electrode assembly.

The battery core temperature is more critical than the surface temperature since the

breakdown and degradation take place in the electrode assembly.

A two-state thermal model [42] capturing both the surface and the core temper-

atures of a battery is a choice to better balance the computational load and model

fidelity. In the model, the surface and core temperatures of a battery are defined as

two states, and the thermal dynamics considered include the heat generation in the

core, thermal conduction between the core and the surface, and the convective cooling

between the surface and the outside coolant. Although this model is a simplification

of a high fidelity model based on some assumptions, e.g. homogeneous temperature

distribution in the core (electrode assembly), it appears to be an effective model for

onboard application. Computing two states per cell is a manageable load for on-

board processors, and provides the important benefit of capturing the critical core

temperature.

1.4.2 Parameterization of the Two-state Thermal Model

The accuracy of the model parameters is of great importance since it determines

the accuracy of the temperature estimation. Parameterization of the two-state ther-

mal model remains an issue to be investigated.

In some attempts, model parameters are calculated based on the geometry of the

battery and the volume-averaging physical properties of battery components [42].

Such approximation is not accurate due to the complicated layered structure of the

cell and the interfaces between the layers.
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The parameters can also be determined by fitting the model to data obtained

from experiments [27] under designed current excitation. But such practice requires

measurement of the battery core temperature, which is not be feasible for most bat-

teries. In addition, this laboratory-oriented parameterization, while invaluable for

determining the initial values of parameters, cannot ensure the parameter accuracy

over battery lifetime. Some of the parameters, such as the internal resistance, may

change due to degradation. In this case, parameter mismatch leads to inaccurate

temperature estimation, and thus identification of present values of parameters is

needed. Furthermore, if the internal resistance can be identified continuously over

battery lifetime, the growth in internal resistance due to degradation can be detected

to evaluate the state of health of the battery.

1.4.3 Temperature Estimation on the Battery Pack Level

So far thermal modeling of single-cell cylindrical battery has been discussed, but

the BMS needs to monitor battery temperatures on the pack level. Cell temperatures

in a pack can vary significantly [37, 43], due to pack geometry and cooling conditions

among other factors. At this stage, most of the BMS rely on one or several tempera-

ture sensors for thermal management of the battery pack [44, 45, 46]. For example,

in the battery module of the Ford C-max hybrid electric vehicle shown in Figure 1.1,

only two thermocouples are installed to measure the surface temperature of two cells

among a total of 38 cells in the module. The battery cooling (or heating) system is

usually turned on or up when the measured temperature exceeds the predetermined

thresholds. Such method could control the maximum temperature in the pack if the

sensor is placed at the right spot, but it will have the following drawbacks. First,

the temperature gradient across the battery pack, which is blind to the BMS, cannot

be effectively controlled. Limiting temperature gradient is important for maintain-

ing uniform performance among cells [3]. Second, with no prediction of the battery

thermal dynamics, temperature control could be conservative at the cost of over-sized

cooling hardware and non-optimal energy consumption of the cooling system. The

model-based thermal management strategy, which uses a battery pack thermal model

to predict and estimate the battery thermal dynamics, can be applied to address the

above issues.

In a battery pack, cells are clustered in modules with physical connections, result-

ing in thermal interaction between cells. For example, heat conduction exists between

adjacent cells either through the electrical connection or the air gap between them.

In battery packs with active cooling, where coolant is cycled through the pack to
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cool the cells, upstream cells will affect downstream cells through the coolant flow.

Radiation might also occur between cell surfaces to transfer heat. These factors need

to be considered in modeling the battery pack thermal dynamics.

Estimating battery temperatures solely based on the pack model, or open-loop

temperature estimation, would be affected by noises or unknown initial conditions.

More accurate estimation can be achieved with a closed-loop observer [47, 48], e.g. a

Kalman filter, where surface temperature of some cells is measured and fed back to

correct the estimation. Ideally, the measurements need to make the model observable.

For economic reasons, it is desirable to use as few sensors as possible. Minimum

number of sensors needed for a battery string and viable sensor locations can be

determined by observability analysis of the pack thermal model.

1.5 Estimation of Battery Voltage and State of Charge

In this section, the issue of estimating individual cell SOC and voltage under

reduced voltage sensing is introduced. State of art of SOC estimation under full

voltage sensing is reviewed first. The motivation, challenges, and possible solutions

of SOC estimation under reduced voltage sensing are then discussed.

1.5.1 State of Art: SOC Estimation under Full Voltage Sensing

As has been mentioned in Section 1.1, in order to prevent overcharge and overdis-

charge, voltages of all cells in the lithium ion battery pack are measured at present

stage. Apart from voltage monitoring, the battery SOC, which is an indication of the

amount of energy remained in the battery, also needs to be estimated. Model based

observers have been widely adopted for SOC estimation. Most commonly used models

for onboard applications include the coulomb counting model [49, 50], the equivalent

circuit model [50, 51, 52], and the simplified electrochemical model [53, 54] among

others. These models can be written in a state space representation with linear state

equations and a nonlinear voltage output equation. The observers constructed based

on these models include open-loop observers and closed-loop observers among others.

In open-loop observers, the battery SOC is calculated solely based on the model

and the current input [49, 55]. Though easy to implement, open-loop observers are

prone to noises in input measurement, uncertain initial conditions and errors in model

parameters [56, 57]. This is especially true for SOC estimation, which is performed

by simply integrating the input current over time. The (unstable) integrator will

preserve errors in the initial guess of SOC and accumulate errors in current sensing.
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Closed-loop observers, e.g. Kalman filters or Luenberger observers, can greatly

improve the accuracy of the estimation [48, 58]. In closed-loop estimation, the battery

SOC and voltage are first calculated based on the model and the current input.

The estimated voltage is then compared with the real measurement and the error

is fed back to correct the SOC estimation. Given an accurate model, the closed-

loop observer can eliminate the errors induced by unknown initial conditions quickly.

Even if the model parameters are not precise, the estimation errors of the closed-loop

observer can be bounded within certain limits [56].

These advantages of the closed-loop observer (extended Kalman filter) are guar-

anteed if the voltage measurement renders the linearized battery model observability

[59]. That is, the model states can be reconstructed based on the model and the

output trajectory even if the initial conditions are unknown. In present BMSs, where

measurement of single cell voltages make the battery model observable, the extended

Kalman filter has been widely used based on various models [53, 60, 61, 62], achieving

good estimation of both SOC and voltage.

1.5.2 SOC and Voltage Estimation under Reduced Voltage Sensing

To reduce the cost of the BMS for lithium ion batteries, it is highly desirable to

replace the voltage sensing at every single cell (full sensing) with sensing at multiple

cell increment (reduced sensing). Cells in a battery pack can be connected both in

series and in parallel. Reduced voltage sensing is of interest in any battery cluster

with two or more cells connected in series.

Under reduced voltage sensing, all the cells within one measuring increment can

be viewed as a battery string whose total voltage is measured. To prevent overcharge

and overdischarge, the SOC and voltage of every cell in the string need to be correctly

estimated based on the measured total voltage. This goal can be easily achieved when

all the cells have the same SOC and voltage. The single cell voltage can be obtained

by simply dividing the total voltage by the number of cells, and the SOC can then

be estimated based on the same methods used under full voltage sensing. However,

when there is imbalance existing between cells, that is, cells have different SOCs and

voltages, the task of SOC and voltage estimation will become far more complicated.

To analyze this problem, a model of the series string needs to be constructed first.

The states are composed by those of each single cell, and the model output is the

summation of individual cell voltages. Existence of a solution to estimate the in-

dividual cell SOCs and voltages depends on the observability of the battery string

model, which indicates the possibility of distinguishing model states based on the
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model output [63]. If the battery string is proven to be observable, it is then possible

to design an observer for the estimation problem.

There are various candidate algorithms that can potentially be applied for SOC

and voltage estimation under reduced voltage sensing. The first category is the afore-

mentioned closed-loop state observers, which are widely used under full voltage sens-

ing. It needs to be pointed out that closed-loop state observers were originally in-

vented for linear systems [48, 58], and later extended to nonlinear systems based on

linearization. Such observers are usually referred to as the extended state observers,

such as the extended Kalman filter (EKF) [59, 60]. To guarantee the asymptotic

convergence of the state estimation under the closed-loop observers, in addition to

satisfying the nonlinear observability condition, the battery string model also needs

to be observable after linearization [59]. Such condition is easily satisfied under full

voltage sensing, where the voltage of every single cell is measured. However, un-

der reduced voltage sensing, it can be proven that the linearized battery models are

generally not observable.

Candidate algorithms exist in addition to closed loop observers. Relevant al-

gorithms and observer design approaches include and are not limited to the New-

ton observer [64, 65], canonical form observers based on observer error linearization

[66, 67, 68], extended Luenberger observer [69], sliding mode observer [70, 71], high

gain observers [72, 73], and Lyapunov-based observer design method [74].

1.6 Dissertation Organization

In this dissertation, Chapter II and Chapter III are dedicated to adaptive estima-

tion of thermal dynamics in cylindrical batteries. Specifically, Chapter II addresses

the problem on the single cell level, and Chapter III extends the solution to the bat-

tery pack level. Chapter IV and Chapter V investigate the issue of battery imbalance

estimation under reduced voltage sensing, where Chapter IV focuses on estimating

only the SOC imbalance, and Chapter V studies the more complicated case with both

SOC and capacity imbalance.

In Chapter II, a two-state thermal model for single-cell cylindrical battery de-

veloped in [42] is first introduced. A method for model parameterization is then

designed, which includes derivation of the parametric model, identifiability analysis

and the least squares parameter identification algorithm. The methodology is then

applied to an A123 26650 battery and validated with experimental data. The de-

veloped on-line parameterization method can be used for adaptive estimation of the
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unmeasurable battery core temperature. Battery internal resistance is one of the

parameters in the thermal model, whose value will change depending on operating

condition or due to degradation. By incorporating a forgetting factor, the parameter-

ization algorithm could identify the time-varying internal resistance, which provides

a reference for battery state of health.

Temperature estimation is extended to the battery pack level in Chapter III. A

thermal model of a one-dimensional battery string is first constructed based on the

single-cell model in Chapter II and the considered thermal interaction between the

cells. A closed-loop observer, which combines the model with measurement of some

temperature states, can then be designed to estimate all the temperature states in

the battery string. Ideally, the measurement needs to render all the temperature

states observable. Therefore, temperature sensor deployment strategy is then studied

based on observability analysis to determine the minimum number of sensors and

their locations. Nevertheless, it is found that the number of sensors available in the

battery pack of commercial electric vehicles is usually much less than the required

number for observability. Optimal observer design approaches are then explored to

achieve best observer performance under the unobservable condition imposed by the

frugal sensor allocation.

Chapter IV is devoted to solving the SOC imbalance estimation problem under

reduced voltage sensing. It is discovered that for battery chemistries with nonlinear

voltage-SOC relationship, different combinations of SOC imbalance are distinguish-

able based on the total voltage evolution trajectory. Nonlinear observability analysis

is then conducted to determine the observable conditions that need to be satisfied by

the voltage-SOC relationship. Several candidate algorithms are investigated to solve

the estimation problem, which include the extended Kalman filter, canonical form

observer, sliding mode observer, extended Luenberger observer and Newton observer.

The Newton observer is found to be the most suitable method, which is then applied

to an A123 26650 LiFePO4 battery and validated by experiment. Most of the anal-

ysis is conducted for reduced voltage sensing which measures two cell intervals under

constant current charging conditions, targeting 50% reduction in voltage sensing. The

methodology can be extended to longer intervals and real-world driving conditions

subject to practical limitations.

The SOC imbalance algorithm developed in Chapter IV assumes known and equal

capacity among cells. However, this assumption is not valid in many cases since ca-

pacity imbalance is also commonly presented in battery packs. This more complicated

scenario is investigated in Chapter V. First, the robustness of the previously devel-
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oped SOC estimation algorithm is analyzed under different combinations of SOC and

capacity imbalance. It is found that SOC estimation is not always robust, which sug-

gests the necessity of capacity estimation under reduced voltage sensing. Therefore,

the Newton observer is then applied for joint estimation of SOC and capacity based on

the measured total voltage trajectory. In order to guarantee the accuracy of capacity

estimation, the voltage trajectory needs to cover a wide range of SOC variation and

include many data points. The quantitative relationship between the measurement

noise and the variance of the estimates is established based on Cramer-Rao bound

analysis to guide the voltage data collection strategy. Furthermore, singular value de-

composition is applied in the estimation algorithm to improve the robustness of joint

SOC and capacity estimation. Finally, the overall estimation scheme, which combines

the real-time SOC estimation algorithm developed in Chapter IV and the off-line SOC

and capacity joint estimation algorithm designed in Chapter V, is discussed.

1.7 Contributions

The contributions of this dissertation include

• An adaptive observer for estimating the core temperature of a cylindrical battery

is designed in Chapter II. The adaptive observer consists of an online parameter

identifier, where the parameters of the two-state battery thermal model are

identified based on onboard signals, and a closed-loop observer estimating the

battery core temperature by using the identified parameters [75, 76]. Identified

parameters include the internal resistance of the battery, which can be used to

evaluate the battery SOH [76].

• Temperature sensor deployment strategy in a battery string is studied based on

a string thermal model and observability analysis in Chapter III. The thermal

model for a 1-D battery string is constructed based on the single cell model and

thermal interaction between cells [77]. The minimum number of sensors and

their locations required for full model observability is determined for battery

strings with various lengths.

• Optimal observer design and sensor deployment strategy for temperature esti-

mation of battery strings is also studied under frugal sensor allocation usually

seen in commercial battery packs in Chapter III. Observer design faces two

challenges in such case. First, the temperature states are not completely ob-

servable under the frugal sensor allocation. Second, estimation will be affected
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by model uncertainty, such as that in battery internal resistance caused by

cell-to-cell variability. Two robust observer design approaches are explored to

find the optimal observer performance that can be achieved under such circum-

stance. It is guaranteed that the estimation error will not exceed the specified

limits as long as the resistance uncertainty stays within the bounds.

• The feasibility of estimating individual cell SOCs and voltages under reduced

voltage sensing is analyzed in Chapter IV. Based on nonlinear observability

analysis, it is found that the individual cell SOCs are observable from the total

voltage only if the voltage-SOC relationship of the battery chemistry is nonlin-

ear. In such case, the SOC (imbalance) can be estimated based on the voltage

trajectory over time.

• Nonlinear observers are designed for SOC estimation under reduced voltage

sensing in Chapter IV. It is noted that the traditional linearization-based

method for SOC estimation under full voltage sensing, such as the extended

Kalman filter, is not applicable due to the lack of observability in the linearized

battery model. The Newton observer, which is chosen from a pool of candidate

algorithms, is designed and validated by experiment on a two-cell string under

constant-current charging condition. The robustness of SOC estimation under

model uncertainty caused by capacity and resistance imbalance is also investi-

gated in Chapter V based on sensitivity analysis. The combinations of SOC and

capacity imbalance that will lead to unrobust SOC estimation are identified.

• An algorithm for battery capacity estimation under reduced voltage sensing

is developed based on the Newton observer in Chapter V. Compared with

the capacity estimation method studied extensively in literature, the work in

this dissertation has the following contributions. First, the designed algorithm

can be used under reduced voltage sensing. Second, the requirements on the

voltage data that could achieve certain estimation accuracy is studied based on

Cramer-Rao bound analysis. The requirements include the SOC variation and

the number of data points that need to be covered in the voltage trajectory.
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CHAPTER II

Adaptive Estimation of Single Cell Core

Temperature and State of Health

2.1 Introduction

An adaptive observer is designed in this chapter to monitor the core temperature

of a cylindrical battery. First, an online parameterization algorithm [78] will be

developed to identify the parameters of the two-state thermal model in [42]. The

algorithm uses commonly measured onboard signals in a battery management system,

such as the battery surface temperature, input current and coolant temperature, and

is simple enough to be implemented on a typical automotive onboard controller. A

closed loop observer is then built to estimate the battery core temperature using the

parameters identified in real time.

The model with a constant internal resistance is investigated first, where the pure

least square identification algorithm is sufficient for parameterization. In reality, the

internal resistance of batteries can be temperature and/or state of charge (SOC) de-

pendent [37, 79, 80, 81], and hence time-varying. The pure least square algorithm may

introduce errors to the identification if the actual parameters are non-constant. Non-

uniform forgetting factors are then augmented to identify the time-varying internal

resistance.

Apart from the short-term variability due to conditions such as temperature, the

internal resistance of lithium ion batteries may also increase over lifetime due to degra-

dation. This is because the solid electrolyte interphase (SEI) may grow in thickness

and change in composition [82, 83, 84], leading to reduction of SEI conductivity.

Hence, the least square algorithm with non-uniform forgetting factors is also applied

to track the long term growth of the internal resistance. The resistance growth is

an important indication of the battery state of health (SOH), and can be used as a
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reference for the onboard battery management system to extend battery life. Param-

eterization of battery models and adaptive monitoring of SOH have been explored

previously in various seminal papers [85, 86, 87], mostly based on battery voltage

dynamics. Our work is among the first ones to evaluate the battery SOH from a

thermal perspective.

2.2 A Two-state Thermal Model for Cylindrical Batteries

The radial thermal dynamics of a cylindrical battery can be modeled as a classic

heat transfer problem with heat generation located in the core and zero heat flux

at the center, as shown in Figure 2.1. The two-state approximation of the radially

Figure 2.1: Schematics of the single-cell radially-lumped thermal model.

distributed thermal model is defined as [42, 76]

CcṪc =I2Re +
Ts − Tc

Rc

CsṪs =
Tf − Ts

Ru

− Ts − Tc

Rc

,

(2.1)

where the two states are the surface temperature, Ts, and the core temperature,

Tc. The temperature variation along the battery height is neglected here, assuming

homogeneous longitudinal temperature distribution.

Heat generation is approximated as a Joule loss in the battery core, computed as

the product of the current, I, squared and the internal resistance, Re. The actual

heat generation is a complex process involving various electrochemical reactions and
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particle transport [3], complicated to model in detail. The simplification here can lead

to cycle-dependent values for lumped resistance Re, or even non-constant resistance

within a single cycle. Such Re can vary with conditions such as temperature, SOC and

degradation [25, 37, 79, 80]. It is noted that heat generation can also be calculated

based on the battery terminal voltage [81]. Heat exchange between the battery core

and the surface is modeled as heat conduction over a thermal resistance, Rc, which

is a lumped parameter aggregating the conduction and contact thermal resistance

across the compact and inhomogeneous materials. A convection resistance Ru is

modeled between the surface and the surrounding coolant to account for convective

cooling. The value of Ru is a function of the coolant flow rate, and in some vehicle

battery systems, the coolant flow rate is adjustable to control the battery temperature.

Here, it is modeled as a constant as if the coolant flow rate is fixed to accommodate

the required maximum cooling capacity. A model with a varying Ru has also been

investigated in [75]. The rates of change of Tc and Ts depend on heat capacities of

the battery core and casing. The parameter Cc is the heat capacity of the electrode

assembly in the core, and Cs is the heat capacity of the aluminum casing.

The complete parameter set of this model includes Cc, Cs, Re, Rc, and Ru, of

which the values cannot be easily calculated. Consider the conduction resistance Rc

as an example. Theoretically, Rc can be calculated based on the conductivity and

dimensions of the wound cell electrode assembly and the aluminum casing. However,

since the rolled electrodes are composed by the cathode, anode, current collectors and

separator, it is difficult to obtain an accurate value for the overall conductivity. More-

over, Rc also includes the contact thermal resistance between the rolled electrodes and

the casing, which involves various contact properties adding to the complexity of the

calculation.

Therefore, a model identification algorithm is developed in the following section to

obtain the phenomenological values of model parameters based on measurable model

inputs and outputs.
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2.3 Online Identification of the Two-state Battery Thermal

Model

2.3.1 Parameterization Methodology

For model identification, a parametric model

z = θTϕ (2.2)

needs to be derived first by applying Laplace transformation to the model, where z

is the observation, θ is the parameter vector and ϕ is the regressor [78]. Both z and

ϕ should be measured signals.

With a parametric model, various algorithms can be chosen for parameter iden-

tification, such as the gradient and the least squares methods. The method of least

squares is preferred for noise reduction [78]. The recursive least squares algorithm is

applied in an online fashion, as parameters are updated continuously [78] by

˙̂
θ = P

ϵϕ

m2

Ṗ = −P
ϕϕT

m2
P

ϵ = z − θ̂Tϕ

m2 = 1 + ϕTϕ,

(2.3)

where m is a normalization factor to enhance the robustness of parameter identifi-

cation. In some cases, to avoid differentiating the measured signals in observation z

and regressors ϕ, a filter 1
Λ(s)

needs to be applied. The parametric model will then

become

1

Λ
z = θT

1

Λ
ϕ. (2.4)

Convergence and robustness of the identification are guaranteed if the regressors,

ϕ, are stationary signals and satisfy the persistent excitation (PE) conditions [78].

The PE conditions are satisfied if there exist some time interval T0, and positive

number α1 and α0, such that

α1IM ≥ U(t) =
1

T0

∫ t+T0

t

ϕ(τ)ϕT (τ)dτ ≥ α0IM ∀t ≥ 0, (2.5)
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where IM is an identity matrix with the same dimension as U(t) [78]. This criteria

can be used to test whether a drive cycle can ensure robust parameter convergence.

2.3.2 Application to the Battery Thermal Model

In this section, the parameterization scheme described previously is applied to

the cylindrical battery thermal model in (2.1). A parametric model is first derived

by taking the Laplace transformation of (2.1) and replacing the unmeasured Tc with

measured I, Tf , and Ts,

s2Ts − sTs,0 =
Re

CcCsRc

I2 +
1

CcCsRcRu

(Tf − Ts) +
1

CsRu

s(Tf − Ts)

− 1

CcCsRc

(
(Cc + Cs)sTs − CsTs,0 − CcTc,0

)
,

(2.6)

where Ts,0 and Tc,0 are the initial surface and core temperatures. When the battery

starts from thermal equilibrium, Tc,0 is the same as Ts,0, and (2.6) becomes

s2Ts − sTs,0 =
Re

CcCsRc

I2 +
1

CcCsRcRu

(Tf − Ts)

− Cc + Cs

CcCsRc

(sTs − Ts,0) +
1

CsRu

s(Tf − Ts).

(2.7)

It is assumed here that the coolant temperature, Tf , is regulated as a steady output

of the air-conditioning unit and thus sTf = 0, giving

s2Ts − sTs,0 =
Re

CcCsRc

I2 +
1

CcCsRcRu

(Tf − Ts)−
(
Cc + Cs

CcCsRc

+
1

CsRu

)
(sTs − Ts,0).

(2.8)

If Tf is a time-varying input to the model, sTf should not be dropped. In this case,

Tf can also be used as an input excitation in the parametric model. A second order

filter should be applied to the observation and the regressors in (2.8) to make them

proper. The filter takes the form

1

Λ(s)
=

1

(s+ λ1)(s+ λ2)
, (2.9)

where λ1 and λ2 are the time constants of the filter. The values of λ1 and λ2 can be

chosen to filter the noises with frequencies higher than the temperature dynamics.
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For the parametric model in (2.8), we have

Z(s) =
1

Λ(s)
(s2Ts − sTs,0)

Φ(s) =
1

Λ(s)
[I2 Tf − Ts sTs − Ts,0]

T

θ = [α β γ]T ,

(2.10)

where

α =
Re

CcCsRc

β =
1

CcCsRcRu

γ = −
(
Cc + Cs

CcCsRc

+
1

CsRu

)
.

(2.11)

When implemented in real time, the identification algorithm is performed based on

(2.3) with signals z and ϕ in continuous time domain, or based on equivalent formula

in discrete time domain. For example, z(t), whose Laplace transform is s2Ts−sTs,0

Λ(s)
,

is obtained by calculating the convolution of Ts(t) − Ts,0 and the inverse Laplace

transform of s2

Λ(s)
. In this way, calculation of the 2nd order derivative of Ts, s

2Ts,

which can be easily corrupted by noises, is avoided. The discrete-time version of the

parameter identification algorithm is also provided in Appendix A. Such version is

more convenient for application since it uses the sampled signals and does not need

the filter.

By using the parametric model in (2.8), only three lumped parameters, α, β and

γ, can be identified under persistent input excitation [78]. Prior knowledge of two of

the five original physical parameters must be assumed to determine the rest three.

Of the five physical parameters, the internal resistance Re may vary due to aging and

should be identified online. The conduction resistance Rc is difficult to estimate as

explained previously. The convection resistance Ru will be influenced by the coolant

flow conditions around the cell depending on the packaging. Therefore, it is not easy

to obtain prior knowledge of those three parameters. The heat capacities Cc and Cs,

which depend on the thermal properties and the mass of the rolled electrode assembly

and the casing, are relatively constant over lifetime. In addition, the heat capacities

only affect the transient response of the model without having any impact on the

steady state temperatures. Consequently, Cc and Cs are chosen as the presumed

parameters. With Cc and Cs presumed and α, β and γ identified, Re, Rc and Ru can

19



be obtained by solving the following set of equations:

β(Cc + Cs)CsRu
2 + γCsRu + 1 = 0

Rc =
1

βCsCcRu

Re = αCcCsRc.

(2.12)

The quadratic equation for Ru in (2.12) can lead to two solutions, and the right one

can be decided based on the coolant flow conditions [88].

2.3.3 Experiment Validation

2.3.3.1 Experiment Set-Up and Measurements

Experiments have been conducted to validate the designed parameterization scheme.

A 2.3Ah A123TM 26650 LiFePO4/graphite battery is cycled with a BitrodeTM cy-

cler under the control of a customized testing system by A&D TechnologyTM. A

Cincinnati Sub-ZeroTM environmental simulation chamber is used to regulate the

temperature of the coolant air flow around the battery.

T-type thermocouples are installed both on the battery casing to measure its

surface temperature, and also inside the battery core to measure the core temperature.

During the fabrication process of the 26650 cylindrical cell, the electrode assembly

is wound up to form a roll, leaving a cavity in the center. To measure the core

temperature, the battery was drilled inside an argon-filled glove box through to its

central cavity, where the thermocouple was inserted, as shown in Figure 2.2. The

battery was then sealed and taken out of the glove box for experiments.

Inside the thermal chamber, the battery was placed in a designed flow chamber

as shown in Figure 2.3, where a fan was mounted at one end to regulate the air flow

around the cell. A T-type thermocouple is placed near the battery inside the flow

chamber to measure the air flow temperature Tf .

A driving cycle, the Urban Assault Cycle (UAC) [89], is applied as the current

excitation to the battery in galvanostatic mode. The UAC is originally a velocity cycle

for military vehicles. The current profile for a battery pack of a hybrid military vehicle

under UAC is derived in [89] by applying a certain power management strategy. The

type of battery used in the experiment (LiFePO4 26650) is different from the one

in [89], hence the UAC cycle is rescaled for the experiments. The original 20-minute

cycle is repeated 4 times to let the battery temperature reach periodic steady state.

The scaled drive cycle current is plotted in Figure 2.4. The normalized unit of C-rate
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Figure 2.2: Instrumentation of the battery core temperature. (left: drill press setup
of the battery; right: installation of the thermocouples)

Figure 2.3: Schematics of the flow chamber.

is commonly used to describe the load applied to the battery, and 1 C corresponds

to the magnitude of the current that depletes the battery in one hour (in this case

2.3 A). Negative current indicates discharge as the energy is drawn from the battery

to drive the vehicle, and positive current represents the regenerative braking during

which the battery is charged. The discharge load is fairly evenly distributed between

1 C and 7 C, except at around -8 C which indicates rapid acceleration. The charge

load is mostly below 7C and occasionally reaches above 10 C during drastic braking.
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SOC evolution under this cycle is plotted in Figure 2.4, showing a decrease from

about 50% to roughly 35%. Temperature of the thermal chamber is controlled at 26
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Figure 2.4: Scaled UAC current excitation. (top: currents in time; middle: histogram
of the currents; bottom: SOC variation under the cycle)

oC. The resulting battery surface temperature Ts and air flow temperature Tf are

measured and recorded by the data acquisition system. The measured Ts and Tf are

plotted in Figure 2.5, which along with I will be used for parameter identification.

2.3.3.2 Persistent Excitation of Input Signals

The criteria in (2.5) is first applied to check if the UAC cycle satisfies the PE

condition, which requires the regressors to be stationary signals first. As can be

seen in Figure 2.5, the surface temperature Ts will vary periodically after the battery

finishes the warm-up phase at about 1000 second. Consequently, the regressors, which

include the filtered I2, Tf − Ts, and sTs, will become stationary signals, as shown in

Figure 2.6. The U(t) matrix can then be calculated to check the persistent excitation

conditions.

Since the current input consists of repeated UAC cycles (each lasting for 1200s),

U(t) only need to be calculated over a time interval T0 = 1200s for 1000s ≤ t ≤ 2200s.
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Figure 2.5: Measured Ts and Tf under scaled UAC cycle. (top: surface temperature
Ts; bottom: flow temperature Tf )

It is noted that in this case, U(t) is not a diagonal matrix, and thus its eigenvalues are

calculated to check the persistent excitation conditions. The smallest and the largest

eigenvalues of U(t), λmax and λmin, are plotted in Figure 2.7. It can be concluded

from Figure 2.7 that α1 in (2.5) can be found as 0.086 s−1, which is the maximum of

λmax(t), and α0 as 2.4 × 10−4 s−1, which is the minimum of λmin(t). Consequently,

under the UAC cycle, the regressors satisfy the conditions of persistent excitation.

Furthermore, α0 is related to the speed of the convergence for parameter identification.

Specifically, when the gradient method is used, 2α−1
0 is the upper limit of the time

constant of the parameter convergence [78], which would be

τ ≤ 8333s (2.13)

in this case. Based on (2.13), the 90% settling time for the convergence under the

gradient search algorithm is expected to be less than 19186s. It is noted that 19186s

is a rather conservative estimation of the convergence time, in real application, the

convergence is usually accelerated by increasing the adaptive gain [78, 90].
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Figure 2.6: Evolution of regressors ϕ in periodic steady state.

Parameters Ru(KW−1) Re(mΩ) Rc(KW−1)
Initial Guess 1.5 30 0.5
ID Results 3.03 11.4 1.83

Table 2.1: Initial guess and identification results of parameters.

2.3.3.3 Results and Discussion

The measured signals I, Ts and Tf in Figure 2.4 and Figure 2.5 are used for

recursive least squares parameterization. The three parameters to be identified, Ru,

Re and Rc, are initialized with the initial guess values in Table 2.1. The core and

surface heat capacities Cc and Cs need to be presumed based on some reference. In

[27], a lumped bulk heat capacity, Cp, is identified for the same type of battery. Here,

since Cp is split into Cc and Cs, Cc, taking most of the thermal mass, is assumed

to be 67 JK−1, slightly smaller than Cp in [27]. The heat capacity of the battery

surface, Cs, is calculated to be 4.5 JK−1 based on the dimensions of the aluminum

casing and the specific heat capacity of aluminum.

Results of the recursive identification are plotted in Figure 2.8. It is noted that the

identification procedures are started after the first 1000 seconds when the temperature
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Figure 2.7: Evolution of the eigenvalues of U(t) in steady state. (top: smallest eigen-
value; bottom: largest eigenvalue)

enters periodic steady state. It can be seen that starting at some random initial values,

the 3 parameters converge to the values listed in Table 2.1. The upper plot in Figure

2.8 shows the convergence of the lumped parameters α, β and γ in (2.8), and the

lower plot shows the convergence of the physical parameters Ru, Rc and Re, which

are obtained by solving (2.12). It is noted that the convergence time is within the

range (less than 19186 s) discussed in Section (2.3.3.2), which is strictly speaking only

valid for the gradient method. The convergence rate is accelerated here by increasing

the initial adaptive gain P0 [90, 91], which is the initial value of P (t) in (2.3).

For validation purpose, the identified parameters are applied to (2.1) to estimate

both the battery surface temperature Ts and the core temperature Tc. The estimation

is then compared with the measurement, as plotted in Figure 2.9. The estimated

surface temperatures Ts match the measurement exactly, since Ts is directly used

for identification. It is noted that the measured core temperature Tc also agrees

closely with the measured Tc (which was not used for parameterization), showing

the validity of the identified model parameters. Once the parameterization scheme is

validated, it can be run in the onboard battery management system to estimate the
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Figure 2.8: Online Parameter Identification Results. (top: convergence of the lumped
parameters; convergence of the original parameters)

core temperature in real time without actually measuring it (as in the lab set-up).

The identification results are compared to those in [27], where thermal parameters

of the same battery are identified based on the measurement of both surface and the

core temperatures under designed current inputs. In [27], the battery is modeled

with a single dynamic state (the core temperature), and the surface temperature is

related to the core temperature with an algebraic equation by assuming the surface

heat capacity to be zero. Heat generation in [27] is pre-calculated by resistive heat

dissipation (due to ohmic voltage drop) plus entropic heat. In this work, the entropic

heat is ignored and the heat generation is captured by the identified resistance, Re.

It is noted that the entropic heat is generally small comparing to the resistive heat,

especially in the middle SOC range here as shown in Figure 2.4. Table 2.2 summarizes

the comparison between the thermal parameters identified in [27] and in this work.

It can be seen that the identified value of the conduction resistance, Rc, is smaller

than that in [27]. This is probably because the surface temperature in this work is

measured at the aluminum casing instead of at the outside paper cover (as in [27]),

which indicates better heat conduction. The identified convection resistance between
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Figure 2.9: Experimental Validation. (top: estimated surface temperature Ts vs.
measured; bottom: estimated core temperature Tc vs. measured)

Parameters Value Equivalence in [27] Value
Rc(KW−1) 1.83 Rin(KW−1) 3.2 ∼ 3.4
Ru(KW−1) 3.03 Rout(KW−1) 8.4 ∼ 9.1
Cc(JK

−1) 67 Cp(JK
−1) 73 ∼ 78

Cs(JK
−1) 4.5 - -

Table 2.2: Comparison of the identified parameters.

the surface and the coolantRu is significantly smaller than that in [27]. Such difference

can be explained by the fact that during the experiment, air flow is constantly blown

into the flow chamber by the fan to enhance the convective cooling, whereas in [27],

the battery is cooled by natural convection.

2.4 Adaptive Battery Core Temperature Estimation

In control applications, an observer is often designed based on a plant model to

estimate the states of the plant, especially those not measured, e.g. the core temper-

ature Tc of the battery in this case. Such model based observers can be categorized
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as either an open loop observer or a closed loop observer. For a linear system

ẋ = Ax+Bu, (2.14)

where x are the states and u are the inputs, an open loop observer is simply

˙̂x = Ax̂+Bu, (2.15)

as the estimated states x̂ are calculated by the model solely based on the inputs u.

For the battery thermal model specifically, we have

x = [Tc Ts]
T

u = [I2 Tf ]
T

A =

[
− 1

RcCc

1
RcCc

1
RcCs

− 1
Cs
( 1
Rc

+ 1
Ru

)

]

B =

[
ReRc

Cc
0

0 1
RuCs

]
.

(2.16)

However, the estimation by such an open loop observer can often be corrupted by

unknown initial conditions and noises in input measurement. To address such issues,

a closed loop observer is often designed based on the model and feedback of some

measurable outputs [47] as

˙̂x = Ax̂+Bu+ L(y − ŷ)

y = Cx+Du

ŷ = Cx̂+Du,

(2.17)

where y are the measured system outputs, x̂ and ŷ are estimated states and outputs,

L is the observer gain, and A, B, C and D are model parameters. For the battery

thermal model, since the surface temperature Ts is measured, we have

C =[0 1]

D =0.
(2.18)

It is noted that the difference between the measured and the estimated output is

used as the feedback to correct the estimated states. Comparing with an open loop

observer, the closed loop observer can accelerate the convergence of the estimated
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states to the real states under unknown initial conditions, e.g. a Luenberger observer

[47], or optimize the estimation by balancing the effect of unknown initial conditions

and noises, e.g. a Kalman filter [48].

By taking the structure of a closed loop observer, an adaptive observer is then

designed based on the certainty equivalence principle [78],

Cc
˙̂
Tc =I2R̂e +

T̂s − T̂c

R̂c

+ l1(Ts − T̂s)

Cs
˙̂
Ts =

Tf − T̂s

R̂u

− T̂s − T̂c

R̂c

+ l2(Ts − T̂s),

(2.19)

where T̂s and T̂c are the estimated surface and core temperatures, and the observer

parameters R̂e, R̂c and R̂u are taken from the online identification results in Section

(2.3.3). The block diagram of the adaptive observer is shown in Figure 2.10. The

Figure 2.10: Online Identification Scheme and Adaptive Observer Structure.

measured input current I, coolant temperature Tf , and surface temperature Ts are

fed into the parameter identifier to estimate model parameters Ru, Re and Rc. The

adaptive observer uses the estimated parameters to estimate the core and the surface

temperatures. The estimated Ts is then compared to the measurement and the error

is fed back to correct the estimation. Both the parameter and temperature estimation

is updated at each time step.
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The data in Section (2.3.3) are used to test the response of the adaptive observer,

as plotted in Figure 2.11. The initial estimated temperatures of the adaptive observer

are set at 30 oC for both the surface and the core, whereas the correct value is 26
oC, and the parameters are initialized with the initial guess values in Table 2.1. It

can be seen from Figure 2.11 that the estimated surface temperature converges to

the real value much faster than the estimated core temperature. The reason is that

the surface temperature Ts is accessible by the adaptive observer both via parameter

identification and closed loop error feedback, and thus the observer can adjust its

estimation of Ts quickly based on direct reference of the measurement. But for the core

temperature Tc, which is not measured, its estimation accuracy depends on the model

fidelity. Therefore, convergence of Tc will only happen after the identified parameters

converge to the correct model parameters (at approximately 3000 seconds).
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Figure 2.11: Response of the Closed loop Adaptive Observer. (top: adaptive esti-
mation of the surface temperature vs. measurement; bottom: adaptive
estimation of the core temperature vs. measurement)
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2.5 Identification of the Time-varying Internal Resistance Re

2.5.1 Identification of the Temperature-dependent Re

For most lithium ion batteries, their internal resistance Re is temperature and

SOC dependent [37, 38, 80]. In general cases, Re is high under low temperature and

when the SOC is close to 0% or 100%. An exponential function is often used to

describe the relationship between Re and the battery (core) temperature Tc, as

Re = Re,ref exp

(
Tref

Tc

)
, (2.20)

where Re,ref is the reference resistance value at a certain reference temperature Tref ,

and Tref and Tc are in K. It is noted that the change in resistance with respect to

SOC is negligible in the normal vehicle battery operating range (20% − 80% SOC),

and thus such dependency is not considered here. The relationship between Re and

Tc described by (2.20) is plotted in Figure 2.12, by taking Re,ref = 0.091 mΩ and

Tref = 1543 K. Due to the temperature dependency, in real application, Re will be
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Figure 2.12: Dependence of Re on Tc.

varying as the temperature fluctuates. Such variation can not be neglected when the

power demands are high and dramatically varying. Simulation is used in this section

for illustration. Simulated variation of Re due to Tc fluctuation under a drastic current

cycle is shown in Figure 2.13. It can be seen that the drastic current variation creates
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Figure 2.13: Errors in Re Estimation when the Temperature Varies Significantly.
(top: drive cycle current; middle: fluctuation of the battery core tem-
perature; bottom: errors in Re identification)

a 10 oC of fluctuation in the battery core temperature Tc. The resulting variation of

Re is about 20% as shown by the solid line in the bottom plot of Figure 2.13.

Since the least squares identification algorithm in (2.3) identifies each parameter

as a constant, when Re is varying, errors will be observed in Re identification as

shown in Figure 2.13. Such errors will affect the estimation of other parameters

and eventually corrupt the estimation of the core temperature Tc. To address such

issue, a least squares algorithm with forgetting factors is designed to identify Re as a

time-varying parameter.

When forgetting factors are adopted, most parts of the least square algorithm will

be the same as (2.3), except that

Ṗ (t) = ηTP (t)η − P (t)
ϕ(t)ϕT (t)

m2(t)
P (t), (2.21)

where η is the forgetting factor matrix [78]. The least square identification algorithm

tries to find the optimal parameters that best fit the inputs and outputs over the
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whole data set. A pure least square algorithm treats each data point as equal, no

matter if it is acquired most recently, or obtained much earlier. However, when a

forgetting factor is applied, the data points are weighted differently. Specifically, the

newly acquired data are favored over the older ones. In the form shown in (2.21), the

weight of the data will decay exponentially with time, and the larger the forgetting

factor is, the faster the decay will be. Consequently, the least square algorithm can

track the parameter variation based on newer data. Of the three lumped parameters,

namely α, β, and γ in (2.7), only α is related to time varying Re, and all the others

are constant. Therefore, non-uniform forgetting factors should be adopted with the

η matrix designed as

η =

η1 0 0

0 0 0

0 0 0

 , (2.22)

where η1 is the forgetting factor associated with α (and hence Re).

Simulation has been conducted with η1 = 0.25, and the identification results are

shown in Figure 2.14. It can be seen that the identified Re can follow the simulated

varying Re after the recursive identification algorithm with forgetting factors is acti-

vated at 1500s. As shown in Figure 2.15, the adaptive observer, taking the varying

parameters identified online, can estimate the battery core temperature Tc accurately

after the identified Re converges to the simulated Re at around 3700s.

2.5.2 SOH Evaluation by Monitoring Long Term Growth in Re

The growth in battery internal resistance due to degradation is a process that

occurs slowly over the battery lifetime. Such growth can be substantial over hundreds

of cycles or days according to [16, 25, 24]. The recursive least square algorithm with

forgetting factors can also track the long term growth of the internal resistance, which

can be used as an indication for the battery state of health.

In this paper, slow growth in internal resistance is simulated to test the capability

of the identification algorithm to detect such growth. The internal resistance Re,

originally a function of the core temperature Tc, is now augmented with a term which

is linearly increasing over time. The drive cycle used for simulation is the same as

shown in the upper plot of Figure 2.13, but is repeated for 350 times and the rate of

growth in internal resistance is set at 0.14%/cycle. Although not modeled here, the

rate of degradation may also increase with the temperature according to [16, 25, 24].

The results of the online identification are shown in Figure 2.16. It can be seen
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Figure 2.14: Identification of Temperature Dependent Internal Resistance by the
Least Square Algorithm with Non-uniform Forgetting Factors.

from Figure 2.16 that the simulated internal resistance gradually increases over time

while still subject to short-term variation due to the fluctuation of the battery core

temperature. The identified Re follows both the long-term and short-term variation

of the simulated one with a small delay as shown in the inset of Figure 2.16. In real

vehicle application, since Re is varying all the time, it is difficult to evaluate SOH by

the instantaneous value of Re, and the time-averaged Re might be a better choice.

The mean value of Re for each UAC cycle is plotted in the lower half of Figure 2.16,

showing good match with the simulated value.

Adaptive monitoring of the temperature is also shown in Figure 2.17. It is noted

that as the internal resistance grows, the temperature will also be elevated due to

the increase of the heat generated. Since the observer is updated with the identified

Re in real time, it estimates both the core and the surface temperatures with high

accuracy.

2.6 Conclusion

The core temperature of a lithium ion battery, which is usually not measurable,

is of great importance to the onboard battery management system, especially when
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Figure 2.15: Adaptive Estimation of Battery with Temperature Dependent Internal
Resistance by Forgetting Factors. (top: estimation of surface tempera-
ture Ts; bottom: estimation of core temperature Tc)

the batteries are subject to drive cycles with high C-rate. The core temperature can

be estimated by a two states thermal model, and the model parameters are critical

for the accuracy of the estimation. In this chapter, an online parameter identification

scheme based on the least square algorithm is designed for a cylindrical lithium ion

battery thermal model. The online identification scheme can automatically identify

model parameters based on the commonly available onboard signals. The updated

parameters are then used to predict the unmeasured core temperature using a model

based observer as shown with an A123 26650 lithium iron phosphate battery.

When the internal resistance of the battery is temperature dependent, which is

a more realistic situation, the least square algorithm is augmented with non-uniform

forgetting factors. The algorithm with forgetting factors can not only track the time-

varying internal resistance, but also guarantee unbiased identification of the remaining

constant parameters. The online parameterization also shows the capability to track

the long-term variation of the internal resistance due to aging or degradation/abuse.

The growth in internal resistance can be used for the SOH monitoring of the batteries.
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Figure 2.16: (Simulated) Identification of internal resistance subject to degradation.
(top: identification of Re with both short-term and long-term variation;
bottom: simulated and identified cycle-average Re).

Figure 2.17: Adaptive estimation of battery temperatures subject to degradation.
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CHAPTER III

Temperature Estimation of Scalable Battery

Strings

3.1 Introduction

In vehicle applications, batteries are usually packed in modules to satisfy the

energy and power demand. In this chapter, temperature monitoring for battery packs

is investigated.

Based on the single cell model, a thermal model for one-dimensional battery strings

is developed by taking into account the thermal interaction between cells. The 1-D

string is modeled along the path of the coolant flow. Considered thermal interaction

includes thermal conduction between adjacent cells and convective cooling between

cells and the coolant flow. A 2-D pack model can be constructed by incorporating

thermal interaction between multiple rows of 1-D strings.

A model-based observer is then designed to estimate the core and surface temper-

atures of all the cells in the string. A closed loop observer with measurement of the

surface temperature of some cells can be used to mitigate the impact of model uncer-

tainty and accelerate observer convergence from initial estimation errors. Ideally, the

number of temperature sensors needs to be as small as possible. For this purpose,

sensor deployment strategy is then studied to determine the minimum number of

sensors that will give full observability and their optimal locations in battery strings.

It is later found that the number of implemented sensors in a commercial battery

pack is much less than the number needed for full observability. To accommodate

such issue, the optimal observer design and sensor deployment problem is studied

under the unobservable conditions. The goal is to minimize the worst-case estimation

error subject to bounded model uncertainty. Two observer design approaches are

investigated, namely the robustH∞ observer and the optimal DC observer which aims
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at minimizing the worst-case DC gain of the error transfer function. The methodology

is then applied to a battery string with 10 cells and 1 available temperature sensor,

and the performance of the two observers is compared in various ways.

3.2 A Scalable Thermal Model for 1-D Battery Strings

The single-cell cylindrical battery thermal model in (2.1) can be scaled up to a

battery string model by considering cell to cell heat conduction [79], and heat balance

of the flowing coolant [37, 42], as shown in Figure 3.1.

Figure 3.1: A possible battery pack configuration, with 5 strings of 12 cells along the
coolant path.

As shown in Figure 3.1, the string can be considered as cells connected in series

with tabs and arranged in a row configuration along the coolant flow path. The

coolant flows through the space between cells from the inlet to the outlet, and absorbs

the heat dissipated from the cell surface through convection.
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The temperature evolution of the ith cell in the string can be modeled as

Cc
dT c,i

dt
= I2Re,i +

Ts,i − Tc,i

Rc

,

Cs
dT s,i

dt
=

Tf,i − Ts,i

Ru

− Ts,i − Tc,i

Rc

+Qcc,i,

Qcc,i =


(Ts,2 − Ts,1)/Rcc, i = 1

(Ts,i−1 + Ts,i+1 − 2Ts,i)/Rcc, i = 2, · · · , n− 1

(Ts,n−1 − Ts,n)/Rcc, i = n

Tf,i =

{
Tf,in, i = 1

Tf,i−1 +
Ts,i−1−Tf,i−1

RuCf
, i = 2, · · · , n

(3.1)

where k is the index of the cell along the coolant flow direction, and n is the number

of cells. In (3.1), heat conduction between adjacent cells is modeled as heat flow over

a conduction resistance Rcc, driven by temperature difference between surfaces of the

adjacent cells. It is noted here that Rcc is a lumped parameter, which includes the

heat conduction resistance of the tab and other possible thermal connections between

cells, such as spacers and air gap. Coolant temperature entering the ith cell, Tf,i,

is determined based on heat balance of the flow around the previous cell. Its value

is obtained by dividing the heat removed from the i − 1th cell,
Ts,k−1−Tf,k−1

Ru
, by the

heat capacity of the flow, Cf , plus Tf,i−1. The convection resistance Ru and the heat

capacity of the flow are dependent on coolant flow rate. For simplicity, current I is

considered the same for all cells as if the string is connected in series.

Simulated temperature profile for a string with 5 cells under the Urban Assault

Cycle [89] is shown in Figure 3.2. Cell 1 is at the coolant inlet and cell 5 at the

outlet. The inlet air temperature is fixed at 25 oC and the flow rate is 9.5 × 10−3

m3s−1, corresponding to a flow velocity of 1.515 ms−1. In Figure 3.2, as the coolant

air flows from cell 1 to cell 5, its temperature Tf increases as it absorbs heat from

cells sequentially. Consequently, the surface and the core temperatures of the cells

also increase down the string due to the coolant temperature rise. Here, it is assumed

that all the cells have the same value for Ru. As can be seen in Figure 3.2, the hottest

cell is the last one since it is subject to the highest ambient temperature. For some

pack geometries, flow condition might be different for cells. For example, cells at the

two ends of the string may have higher heat rejection capacity due to larger space

around them. Therefore, cells in the middle of the string will be hotter. For these

cases, different Ru numbers need to be applied to different cells.
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Figure 3.2: Simulated temperature profile of a 5-cell battery string under the UAC
cycle. (for Tc, Ts and Tf , from cooler to hotter: cell 1, cell 2, cell 3, cell
4 and cell 5)

3.3 Model-based Estimation of the Battery String Temper-

atures

The string thermal model developed in Section 3.2 can be used for pack-level

temperature estimation. A model-based observer can be categorized as either an

open-loop observer or a closed-loop observer. Specific issues associated with open-

loop and open closed-loop estimation are discussed in this section.

3.3.1 Open-Loop Estimation

An open-loop observer estimates the states solely based on the model and the

measured inputs. The open-loop observer will give accurate temperature estimation

if the model is perfectly known and the initial temperatures of all the batteries are

known.

When the initial temperatures are unknown, the temperature estimation will still

converge to the actual temperature since the thermal system is stable, but the con-
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vergence will take a long time due to the slow thermal dynamics of the battery. In

fact, it is quite common to have unknown initial temperature in real operation. Since

only the battery surface temperature is measured in onboard BMS, the accurate core

temperature is unknown at startup. If the vehicle is started from steady states, e.g.

after overnight rest, the core temperature can be assumed to be the same as the

surface temperature. But such an assumption may not be valid for short shutdown.

Figure 3.3 shows the simulated temperature evolution during shutdown of a bat-

tery pack with 5 cells in series. Temperature profile under the precedent drive cycle

is shown in Figure 3.2. The current is cut off at the beginning of the simulation in

Figure 3.3, and the cooling system is kept on during the shutdown process. It is seen

in Figure 3.3 that it takes the battery pack more than 40 minutes to cool down to the

ambient temperature. In real application, it may not be feasible to keep the cooling

system on for 40 minutes after key-off. Consequently, the actual time for the pack to

cool down will be longer. If the driver turns the vehicle back on before the pack gets

to the thermal equilibrium, the initial reading of the surface temperature at startup

will not be a good approximation for the initial core temperatures. The shorter the

shutdown is, the larger the errors of such approximation will be. For example, if

the next startup occurs at about 10 minutes after the previous shutdown, according

to Figure 3.3, the difference between the surface and the core temperatures will be

roughly 7 oC.

A simulation has been conducted to show how fast the open loop estimation of the

temperatures will converge under unknown initial core temperatures. In simulation,

the actual initial surface and core temperatures of all the cells are set to be 30 oC and

37 oC respectively. In the open-loop observer, the initial guess of the core temperature

is taken to be the same as the known surface temperature. Estimation results are

shown in Figure 3.4. For clarity in the figure, only the temperatures of cell 1 and

cell 5 are plotted. It can be observed in Figure 3.4 that the convergence of the open

loop estimation, T ol
s,i and T ol

c,i, takes more than 30 minutes. Such a big delay is due

to the slow thermal dynamics of the batteries and may lead to ineffective battery

management during the startup period. Furthermore, in onboard BMS, it is not

feasible to measure the surface temperature of every cell. As a result, in addition to

the unknown initial core temperature considered here, uncertainty in initial surface

temperatures of those unmeasured cells will further delay the convergence.

In addition, the accuracy of open-loop estimation will also be affected by model

uncertainty, such as imprecise model parameters. Under current strategy, by using

the method developed in Section II, thermal parameters are identified for cells with
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Figure 3.3: Simulated battery pack temperature profile during shutdown. (for Tc, Ts

and Tf , from bottom to top: Cell1, Cell2, Cell3, Cell4, Cell5)

thermocouples installed on the surface. As for the cells without thermocouple, their

model parameters are assumed to be the same as the identified ones, which might lead

to model mismatch. For example, it is known that the battery internal resistance Re

often varies from cell to cell, caused by factors such as degradation and manufacturing

variability [92, 93]. Simulation has been conducted to show the errors induced by

nonidentical cell internal resistance in temperature estimation. In simulation, it is

assumed that the surface temperatures of cell 1 and 5 are measured and thus their

internal resistance is known to the observer with a value of Re,0. The other cells, cell

2 to 4, whose surface temperatures are not accessible, are assigned with an internal

resistance of 20% higher. The observer will have correct internal resistance values for

cell 1 and 5 but inaccurate values for cell 2 to 4. In Figure 3.5, temperature estimation

of cell 1 and 4 is plotted and compared with the simulated actual temperatures. Errors

are observed in the open loop estimation (T ol
si , T

ol
ci ), especially for cell 4, whose internal

resistance is not accurate in the observer. Similar errors exist in the temperature

estimations of cell 2 and 3, which are not plotted. For the first cell, although the

model parameters in the observer are correct, the temperature estimation is still

erroneous as the errors propagate from the biased estimation of other cells through

cell to cell conduction.

42



0 5 10 15 20 25 30 35
25

30

35

40

t (min)

T
s (

o C
)

 

 

Convergence of T
s1
cl

Convergence of T
s5
cl

Convergence of T
s1
ol

Convergence of T
s5
ol

T
s1
sim T

s5
sim T

s1
cl T

s5
cl T

s1
ol T

s5
ol

0 5 10 15 20 25 30 35
30

35

40

45

50

55

t (min)

T
c (

o C
)

 

 

Convergence of T
c1
cl

Convergence of T
c5
cl

Convergence of T
c1
ol

Convergence of T
c5
ol

T
c1
sim T

c5
sim T

c1
cl T

c5
cl T

c1
ol T

c5
ol

Figure 3.4: Convergence of the open loop and the closed loop observers.

3.3.2 Closed-Loop Estimation

In order to reduce the estimation error induced by model uncertainty and the

delay in temperature estimation due to the unknown initial conditions, a closed-loop

observer can be applied.

The thermal model of a battery string in Eq. (3.1) can be written in the general

state space representation as

ẋ = Ax+Bu, x ∈ R2n,

y = Cx+Du, y ∈ Rm
(3.2)
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Figure 3.5: Convergence of the temperature estimation by the open loop and the
closed loop observer. (Top left: Ts1; top right: Ts4; bottom left: Tc1;
bottom right: Tc4)

where n is the number of cells and m is the number of sensors, and

x =
[
Tc,1 Ts,1 Tc,1 Ts,1 · · · Tc,n Ts,n

]T
,

B =

[
Re,1

Cc
0 Re,2

Cc
0 · · · Re,n

Cc
0

0 1
RuCs

0 1
RcCs

RuCf−1

RuCf
· · · 0 1

RcCs

(RuCf−1

RuCf

)n−1

]T

D = 0

u =
[
I2 Tf,in

]T
.

(3.3)

The matrix A is the state matrix that captures the heat transfer between the tem-

perature states shown in Eq.(3.8), and y is the temperature state(s) measured by the

sensor(s) whose location is specified in the C matrix. For example, if a thermocouple
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Figure 3.6: Norms of the estimation errors for the open loop and the closed loop
observer.

is used to measure the surface temperature of the ith cell, we will have

C =
[
0 · · · 0 1︸︷︷︸ · · · 0

]
.

2i− 1th entry
(3.4)

In a closed-loop observer, the difference between the measurement and the estimated

output is fed back to correct the estimation through an observer gain L [47],

˙̂x = Ax̂+Bu+ L(y − ŷ)

ŷ = Cx̂.
(3.5)

When the model is completely observable, by tuning the observer gains, the dy-

namics of the closed-loop observer can be accelerated. Consequently, the tempera-

ture estimation will converge to the actual temperatures much more quickly than the

open-loop estimation, when starting with unknown initial temperatures. Simulated

performance of a closed-loop temperature observer is shown in Figure 3.4 to compare

with that of the open-loop observer. It can be seen that the closed-loop estimation,

T cl
s,i and T cl

c,i, converge to the actual temperatures much faster than the open-loop
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estimation, T ol
s,i and T ol

c,i. Both temperatures estimated by the closed-loop observer

converge within 5 minutes, as compared to the 30 minutes taken by the open-loop

observer. The closed-loop observer can also greatly reduce the estimation error under

model mismatch as shown in Figure 3.5, which demonstrates previously the estima-

tion error of the open-loop estimation under resistance uncertainty. The 2 and infinity

norms of the temperature estimation errors for all 5 cells by both the open-loop and

closed-loop observers are also plotted in Figure 3.6, showing that the overall errors in

temperature estimation are smaller under the closed-loop estimation.

3.4 Sensor Deployment Strategy based on Observability Anal-

ysis

An effective closed-loop observer needs measurement of the temperatures states

to satisfy the observability condition. In this section, the observability conditions are

analyzed to determine the minimum number of sensors needed for battery strings

with various lengths and guide the sensor placement.

The observability of the thermal model can be examined by its observability matrix

[47]

O =


C

CA

· · ·
CA2n−1

 . (3.6)

The model is completely observable if and only if the rank of O is equal to n.

First, a battery string with 2 cells is investigated, whose A matrix is

A =


− 1

RcCc

1
RcCc

0 0
1

RcCs
−( 1

RcCs
+ 1

RuCs
+ 1

RccCs
) 0 1

RccCs

0 0 − 1
RcCc

1
RcCc

0 ( 1
Ru

2CfCs
+ 1

RccCs
) 1

RcCs
−( 1

RuCs
+ 1

RcCs
+ 1

RccCs
)

. (3.7)

In (3.7), the 1
RccCs

terms in the 2nd and the 4th rows of the A matrix account for the

thermal conduction between the 2 cells. The 1
Ru

2CfCs
term in the 4th row represents

the impact of cell 1 on cell 2 through coolant flow convection. The absence of this term

in the 2nd row indicates that such impact is unidirectional, or, cell 2 cannot influence

cell 1 via coolant convection. The C matrix is determined by sensor location. If the
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No. of cells Min. No. of sensors
1,2,3 1
4,5,6 2
7,8,9 3

10,11,12 4

Table 3.1: Minimum number of sensors rendering observability for battery strings
with various lengths.

surface temperature of cell 1 is measured, then C1 =
[
0 1 0 0

]
, and if the surface

temperature of cell 2 is measured, C2 =
[
0 0 0 1

]
. It can be checked numerically

that the rank of U is 4 when either C1 or C2 is applied. This means that for a cell

string with 2 cells, either measuring the surface temperature of cell 1 or cell 2 renders

observability.

More generally, for a cell string with n cells, the A matrix is specified in (3.8).

Like the case of a 2-cell string, the 1
RccCs

terms in the even rows represent the heat

conduction between adjacent cells. Starting form the 4th row, the effect of coolant

convection is reflected in the terms related to 1
Ru

2CfCs
in the even rows. It is found

that all the upstream cells in the string will affect the downstream cells through

coolant flow convection, and such effect becomes weaker as the cells are further apart.

Consider the last row of the A matrix as an example for illustration. From the 2nd

column to the third last column, the terms 1
R2

uCfCs
(1− 1

RuCf
)n−i−1, i = 1, 2, · · · , n−1,

represent the impact of cell i on cell n through coolant convection. It can be seen

that such impact is attenuated by a factor of (1 − 1
RuCf

) if the two cells are further

apart by one cell interval. This feature of the coolant convection is different from

that of the cell to cell conduction, which only exists between adjacent cells and the

strength is always the same.

The observability analysis has been conducted to find the minimum number of

sensors required for full observability for battery strings with different number of

cells. The results are summarized in Table 3.1. It is noted that for cell strings with

more than 5 cells, sensor location will also affect the observability. For example, for a

string with 5 cells, although the minimum required number of sensors is 2, it does not

mean that the model will be fully observable under any sensor locations. As shown in

Figure 3.7, if the 2 sensors are placed at the first 2 cells, the rank of the observability

matrix is less than 10 which is required for observability. But when the 2 sensors are

placed at cell 1 and cell 5, the observability matrix will be of full rank. This can be

explained by the definition of observability. Observability indicates the possibility of
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Figure 3.7: Sensor locations and observability.

determining all the states based on the model and the available measurements. The

model defines the relation between different states. In order to achieve observability,

the measurements should provide enough constraints to determine the states uniquely

based on the model. When the sensors are placed at the first 2 cells, the constraints

provided by the sensors are redundant at the beginning section of the string. While no

measurement is implemented in the latter section of the string, the cell temperatures

in that section cannot be constrained to unique values. Consequently, the condition

of full observability is not satisfied. When the sensors are deployed at the first and

the last cells, constraints are imposed evenly on the string, and all the states can be

determined by the measurements and the model.

In some battery pack configuration, the thermal interaction between cells is weaker,

e.g. either cell-to-cell heat conduction or forced coolant convection is missing or neg-

ligible. For example, cell-to-cell conduction can be very small in some pack designs

due to the shape or the material of the tab and the spacer. When the coolant flow

is not circulated through the pack, e.g. during cooling system breakdown, the cells

are only cooled via natural convection and thus the upstream cells will not affect the

downstream cells through convection. Under these circumstances, the observability

conditions will be different. Take a cell string with 5 cells as an example. As shown

in Figure 3.8, when the cells are cooled by natural convection, placing the sensors at
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Conditions No. of combinations
giving full observability

Full interaction 106/495
Natural convection 52/495

No cell to cell conduction 1

Table 3.2: Number of sensor position combinations giving full observability for a
string with 12 cells and 4 sensors.

the first and the last cell will still satisfy observability condition. But when the cell

to cell conduction is missing, the same sensor locations cannot render observability.

Such analysis can be generalized to strings with more cells. A string with 12 cells

Figure 3.8: Observability of the same sensor locations under different conditions.

is analyzed and the results are summarized in Table 3.2. The minimum number of

sensors that gives full observability is 4. As shown in Table 3.2, among all 495 com-

binations of 4 sensor locations, if there are both circulated coolant convection and

cell to cell conduction (referred to as full interaction in Table 3.2), 106 combinations

will give full observability. Under natural convection, only 52 combinations can sat-

isfy full observability condition. When the cell to cell conduction is missing, only 1

combination yields full observability, where the sensors are evenly distributed at the

cell 3, 6, 9 and 12.
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Of the two types of modeled thermal interaction between cells, namely the cell

to cell heat conduction and the forced convection, the former tends to have larger

impact on the observability. This may be related to the fact that the cell-to-cell

heat conduction is a two-way interaction, whereas the forced convection is single

directional. Consequently, stronger cell-to-cell heat conduction is favored for model

observability, which could also reduce the temperature difference between cells and

help contain the temperature non-uniformity in the pack. However, on the negative

side, in case of a single cell thermal failure, e.g. local overheating, the strong cell-to-

cell heat conduction will facilitate the spread of the failure to other cells, which is not

desirable from a safety perspective.
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3.5 Observer Design and Sensor Deployment Strategy under

Frugal Sensor Allocation

The number of temperature sensors needed for full observability has been derived

in the previous section. However, in current industry practice, sensors installed in a

battery pack is far less than the number required for observability, e.g. only one for

every 10 cells. As a result, the temperature states will not be completely observable.

For example, it is found that for a string with 10 cells, at least 4 sensors are needed to

give full observability. However, the available sensors in a commercial battery pack is

much less than the derived number, e.g. 16 for 288 cells in Chevy Volt [94] and 42 for

288 cells in Toyota plug-in Prius [95]. It may not be realistic to increase the number

of sensors considering the cost and diagnostic requirement. Therefore, an interesting

research problem is to find the best performance that can be achieved with the frugal

sensor assignment which leaves the temperature states not completely observable.

In this section, the observer design and sensor deployment problems for temper-

ature estimation in battery strings are studied under unobservable conditions. The

goal is to design an observer with optimal performance under bounded model uncer-

tainty. Without loss of generality, a battery string with 10 cells and 1 temperature

sensor will be considered as a design example.

3.5.1 Problem Formulation for Temperature Estimation under Model

Uncertainty

The battery string model has been presented in Eq.(3.2) and (3.3). The objective

here is to design a model-based observer that could achieve optimal performance in

temperature estimation under bounded model uncertainty. As has been mentioned,

the battery internal resistance typically varies from cell to cell due to factors such

as degradation, manufacturing variability, and operating conditions [92, 93]. The

observer can only use the nominal value Re,0 for all the cells, which is either provided

by the manufacturer or identified for the cell installed with thermocouple by using the

method discussed in Chapter II. Consequently, there will be a mismatch in battery

resistance,

∆Re =
[
∆Re,1 0 ∆Re,2 0 · · · ∆Re,n 0

]T
=

[
Re,1 −Re,0 0 Re,2 −Re,0 0 · · · Re,n −Re,0 0

]T
,

(3.9)
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which is the considered model uncertainty. The resistance uncertainty are usually

within certain bounds. It is assumed here that each ∆Re,i is bounded within ±10%

of the nominal resistance,

−0.1Re,0 ≤ ∆Re,i ≤ 0.1Re,0, ∀i = 1, 2, · · · , n. (3.10)

and it could take any values within the bounds. Other bound values can be consid-

ered without changing the methodology to be introduced. Sensor uncertainty, such

as measurement noise, can also be included. The observer will be designed to mini-

mize the worst-case estimation error under the bounded uncertainty. Ideally, optimal

observer performance should be considered under current dynamic input, which can

be treated as disturbance.

Optimal observer design is usually addressed by minimizing a cost function of the

estimation error. There are various ways of characterizing estimation error in the cost

function, which lead to different observer design approaches. For example, in Kalman

filter, when the process and measurement noises are Gaussian, the cost function is

the variance of the state estimation error [48, 96]. When designing an H∞ (L2 − L2)

observer, the L2 norm of the estimation error is minimized over all disturbance input

with bounded L2 norm [97, 98]. Similarly, the L2 − L∞ observer minimizes the L∞

norm of the estimation error over all L2-bounded disturbance input [99, 100]. The

optimal observers will achieve best performance with respect to their own definition of

performance. In the following two subsections, two optimal observers will be discussed

and their overall performance are compared.

3.5.2 Robust H∞ Observer Design

When designing an H∞ observer for a general linear system in Eq.(3.2), the input

u is considered as a disturbance with bounded L2 norm, and an optimal observer

(filter) F is sought to minimize the L2 norm of the estimation error e under all

L2-bounded disturbance input [99],

min
F

sup
u(t)∈L2

∥e(t)∥L2

∥u(t)∥L2

. (3.11)

The estimation error is defined as the difference between the true value and the

estimate of variable z,

e = z − ẑ, (3.12)
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where z can be defined as any linear combination of state x,

z = Wx. (3.13)

Since the L2 norm is usually used to measure the energy contained in a signal,

the H∞ observer is also referred to as the energy-to-energy observer [100]. When e is

a scalar, the L2 norm is defined as

∥e(t)∥L2 = (

∫ ∞

0

|e(t)|2dt)
1
2 . (3.14)

When ex is a vector, strictly speaking, the L2 norm needs to be the L2,r norm [101],

∥e(t)∥L2 = (

∫ ∞

0

∥e(t)∥2rdt)
1
2 , (3.15)

where the r-norm of e needs to be taken first before calculating the L2 norm. In

the H∞ observer design, r is usually taken as 2, which means that the 2-norm of

e will be minimized. Sometimes, however, it might be more desirable to minimize

the maximum (or infinity) norm of e, which indicates the maximum estimation error

among all the states. This issue will be re-visited later in this chapter. In the

frequency domain, the H∞ observer is interpreted as minimizing the H∞ norm of the

transfer function from the disturbance input to the estimation error, Geu, which is

denoted as ∥Geu∥H∞ . For single-input-single-output systems, theH∞ norm is the peak

value of the magnitude of the transfer function over all frequencies, and for multiple-

input-multiple-output systems, the H∞ norm is the supreme of the (induced) 2-norm

of the transfer function vector (matrix) over all frequencies. So the observer will look

at

min
F

sup
ω∈[0,+∞)

∥Geu(jω)∥2. (3.16)

The H∞ observer takes the form,

F : ˙̂x = Ahx̂+Bhy

˙̂z = Chx̂+Dhy.
(3.17)

According to Theorem 3.1 in [102], a γ-suboptimal H∞ observer F that could

achieve 0 < ∥Gzu∥H∞ < γ is admissible if and only if there exist positive definite

matrices R > 0, X > 0, and matrices M , N , Z and Dh, such that the following two
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linear matrix inequalities (LMI) are satisfied,
RA+ ATR RA+ ATX + CTZT +MT RB W T − CTDT

h −NT

∗ ATX +XA+ CTZT + ZC XB + ZD W T − CTDT
h

∗ ∗ −I −DTDT
h

∗ ∗ ∗ −γ2I

 < 0,

R−X < 0,

(3.18)

where I is the identity matrix and ∗ denotes the symmetric entry. The coefficients of

the H∞ observer can be obtained as

Ah = (R−X)−1M, Bh = (R−X)−1Z,

Ch = N, Dh = Dh.
(3.19)

The optimal H∞ observer design problem can then be formulated as a convex mini-

mization problem,

min
R,X,M,N,Dh,γ2

γ2

subject to Eq.(3.18),
(3.20)

which could be addressed by using LMI solvers such as Matlab LMI toolbox, SeDuMi

[103] and YALMIP [104].

In the presence of parameter uncertainty, a robust H∞ observer needs to be

designed, which minimizes the worst-case ∥Geu∥H∞ under all possible uncertainty.

Specifically, if the system matrices

T =

[
A B

C D

]
(3.21)

are uncertain but belong to a convex polytope consisting of T1, T2, · · · , Tq, that is,

T =

q∑
j

αjTj, αj ≥ 0,

q∑
j

αj = 1, (3.22)

the robust optimal H∞ observer can be obtained by solving the previous minimization
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problem over all the vertices of the polytope,

min
R,X,M,N,Dh,γ2

γ2

s.t.
RAj + AT

j R RAj + AT
j X + CT

j Z
T +MT RBj W T − CT

j D
T
h −NT

∗ AT
j X +XAj + CT

j Z
T + ZCj XBj + ZDj W T − CT

j D
T
h

∗ ∗ −I −DT
j D

T
h

∗ ∗ ∗ −γ2I

 < 0,

j = 1, · · · , q,

R−X < 0.

(3.23)

The worst-case ∥Geu∥H∞ will be bounded by the optimized γ∗ for all T described by

Eq.(3.22).

When applying the robust H∞ observer to estimate the temperature states in the

battery string, we will consider the following system,

∆ẋ = A∆x+
∆Re

Cc

I2

∆y = C∆x,

(3.24)

which features only the state dynamics related to the resistance uncertainty ∆Re.

The remaining state dynamics can be estimated simply based on the nominal model.

The A matrix is specified in Eq.(3.8), and ∆Re in Eq.(3.9). The C matrix depends on

the sensor location. We consider the estimation error e as the whole state estimation

error ex,

ex = x− x̂, ex ∈ R2n (3.25)

and henceW is the identity matrix. According to the assumed constraint on resistance

uncertain in Eq.(3.10), the following convex polytope can be used to describe the

uncertain system,

Tj =

[
A ∆Bj

C 0

]
, j = 1, 2, · · · , 2n, (3.26)
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where

∆Bj =
1

Cc

[
∆Re,1 0 ∆Re,2 0 · · · ∆Re,n 0

]T
,

∆Re,i ∈ {0.1Re,0,−0.1Re,0}, i = 1, 2, · · · , n
(3.27)

where n is the number of cells in the string.

The robust H∞ observer design approach has been applied to a battery string with

10 cells and one temperature sensor available. The results will be shown in Section

3.5.4 and compared with the observer to be introduced next.

3.5.3 Observer Design for Minimizing the DC gain of the Estimation

Error Transfer Function

As has been mentioned, the previously introducedH∞ observer aims at minimizing

the 2-norm of the estimation error transfer function Geu. It is also interesting to

investigate how much the largest estimation error among all the states can be reduced,

which is the infinity norm of the error vector. Therefore, the minimization problem

will become

min
F

sup
ω∈[0,+∞),∆Re

∥Geu(jω)∥∞. (3.28)

However, since the methodology for solving Eq.(3.28) has not been established yet,

in this section, we simplify the problem as how to minimize the worst-case DC gain

of the error transfer function, which is the case when ω = 0. This observer will

be referred to as the optimal DC observer. The underlying assumption is that the

worst-case DC gain is the peak gain of the worst-case error transfer function,

sup
ω∈[0,+∞),∆Re

∥Geu(jω)∥∞ = sup
∆Re

∥Geu(0)∥∞. (3.29)

In Section 3.5.4, this assumption is shown to be valid for the design example.

Consider an observer taking the form of a Luenberger observer,

˙̂x = Ax̂+B′u+ L(y − ŷ)

ŷ = Cx̂.
(3.30)

It is noted that the input matrix is denoted as B′ instead of B because there is

uncertainty in battery resistance. The state estimation error dynamics can be derived

by subtracting the observer dynamics in Eq. (3.30) from the plant dynamics in Eq.
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(3.2), as

ėx = (A− LC)ex +
∆Re

Cc

I2, (3.31)

where ∆Re is the model uncertainty in battery resistance specified in Eq.(3.9). The

error transfer function will be

Ex(s) = Geu(s)I
2(s)

Geu(s) = W (sI− A+ LC)−1∆Re

Cc

(3.32)

The DC gain of the error transfer function,

Geu(0) = −(A− LC)−1∆Re

Cc

, (3.33)

is a 2n × 1 vector, composed by the DC gain of the error transfer function for each

temperature state.

The infinity norm, ∥Geu(0)∥∞, under all possible resistance uncertainty will be

minimized during the observer design process, which can be formulated as optimiza-

tion problems at the following three different levels.

i) Performance Evaluation: the performance of an observer (given sensor

location specified in C and observer gain L) is defined as the worst-case DC gain of

the error transfer function under all permissible ∆Re,

max
∆Re

∥Geu(0)∥∞ = ∥(A− LC)−1(
∆Re

Cc

)∥∞

∆Re =
[
∆Re,1 0 ∆Re,2 0 · · · ∆Re,n 0

]T
,

s.t.− 0.1Re,0 ≤ ∆Re,i ≤ 0.1Re,0, i = 1, 2, · · · , n

(3.34)

ii) Observer Design: if the sensor location C is fixed but the observer gain L

remains to be designed, an optimal observer looks at minimizing the worst-case DC

gain,

min
L

max
∆Re

∥(A− LC)−1(
∆Re

Cc

)∥∞, (3.35)

subject to the same constraints in Eq.(3.34).

iii) Sensor Deployment: if the sensor location C could also be chosen, the

58



sensor deployment problem will be

min
C

min
L

max
∆Re

∥(A− LC)−1(
∆Re

Cc

)∥∞,

C s.t. permissible sensor locations

(3.36)

The first step is to determine the worst-case DC gain by solving the maximization

problem in Eq.(3.34) with C and L given. It is noted that ∥Geu(0)∥∞ can be viewed

as 2n linear and thus convex functions of ∆Re. The infinity norm of ∥Geu(0)∥∞ will

still be convex with respect to ∆Re, since the maximum of multiple convex functions

is still a convex function [105]. As ∆Re is bounded by box constraints shown in

Eq.(3.34), all permissible ∆Re’s form a compact convex set. According to the the

maximum principle [106], the maximum of the convex cost function in Eq.(3.34) is

attained on the boundary (or vertices) of the convex compact set formed by ∆Re.

The boundary is defined by the combinations of ∆Re, whose elements, ∆Re,i, take

either the upper bound or the lower bound,

∆Re =
[
∆Re,1 0 ∆Re,2 0 · · · ∆Re,n 0

]T
where ∆Re,i ∈ {0.1Re,0,−0.1Re,0}, ∀i = 1, · · · , n

(3.37)

The maximization problem in Eq.(3.34) is hence transformed to

max
∆Re

∥(A− LC)−1(∆ReI
2)∥∞

∆Re =
[
∆Re,1 0 ∆Re,2 0 · · · ∆Re,n 0

]T
s.t. ∆Re,i ∈ {0.1Re,0,−0.1Re,0}.

(3.38)

For the case of 1 sensor available in 10 cells, the number of ∆Re,i’s is 10, and thus

the total number of vertices is 210 = 1024. The worst-case DC gain can be found by

evaluating the cost function at these 1024 vertices and choosing the maximum.

The next step is to design the observer gain L to minimize the worst-case DC gain

of the error transfer function by solving Eq.(3.35). Several optimization methods are

attempted here for the optimal observer design, which include applying i) Matlab

command fmincon to minimize Eq.(3.38), and ii) Matlab command fminimax. The

application of i) is straightforward.For ii), the built-in Matlab command fminimax

is designed to minimize the maximum of a set of functions, which share a common

variable. Here, the function set consists of ∥Geu(0)∥∞ evaluated at each vertex in

Eq.(3.37), and the common variable is the observer gain L. However, it needs to be
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pointed out that neither of the above two methods are convex optimization, as both

cost functions are non-convex. Consequently, the optimization results may fall into

local minimum. In order to reduce the likelihood of encountering local minimum, the

two methods have been attempted under different initial guesses during the optimiza-

tion procedures, and the same optimal results have been obtained (for the example to

be discussed in the next section). The obtained observer gains have also been checked

to satisfy the stability condition as A− LC is Hurwitz.

Finally, for the sensor deployment problem in Eq.(3.36), the optimal sensor loca-

tion (C) can be determined by solving Eq.(3.35) for all permissible sensor locations

and choosing the one with the minimum ∥Geu(0)∥∞. For a cell string with 10 cells,

the total number of C is 10 when 1 sensor is available, which measures the surface

temperature of each cell respectively. The optimization results will be discussed in

the next section.

3.5.4 Design Example: Optimal Observer Design to Estimate Tempera-

ture in a Battery String with 10 Cells and 1 Temperature Sensor

The two introduced observer design approaches have been applied to a cell string

with 10 cells, and the cases when only 1 temperature sensor is available are considered.

The performance of the two observers will be discussed and compared.

Figure 3.9 shows the worse-case H∞ norm of the estimation error transfer func-

tion, ∥Geu∥H∞, under different sensor locations. The dashed line shows the worst-case

∥Geu(0)∥H∞ norms under open loop (using the model only), and the two solid lines

show those of the two designed observers, namely the robust H∞ observer and the

optimal DC observer. It can be seen that the H∞ observer could generally achieve

better performance than the optimal DC observer (although the advantage is not

significant). This is not surprising since the robust H∞ observer is designed to min-

imize the worst-case ∥Geu∥H∞. The optimal sensor location is at Cell 7, where both

observers show the largest reduction in ∥Geu∥H∞, i.e. from 0.0263 under open loop

to 0.0158 under the H∞ observer and 0.0162 under the optimal DC observer. The

physical interpretation is that the ratio between the energy (L2 norm) contained in

the input I2(t) and that in the estimation error ex will not exceed the above values

under any resistance uncertainty satisfying the assumed bound. The cases of ∆R∗
e

that yield the worst-case ∥Geu∥H∞ under some sensor locations are demonstrated in

Fig. 3.10, which shows that ∆R∗
e is different for different sensor locations.

The worst-case DC gain of the estimation error transfer function, ∥Geu(0)∥∞, of

the two observers are plotted in Fig. 3.11. It is seen that the optimal DC observer
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Figure 3.9: The Worst-case H∞ Norm of the Estimation Error Transfer Function
under Different Sensor Locations.
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Figure 3.10: Cases of ∆Re giving the worst-case estimation errors under different
sensor locations.

outperforms the robust H∞ observer in this aspect, since the former is designed to

minimize the worst-case ∥Geu(0)∥∞. Like in the case of ∥Geu∥H∞, the optimal sensor

location is at Cell 7, where the DC gain is reduced from 8.05e-3 under open loop to

5.48e-3 under the optimal DC observer, and 5.83e-3 under the robust H∞ observer.

These DC gains correspond to estimation errors of 4.26 oC, 2.86 oC and 3.09 oC under
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Figure 3.11: The Worst-case DC gain of the Estimation Error Transfer Function un-
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a constant current input (or symmetric charging-discharging current pulse train) of

10C. The resistance uncertainty that gives the worst-case DC gain under some sensor

locations are demonstrated in Fig. 3.12, which shows that ∆R∗
e is different for different

sensor locations.
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Figure 3.12: Cases of ∆Re giving the worst-case estimation errors under different
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In order to investigate the worst-case dynamic performance of the two observers,

the worst-case magnitude of Geu(jω) under all possible resistance uncertainty over

frequencies,

max
∆Re

∥Geu(jω)∥∞ (3.39)

is shown in Fig. 3.13. The temperature senor is placed at the optimal location,

namely on the surface of Cell 7. The worst case defined in Eq.(3.39) is the maximum
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Figure 3.13: Cases of ∆Re giving the worst-case estimation errors under different
sensor locations.

in two sense. First, it is the maximum over all possible combinations of resistance

uncertainty. Second, it is the maximum among all the states (20 in this case) as

indicated by the infinity norm. As shown in the plot, for the optimal DC observer (as

well as the robust H∞ observer), the DC gain is actually the supreme of the worst

case ∥Geu(jω)∥∞ over the frequencies, which validates the assumption in Eq.(3.29).

The performance of the two observers are very similar, as both of them could achieve

smaller error than open loop in low frequency range (below around 0.001Hz), but

worse in the middle frequency range (0.001Hz − 0.1Hz). The deteriorated perfor-

mance in the middle frequency range is not critical due to the low gain in that range

(less than -50 dB).

The performance of the designed observers have also been evaluated under drive-

cycle simulation. As has been mention in Section 3.3.1, besides model uncertainty,

temperature estimation may also be affected by errors in initial guesses. This issue

is of particular interest for the following reasons. First, at every start-up, initial
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temperature gradient could exist in a battery pack caused by factors such as external

conditions and insufficient relaxation from previous operation [77, 107]. Due to the

scarcity of the temperature sensor, the temperature gradient would turn into error in

initial temperature estimation. Second, under open loop, although the initial errors

would eventually die out since the thermal system is stable, the convergence would be

seriously delayed by the slow battery thermal dynamics. This aspect is also considered

in the drive-cycle simulation. The drive cycle is plotted in Fig. 3.14, where the top

plot shows the current profile in C-rate. The evolution of the highest temperature,

which is the core temperature of Cell 10, Tc,10, and the lowest temperature, namely

the surface temperature of Cell 1, Ts,1, is demonstrated in the bottom plot to show the

temperature gradient across the battery string. The current profile consists of three

parts, a first sub-cycle, a 5 mins rest, and a second sub-cycle. Because the rest between

the two sub-cycles are very short, the cells would not reach thermal equilibrium at the

end of the rest, and temperature gradient exists across cells at the start of the second

sub-cycle. Since only one temperature sensor is available, the reading of the sensor

will be used to initialize all the temperature estimation, leading to initial errors in the

states. The performance of the open-loop and the observers during the second sub-

cycle is plotted in Fig. 3.15, which shows the maximum estimation error among all the

states, ∥ex∥∞, at each time instant. The sensor is placed at the optimal location which

is the surface of Cell 7, and the resistance uncertainty ∆Re is the worst case under

the optimal sensor location shown in Fig. 3.13, It can be seen that the two observers

could not only reduce the estimation errors during ”semi steady-state” operation

after around t = 4000 s, but also accelerate the convergence from the initial estimation

error. Specifically, the optimal DC observer could achieve (slightly) smaller estimation

error during (semi-) steady-state, while the robust H∞ observer converges faster from

the initial estimation error. It is noted that the presented worst-case temperature

estimation errors may not be considered as critical by some standards (even for the

open loop estimation), which might justify the frugal sensor allocation that is being

applied in the industry practice. It may also be due to the specific parameters and

configuration of the battery string that is considered. The methodology developed

here can be applied to other battery packs, whose parameters and configuration may

induce more significant estimation errors in temperature estimation.

One interesting issue remains to be resolved for the robust temperature estimation

problem is the relationship between the optimal performance of the observers and the

observability of the battery string model. For a completely observable system, it is

possible to design an observer that could (almost) eradicate the state estimation
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Figure 3.14: Drive-cycle Simulation (top plot: current in C-rate; bottom plot: evolu-
tion of highest temperature Tc,10 and lowest temperature Ts,1.

error under model uncertainty given clean output measurement. However, it is seen

from Fig. 3.9 and Fig. 3.11 that the optimal observers designed for temperature

estimation could only reduce the errors moderately. Furthermore, Fig. 3.13 shows

that the observers could not even reduce the estimation error over all frequencies. It is

speculated that the reason is related to the fact that the battery string model is not

completely observable under the frugal sensor allocation. The detailed mechanism

regarding fundamental limitation needs to be investigated in future work.

3.6 Conclusion

In this chapter, a one-dimensional battery string thermal model is constructed

based on the single cell model for the purpose of temperature estimation on the pack

level. Considered thermal interaction includes cell-to-cell thermal conduction and

forced convection through the coolant flow. The string model can be further scaled up

to multi-dimensional cell network by taking into account thermal interaction between

cells in different rows. Different cooling strategies and pack configurations can be

accommodated by tuning model parameters.

The observability of the string model is then investigated to enlighten the de-
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Figure 3.15: Evolution of the maximum estimation error among all states over time
during the drive-cycle simulation.

ployment of temperature sensors. Minimum numbers of required sensors have been

determined for strings with various lengths based on the observability condition. It is

found that for strings with more than 5 cells, sensor location will also affect the ob-

servability. Viable combinations of sensor location have been studied for long strings

under different conditions.

Nevertheless, the number of temperature sensors available in a commercial bat-

tery pack would not usually yield full observability to all the temperature states.

Therefore, the observer needs to be designed under unobservable conditions. In this

work, the objective is to minimize the worst-case estimation error under bounded

uncertainty in cell resistance. Two optimal observer design approaches have been

formulated and applied to a design example, where a battery string with 10 cells and

1 available temperature sensor are considered. The performance of the two observers

are similar, which is somehow limited by the unobservable thermal model due to the

frugal sensor allocation. With the designed observer and sensor location, it is guar-

anteed that the estimation errors in all the temperature states will be bounded by a

specified value as long as the assumed bounds on model uncertainty hold.
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CHAPTER IV

Estimating Individual Cell States of Charge under

Reduced Voltage Sensing

4.1 Introduction

For lithium ion battery strings connected in series, reduced voltage sensing, where

only the total voltage of the string is measured, is beneficial for cutting the cost and

complexity of the battery management system. The reduced voltage sensing must

retain the ability to prevent overcharge and overdischarge of all cells. Prior art for

preventing or detecting overcharge and/or overdischarge in a reduced voltage sensing

environment (such as those used with lead-acid or NiMH batteries) involves treat-

ing the cells in a given module as identical, perhaps combined with special, usually

proprietary, tricks specific to the chemistry. One example might involve comparing

voltage of one string of cells to that of the other cell strings in the pack. When all the

cells are at the same SOC and voltage, the voltage of a single cell can be obtained by

dividing the total voltage by the number of cells in series. When the cell SOCs and

voltages are unbalanced, however, the voltage of a single cell cannot be inferred from

the total voltage.

State of charge imbalance is present in all large battery packs, and it can be

caused by a number of factors including manufacturing variability at manufacture,

differing self-discharge rates, and varying rates of capacity change over life [82, 93,

108]. Furthermore, two cells that are at the same SOC can be at different voltages

(under load) if their internal resistances are different. State of charge imbalance

reduces the available energy in a pack, reducing electric range to PHEV and BEV

customers. A small amount of SOC imbalance is of less concern in HEV batteries,

since less of the full SOC operating range is typically used, but even in HEVs if

imbalance grows too high the available charge and/or discharge power to the vehicle
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is reduced.

Due to the common presence of SOC imbalance among cells, to avoid cell over-

charge/overdischarge under reduced voltage sensing, the individual cell SOCs and

voltages need to be estimated based on the total voltage. Such effort has been at-

tempted in [109], where the single cell voltage is estimated based on the instantaneous

change in total voltage before and after the balancing circuit is switched. The ac-

curacy of the estimation, however, is compromised by the high ratio of the bypass

resistance to the cell internal resistance. This method also requires manipulation of

the balancing circuit.

In this chapter, the estimation of individual cell SOCs and voltages will be ad-

dressed solely based on the total voltage of cells connected in series [110, 111]. The

basic idea is first introduced in Section 4.2, where it is shown that the cell SOCs are

observable from the trajectory of the total voltage over time given nonlinear voltage

versus SOC relationship. The estimation problem is then formulated mathematically

based on defined assumptions and conditions. In Section 4.3, observability analysis

is conducted to derive the necessary conditions for solving the estimation problem.

In Section 4.4, five nonlinear observers are investigated, and the Newton observer is

chosen as the most suitable candidate based on the comparison of advantages and dis-

advantages. Finally, the experimental validation of the Newton observer is provided

in Section 4.5.

4.2 Basic Idea and Model Assumptions

In this section, it will be shown intuitively that the individual cell SOCs are

observable from the trajectory of the total voltage over time if the battery voltage

versus SOC relationship is nonlinear.

As an example for illustration, the voltage versus SOC relationship of a lithium

iron phosphate (LiFePO4) battery under a constant charging current is shown in

Fig. 4.1. Assume at time t=0 second a total voltage of 6.88 V is measured across

a two-cell string, there would be infinite combinations of individual cell SOCs giving

this total voltage. Three of such combinations are given in Table 4.1, and shown in

the inset of Fig. 4.1. It is not possible to distinguish these combinations based on

the total voltage measurement at a single time instant. The SOC combinations are,

however, distinguishable based on the trajectory of the total voltage over time. Under

the constant charging current, trajectories of the total voltage over time in the three

cases are shown in Fig. 4.2. It can be seen that due to the nonlinearity of the voltage
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Figure 4.1: Voltage versus SOC relationship of a LiFePO4 battery under a constant
charging current. Inset: three SOC combinations giving the same total
voltage as listed in Table 4.1.

Table 4.1: State of Charge Combinations Giving the Same Total Voltage Instanta-
neously.

SOC1 SOC2 Total Voltage (V)
Balanced Pair 0.94 0.94 6.88

Slightly Unbalanced Pair 0.95 0.92 6.88
Unbalanced Pair 0.96 0.90 6.88

versus SOC relationship, the three trajectories are different. The main idea of this

chapter is to estimate the single cell SOCs and voltages based on the trajectory of

the total voltage over time.

In this section, the SOC estimation problem under reduced voltage sensing is

analyzed under the following assumptions and conditions:

• Most of the analysis is conducted for reduced voltage sensing which measures

two cell intervals, targeting 50% reduction in voltage sensing in a battery pack.

The methodology can be extended to longer intervals but is subject to practical

limitation to be discussed.

• The method is designed to estimate SOCs under the assumption that capacity

and resistance are known and equal among cells. Possible cause of SOC im-

balance under such circumstance is the difference among cells in self-discharge

rate.
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Figure 4.2: Voltage trajectory over time under a constant charging current of the
three SOC combinations in Table 4.1 (three subplots on the top: trajec-
tory of the individual cell voltages of each combination; bottom subplot:
trajectories of the three total voltages).

• The operating condition is constant current charging, where a coulomb counting

model is sufficient to capture the voltage dynamics. It is possible to apply the

designed algorithm to real-world driving conditions with more complicated and

accurate dynamic battery models.

The coulomb counting model used takes the form

xk+1 = xk +
I∆t

Q

Vk = g(xk) + IR,

(4.1)

where ∆t is the sampling period, I is the current (positive for charging), Q is the bat-

tery capacity, and R is the ohmic resistance. The term g(x) is a nonlinear relationship

between battery voltage and SOC under the constant charging current, which may
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include the open circuit voltage (OCV), hysteresis voltage, polarization over-potential

among others. Consider a battery string with 2 cells connected in series, the string

model can be written as,

xstr,k =
[
x1,k x2,k

]T
xstr,k+1 =

[
x1,k+1

x2,k+1

]
=

[
x1,k +

I∆t
Q

x2,k +
I∆t
Q

]
Vstr,k = V1,k + V2,k = g(x1,k) + g(x2,k) + 2IR,

(4.2)

where subscripts 1 and 2 are used to denote the variables associated with cell 1 and

2. The goal of estimation is to determine x1,k and x2,k when I is known and Vstr is

measured over a period of time.

4.3 Observability Analysis

In order to solve the estimation problem, the observability of the individual cell

SOCs under reduced voltage sensing needs to be investigated first. The derived

observability condition is shown to be dependent on the nonlinearity of the voltage-

SOC relationship. Extension to general cases (n cell intervals) is also discussed.

Starting from time step k, the trajectory of the total voltage Vstr over N + 1

consecutive time steps k, k + 1, ..., k +N , Vstr,[k,k+N ], can be denoted as

Vstr,[k,k+N ] =


Vstr,k

Vstr,k+1

...

Vstr,k+N

 =


g(x1,k) + g(x2,k)

g
(
x1,k+1) + g

(
x2,k+1)

...

g
(
x1,k+N) + g

(
x2,k+N)

+ 2IR. (4.3)

Based on the battery string model under constant current charging in Eq. (4.2),

Vstr,[k,k+N ] can be further written as a function of the initial states, xstr,k, as

Vstr,[k,k+N ] = H(xstr,k) =


g(x1,k) + g(x2,k)

g
(
x1,k +

I∆t
Q

)
+ g

(
x2,k +

I∆t
Q

)
...

g
(
x1,k +

NI∆t
Q

)
+ g

(
x2,k +

NI∆t
Q

)

+ 2IR. (4.4)

By taking the partial derivative of H to xstr,k, deviation of the trajectory caused by
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variation in the initial states can be obtained as,

δVstr,[k,k+N ] =
∂H

∂xstr,k

δxstr,k

∂H

∂xstr,k

=


g′(x1,k) g′(x2,k)

g′
(
x1,k +

I∆t
Q

)
g′
(
x2,k +

I∆t
Q

)
... ...

g′
(
x1,k +

NI∆t
Q

)
g′
(
x2,k +

NI∆t
Q

)

 ,

(4.5)

where g′(x) denotes the gradient of g(x) to x. In Eq. (4.5), δxstr,k represents the

deviation of initial SOCs from the nominal point, x0
str,k, that is, δxstr,k = xstr,k−x0

str,k.

For example, for the three cases in Table 4.1, if the nominal guess is defined at the

balanced combination, x0
str,k = [0.94, 0.94]T , δxstr,k of the three cases would be

δx1,k = δx2,k = 0, for the balanced pair,

δx1,k = −0.02, δx2,k = 0.01 for the slightly unbalanced pair,

δx1,k = −0.04, δx2,k = 0.02 for the unbalanced pair.

(4.6)

Estimating xstr,k is equivalent to estimating δxstr,k. In order for δxstr,k to be observable

from δVstr,[k,k+N ],
∂H

∂xstr,k
needs to be a one-to-one mapping and hence of full rank (rank

= 2). In fact, ∂H
∂xstr,k

is by definition the observability matrix of the nonlinear discrete-

time system in Eq. (4.2) [112],

OD(xstr,k) =
∂H

∂xstr,k

(xstr,k). (4.7)

The reason that xstr,k cannot be observed from the measurement of Vstr,k at a

single time instant can be found in the observability matrix. With only Vstr,k, Eq.

(4.5) is reduced to

δVstr,k = OD(xstr,k)δxstr,k =
[
g′(x1,k) g′(x2,k)

]
δxstr,k. (4.8)

The observability matrix only has one row, and thus its rank is one. Rank deficiency

indicates that there are infinite numbers of δxstr,k that could match the single δVstr,k.

Only when multiple Vstr data are processed at the same time, would the OD(xstr,0)

matrix have more than one rows and hence be possible to have full rank. Still, more

rows do not necessarily guarantee observability. For example, when g(x) is linear and

g′(x) is constant, additional rows do not make OD full rank, since the two columns
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of OD are identical. Necessary conditions on g(x) for observability will be discussed

next.

The discrete-time observability matrix in Eq. (4.5) can be transformed to the

continuous-time observability matrix, as

OC(xstr,k) =

[
g′(x1,k) g′(x2,k)

g′′(x1,k)
I
Q

g′′(x2,k)
I
Q

]
, (4.9)

where g′′(x) denotes the second order gradient of g(x) to x. This OC matrix can

also be obtained based on the Lie derivatives of the continuous battery string model

[63, 110]. The first order gradient of g(x), g′(x), is usually positive, since the battery

voltage normally increases monotonically with SOC. Therefore, for OC(xstr) to be of

full rank, it is necessary that either g′′(x1,k) or g
′′(x2,k) needs to be non-zero, which

means that g(x) should be nonlinear. Two lithium-ion battery chemistries are taken

as examples for illustration.

The g(x) function of a LiFePO4 battery under 1C constant charging current is

plotted in Fig. 4.3, along with its first and second order gradients. It can be seen

that in the middle SOC range, 15%-90%, g(x) is almost linear, with small first and

second order gradients. As a result, the observability matrix OC will be practically

rank deficient. At the high and low SOC ends, namely 0%-15% and 90%-100%, g(x)

is highly nonlinear with significant g′(x) and g′′(x). These regions are where the

precaution against overcharge and overdischarge is critically needed. Fortunately, the

highly nonlinear g(x) in these ranges renders significant observability to the individual

cell SOCs and voltages. It is noted that for the LiFePO4 chemistry, SOC is barely

observable in the middle SOC range even under full voltage sensing, due to the flatness

of g(x).

As another example, g(x) of a LiNiMnCo (LiNMC) battery and its first and sec-

ond order gradients are shown in Fig. 4.4. For this battery chemistry, the strongly

observable SOC range is below 10%, where both g′(x) and g′′(x) are large enough.

When the SOC is above 10%, linear g(x) (nearly zero g′′(x)) inhibits the observabil-

ity under reduced voltage sensing. Slight nonlinearity is noted around 80% SOC,

rendering that range weakly observable.

When the total voltage is measured for every n cells, n > 2, observability anal-

ysis can be conducted in a similar way. By using the Lie-derivative analysis, the

continuous-time observability matrix is obtained as Eq. (4.10), where the superscript

(i) denotes the ith order gradient of g(x) to x. More details on the derivation can be

found in [110].
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Figure 4.3: Voltage function g(x) of a LiFePO4 battery under a constant charging
current and its gradients (upper: g(x); middle: first order gradient g′(x);
bottom: second order gradient g′′(x)).

As seen from Eq. (4.10), when only the total voltage of every n cells is measured,

up to nth order gradients of g(x) need to be checked. In order for the observability

matrix to be of full rank (rank=n), at least one of each g(i)(x) should be nonzero.

Ultimately, the eigenvalues of OC(xstr,k) need to be calculated, and full rank requires

all the eigenvalues to be nonzero. This part of work is to be addressed in detail in

future, and it is foreseeable that reducing voltage sensors further requires stronger

nonlinearity on g(x), which could be challenging in practice.

4.4 Candidate Nonlinear Observers

It has been established by the observability analysis that under reduced voltage

sensing, individual cell SOCs are observable, and hence can be estimated, given non-

linear voltage versus SOC relationship. In order to find the most suitable algorithm

for SOC estimation, various nonlinear observers will be explored, which includes the
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Figure 4.4: Voltage function g(x) of a LiNMC battery under a constant charging
current and its gradients (upper: g(x); middle: first order gradient g′(x);
bottom: second order gradient g′′(x)).

extended Kalman filter (EKF) [59, 60], canonical form observer [66, 68, 72, 73], ex-

tended Luenberger observer [69], sliding mode observer [70, 71] and Newton observer

[64, 65]. After analyzing the applicability, advantages and disadvantages of each ob-

server in the context of reduced voltage sensing, the Newton observer is considered

as the most suitable candidate. To illustrate the principles of different algorithms, a

generic nonlinear model either in continuous time,

ẋ = f(x), x ∈ Rn,

y = h(x), y ∈ R
(4.11)

or in discrete time,

xk+1 = fd(xk)

yk = h(xk),
(4.12)
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OC(xstr,k) =



g′(x1,k) g′(x2,k) ... g′(xn,k)
g′′(x1,k)

I
Q

g′′(x2,k)
I
Q

... g′′(xn,k)
I
Q

· · ·
g(i)(x1,k)

(
I
Q

)i−1
g(i)(x2,k)

(
I
Q

)i−1
... g(i)(xn,k)

(
I
Q

)i−1

· · ·
g(n)(x1,k)

(
I
Q

)n−1
g(n)(x2,k)

(
I
Q

)n−1
... g(n)(xn,k)

(
I
Q

)n−1


(4.10)

will be used, where the subscript k denotes the time step, x and y are the state

and output of the model, f and fd are the equivalent nonlinear state functions in

continuous time and discrete time, and h is the output function. It is noted that in

Eq.(4.11) and Eq.(4.12), f , fd, and h are written as functions of the state x only,

but not of any input u. This is because, as has been mentioned, the considered

operating condition for SOC estimation under reduced voltage sensing is constant

current charging, and thus the input current can be included in the state and output

functions as a constant.

4.4.1 Extended Kalman Filter

The extended Kalman filter is one of the most commonly used methods for online

estimation of battery SOC when full voltage sensing is available [53, 60, 61]. It will

be shown that under reduced voltage sensing, however, the SOC estimation of EKF

will not converge due to lack of observability of the linearized battery string model.

When EKF is applied, at each step, the state is first calculated based on the

model as the predicted state estimate x̂−
k , and then updated based on the output

measurement to obtain the final estimate x+
k . For the discrete nonlinear system in

Eq. (4.12), the predicted state estimate is

x̂−
k = fd(x̂

+
k−1), (4.13)

where x̂+
k−1 is the final (updated) state estimate at the previous step. The state

covariance matrix Pk is also predicted as

P−
k =

∂fd
∂x

(x̂+
k−1)P

+
k−1

∂Tfd
∂x

(x̂+
k−1) + Σp, (4.14)

where Σp is the covariance of the process noise. The Kalman observer gain is then
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calculated as

Kk = P−
k

∂Th

∂x
(x̂−

k )
[∂h
∂x

(x̂−
k )P

−
k

∂Th

∂x
(x̂−

k ) + Σm

]−1
, (4.15)

where Σm is the covariance of the measurement noise. Finally, the observer gain Kk is

used to update the estimates of the xk and Pk based on the output estimation error,

x̂+
k = x̂−

k +Kk[yk − h(x̂−
k )]

P+
k = (I−Kk)P

−
k

∂Th

∂x
(x̂−

k ),
(4.16)

where I is the identify matrix.

As can be seen from Eq.(4.14) and Eq.(4.15), EKF is based on linearization

of the nonlinear system, as the observer gain is calculated by using the Jacobian
∂fd
∂x

(x̂+
k−1, uk−1) and ∂h

∂x
(x̂−

k , uk−1). In fact, the convergence of the estimate by EKF

is guaranteed only if the system retains observability after linearization [59]. Un-

fortunately, this condition cannot be satisfied under reduced voltage sensing. After

linearization, the battery string model in Eq.(4.2) is transformed to

xstr,k+1 = Axstr,k +BI

Vstr,k = Cxstr,k +DI,
(4.17)

where

A =

[
1 0

0 1

]
, B =

[
∆t
Q
∆t
Q

]
, C =

[
g′(x1,k) g′(x2,k)

]
, D = 2R. (4.18)

In order for the linearized model to be observable, the observability matrix

Olin =

[
C

CA

]
=

[
g′(x1,k) g′(x2,k)

g′(x1,k) g′(x2,k)

]
(4.19)

needs to be of full rank, which is clearly not satisfied considering identical rows (and

columns) of Olin.

Simulation has been conducted to show that EKF is inadequate for SOC estima-

tion under reduced voltage sensing. The model of a two-cell LiFePO4 string is used

to emulate the total voltage measurement. The SOCs of the two cells are initialized

to 90% and 85% respectively, and the initial guess of SOC in EKF is set to around

80% for both cells. The SOC estimation of EKF is shown in Fig. 4.5. It can be
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Figure 4.5: State of Charge Estimation of EKF under Reduced Voltage Sensing.

seen that EKF could only track the average SOC of the two-cell string by matching

the total voltage, but not the SOCs of the individual cells. As a result, the cell with

higher SOC (cell 1) is under the risk of being overcharged, and EKF is hence not

suitable for SOC estimation under reduced voltage sensing.

4.4.2 Canonical Form Observer

The canonical form observer [72, 73, 66, 68], as the name implies, seeks to trans-

form the nonlinear system model into a canonical form, similar to that of a linear

system, based on which an observer can be designed easily. Such observer may take

the form of a high-gain observer [72, 73] or be designed based on observer error

linearization [66, 68].

To obtain the canonical form of the generic continuous nonlinear model in Eq.(4.11),

the commonly used coordinate transformation, x → z, is defined by using the Lie

derivatives of the output function h (or the time derivative of the output y),

z1 = y = h(x) = L0
fh(x)

z2 = ẏ =
∂h

∂x
f(x) = Lfh(x),

· · ·

zi = y(i−1) = Li−1
f h(x) = Lf (Lfh)(x), i = 3, ...n,

(4.20)
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where the superscript (i) denotes the ith time derivative, and Li
fh is the symbol for

the ith Lie derivative. If the time derivative of the last transformed state, żn, can be

expressed as a function of the states z1, · · · , zn,

zn = ϕ(z1, · · · , zn), (4.21)

an observer canonical form is obtained as

ż =


ż1

ż2

· · ·
żn−1

żn

 =


z2

z3

· · ·
zn

ϕ(z)

 =



0 1 0 · · · 0

0 0 1 · · · 0
. . .

0 · · · 1

0 · · · 0


z +


0

0
...

ϕ(z)

 = fcan(z)

y = z1 =
[
1 0 · · · 0

]
z = Ccanz.

(4.22)

Based on the canonical form, the observer can then be designed as a high gain

observer or based on observer error linearization. The high gain observer takes the

form [72, 73]

˙̂z = fcan(ẑ)− L−1
∞ CT

can(y − ŷ),

ŷ = ẑ1,
(4.23)

where the observer gain L∞ is determined by solving

− ηL∞ − AT
SL∞ − L∞AS + CT

canCcan = 0,

AS =



0 1 0 · · · 0

0 0 1 · · · 0
. . .

0 · · · 1

0 · · · 0


,

(4.24)

with η large enough. Exponential convergence of ẑ is guaranteed and the original

states can be determined based on the inverse coordinate transformation z → x.

When the observer is designed based on observer error linearization [66, 68], the

function ϕ(z) in Eq.(4.21) is further assumed to be

żn = a1z1 + a2z2 + · · ·+ anzn, (4.25)
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where ai’s are constant coefficients. In this way, the canonical form in Eq.(4.22) is

further written as

ż = Acanz =



0 1 0 · · · 0

0 0 1 · · · 0
. . .

0 · · · 1

a1 a2 · · · an


z

y = Ccanz.

(4.26)

A Luenberger observer,

˙̂z = Acanẑ + L(y − ŷ)

ŷ = Ccanẑ,
(4.27)

can then be designed to converge the estimate of z, with the observer gain L designed

to stabilize the error dynamics,

e = z − ẑ,

ė = (Acan − LCcan)e.
(4.28)

It is noted that for the observer error linearization method, the transformed model

may also include a nonlinear output injection term [66, 68].

Although the design process is straightforward, the greatest challenge lies in the

coordinate transformation. In many cases, it is extremely difficult, if ever possible, to

find a function ϕ(z) that could satisfy Eq.(4.21) or Eq.(4.25). This is especially true for

the battery string model, where the voltage output function g(x) is usually measured

and stored as a look-up table and thus does not have an analytical form. Though

hardly applicable in the SOC estimation problem under reduced voltage sensing, the

idea of the canonical form observer, gives rise to the interests in the following two

observers, the sliding mode observer and the extended Luenberger observer.

4.4.3 Sliding Mode Observer

The sliding mode observer [70, 71], which is based on the equivalent control

method [113], is another type of algorithm that can be used for nonlinear state estima-

tion problems. For nonlinear sliding mode estimation, the first step is to find certain

sliding surfaces, which need to be in one-to-one correspondence with the states. The

80



observer is then designed to confine the estimated system dynamics around the slid-

ing surfaces. The state estimates will hence stay around the actual states due to the

one-to-one correspondence. The sliding mode observer considered here is in the form

introduced in [71], where the Lie derivatives shown in Eq.(4.20) are defined as the

sliding surfaces. Compared with the canonical form observer, however, the sliding

mode estimation does not require transforming the model into the coordinate in Lie

derivatives.

For the generic continuous nonlinear system in Eq.(4.11), sliding surfaces are

defined as the Lie derivatives of the output function h, which are the z1, z2, · · · , zn in

Eq.(4.20). The mapping between the states x and the sliding surfaces z is a one-to-

one correspondence if the nonlinear system is observable. The sliding mode observer

is then designed as

˙̂x =
(∂z
∂x

(x̂)
)−1

M(x̂)sgn
(
ξ − z(x̂)

)
, (4.29)

where sgn is the sign function, and M(x̂) is a diagonal gain matrix with entries

m1(x̂),m2(x̂), ...,mn(x̂), whose values are to be designed. The column vector ξ con-

sists of n elements,

ξ1 = y

ξi = mi(x̂)sgn
(
ξi−1 − zi−1(x̂)

)
, i = 2, · · · , n.

(4.30)

As has been proven in [71], if mi(x̂) is chosen as

mi(x̂) ≥ |zi+1(x)|, (4.31)

the term M(x̂)sgn
(
ξ − z(x̂)

)
guarantees the sliding mode of ẑ around z, and

(
∂z
∂x

)−1
,

as the mapping between the sliding mode of z and the sliding mode of x, ensures

that x̂ will slide along x. It is noted that ∂z
∂x

is also the observability matrix of the

continuous nonlinear model. Inversion of ∂z
∂x

requires it to be of full rank, which

implies that the model needs to be observable.

When applied to the SOC estimation problem under reduced voltage sensing, the
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Figure 4.6: State of Charge Estimation of the Sliding Mode Observer under Reduced
Voltage Sensing.

corresponding terms in Eq.(4.29) can be obtained as

z =

[
z1

z2

]
=

[
g(x1) + g(x2)(

g′(x1) + g′(x2)
)
I
Q

]
∂z

∂x
(x̂) =

[
g′(x̂1) g′(x̂2)

g′′(x̂1)
I
Q

g′′(x̂1)
I
Q

]

ξ =

[
Vstr

m1sgn
(
Vstr − g′(x̂1)− g′(x̂2)

)] ,
(4.32)

with

m1 ≥
∣∣(g′(x1) + g′(x2)

) I
Q

∣∣ = |V̇str|,

m2 ≥
∣∣(g′′(x1) + g′′(x2)

)( I
Q

)2∣∣ = |V̈str|.
(4.33)

Simulation has been conducted to show the performance of the sliding mode observer,

where the model of a two-cell LiFePO4 string with 5% SOC imbalance is again used

to emulate the total voltage measurement. The SOC estimation of the sliding mode

observer is plotted in Fig. 4.6, and the sliding mode of ẑ around the sliding surface z

is shown in Fig. 4.7. During the simulation, the sliding mode observer is enabled after

the SOCs reach the strongly observable range (> 90%), when the ∂z
∂x

matrix could be
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Figure 4.7: State of Charge Estimation of the Sliding Mode Observer under Reduced
Voltage Sensing.

robustly inverted. As seen in the simulation, the SOC estimates then start to evolve

toward the actual SOCs in chattering motion. At the end, however, although both

ẑ1 and ẑ2 slide closely around the actual sliding surface, the SOC estimates do not

chatter around the actual SOCs closely as expected, and significant estimation errors

are observed for SOC2. The reason is attributed to the modeling errors in ∂z
∂x
. As seen

in Eq.(4.32), ∂z
∂x

includes the second order gradient of the voltage-SOC relationship

g′′(x), which is very difficult to model accurately. The voltage output function g(x)

is measured based on experiment, and g′′(x), which is obtained by performing the

spline-fitting-differentiation process twice, could be easily corrupted by measurement

noises. The errors in g′′(x) will affect the accuracy of the sliding mode mapping ∂z
∂x
,

leading to biased SOC estimation despite good sliding mode on z.

4.4.4 Extended Luenberger Observer

The extended Luenberger Observer [69] is a nonlinear state estimation algorithm

taking the similar form as a Luenberger Observer for linear systems. Unlike the

canonical form observer, the extended Luenberger observer performs the estimation

directly in the original coordinate, avoiding the coordinate transform by using ex-

tended linearization.
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For the generic continuous nonlinear system in Eq.(4.11), the extended Luenberger

observer takes the form

˙̂x = f(x̂) + L(x̂)(y − ŷ)

ŷ = h(x̂).
(4.34)

The observer gain L is designed as dependent on the state estimate x̂,

L(x̂) =[p0 · ad0f + p1 · ad1f + ...+ pn−1 · adn−1
f + adnf ] ◦ S(x̂)

S(x̂) =


∂L0

fh(x)

∂x
∂Lfh(x)

∂x
...

∂Ln−1
f h(x)

∂x


−1

[
0 0 · · · 1

]T
,

(4.35)

where pi’s are the designed observer parameters, and adif ◦S represents the Lie bracket

operation,

ad0f ◦ S = S,

adf ◦ S =
∂f

∂x
S − ∂S

∂x
f,

adif ◦ S = adf ◦ (adi−1
f ◦ S), i = 2, · · · , n.

(4.36)

When applied to estimate battery SOCs under reduced voltage sensing, the ex-

tended Luenberger observer is formulated as[
˙̂x1

˙̂x2

]
=

[
I
Q
I
Q

]
+ L(x̂)(Vstr − V̂str)

V̂str = g(x̂1) + g(x̂2) + 2IR,

(4.37)

with the observer gain L

L(x̂str) =
1

∆

(
p0

[
−g′(x̂2)

g′(x̂1)

]
+

p1I

Q

[
g′′(x̂2)

−g′′(x̂1)

]
+
( I
Q

)2 [−g′′′(x̂2)

g′′′(x̂1)

])
∆ =

(
g′(x̂1)g

′′(x̂2)− g′(x̂2)g
′′(x̂1)

) I
Q
.

(4.38)

According to Eq.(4.38), the extended Luenberger observer needs to use the second

and third order gradients of the voltage-SOC relationship, g′′(x) and g′′′(x). As has

been mentioned for the sliding mode observer, the second order gradients of g(x) are
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difficult to model accurately, and will lead to significant SOC estimation errors. In

the case of the extended Luenberger observer, modeling of g′′′(x) would be even more

difficult and inaccurate, leaving the applicability of the algorithm questionable.

4.4.5 Newton Observer

The Newton observer [64, 65], which is based on the Newton-Raphson algorithm,

estimates the states by simultaneously solving multiple nonlinear equations along

the model output trajectory over time. Compared with the method which performs

estimation based on a single data point each time, the Newton observer processes the

data points collected over a certain time span simultaneously, which contains more

information on the system nonlinearity.

At each estimation step, the Newton observer uses the output data over a series

of consecutive time instants, k, k+1, ...k+N . Based on the generic discrete nonlinear

system in Eq.(4.12), the output trajectory over these time instants can be derived as

a function of the state at k,

Y[k,k+N ] =


yk

yk+1

...

yk+N

 =


h(xk)

h ◦ fd(xk)
...

(h ◦ fd)N(xk)

 = H(xk), (4.39)

where ◦ represents function composition,

h ◦ fd(x) = h
(
fd(x)

)
(h ◦ fd)i(x) = (h ◦ fd)

(
(h ◦ fd)i−1(x)

)
, i = 2, · · · , N.

(4.40)

The estimation problem is then reduced to solving Eq.(4.39) for xk given measured

output trajectory Y[k,k+N ]. The states at time instants k + 1, · · · , k + N can be

determined based on xk and the model. In the Newton observer, Eq.(4.39) is solved

by using the Newton-Raphson algorithm over iterations,

x̂j+1
k = x̂j

k +

[
∂H

∂xk

(x̂j
k)

]−1(
Y[k,k+N ] −H(x̂j

k)
)
, (4.41)

where the superscript j denotes the jth iteration. Essentially, optimal x̂k is searched

here to minimize the least square error in Y[k,k+N ]. The convergence of the Newton

Observer is guaranteed under observability conditions [64]. At the next estimation

step, the measured voltage trajectory is updated with newly acquired data, and be-
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comes Y[k+W,k+W+N ], where W is the interval between estimation steps. The initial

state at the new estimation step, xk+W , will be estimated based on Y[k+W,k+W+N ],

and its initial guess is determined based on the final estimate of xk.

For the SOC estimation problem under reduced voltage sensing, Newton observer

can be formulated with the total voltage trajectory Vstr,[k,k+N ] = H(xstr,k) defined in

Eq.(4.4), and ∂H
∂xstr,k

in Eq.(4.5) [110]. The dimension of ∂H
∂xstr,k

is N × 2, where N is

the number of data points along the voltage trajectory. When N > 2, ∂H
∂xstr,k

has more

rows than columns, and thus its left pseudo-inverse should be used instead,

( ∂H

∂xstr,k

)−1
=

[( ∂H

∂xstr,k

)T ( ∂H

∂xstr,k

)]−1( ∂H

∂xstr,k

)T
. (4.42)

It is noted that the Newton observer can only be applied when xstr,k is observable.

The matrix ∂H
∂xstr,k

is the discrete-time observability matrix, and its (pseudo)inverse

exists if and only if the observability matrix is of full rank as discussed in Eq. (4.7).

The advantage of the Newton-Raphson algorithm is fast convergence, but the

drawback is lack of robustness under certain circumstances. For example, when the

SOCs are at the edge of the observable region, ∂H
∂xstr,k

is close to rank deficient with

a large condition number, posing difficulty to the inversion of ∂H
∂xstr,k

. To improve the

robustness, the Levenberg-Marquardt iteration is used instead [114, 115],

x̂j+1
str,k = x̂j

str,k +

[
∂H

∂xstr,k

(x̂j
str,k) + bI

]−1(
Vstr,[k,k+N ] −H(x̂j

str,k)
)
, (4.43)

where b is a scalar, and I is a 2 × 2 identity matrix. The factor bI is used to lower

the condition number and hence stabilize the matrix inversion.

4.4.6 Comparison of the Candidate Algorithms

Based on the previous analysis, the advantages and disadvantages of the five non-

linear observers are summarized and listed in Table 4.2. The applicable algorithms

include the sliding mode observer, extended Luenberger observer and Newton ob-

server. As for the sliding mode observer and the extended Luenberger observer, the

need to use accurate high order gradients of the voltage-SOC relationship g(x) poses

a major obstacle for practical application. On the contrary, the Newton observer,

which only uses the first gradient, will be much less affected by the modeling errors.

The disadvantages of the Newton observer in data storage and computation, though,

are considered as inconsequential. Experimental validation of the Newton observer
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Table 4.2: Comparison of Candidate Nonlinear Observers.
Algorithms Advantages Disadvantages

Extended Kalman - not applicable: unobservable
filter model after linearization

Canonical form - not applicable: complicated
observer coordinate transformation

Sliding mode data storage: single data, accuracy: affected by
observer computation: recursive modeling errors in g′′(x)

Extended Luenberger data storage: single data, accuracy: affected by
observer computation: recursive errors in g′′(x) and g′′′(x)

Newton observer accuracy: not using data storage: voltage trajectory,
inaccurate high gradients computation: iterative

will be shown in Section 4.5, where the used voltage trajectory contains 15 data points

and the iteration of the Newton-Raphson algorithm is limited to 5. Such data storage

scale and computation load are unlikely to be problematic for the onboard micropro-

cessors. The Newton observer is hence chosen as the most suitable algorithm for the

SOC estimation problem under reduced voltage sensing.

4.5 Experimental Validation of the Newton Observer

The validation of the Newton observer is to be shown based on experiments con-

ducted with two 2.3 Ah LiFePO4 batteries connected in series.

The coulomb counting model in Eq. (4.1) is first parameterized based on exper-

imental data under 2 Amp constant current (CC) charging/discharging. During the

validation experiment, the two cells are first initialized with SOCs around x1,0 = 5%

and x2,0 = 0%. They are then connected in series and charged with a single current

source under 2A CC. Single cell voltages are measured to prevent overcharge and for

validation. Actual cell SOCs are calculated based on current integration to validate

the SOC estimation. Current is cut off when the voltage of any cell reaches the

threshold of 3.6V. Measured SOCs and voltages are shown in Fig. 4.8.

The collected voltage and current data are then used for estimation and valida-

tion. The initial guess of SOCs for both cells is determined by inverting the average

measured voltage. At each estimation step, Vstr,[k,k+N ] contains 15 data points, which

are sampled 10 seconds apart (10 s from k to k + 1). The time interval W between

each estimation step is chosen as 20 seconds. In this way, SOC estimation is updated

every 20 seconds, corresponding to an SOC increment of 0.5%. This rate is sufficient

for preventing overcharge in real time.
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Figure 4.8: Measured SOCs and Voltages of Individual Cells under 5% SOC Imbal-
ance.
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SÔC2

SOC1

SOC2

SÔC2
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Figure 4.9: Comparison of SOC Estimation with Experiment Measurement under 5%
SOC Imbalance.

The estimates of the Newton observer are shown and compared with the measure-

ments in Fig. 4.9 and Fig. 4.10. The plotted values correspond to the last point at

each estimation step. The final estimates are listed in Table 4.3. In Fig. 4.9, it can

be seen that the single cell SOCs are not distinguishable when both SOCs are below

85%. This observation is in accordance with the observability analysis in Section 4.3,

which predicts that the SOCs are not observable in the middle SOC range due to the

nearly linear voltage vs. SOC relationship g(x). As the SOCs evolve to the observable
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Table 4.3: Final Estimates under 5% SOC Imbalance.
Estimates Measurement error (%)

SOC1 (%) 99.81 100 0.19
SOC2 (%) 95.99 94.36 1.73
V1 (V) 3.59 3.60 0.28
V2 (V) 3.46 3.44 0.58

range above 90%, the estimates of the Newton Observer converge to the measurement

gradually. Furthermore, it is noted that the estimate of SOC1 is more accurate than

that of SOC2. This feature is advantageous for preventing overcharge because cell 1

is closer to being fully charged and hence the precaution is more critical. The reason

for the better accuracy of SOC1 estimation is due to the higher sensitivity of Vstr to

SOC1, caused by the larger g′(x) at x1.

4.6 Conclusions

This chapter is devoted to investigating the possibility of correctly estimating

individual cell SOCs with only the total voltage measurement for cells in series con-

nection. It is pointed out that the existence of the solution relies on the observability

of the nonlinear battery string model. For battery chemistries with linear polarization

curves, the individual cell SOCs are not observable when only the total string voltage

is measured. However, for LiFePO4/graphite batteries, the observability condition
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can be satisfied in high and low SOC ranges, where the polarization curve is featured

by monotonically increasing derivatives.

A nonlinear observer based on the Levenberg-Marquardt algorithm is then de-

signed to estimate the individual cell SOCs and voltages. The algorithm has been

implemented to a LiFePO4/graphite battery string with 2 cells. As indicated by the

observability analysis, the estimated SOC converge faster and are much more accu-

rate at high and low SOC ends (than in the middle range), where the SOC estimation

is more critical. In principle, the methodology can be extended to cell strings with

more cells and cells of other chemistries given proper polarization curves.
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CHAPTER V

Estimating Individual Cell Capacities under

Reduced Voltage Sensing

5.1 Introduction

For cells in a battery pack, besides SOC imbalance, difference in capacity may also

exist among cells [108, 116], which will in turn lead to SOC imbalance. The causes for

capacity imbalance may include manufacturing variability, which results in different

contents of active material [93], and varying capacity fading rates due to operating

conditions [82]. In Chapter IV, the SOCs of the two-cell string are estimated by

assuming that the capacity of the two cells are equal and known. In this chapter, the

estimation problem will be studied under unknown and imbalanced capacities.

First, the robustness of the SOC estimation algorithm developed in Chapter IV is

investigated under (unknown) capacity imbalance. The SOC estimation error is first

derived under uncertainty in capacity and resistance, where the sensitivity matrix

of SOC estimation is introduced. The singular values of the sensitivity matrix are

calculated for different combinations of SOC and capacity imbalance. It will be shown

that certain combinations lead to small singular values, indicating poor robustness of

the estimation under uncertainty in battery capacity. The imbalance and uncertainty

in resistance is also considered, which does not affect the sensitivity matrix though.

Second, an algorithm is designed to estimate the capacity imbalance in the battery

string. Since the capacity and SOC cannot be determined independently, both of them

need to be estimated in the proposed method. In literature, estimation of battery

capacity and SOC has been studied extensively under full voltage sensing (when

single-cell voltage is measured). The most commonly used method is the extended

Kalman filtering. For example, dual extended Kalman filtering (DEKF) [117] has

been used to estimate the battery SOC and capacity in a sequential way, which
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Figure 5.1: Data Collection Strategy for SOC and Capacity Joint Estimation.

includes the synchronized (standard) DEKF [60, 118, 119] and the multi-scale DEFK

where the SOC and capacity are updated at different rates [120, 121]. Joint extended

Kalman filter (JEKF) has also been applied, which updates the SOC and capacity

estimation simultaneously [122, 123]. When the SOC is directly available, linear least

squares algorithm can also be used for capacity estimation [124]. Other methods

include the dual/joint sigma-point Kalman filtering [125] and particle filtering [87].

In this chapter, estimation of SOCs and capacities of the two cells is studied under

reduced voltage sensing. As has been mentioned, because the linearized battery model

is not observable, the linearization-based method, such as the extended Kalman filter,

can not be used for estimation. Therefore, the nonlinear estimation algorithm that

has been used for SOC estimation in Chapter IV, the Newton-Raphson method, is

augmented for joint estimation of SOC and capacity.

Furthermore, the data collection strategy is also studied in order to achieve certain

estimation accuracy under measurement noises. The data collection strategy includes

i) what is the SOC variation and ii) how many number of data points that need to be

covered in the voltage trajectory, as shown in Fig. 5.1. The quantitative relationship

between the variance of parameter estimation and measurement noises under different

SOC variation and number of data points is established based on Cramer-Rao bound

analysis to guide the selection of data collection strategy. To sum up the discussion in

Chapter IV and Chapter V, the overall estimation scheme, consisting of the real-time

SOC estimation and off-line capacity adaptation, will be discussed in the end.
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5.2 Robustness of SOC Estimation under Imbalance and Un-

certainty in Capacity and Resistance

In Chapter IV, the SOC estimation is conducted by assuming known and equal

capacity and resistance between cells, and the nominal capacity and resistance are

used in the Newton observer for estimation. When the (unknown) imbalance in

capacity and resistance exists, uncertainty is introduced to the modeled capacity and

resistance. The impact of the model uncertainty in capacity and resistance on the

accuracy of SOC estimation will be analyzed in this section.

5.2.1 State of Charge Estimation Error under Model Uncertainty in Ca-

pacity and Resistance

In this subsection, the SOC estimation error under uncertainty in capacity and

resistance will be derived. The sensitivity matrix of SOC estimation is obtained

during the procedures. The results will be used for robustness analysis in the following

subsection.

When the capacity and resistance are not equal between the two cells, the true

voltage trajectory V ∗
str,[k,k+N ] can be derived as

V ∗
str,[k,k+N ] = H(x∗

str,k, Q
∗, R∗) =


g(x∗

1,k) + g(x∗
2,k)

g
(
x∗
1,k +

I∆t
Q∗

1

)
+ g

(
x∗
2,k +

I∆t
Q∗

2

)
...

g
(
x∗
1,k +

NI∆t
Q∗

1

)
+ g

(
x∗
2,k +

NI∆t
Q∗

2

)

+ I(R∗
1 +R∗

2),

Q∗ =

[
Q∗

1

Q∗
2

]
, R∗ =

[
R∗

1

R∗
2

]
,

(5.1)

where the superscript ∗ denotes the true value of the variable, xstr,k =
[
x1,k x2,k

]T
are the SOCs of the two cells, and Q and R are capacity and resistance.

In the Newton observer designed in Chapter IV, the capacity and resistance of

both cells are assumed to be the rated values Q0 and R0. Modeling errors, δQ and

δR, and estimation error in SOC, ex,k, are defined as the difference between the true
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values and the assumed/estimated values,

δQ =

[
δQ1

δQ2

]
=

[
Q∗

1 −Q0

Q∗
2 −Q0

]

δR =

[
δR1

δR2

]
=

[
R∗

1 −R0

R∗
2 −R0

]

ex,k = x∗
str,k − x̂str,k =

[
x∗
1,k − x̂1,k

x∗
2,k − x̂2,k

]
.

(5.2)

Based on Eq.(5.1), variation of Vstr,[k,k+N ] under (small) deviation of xstr,k, Q and R

can be obtained as,

δVstr,[k,k+N ] =
∂H

∂xstr,k

δxstr,k +
∂H

∂Q
δQ+

∂H

∂R
δR, (5.3)

where ∂H
∂xstr,k

is the sensitivity matrix for SOC estimation,

Sx(x
∗
str,k) =

∂H

∂xstr,k

(x∗
str,k, Q

∗) =


g′(x∗

1,k) g′(x∗
2,k)

g′
(
x∗
1,k +

I∆t
Q∗

1

)
g′
(
x∗
2,k +

I∆t
Q∗

2

)
... ...

g′
(
x∗
1,k +

NI∆t
Q∗

1

)
g′
(
x∗
2,k +

NI∆t
Q∗

2

)

 (5.4)

and

∂H

∂Q
=


0 0

−g′
(
x∗
1,k +

I∆t
Q∗

1

)
I∆t
(Q∗

1)
2 −g′

(
x∗
2,k +

I∆t
Q∗

2

)
I∆t
(Q∗

2)
2

... ...

−g′
(
x∗
1,k +

NI∆t
Q∗

1

)
NI∆t
(Q∗

1)
2 −g′

(
x∗
2,k +

NI∆t
Q∗

2

)
NI∆t
(Q∗

2)
2

 ,

∂H

∂R
=


I I

I I

... ...

I I

 .

(5.5)

By taking δQ and δR as the modeling uncertainty, δxstr,k represents the resulting

SOC estimation error ex,k, and δVstr,[k,k+N ]is the mismatch between the measured

and the estimated voltage trajectory. Since the Newton observer estimates x̂str,k by

minimizing the least square error in voltage, δVstr,[k,k+N ] is usually small. Based on
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Eq.(5.3), with ex,k = δxstr,k, the SOC estimation error ex,k can be quantified as

ex,k =
(
Sx(x

∗
str,k, Q

∗)
)−1[

δVstr,[k,k+N ] −
∂H

∂Q
(x∗

str,k, Q
∗)δQ− ∂H

∂R
δR

]
. (5.6)

For the convenience of comparison, Eq. (5.6) needs to be normalized to the form of

percentage error, as

ex,k,% =
(
Sx(x

∗
str,k, Q

∗)
)−1(

δVstr,[k,k+N ],% − ∂H

∂Q
δQ% − ∂H

∂R
δR%

)
, (5.7)

where

ex,k,% =

x∗
1,k−x̂1,k

x∗
1,k

x∗
2,k−x̂2,k

x∗
2,k

 ,

δQ% =

[
Q∗

1−Q0

Q∗
1

Q∗
2−Q0

Q∗
2

]
, δR% =

[
R∗

1−R0

R∗
1

R∗
2−R0

R∗
2

]
.

(5.8)

The matrices Sx,
∂H
∂Q

∂H
∂R

, and δVstr,[k,k+N ],% are normalized as

[
Sx

]
j,l

=
[ ∂H

∂xstr,k

]
j,l

x∗
l,k

V ∗
str,k+j−1

,

[∂H
∂Q

]
j,l

=
[∂H
∂Q

]
j,l

Q∗
l

V ∗
str,k+j−1

,

[∂H
∂R

]
j,l

=
[∂H
∂R

]
j,l

R∗
l

V ∗
str,k+j−1

,

[
δVstr,[k,k+N ],%

]
j
=

δVstr,k+j−1

V ∗
str,k+j−1

,

(5.9)

where [·]j,l denotes the matrix entry, (j for row index and l for column index).

5.2.2 Robustness of SOC Estimation under Different Combinations of

SOC and Capacity Imbalance

The normalized sensitivity matrix Sx and the derived SOC estimation error under

capacity and resistance uncertainty in Eq.(5.8) are used to analyzed the robustness

of SOC estimation in this subsection. It will be shown that the robustness is poor

under certain combinations of SOC and capacity imbalance.

The sensitivity matrix Sx is studied first, whose singular values indicate the ro-
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Figure 5.2: Singular Value σ1 of the sensitivity matrix S at the End of Charging.

bustness of the estimation problem [85, 126]. In the presence of model uncertainty,

according to Eq.(5.8) where Sx is inverted, the larger the singular values are, the

smaller the estimation error ex,k would be. According to Eq.(5.4), Sx is dependent on

SOC x∗
str,k and capacity Q∗, but not on resistance R∗. Since SOC estimation is a non-

linear estimation problem, sensitivity needs to be discussed for different combinations

of x∗
str,k and Q∗. The capacities Q∗

1 and Q∗
2 are considered as varying between 100%

and 95% of the rated capacity Q0. Under capacity imbalance, the SOC imbalance will

not be constant during battery operation. Therefore, reference SOCs, x∗
1,0 and x∗

2,0,

are defined around 0%, which vary from 0%-5% respectively. The resulting imbalance

in reference SOC and capacity,

∆x∗
0 = x∗

1,0 − x∗
2,0, ∆Q∗

% =
Q∗

1 −Q∗
2

Q0

, (5.10)

will both vary between −5% and +5%. The singular values of Sx, σ1 and σ2, are

calculated at the last estimation step (the end of charging) for all the combinations,

as shown in Fig. 5.2 and Fig. 5.3.

The smaller singular value σ2 is the critical one that determines the robustness

of estimation. As seen in Fig. 5.3, the values of σ2 for most combinations are above

0.03, except those on the diagonal of the ∆x∗
0−∆Q∗ plane. These combinations lead

to unrobust estimation of SOCs, with condition numbers of Sx κ ≥ 99 as compared

to κ < 50 elsewhere. The existence of these combinations can be deduced from the

structure of Sx in Eq.(5.4). If the SOCs of the two cells, at the end of charging, are
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close to each other, the two columns of Sx will be nearly identical, leading to large

condition number of Sx. Such cases can be represented as

x∗
1,0 +

∫
Idt

Q∗
1

≈ x∗
2,0 +

∫
Idt

Q∗
2

⇒ x∗
1,0 − x∗

2,0 ≈
∫
Idt

Q∗
1

Q∗
1 −Q∗

2

Q∗
2

,

(5.11)

where
∫
Idt is the change in stored energy (in amp hour) from the reference point

to the end of charging. When the capacity imbalance is within ±5%, we have Q∗
1 ≈

Q∗
2 ≈ Q0, giving

x∗
1,0 − x∗

2,0 ≈
∫
Idt

Q0

Q∗
1 −Q∗

2

Q0

⇒ ∆x∗
0 ≈

∫
Idt

Q0

∆Q∗
%. (5.12)

Since
∫
Idt is close to the rated capacity Q0 from the reference point (around 0%

SOC) to the end of charging (near 100% SOC), Eq.(5.12) yields

∆x∗
0 ≈ ∆Q∗

%. (5.13)

Consequently, the weakly robust combinations lie along the diagonal of the ∆x∗
0−∆Q∗

plane.
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Figure 5.4: Simulated SOC Estimation under 5 Combinations of SOC Imbalance and
Degradation.

To quantify the impact of robustness, the SOC estimation errors under some com-

binations of SOC and capacity/resistance imbalance is to be discussed as examples.

Five combinations are considered, which locate at the labeled spots 1⃝- 5⃝ on the

∆x∗
0 − ∆Q∗ plane in Fig. 5.3. The specifications of these combinations are listed

in Table 5.1. The imbalance in capacity and resistance is assumed to be caused by

differing degree of battery degradation, and the percentage of capacity fade is pro-

jected to be the same as that of resistance growth. The singular values and condition

number of the sensitivity matrix, as well as the predicted estimation errors based on

Eq.(5.7) are listed in Table 5.1. Combinations 1⃝- 3⃝ are in the strongly robust region,

with singular value σ2 > 0.04 and condition number κ ≤ 50. Combinations 4⃝ and

5⃝, lying on the diagonal of the ∆x∗
0 −∆Q∗ plane, are weakly robust with σ2 < 0.03

and condition number κ ≥ 99. The SOC estimation of the Newton observer for

these combinations is simulated and shown in Fig. 5.4. It can be seen that the SOC

estimation of combinations 1⃝- 3⃝ is not greatly affected by the model uncertainty,

especially for the critical cell 1, which is fully charged at the end. The SOC estima-

tion errors seen in simulation are close to the predicted errors based on Eq.(5.7). For

combinations 4⃝ and 5⃝, the SOCs of the two cells are almost the same at the end

of charging, yielding weak robustness and hence larger estimation errors. In case 5⃝
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especially, because the SOCs of the two cells are identical, one of the singular values

of Sx is zero, resulting in infinite theoretical SOC estimation errors under capacity

uncertainty. However, the errors seen in simulation are not unbounded (only −1.25%

for cell 1 and 1.91% for cell 2). The reason is that the designed Newton observer uses

the Levenberg-Marquardt iteration in Eq.(4.43) for SOC estimation. In the original

Newton observer (Eq.(4.41)), the Jacobian matrix ∂H
∂xstr,k

(x̂j
str,k) needs to be inverted

during the computation process. It is noted that the Jacobian matrix takes the same

form as the sensitivity matrix Sx, except that the estimated xstr,k is used in place

of the actual SOCs. Therefore, the estimation could not be performed for case 5⃝
(equivalent to infinite estimation error) because the Jacobian matrix is not invertible.

When the Levenberg-Marquardt iteration is applied, a factor bI is added to the Ja-

cobian matrix to make the matrix inversion feasible, and thus prevent the estimation

errors from being unbounded.
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5.3 Joint Estimation of Cell SOCs and Capacities

It has been shown that the SOC estimation will not be robust under all combina-

tions of SOC and capacity imbalance. Although the Levenberg-Marquardt iteration

can be used to improve the robustness, it cannot eradicate the impact of uncertainty

in battery capacity. Capacity estimation is highly desirable due to three reasons.

First, with correct capacity values, SOC estimation by the Newton observer will be

more accurate under all combinations in the high SOC range. Second, in the mid-

dle SOC range where the cell SOCs are not observable from the string voltage, the

open-loop SOC estimation can still be applied based on coulomb counting, and its

accuracy can be improved with correct capacity. In addition, monitoring capacity

fade is an important aspect of evaluating battery state of health (SOH) [127, 128].

In this section, the capacities of the two-cell string will be estimated jointly with

SOCs under reduced voltage sensing. Based on the Cramer-Rao bound analysis, it is

shown that the voltage trajectory required for accurate joint estimation of SOCs and

capacities needs to cover a wide range of SOC variation and include large number

of data points. The Newton-Raphson method is then applied for estimation, where

singular value decomposition of the Jacobian matrix is used to enhance the robustness

of estimation. The overall estimation scheme, which includes the real-time SOC

estimation and off-line joint estimation of SOCs and capacities, will also be discussed.

5.3.1 Determination of Data Collection Strategy based on Cramer-Rao

Bound

Like SOC estimation, the joint estimation of capacity and SOC will be based

on the trajectory of the total voltage over multiple time instants. The procedures

of calculating the Cramer-Rao bound of SOC and capacity estimation based on the

voltage trajectory is to be introduced first. It will then be used to determine the

SOC variation and number of data points that are needed in a voltage trajectory to

achieve certain accuracy of estimation.

The first step is to write the total voltage trajectory (under constant charging

101



current) as a function of capacities and SOCs,

Vstr,[k,k+N ] = H(xstr,k+N , Q) =


g
(
x1,k+N − NI∆t

Q1

)
+ g

(
x2,k+N − NI∆t

Q2

)
...

g
(
x1,k+N − I∆t

Q1

)
+ g

(
x2,k+N − I∆t

Q2

)
g(x1,k+N) + g(x2,k+N)

+ I(R1 +R2).

(5.14)

It is noted that the SOC variable is chosen as xstr,k+N , which is the SOC when the

batteries are close to being fully charged. This is because SOC estimation is most

critical at high end to prevent overcharge, and thus the variance of SOC estimation

at that point is of most interest. Based on Eq.(5.14), the sensitivity matrix of the

voltage trajectory to SOCs and capacities can be obtained as

∂H

∂(xstr,k+N , Q)
=

g′
(
x1,k+N − NI∆t

Q1

)
g′
(
x2,k+N − NI∆t

Q2

)
g′
(
x1,k+N − NI∆t

Q1

)
NI∆t
(Q1)2

g′
(
x2,k+N − NI∆t

Q2

)
NI∆t
(Q2)2

... ... ... ...

g′
(
x1,k+N − I∆t

Q1

)
g′
(
x2,k+N − I∆t

Q2

)
g′
(
x1,k+N − I∆t

Q1

)
I∆t
(Q1)2

g′
(
x2,k+N + I∆t

Q2

)
I∆t
(Q2)2

g′(x1,k+N) g′(x2,k+N) 0 0

 .

(5.15)

If the variance of voltage measurement noises is σ2
V , the Fisher information matrix

[85] of the voltage trajectory is

Finfo =

(
∂H

∂(xstr,k+N , Q)

)T


1
σ2
V

· · ·
1
σ2
V

 ∂H

∂(xstr,k+N , Q)
. (5.16)

The Cramer-Rao bound can be obtained as

cov(x̂str,k+N , Q̂) ≥ F−1
info, (5.17)

which provides the lower bound on the covariance of the SOC and capacity estimation.

Specifically, the diagonal elements of the 4×4 F−1
info matrix represent the lower bound
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Figure 5.5: Evolution of cell SOCs under constant charging current of 1 C when
x1,0 = 0.05 x2,0 = 0, Q1 = Q0, Q2 = 0.95Q0.

on the variance of the 4 variables to be estimated,

σ2
CR =

[
σ2
CR(x1,k+N), σ2

CR(x2,k+N), σ2
CR(Q1), σ2

CR(Q2)
]T

= diag(F−1
info),

σest(θ̂) ≥ σCR(θ), ∀θ = x1,k+N , x2,k+N , Q1, Q2,
(5.18)

where σCR stands for the standard deviation specified by the Cramer-Rao bound, and

σest is the standard deviation of the estimation.

The Cramer-Rao bound can be used to evaluate the sufficiency of the dataset to

achieve a certain level of estimation accuracy. For joint estimation of individual cell

SOCs and capacities, the Cramer-Rao bound is shown to be highly dependent on

the SOC variation covered by and the number of data points contained in the volt-

age trajectory, which correspond to the terms NI∆t
Q

and N in Eq.(5.14) respectively.

Consider the case

x1,0 = 0.05 x2,0 = 0, Q1 = Q0, Q2 = 0.95Q0 (5.19)

as an example. Under constant charging current of 1 C, the SOC evolution of the

two cells is shown in Fig. 5.5. The relationship between the normalized σCR,

σCR,%(Qi) =
σCR(Qi)

Qi

, σCR,%(xi,k+N) =
σCR(xi,k+N)

xi,k+N

, i = 1, 2 (5.20)
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by the voltage trajectory (for the case x1,0 = 0.05 x2,0 = 0, Q1 =
Q0, Q2 = 0.95Q0).

and the SOC variation of the voltage trajectory is plotted in Fig. 5.6. The standard

deviation of the voltage measurement noises is set as 3 mV and the sampling period is

1 s. The end-points of different voltage trajectories are fixed at t = 3368s, where the

SOCs of both cells are at 98%. The starting points vary from t = 344s to t = 2750s,

corresponding to initial SOCs of 10% and 80%. Hence the SOC variation represented

in the x-axis in Fig. 5.6 ranges from 20% to 90%. The reason of considering different

voltage trajectories in this way is that the batteries in PHEVs and BEVs are usu-

ally charged to nearly 100% during overnight charging, but they are not necessarily

discharged to the same low point in daily usage. Only the Cramer-Rao bounds of x1

and Q1 are shown in Fig. 5.6, since those of x2 and Q2 are similar. It can be seen

that the standard deviation of the capacity estimation is greatly affected by the SOC

variation of the voltage trajectory. The accuracy of capacity estimation is improved

(with small standard deviation) under large SOC variation. The standard deviation

of estimation is also dependent on the number of data points contained in the voltage

trajectory (sampling rate of voltage measurement). In Fig 5.7, values of σCR%
are

plotted for voltage trajectories which cover the same SOC variation (80%) but with

different number of data points. The x-axis at the bottom denotes the number of

data points contained in the voltage trajectory (N in Eq. (5.14)), and the x-axis at

the top represents the corresponding sampling rate (1/∆t in Eq. (5.14)). It is noted

that good estimation accuracy needs to be achieved with large number of data points.
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For onboard estimation of SOC and capacity, the data collection strategy, includ-

ing selection of SOC variation and number of data points in the voltage trajectory,

needs to satisfy required estimation accuracy under all possible combinations of SOC

and capacity imbalance. Here, a range of combinations of SOC and capacity is con-

sidered,

x1,0 = 0.05, Q1 = 0.95Q0,

x2,0 ∈ [0, 0.1], Q2 ∈ [0.9Q0, Q0].
(5.21)

corresponding to SOC and capacity imbalance of

∆x0 = x1,0 − x2,0 ∈ [−0.05, 0.05],

∆xk+N = x1,k+N − x2,k+N ∈ [−0.1, 0.1],

∆Q% =
Q1 −Q2

Q0

∈ [−0.05, 0.05],

(5.22)

where xk+N is the SOC at the high end when the batteries are charged. As an example,

the values of σCR,%(x1,k+N) and σCR,%(Q1) for all the considered combinations under

SOC variation range of 90% and sampling rate of 0.2 Hz are shown in Fig. 5.8 and

Fig. 5.9. It is noted that the estimation accuracy is poor (with large values of σCR,%)
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Figure 5.8: σCR,%(x1,k+N) for all combinations of SOC and capacity imbalance in
Eq.(5.22) when NI∆t

Q
= 90% and 1/∆t = 0.2Hz.

Figure 5.9: σCR,%(Q1) for all combinations of SOC and capacity imbalance in
Eq.(5.22) when NI∆t

Q
= 90% and 1/∆t = 0.2Hz.

when both |∆Q%| and |∆x0| are small. The reason is that for those combinations, the

imbalance between the two cell capacities and SOCs (throughout the trajectory) are

very small, and thus the first two and the last two columns of the sensitivity matrix
∂H

∂(xstr,k+N ,Q)
in Eq.(5.15) are almost identical. Therefore, the sensitivity matrix will

have small singular values, resulting in large diagonal elements of the inverse of Finfo
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Figure 5.10: Worst-case σCR of all considered combinations of SOC and capacity im-
balance for voltage trajectories with different SOC variation and number
of data points.

which contains the sensitivity matrix. For such combinations, direct estimation of all

four parameters, x1 x2, Q1 and Q2, will be inaccurate and unrobust. Nevertheless,

since the imbalance between the SOCs and capacities is insignificant, estimation of

the average SOC and capacity will be adequate for these combinations. In the next

subsection, the Newton-Raphson algorithm for capacity and SOC joint estimation

will be introduced, which is based on singular value decomposition of the sensitivity

matrix. The designed observer will estimate only the average SOC and capacity

when both |∆Q%| and |∆x0| are small. Here, when determining the data collection

strategy, we only consider the combinations with |∆Q%| > 1% and |∆x0| > 1%.

The maximum (worst-case) σCR,% of all the considered combinations under voltage

trajectories with different SOC variation and number of data points are shown in

Fig. 5.10. The presented data are also listed in Table. 5.2. The data collection

strategy can be determined based on Table. 5.2 according to the specified estimation

accuracy. For example, if it is required that the standard deviation of SOC estimation

needs to be less than 1%, and that of capacity estimation within 1.5%, the SOC

variation should be larger than 80% and the data points need to be more than 600.

Obviously, larger SOC variation and number of data points in the voltage trajectory
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SOC Variation No. of Data σCR,%(Q1) σCR,%(Q2) σCR(x1,k+N) σCR(x2,k+N)
50% 150 ≤ 7.83% ≤ 7.74% ≤ 2.67% ≤ 2.70%
60% 150 ≤ 5.00% ≤ 4.91% ≤ 2.05% ≤ 2.07%
70% 150 ≤ 3.51% ≤ 3.46% ≤ 1.69% ≤ 1.71%
80% 150 ≤ 2.76% ≤ 2.83% ≤ 1.44% ≤ 1.45%
85% 150 ≤ 2.42% ≤ 2.52% ≤ 1.37% ≤ 1.39%
90% 150 ≤ 1.54% ≤ 1.57% ≤ 1.16% ≤ 1.19%
50% 300 ≤ 5.77% ≤ 5.72% ≤ 1.93% ≤ 1.95%
60% 300 ≤ 3.58% ≤ 3.55% ≤ 1.47% ≤ 1.48%
70% 300 ≤ 2.57% ≤ 2.49% ≤ 1.22% ≤ 1.23%
80% 300 ≤ 1.99% ≤ 2.02% ≤ 1.03% ≤ 1.04%
85% 300 ≤ 1.73% ≤ 1.75% ≤ 0.98% ≤ 0.99%
90% 300 ≤ 1.07% ≤ 1.10% ≤ 0.81% ≤ 0.85%
50% 600 ≤ 4.05% ≤ 4.02% ≤ 1.36% ≤ 1.38%
60% 600 ≤ 2.53% ≤ 2.51% ≤ 1.04% ≤ 1.05%
70% 600 ≤ 1.83% ≤ 1.78% ≤ 0.87% ≤ 0.87%
80% 600 ≤ 1.43% ≤ 1.44% ≤ 0.73% ≤ 0.74%
85% 600 ≤ 1.25% ≤ 1.24% ≤ 0.69% ≤ 0.70%
90% 3000 ≤ 0.75% ≤ 0.79% ≤ 0.58% ≤ 0.61%
50% 3000 ≤ 1.82% ≤ 1.80% ≤ 0.61% ≤ 0.62%
60% 3000 ≤ 1.12% ≤ 1.12% ≤ 0.46% ≤ 0.47%
70% 3000 ≤ 0.82% ≤ 0.80% ≤ 0.39% ≤ 0.39%
80% 3000 ≤ 0.64% ≤ 0.64% ≤ 0.33% ≤ 0.33%
85% 3000 ≤ 0.56% ≤ 0.56% ≤ 0.31% ≤ 0.31%
90% 3000 ≤ 0.34% ≤ 0.35% ≤ 0.26% ≤ 0.27%

Table 5.2: Initial guess and identification results of parameters.
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are favored for better estimation accuracy. However, as has been mentioned, since

the batteries are not necessarily discharged to low SOC on a daily basis, e.g. 20%,

large SOC variation may not be achievable at every overnight charging. Meanwhile,

computational load and required data storage will increase with the number of data

processed, which might be a concern for onboard microprocessors. In addition, it is

noted that the Cramer-Rao bound indicates the theoretical best accuracy that can

be achieved by any unbiased estimator, but the existence of an estimator that could

achieve the bound is not guaranteed. Therefore, the requirements on the voltage

trajectory based on the Cramer-Rao bound should be considered as necessary but

not sufficient conditions.

5.3.2 SOC and Capacity Joint Estimation Algorithm based on the Newton-

Raphson Method

Based on the voltage trajectory in Eq.(5.14), the Newton-Raphson method can

be used to estimate both SOC and capacity over iterations,[
x̂j+1
str,k+N

Q̂j+1

]
=

[
x̂j
str,k+N

Q̂j

]
+
[
J(x̂j

str,k+N , Q̂
j)
]−1(

Vstr,[k,k+N ] −H(x̂j
str,k+N , Q̂

j)
)
,

J(x̂j
str,k+N , Q̂

j) =
∂H

∂(xstr,k+N , Q)
(x̂j

str,k+N , Q̂
j)

(5.23)

where the Jacobian matrix J is the same as the sensitivity matrix specified in Eq.(5.15)

except that the actual SOCs and capacities are replaced by the estimates.

As has been mentioned, when the SOC and capacity imbalance is very small, the

Jacobian matrix in Eq.(5.23) will be close to rank-deficient, no matter what SOC

variation NI∆t
Q

and number of data points N are chosen. The estimation will be

unrobust as the Jacobian is hardly invertible with large condition number. Several

methods can be used to address this issue. For example, the previously introduced

Levenberg-Marquardt iteration in Eq.(4.43) can be used instead, where a stabilizing

factor b is applied to improve the condition number of the Jacobian. Nevertheless, it

is not clear how to tune the stabilizing factor to make the estimation robust for all

combinations.

Another method to improve the robustness of estimation under slight imbalance

is based on singular value decomposition (SVD) of the Jacobian matrix [65]. The
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SVD [129] of the Jacobian matrix can be represented as

J(x̂j
str,k+N , Q̂

j) = UΣVT ,

U ∈RN+1×N+1, Σ ∈ RN+1×4, V ∈ R4×4,
(5.24)

where U and V are unitary matrices consisting of the left and right singular vectors

of J respectively, and Σ is a rectangular diagonal matrix whose diagonal elements

correspond to the singular values of J,

Σ =



σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

0 0 0 σ4

0 0 0 0

· · · · · ·
0 0 0 0


. (5.25)

Let’s arrange the four singular values as σ1 ≥ σ2 ≥ σ3 ≥ σ4. The pseudoinverse of J

can be obtained based on SVD as

J−1 = VΣ−1UT , (5.26)

where

Σ−1 =


σ1

−1 0 0 0 · · · 0

0 σ2
−1 0 0 · · · 0

0 0 σ3
−1 0 · · · 0

0 0 0 σ4
−1 · · · 0

 . (5.27)

When the SOC and capacity imbalance is insignificant, the two smaller singular values

of J, σ3 and σ4, will be close to zero. Therefore, according to Eq.(5.27), the inversion

of J will be unrobust because σ−1
3 and σ−1

4 are close to infinity. To address this issue,

a modified pseudoinverse can be used instead, where the σ−1
i term in Eq.(5.27) is

replaced by 0 if σi is smaller than a certain threshold [65]. Two thresholds, δ1 and

δ2, are applied here to constrain the singular values as well as the condition number

of J, which are

σ−1
i → 0 if σi < δ1 or

σi

σmax

< δ2. (5.28)

By applying Eq.(5.28), the estimation will proceed only in the robustly observable

part of the system, which are indicated by the right singular vectors in V. Consider

110



Figure 5.11: Directions of the observable and unobservable parts of capacity and SOC
estimation for the case in Eq.(5.29).

the case

x1,0 = 0.05 x2,0 = 0.05, Q1 = 0.95Q0, Q2 = 0.95Q0 (5.29)

as an example. Under SOC variation NI∆t
Q

= 90% and number of data pointsN = 300,

the Σ and V matrices are calculated as

Σ =



1.66(σ1) 0 0 0

0 0.56(σ2) 0 0

0 0 0(σ3) 0

0 0 0 0(σ4)

· · · · · ·
0 0 0 0


,

V =


−0.6775 0.2024 −0.5129 0.4868

−0.6775 0.2024 0.5129 −0.4868

−0.2024 −0.6775 −0.4868 −0.5129

−0.2024 −0.6775 0.4868 0.5129

 .

(5.30)

The first two columns of V, which correspond to the non-zero singular values σ1 and

σ2, represent the (strongly) observable part of
[
x1,k+N x2,k+N Q1 Q2

]T
, and the

last two columns (with 0 singular values) are associated with the unobservable part.

The directions of the observable and unobservable parts are shown in Fig. 5.11. When

the inverse of Jacobian is calculated based on Eq.(5.26)-Eq.(5.28), the estimation will
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proceed along the observable direction, which are x1,k+N = x2,k+N and Q1 and Q2.

This direction is where the actual SOCs and capacities lie in, as specified in Eq.(5.29).

Therefore, the estimates will still converge to the actual values, and the robustness

of estimation is greatly enhanced compared to the algorithm without SVD. When

the imbalance between SOCs and capacities is small but non-zero, all four singular

values will be greater than zero. The directions are then categorized as strongly

observable directions and weakly observable directions. The (strongly) observable

directions will be roughly aligned with x1,k+N = x2,k+N and Q1 = Q2. By neglecting

the weakly observable directions based on Eq.(5.28), the estimates will converge to

the approximate average values of SOC and capacity, which are good enough under

slight imbalance.

Many methods are available for implementing the singular value decomposition

of the Jacobian matrix J online. The simplest way is to apply principal component

analysis (PCA) to JTJ [129, 130]. However, this method may suffer from numerical

issues. For example, it is shown in [131] that JTJ might lose rank if certain entries of

J are remarkably smaller than 1. In order to improve the robustness of SVD, various

methods can be considered, including the iterative method based on bidiagonal matrix

transformation [129], alternating L1 regression algorithm [130] among others.

Simulation has been conducted to show the performance of the estimation algo-

rithm for different combinations of SOC and capacity imbalance under measurement

noises. The results for the five cases in Table 5.1 (with no uncertainty in resistance)

by using voltage trajectories covering two different SOC variation NI∆t
Q

and two dif-

ferent number of data points (N) are shown in Fig. 5.12 - Fig. 5.15 (one for each

variable) as examples. The standard deviation of the Gaussian voltage measurement

noises is set as 3 mV , and simulation is repeated for 100 times so that the stan-

dard deviation of the estimates can be calculated approximately. It is noted that

the Cramer-Rao bound for case 6, which has no SOC and capacity imbalance, is not

listed because the Fisher information matrix is not invertible due to zero singular

values of the sensitivity matrix in Eq.(5.15). It can be seen from the figures that the

standard deviation calculated from simulation is generally larger than that specified

by the Cramer-Rao bound with very few exceptions (the reason might be that 100

repetitions are still not sufficient for characterizing the standard deviation of the esti-

mation). The maximum standard deviation (in percentage) is listed in Table 5.3 and

compared with the Cramer-Rao bound for the shown NI∆t
Q

and N in Fig. 5.12 - Fig.

5.15. The trend of estimation accuracy seen in simulation is the same as that based

on Cramer-Rao bound, which improves under larger SOC variation and number of
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Figure 5.12: Standard deviation of the estimate of Q1 calculated based on simulation
and Cramer-Rao bound.
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Figure 5.13: Standard deviation of the estimate of Q2 calculated based on simulation
and Cramer-Rao bound.

data points covered by the voltage trajectory.
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Figure 5.14: Standard deviation of the estimate of x1,k+N calculated based on simu-
lation and Cramer-Rao bound.
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Figure 5.15: Standard deviation of the estimate of x2,k+N calculated based on simu-
lation and Cramer-Rao bound.

5.4 Overall Estimation Scheme - Combining Real-Time SOC

Estimation and Off-line Joint Estimation of SOC and

Capacity

The SOC estimation algorithm under reduced voltage sensing based on the Newton

observer has been studied in Chapter IV, and the algorithm for joint estimation of
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NI∆t
Q

and N NI∆t
Q

= 90% NI∆t
Q

= 85% NI∆t
Q

= 90%

N = 600 N = 600 N = 300
σCR,%(Q1) ≤ 0.57% ≤ 0.90% ≤ 0.80%
σSim,%(Q1) ≤ 0.57% ≤ 1.16% ≤ 0.83%
σCR,%(Q2) ≤ 0.57% ≤ 0.84% ≤ 0.79%
σSim,%(Q2) ≤ 0.64% ≤ 1.06% ≤ 0.90%

σCR,%(x1,k+N) ≤ 0.41% ≤ 0.48% ≤ 0.58%
σSim,%(x1,k+N) ≤ 0.43% ≤ 0.45% ≤ 0.55%
σCR,%(x2,k+N) ≤ 0.44% ≤ 0.51% ≤ 0.62%
σSim,%(x2,k+N) ≤ 0.53% ≤ 0.57% ≤ 0.71%

Table 5.3: Comparison of the standard deviation calculated based on Cramer-Rao
bound and simulation.

Figure 5.16: Voltage trajectories used for real-time SOC estimation and off-line joint
estimation of SOC and capacity.

SOC and capacity is discussed in the previous section. The overall estimation scheme

which could be used in the onboard BMS will be formulated in this section.

Since the overcharge of batteries should be prevented strictly, the SOC estimation

algorithm in Eq.(4.41) needs to be performed in real time. The algorithm is currently

designed primarily for constant current charging, which emulates the daily (overnight)

charging of PHEVs and BEVs. At each estimation step, the moving window of

the voltage trajectory used could not be too large (with small SOC variation and

number of data points), as shown in Fig. 5.16, for two reasons. First, due to real
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time requirement, computation needs to be fast enough and thus the number of

data points used should be limited. Second, small SOC variation could reduce the

estimation error caused by the uncertainty in capacity. In addition, the change in SOC

between consecutive estimation windows also needs to be small enough to eradicate

the risk of overcharging the battery during estimation interval. Therefore, as has

been mentioned in Chapter IV, the number of data points contained in the voltage

trajectory is chosen as N = 15, which are sampled 10 seconds apart (10 s from k

to k + 1). The time interval between each estimation step is chosen as 20 seconds.

In this way, SOC estimation is updated every 20 seconds, corresponding to an SOC

increment of 0.5%.

As for the joint estimation of SOC and capacity, it will not be performed in real

time but rather in off-line mode. The reason is that in order to achieve high estimation

accuracy, the algorithm needs to use voltage trajectories that cover a wide range of

SOC variation and large number of data points (hundreds and even thousands), as

shown in Fig. 5.16. Therefore, the joint estimation is only performed once after the

charging is completed due to the high computational load. The estimates obtained

from real-time SOC estimation are used as the initial guess for joint estimation. In

addition, the algorithm is scheduled to perform on a weekly or monthly basis instead

of on a daily basis. This is because, on one hand, the battery capacity is usually

changing very slowly over lifetime due to degradation, and thus weekly or monthly

update is sufficient. On the other hand, the batteries in EVs are not necessarily

discharged to a low SOC (e.g. 20%) everyday, but possibly once every week or

month. The joint estimation will be conducted when low SOC is reached so that the

SOC variation in the voltage trajectory is large enough to provide good estimation

accuracy. The estimated capacities will be used in the subsequent real-time SOC

estimation.

5.5 Conclusions

The issue of joint estimation of battery capacity and SOC imbalance is discussed

in this chapter. First, it is shown that the accuracy of the previously designed SOC

estimation algorithm will be affected by uncertainty (and imbalance) in battery ca-

pacity. The impact could be inegligible under some combinations of SOC and capacity

imbalance. An algorithm for joint estimation of SOC and capacity is then designed

based on the Newton-Raphson method. Based on the sensitivity and Cramer-Rao

bound analysis, it is found that to achieve high estimation accuracy, the voltage
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trajectory needs to cover large SOC variation and number of data points. The quan-

titative relationship between SOC variation, number of data points and the variance

of the estimates is established based on the Cramer-Rao bound. In order to improve

the robustness of estimation under small imbalance, singular value decomposition is

applied to the Jacobian matrix to constrain the estimation along the strongly ob-

servable directions. The estimation of battery capacity can not only improve the

accuracy of SOC estimation, but also be used to evaluate battery health based on

capacity shrink. Finally, the overall estimation scheme is introduced, where the SOC

estimation is scheduled to perform in real time, and the joint estimation of SOC and

capacity is conducted on a weekly or monthly basis.
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CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

This dissertation is dedicated to studying advanced techniques for battery state

estimation, which is critical for the battery management system.

First, adaptive estimation of battery thermal dynamics is investigated both on

the single-cell level and on the pack level. On the single-cell level, an on-line param-

eterization algorithm is designed to identify the parameters of a two-state thermal

model. The parameters are then used in the model-based observer to estimate the

unmeasurable core temperature of a cylindrical battery cell. The identified battery

internal resistance can also be used for battery state of health estimation. Pack-level

temperature estimation is then studied by using a battery string thermal model con-

structed based on the single-cell model. Temperature sensor deployment strategy is

explored based on observability analysis of the string thermal model. Nevertheless,

since the number of sensors implemented in commercial battery packs is much less

than the number required for observability, robust optimal observers for temperature

estimation are then designed under unobservable condition subject to uncertainty in

battery internal resistance. The proposed methodology can be used for robust and

adaptive estimation of temperature distribution in a battery pack, which captures

the temperature difference both between cells and across a single cell.

Second, the method is designed for estimating individual cell state of charge and

capacity under reduced voltage sensing. It is first shown that the observability of

the individual cell SOCs from the total voltage depends on the nonlinearity of the

voltage-SOC relationship. The Newton observer is then used to implement the SOC

estimation by using the trajectory of the measured total voltage over time. The

discussion is later extended to the more complicated case where both SOC and ca-

pacity imbalance exist in the battery string. Robustness of the previously developed

118



SOC estimation algorithm under capacity imbalance (and hence uncertainty) is first

examined. The Newton observer is then applied for joint estimation of SOC and

capacity. In addition, the quantitative relationship between the measurement noise

and the variance of estimates is established based on Cramer-Rao bound analysis to

guide the data collection strategy. The developed estimation technique provides the

potential of reducing the voltage sensing in battery packs by half, which is significant

for cutting the cost of the battery management system.

6.2 Recommendations for Future Work

Future work for improving and/or extending the research in this dissertation is

summarized as follows.

6.2.1 Temperature Estimation on the Battery Pack Level

First, the thermal model of the battery string constructed in Chapter III needs

to be validated under experiments. With experimental data, some pack-level thermal

parameters, such as the cell-to-cell heat conduction resistance, can also be identified.

Based on the validated model, the developed methodology, including the observability

analysis and optimal observer design, could produce more accurate results.

Second, the 1-D battery string model, as shown in Fig. 3.1, considers only the

temperature gradient across the cells along the coolant flow path. The underlying

assumption is that the temperature gradient across different rows (perpendicular to

the flow direction) is negligible. This assumption may not be valid for some pack

configurations, e.g. where the cooling conditions are not the same for cells in different

rows. In this case, a more complicated model, such as a 2-D model, needs to be

considered.

Meanwhile, the measurement technique for pack-level temperature monitoring is

undergoing fast development. For example, in [132], a thin-film temperature sensor is

being developed, which can be easily attached to a single cell to measure its tempera-

ture and pressure. With this small and cheap sensor, more temperature measurements

could be implemented inside a battery pack, which would improve the model-based

temperature estimation by enhancing the observability of temperature states.

6.2.2 SOC and Capacity Estimation under Reduced Voltage Sensing

The work on battery SOC and capacity estimation under reduced voltage sensing

can be extended in the following directions.
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First, it is desirable to extend the algorithm to real-world driving conditions,

which are more commonly seen in the daily operation of electric vehicles. The SOC

estimation algorithm developed in this dissertation based on the Newton Observer has

been validated by experiments under the constant-current charging condition. The

observer is built upon a coulomb counting model, which is sufficient for capturing the

battery voltage dynamics under constant-current charging. When extended to the

complicated driving conditions, the coulomb counting model is no longer adequate for

capturing the battery voltage dynamics. More complicated models need to be used in

this case, including the equivalent circuit model, the simplified electro-chemical model

among others. For example, the equivalent circuit model parameterized in [81, 133]

for the LiFePO4/graphite battery can be considered as a suitable choice. Ideally,

the Newton observer can be built directly upon the new model. However, model

uncertainty will become a major concern. It is impossible to predict the battery

voltage perfectly under dynamic current input with a model, and the mismatch in

voltage could be much larger than that under constant current charging. The voltage

mismatch will translate into SOC estimation error and thus affect the accuracy of

estimation. The robustness of the algorithm is expected to be a major challenge for

SOC estimation under dynamic current.

Second, reduced voltage sensing is limited to the case when the voltage is mea-

sured at a two-cell interval. It is desirable to investigate the more general case of

measuring every n-cell interval so as to further reduce the amount of voltage sensing.

It is possible to extend the methodology developed in this dissertation, such as the ob-

servability analysis and the Newton observer, to the general cases. But some practical

limitations are anticipated. For example, the requirement on the voltage-SOC rela-

tionship for observability of individual cell SOCs will become more stringent. Given

the same battery chemistry, observability will be weaker as more cells are involved.

Computational load might also be a concern as the dimension of the Jacobian matrix

to be inverted in the Newton observer will increase with the number of cells.

In addition, the imbalance (and uncertainty) in battery internal resistance, though

considered in the robustness analysis of SOC estimation, has not been incorporated

in the estimation algorithm. It is noted that when only the total voltage is measured,

it is impossible to identify the resistance of each cell, since they always add up and

show as a lumped ohmic voltage drop. Estimation of the total resistance can be

addressed by augmenting the Newton observer to include the total resistance as a

new variable. Furthermore, the voltage-SOC relationship is assumed to be known and

unchanged in this dissertation. However, as reported in literature [134], the shape
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of the open-circuit-voltage curve may also change over battery lifetime for certain

battery chemistries. The degradation pattern of the shape change and its impact on

imbalance estimation remains to be investigated.

121



APPENDIX

122



APPENDIX A

Discrete-time Parameter Identification Algorithm

for Single Cell Battery Thermal Model

For a discrete-time parametric model,

z(k) = θTϕ(k), (A.1)

the recursive least squares algorithm for parameter identification takes the form [135]

θ̂(k) = θ̂(k − 1) + P (k)ϕ(k)ϵ(k)

P (k) = P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

ϕT (k)P (k − 1)ϕ(k)

ϵ(k) = z(k)− θ̂(k − 1)ϕ(k),

(A.2)

where k denotes the time instant, θ is the parameter vector, z(k) and ϕ(k) are the

observation and regressor in discrete time.

The discrete-time parametric model for single cell battery thermal dynamics is

derived as follows. Based on Eq.(2.1) under small sampling period ∆t, the thermal

model in discrete time can be obtained as

Tc(k) ≈ Tc(k − 1) +
I2(k − 1)Re

Cc

∆t+
Ts(k − 1)− Tc(k − 1)

Rc

∆t

Ts(k) ≈ Ts(k − 1) +
Tc(k − 1)− Ts(k − 1)

Rc

∆t+
Tf (k − 1)− Ts(k − 1)

Ru

∆t,

(A.3)
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or

Tc(k) = (1− ∆t

RcCc

)Tc(k − 1) +
∆t

RcCc

Ts(k − 1) +
∆tRe

Cc

I2(k − 1)

Ts(k) =
∆t

RcCs

Tc(k − 1) + (1− ∆t

RcCs

− ∆t

RuCs

)Ts(k − 1) +
∆t

RuCs

Tf (k − 1).

(A.4)

By combining the two equations in Eq.(A.4) and replacing the unmeasured Tc with

measured I, Tf , and Ts, the parametric model is derived as

Ts(k + 2) =

(
2− ∆t

RcCs

− ∆t

RcCc

− ∆t

RuCs

)
Ts(k + 1)

+

(
∆t

RcCs

+
∆t

RcCc

+
∆t

RuCs

− ∆t2

RcCcRuCs

− 1

)
Ts(k)

+
∆t

RuCs

Tf (k + 1)−
(
1− ∆t2

RcCcRuCs

)
Tf (k) +

Re∆t2

RcCsCc

I2(k).

(A.5)

When Tf is regulated as a steady output, we have Tf (k + 1) = Tf (k), and Eq.(A.5)

will be reduced to

Ts(k + 2) =

(
2− ∆t

RcCs

− ∆t

RcCc

− ∆t

RuCs

)
Ts(k + 1)

+

(
∆t

RcCs

+
∆t

RcCc

+
∆t

RuCs

− ∆t2

RcCcRuCs

− 1

)
Ts(k)

+

(
∆t2

RcCcRuCs

)
Tf (k) +

Re∆t2

RcCsCc

I2(k).

(A.6)

By using the notation for the lumped parameters in Eq.(2.11), the parametric model

is denoted as

Ts(k + 2) = α∆t2I2(k) + β∆t2
(
Tf (k)− Ts(k)

)
+ (2− γ∆t)Ts(k + 1) + (γ∆t− 1)Ts(k).

(A.7)

The least squares algorithm in Eq.(A.2) can then be applied to identify the lumped

parameters α, β and γ, and the original physical parameters could be obtained based

on Eq.(2.12).
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