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ABSTRACT 

Multiple imputation (MI) is a well-established method to handle item-

nonresponse in sample surveys. Survey data obtained from complex sampling designs 

often involve features that include unequal probability of selection, clustering and 

stratification. Because sample design features are frequently related to survey outcomes 

of interest, the theory of MI requires including them in the imputation model to reduce 

the risks of model misspecification and hence to avoid biased inference. However, in 

practice multiply-imputed datasets from complex sample designs are typically imputed 

under simple random sampling assumptions and then analyzed using methods that 

account for the design features. Less commonly-used alternatives such as including case 

weights and/or dummy variables for strata and clusters as predictors typically require 

interaction terms for more complex estimators such as regression coefficients, and can be 

vulnerable to model misspecification and difficult to implement.  

We develop a simple two-step MI framework that accounts for complex sample 

designs using a weighted finite population Bayesian bootstrap (FPBB) method to 

generate draws from the posterior predictive distribution of the population. Imputations 

may then be performed assuming IID data. We propose different variations of the 

weighted FPBB for different sampling designs, and evaluate these methods using three 

studies. Simulation results show that the proposed methods have good frequentist 

properties and are robust to model misspecification compared to alternative approaches. 

We apply the proposed method to accommodate missing data in the Behavioral Risk 

Factor Surveillance System, the National Automotive Sampling System and the National 



 

xii 

 

Health and Nutrition Examination Survey III when estimating means, quantiles and a 

variety of model parameters. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objectives 

Probability sample surveys where each member of the population has a known, 

non-zero probability of being selected form the backbone of empirical research in social 

science and public health. To assure broad representativeness, many sample survey 

designs use unequal probabilities of selection, selection of subjects in stages (introducing 

clustering) and stratification (For theoretical accounts of sampling methods, see Cochran, 

1977 and Särndal et al., 1992). Accordingly, analysis methods for survey data need to 

take into account these complex sample design features.  

It is notable that even the most well-designed sample surveys are imperfect in 

various ways. Missing data presents a particular challenge. Unit nonresponse occurs 

when sampled individuals fail to participate in the survey at all. Item nonresponse occurs 

when sampled individuals do not respond to certain questions. This is common in large 

scale surveys that include an extensive collection of questions. One principled approach 

to handle item nonresponse is multiple imputation (MI) (Rubin 1987). The key to success 

with MI lies in specifying an imputation model that reasonably describes the conditional 

distribution of the missing data given the observed data. Since complex sample design 

features frequently are related to survey variables, it is important to include them in the 

imputation model to reduce the risks of model misspecification and hence to avoid biased 

inference (Reiter, Raghunathan & Kinney, 2006). This thesis concerns methods that use 
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MI to deal with item nonresponse while accounting for complex sample designs. It has 

two objectives:  

(1) To illustrate the bias that can arise using existing MI methods to account for 

complex sample designs when the imputation model is misspecified; 

(2) To propose and evaluate a modified MI framework that accounts for complex 

sample designs with simpler modeling and with no resort to design-based 

estimators. 

We explore the impact of the interrelationship among the data, the sampling mechanism 

and the missingness mechanism on the performances of the existing and the proposed MI 

methods. We use both simulated data and real survey data. The following assumptions are 

made throughout the thesis: 

(1) There are no unit nonresponse problems; 

(2) The data are missing at random (MAR). 

Section 1.2 reviews approaches to survey sampling inference in the complete data 

context, with a focus on Bayesian approach. Section 1.3 reviews the standard multiple 

imputation (MI) as a well-established method to handle item nonresponse that has a 

Bayesian justification. The importance of accounting for complex sample designs in MI 

is discussed from a theoretical perspective. Section 1.4 and 1.5 point out the limitations 

of current techniques, and introduce the proposed method that builds upon the method 

reviewed in section 1.2. Finally, section 1.6 outlines the research question each chapter 

addresses. 

 

1.2 Bayesian approach to survey sampling inference in the complete data context 
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Consider a finite population of size N with two types of measurement on the 

population units: { , }i iY Z  for 1,...,i N , where Y  represents a single survey outcome of 

interest, and Z  represents the design variable used for sample selection. We consider 

three types of Z in this thesis: (1) size measure for probability-proportional-to-size (PPS) 

sampling, (2) cluster indicators for two-stage cluster sampling, and (3) stratum indicators 

for stratified sample design. Typically Z  is known for all units of the population to the 

sampler, but not necessarily to the data analyst. Let 1{ ,..., }i NI I I  denote the vector of 

sample indicator variables, such that 1iI   if unit i is sampled and 0 otherwise. We use 

subscripts s and ns to denote the selected sample of size n and the nonsampled part of the 

population of size N-n, respectively. Thus both Y and Z divide into two parts: 

{( , ),( , )}s ns s nsY Y Z Z . Let { , 1,..., .}s iw w i n   denote the sampling weights, e.g. 

1
1/ /

N

i i i ii
w Z nZ


   for a single-stage PPS sampling design. Figure 1.1 illustrates the 

data from a sample survey in the absence of missing data.  

 
Figure 1.1 The data from a sample survey in the absence of missing data 
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In survey sampling, the objective is usually to learn about some population 

quantity denoted by ( )Q Y , e.g. population mean/quantile/total, etc., through relating sY  

to nsY in some fashion. There are two general inferential frameworks to accomplish this: 1) 

the design-based approach (Hansen, Hurwitz & Madow, 1953; Cochran, 1977) treats the 

survey outcome Y as a fixed quantity, and imposes a random distribution on the sample 

inclusion indicator I. The statistical distribution of an estimator for ( )Q Y  is thus induced 

by the sampling design. While the design-based framework brings in an objectivity 

element by minimizing the use of modeling assumptions, this objectivity is lost in the 

presence of nonsampling errors like nonresponse; 2) the model-based approaches, which 

include the frequentist modeling (Royall, 1970; Valliant et al., 2000) and the Bayesian 

modeling (Ericson, 1969; Basu, 1971). These regard the survey outcome Y as a random 

variable as well as I, and assume a model to predict Yns from Ys. Both variants assume 

that Y comes from some parametric family of distributions indexed by the parameter  . 

While the frequentist modeling treats   as fixed, and bases inferences on repeated 

sampling from the model, the Bayesian modeling specifies a prior distribution on   in 

addition to Y. The posterior distribution of   given the observed sample ( | )sp Y , and 

hence the posterior predictive distribution of the nonsampled population values given the 

sampled data ( | ) ( | , ) ( | )ns s ns s sp Y Y p Y Y p Y d    , serves as the basis for inference about 

( )Q Y .  

The Bayesian paradigm provides the most satisfying inferential approach to 

survey inference when it is done right. That is by incorporating complex sample design 

features to avoid sensitivity to model misspecification, using noninformative priors to 
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avoid subjectivity, and being frequentist calibrated, i.e. having good repeated sampling 

properties  (Little, 2004; Little & Zheng, 2007). Bayesian finite population inference is 

thus proposed as a means to harmonize design- and model-based approaches for sample 

survey inference (Little, 2006, 2011; Gelman, 2007), and is exemplified by a variety of 

work in the complete data context. When design variables or the selection probabilities 

are known for all units in the population, Zheng and Little (2003, 2005) and Chen, Elliott 

and Little (2010) propose robust Bayesian predictive inference that improves efficiency 

over design-based estimators, using penalized splines under fairly weak model 

assumptions. In situations where the sizes of the non-sampled units are unavailable, Little 

and Zheng (2007) and Sangeneh, Keener and Little (2011) consider a two-step procedure 

to assure ignorable sampling (Sugden and Smith, 1984) with a PPS sampling design. In 

the first step, the nonsampled sizes (Zns) are predicted by a modified Bayesian Bootstrap 

(BB) procedure that adjusts for unequal probability sample selection (ws), i.e. 

( | , )ns s sp Z Z w ; the nonsampled survey outcomes (Ys) are then predicted using a penalized 

spline model relating Y with Z, i.e. ( | , )ns sp Y Y Z .  

The modified BB considered by Little and Zheng (2007) is a noninformative 

Bayesian method closely related to an offshoot of the Bayesian approach to surveys, 

known as the “Pseudo-Bayesian approach” (Ghosh & Meeden, 1997; Cohen, 1997; Dong, 

Elliott & Raghunathan, 2014). The modified BB is of particular interest in this thesis. 

Details of how our proposed methodology in this thesis builds upon and compares with 

these methods will be discussed in section 1.5 and in later chapters.  

 

1.3 Standard multiple imputation as a calibrated Bayesian method to deal with 

item nonresponse 
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Consider the same finite population as in section 1.2, and assume item 

nonresponse occurs on the outcome variable Y and a covariate X is completely observed. 

Let 1{ ,..., }i NR R R  denote the response indicator variable for Y, such that 1iR   if unit i 

provides a value for Y and 0 otherwise. Write ( , )s nsR R R , where sR  is observable from 

the sample and nsR is unobservable for the nonsampled population. We use subscripts obs 

and mis to denote the responding and the non-responding units, respectively. Thus Ys 

further breaks down to Ys,obs and Ys,mis, and 
,( , )s obs nobsY Y Y  if we recombine 

,s misY  with 

nsY  as unobserved data nobsY . The observed data may be thought as the outcome of two 

random processes: sampling and responding. We illustrate in Figure 1.2 the data from a 

sample survey with item nonresponse occurring on the survey outcome. Three types of 

population quantities are of interest in the thesis: the mean/proportion of Y, the regression 

coefficients of Y on X, and the quantiles of a continuous outcome Y. 

 
Figure 1.2 The data from a sample survey with item nonresponse on the outcome variable 

 

The Bayesian modeling paradigm deals with nonresponse naturally, since 

unknowns about the finite population given the observed data can be generated from a 
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predictive distribution. We thus consider multiple imputation (MI) to deal with item 

nonresponse which has a Bayesian justification. The basic idea of MI is to replace each 

missing value with a set of plausible values which can then be combined in a simple way 

for inference using compete-data analysis techniques. The fundamental conceptualization 

of MI is Bayesian, where the posterior distribution of the model parameters   of interest 

is obtained by averaging the completed data posterior of   over the posterior predictive 

distribution of the missing data (Rubin, 1987, Result 3.1):  

, , , ,( | , , , , ) ( | , , , , ) ( | , , , , )s obs s s s s s s mis s obs s s s misp Y X Z R I p Y X Z R I p Y Y X Z R I dY              [1.1] 

Assuming ignorable sampling ( | , , ) ( | , , )s sp I R Y Z p I R Y Z  and ( | , ) ( | , )obsp R Y Z p R Y Z , 

[1.1] becomes , , , ,( | , , ) ( | , , ) ( | , , )s obs s s s s mis s obs s s misp Y X Z p Y X Z p Y Y X Z dY   , allowing the 

sampling and response mechanism to be ignored in the modeling. 

This integration is typically accomplished using Markov Chain Monte Carlo data 

augmentation (Tanner & Wong, 1987). Let t index the iteration. Draws from the posterior 

predictive distribution of the missing data ( )

, ,( | , , )t

s mis s obs sp Y Y X Z  are obtained by iterating 

between draws of the model parameters conditional on the “filled in data” 

( ) ( 1)

, ,( | , ,, , )t t

s obs s mis sp Y Y X Z   and imputations of the missing data conditional on the observed 

data and draw of the model parameter ( ) ( )

, ,( | , , , )t t

s mis s obs sp Y Y X Z . Rubin (1987) develops 

simple combining rules to obtain estimates of posterior means and variances using only a 

finite number (M) of independent draws  (1) ( )

, ,,..., M

s mis s misY Y  of the imputed data together with 

,s obsY , i.e. multiple “completed” datasets  ( ) ( )

, ,( , ), 1,...,l l

comp s obs s misy Y Y l M  . He shows that 

inferences obtained using these combining rules have good frequentist properties for 

relatively small M (5-20): 
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1 ( )

1

1

ˆ ( )

(1 ) ,

M
l

comp

l

Posterior Mean: Q M Q y

Posterior Variance: V U M B









  


                              [1.2] 

where 
( )( )l

compQ y  is the point estimate obtained from the l
th

 completed dataset 
( )l

compy , 

 1 ( )

1

ˆvar ( )
M

l

comp

l

U M Q y



   is the within imputation variance calculated as the average of 

variance estimates based on the M completed datasets,  
2

1 ( )

1

ˆ( 1) ( )
M

l

comp

l

B M Q Q y



   is 

the between imputation variance.  

Typically this is a combined design and model set up, where an imputation model 

is used to predict missing data in the sample. In other words, prediction of p(Ys,mis|Ys,obs) is 

model-based, and design-weighted estimators (i.e.
( )( )l

compQ y  and  ( )ˆvar ( )l

compQ y ) are used 

to estimate the finite population quantities of interest once Ys,mis are filled in by model 

predictions, i.e. predictions of p(Yns|Ys) is design-based (Reiter et al., 2006; Yuan & Little 

2007a).  

Rubin (1987) combines nonsampled and missing data into a single 

framework:

,( | , , , , ; , , ) ( , , ; ) ( | , , ; ) ( | , , , ; )nobs s obs s nsp Y Y X Z R I p Y X Z p R Y X Z p I R Y X Z dR               [1.3] 

where  ,   and   denote the parameter that indexes the distribution of Y, I and R, 

respectively, and they are assumed a priori independent. He also gives conditions for 

proper imputation that ensure randomization validity for a calibrated Bayes in the sense 

of Little (2006, 2011). Rubin’s conditions include: (i) point estimation is approximately 

unbiased for the scientific estimand of interest Q(Y), and (ii) actual interval coverage 

equals the nominal interval coverage, over repeated imputation and sampling processes. 
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These in turn require ignorability assumptions of two random mechanisms--the specified 

sampling mechanism (I) and the posited missing data mechanism (R). The ignorability 

conditions (Rubin, 1976; Little, 1982) are: 

 Ignorable sampling: 

,

, ,

( | , , , ; ) ( | , , , ; )

( | , , , , ; , , ) ( | , , , ; , )

s s s obs

nobs s obs s nobs s obs s

p I R Y X Z p I R Y X Z

p Y Y X Z R I p Y Y X Z R

 

    



 
                  [1.4] 

 Ignorable missing data: 

,

, ,

( | , , ; ) ( | , , ; )

( | , , , ; , ) ( | , , ; )

s s s obs

nobs s obs s nobs s obs

p R Y X Z p R Y X Z

p Y Y X Z R p Y Y X Z

 

  



 
                                 [1.5] 

Thus explicit modeling for the sample indicator I and the response indicator Rs is not 

necessary in equation [1.3]. 

Rubin (1976) and Little and Rubin (2002) formalized the concept of missing data 

mechanism. By their definition, ignorable missing data always implies missing at random 

(MAR). That is, given the observed data ( , , ,s obsY X Z ), the missingness mechanism does 

not depend on the unobserved data ( nobsY ). MAR is a common assumption in practice and 

is typically assumed for implementing MI. Other missing data mechanisms include 

missing completely at random (MCAR), i.e. ( | , , ; ) ( | )s sp R Y X Z p R  , and not missing 

at random (NMAR), i.e. the missingness also depends on the unobserved data ( nobsY ). We 

focus on MAR in this thesis. We do not consider MCAR which is often too ideal for real 

world sample surveys, or NMAR, which requires special statistical techniques (e.g. 

selection and pattern mixture models) beyond the scope of this thesis. 

To make the MAR assumption plausible, we need a sufficiently rich imputation 

model that ideally includes in the covariate space { , }X Z  all variables that are related to 
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the sample selection and the missingness, and are potentially predictive of the outcome 

variable of interest (Y). For a complex sample survey, this implies that features such as 

stratification and clustering as well as unequal inclusion probabilities need to be built into 

the imputation model via design variables (Rubin, 1996).  

 

1.4 Fully parametric techniques to account for complex sample designs in MI 

Despite expert recommendations, imputers seldom account for sample designs 

when using available software packages to construct imputation models. They rely 

instead, on use of design-based estimators at the analysis stage to account for design 

effects. This can lead to biased point estimation and below-nominal confidence interval 

coverage (Reiter et al., 2006). More complex methods utilize design variables (Z) as 

covariates in models. In the setting where the design issue of interest lies in the 

probability of selection, Elliott and Little (2000) and Elliott (2007, 2008, 2009) account 

for unequal probabilities of inclusion by considering weight strata and treat the stratum 

means as random effects (which they term “weight smoothing models”). Their ideas to 

shrink the mean across weight strata are recently considered for accommodating survey 

weights in MI using random-effects imputation models (Carpenter et al., 2012). With 

stratified multistage sampling, Reiter et al. (2006) and Schenker et al. (2006) consider 

dummies for fixed stratum effects and fixed or random cluster effects in the imputation 

model. We call these MI techniques “fully parametric MI”. 

In practice, however, as more covariates and design variables are included in the 

model, the inferential conclusions become more valid conditionally but possibly more 

sensitive to model misspecification (Gelman et al., 2004). This leads to “uncongenial” 
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imputation (Meng, 1994)--since oftentimes, correct parametric or nonparametric 

approximations of the functional forms of design variables as well as their interactions 

with other covariates are needed. Pfeffermann (2011) points out that, modeling the 

relationship between the design variables and the covariates in order to integrate out the 

effect of the former can be complicated. In particular, uncongeniality concerns regarding 

the incorporation of survey weights in the imputation model for domain estimation (Kim 

et al., 2006), overestimation of MI variance under the fixed cluster effects model 

(Andridge, 2011), and convergence issues about random cluster effects models with high 

dimensional data and/or hierarchical data structure (Yucel & Raghunathan 2006; Zhao & 

Yucel, 2009) all limit the development of adequate software packages to apply these MI 

techniques.  

The importance of accounting for sample designs in multiple imputation, and  

the limitation of fully parametric MI techniques to do this, creates an awkward 

dissonance between the theory and practice of multiple imputation. This also provides a 

good motivation for an alternative methodology that ideally satisfies the following 

properties: 

 Consistent with the Bayesian derivation of MI 

 Easier implementation and less expensive computation 

 Less prone to model misspecification  

 Do not require design-based estimators for complex population quantities of 

interest under complex sampling designs (e.g. domain estimation, quantile 

estimation, and the ratio of two medians for which there seems no readily 

available frequentist interval) 
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1.5 Proposed methodology to account for complex sample designs in MI 

This thesis develops a modified MI framework (termed “two-step MI”) to 

accommodate complex sample designs, which avoids the complication of modeling 

design variables (Z) and obviates the need for design-based analysis.  

In the first step, we regard the nonsampled part of the target population as missing 

by design, and create synthetic populations that contain item-level missing data. Thus we 

obtain  , , , | , , ,ns ns ns ns s s s sp Y X R w Y X R w , where 
, ,( , )ns ns obs ns misY Y Y , sw is the design 

weight for sampled units. In the second step, we multiply impute the missing values in 

the synthetic populations using standard parametric MI techniques assuming that the data 

are independent and identically distributed. Thus we obtain ( | , )mis obsp Y Y X , where 

, ,( , )mis s mis ns misY Y Y , 
, ,( , )obs s obs ns obsY Y Y . This is equivalent to a situation where a census 

is conducted but not all respondents answer all the survey questions, requiring multiple 

imputation to be performed on the entire target population.  

Note that the proposed method follows a “synthesize/reverse design-then-impute” 

procedure, different from the procedure of Reiter (2004) who used the parametric MI to 

simultaneously impute missing data and generate synthetic data in a “two-step” fashion 

for disclosure risk limitation purpose. Reiter follows an “impute-then-synthesize” 

procedure in which modeling design variables in the imputation model remains an issue. 

Note also that although the proposed MI framework requires one step to deal with 

nonsampled data, it is an intermediate step toward our ultimate goal of treating item-

level missing data.  

To realize the first step in the proposed MI procedure, we consider a ‘Pseudo-
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Bayesian approach’, i.e. the Polya posterior of Ghosh & Meeden (1997), which is 

equivalent to the finite population Bayesian bootstrap of Lo (1988). The approach ensures 

objectivity relative to a standard Bayesian approach by assuming a noninformative prior 

that is dominated by a nonparametric likelihood function. Because the sampling designs 

considered in this thesis all involve unequal selection probabilities, we consider the 

weighted version of the finite population Bayesian bootstrap (“weighted FPBB”) (Cohen, 

1997; Little & Zheng, 2007; Dong et al., 2014). We also develop several adapted versions 

of the weighted FPBB pertinent to accommodating different sample design features. 

Though built upon the modified BB in Little and Zheng (2007), we have a 

different implementation of it because we have a different objective in the missing data 

context. We create the posterior joint distribution of the nonsampled population 

 , ,ns ns nsY X R  based on the weighted FPBB, whereas they ‘impute’ the unknown design 

variable Zns only. Our purpose is to reverse design effects while retaining population-level 

multivariate relationships among variables in the process. As stated previously, Zns is not 

imputed in our case, since we focus on model predictions of item-level missing data, and 

do not consider further capitalizing on Z to model the relationships of the design variable 

(Z) and the outcome (Y), as they do in their second step. Further, our implementation 

assumes no auxiliary information is available for the distribution of Z (e.g. the population 

mean of Z), and therefore do not adjust the weighted FPBB as they do to create synthetic 

populations that satisfy such a restriction.  

 

1.6 Outline of chapters 

Chapter 2 proposes a two-step MI framework to account for sampling weights. 
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We combine the method of Ghosh and Meeden (1997), who propose a Polya posterior to 

generate a noninformative Bayesian approach to finite population sampling, with that of 

Cohen (1997), who proposes a method to generate draws from Polya posteriors using 

data obtained from weighted sample designs in a non-clustered setting. We then modify 

the standard MI combining rules for inference that follow immediately from the rules 

developed in Raghunathan et al. (2003) for combining synthetic datasets. While the 

literature recognizes the importance of using weights in the analysis of complex sample 

survey data, methods incorporating weights in conjunction with multiple imputation to 

adjust for item nonresponse are underdeveloped. Imputation models that simply include 

weights or weight-related design variables as covariates can quickly become very 

complicated. They can be susceptible to misspecification if the inclusion probabilities are 

related to survey variables (Y) and/or the missing data mechanism in a nonlinear fashion.  

The new procedure allows the sampling mechanism (I) and missing data 

mechanism (R) to be simultaneously disentangled, so that imputation can be performed 

assuming IID. As a result, data users need only to apply simple unweighted estimation 

methods to the imputed population datasets.  

Our simulation assuming a PPS sampling design shows that the proposed method 

has good frequentist properties under MAR, which contrasts with standard approaches 

that are prone to model misspecification. We also apply the proposed method to 

estimation of means and linear regression, log-linear regression, and general location 

models using data from the BRFSS.  

Chapter 3 extends the proposed MI framework to accommodate clustering effects 

as well as sample weight effects in two-stage unbalanced cluster samples. We extend the 
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approach of Chapter 2, this time combining the method of Meeden (1999), who proposes 

‘a two-stage Polya posterior’ approach to a simple balanced two-stage cluster sample 

with equal selection probability at both cluster and element levels, with that of Cohen 

(1997). Because this approach requires that both first- and second-stage weights be 

known, we also propose an alternative that uses a standard Bayesian bootstrap at the 

resampling of the clusters. We show that this method also produces draws from the 

posterior predictive distribution of the population that incorporate both clustering and 

weighting components of the sample design while requiring only the final weights that 

are usually supplied in public databases. Their performances are evaluated under different 

population models and different degrees of clustering effects. Small and large sample 

behaviors of alternative methods are also investigated. While the framework of fully 

parametric MI does not seem to provide a direct and robust technique to deal with sample 

weights in hierarchical models, the proposed method turns out to be an easy alternative 

that recovers most of the information in the data generating mechanisms. We apply the 

different MI techniques to the analysis of passenger vehicle injury data from the National 

Automotive Sampling System – Crashworthiness Data System (NASS-CDS) survey, in 

particular, estimates of mean “delta-v” (instantaneous deceleration velocity) and its 

associated injury.  

Chapter 4 develops a general purpose MI approach to account for various sample 

design features in a highly stratified multistage sample. Our specific focus is on 

evaluating the performance of the methods in comparison with existing MI techniques, 

with respect to several frequently encountered yet not previously addressed issues in the 

statistical analysis of missing data. These include: (i) accommodating stratification and 
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multi-stage sampling in the imputation process; (ii) the employment of logistic 

imputation models for estimating probabilities of rare events; and (iii) the estimation of 

population quantiles with multiply imputed data. In the simulation study, the proposed 

procedures demonstrate fairly good coverage properties for nonsmooth statistics over the 

entire support of the distribution for a continuous variable of interest, and yield quite 

stable parameter estimates in the case of sparse data. We argue that the proposed methods 

offer a computationally feasible solution to problems that are not well handled by current 

MI techniques. This method is applied to accommodate missing body mass index (BMI) 

data in the analysis of BMI percentiles using NHANES III data. 

Chapter 5 summarizes findings in the thesis and points out both the advantages 

and limitations of the proposed methodology. We also point to several directions of future 

research, including the applications of the proposed methodology to domain/small area 

estimation, adaptations of it to unit nonresponse and to propagation of uncertainty in unit 

nonresponse adjustments, and possible extensions of it to incorporate auxiliary 

information. 
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CHAPTER 2 

A TWO-STEP SEMIPARAMETRIC METHOD TO ACCOMMODATE 

SAMPLING WEIGHTS IN MULTIPLE IMPUTATION 

 

2.1 Introduction 

Both item nonresponse and sampling weights are typical features of survey data 

obtained from complex sample designs. Item nonresponse occurs when some respondents 

do not answer all the items in a survey questionnaire. Both “don’t know” and refusal 

answers are considered as item nonresponse. Sampling weights arise as a correction 

factor to compensate for over- or under-representation of units in the target population 

due to unequal selection probabilities. Examples of unequal probability sampling designs 

include: i) disproportionate stratified sampling, where sampling units in each stratum 

have differential selection probabilities, and ii) probability proportional to size (PPS) 

sampling, in which the probability of selection for a sampling unit is proportional to a 

positive size measure (Z) known for all population units. For example, the Behavior Risk 

Factor Surveillance System (BRFSS) has both a substantial amount of missing data on 

income measures as well as survey weights that adjust for oversampling of adults in 

smaller sized households and for selection bias by poststratifying and raking to known 

control totals for basic demographics.  

When the amount of item-level missing values is nontrivial and the data are not 

missing completely at random (MCAR), typical solutions for missing data like the 
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complete case analysis often lead to reduction of statistical power, and problematic 

inferences of the target population. Multiple imputation (MI) (Rubin, 1987, 1996) is a 

more principled method for addressing item-level missing data, which has a Bayesian 

conceptualization. The basic idea is to fill in missing data with M sets of plausible values. 

These values are obtained as repeated draws from the posterior predictive distribution of 

the missing components of the sample 
,s misY  given its observed components 

,s obsY , i.e. 

, ,( | )s mis s obsp Y Y , where ( )p   denotes the probability density function. (Typically M is 

small, e.g. M=3~5, but larger M (10~20) may be needed to obtain stable estimates of 

variance when the fraction of missing information is large.) The production of multiple 

“completed” datasets  (1) ( )

, , , ,( , ),...,( , )M

s obs s mis s obs s misY Y Y Y  is typically done by an “imputer” who 

has access to the data to develop reasonable models for generating the predictive 

distribution of ,s misY , allowing the “analyst” to then analyze each of the M imputed 

datasets, and combine the point and variance estimates using the combining rules 

developed by Rubin (1987). Examples of this approach include imputation for blood 

alcohol concentration in the Fatal Accident Reporting System (FARS) (Heitjan & Little, 

1991) and income imputation in the National Health Interview Survey (NHIS) (Schenker 

et al., 2006). 

 The implementation of multiple imputation typically assumes missing at random 

(MAR), that is, given the observed data, the reason for the missing data does not depend 

on the unobserved data. To make MAR plausible, it is important to let the imputation 

model condition on all variables (including sample design variables) that are either 

predictive of the outcome (Y) or the missing data mechanism (R). In settings where the 

observed data are obtained using unequal probability sampling design, however, data are  
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typically imputed using models where variables are assumed to be independent and 

identically distributed (IID). They are then analyzed using a design-weighted approach 

that accounts for the unequal selection probability. This can lead to biased point 

estimation and below-nominal confidence interval coverage. 

A simple and seemingly straightforward way to incorporate sampling weights in 

MI is using fully parametric techniques. One option is to require the imputer’s model to 

be conditioned on a few key design variables that determine the individuals’ probabilities 

of inclusion, such as measure of size and stratification variables (e.g. demographics, 

socioeconomic status, as well as geographical characteristics, etc.). Another option is to 

summarize the design information by using weights as a covariate in the imputation, 

perhaps after log transformation or categorization in “weight strata” and modeling them 

as dummy indicators. However, the modeling task may be complicated by attempts to 

include all interactions of weights (or weight-related design variables) with other 

covariates in the model, particularly the interaction of the weights with domain indicators 

(Meng 1994; Kim et al. 2006; Seaman et al. 2006). Moreover, this approach typically 

requires the functional form of the interaction to be modeled correctly, perhaps using a 

spline or other non-parametric form to be robust against model misspecification (Elliott 

& Little 2000; Zheng & Little 2005; Breidt, Claeskens, & Opsomer, 2005). It can be a 

challenging task to come up with a robust imputation model that is attentive to sampling 

weights and sufficiently captures all relevant aspects of the distribution of Y  of interest. 

This chapter develops a modified MI framework to account for sampling weights 

from single-stage sampling designs. The primary goals are: 

 1) to propose a two-step MI procedure. In the first step, nonparametric models 
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are used to generate the posterior predictive distribution of the population that includes 

the item-level missing data. In the second step, parametric models assuming IID are used 

to impute the missing values in the created populations. We consider utilizing the 

weighted finite population Bayesian bootstrap (weighted FPBB) to account for sampling 

weights in the first step;  

2) to illustrate the impact, during the imputation process, of ignoring sampling 

weights or unequal probabilities of selection, on the bias properties of both the MI point 

estimator and the MI variance estimator; and  

3) to compare the performances of the proposed two-step MI and the fully 

parametric MI in terms of robustness to different degrees of model misspecification. The 

comparison will be made under different scenarios, defined by the associations of the 

design variable (Z) used for determining the selection probabilities with both the outcome 

variable (Y) where missing data occur, and the latent variable (T) which defines the 

response mechanism.  

 The rest of this chapter is organized as follows. Section 2.2 provides a detailed 

overview of the proposed two-step semiparametric multiple imputation procedure. (We 

term it “semiparametric” because the design feature, in particular the weights, are 

accommodated non-parametrically, whereas the actual imputation is conducted under a 

standard parametric model.) Section 2.3 discusses point estimation and inference using 

the MI datasets from the proposed procedure. Section 2.4 provides a simulation study in 

the context of a single-stage probability-proportional-to-size (PPS) sample design. We 

estimate population means and regression coefficients under settings where sampling 

weights are associated to differing degrees with both the outcome and the probability of 
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nonresponse, and where failure to account for design in the imputation procedure has 

differing degrees of impact. Section 2.5 applies the proposed procedure to estimate means, 

linear and loglinear regression models, and general location models describing marginal 

and joint distributions of income and health insurance accessibility. Section 2.6 discusses 

possible extensions to incorporate other design features beyond sampling weights, as well 

as extensions to deal with unit non-response weights. 

 

2.2 A Two-Step Semiparametric MI Procedure 

2.2.1 Overview and Notation 

Bayesian finite population inference (Ericson 1969) has been proposed as a means 

to harmonize design- and model-based approaches for sample survey inference (Little 

2004, 2011; Gelman 2007). Under this approach, we focus on the posterior predictive 

distribution of the finite population quantity of interest (e.g., population mean, population 

regression parameter) obtained from the posterior predictive distribution for the non-

sampled elements of the population. To make matters more concrete, consider the setting 

where we have a scalar outcome Y, sampling weight w based on a single-stage PPS 

sampling design, and no missing data. Our complete data consist of the vector of 

sampling indicators I for the population, sampled 
sY for which 1I  , the non-sampled 

nsY  

for which 0I  , and similarly 
sw  and 

nsw . Given the sampling weights, the sampling 

mechanism generating I is assumed to be ignorable ( ( | , ) ( | )p I Y w p I w ), and can be 

ignored in the modeling. Assuming a model for the outcome given the sampling weights 

( | , )p Y w  parameterized by   with prior ( )p  , the posterior predictive distribution for 

the non-sampled elements of the population 
nsY  is given by 
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( | , ) ( | , , ) ( | , ) ( | )ns s s ns s s ns s nsp Y Y w p Y Y w p Y w p w w d dw                           [2.1] 

Previous work has tackled estimation of this predictive distribution in a variety of 

manners. Zheng and Little (2003, 2005) and Chen, Elliott and Little (2010) assumed that 

the sampling weights were known for all subjects, so that 
sw w , reducing [2.1] to 

( | , ) ( | , , ) ( | , )ns s ns s sp Y Y w p Y Y w p Y w d    ; these authors then obtained draws from the 

posterior predictive distribution under fairly weak modeling assumptions (parametric 

regression model for ( | , )p Y w  based on penalized splines). Little and Zheng (2007) and 

Zangeneh, Keener, and Little (2011) considered the situation in which weights (or 

equivalently the size measure Z) are observed only for the sample (as in a public use data 

setting), and obtained predictive draws for ( | )ns sp w w  under a Dirichlet model with a non-

informative (Haldane) prior; the resulting predictive draw of the population of weights w  

was then used as covariates in Little and Zheng to obtain posterior predictive draws of 
nsY . 

Dong, Elliott, and Raghunathan (2014) consider a different factorization of [2.1]: 

( | , ) ( , | , ) ( , )ns s s ns ns s s s s nsp Y Y w p Y w Y w p Y w dw                               [2.2] 

The parameter   is dropped because the draws of ( , )s sp Y w  are made directly from the 

posterior of the empirical joint CDF of ,s sY w using a Bayesian bootstrap (BB) procedure 

(Rubin 1981). Draws from ( , | , )ns ns s sp Y w Y w  are then made using a weighted finite 

population Bayesian bootstrap (FPBB) procedure described in Cohen (1997). 

 Here we extend the approach of Dong, Elliott, and Raghunathan to accommodate 

missing data. We assume that, had we taken a census of the entire population, we could 

have observed a vector of response indicators ( , )s nsR R R , where 
sR corresponds to the 

response indicators observed in the sample, and 
nsR to the response indicators associated 
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with the non-sampled elements. We then divide the sampled , ,( , )s s obs s misY Y Y   into the 

fully-observed and missing elements, corresponding to the sampled Y values associated 

with 1sR   and 0sR   respectively, and similarly the non-sampled , ,( , )ns ns obs ns misY Y Y  into 

those that would have been observed had they been sampled ( 1nsR  ), and those that 

would have had missing values ( 0nsR  ). We also assume a fully-observable covariate 

( , )s nsX X X  consisting of the sampled and nonsampled elements respectively. Note that 

we can combine the observed from the sampled and nonsampled parts of the population 

to obtain the potentially “observable” , ,( , )obs s obs ns obsY Y Y , and similarly , ,( , )mis s mis ns misY Y Y .  

We assume ignorable missingness, so that ( | , , ) ( | , , )obsp R Y X w p R Y X w , allowing R to be 

ignored in the model along with I. Extending [2.2] to incorporate item-level missingness 

(and thus the covariate X used for imputation) then yields 

, , , ,

, , , , , ,

( , | , , ) ( , , | , , , )

( , , , | , , , ) ( , , , )

ns ns s s s ns obs ns mis ns s obs s mis s s

ns obs ns mis ns ns s obs s mis s s s obs s mis s s ns

p Y X Y X w p Y Y X Y Y X w

p Y Y X w Y Y X w p Y Y X w dw

 


        [2.3] 

To obtain the posterior predictive distribution based on fully-observed data, we need to 

integrate the left side of [2.3] with respect to , ,( , )mis s mis ns misY Y Y .   

, , , , ,( , | , , ) ( , | , , , ) ( | , , )ns obs ns s obs s s ns obs ns mis s obs s s mis s obs s s misp Y X Y X w p Y X Y Y X w p Y Y X w dY   

To accomplish this, we reintroduce a parametric model for ( | , , )p Y X w , and integrate 

out with respect to the posterior distribution of  : 

, , ,( | , , ) ( | , , , ) ( | , , )mis s obs s s mis s obs s s s obs s sp Y Y X w p Y Y X w p Y X w d    . Thus [2.3] becomes 

, ,

, , , ,

, , , ,

( , | , , )

( , | , , , ) ( | , , , ) ( | , , )

( , | , , ) ( | , , , ) ( | , , )

ns obs ns s obs s s

ns obs ns mis s obs s s mis s obs s s s obs s s mis

ns obs ns s obs s s mis s obs s s s obs s s mis

p Y X Y X w

p Y X Y Y X w p Y Y X w p Y X w d dY

p Y X Y X w p Y Y X w p Y X w d dY

  

  



 

 

      [2.4] 

where the last equality in [2.4] follows from the fact that the unobserved (but potentially 
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observable) elements of the population are generated using the finite population Bayesian 

bootstrap.  

 A key result from [2.4] is that, since the unobserved elements of the population 

have been generated non-parametrically, we can implement the integration in [2.4] by use 

of a Gibbs sampler that iterates between obtaining draws of   conditional on the entire 

population, and draws of the missing data conditional on   and the observable elements 

of the population  

( | , , , ) ( | , , )

( | , , ) ( | , )

mis obs s mis obs

s

p Y Y X w p Y Y X

p Y X w p Y X

 

 




 

Since the nonparametric procedure generates draws from the joint posterior distribution 

of all variables for the nonsampled population, the relationships of the weights and other 

variables are maintained in the draws. It is thus sufficient to develop a parametric model 

for Y that does not involve the weights: ( | , , ) ( | , )p Y X w p Y X  . This model does need to 

condition on weights, however, when the weights are further associated with the missing 

data mechanism. 

Figure 2.1 shows the creation of a single imputed synthetic population dataset 

under the proposed two-step MI procedure: a) shows the original sample data, b) the 

result from the BB-weighted FPBB procedure, and c) the result from the (model-based) 

imputation procedure. The shaded area represents observed data and ‘?’ represents 

missing data. We discuss in detail the derivation and implementation of the proposed 

two-step MI procedure below. 
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                              a)                                       b)                                   c) 

 
Figure 2.1 The procedure to create a single imputed synthetic dataset (Y: outcomes with item missing data; 

X: complete covariate; R: response indicator; w: sampling weight) 

 

2.2.2 Step 1: Undo Sampling Weights through Synthetic Data Generation 

The Pólya’s Urn Scheme 

The Polya urn distribution (Feller, 1968) is defined by construction as follows: 

suppose we have an urn containing a finite number n of balls of different colors. A ball is 

randomly drawn from the urn and another ball with the same color from outside of the 

urn is added back to the urn along with the originally picked one. Repeat this selection 

process until m balls have been selected; the resulting sample is termed a ‘Pólya sample 

of size m’.  

The Pólya Posterior  

The Polya posterior (Ghosh & Meeden, 1997) derives its name from the Polya urn 

distribution. It is a noninformative Bayesian procedure which can be used when little or 

no prior information is available. One advantage of the Polya posterior is that it has a 

stepwise Bayes justification (Hsuan, 1979) and leads to admissible procedures.  

Assume that a simple random sample of size n is drawn from a finite population 
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of size N. Let 1{ ,..., }s ny y y  denote the sample, where y represents the realized value of 

a response variable Y. Let 1 2{ , ,..., }Kd d d  denote the set of K distinct values in the sample 

and 1 2{ , ,..., }K     the vector of probabilities, such that Pr( | ) ,i j jy d     for 

1,2,..., ,  1,..., ,i n j K   and 
1

1
K

jj



 . Let 

jn  and '

jn  be the number of units taking 

value 
jd  in the sample and in the nonsampled part of the population, respectively, for 

1,2,..., ,j K  and '

1 1
, .

K K

j jj j
n n n N n

 
     Assuming a noninformative Haldane 

prior of  : ~ (0,...,0)Dir , 1

1

( )
K

j

j

p   



 , together with a multinomial distribution for 

the counts of sample data: 1,.., | ~ ( ; )Kn n Mult n  , 

1

1 1

1

!
( ,..., | )

!

j j

K K
n n

K j jK
i j

j

j

n
p n n

n

  
 



  


, yields a Dirichlet posterior distribution of  : 

1 1| ,..., ~ ( ,..., )K Kn n Dir n n , 
1

1

1

( | ,..., ) j

K
n

K j

j

p n n 




 . 
The Posterior predictive 

distribution of counts in the nonsampled data thus follows a compound multinomial 

distribution 
' '

1 1,..., | ,..., ~ ( ; )K Kn n n n Mult N n 
:
 

'

1 1 1 ' '

1 1 1 1 11' ' 0 0
1 1 1 1 1

1 1 110 0

11

1

... ( ,..., | ,..., , ) ( ,..., | ) ( ) ...
( ,..., | ,..., )

... ( ,..., | ) ( ) ...

... (1 )
                                

j j

K

K K K Kj

K K K

K Kj

Kn n

j jj

p n n n n p n n p d d
p n n n n

p n n p d d

    

   

 









 








 

 


'1 1 1 1

1 110 0

1 1 1 11 1

1 1110 0

'

1

...

... (1 ) ...

( ) / ( )
                                ,                                          

( ) / ( )

K K

j K

K n n

Kj

K Kn n

j j Kjj

K

j j jj

d d

d d

n n n

N n

 

   

  



  







  


 

 

 



[2.5] 

where ( )   denotes the gamma function.  
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Ghosh and Meeden (1997) show that this posterior predictive distribution is 

in fact a Pólya urn distribution for the probability of seeing '

jn  balls with color ,jd  

for 1,2,...,j K  in some specified order. They also discuss the close relationship 

between the Polya posterior and the Dirichlet process priors (Ferguson, 1973) and 

the Bayesian bootstrap (BB) (Rubin, 1981). The Polya posterior is operationally and 

inferentially equivalent to the finite population Bayesian Bootstrap (FPBB) of Lo (1988), 

which is just the BB adapted to finite population sampling problems.  

The weighted Polya Posterior/weighted FPBB 

Formula [2.5] can be generalized to the case when the sampled units bear 

different weights, i.e. when the realized sample is selected with unequal probabilities 

(Cohen, 1997). To be consistent with the specific PPS sample we are considering in this 

chapter, we adapt the notation as follows: denote the PPS sample as 

( , , , ) {( , , , ), 1,..., .}s s s s i i i iY X w R Y X w R i n  , where 
N

i i ii
w Z nZ  for size variable Z and 

sample and population sizes n and N, and ,i i obsY Y  if 1iR   and ,i i misY Y if 0iR  . Let 

1 2{ , ,..., }Kd d d  denote the set of K distinct vectors of ( , , , )i i i iY X w R  in the sample and 

1 2{ , ,..., }K     the vector of probabilities that  Pr ( , , , ) | ,i i i i j jY X w R d     for 

1
1,2,..., , 1,..., ,and 1

K

jj
i n j K 


   . Let 

jn  and '

jn  be the number of units taking 

vector jd  in the sample and in the nonsampled part of the population, respectively, for 

1,2,..., ,j K  and '

1 1
, .

K K

j jj j
n n n N n

 
     

For convenience, assume that all 

sampled units have distinct vector of values, i.e. K n . Let iw  denote the sampling 
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weight for the i
th

 unit in the sample, which is normalized to sum up to N, i.e. 
1

n

i

i

w N


 . 

Then iw  can be thought as the posterior expectation of the count of units in the 

population that have the same value as the i
th

 unit in the sample. Again assuming a 

noninformative Haldane prior of  : ~ (0,...,0)Dir  together with multinomially 

distributed weighted counts in the data 1

1

( ,..., | ) j

K
w

K j

j

p w w  


  yields a Dirichlet 

posterior distribution of  : 1 1| ,..., ~ ( ,..., )K Kw w Dir w w ,   

1

1

1

( | ,..., ) j

K
w

K j

j

p w w 




                                            [2.6] 

The posterior predictive distribution of counts in the nonsampled data then follows a 

compound multinomial distribution with an adjusted parameter 
* * *

1{ ,..., }K  
, i.e. 

' ' *

1 1,..., | ,..., ~ ( ; )K Kn n w w Mult N n 
: 

' '1 1 1 11 1* * * *

1 111' ' 0 0
1 1 1 1 1 11 1* * * *

1 1110 0

'

1

... ( ) (1 ) ...
( ,..., | ,..., )

... ( ) (1 ) ...

( ) / ( )
                                 

j j K K

j K

K Kw n w n

j j Kjj

K K K Kw w

j j Kjj

K

j j jj

d d
p n n w w

d d

w n w

   

   

    



  










  




 

 


,                                       

(2 ) / ( )N n N 

           [2.7] 

In Little and Zheng (2007), * ( 1)j j jC w    
, for 

1,..., .j K
, where C is a 

constant that satisfies 
* 1j

j

  ; In this thesis, we follow the weighted Polya urn 

sampling suggested by Cohen (1997) and use a formula shown in equation [2.10]. 

The Adapted-weighted FPBB method  

The adapted-weighted FPBB consists of two stages. The first stage resamples the 

original sample using the standard Bayesian bootstrap assuming IID, and the second 
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stage reverses/undoes the sampling weights using the weighted FPBB. This two-stage 

algorithm is similar in spirit to the standard parametric Bayesian method, where the first 

stage is equivalent to drawing values of the parameter ( ) from its posterior distribution 

given the counts in sampled data ( 1,..., Kn n ) and the second stage draws the predicted 

counts in the nonsampled data (
' '

1,..., Kn n ) given the drawn parameter. Note that in Little 

and Zheng (2007), the first stage is replaced by drawing the parameter directly from a 

Dirichlet posterior distribution given by [2.6]. The method is described as follows: 

 Resampling using the standard Bayesian Bootstrap (BB) 

The standard Bayesian Bootstrap of Rubin (1981) assuming IID is used to 

generate L replicate BB samples each of size n, i.e.  ( ) ( ) ( ) ( )( , , , ), 1,..., .l l l l

s s s sY X w R l L . This 

essentially generates the posterior of the empirical joint CDF (denoted by f ) of all the 

variables in the population given their realized values in the sample data set. Or 

equivalently, the posterior distribution of the parameter vector   is drawn given the 

sample, i.e. 

 

 

 

( )

( )

1

( ) ( ) ( )

1

, , , | ( , , , )

| , , , ~ ( ,..., )

for 1,..., ., where ,..., .

l

s s s s

l

s s s s K

l l l

K

f Y X w R Y X w R

Y X w R Dir n n

l L



  



 

                                  [2.8] 

This stage captures the sampling variability. The uncertainty in the posterior 

draws of the parameter 
( )l  is reflected in the varying counts of distinct units in the 

original sample being selected in different replicate BB samples. Let ( )l i  denote the 

number of times unit i is selected in the thl  replicate BB sample, for 1,..., .l L  We 

incorporate this source of uncertainty in computing “the l
th

 bootstrap weight for unit i”, 
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i.e. ( ) ( )l

i i lw w i  , where iw  denotes the original sampling weight for unit i. Note that 

unequal inclusion probabilities still exist in these created BB samples. The bootstrap 

weights are carried forward as input weights to the next stage.  

 Undo Sampling Weight using the weighted Polya posterior/weighted FPBB 

The weighted Polya posterior in equation [2.7] is used to create B synthetic 

populations for each of the L BB sample obtained from the previous stage, i.e. 

 ( ) ( ) ( ) ( ) ( ) ( )( , , ), ( , , ) ,l l l lb lb lb

s s s ns ns nsY X R Y X R  for 1,..., , 1,..., .b B l L   Specifically, it draws 

predicted counts of the distinct nonsampled units given that of the BB sample, which 

simultaneously adjusts for unequal inclusion probabilities, i.e. 

 ( ) ' ( ) ' ( ) ( ) ( )*

1 1,..., | ,..., ~ ( ; ),

for 1,..., , 1,..., .

lb lb l l l

K Kn n w w Mult N n

b B l L



 
                               [2.9] 

This stage captures the variability due to “imputing” the nonsampled cases within the l
th

 

BB sample (under the same posterior draw of the parameter 
( )*l ). The distribution in 

Equation [2.7] does not lend itself to direct calculation and thus needs to be approximated 

using Monte Carlo simulation. Specifically, we apply a procedure suggested by Cohen 

(1997) to simulate the posterior predictive distribution of the counts in nonsampled part 

of the population through generating B synthetic populations for each of the L Bayesian 

bootstrap samples:  

i) Take a Pólya sample of size ,N n  denoted by ( ) ( ) ( )( , , )lb lb lb

ns ns nsY X R  from the urn 

( ) ( ) ( )( , , )l l l

s s sY X R . In this process, each ( ) ( ) ( ) ( )( , , , )l l l l

i i i iY X w R , for 1,..., .i n  in the 

urn is selected with probability 
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( )

, 1
( )*

1 ( )

, 1,2,..., 1.

( 1) ( )

l

i i k
l

i

N n
w l

n k N n
N n

N n k
n





  

   


   

                     [2.10] 

where ( )l

iw  is the bootstrap weight for the thi  unit in the thl  replicate BB sample, 

and 
, 1i kl 

 is the number of selections of unit i up to (k-1)
th

 selection, setting 

,0 0.il   

ii) Form the weighted FPBB synthetic population 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( , , ), ( , , )l l l l lb lb lb

b s s s ns ns nsY X R Y X R   so that it has exact size N. 

The heuristic interpretation of [2.10] for adjusting the selection probability based 

on the initial bootstrap weight is as follows. Let 1,2,..., 1,k N n    and 1,2,..., ,i n  

before making any FPBB selection of nonsampled units in the population from the 

complex BB sample (which could also be seen as n  balls with distinct colors in the 

original urn), i.e. when 1k   and 
, 1 ,0 0,i k il l    the probability of selecting unit i  with 

weight ( )l

iw  is 
( ) 1

,
l

iw

N n




 where ( )l

iw  represents ( )l

iw  balls with value ( ) ( ) ( ){ , , }l l l

i i iY X R  in the 

whole population (hence ( ) 1l

iw   balls outside of the urn). As we proceed with the FPBB 

selection, we adjust this selection probability according to the number of times each unit 

among the n sampled units was selected during the FPBB procedure, with each unit now 

representing ( ) /N n n  among the ( )N n  units to be selected during one FPBB 

whenever it is selected once. After each selection, the denominator of the probability 

function needs to be inflated to reflect the total units being represented during the whole 

FPBB selection so far, while the numerator also needs to be inflated to reflect the total 

units represented by unit i  in the process. Therefore we obtain the probability form as in 
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formula [2.10].  

The first step (i.e. the two-stage adapted-weighted FPBB algorithm) results in the 

following “unweighted” synthetic populations, where L and B are the numbers of datasets 

generated from first- and second-stage, respectively:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( , , ) ( , ), 1,..., , 1,2,..., .l lb lb lb l lb

b b obs misP Y X R P Y b B l L    , where 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) , ,(( , , ), ( , , ))l l l l lb lb lb

b obs s obs s s ns obs ns nsP Y X R Y X R and 
( ) ( ) ( )

, ,( , )lb l lb

mis s mis ns misY Y Y  consist of the 

observed and unobserved data in the lb
th

 FPBB synthetic population dataset respectively. 

2.2.3 Step 2: Multiply Impute Missing Data through Parametric Models 

Now that we have undone the sampling design, we are ready to perform 

conventional MI under an IID assumption. Following the standard MI procedure or 

approximations such as SRMI (Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 

2001), we obtain draws from the posterior predictive distribution 
( ) ( )

( )( | )lb l

mis b obsp Y  . 

Without the need to include weights in the imputation model due to an IID FPBB 

population generated from the previous step, our task can now be concentrated on 

correctly modeling the covariates as well as interactions among them whenever necessary. 

Note that the elimination of the weights from the FPBB population does not obviate the 

need to account for the weights in the imputation process, if the probability of selection 

( I ) and non-response ( R ) are associated with each other (i.e., 

( | , , ) ( | , )obs obsp R Y X w p R Y X ). This step results in M imputed synthetic datasets for each 

of the L B   FPBB synthetic populations generated from the first step, 

( ) ( ) ( )

( )1 ( )2 ( )( , ,..., ),  1,2,..., , 1,2,..., .l l l l

bM b b b MP P P P for b B l L    

 

2.3 Point and Variance Estimates for the Two-Step MI Procedure   
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In the absence of missing data, Dong, Elliott and Raghuanthan (2014) showed that, 

conditional on 
(1) (1) (L) (L)

(1) (B) (1) (B){ ,..., ,..., ,..., },synP P P P P i.e. the L synthetic populations 

obtained after B FPBB samples, the posterior predictive distribution of a scalar 

population statistic ( )Q Y Q is given by  

1

1| ~ ( ,(1 ) ),syn

L L LQ P t Q L V

                                          [2.11] 

where  
1()Lt 

 denotes t distribution with 1L  degrees of freedom, 
( )1 l

L

l

Q Q
L

   and 

( ) 21
( )

1

l

L L

l

V Q Q
L

 

  for 

( ) ( )1
liml lb

B
b

Q q
B

  . Here ( )lbq  is the estimate of Q  obtained 

from the thb  FPBB synthetic population within the thl  Bayesian Bootstrap sample; in 

practice we estimate ( )lQ  by 
( ) ( )1ˆ l lb

b

Q q
B

  . The result follows immediately from Section 

4.1 of Raghunathan, Reiter, and Rubin (2003), and is based on the standard Rubin (1987) 

multiple imputation combining rules, treating 
nsY as missing data and 

sY  as observed data. 

The average “within” imputation variance is zero, since the entire population is being 

synthesized; hence the posterior variance of Q  is entirely a function of the between-

imputation variance, and the degrees of freedom is simply given by the number of BB 

samples. The result assumes that  ( )( )lbE q Q  – a result guaranteed by the adapted-

weighted FPBB estimator – as well as a sufficiently large sample size for Bayesian 

asymptotics to apply. 

 Here we have the additional need to impute the missing data within each of the 

synthetic population datasets, yielding 
(1) (1) (1) (1) (L)

(11) (1M) (B1) (BM) (BM){ ,..., ,..., ,..., ,..., }impP P P P P P .  

However, the similar result holds as in [2.11]:  
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1

1| ~ ( ,(1 ) )imp

L L LQ P t Q L V

                                              [2.12]   

where as in the fully-observed sample data case 
( )1 l

L

l

Q Q
L

   and 

( ) 21
( )

1

l

L L

l

V Q Q
L

 

 , but now ( ) ( )1

liml lbm

B
b mM

Q q
BM



  , where ( )lbmq  is an estimate of 

Q obtained from the thm imputation of the thb  synthetic population within the thl  

Bayesian Bootstrap sample; in practice we estimate ( )lQ  by 
( ) ( )1ˆ l lbm

b m

Q q
BM

  . The 

result again is based on the standard multiple imputation combining rules, where now 

( , , )ns ns nsY X R  and ,s misY are missing data and ,( , , )s obs s sY X R  is observed; the generation of 

the synthetic population again sets the within imputation variance to 0. We now require 

( )( )lbmE q Q , which implies that our imputation model for 
misY  is correctly specified 

(including any associations with probabilities of selection), as well as the standard 

sufficiently large sample size for the t approximation to be reasonable. 

Note that our point estimator is the same as that derived in (Reiter, 2004), but our 

variance estimator differs. This is a result of the fact that Reiter must condition on a 

released sample from the synthetic data, whereas here we are conditioning on the entire 

synthetic population, substantially reducing the complexity of the analytical 

approximation to the posterior distribution of Q.  

 

2.4 Simulation Study 

A simulation study is designed to investigate the inferential properties of the 

proposed method. The two-step MI procedure is compared with the existing fully 
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parametric methods under a total of 4 simulation designs defined by crossing the 

following two factors:  

           (1) Associations of the probabilities of selection with the mechanism generating 

the data. We call the design ‘outcome relevant’ if the probabilities of selection are 

correlated with the outcome variable Y, otherwise we term it an ‘outcome irrelevant’ 

design.  

           (2) Associations of the probabilities of selection with the mechanism generating 

the missing values. We use ‘MAR_X’ (weight independent missingness) and ‘MAR_X,W 

(weight dependent missingness) respectively to denote respective situations where the 

missing data mechanism is dependent on the fully-observed covariate X only, and where 

it depends on probabilities of selection as well as the covariate.  

For each of the four simulation designs, we analyze the data using three 

imputation models with differing degrees of model misspecification corresponding to 

different amounts of design information incorporated into the imputation model. Model 1 

ignores weights altogether in the imputation process, which is a procedure typically 

adopted by survey practitioners. Under Model 1, we assume that the data are resulted 

from simple random sampling for the purposes of imputation. Model 2 includes 

log(weight) as a scalar summary of design information in the imputation model. This is a 

simple way to compensate for the naïve SRS assumption in Model 1 by adding the 

weight variable as a separate predictor in the imputation model. Model 2 is relatively 

easy to implement in practice, and has been adopted by the MI project on NHIS missing 

income data (Schenker et al., 2006). Model 3 includes both log(weights) and its 

interactions with the covariate in the imputation model. All three imputation models will 
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be tested with both the fully parametric MI method and the proposed two-step synthetic 

MI procedure. Table 2.1 illustrates the setup of the simulation design where the differing 

imputation models are nested within the four cells defined by the two association factors.  

 

Table 2.1 Strength of association of the sampling weight with both the missingness and the outcome 

Association with 

missingness (M) 

Association with outcome variable (Y) 

Low High 

Low 
Irrelevant design, 

MAR_X 

Relevant design, 

MAR _X 

High 
Irrelevant design, 

MAR _X,W 

Relevant design, 

MAR _X,W 

 

Imputation Model 

1 ~Y X  

2 ~ log( )Y X weight  

3 ~ log( ) *log( )Y X weight X weight   

 

 

2.4.1 Description of the Study Design 

The simulation design is described below: 

Step 1. Population data generation: 

The population involves three variables: the outcome variable Y, a covariate X, 

and a size variable Z based on which probability-proportionate-to-size without 

replacement (PPSWOR) sampling is conducted. We consider two versions of the 

outcome variable Y, one in which the outcome is associated with the covariate, the 

probability of selection, and their interaction (
1Y ), and the other in which the outcome is 

associated only with the covariate (
2Y ). The joint distribution of Z, X, and Y is given by: 



 

37 

 

1

2

2

2

1

2

2

log ~ (2,1)

| ~ (0.1*log , )

| , ~ (0.2* 0.6*log 0.5* *log , )

| , ~ (0.2* , )

x

y

y

Z N

X Z N Z

Y X Z N X Z X Z

Y X Z N X







 
 

Thus 1( , , )Y X Z constitutes the “relevant design” population and 2( , , )Y X Z  

constitutes the “irrelevant design” population. Figure 2.2 shows the scatter plots of 1Y  and 

2Y versus the size measure Z. Both populations have size N=4,000. For each population, 

we drew 100 independent samples of size n=200 without replacement, with inclusion 

probability for the i
th

 unit
1

/
N

i i j

j

nZ Z


  . We call the 100 PPSWOR samples “before 

deletion (BD) samples”.   

 
Figure 2.2 Scatter plots of survey variable Y versus size variable Z, under relevant and irrelevant designs, 

respectively. 

 

Step 2. Impose missingness on the complete data under MAR mechanism: 

Probit models are used as deletion functions to create missing data in the outcome 
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variable Y for each of the 100 simulations. Both X and Z are assumed to be completely 

observed. For both populations, we define two types of missing data mechanisms by 

generating two different latent variables 
1T  and 

2T  for the deletion function, which 

correspond to the MAR _X condition and MAR _X,W condition respectively. 

Specifically, 
1 0.635 0.4T X e     and 

2 0.55 0.4 0.5log 0.4 *logT X Z X Z e      , 

where ~ (0,1)
iid

e N . The outcome is then missing if 0jT   (i.e., ( 1| ) ( ), 1,2.j jP M T T j   , 

where ( )   corresponds to the standard normal CDF. This yields a moderate missingness 

fraction of 30% in all four designs corresponding to the four cells defined in Table 2.1. 

Step 3. Impute missing data under different imputation models: 

MI was performed separately for each of the 100 replication samples under each of 

the 12 simulation scenarios. All simulations were programmed using the R software 

(Version 2.14.2). In particular, the mice package (van Buuren & Groothuis-Oudshoorn, 

2011) was used to implement the imputation, and the survey package was used for the 

design-based analyses under the fully parametric method (Lumley, 2004). For the 

proposed method, the wtpolyap function in package polyapost (Meeden & Lazar, 2012) 

may be used to create the weighted FPBB synthetic populations. 

Step 4. Evaluation of performance: 

We consider estimating the population mean of Y (i.e. Y ) and the population 

regression coefficients of Y on X : ,TY X   where 
0 1( , )T    and 0  and 1 are the  

intercept and the slope, respectively. We focus on five quantities to evaluate the 

performance of the two methods under comparison: bias, empirical root mean square 

error (RMSE), empirical interval coverage, empirical variance, and empirical estimated 

variance.  
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· Bias. Let  0 1( , , )Q Y    denote the set of the three population parameters we are 

interested in, and 0 1
ˆ ˆˆ( , , )q y   denote their corresponding point estimates (Pt.est). The 

raw bias of each of the parameter estimates q is calculated as the difference between its 

averaged value over the 100 simulations and the true parameter value Q.  

100

1

1
( )

100
r rr

Bias E q Q q Q


     

where 
rq  is the point estimate associated with the r

th
 simulation. 

· Empirical Root Mean Square Error (RMSE). As a measure of accuracy which 

accounts for bias and efficiency simultaneously, RMSE is a key statistic we will consider 

in comparing the overall performance of the methods. 

1002 2

1

1
( ) ( )

100
r rr

RMSE MSE E q Q q Q


      

· Empirical interval coverage (95% CI cov.). We report the actual coverage rates 

of a nominal 95% interval based on the 100 simulation repetitions under each simulation 

scenario. Normal approximation was used for inference under the proposed method. 

· Empirical Estimated Variance & Empirical Variance. We calculated these two 

quantities and compared them with each other. They should be approximately equal if the 

variance estimator is unbiased. 

100 100

1 1

1 1
. [ ( )] ( ),  ( )

100 100
r MI r MI rr r

Est Var E v q V q SE V q
 

     

100 2

1

1
. ( ) [ ( )] , . .

100 1
r r rr

EmpVar Var q q E q Emp SE EmpVar


   

  

2.4.2 Simulation Results 

In deciding how many synthetic populations B are needed, we conducted a 

preliminary study based on the before deletion (BD) data. Equivalence of the BD 
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variance estimates to the actual sample variance estimates is desired. Simulation results 

are shown in Table 2.2. Note that the BD variance estimation under the synthetic method 

was calculated as the between synthesis variance, using the variance formula 1(1 ) LL V  

in [2.11]. We observe that as we increase B, the variance estimate decreases, and 

stabilizes close to the actual sample variance for 20B  . Therefore, we use B=20 in the 

after deletion (AD) simulation. 

Table 2.3 and Table 2.4 present the results from our simulation study. Each table 

is divided into two parts, containing the results from MAR _X condition and MAR _X,W 

condition respectively. Within each condition, we compare our new method with the fully 

parametric method. The three columns indicated by ‘X’,’X,W’ and ‘XW’ each correspond 

to the estimates under the three imputation models described in section 2.4.1.  

 We first examine the results in Table 2.3. When the design is relevant to the 

outcome variable Y yet uncorrelated with missingness (MAR_X), obvious advantages can 

be observed of the synthetic methods over the fully parametric method. For the fully 

parametric method to work properly under this design, the imputation model has to be 

correctly specified, otherwise all inferences based on this method are invalid---not only 

there is substantial bias associated with all three parameter estimates, but a corresponding 

disruption in coverage rates as well. This is particularly poor when the design is 

completely ignored in the model. For example, under the X only imputation model, the 

relative bias of the estimated mean and the slope is as high as 
0.260

19.4%
1.343

  and 

0.210
14.6%

1.435
 , respectively, with 95% CI coverage rates as low as 79% and 67%, 

respectively. Including W as a main effect in the imputation model improves the 
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performance for estimating the mean but not the slope--the relative bias of the slope is 

0.137
9.5%

1.435
  with only 79% coverage. These confirm the argument by Kim et al. (2006) 

and Seaman et al. (2011) that including survey weights alone in the imputation model 

does not guarantee valid inference if important interactions between the weight and other 

covariates are ignored. In contrast, our proposed method results in nearly unbiased 

estimates and actual coverage that is closer to the nominal level under all three models, 

regardless of the misspecification. Substantial gains in terms of RMSE over the model-

based method are also consistently observed in all scenarios considered (e.g. 0.303 vs. 

0.220 for the slope under X only model, and 0.201 vs. 0.185 under the interaction model). 

This indicates that the ‘unweighting’ procedure has actually played dual roles in the 

process: its effect is not limited to untying the unequal probability selection and saving 

the effort of design-weighted analyses afterwards, but it also captures the interactions 

between the design and the survey variable of interest. Thus ignoring the design in the 

imputation model does no harm at all.  

With a relevant design that is also a correlate of missingness (MAR_X,W), the 

imputation model will still require the use of the design variable (here the weight) to 

maintain an ignorable missing data mechanism. The fully parametric method behaves 

similarly to the case where the design is associated only with Y: failure to include the 

weight in the imputation model substantially biases all of the estimators considered, 

while including the weight as a covariate corrects for bias in the mean and intercept 

estimator but not in the slope. The synthetic model partially corrects for these biases by 

providing a correct estimate of the population distribution in the presence of missing data; 

however, unless the imputation model is correctly specified, some biases remain. 
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However, the synthetic model still substantially reduces RMSE relative to the fully 

parametric approach for the mean and intercept estimator when the weight is ignored in 

the imputation model. It also has reduced RMSE when estimating the slope when the 

weight is included as a covariate but the interaction between the slope and the probability 

of selection is ignored. Otherwise, the synthetic and fully parametric approaches have 

similar RMSE properties. The synthetic model also has slightly conservative coverage 

properties, in contrast to the anti-conservative coverage of the fully parametric estimator 

when the model is misspecified for the estimator of interest. 

With an outcome irrelevant design (Table 2.4), there are very slight effects on the 

estimates when compared across methods and models. Including the irrelevant design 

variable in the imputation model results in negligible biases and introduces some modest 

inefficiencies, consistent with the findings in Reiter et al. (2006).  

Figures 2.3 and 2.4 examine the properties of MI variance estimators. Figure 2.3 

shows scatter plots of 100 estimated standard errors (SEs) of the mean from alternative 

imputation methods versus the empirical SEs from actual samples before deletion under 

three different imputation models, with outcome relevant design. The MI variance 

estimates under the proposed synthetic method are consistently lower than the fully 

parametric method. The triangles (representing synthetic MI) are closer than the circles 

(representing parametric MI) to the 45 degree straight line, and the contrast is most 

obvious under model 1. Similar results are observed with outcome irrelevant design (not 

being plotted here). Figure 2.4 plots the standard error (SE) versus empirical standard 

error (Emp.SE) from alternative MI methods, under all 12 combinations of simulation 

design and imputation model, for both the mean and the slope. While the variance 
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estimator for the parametric MI method (represented by red dots) either over- or under-

estimates when the imputation model is misspecified (i.e. under model 1 and model 2), 

the blue triangles are always close to the 45 degree line. This indicates the approximate 

unbiasedness of the variance estimator for the synthetic MI method as well as the 

robustness of it to model misspecification. 
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Table 2.2 Before deletion study of the effects of the number of generated FPBB populations (B) on variance estimate 

Parameters 

Of Interest 

Performance 

Criteria 

Weighted FPBB Method with B Synthetic Populations Created Actual 

Sample B=1 B=5 B=10 B=15 B=20 B=25 B=30 B=40 

Mean 

  

  

  

  

Pt. est. 1.350 1.351 1.353 1.353 1.352 1.352 1.351 1.354 1.343 

Emp.Est.Var 0.051 0.037 0.036 0.035 0.035 0.034 0.034 0.035 0.035 

Emp.Var 0.034 0.034 0.034 0.034 0.035 0.034 0.033 0.033 0.035 

RMSE 0.185 0.184 0.185 0.184 0.186 0.182 0.182 0.181 0.186 

95% CI cov. 98% 94% 95% 95% 94% 95% 95% 95% 94% 

Intercept 

  

  

  

  

Pt. est. 1.064 1.063 1.064 1.064 1.064 1.063 1.063 1.063 1.058 

Emp.Est.Var 0.027 0.022 0.021 0.021 0.021 0.021 0.020 0.021 0.021 

Emp.Var 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.020 

RMSE 0.137 0.136 0.137 0.137 0.138 0.138 0.137 0.136 0.142 

95% CI cov. 98% 93% 94% 94% 93% 94% 92% 93% 92% 

Slope 

  

  

  

  

Pt. est. 1.451 1.454 1.453 1.453 1.455 1.451 1.453 1.453 1.435 

Emp.Est.Var 0.038 0.030 0.029 0.029 0.028 0.028 0.028 0.028 0.028 

Emp.Var 0.031 0.030 0.030 0.030 0.030 0.032 0.031 0.031 0.034 

RMSE 0.182 0.181 0.180 0.181 0.179 0.183 0.182 0.181 0.187 

95% CI cov. 93% 88% 91% 89% 89% 90% 90% 88% 89% 
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Table 2.3 Performance of the proposed method in contrast to the fully parametric method under the relevant design condition 

Actual Parameters 
Performance 

Criteria 

MAR_X MAR_X,W 

Standard Parametric MI Semi-Parametric MI Standard Parametric MI Semi-Parametric MI 

X X,W XW X X,W XW X X,W XW X X,W XW 

Mean=1.343 

Bias 0.260 0.068 0.002 0.003 0.009 0.012 0.211 0.032 0.000 -0.085 -0.082 0.008 

Emp.Est.Var 0.060 0.053 0.041 0.047 0.043 0.039 0.062 0.065 0.049 0.056 0.055 0.047 

Emp.Var 0.055 0.050 0.035 0.048 0.039 0.035 0.062 0.066 0.045 0.060 0.058 0.046 

RMSE 0.351 0.231 0.187 0.217 0.196 0.185 0.327 0.258 0.211 0.258 0.253 0.214 

95%Cov 79% 93% 97% 96% 95% 95% 84% 92% 96% 95% 92% 96% 

Intercept=1.058 

Bias 0.218 0.038 -0.001 0.004 0.003 0.007 0.181 0.003 -0.001 -0.050 -0.072 0.007 

Emp.Est.Var 0.031 0.030 0.027 0.027 0.026 0.025 0.032 0.033 0.032 0.031 0.030 0.030 

Emp.Var 0.028 0.031 0.020 0.027 0.024 0.021 0.027 0.031 0.026 0.030 0.029 0.027 

RMSE 0.274 0.180 0.142 0.165 0.154 0.143 0.243 0.174 0.160 0.180 0.183 0.163 

95% Cov 76% 92% 96% 93% 93% 96% 76% 92% 96% 94% 94% 97% 

Slope=1.435 

Bias 0.210 0.137 -0.028 -0.024 -0.001 0.010 0.155 0.165 -0.003 -0.145 -0.028 0.019 

Emp.Est.Var 0.040 0.032 0.036 0.039 0.035 0.034 0.038 0.036 0.039 0.049 0.043 0.040 

Emp.Var 0.048 0.041 0.040 0.048 0.040 0.034 0.054 0.046 0.037 0.054 0.044 0.036 

RMSE 0.303 0.244 0.201 0.220 0.199 0.185 0.278 0.269 0.191 0.274 0.210 0.188 

95% Cov 67% 79% 93% 92% 91% 92% 78% 82% 97% 91% 92% 96% 
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Table 2.4 Performance of the proposed method in contrast to the fully parametric method under the irrelevant design condition 

Actual Parameters 
Performance 

Criteria 

MAR_X MAR_X,W 

Standard Parametric MI Semi-Parametric MI Standard Parametric MI Semi-Parametric MI 

X X,W XW X X,W XW X X,W XW X X,W XW 

Mean=0.106 

Bias 0.011 -0.003 -0.004 0.011 0.008 0.006 -0.006 -0.025 -0.026 -0.002 -0.005 -0.013 

Emp.Est.Var 0.019 0.022 0.022 0.018 0.019 0.020 0.024 0.029 0.029 0.017 0.023 0.026 

Emp.Var 0.017 0.022 0.025 0.020 0.021 0.022 0.013 0.021 0.022 0.017 0.021 0.021 

RMSE 0.130 0.147 0.157 0.143 0.146 0.148 0.114 0.147 0.151 0.129 0.145 0.146 

95%Cov 97% 94% 90% 93% 94% 94% 97% 94% 95% 97% 95% 96% 

Intercept=0.020 

Bias 0.012 0.001 0.000 0.014 0.011 0.009 -0.001 -0.021 -0.023 0.002 -0.002 -0.009 

Emp.Est.Var 0.017 0.020 0.020 0.016 0.017 0.018 0.022 0.027 0.025 0.014 0.020 0.022 

Emp.Var 0.015 0.021 0.024 0.018 0.020 0.021 0.012 0.023 0.024 0.015 0.022 0.022 

RMSE 0.124 0.144 0.155 0.136 0.141 0.143 0.110 0.152 0.157 0.123 0.146 0.149 

95% Cov 99% 96% 93% 93% 94% 94% 98% 95% 97% 93% 94% 96% 

Slope=0.416 

Bias -0.008 -0.017 -0.016 -0.010 -0.012 -0.014 -0.023 -0.022 -0.008 -0.020 -0.015 -0.014 

Emp.Est.Var 0.015 0.016 0.016 0.016 0.016 0.017 0.023 0.020 0.025 0.017 0.018 0.024 

Emp.Var 0.012 0.011 0.016 0.014 0.014 0.013 0.011 0.014 0.025 0.016 0.017 0.024 

RMSE 0.108 0.108 0.126 0.119 0.118 0.116 0.108 0.120 0.158 0.128 0.129 0.155 

95% Cov 96% 96% 96% 98% 98% 99% 98% 98% 92% 95% 95% 96% 
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Figure 2.3 Scatter plots of 100 estimated standard errors (SEs) of the mean from alternative imputation 

methods (x axis) versus the empirical SEs from actual samples before deletion (y axis), under three 

imputation models, with outcome relevant design 
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Figure 2.4 Plots of standard error (SE) versus empirical standard error (Emp.SE) from alternative 

MI methods, under different combinations of simulation condition and imputation model 

 
 

2.5 Application to the Behavioral Risk Factor Surveillance System (BRFSS)  

2.5.1 BRFSS Data  

We next examine the effect of incorporating the survey weight in MI using data 

from one design stratum (n=388) of the 2009 Michigan BRFSS. This design stratum 

contains sampled households that belong to the medium-density (unlisted) telephone 
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numbers group. The BRFSS is a telephone survey conducted with a random sample of 

adults living in telephone-equipped households in the US. An independent sample of 

telephone numbers is used as the sampling frame; thus case weights are constructed to 

account for the fact that the probability of selection is proportional to the number of 

telephone lines and inversely proportional to the number of adults in a household. In 

addition, poststratification weights are used to adjust age-sex-race/ethnic distributions to 

Census totals. A mix of categorical and continuous variables is selected for analysis. 

These include health insurance coverage (yes/no), body-mass index (BMI) in kg/m
2
, high 

blood pressure (yes/no), and five socio-demographic variables (age (in years), race 

(White vs. Nonwhite), annual household income (low:   $25,000, medium: $25,000 - 

$75,000, high: >$75,000), gender (male/female), and employment status (yes/no/other) as 

well as a single design variable, the final weight. All survey variables except gender have 

certain degrees of missing data: income has the highest missing rate (16.5%), while 

others are missing 0%~6%. 

2.5.2 BRFSS Imputation Method 

We compare results from the fully parametric MI method with the proposed two-

step semi-parametric MI method, using two imputation modeling strategies with each 

method: 1) assuming SRS, and 2) including the log of weights as a predictor in the model. 

We also include the weighted complete case analysis (CC). For the new method, we 

generated L=100 Bayesian bootstrap (BB) samples and created B=30 FPBB populations 

within each BB sample, with M=5 multiple imputations performed for each FPBB 

population. Since we do not know the population size in advance, and the individual final 

weights sum up to nearly 200,000 cases which is unrealistic to generate, we assume that 

N=4500 is large enough to be treated as a synthetic population. Since the degrees of 
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freedom is L-1=99, a normal distribution was used for inference.  

2.5.3 BRFSS Analyses 

We consider four different analyses: 1) the marginal distribution of income and 

health insurance accessibility (Table 2.5); 2) a linear regression model of BMI on key 

demographic variables as well as income (Table 2.5); 3) a loglinear model of a four-way 

contingency table defined by four categorical variables with no second-or-higher-order 

interactions (Table 2.6); and 4) a general location model for the joint distribution of the 

survey variables (Table 2.7).  

Multivariate imputation by chained equations (mice) in R was used to impute the 

missing data under both MI methods. This technique is different from a joint modeling 

approach (Schafer, 1997a), which specifies a joint multivariate distribution for the 

missing data, this technique specifies the multivariate imputation model on a variable-by-

variable basis by a set of conditional densities (Raghunathan et al., 2001; van Buuren & 

Groothuis-Oudshoorn, 2011). Therefore as a way to check the validity of the proposed 

method, we examine the joint distribution of all variables with missing data after 

imputation using a general location model (Olkin & Tate, 1961). However, due to sparse 

cells resulting from the complete cross-tabulation of all categorical variables in the 

original dataset, we are limited to looking at the joint distribution of BMI and age in a 

two-way contingency table defined by income (L,M,H) and gender (M,F). The 

parameters of interest are ( , , ), 1,...,6.:c cP c      where P is a vector of length 6, i.e. 

the contingency table cell probability, and the bivariate normal distribution of BMI (X1) 

and age (X2) within each cell is: 
1

2

X= ~ ( , )
c

c c c

c

X
N

X

 
  

 
, where c  and c denote the 

vector of means of BMI and age and the covariance matrix for the c
th

 cell, respectively. 
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We further collapse the medium and high income as one category for the loglinear 

analysis to avoid sparse cells.  

2.5.4 BRFSS Results 

Since the poststratification adjustment factor constitutes an important component 

of the final weight in BRFSS dataset, we presume that including the variables used to 

construct poststratification cells (age, race and gender in this case) in the imputation 

model should help in predicting the missing Y variable. A linear regression of final 

weights on age, sex, and race shows that these covariates explain 40% of the variance of 

the weights, suggesting that some unknown design variables exist that contributes to the 

construction of survey weights. Thus we conclude that imputation approaches that 

condition only on the available design variables will be insufficient to account for the 

sampling weights. 

Table 2.5 shows that under the fully parametric MI method, including survey 

weights in the imputation model has a large impact on the regression coefficients of BMI 

on income and gender (high income: -0.47 when weights are excluded vs. -0.33 with 

log(weights) included; female: 2.72 vs. 2.56). In fact, these differences are particularly 

significant for domain estimation for whites (medium income: -2.8 vs. -2.1; female: -0.13 

vs. -0.68). Under the new method, however, all estimates are similar to those from the 

fully parametric method with weights accounted for. Moreover, there is essentially no 

difference whether or not we incorporate weights into the imputation model after the 

sample data are synthesized. This means, that the new method can adjust for the weight 

effects at the synthesizing step without the need to model survey weights at the 

imputation step. Similar conclusions can be made from the Table 2.6 results for the log-

linear model: modeling the weight in the imputation model has major impacts on the 
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coefficients associated with income. For example, Low income x Has insurance: -0.37 

under ‘excludes weights parametric MI’ vs. -0.33 under ‘includes log(weights) parametric 

MI’ vs. -0.31 under both modeling strategies of ‘synthetic MI’. 

As both BMI and age only have a very small fraction of missing data, we see little 

difference between the SRS imputation model and the model that includes log(weight) as 

a predictor under either MI method in the estimation of the general location model (Table 

2.7), either for overall estimation or within income by gender categories. Thus we only 

display the results for model-based MI with weights accounted for (which is considered 

as the correct imputation model to use), together with the synthetic MI with the SRS 

model and we contrast both of them with the complete case analysis (CC). In general, 

two-stage semi-parametric MI provides results that are similar to the fully parametric MI 

method. Both seem to improve efficiency for overall estimates of BMI and age relative to 

those obtained from CC. 
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Table 2.5 Estimation of marginal distributions for income and health insurance, and linear regression coefficients for the regression of 

BMI on income, age and gender 

   Methods 

Sample Estimation Variable 
Complete Case 

Parametric MI (M=5) Synthetic MI (L=100, S=30, M=5) 

Exclude weights Include log(weights) Exclude weights Include log(weights) 

Pt.est. SE Pt.est. SE Pt.est. SE Pt.est. SE Pt.est. SE 

Full 

Sample 

Marginal 

Low Income 0.50 0.04 0.50 0.04 0.52 0.05 0.52 0.04 0.51 0.04 

Medium Income 0.38 0.04 0.36 0.04 0.36 0.04 0.36 0.04 0.36 0.04 

High Income 0.12 0.03 0.14 0.03 0.12 0.03 0.13 0.03 0.13 0.03 

No insurance 0.22 0.04 0.24 0.04 0.24 0.04 0.24 0.04 0.24 0.04 

Regression 

Intercept 27.0 2.75 26.1 2.02 25.8 2.05 26.3 2.29 26.2 2.30 

Medium income 0.47 1.40 0.35 1.21 0.39 1.19 0.37 0.94 0.37 0.95 

High income 0.27 1.43 -0.47 1.32 -0.33 1.37 -0.36 1.40 -0.31 1.40 

Age 0.02 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 

Female 2.29 1.30 2.72 1.06 2.56 1.07 2.57 1.06 2.55 1.05 

Whites 

Domain 

Marginal 

Low Income 0.30 0.07 0.36 0.07 0.35 0.06 0.34 0.06 0.34 0.06 

Medium Income 0.53 0.08 0.48 0.07 0.50 0.07 0.49 0.06 0.49 0.06 

High Income 0.17 0.06 0.16 0.06 0.15 0.05 0.17 0.06 0.17 0.06 

No insurance 0.24 0.07 0.21 0.06 0.21 0.06 0.19 0.06 0.19 0.06 

Regression 

Intercept 31.1 3.9 32.4 4.7 31.0 4.1 31.0 4.2 31.0 4.1 

Medium income -1.6 3.25 -2.8 2.83 -2.1 2.72 -1.8 2.96 -1.7 2.97 

High income -3.1 3.60 -3.5 3.42 -3.2 3.18 -3.1 3.65 -3.0 3.62 

Age 0.02 0.06 -0.01 0.06 0.02 0.06 0.02 0.06 0.02 0.05 

Female -1.7 2.39 -0.13 2.13 -0.68 2.11 -0.80 2.17 -0.75 2.17 
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Table 2.6 Estimation of log-linear model for four categorical variables (collapse categories for medium and high income) 

  Methods 

 Estimatio

n 
Variable Level 

Complete 

Case  

Parametric MI 

Exclude 

weights 

Parametric MI 

Include 

log(weights) 

Synthetic MI 

Exclude 

weights 

Synthetic MI 

Include 

log(weights) 

Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE 

Main 

effects 

Low income -0.01 0.12 0.08 0.13 0.04 0.12 0.04 0.13 0.02 0.13 

Has insurance 0.61 0.12 0.64 0.12 0.62 0.11 0.69 0.12 0.68 0.12 

White -0.94 0.11 -1.0 0.10 -1.0 0.11 -1.1 0.12 -1.1 0.12 

Male -0.11 0.12 -0.09 0.10 -0.07 0.10 -0.07 0.11 -0.07 0.11 

Two-way 

Interaction

s 

Low income x Has 

insurance 
-0.36 0.12 -0.37 0.12 -0.33 0.13 -0.31 0.11 -0.30 0.11 

Low income x White -0.28 0.10 -0.20 0.09 -0.20 0.09 -0.22 0.09 -0.22 0.09 

Low income x Male -0.03 0.09 -0.03 0.09 -0.07 0.09 -0.05 0.08 -0.05 0.08 

Has insurance x White -0.13 0.12 -0.02 0.12 -0.02 0.12 0.02 0.13  0.03 0.13 

Has insurance x Male -0.01 0.13 -0.12 0.10 -0.14 0.10 -0.15 0.10 -0.15 0.10 

White x Male -0.08 0.09 -0.11 0.08 -0.11 0.09 -0.11 0.08 -0.10 0.08 
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Table 2.7 Estimation of general location model for joint distribution of BMI, age, income and gender after MI under alternative methods 

(L_M = low-income male, M_M=medium-income male, H_M=high-income male; L_F = low-income female, M_F=medium-income 

female, H_F=high-income female) 

Complete Case Analysis (design-based analysis) 

 Proportion SE(p) bmi SE(bmi) age SE(age) Var(bmi) Var(age) Cov(bmi, age) 

L_M 0.230 0.045 27.2 1.86 38.7 3.81 57.4 301 -13.5 

M_M 0.175 0.037 28.5 1.62 40.8 4.36 54.0 351 51.8 

H_M 0.068 0.023 29.7 1.78 49.2 2.76 32.0 122 1.3 

L_F 0.269 0.034 30.7 1.26 43.2 2.48 86.9 313 4.5 

M_F 0.201 0.028 30.5 1.08 46.2 1.97 57.9 197 -7.2 

H_F 0.058 0.014 28.9 1.04 48.1 3.62 23.6 241 -13.7 

Overall - - 29.3 0.70 43.0 1.56 61.0 278 8.0 

Model-Based MI log(weight) (design-based analysis) 

L_M 0.237 0.042 26.8 1.46 38.3 3.49 48.2 301 4.8 

M_M 0.155 0.036 28.3 1.43 41.5 4.48 47.7 361 45.6 

H_M 0.077 0.029 27.7 1.78 41.4 6.07 33.7 299 45.0 

L_F 0.268 0.035 30.5 1.05 44.0 2.50 76.9 356 5.97 

M_F 0.204 0.032 30.1 0.96 44.5 2.42 54.6 254 -2.4 

H_F 0.060 0.017 29.0 1.31 45.2 4.73 24.8 262 -10.4 

Overall - - 28.9 0.58 42.1 1.42 55.5 312 14.9 

Synthetic MI SRS (simple unweighted analysis) 

L_M 0.241 0.037 27.1 1.47 38.7 2.92 45.0 275 -0.41 

M_M 0.161 0.033 28.2 1.40 41.4 4.09 43.0 321 40.1 

H_M 0.070 0.022 28.2 1.67 43.8 5.30 26.6 211 26.0 

L_F 0.276 0.032 30.5 0.85 43.4 2.24 73.6 351 2.9 

M_F 0.196 0.023 30.5 0.79 45.0 1.57 53.8 233 -4.2 

H_F 0.056 0.013 29.0 1.00 46.8 3.22 25.5 231 -10.4 

Overall - - 29.0 0.55 42.1 1.46 55.9 308 13.1 
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2.6 Discussion 

Our primary goal was to propose a new method using the weighted finite 

population Bayesian Bootstrap to account for sampling weights in MI to deal with 

item-level missing data, and to evaluate the new method in a PPS sampling design 

setting. Our findings in the simulation study suggest that the new method does 

significantly reduce bias relative to the fully parametric methods, and with little 

loss in efficiency. Meanwhile, the weighted FPBB method maintains population-

level multivariate relationships and potentially protects against model 

misspecification, for example, erroneous inclusion or exclusion of interactions 

between design variables and other covariates in the imputation model. A further 

advantage lies in that, unlike the fully parametric methods which include designs 

in the imputation model but still require complex survey packages to analyze the 

imputed datasets, the new method fully accounts for the unequal selection 

probabilities by unweighting them and restoring a population in a separate step. 

Therefore, only simple, unweighted complete-data analysis techniques are needed 

for inferences with the newly developed combining rules. This potentially allows 

a much wider variety of models to be considered with existing software, which, 

despite recent improvements, often cannot account straightforwardly for complex 

sample designs.  

A limitation of the proposed method is the need to account for the design 

elements in the imputation procedure if the missingness mechanism requires their 

inclusion (e.g., if the probability of an item response is a function of the selection 

probability). As a practical matter, however, “undoing” the sample design to 
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generate the synthetic population may reduce the impact of misspecified 

missingness mechanisms by avoiding enhancement from misspecified data 

generation mechanisms. 

The proposed two-stage semi-parametric multiple imputation approach 

has a number of possible extensions. The method developed here is designed for 

one-stage sample designs with independent selections and unequal probabilities of 

selection, as in the BRFSS sample design. Hence, extensions are required to 

account for multi-stage designs with clustering and stratification as part of the 

finite population Bayesian bootstrap. Another limitation is the assumption that no 

unit non-response occurs in the sample. Extensions that incorporate unit non-

response provide another promising research opportunity. However, in public use 

samples that provide only final weights incorporating non-response adjustments, 

treating the final weight as a sampling weight (as we did in the BRFSS 

application) may be the only practical alternative.  
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CHAPTER 3 

MULTIPLE IMPUTATION IN TWO-STAGE CLUSTER SAMPLES 

USING THE WEIGHTED FINITE POPULATION BAYESIAN 

BOOTSTRAP 

 

3.1 Introduction 

Survey data collected for social science and public health research is often 

clustered. Such clustered data often results from multi-stage sampling for cost and 

convenience reasons. For example, cluster sampling of students from schools is 

common in education surveys, where students are clustered by schools, or by 

classrooms within schools. In general population surveys, area probability 

sampling is considered a cost-effective way to select households because 

households are naturally clustered by geographic areas (e.g. PSUs/counties, 

blocks, etc.). In these and many other examples, it is realistic to assume that units 

in the same cluster tend to be more alike than units in different clusters. This leads  

to clustering effects, typically in the form of intraclass correlation (ICC) (Kish, 

1965). Since a positive ICC implies an effective sample size less than the total 

sample, and thus increases variance estimates of statistics of interest, accounting 

for clustering effects is quite important.  

Methods for doing this have been well-developed for complete-data 

approaches using either robust sandwich estimators based on Taylor Series 

approximations (Binder, 1993) or replication methods such as the balanced 
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repeated replication, jackknife, or bootstrap (Rust & Rao, 1996). These are now 

commonly available in statistical packages (e.g. the survey package in R, the svy 

suite of commands in Stata). A more model-based approach to the analysis of 

clustered data is multilevel modeling (Rabe-Hesketh & Skrondal, 2006), which 

allows the decomposition of overall variance estimates into components of 

variance due to different levels of sample selection. A good overview of software 

procedures for fitting linear mixed models is West & Galecki (2011); packages 

that fit nonlinear mixed models include R nlme, SAS nlmixed, and Stata gllamm 

(Li et al., 2011).  

Concurrently with the development of methods and software for clustered 

sample designs, multiple imputation (MI) (Rubin, 1987) has become a standard 

method for dealing with item-level missing data in complex sample surveys. The 

need to incorporate sample design information into the imputation process has 

been recognized -- for example,  Rubin (1996) in his MI review paper stated that 

any imputation model should minimally include major stratification and clustering 

indicators as well as design weights to make it proper. More generally, Schafer 

(1997a) also asserted that whether the estimation techniques ultimately applied to 

survey data are model-based or design-based, imputation models for missing 

values should incorporate important features of sample design. However, as this 

can be difficult to do in practice, imputation is typically performed under an 

assumption of simple random sampling. 

This issue is considered in detail by Reiter, Raghunathan, and Kinney 

(2006). They attempt to incorporate sample design  through simple modification 
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of existing imputation procedures such as SRMI in IVEware (Raghunathan et al., 

2001), by modeling design variables (i.e. cluster membership indicators) as fixed 

effects in the imputation. Despite the simplicity of implementation, the fixed 

cluster effects model they propose is usually uncongenial to the analyst’s model in 

the sense of Meng (1994). It can become very inefficient when the number of 

clusters is large. Andridge (2011) also considered fitting a fixed cluster effects 

imputation model to data from cluster randomized trials. However, when she used 

such a modeling strategy, she found an upward bias in the MI variance estimator 

through both analytical proof and simulation studies.  

An alternative approach consistent with standard model-based approaches 

is to impute data using a mixed/random effects model, where each cluster has its 

own intercept (usually assumed to be sampled from a normal distribution with 

zero mean and unknown variance). Software packages allowing the use of mixed 

effects models for multiple imputation include: 1) the R pan package (Schafer & 

Yucel, 2002; Zhao & Schafer, 2013), for imputing continuous variables in 

clustered or panel designs under a multivariate normal model. Details on the 

MCMC imputation method used in pan can be found in Schafer (1997b); and 2) 

the REALCOM-IMPUTE module of the multilevel model fitting software MLwiN 

(Carpenter, Goldstein & Kenward, 2011). This also adopts a joint modeling 

approach and MCMC-based solutions but assumes a multivariate latent normal 

model with random effects for mixed type response variables subject to 

missingness. While these imputation models achieve congeniality with respect to 

the cluster effects and result in more efficient estimates than a fixed effect 
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approach, their use in practice is limited due to several shortcomings: pan, for 

example, assumes normality on binary variables, and the linear mixed effects 

imputation model typically leads to implausible values that needs rounding (to the 

nearest 0 or 1) after imputation. This can cause biased estimates of parameters 

(Horton et al., 2003). With REALCOM-IMPUTE, uncongeniality remains an issue 

in the sense that conditional relationships among variables in the imputation 

model are typically assumed linear while the models of interest usually include 

non-linear relationships and/or interactions. Besides, the consequences are not 

clear of using a probit regression for imputation for binary data that are modeled 

by the analyst using a logistic regression. Moreover, both procedures are confined 

to relatively simpler data structure with no more than two levels.  

On another front, attempts to extend the variable-by-variable imputation 

methodology to clustered designs, e.g. the sequential hierarchical regression 

imputation models (SHRIMP) for multivariate clustered data (Yucel & 

Raghunathan, 2006; Zhao & Yucel, 2009; Yucel, 2011) demonstrate problems 

with convergence. There is evidence of poor finite-sample repeated sampling 

properties in logistic mixed effect models with high ICC. Other problems with the 

fully parametric imputation methods above include: 1) imputations drawn from 

these models may perform poorly if the random effects follow a non-normal 

distribution instead; 2) the accommodation of both sample weights and cluster 

effects simultaneously is particularly problematic, especially in high-dimensional 

settings with many missing covariates. Such an accommodation requires the 

estimation of interactions between clusters and weights, as well as between 
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weights and other quantities of interest (e.g., regression parameters). This can be 

difficult to achieve using a standard parametric approach.  

Thus the focus of this chapter is to develop an adaptation of the two-step 

semi-parametric MI procedure proposed in Zhou, Elliott, and Raghunathan 

(2013a) for disentangling clustering effects and sampling weight effects using a 

weighted finite population Bayesian bootstrap (FPBB) procedure developed in 

Dong, Elliott, and Raghunathan (2014). The new MI procedure is designed to 

produce draws from the posterior predictive distribution of the population that 

incorporate both clustering and weighting elements of the complex sample design. 

Item-level missingness is incorporated in these “uncomplexed” synthetic 

populations; these missing data can then be imputed under an IID assumption 

without explicit modeling of clustering and weight effects. We consider two-stage 

unbalanced cluster samples obtained from unequal probability of selection, and 

we assume a missing at random (MAR) missing data mechanism on a single 

survey outcome variable (Y). The parameters of interest are the population mean 

of Y and population regression parameters of Y on a covariate X based on the 

multiply imputed data. 

Section 3.2 discusses MI under simple random sampling, together with 

standard fixed and random effects models to incorporate cluster effects. Section 

3.3 develops the newly proposed weighted FPBB procedure. Section 3.4 conducts 

and discusses a series of simulation studies designed to assess the repeated 

sampling properties of MI under the various approaches discussed in Section 3.2 

and 3.3. These simulation studies use different population models, differing 
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numbers of clusters, differing degrees of intraclass correlation, and differing 

MAR mechanisms (dependent only on the fully observed covariate independent 

of sample weights, or dependent on both the covariate and sample weights). 

Section 3.5 applies the different MI procedures to the analysis of passenger 

vehicle injury data from the National Automotive Safety System – Crash 

Detection System (NASS-CDS) survey.  Section 3.6 concludes with discussion 

and suggestions for next research steps.  

 

3.2 Fully Parametric Imputation Methods for Clustered Sample Designs 

3.2.1 Simple Random Sampling (SRS) Model 

Let iY  be the survey outcome with missing values (assumed scalar for 

ease of exposition) and iX  be a p-variate vector of other survey variables whose 

values are known for all cases in the sample, 1,...,i n . We assume that Y is a 

member of the exponential family, and that the known transformation of 

( | )i i iE Y X   can be modeled as a linear function of X: ( ) T

i ig X  , with 

Var( | ) ( )i i e iY X V  for a known variance function V and a possibly estimated 

scale parameter e . (Examples of this include Gaussian regression with 

( )g   , ( ) 1V   , and e  as the [typically unknown] variance parameter; 

Poisson regression/log-linear model with ( ) log( )g   , ( )V   ; and logistic 

regression with ( ) log
1

g





 
  

 
, ( ) (1 )V     , and 1e  .)  For now, we 

assume independence of the iY  and equal probability of selection. A Gibbs 

Sampler can then be used to simulate the joint posterior of the unknown 
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parameters ( , )e    and the missing data misy . Given starting values (0)  and 

 0

misy , and let ( )f   denote the probability density function, consider an iterative 

simulation algorithm in which the current version of the unknown parameters 

( ) ( ) ( )( , )t t t

e   and the missing data ( )t

misy  are updated in two steps: 

(1) Draw model parameters from their posterior distributions conditional on 

the “filled-in data” (imputed plus observed) from the previous draw: 

       ( 1) ( )~ ( | , )t t

obs misf y y  . 

(2) Draw missing values in Y from its posterior given all other parameters 

drawn: 
( 1) ( 1)~ ( | , )t t

mis mis obsy f y y  
. 

After a sufficient number of draws have been obtained to attain convergence of 

the Gibbs Sampler (Gelman & Rubin, 1992), M widely separated draws of the 

missing data are combined with the observed data to form the completed data 

( ) ( )( , ), 1,..., .m m

comp obs impy y y m M  . Inference about the population quantity of interest 

Q is estimated using the combining rules of Rubin (1987): 

 

 

1 ( )

1

1/2

1

1 ( )

1

2
1 ( )

1

2

1

ˆ ( )

ˆ( ) ~

(1 )

ˆvar ( )

ˆ( 1) ( )

( 1) 1
(1 )

m

M
m

comp

m

v

B

M
m

comp

m

M
m

B comp

m

m

B

Q M Q y

T Q Q t

T U M V

U M Q y

V M Q Q y

U
v M

M V





















  



  

 
   

 







 

where 
( )( )m

compQ y  is the point estimate obtained from the m
th

 completed dataset 
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( )m

compy , U  is the within imputation variance calculated as the average of variance 

estimates based on the M completed datasets, 
BV  is the between imputation 

variance, 
mv  is the degrees of freedom associated with the t reference distribution 

for inference about Q. 

3.2.2 Fixed Cluster Effects Model 

We expand the simple random sampling model to ( ) T T

i i ig X Z    , for 

1,..., .i n , where iZ  is a ( 1)c - dimension vector of dummy variables for the c 

clusters selected in the sample. Alternatively we can further expand to include 

interactions between the fully-observed covariates and the cluster dummy 

variables: 

( ) T T T T

i i i i ig X Z X Z       . Imputation proceeds as in the SRS setting, with 

expanded parameter space ( , , , )e     . 

3.2.3 Random Cluster Effects Model 

Here we group the variables by cluster, for the 1,...,i c  clusters with 

1,..., ij m  observations. Our imputation model then becomes ( ) T

ij ij ig x     

where we assume that the random cluster effects are distributed as ~ (0, )i N    

independently for 1,...,i c . The unknown parameters in the model are now 

( , , )e     and i . A Gibbs Sampler (for Gaussian regression imputations 

considered in this chapter) is then used to simulate the joint posterior of the 

unknowns. At current iteration t, each parameter is drawn from its respective 

conditional posterior distribution as follows: 
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( 1) ( ) ( )

( 1) ( ) ( 1)

1

( 1) ( 1) ( 1)

~ ( | , , ), 1,..., .

~ ( | , , ), ( ,..., )

~ ( | , , )

t t t

i i obs mis

t t t T

obs mis c

t t t

mis mis obs

f y y i c

f y y

y f y y

  

     

 



 

  



  

where i  is drawn from       1 1
1 1 11 ,e i i eN y x     

 
     ;   is drawn 

from 
2

2

c


 , e  is drawn from 
1

2

n p


  , where 1  and 2  are the prior specification 

of the hyper-parameters for the distribution of  e  and  , respectively;   is 

drawn from  
1 1

1 1 1

,
c c c

T T T

i i i i i e i i

i i i

N x x x y x x 

 

  

      
             

   ; and finally the 

missing data j misy   are drawn from  ,T

j mis i eN x       . 

 

3.3 Multiple Imputation using the Weighted Finite Population Bayesian 

Bootstrap in Clustered and Weighted Sample Designs 

3.3.1 Overview 

In this section, we develop a two-step multiple imputation methodology to 

account for complex sampling designs with two-stage cluster samples. The first 

step utilizes a weighted finite population Bayesian bootstrap to generate 

predictive draws of a population that capture the clustering and unequal 

probability of selection design features; the second step conducts the imputation 

within each of the predictive draws.  

Define I as a (fully-observed) vector of sampling indicators for a target 

finite population of size N. To develop the population posterior predictive 

distribution generation for the first step, let [ , ]s nsY Y Y  be the survey outcome of 

interest where missing data occur, which divides into the sampled part sY  (for 
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which 1I  ) and the nonsampled part 
nsY  (for which 0I  ). Define separate 

response mechanisms for the sampled and the nonsampled part of Y : 

( , )s nsR R R , such that 
, ,[ , ]s s obs s misY Y Y  further divides into the observed 

component ,s obsY  and the missing component ,s misY , corresponding to the sampled 

Y values associated with 1sR   and 0sR   respectively, and similarly 

, ,[ , ]ns ns obs ns misY Y Y  divides into those that would have been observed had they 

been sampled ( 1nsR  ), and those that would have had missing values ( 0nsR  ). 

Note that we can recombine as [ , ]obs misY Y Y  where 
, ,[ , ]obs s obs ns obsY Y Y  and 

, ,[ , ].mis s mis ns misY Y Y  In a similar fashion, let [ , ]s nsX X X  be the complete 

covariate, and ( , ) [( , ),( , )] [ , ]s s ns ns s nsZ w C w C w C Z Z    be the complete design 

matrix which contains all the essential sample design features (here we restrict to 

sampling weights w and cluster membership indicators C). Note that w is a matrix 

( ) |{( , , ), 1,..., , 1,..., .}j i j i ij iw w w i n j m  , where ( )j iw  is the cluster-level weight for 

element j in cluster i, |j iw  is the element-level conditional weight for element j 

given cluster i is selected, and |ij i j iw w w  is the overall sampling weight for 

element j.  

Assuming ignorable sampling, the joint predictive distribution of the 

nonsampled part of the population is given as (Rubin, 1987): 

( , , , | , , , , ) ( , , , | , , , ),

given p( | , , , ) ( | , , , ).

ns ns ns ns s s s s ns ns ns ns s s s s

s s s s

p Y X Z R Y X Z R I p Y X Z R Y X Z R

I Y X Z R p I Y X Z R




    [3.1] 

Explicit modeling for I can be avoided by incorporating design variables (Z) into 

a model for ( , , , | , , , )ns ns ns ns s s s sp Y X Z R Y X Z R  that conditionally eliminates 
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dependence on I (Gelman, 2007; Little, 2011). However, the practical 

implementation of this in a robust manner using standard parametric models can 

be daunting. Here we pursue a nonparametric approach using a weighted FPBB 

that combines a Polya sampling scheme developed by Ghosh and Meeden (1997) 

in the simple random sampling setting and extended by Meeden (1999) into a 

simple balanced cluster design setting with a second extension by Cohen (1997) 

to accommodate weighted data. These constitute a sample design reversing 

procedure as the first step.  

The second step requires a correct imputation model that generates the 

posterior predictive distribution of missing values in the entire population, such 

that it is independent of the response mechanism for both sampled and 

nonsampled parts of the population. That is, we do not need an explicit model for 

R given ignorable missingness: 

( | , , , )

( | , ),  if  ( | , , ) ( | , )

( | , , ),  if ( | , , ) ( | , , )

mis obs

mis obs obs

mis obs obs

p Y Y X Z R

p Y Y X p R Y X Z p R Y X

p Y Y X Z p R Y X Z p R Y X Z








,            [3.2] 

Here we will proceed with a standard parametric approach, modeling the missing 

Y conditional on the observed X and Z. Note that the extent to which Z should be 

incorporated into the imputation model still depends on the specific form of the 

response mechanism, as shown in [3.2]. 

3.3.2 The Weighted-FPBB in Clustered and Weighted Sample Designs 

In a simple two-stage cluster sampling (balanced case) with equal 

probability of selection at both cluster and element levels, Meeden (1999) 

proposed a “two-stage Polya posterior” approach to simulate draws that form an 
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entire population of clusters, and then an entire population of elements within 

each cluster. He showed that the posterior mean and variance are very close to 

standard design-based results. Cohen (1997) proposed a method to generate draws 

from a weighted Polya posterior using data obtained from weighted sample 

designs in a non-clustered setting. Here we extend the method of Meeden to a 

two-stage cluster sampling with unequal cluster sizes (unbalanced case) and 

combine it with the approach of Cohen to further handle unequal probability of 

selection. 

Next, we propose two variations of a two-stage procedure to simulate 

draws from equation [3.1]. The first approach assumes that we know the sampling 

probabilities at both sampling stages, and uses a weighted FPBB at each stage to 

generate a population of clusters and then a population of elements (and hence is 

termed an “adapted two-stage Polya posterior” approach). The second approach 

requires only the final weights, as is typical in most public use surveys, and uses a 

Bayesian Bootstrap at the first stage to account for clustering effects, and a 

weighted FPBB using the final weights to generate the population of elements.  

3.3.2.1 Double Weighted Finite Population Bayesian Bootstrap (SYN1) 

We will call the first approach ‘double weighted FPBB’. As indicated by 

the name, we propose to simulate the posterior predictive distribution in equation 

[3.1] by utilizing the weighted FPBB method at both the PSU (or cluster) level 

and the element level, such that a synthetic population of clusters is created at first 

and then a synthetic population of elements is created.  
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Let {( , , , ), 1,..., , 1,..., }ij ij ij ij iD Y X Z R i N j M    denote the population of 

values for element j  within cluster i , where N and Mi are the number of clusters 

and the number of elements within the i
th

 cluster in the population, respectively. 

Thus the population size is 
1

.
N

ii
M M


  Let 

1{ ,..., ,..., , 1,..., }q rb b b q r  be r  

(1 )r N   distinct matrices of real numbers each of dimension | | | |q q

row colb b  

(each column vector corresponds to a survey variable) with no row vectors in 

common. Each cluster in the population can take the form of one of qb ’s; let t be 

a vector of length N, it q  when the elements in the 
thi  cluster take on the values 

of qb , for i=1,…N. Finally, let  

( )  the number of 's which equal ,  for 1,..., .t ic q t q q r  , and 

, ( )  the number of ( , , , )'s which equal the  row vector ,  

                for 1,...,| |, 1,..., .

i

i

ti th

t D ij ij ij ij k

t

row

c k Y X Z R k b

k b i N



 
 

Suppose a two-stage cluster sample is selected from the above finite 

population. Thus D divides into the sampled components ( , , , )s s s s sD Y X Z R  

and the nonsampled components ( , , , )ns ns ns ns nsD Y X Z R . Let h  and h  each 

represents the collection of the sampled and nonsampled clusters, and thus we can 

break t  into ( , )h h
t t t . Let n denote the number of sampled clusters and im  the 

number of sampled elements within the thi  sampled cluster, and thus the total 

sample size is 
1

.
n

i

i

m m


  Assume n r , || ||hi
t

im b  the number of distinct row 

vectors in hi
t

b , and thus 
1

|| ||hi

n
t

i

m b


  for convenience of exposition. Let 
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( )  the first-stage sample weight of the sampled cluster  which equal ,

              for ( ) 1,..., ( ).

h

q

tw i i h b

i q n r

 

  
 

, ( )  the second-stage sample weight of the  sampled element in the  

                   sampled cluster which equal ,  for ( ) 1,..., ( || ||).

h si

h hi i

th th

t D

t t

k i

w j j i

b j k m b



  
 

Note that 
1

( )
h

n

t

i

w i n


  and ,

1

( )
i

h si

m

t D i

j

w j m


 . Let the set of distinct clusters in the 

observed sample ( sD ) be 
1{ ,..., ,..., }q rb b b , and 1 2{ , ,..., }r     be the vector of 

probabilities that ,Pr( | ) ,q

s i qD b     for 
1

1,2,..., ,  and 1.
r

qq
i n 


   Let 

( )
ht

c q  and ( )
h

tc q  be the number of clusters taking value qb  in the sampled and 

the nonsampled part of the population, respectively, for 1,2,..., ,q r  and 

1 1
( )  and ( ) .

h h

r r

t tq q
c q n c q N n

 
     Let the set of distinct elements in the 

sampled clusters be 1{ ,..., ,..., }k md d d , and 1 2{ , ,..., }m     be the vector of 

probabilities that 
,Pr( | ) ,k

s ij kD d     for 

1
1,2,..., ,  =1,..., ,  and 1,

m

i kk
i n j m 


   and , ( )

s

i

t Dc k  and , ( )
ns

i

t Dc k  be the number 

of elements taking value kd  in the sampled and the nonsampled part of the 

population, respectively, for 1,2,..., ,k m  and 

'
'

, ,1 1
( )  and ( ) .

s ns

m mi i

t D t Dk k
c k m c k M m m

 
      Assuming a noninformative 

Haldane prior of  : ~ (0,...,0)Dir  together with multinomially distributed 

weighted counts of distinct clusters in the sample data 

( )

1

( (1),..., ( ) | ) th

h h

r
w q

t t q

q

p w w r  


  yields a Dirichlet posterior distribution of  : 
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| (1),..., ( ) ~ ( (1),..., ( ))
h h h ht t t tw w r Dir w w r , and hence the posterior predictive 

distribution of counts of distinct clusters in the nonsampled data follows a 

compound multinomial distribution: 

*(1),..., ( ) | (1),..., ( ) ~ ( ; )
h hh h

t t t tc c r w w r Mult N n  , where *  is the parameter 

vector adjusted for unequal selection probability for clusters as in [3.4]. In a 

similar fashion, the posterior predictive distribution of counts of distinct elements 

in the nonsampled data follows a compound multinomial distribution: 

*

, , , ,(1),..., ( ) | (1),..., ( ) ~ ( ; )
ns ns h s h s

i i

t D t D t D t Dc c m w w m Mult M m  , where *  is the 

parameter vector adjusted for unequal selection probability for elements as in 

[3.5]. We then have the “adapted two-stage Polya posterior” derived as follows 

(for simplicity of exposition and by an abuse of notation, we use 
h

t  and ht  to 

represent (1),..., ( )
h h

t tc c r  and (1),..., ( )
h ht tw w r , respectively; similarly, we use nsD  

and sD  for , ,(1),..., ( )
ns ns

i i

t D t Dc c m  and , ,(1),..., ( )
h s h st D t Dw w m , respectively): 
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' '
1 1( ) 1 ( 1)

11

( ) ( ) ( | )
( | )

( ) ( ) ( | )

( , ) ( , | , )

( ) ( | )

( , ) ( | , , ) ( | , )

( ) ( | )

= ( | ) ( | , , )

... (1 )t t
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where ' ( ) ( ) ( )
h h

t tt
w q w q c q  , 

, ( )
h st Dw k  is the element-level weight, and 

' , ,,
( ) ( ) ( )

h s nsns

i

t D t Dt D
w k w k c k  . 

The posterior distribution in [3.3] does not lend itself to direct calculation, 

and is approximated by a Monte Carlo simulation procedure described as follows: 

Step 1: Apply the weighted FPBB to sampled clusters, that is, draw 

nonsampled clusters in the population based on the weighted Polya urn 

distribution. This step realizes the first factor in [3.3]. Denote the original sample 

of clusters by 1 2{ , ,..., }nc c c . In generating N n  clusters * * *

1 2{ , ,..., }N nc c c   from the 

original n, we resample the sampled clusters with probability 
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 

, 1
*

1

, 1,..., ( 1

( )

), 1,..., .

1

h it k

i

N n
l

k N n i n
N n

N n k

w i
n

n




 
   

     
 

    
 

            [3.4] 

where , 1i kl   is the number of times that the i
th

 cluster has been sampled at the 

( 1)thk   resampling, ( )
ht

w i  is the weight for the thi  cluster which is normalized to 

sum up to the total number of clusters, i.e. 
1

( )
h

n

ti
w i N


 . Repeat step 1 L times 

to obtain L FPBB synthetic populations of clusters. 

Step 2: For each repetition of step 1, form a population of clusters 

* * *

1 2 1 2{ , ,..., , , ,..., }n N nc c c c c c 
. Record the number of times each of the n clusters 

from the original sample appears in the FPBB population of clusters, denoted by 

, 1,..., .i i n   and 
1

n

ii
N


 . Then update the within cluster element-level 

conditional weights to unconditional weights as follow: 
|

*

| , 1,..., ,j i ij iw w i n    

where 
|j iw  is the inverse of the conditional probability that element j  is sampled 

given cluster i  sampled. (Note *

|j iw  is the same as , ( )
h si

t Dw j  as previously defined.) 

Now each observed element in these n clusters is associated with an updated 

weight that represents all nonsampled elements in both the sampled cluster it 

belongs to and similar nonsampled clusters in the population. Note that the 

resulting sample has the same sample size of elements (m) but different survey 

weights than the original sample, and we term it a ‘FPBB sample’. 

We then apply the weighted FPBB again to elements in the ‘FPBB sample’, 

and this realizes the second factor in equation [3.3]. In generating M m  units 

from the m elements in the FPBB sample, each of the elements in the FPBB 
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sample is resampled with probability 

 

*

| | , 1
*

|

1
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w l
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M m j m
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m

M m
M m

m




 
   

     
 

   









       [3.5] 

where 
*

|j iw  is the updated conditional weight for the thj  element in the thi  cluster. 

Note 
*

|j iw ’s inherit the information from the cluster-level selection probability *

i . 

Again they are normalized to sum up to the total number of elements in the entire 

population, i.e. *

|1
.

m

j ij
w M


  Thus we create a single synthetic population. 

Repeat step 2 B times to obtain B FPBB synthetic populations of elements.  

Such a procedure captures the sampling variance while untying the sample 

weights at both cluster and element levels through the creation of synthetic 

populations. This also realizes our goal of resolving clustering effects (design 

effect due to cluster sampling, i.e. 1 ( 1)*cdeff m    , where m is the averaged 

sample size within each sampled cluster and   is the intraclass correlation) as a 

sampling phenomenon. A simple illustrative example goes as follows: suppose we 

obtain a sample of households (HHs) from a two-stage cluster sampling design, 

where all US metropolitan statistical areas (MSAs) are treated as clusters to be 

sampled at the first stage. Suppose Detroit is among such sampled clusters. By 

using the proposed procedure, we first replicate the number of all ‘Detroit-like 

MSAs’ based on the sample weight for Detroit and use it to update the conditional 

sample weights of sampled HHs within Detroit; then we replicate the number of 

all nonsampled HHs in Detroit as well as that in Detroit-like MSAs in the 

population. The same reasoning applies to other sampled MSAs that are different 
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from Detroit (e.g. LA and LA-like MSAs). Once we generate the population of 

HHs, HH-level inference becomes straightforward without the need to consider 

effects due to sampling at the MSA-level.  

Because only final weights ijw  are usually available in the sample data 

that are released to the public, we will often need to estimate both the cluster-level 

weight ( )
ht

w i  in formulae [3.4] and the element-level conditional weight |j iw  in 

formulae [3.5]. We propose estimating ( )
ht

w i   by ˆ /  i ij i

j

w w M and 
|j iw  by 

|
ˆ ˆ/j i ij iw w w , where ijw  is the overall sample weight as defined in section 3.3.1. 

3.3.2.2 Bayesian Bootstrap — Weighted FPBB (SYN2) 

A variation of the procedure proposed in subsection 3.3.1.1 is to replace 

the first-stage weighted FPBB for clusters with regular Bayesian Bootstrap (BB), 

hence we name it “BB-weighted FPBB”. Operationally the difference is that, 

rather than obtaining a sample of clusters from a draw from a Polya posterior 

according to the cluster-level weights, we use a simple replication method 

assuming IID to capture the cluster-level sampling variance. The final sample 

weights ( ijw ) instead of the adjusted element-level conditional weights (i.e. *

|j iw ) 

are then directly used as input in the second-stage weighted FPBB. We will show 

that this procedure not only serves as a handy approximation to the double 

weighted-FPBB due to easier implementation in practice, it can also deal with 

complex missing data problems as effective as the double weighted-FPBB where 

fully parametric MI fails. The full procedure is described as follows: 
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Step 1: Apply Bayesian Bootstrap (BB) (Rubin, 1981) to draw a sample of 

the clusters from the original sample of clusters. Unlike parametric model-based 

approaches, the BB can be used to obtain the distribution of a population 

parameter through the multinomial likelihood and an improper Haldane prior 

without assuming a fully parametric model for the response variable, therefore is 

particularly relevant and useful in the survey sampling context. See Aitkin (2008) 

for a comprehensive application of BB in finite population inference. In our case, 

we first use it to simulate the posterior for the proportions of distinct clusters in 

the population:  

1) Draw 1n  i.i.d. random variates from (0,1)Unif  and order them as 

(1) (2) ( 1), ,..., nu u u 
 ; 

2) Calculating the gaps between 
( )'siu as 

( ) ( 1) , 1,..., 1i i ig u u i n     , 

where 
(0) 0u   and 

( ) 1nu  ; 

3) Sample n  clusters with replacement with the vector of probabilities 

1( ,..., )ng g g  to attach to the n  distinct clusters in the parent sample, 

and record the number of times ( i ) each cluster is selected in the 

‘Bayesian bootstrap (BB) sample’, 
1

.
n

i

i

n


  

4) Apply the ‘ultimate cluster principle’ (Wolter, 2007), that is, once a 

given cluster is taken into the bootstrap sample, all successive stage 

units are taken into the sample also. Modify the initial case weight in 
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the parent sample as follow: 

* ,  if cluster is selected or duplicated;

0,                          if cluster is not selected.

th

i ij

ij th

w i
w

i

 
 


, 

Normalize * 'sijw  to sum up to the population size. Note that the 

bootstrap sample size ( *m ) is different from the parent sample size 

( m ). 

Step 2: Generate nonsampled elements of the population accounting for 

inclusion weights: Select a FPBB Pólya sample of size ( * *M M m  ) from the 

compound multinomial distribution *

1( ; ,..., )dmult M p p , where , 1,..., ,jp j d  are 

the proportions of distinct values in the population and they are computed based 

on  

 

*

,

*

*
*

1

*

*

*

1, 1

1

,  1 ,..., .,...,

1

ij ij k

j

M m

m
j d

M

w l

p k M m
m

M m
m

k
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 
   
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 

   



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


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        [3.6] 

Simulate several (B) copies of the nonsampled population. 

3.3.3 Multiply Imputing Missing Data 

Denote the L B  FPBB “unweighted” synthetic populations generated by 

the weighted-FPBB by ( )

( ){ , 1,..., , 1,..., }syn l

bP P b B l L   , where 

( ) ( ) ( )

( ) ( ) ( )( , )l l l

b b mis b obsP Y P . Having untied the sampling design, we are ready to perform 

conventional parametric MI under an IID assumption. Following the standard MI 

procedure or approximations such as SRMI (Raghunathan et al., 2001), we obtain 

draws from the posterior predictive distribution ( ) ( )

( ) ( )( | )l l

b mis b obsp Y P , where ( )

( )

l

b misY  and 
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( )

( )

l

b obsP  consist of the unobserved and observed data in the lb
th

 FPBB dataset 

respectively. Without the need to include weights or cluster-level random effects 

in the imputation model, our task can now be concentrated on correctly modeling 

the covariates as well as interactions among them whenever necessary.  

 Point and variance estimate then proceeds as follows. Denote the imputed 

synthetic datasets as (1) (1) (1) (1) ( )

(11) (1 ) ( 1) ( ) ( ){ ,..., ,..., ,..., ,..., }imp L

M B BM BMP P P P P P . Note here M 

denotes the number of imputations created and is different from the M in the 

previous section which denotes population size of elements. By the standard 

Rubin (1987) MI combining rules, we have 

1

1| ~ ( ,(1 ) ),imp

L L LQ P t Q L V

                                        [3.7] 

where ( )1 l

L

l

Q Q
L

  , ( ) 21
( )

1

l

L L

l

V Q Q
L

 

 , and ( ) ( )1

liml lbm

B
b mM

Q q
BM



  , 

where 
( )lbmq  is an estimate of Q obtained from the m

th
 imputation of the b

th
 

synthetic population within l
th

  (finite population) Bayesian Bootstrap sample, 

obtained as  ( ) ( )1ˆ l lbm

b m

Q q
BM

  . Note that the generation of the synthetic 

population sets the within imputation variance to 0 so that the posterior variance 

of Q can be obtained using VL only; see Dong et al. (2014) and Zhou et al. 

(2013a).  

Note a difference should be made to the small sample scenario when we 

apply these combining rules. Lo (1988) showed that the variance estimator for the 

FPBB mean in a simple random sample setting should be inflated by the factor 

(
1

1

n

n




) (here n is the sample size of elements). Therefore, to get the variance 
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estimate correct under the double-weighted FPBB, we should use 
1

1

n

n




(1+L

-1
) VL 

(here n is the sample size of clusters). 

 

3.4 Simulation Study 

The simulation study considers two different clustered population data 

structures. For the first structure, we impose only clustering effects in the data 

model while leaving the weight independent of the data generating mechanism.  

Structure 1: 2 2

0 1~ ,  where ~ (0, ), ~ (0, )ij ij i ij i u ijY X u u N N          

For the second structure, the data model depends on both clustering effects and 

the measure of size (MOS) (Z) for second-stage sampling as well as its interaction 

with the covariate (X). Under this model, the subsampling probability is correlated 

with the response variable even after conditioning on the covariate:  

Structure 2: 
0 1 2 1

2 2

~ ,

       where ~ (0, ), ~ (0, )

ij ij ij ij ij i ij

i v ij

Y X Z X Z v

v N N 

    

  

    
 

We conduct a separate factorial design for each population structure by 

considering the following simulation factors: 

 Intraclass correlation coefficients (
|y xICC ):  

We set 
|y xICC  to be 0.1 or 0.5. Note that the 

|y xICC we examine here is a 

conditional ICC which measures residual correlation after allowing for 

dependence on the X variables, which will in general be larger than YICC , the 

unconditional ICC of Y. We also vary the cluster size ( iM ) to magnify the design 

effect. We purposely do not let the clustering occur on the covariates because the 
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impact of ignoring clustering effects in the imputation model may be abated by 

conditioning on X , which partially explains some of the unobserved clustering 

effects on Y (Andridge, 2011). 

 The number of selected clusters in the sample ( n ), given a fixed number of 

clusters (N) in the hypothetical population.  

We set two values for the first stage sample size: 10 or 40.n   The 

purpose is to observe both small and large sample behaviors for alternative 

methods. Meeden argues that for the “two-stage Polya posterior” to yield sensible 

0.95 credible interval estimates in a simple balanced two-stage cluster sample, the 

number of subunits (i.e. m ) selected in each sampled cluster should be large 

enough. We follow his suggestion by setting 20m   (or 20m   under an 

unbalanced design), and therefore we can focus on the effects of different PSU-

level sample sizes on the performance of the methods.  

 The response mechanism ( R ) for Y :  

Much research that investigates methods for missing data imputation only 

looks at one type of MAR mechanism, namely where the response indicator 

depends on the regular covariate matrix X . However, it is reasonable to assume 

that the missingness is also related to sample design information available in the 

sample cases. For example, in the Survey of Income and Program Participation 

(SIPP), low-income populations are often oversampled, and thus low-income 

respondents tend to have smaller weights in the sample dataset. If these families 

or individuals are also less likely to respond to survey questions on the specific 

topic, then the response mechanism can be considered as being associated with 
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survey weights (W) (Andridge & Little, 2009). We will look at both types of 

response mechanisms (denoted as MAR_X and MAR_X,W, respectively) in our 

simulation for both data structures.  

Based on the above stated factors, we conduct a full 2×2×2 factorial 

design for each data structure. A total of five MI methods are compared in the 

simulation study. They are described as follows: 

 SRS: the linear model where clustering effects are ignored altogether 

 FX: the linear fixed cluster effects model described in 3.2.2 

 RE: the linear random cluster effects model described in 3.2.3 

 SYN1: the two-step MI method with the double-weighted FPBB as 1
st
 step 

 SYN2: the two-step MI method with the BB-weighted FPBB as 1
st
 step 

The imputation tasks under SRS, FX, SYN1 and SYN2 are all implemented using 

R mice package (van Buuren & Groothuis-Oudshoorn, 2011). The imputation 

under RE is implemented using R pan package (Zhao & Schafer, 2013). 

Specifically, we selected noninformative priors for regression parameters, and 

diffuse inverse-Wishart priors for variance components; we imputed the missing 

data 5 times taking 100 iterations between imputations, after a burn-in period of 

1,000 iterations. 

 Finally, for imputation, we consider three model specifications: 

 X-only model: 2

0 1~ ( * [ ], )y N x b      

 Main effect model: 2

0 1 2~ ( * * [ ], )y N x w b       

 Interaction model: 2

0 1 2 3~ ( * * * * [ ], )y N x w x w b        , 
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Note that the cluster effect term [b] is only included under FX and RE. Note also 

that we will employ all three models for the three fully parametric MI methods 

although only the interaction model is considered as “appropriate”. For the two 

variations of synthetic MI methods, we will use X-only model for imputation 

throughout all scenarios.  

 

3.4.1 Description of the Design 

Step 1: Population data generation  

We fix the number of clusters in the population as 400N   for all data 

structures. Varying cluster sizes
 
are generated from the same uniform 

distribution ~ (50,250), 1,...,400.iM Unif i  , which sum up to a population size of 

59501N   for population Structure 1 and 59230N   for population Structure 2. 

For Structure 1, we let 0 11, 1.5,   and ~ (0,1).ijX N  For Structure 2, 

~ (2,1),  ~ (0.1* ,1),ij ijZ N X N Z  0 1 2 30, 0.2, 0.6, 0.5.       The random 

cluster effects are set to be independent standard normal variates, i.e. 

,  v ~ (0,1).i iu N  In order to generate hypothetical populations with varying ,ICC  

we vary the random error terms as: 1 2~ (0,1) and ~ (0,9),ij ije N e N  resulting in 

1 0.5ICC   and 2 0.1ICC   respectively. These correspond to two hypothetical 

populations under each data structure.  

Step 2: Drawing replications of samples 

We draw clusters with probability proportional to the cluster size jM , and 

1

1

/
N

i i k

k

f n M M


   ; The subsampling methods within each sampled cluster are 



 

84 

 

different for the two data structures: we select elements using SRSWOR with an 

equal rate of 2 0.1f   for the first data structure, while using PPSWOR with Z as 

the MOS for the second data structure. As a result, the final weight is dominated 

by the cluster-level weight for the former and the element-level weight for the 

latter.  

Step 3: Imposing missingness 

For samples drawn from the first
 
data structure: under MAR_X, we use a 

logistic function as the deletion function, 

0 1Pr( 1) expit( ),R X    ( 0 10.8, 0.2    ); under MAR_X,W, we define a 

probit model Pr( 0 | ) ( )R S S   to generate missingness indicators, where the 

latent variable is 2

0 1 2 log( ) ,  ~ (0,1 ).S X weight e e N       

( 0 1 23.8, 0.8,  1       .) Similar forms of the probit model are used for data 

structure 2 with a different latent variable: 

2

0 1 2 3 * ,  ~ (0,1 ),S X Z X Z e e N         where we set 

0 1 2 30.635, 0.4, 0         under condition MAR_X, and 

0 1 2 30.55, 0.4, 0.5, 0.4          under condition MAR_X,W. All scenarios 

result in a missing rate of approximately 30% on Y. 

Step 4: MI inference 

For each scenario, 200 simulations are obtained. The number of 

imputations under the fully parametric MI methods is 5M   and we set 

100, 20 and 5L B M    for the synthetic MI methods. Our focus is on 

estimating the population mean of Y and regression coefficients of Y on X. The 
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analyst’s model is assumed 0 1 .Y b b X   

Design-based analyses are performed for original samples before deletion 

(termed “BD”) and for fully parametric methods (SRS/FX/RE). Specifically, we 

use Horvitz-Thompson-type estimator for point estimation and ultimate cluster 

variance estimator for the within imputation variance estimation when estimating 

the population mean (Cochran, 1977), and we use weighted least squares 

estimators and sandwich variance estimators to estimate regression coefficients 

(Korn & Graubard, 1999). 

In terms of interval estimation, since neither a sample size of n=10 or 

n=40 adequately allows for a normal approximation, we use t reference 

distribution instead to construct the 95% confidence intervals for the mean and 

regression coefficients. Different degrees of freedom (df) are used for different 

methods: 1) For the actual samples BD, complete data df is used, i.e. comv n p   

where p is the number of parameters; 2) For the fully parametric MI method, we 

use the small sample df derived in Barnard and Rubin (1999), i.e. 

1 1 11 1
ˆ( ) [{ ( )(1 )} ]

ˆ
com

m com com m

m obs m

v
v v v

v v v
        , where mv  is the large-sample-

finite-number-imputation df as defined in section 3.2.1, and 1ˆ (1 ) B
m

V
M

T
    is 

approximately the Bayesian fraction of missing information (FMI); and 3) For the 

proposed synthetic MI method, because the FMI is not well-defined in the context 

of synthetic data in the current literature, and hence the df for constructing 

interval estimation for the small sample t-approximation synthetic data cannot be 

constructed using FMI, we propose using min{ 1, }syn comv L v   as an 
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approximation. This simultaneously accounts for finite number synthetic data 

generation ( 1L ) and small sample size (
comv ). 

3.4.2 Results  

Results pertaining to varying simulation conditions are summarized in 

Tables 3.1 - 3.6. The abbreviations for different methods are as previously 

described. We display the following five measures in the result tables: Pt.est. 

(point estimate) or Relbias (relative bias), SE (standard error of the estimate), 

Emp.SE (empirical standard error of the estimate), RMSE (root mean squared 

error) and Cov. (coverage rate of the nominal 95% confidence interval). We also 

display the interval widths (Intv.wth) in Tables 3.1 – 3.2. 

 Population structure 1 

Under population structure 1, the final sampling weight is dominated by 

cluster-level weights and is uncorrelated with the outcome variable, so the 

estimator of Y is unbiased even when we exclude weight as a predictor in the 

imputation model (see Table 3.1 and 3.2). Thus, our focus is on the clustering 

effects which only impact the variance and hence coverage properties. The 

average estimated fraction of missing information (FMI) using the model-based 

MI methods (including SRS, FX and RE) is 11.5% for the mean and 32.5% for 

the slope. The estimated FMI differs by ICC when estimating the mean, which is 

5.4% for ICC=0.5 and 17.6% for ICC=0.1. 

Despite MI’s ability to propagate imputation uncertainty, the standard 

imputations based on SRS where clusters are ignored altogether leads to even 

lower standard errors (SEs) than the actual before deletion samples, thus yielding 

the poorest CI coverage for the estimated mean. It also leads to larger than 
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expected SEs when estimating the slope, since the variability due to clustering is 

absorbed all in the residual variance which further inflates the variance of slope, 

yielding overly conservative intervals. On the other hand, the fixed effects model 

tends to overestimate the SEs for the mean (e.g. numbers in red), and thus results 

in intervals that are too conservative, especially when the ICC is low (ICC=0.1). 

This result replicates the findings of Andridge (2011). The results hold regardless 

of whether the response indicator is a function of X alone (MAR_X), or both X 

and W (MAR_X,W).  

 The two newly proposed synthetic methods and the RE model have 

similar results when estimating the mean; their performances are generally better 

than FX and SRS (Table 3.1). Our synthetic methods demonstrate some 

advantages over RE when estimating the slope in the small sample scenario 

(a=10). While the use of t-corrected inference for small sample size under RE 

tends to overcorrect the coverage (e.g. numbers in blue), SYN1 and SYN2 yield 

approximately nominal coverage (Table 3.2). Again, results are similar for both 

the MAR_X and MAR_X,W  missingness mechanisms.
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Table 3.1 Performance of alternative MI methods for estimating the Mean: population 1, two-stage unbalanced sample design (tv=true value) 

Simulation 
Method 

MAR_X MAR_X,W 

Parameters Pt.est. SE. Emp.SE RMSE Intv.wth Cov. Pt.est. SE. Emp.SE RMSE Intv.wth Cov. 

ICC=0.5, BD 1.02 0.34 0.36 0.36  1.54 95.50% 1.02 0.34 0.36 0.36  1.54 95.5% 

a=10 SRS 1.03 0.28 0.36 0.36  1.33 90.50% 1.03 0.30 0.37 0.37  1.38 91.5% 

  FX 1.02 0.37 0.36 0.36.  1.69 96.50% 1.03 0.37 0.37 0.37  1.68 96.5% 

tv=1.05 RE 1.02 0.36 0.36 0.36  1.65 96.50% 1.02 0.36 0.37 0.37  1.64 95.5% 

  SYN1 1.03 0.36 0.38 0.38  1.59 95.50% 1.02 0.36 0.38 0.38  1.56 95.0% 

  SYN2 1.02 0.37 0.37 0.37  1.65 95.50% 1.02 0.36 0.38 0.38  1.62 95.0% 

ICC =0.5, BD 1.04 0.18 0.19 0.19  0.73 95.50% 1.04 0.18 0.19 0.19  0.73 95.5% 

a=40 SRS 1.04 0.15 0.19 0.19  0.59 86.50% 1.04 0.15 0.19 0.19  0.61 86.5% 

  FX 1.04 0.19 0.19 0.19  0.76 95.50% 1.04 0.19 0.19 0.19  0.76 97.0% 

tv=1.05 RE 1.04 0.18 0.19 0.19  0.74 94.50% 1.04 0.18 0.19 0.19  0.75 96.0% 

  SYN1 1.04 0.18 0.20 0.20  0.72 92.50% 1.03 0.18 0.20 0.20  0.71 92.5% 

  SYN2 1.05 0.19 0.20 0.20  0.77 94.50% 1.03 0.19 0.20 0.20  0.77 94.5% 

ICC =0.1, BD 1.06 0.42 0.43 0.43  1.89 95.00% 1.06 0.42 0.43 0.43  1.89  95.0% 

a=10 SRS 1.05 0.41 0.45 0.45  2.08 95.50% 1.07 0.43 0.46 0.46  2.27 95.5% 

  FX 1.07 0.54 0.45 0.45  2.54 98.50% 1.07 0.54 0.48 0.48  2.58 98.0% 

tv=1.06 RE 1.07 0.47 0.45 0.45  2.30 98.50% 1.08 0.49 0.47 0.47  2.40 98.0% 

  SYN1 1.05 0.47 0.46 0.46  2.06 95.50% 1.07 0.48 0.47 0.47  2.10 96.0% 

  SYN2 1.07 0.48 0.46 0.46  2.19 97.00% 1.07 0.48 0.48 0.48  2.19 97.0% 

ICC =0.1, BD 1.05 0.21 0.22 0.22  0.87 94.50% 1.05 0.21 0.22 0.22  0.87 94.5% 

a=40 SRS 1.05 0.20 0.24 0.24  0.86 92.50% 1.05 0.21 0.24 0.24  0.87 90.5% 

  FX 1.05 0.27 0.24 0.24  1.09 99.00% 1.05 0.27 0.24 0.24  1.08 98.5% 

tv=1.06 RE 1.05 0.23 0.24 0.24  0.95 93.50% 1.05 0.24 0.24 0.24  0.97 94.0% 

  SYN1 1.05 0.23 0.25 0.25  0.89 94.50% 1.04 0.23 0.25 0.25  0.90 92.5% 

  SYN2 1.05 0.25 0.25 0.25  1.01 96.50% 1.04 0.24 0.25 0.25  0.99 93.5% 
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Table 3.2 Performance of alternative MI methods for the Slope: population 1, two-stage unbalanced sample design (tv=true value) 

Simulation 
Method 

MAR_X MAR_X,W 

Parameters Pt.est. SE. Emp.SE RMSE Intv.wth Cov. Pt.est. SE. Emp.SE RMSE Intv.wth Cov. 

ICC =0.5, BD 1.51 0.11 0.12 0.12  0.48 94.5% 1.51 0.11 0.12 0.12  0.48 94.5% 

a=10 SRS 1.51 0.14 0.14 0.14  0.85 98.5% 1.53 0.17 0.16 0.16  1.04 97.5% 

  FX 1.52 0.13 0.14 0.14  0.73 98.0% 1.52 0.14 0.14 0.14  0.83 98.0% 

tv=1.51 RE 1.52 0.13 0.13 0.13  0.69 98.0% 1.52 0.14 0.14 0.14  0.80 99.0% 

  SYN1 1.52 0.13 0.14 0.14  0.57 93.5% 1.52 0.14 0.16 0.16  0.62 95.0% 

  SYN2 1.52 0.13 0.14 0.14  0.61 96.0% 1.52 0.15 0.15 0.15  0.71 96.5% 

ICC =0.5, BD 1.51 0.06 0.06 0.06  0.23 95.5% 1.51 0.06 0.06 0.06  0.23 95.5% 
a=40 SRS 1.51 0.07 0.07 0.07  0.31 93.5% 1.51 0.09 0.08 0.08  0.37 96.5% 

  FX 1.51 0.07 0.07 0.07  0.28 95.5% 1.51 0.07 0.07 0.07  0.31 98.0% 

tv=1.51 RE 1.51 0.07 0.07 0.07  0.27 95.5% 1.51 0.07 0.07 0.07  0.30 96.5% 

  SYN1 1.51 0.07 0.07 0.07  0.26 93.5% 1.51 0.07 0.07 0.07  0.30 94.0% 

  SYN2 1.51 0.07 0.07 0.07  0.29 95.0% 1.51 0.08 0.07 0.07  0.33 97.5% 

ICC =0.1, BD 1.52 0.25 0.26 0.26  1.17 96.5% 1.52 0.25 0.26 0.26  1.17 96.5% 
a=10 SRS 1.51 0.33 0.32 0.31  2.00 98.5% 1.53 0.37 0.34 0.34  2.77 100.0% 

  FX 1.50 0.33 0.32 0.32  2.01 98.0% 1.52 0.37 0.34 0.34  2.60 99.0% 

tv=1.52 RE 1.51 0.33 0.32 0.32  1.93 99.0% 1.54 0.35 0.35 0.35  2.50 99.0% 

  SYN1 1.50 0.31 0.32 0.32  1.38 96.5% 1.53 0.35 0.36 0.36  1.54 96.0% 

  SYN2 1.50 0.32 0.32 0.32  1.49 97.0% 1.53 0.36 0.35 0.35  1.67 98.0% 

ICC =0.1, BD 1.52 0.13 0.13 0.13  0.53 95.5% 1.52 0.13 0.13 0.13  0.53 95.5% 
a=40 SRS 1.52 0.16 0.16 0.16  0.69 96.0% 1.51 0.18 0.17 0.17  0.78 95.5% 

  FX 1.51 0.16 0.16 0.16  0.72 96.5% 1.51 0.18 0.17 0.17  0.81 98.0% 

tv=1.52 RE 1.51 0.16 0.16 0.16  0.68 97.5% 1.51 0.17 0.16 0.16  0.76 96.5% 

  SYN1 1.51 0.15 0.16 0.16  0.60 94.0% 1.51 0.17 0.17 0.17  0.66 94.5% 

  SYN2 1.51 0.16 0.16 0.16  0.65 96.0% 1.51 0.18 0.17 0.17  0.75 97.5% 
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 Population structure 2: 

Under population structure 2, the final weight is dominated by the 

element-level weights and is associated with the outcome variable Y after 

conditioning on X. Therefore the clustering effects on the inference for Y are 

confounded by the weight effects. 

Tables 3.3 - 3.4 display the results of SYN1 and SYN2 in the complete 

data context (SYN1_BD, SYN2_BD) for estimation of the mean and slope, 

respectively. Both versions of the proposed method result in point and variance 

estimates very close to that obtained from the actual replication samples (BD). 

This clearly indicates the ability of the synthetic procedure to untie both the 

weight and the clustering effects. There are even slight gains in efficiency (i.e. 

smaller RMSE) of the proposed methods over the design-based BD estimates.  

Tables 3.5 - 3.6 display the results of different MI methods in the analysis 

of missing data for estimating the mean and slope, respectively. When estimating 

the mean under MAR_X condition, all three fully parametric methods yield 

sizable biases and large RMSE in the point estimates under the X-only model, and 

at least the main effects model is required in this case for these biases to disappear. 

But if the missingness also relates to the weight (i.e. under MAR_X,W 

mechanism), then only the interaction model gives approximately unbiased 

estimates. (For example, the relative biases are about 6.5% for SRS_x,w, FX_x,w 

and RE_x,w.) For the slope, however, the correct (interaction) model is always 

required for obtaining unbiased estimates, regardless of the missingness 
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mechanisms. (For example, the relative biases are about 9.0% under MAR_X and 

14.0% under MAR_X,W, for SRS_x,w, FX_x,w and RE_x,w.) As before, the SRS 

method underestimates the variance for the mean and overestimates the variance 

for the slope because the clustering effects are ignored. The FX method with 

small ICC overestimates the variance and hence the confidence interval coverage 

for MAR_X; and this problem becomes more pronounced for MAR_X,W. (For 

example, the SE./Emp.SE./Cov. are 0.584/0.538/99.0% for MAR_X and 

0.638/0.567/99.5% for MAR_X,W, even under the correct model FX_x,w,x*w). 

With misspecified imputation models under all three fully parametric methods, 

the magnitude of biases and undercoverage is amplified by the extra association 

between the weight and the response mechanism in addition to its association with 

the outcome variable. 

Our synthetic MI performs consistently well in all scenarios, and is 

superior over the fully parametric methods in this combination of population 

structure and sampling design. By using the simplest X-only imputation model, it 

not only yields comparable RMSE as the FX and RE using the appropriate 

interaction model, it also results in the smallest relative bias for point estimates. 

This is because, despite the operational and inferential similarity to the frequentist 

bootstrap (Efron, 1979), the (finite population) Bayesian bootstrap simulates the 

posterior distribution of the true parameter ( ) instead of the sampling 

distribution of a statistic estimating that parameter (̂ ). As a result, the point 

estimates based on our method average closer to the true value than those 

obtained from fully parametric methods which more resemble the statistic based 



 

92 

 

on actual before deletion samples. There are slight underestimation for the 

variance (i.e. SE. < Emp.SE.) with SYN1 relative to SYN2 as well as the 

appropriate fully parametric models (i.e. FX_x,w,x*w and RE_x,w,x*w), but this 

does not affect the overall conclusion. 

Furthermore, while the correct imputation model in the form of [3.2] is 

required for our semi-parametric method to break associations between the 

sample design (W) and response mechanism (R) under a MAR_X,W condition, 

the correct structure in the observed synthetic population data greatly reduce the 

effect of this association in the ultimate inference, even if the design is not 

included in the second-step imputation.   
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Table 3.3 Performance of alternative methods for estimating the mean:  

population 2, two-stage unbalanced sample design, before deletion results (tv=true value). 

 

Simulation 

Factor 

 

Method 

 

Summary Statistics 

Pt.est. SE. Emp.SE RMSE Intv.wth Cov. 

ICC =0.5, 

a=40; 

tv=1.542 

BD 1.498 0.179 0.176 0.181 0.723 96.5% 
SYN1_BD 1.507 0.176 0.179 0.182 0.712 95.0% 

SYN2_BD 1.514 0.178 0.175 0.177 0.719 95.5% 

ICC =0.1, 

a=40; 

tv=1.541 

BD 1.493 0.233 0.232 0.237 0.944 94.5% 
SYN1_BD 1.502 0.230 0.235 0.237 0.931 93.5% 

SYN2_BD 1.509 0.231 0.232 0.234 0.936 94.5% 

ICC =0.5, 

a=10; 

tv=1.542 

BD 1.511 0.354 0.369 0.370 1.603 97.5% 
SYN1_BD 1.512 0.362 0.377 0.377 1.640 98.0% 

SYN2_BD 1.521 0.358 0.371 0.370 1.620 98.0% 

ICC =0.1, 

a=10; 

tv=1.541 
  

BD 1.507 0.474 0.517 0.517 2.145 95.5% 
SYN1_BD 1.505 0.485 0.520 0.520 2.196 95.0% 

SYN2_BD 1.527 0.470 0.511 0.510 2.126 95.0% 

 

 
Table 3.4 Performance of alternative methods for estimating the slope:  

population 2, two-stage unbalanced sample design, before deletion results (tv=true value). 

 

Simulation 

Factor 

 

Method 

 

Summary Statistics 
Pt.est. SE. Emp.SE RMSE Intv.wth Cov. 

ICC =0.5, 

a=40; 

tv=1.265 

BD 1.236 0.095 0.102 0.106 0.384 96.5% 
SYN1_BD 1.246 0.089 0.097 0.099 0.361 94.0% 

SYN2_BD 1.248 0.093 0.099 0.100 0.378 95.5% 

ICC =0.1, 

a=40; 

tv=1.255 

BD 1.226 0.174 0.170 0.172 0.706 94.0% 
SYN1_BD 1.237 0.166 0.166 0.166 0.671 92.0% 

SYN2_BD 1.241 0.173 0.168 0.168 0.700 94.5% 

ICC =0.5, 

a=10; 

tv=1.265 

BD 1.251 0.171 0.206 0.206 0.787 92.5% 
SYN1_BD 1.267 0.169 0.193 0.193 0.780 91.0% 

SYN2_BD 1.268 0.173 0.190 0.190 0.800 93.5% 

ICC =0.1, 

a=10; 

tv=1.255 
  

BD 1.253 0.330 0.357 0.356 1.520 95.5% 
SYN1_BD 1.270 0.338 0.351 0.350 1.557 95.5% 

SYN2_BD 1.274 0.335 0.343 0.342 1.545 95.0% 
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Table 3.5 Performance of alternative MI methods for estimating the mean: population structure 2, two-stage unbalanced sampling design. 

Simulation  

Factor 

Method 

  

MAR_X MAR_X,W 
Relbias SE. Emp.SE RMSE Intv.wth Cov. Relbias SE. Emp.SE RMSE Intv.wth Cov. 

ICC=0.5, 

a=40 

 

true value 

=1.542 

BD -2.9% 0.179 0.176 0.181 0.723 96.5% -2.9% 0.179 0.176 0.181 0.723 96.5% 
SRS_x 13.0% 0.165 0.186 0.274 0.671 74.5% 20.0% 0.169 0.185 0.359 0.691 57.0% 

SRS_x,w 1.8% 0.161 0.187 0.188 0.655 89.5% 6.5% 0.167 0.191 0.215 0.683 86.0% 

SRS_x,w,x*w -2.9% 0.156 0.181 0.186 0.635 90.0% -2.7% 0.162 0.187 0.191 0.662 91.0% 

FX_x 13.2% 0.197 0.183 0.273 0.802 83.5% 20.1% 0.201 0.188 0.362 0.819 65.5% 

FX_x,w 1.8% 0.191 0.181 0.182 0.775 96.5% 6.3% 0.197 0.189 0.212 0.801 93.5% 

FX_x,w,x*w -2.9% 0.187 0.179 0.184 0.759 96.0% -2.8% 0.191 0.182 0.187 0.778 98.0% 

RE_x 13.2% 0.192 0.184 0.275 0.780 83.0% 20.0% 0.196 0.188 0.362 0.798 66.0% 

RE_x,w 1.8% 0.187 0.183 0.185 0.758 94.5% 6.4% 0.192 0.187 0.211 0.782 92.5% 

RE_x,w,x*w -3.0% 0.184 0.178 0.184 0.745 95.5% -2.7% 0.188 0.180 0.185 0.763 97.5% 

SYN1_x -2.1% 0.185 0.190 0.192 0.750 94.5% 0.6% 0.189 0.198 0.198 0.767 94.0% 

SYN2_x -1.9% 0.188 0.183 0.185 0.761 95.5% 0.8% 0.193 0.192 0.192 0.779 95.5% 

ICC=0.1, 

a=40 

 

true value 

=1.541 

BD -3.1% 0.233 0.232 0.237 0.944 94.5% -3.1% 0.233 0.232 0.237 0.944 94.5% 
SRS_x 12.7% 0.244 0.242 0.311 1.003 86.5% 20.3% 0.260 0.237 0.392 1.077 79.0% 

SRS_x,w 1.3% 0.246 0.258 0.258 1.009 93.5% 6.7% 0.265 0.265 0.284 1.103 94.0% 

SRS_x,w,x*w -3.2% 0.244 0.252 0.257 1.005 94.0% -2.7% 0.269 0.266 0.268 1.126 95.5% 

FX_x 12.8% 0.287 0.237 0.309 1.170 92.0% 20.5% 0.304 0.243 0.398 1.246 87.0% 

FX_x,w 1.3% 0.285 0.250 0.250 1.164 97.0% 6.3% 0.306 0.270 0.286 1.261 97.0% 

FX_x,w,x*w -3.3% 0.283 0.254 0.259 1.155 97.0% -2.8% 0.307 0.267 0.270 1.267 96.5% 

RE_x 13.0% 0.263 0.240 0.313 1.076 90.0% 20.3% 0.279 0.241 0.395 1.148 85.5% 

RE_x,w 1.3% 0.261 0.259 0.259 1.067 95.5% 6.6% 0.280 0.261 0.280 1.152 95.0% 

RE_x,w,x*w -3.4% 0.261 0.254 0.259 1.068 96.5% -2.6% 0.283 0.258 0.260 1.170 97.5% 

SYN1_x -2.7% 0.254 0.266 0.268 1.029 92.0% 0.6% 0.262 0.270 0.270 1.058 94.5% 

 SYN2_x -2.4% 0.262 0.261 0.263 1.059 94.0% 0.6% 0.267 0.265 0.264 1.080 93.5% 
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Simulation 

Factor  

Method 

  

MAR_X MAR_X,W 
Relbias SE. Emp.SE RMSE Intv.wth Cov. Relbias SE. Emp.SE RMSE Intv.wth Cov. 

ICC=0.5, 

a=10 

 

true value 

=1.542 

BD -2.0% 0.354 0.369 0.370 1.603 97.5% -2.0% 0.354 0.369 0.370 1.603 97.5% 
SRS_x 12.8% 0.326 0.364 0.413 1.564 91.5% 20.4% 0.333 0.390 0.500 1.622 87.0% 

SRS_x,w 1.8% 0.316 0.370 0.370 1.519 95.5% 6.4% 0.326 0.381 0.392 1.596 93.0% 

SRS_x,w,x*w -2.9% 0.308 0.372 0.374 1.479 94.5% -2.6% 0.320 0.373 0.374 1.591 98.0% 

FX_x 13.8% 0.391 0.366 0.423 1.847 95.5% 20.4% 0.397 0.397 0.506 1.887 93.0% 

FX_x,w 2.5% 0.377 0.367 0.368 1.779 98.0% 6.4% 0.388 0.397 0.408 1.845 97.0% 

FX_x,w,x*w -2.0% 0.369 0.372 0.373 1.741 98.5% -2.7% 0.381 0.379 0.380 1.812 98.5% 

RE_x 13.7% 0.381 0.364 0.420 1.801 95.0% 20.2% 0.387 0.394 0.502 1.841 93.0% 

RE_x,w 2.3% 0.371 0.366 0.366 1.752 97.5% 6.4% 0.382 0.392 0.403 1.821 96.5% 

RE_x,w,x*w -2.3% 0.363 0.369 0.370 1.713 98.0% -2.8% 0.374 0.374 0.376 1.787 98.0% 

SYN1_x -1.6% 0.377 0.381 0.381 1.705 98.0% 1.6% 0.383 0.399 0.398 1.734 95.5% 

SYN2_x 1.9% 0.377 0.375 0.374 1.707 96.0% 1.6% 0.379 0.405 0.405 1.716 93.0% 

ICC=0.1, 

a=10 

 

true value 

=1.541 

BD -2.2% 0.474 0.517 0.517 2.145 95.5% -2.2% 0.474 0.517 0.517 2.145 95.5% 
SRS_x 12.6% 0.490 0.492 0.528 2.428 96.5% 19.3% 0.522 0.514 0.593 2.698 97.0% 

SRS_x,w 1.1% 0.491 0.538 0.537 2.466 96.0% 4.3% 0.530 0.543 0.546 2.790 97.5% 

SRS_x,w,x*w -3.6% 0.491 0.540 0.541 2.476 97.0% -4.2% 0.544 0.552 0.555 2.983 98.0% 

FX_x 14.1% 0.575 0.488 0.533 2.788 98.0% 18.9% 0.606 0.519 0.595 3.011 98.5% 

FX_x,w 2.1% 0.570 0.532 0.532 2.791 98.5% 4.2% 0.613 0.578 0.580 3.084 99.0% 

FX_x,w,x*w -2.3% 0.569 0.538 0.538 2.785 99.0% -4.4% 0.622 0.567 0.570 3.187 99.5% 

RE_x 13.5% 0.532 0.485 0.527 2.591 97.0% 18.6% 0.561 0.514 0.587 2.818 97.5% 

RE_x,w 1.2% 0.536 0.529 0.528 2.652 98.0% 4.3% 0.581 0.558 0.561 3.013 98.5% 

RE_x,w,x*w -3.4% 0.533 0.532 0.533 2.644 99.5% -4.3% 0.588 0.555 0.558 3.096 99.0% 

SYN1_x -2.3% 0.524 0.563 0.562 2.373 96.0% -1.0% 0.537 0.570 0.569 2.438 92.5% 

SYN2_x -1.9% 0.527 0.547 0.547 2.382 95.5% -0.4% 0.536 0.571 0.570 2.425 92.0% 
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Table 3.6 Performance of alternative MI methods for estimating the slope: population structure 2, two-stage unbalanced sampling design. 

Simulation  

Factor 

Method 
  

MAR_X MAR_X,W 

Relbias SE. Emp.SE RMSE Intv.wth Cov. Relbias SE. Emp.SE RMSE Intv.wth Cov. 

ICC=0.5, 

a=40 
 

true value 

=1.265 

BD -2.3% 0.095 0.102 0.106 0.384 96.5% -2.3% 0.095 0.102 0.106 0.384 96.5% 

SRS_x 14.5% 0.112 0.104 0.211 0.462 65.5% 22.3% 0.120 0.101 0.299 0.501 35.0% 

SRS_x,w 8.8% 0.108 0.100 0.149 0.443 83.5% 13.8% 0.117 0.100 0.201 0.488 74.0% 

SRS_x,w,x*w -2.1% 0.110 0.112 0.115 0.454 96.0% -2.5% 0.129 0.124 0.128 0.539 98.5% 

FX_x 14.4% 0.109 0.103 0.209 0.445 62.5% 22.3% 0.107 0.102 0.300 0.444 29.5% 

FX_x,w 8.5% 0.103 0.101 0.148 0.420 81.5% 13.5% 0.104 0.101 0.198 0.432 65.0% 

FX_x,w,x*w -2.4% 0.105 0.110 0.114 0.430 96.0% -2.5% 0.113 0.119 0.123 0.467 97.5% 

RE_x 14.6% 0.107 0.105 0.213 0.440 59.5% 22.1% 0.106 0.101 0.297 0.441 28.0% 

RE_x,w 8.6% 0.101 0.100 0.148 0.415 81.5% 13.6% 0.103 0.098 0.198 0.424 64.0% 

RE_x,w,x*w -2.5% 0.105 0.110 0.114 0.427 96.0% -2.5% 0.113 0.119 0.123 0.465 97.0% 

SYN1_x -1.8% 0.107 0.116 0.120 0.434 93.0% -3.3% 0.118 0.133 0.142 0.479 90.0% 

SYN2_x -2.4% 0.113 0.114 0.118 0.459 93.5% -3.7% 0.123 0.131 0.139 0.498 93.5% 

ICC=0.1, 

a=40 

 

true value 

=1.255 
  

BD -2.3% 0.174 0.170 0.172 0.706 94.0% -2.3% 0.174 0.170 0.172 0.706 94.0% 

SRS_x 14.6% 0.211 0.190 0.264 0.871 91.5% 22.6% 0.234 0.187 0.339 0.989 84.0% 

SRS_x,w 8.8% 0.210 0.186 0.216 0.869 98.0% 14.1% 0.233 0.190 0.259 0.984 92.5% 

SRS_x,w,x*w -2.2% 0.214 0.210 0.212 0.888 95.0% -2.7% 0.254 0.237 0.239 1.083 98.0% 

FX_x 14.5% 0.214 0.184 0.258 0.883 92.0% 22.8% 0.233 0.197 0.347 0.981 80.5% 

FX_x,w 8.5% 0.212 0.186 0.214 0.977 97.5% 13.5% 0.235 0.196 0.259 0.988 93.5% 

FX_x,w,x*w -2.2% 0.217 0.209 0.210 0.899 96.0% -2.5% 0.250 0.238 0.239 1.060 98.5% 

RE_x 15.1% 0.209 0.190 0.268 0.863 87.0% 22.2% 0.229 0.193 0.339 0.963 82.5% 

RE_x,w 8.7% 0.207 0.186 0.215 0.854 97.5% 13.7% 0.227 0.187 0.254 0.955 92.5% 

RE_x,w,x*w -2.5% 0.213 0.207 0.209 0.881 96.0% -2.5% 0.246 0.235 0.237 1.046 99.0% 

SYN1_x -3.5% 0.207 0.219 0.221 0.837 93.0% -5.5% 0.232 0.248 0.254 0.938 90.5% 
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 SYN2_x -2.5% 0.214 0.218 0.222 0.866 93.0% -4.1% 0.241 0.244 0.251 0.975 94.5% 

Simulation  

Factor 

Method 
  

MAR_X MAR_X,W 

Relbias SE. Emp.SE RMSE Intv.wth Cov. Relbias SE. Emp.SE RMSE Intv.wth Cov. 

ICC=0.5, 

a=10 

 

true value 

=1.265 
  

BD -1.1% 0.171 0.206 0.206 0.787 92.5% -1.1% 0.171 0.206 0.206 0.787 92.5% 

SRS_x 14.9% 0.207 0.225 0.294 1.112 92.5% 22.8% 0.224 0.213 0.359 1.308 92.0% 

SRS_x,w 9.4% 0.199 0.219 0.249 1.066 94.5% 13.6% 0.217 0.213 0.274 1.261 96.5% 

SRS_x,w,x*w -0.9% 0.208 0.237 0.236 1.111 97.5% -1.2% 0.239 0.253 0.253 1.389 98.5% 

FX_x 15.3% 0.198 0.224 0.296 1.028 88.5% 23.1% 0.196 0.203 0.355 1.089 85.5% 

FX_x,w 9.7% 0.186 0.218 0.249 0.953 93.0% 13.9% 0.188 0.206 0.271 1.027 92.0% 

FX_x,w,x*w -0.6% 0.192 0.230 0.229 0.988 97.0% -1.3% 0.206 0.243 0.243 1.142 99.5% 

RE_x 15.3% 0.196 0.222 0.294 1.018 87.5% 23.1% 0.193 0.201 0.354 1.082 85.5% 

RE_x,w 9.7% 0.188 0.218 0.250 0.967 92.5% 13.8% 0.189 0.205 0.270 1.054 94.0% 

RE_x,w,x*w -0.9% 0.192 0.225 0.225 0.985 96.5% -1.3% 0.207 0.242 0.242 1.150 98.5% 

SYN1_x 0.1% 0.196 0.231 0.231 0.902 92.0% -1.1% 0.206 0.254 0.254 0.950 91.5% 

SYN2_x -0.2% 0.205 0.228 0.227 0.945 94.0% -1.5% 0.216 0.251 0.251 0.998 92.5% 

ICC=0.1, 

a=10 

 

true value 

=1.255 
  

BD -0.2% 0.330 0.357 0.356 1.520 95.5% -0.2% 0.330 0.357 0.356 1.520 95.5% 

SRS_x 16.6% 0.404 0.401 0.450 2.219 97.0% 23.6% 0.447 0.412 0.506 2.769 98.5% 

SRS_x,w 10.8% 0.402 0.395 0.416 2.218 98.5% 13.5% 0.447 0.408 0.441 2.770 100.0% 

SRS_x,w,x*w 0.7% 0.421 0.436 0.435 2.376 97.0% -0.7% 0.484 0.476 0.475 3.205 99.5% 

FX_x 17.1% 0.407 0.404 0.456 2.215 98.0% 23.7% 0.442 0.403 0.500 2.711 99.5% 

FX_x,w 11.2% 0.403 0.398 0.421 2.190 98.5% 14.0% 0.445 0.404 0.440 2.698 99.5% 

FX_x,w,x*w 1.8% 0.422 0.441 0.441 2.393 98.5% -0.6% 0.485 0.473 0.472 3.232 99.5% 

RE_x 17.0% 0.400 0.395 0.448 2.172 98.5% 23.5% 0.431 0.400 0.496 2.661 98.5% 

RE_x,w 11.3% 0.404 0.399 0.422 2.235 98.5% 13.9% 0.444 0.402 0.437 2.786 100.0% 

RE_x,w,x*w 0.7% 0.417 0.427 0.426 2.375 98.0% -0.6% 0.483 0.472 0.471 3.286 100.0% 

SYN1_x -0.2% 0.400 0.444 0.443 1.843 92.5% -3.7% 0.441 0.500 0.500 2.033 94.0% 

SYN2_x 1.2% 0.411 0.440 0.439 1.894 94.0% -1.8% 0.454 0.481 0.481 2.096 96.0% 
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3.5 Application to NASS-CDS data 

The National Automotive Sampling System Crashworthiness Data System (NASS-

CDS) publishes micro-level crash record datasets that are obtained from a representative 

three-stage probability sample design: geographic region (county or groups of counties), 

police departments, and police-reported crashes. The design also has unequal 

probabilities of selection, with vehicles in more severe crashes much more likely to be 

sampled than vehicles in less severe crashes. The sample is selected annually from all 

police-reported crashes that resulted in at least one vehicle having to be towed from the 

scene for damage (http://www.nhtsa.gov/NASS). 

A key feature of this car-crash data is the Delta-V measure (roughly defined as the 

“instantaneous” change in velocity). This measure of crash intensity has two qualities that 

make it quite useful as a tool for testing our imputation method. First, a very high 

proportion of car-crash cases are missing this variable; second, there exists a rich set of 

covariates which are potentially good predictors in the imputation for Delta-V. These 

include basic demographics, road condition, type of vehicle, injury condition of the driver, 

number of vehicles in the crash, etc. The survey variables selected for imputation and 

analysis purpose are summarized in Table 3.7. We estimate: 1) the mean of Delta-V as a 

continuous variable (
Delta VY 

), and 2) the odds ratio of having severe injury or certain 

types of injury given varying levels of Delta-V.  

 

 

 

http://www.nhtsa.gov/NASS
http://en.wikipedia.org/wiki/Velocity
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Table 3.7 Summary of selected survey variables for imputation 

Selected Variables Values and labels 

Delta V Continuous 

driver's age Continuous 

maximum ais injury 1-not injured/minor injury;  2-severe injury; 

direction of force 1-frontal;  2-right side;  3-left side;  4-rear;  5-other 

driver's gender 1-male;  2-female 

light condition 1-daylight;  2-dark;  3-dark, lighted;  4-dawn/dusk 

road surface condition 1-dry;  2-wet;  3-other 

vehicle type 1-passenger car;  2-truck 

model year 1->2006;  2-<=2006 

vehicle make 1-american; 2-japanese; 3-korean; 4-european&other 

body region 1-head;   2-thorax;   3-lower extremity;    4-other 

  
primary sampling unit 1,2,…,24. 

final survey weight Continuous 

 

The analysis sample is obtained by merging four different data files at both occupant 

level and vehicle level. We retain only the driver data, and end up with 7525n   cases in 

the final sample, where nearly half the sample cases (45%) are missing the Delta-V 

measure. There are 24 PSUs selected in the first sampling stage (out of a total of 1195 

PSU's  in the population which were grouped into 12 strata based on geographic region 

and type, with at least two PSU's selected from each stratum). We regard the stratum 

effects (at both first- and third-stage) as being reflected in the unequal selection 

probability or sample weights, and analyze the data using an ultimate-cluster approach 

with focus on the PSU-level clustering effects. This results in a moderate ICC of 0.1 on 

Delta-V among the complete cases.  

As a preliminary analysis, we examined features of the design variables and the 

missing data pattern before imputation. The logistic regression coefficients of the 

response indicator on covariates are mostly significant, suggesting at least a MAR 

missing data mechanism. Therefore all these covariates are included as predictors for 



 

100 

 

imputation. A linear regression of final weights on all the survey variables indicates that 

several covariates as well as the Delta-V measure are strong predictors of final weights. 

Yet all together they explain only 10% of the variance in weights; therefore incorporating 

weights in the imputation is essential. Because the estimated population size based on the 

sum of the weights is in excess of 1 million, we assume for operational simplicity that 

80,000N  , which is large enough for the proposed method to work properly. 

Table 3.8 displays the results of applying different MI methods to the NASS-CDS 

Delta-V measure. Different modeling strategies are used under each method according to 

the extent the design information is modeled. Fully parametric imputation that does not 

include the weight appears to overestimate the mean Delta-V, as would be expected, 

since more severe crashes are overrepresented in the unweighted sample. When weights 

are included in the imputation, the fixed effect model FX_X,W tends to result in wider 

confidence intervals. The FPBB method (SYN2) mimics the performance of the random 

effects model with weights in the imputation (RE_X,W). Results are broadly similar for 

estimates of the odds ratios of injury. Here the complete case model appears to 

underestimate the effect of Delta-V on injury risk, suggesting that injury cases are more 

likely to have high Delta-V measures missing. The SYN2 approach even enjoys some 

gains in precision when estimating the odds ratio of having head injury, where all 

imputation methods yield similar point estimates.
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Table 3.8 Estimating mean Delta-V, odds ratio of severe injury given Delta-V, and odds ratio of head injury given Delta-V (high Delta-V=in excess of 35 kph; 

medium Delta-v=15-35 kph; low delta-V=less than 15 kph).  CC=complete case; SRS=imputation under simple random sampling assumption; FX=imputation 

using fixed cluster effects; RE=imputation using random cluster effects; SYN2=Results from 2-stage finite population Bayesian bootstrap model using Bayesian 

bootstrap-finite population Bayesian bootstrap for synthetic population generation. 

 

 

 

 
Methods  CC SRS FX RE SYN2 

Models CC X X,W X X,W X X,W X X,W C X,W,C 

Estimates 

Delta VY 
  26.7 29.8 27.9 29.6 27.3 29.6 27.9 28 27.6 28.1 27.4 

SE 0.88 0.88 0.96 1.12 1.05 1.09 0.88 0.85 0.89 0.81 0.89 
Severe Injury

high vs. low DVOR  5.03 5.78 6.23 5.43 6.38 5.53 6.71 6.55 7.49 6.23 7.29 

95% CI 
[2.53, 

9.99] 

[3.16, 

10.6] 

[3.37, 

11.5] 

[2.99, 

9.86] 

[3.45, 

11.8] 

[3.23, [3.74, 

12.0] 

[3.41, 

12.6] 

[3.85, [3.26, 

11.9] 

[3.70, 

9.48] 14.6] 14.4] 

 Severe Injury

medium vs. low DVOR  1.28 1.58 1.52 1.61 1.77 1.56 1.77 1.81 1.86 1.76 1.80 

95% CI 
[0.612, 

2.68] 

[0.838, 

2.98] 

[0.862, 

2.68] 

[0.917, 

2.83] 

[0.994, 

3.15] 

[0.911, [1.01, 

3.11] 

[1.07, 

3.06] 

[1.05, 

3.29] 

[1.03, 

3.00] 

[0.992, 

2.67] 3.27] 
Head Injury

high vs. low DVOR  1.05 1.55 1.45 1.69 1.52 1.58 1.36 1.62 1.60 1.72 1.56 

95% CI 
[0.581, 

1.90] 

[0.76, 

3.16] 

[0.751, 

2.80] 

[0.904, [0.765, 

3.02] 

[0.706, [0.919, 

2.65] 

[1.02, 

2.56] 

[1.09, 

2.35] 

[1.09, 

2.71] 

[1.09, 

3.16] 3.54] 2.23] 
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3.6 Discussion 

Two-stage cluster sampling is a popular sampling scheme in survey research 

because it is cost effective and easy to administer. However, fully parametric MI does not 

work well with two-stage cluster sampling when sampling units at both stages are 

selected with unequal probabilities unless the sampling probabilities are properly 

accounted for. As shown in the simulation study, when model misspecification with 

respect to the sampling weights is present, both fixed effects and random effects 

imputations lead to biases in estimates, and hence invalid inferences. As Rabe-Hesketh 

and Skrondal (2006) put it, dealing with sampling weights in hierarchical/multilevel 

models can be challenging from either a computational or a modeling standpoint. We 

propose an alternative two-step MI approach, where the first step generates synthetic 

populations with missing data that account for weights and clusters, and the second step 

imputes under an IID assumption. 

We propose two different approaches for the two-stage Bayesian nonparametric 

synthetic data generation from two-stage cluster sampling designs. The first (SYN1) uses 

a “FPBB-FPBB” approach, generating clusters from a finite-population Bayesian 

bootstrap and population elements from a finite-population Bayesian bootstrap from 

those FPBB-generated clusters. The “adapted two-stage Polya posterior” under this 

approach is different from the “two-stage Polya posterior” of Meeden (1999) in two ways. 

First, we extend Meeden’s simple two-stage cluster sampling (balanced case) with equal 

selection probability to an unbalanced case with unequal selection probabilities, for 

applications in the missing data context. Second, while Meeden considered a single 

variable (Y), we consider the joint distribution of several survey variables ( , , ,Y X Z R ). 
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Our procedure correctly restores the population configuration of an outcome variable (Y) 

that is built on complex relationships of the regular covariate (X) and the sample design 

variables (Z). Such population-level multivariate relationships are not guaranteed by 

Meeden’s procedure (according to results from a side simulation study not reported here). 

Our second approach (SYN2) uses a “BB-FPBB” procedure, resampling the clusters 

using a Bayesian bootstrap, and then generating the population elements from a finite-

population Bayesian bootstrap. Simulation results show that both approaches are 

insensitive to either sample size or population structure. However, because SYN1 

requires knowing both cluster-level weights and within cluster element-level conditional 

weights while SYN2 only needs the final weights, we recommend SYN2 for general 

purposes.  

In this chapter, we focus on the mean structure of the imputation model for Y and 

use design-based analysis to account for weight and clustering effects after fully 

parametric MI. In our future research, we will investigate the robustness of the proposed 

new method in comparison with other MI methods against potentially incompatible 

normal assumptions on random cluster effects and random errors (Yucel & Demirtas, 

2010). We will also consider extensions to stratified, clustered, and unequal probability of 

selection sample designs.
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CHAPTER 4 

A SYNTHETIC MULTIPLE IMPUTATION PROCEDURE FOR MULTI-

STAGE COMPLEX SAMPLES 

 

4.1 Introduction 

Stratified multistage sampling is the most common type of sample design for 

large-scale surveys conducted by the U.S. federal statistical agencies. Examples of 

surveys using stratified multistage sample selection include the Current Population 

Survey (CPS) by the Census Bureau, the National Health Interview Survey (NHIS) and 

the National Health and Nutrition Examination Survey (NHANES) conducted by the 

National Center for Health Statistics, and the National Assessment of Educational 

Progress (NAEP) conducted by the National Center for Educational Statistics. This type 

of sample design combines the advantages of both stratification (for statistical efficiency) 

and cluster sampling (for cost and logistical efficiency). It thus may be as precise as a 

simple random sample or a single-stage stratified sample design, but costs significantly 

less (Murphy, 2008). Under this design, the primary sampling units (PSUs) are stratified 

in such a way that they are homogeneous with respect to a stratum-level aggregate of the 

variable(s) of interest. To permit a maximum degree of stratification and thus variance 

reduction, it is common practice to define a large number of strata where only a small 

number of PSUs are selected in each stratum.  

On the one hand, such highly stratified multistage sample designs facilitate the 

data collection process while assuring broad representativeness of the target population. 
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On the other hand, because of the complexities involved, i.e. complex sample design 

features including stratification, clustering and unequal selection probability, these 

sample designs require sophisticated statistical methods at the analysis stage of survey 

data. When missing data are present, the analysis of complex survey data becomes 

particularly challenging. Taking the NAEP as an example, missing data may occur at two 

different levels: 1) survey nonresponse at the PSU level, if some sampled schools fail to 

participate in the entire survey or some school-level measures are missing; 2) survey 

nonresponse at the ultimate sampling unit level, if within participating schools, some 

students fail to provide responses to items in the survey questionnaire. We consider using 

multiple imputation (MI) (Rubin, 1976, 1987) to deal with item-level missing data at the 

ultimate sampling unit level. In particular, we consider the role of complex sample 

designs in the MI procedure. 

Reiter, Raghunathan and Kinney (2006) demonstrated the importance of 

simultaneously accounting for stratum effects and clustering effects in multiple 

imputation. They showed that when design features were ignored in the imputation model, 

biases would occur on the estimated parameter, even if a design-based analysis method 

was applied on the imputed data. Current MI methods typically include dummy variables 

to represent strata as well as PSUs nested within each stratum in the imputation model. 

When necessary, they also identify statistically significant interactions between these 

dummies with other covariates through routine variable selection procedures such as 

stepwise regression (Reiter et al., 2006; Schenker et al., 2006). Such a modeling strategy 

is not only operationally burdensome but also inferentially inefficient when there are 

hundreds of strata in the sample design, and the sample in each stratum consequently 
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becomes sparse. For example, the Census Bureau’s CPS design groups 1768 nonself-

representing PSUs into 220 strata.  

A possibly better strategy is to consider clusters as random effects while treating 

strata as either fixed (using dummies) or random effects. However, many of the popular 

software packages that implement multiple imputation (e.g. SAS MI procedure, R 

packages mice or mi, and IVEware) cannot simply be adapted to such a mixed effects 

approach. While a few recent software modules (such as R package pan and MLwiN 

module REALCOM-IMPUTE) have started to consider mixed effects or multilevel 

modeling for imputation purposes, they typically assume normal or latent normal 

distribution for variables with missing data. Their performances for missing categorical 

variables (binary in particular) are unclear. Moreover, little research has formally 

investigated their use to incorporate strata as well as clusters. 

To circumvent these problems with fully parametric model-based imputation 

techniques, we develop a modification of the two-step semi-parametric MI method 

proposed by Zhou, Elliott and Raghunathan (2013a, 2013b). The idea was to separate the 

need to account for complex sample designs from the treatment of missing data. In the 

first step, they reversed the sample designs through synthetic population data generation. 

They developed different variations of a weighted finite population Bayesian bootstrap 

(FPBB) (Cohen, 1997; Little & Zheng, 2007; Dong et al., 2014) for untying the sampling 

weights and clustering effects. In the second step, they imputed missing values in the 

created synthetic population based on a much simpler imputation model that assumes IID 

(identically independently distributed). To account for stratum effects, we propose an 

adapted version of their procedure in this chapter. The new procedure combines a 



 

107 

 

replication variance estimation method (Efron, 1979; Kovar, Rao, & Wu, 1988; Rao & 

Wu, 1988; Rao, Wu, & Yue, 1992; Rust & Rao, 1996) with the weighted FPBB. Under a 

standard missing at random (MAR) assumption (Little & Rubin 2002), our method 

requires neither complicated modeling of strata and clusters nor design-based analyses of 

the imputed data. 

Although our method is applicable to multiple imputation in general settings, we 

focus in this chapter on the estimation of two quantities: quantile estimates for a 

continuous variable, and estimates of rare proportions and their associated logistic 

regression estimates. We consider a stratified two-stage sample design and investigate a 

full range of quantiles including tail behaviors. While design-based methods for quantile 

estimation from complex survey data have been developed (Francisco & Fuller, 1991; 

Woodruff, 1952), quantile estimation after imputation is rarely addressed in the literature, 

to our knowledge. This is despite the rapid development and increasing popularity of MI. 

We also consider MI for incomplete binary variables, with a focus on rare outcomes. It is 

well known that maximum likelihood estimation of logistic regression models typically 

suffers from small sample bias, the degree of which is strongly dependent on the number 

of sample cases in the less frequent of the two categories (King & Zeng, 2001). Thus 

when the dependent binary variable represents the occurrence of rare events, the logit 

coefficients can be substantially biased even with a simple IID data structure. Random 

effects logistic models are commonly used for fitting clustered binary data, however, 

these models rely heavily on asymptotic theory assumptions, which may not be met in 

sparse samples. All these issues might extend naturally to the missing data context. As 

shown by Zhao and Yucel (2009), sequential MI for binary data missing completely at 
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random in a multilevel setting suffers from severe bias and poor coverage in estimating 

probabilities that are close to 0 or 1, particularly when the intraclass correlation is high.  

The objectives of this paper are: i) to develop an adapted version of the two-step 

synthetic MI method of Zhou et al. (2013a, 2013b) as a way to account for stratification, 

in addition to clustering and unequal inclusion probability; and ii) to demonstrate the 

effectiveness of the new method, with respect to quantile estimation and logistic 

regression for binary rare events data, as compared with existing fully parametric 

imputation strategies. Section 4.2 discusses the imputation strategies under three different 

models: simple random sample, fixed effects for clusters/strata, and random effects for 

cluster/strata. Section 4.3 introduces the newly proposed procedure and the MI inference 

rules for quantile estimation under this method. Section 4.4 presents a Monte Carlo 

simulation study as the validation tool to assess the repeated sampling properties of MI 

under the various approaches. Section 4.5 applies different MI procedures to the analysis 

of body mass index on youth data from the third National Health and Nutrition 

Examination Survey (NHANES III). Some concluding remarks follow in Section 4.6. We 

focus on the two-PSU-per-stratum design in this chapter, although the methods we 

develop can accommodate any number of PSUs per stratum. 

 

4.2 Fully parametric imputation methods for the two-PSU per stratum design 

Here we briefly describe fully parametric multiple imputation techniques with 

complex sample design features incorporated to different degrees. We assume the missing 

data Yi is a member of the exponential family, and that there are fully observed covariates 

Xi (a ( 1)p  - dimension vector) such that  ( | )i i ig E Y X X   for a known link function 
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 g  (e.g. ( ) log( )
1

u
g u

u



 for binary outcomes (logistic regression), ( ) log( )g u u  for 

count outcomes (Poisson regression), or ( )g u u for continuous outcomes (Gaussian 

regression)). 

 

4.2.1 Standard regression model assuming SRS 

Based on the maximum likelihood (ML) estimates ̂  and the associated 

asymptotic covariance matrix ˆˆ( )V  for the generalized linear model  ( | )i i ig E Y X X  , 

the posterior predictive distribution of the parameters can be constructed, which is then 

used to impute the missing values (Rubin, 1987, pp. 169-170). The steps used to generate 

imputed values are summarized as follows: 

1) At current iteration t, draw new regression parameters ( 1)t   (a row vector with 

length ( 1)p  ) from their normal approximation posterior predictive distribution 

ˆ ˆˆ( , ( ))N V  : ( 1) ( ) 'ˆ ˆt t

cV z    , where ( )ˆ t  is the ML estimator of   based on 

the observed data X  and obsY  together with the filled-in ( )imp tY , 'ˆ
cV  is the upper 

triangular matrix in the Cholesky decomposition of covariance matrix ( )ˆˆ( )tV  , 

and z  is a vector of 1p   independent random normal deviates.  

2) If the distribution of Yi has an unknown scale parameter 2 , draw 2

1~ n p     and 

compute  
2

2( 1) 1 ( 1)( ) /t T t

i i

i

Y g X      . 

3)  For an observation with missing iY  , draw i misY from the assumed distribution 

with mean 1 ( 1)( )T t

i misg X  

 and scale 2( 1)t  . 
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Point and variance estimates of the regression parameters can then be obtained using 

the usual MI combining rules (Rubin, 1987, p. 76). For the p
th

 component of the 

regression parameter: 

( )

1

1ˆ ˆ
M

m

p p

mM
 



   ,                                          [4.1] 

( ) ( ) 2

1 1
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
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( 1)ˆˆ ˆ ˆ( ) ( )
( 1)

M
m

p
p p

m

M
m

p p p

m

t M
MV
M



 


  





 
 
   

 
  




,            [4.3]        

where 1,...,m M  imputations are taken from draws widely separated to have practically 

eliminated autocorrelation. Multivariate combining rules for the joint distribution of ̂  are 

available as well (Schafer, 1997a, pp. 112-118). 

 

4.2.2 Appropriate fixed effects model (FX_APR) 

Compared to the predictive model using standard generalized linear regression, 

we can add dummy variables indicating stratum and cluster memberships to account for 

stratification and clustering effects. Note we also need to include the log transformation 

of sampling weight as a predictor if the missing data mechanism depends on weights, to 

make the imputation model truly appropriate. The model takes the following form: 

 ( | ) [ log( )]i i i i i ig E Y X X D E w       ,                           [4.4] 

where iD  is a 1 ( 1)H   row vector of dummies representing the H strata, and iE  is a 



 

111 

 

1 Q  row vector of dummies representing the clusters nested within each stratum. Note 

that 
hh

Q Q H  , where hQ   is the number of clusters in each stratum; in the case of 

the two-PSU per stratum case, .Q H  The dummy part of the design matrix thus takes a 

block diagonal matrix form as follows:  

1 1 1

2 2 2

(p )

0 0 0 0

0 0 0 0
,

0 0 0 0 0H H n H Q

X A B

X A B

X B
  

 
 
 
 
 
  

 

1

1

,  

1

h

h

D

h

n

A



 
 


 
  

 

1 1

( 1)

1 0

0 1

Qh

h h

E E

h

n Q

B



 

 
 


 
  

1,..., 1.h H   

where hX  is a ( 1)hn p   matrix containing the values of covariates for observations in 

stratum ,  and , 1,..., .hh
h n n h H  , hA  is a 1hn   matrix containing a vector of ones 

for observations in stratum h, and hB  is an ( 1)h hn Q   matrix containing vectors of 

dummy variables for the hQ  PSUs in the thh  stratum. To ensure identifiability, the 

dummy for the thH  stratum and the th

hQ  PSU are dropped. The parameter space under 

this model is expanded as ( , , , )     , and the steps for imputation are similar as in 

the SRS setting. 

 

4.2.3 Appropriate mixed effects model (RE_APR) 

As there are only two PSUs selected from each stratum, it is not feasible to model 

clusters as random effects separately within each stratum. Here we pool all Q+H clusters 

in the sample, and model them using a single random effect term. The imputation model 
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is specified as follow: 

 ( | ) [ log( )]j j j j i jg E Y X X D u w      ,                     [4.5] 

where 2~ (0, )i uu N   is a random intercept term representing cluster effects, for 

1,..., ),(i Q H   and 
2

u  denotes the between cluster variance. Other terms are as 

previously defined. (In the two-PSU-per-stratum case, 2 .Q H H  ) This MI strategy 

obtains the imputed values in the following steps: 

1) At current iteration t, fit the above generalized linear mixed effects regression 

model using the observed data X and obsY  together with the filled-in ( 1)imp tY  . The 

inference about 
( ) ( ) 2( )( , )t t t

u   , where ( ) ( ) ( ) ( )( , , )t t t t    , is based on the 

marginal likelihood function ( 1) ( ) 2( )( | ) ( ;0, )t t t

ij i u i
u

i j

L p y u du   , where 

( 1)t

ijy 
 is either the observed value or the filled-in value from the ( 1)tht   draw and 

2( ; , )    is the normal density with mean   and variance 2 . When iY  is non-

normal, we employ adaptive Gaussian quadrature (Pinheiro & Bates, 1995) (with 

the number of quadrature points set as 10) to evaluate the integral and obtain the 

maximum likelihood estimates for the parameters ( ( ) ( ) 2( )ˆ ˆ ˆ( , )t t t T

u   ) and the 

associated variance-covariance matrix of 
( ) 2( )ˆ ˆ( , )t t T

u   given by ( )ˆ t through 

numerical methods. 

2) Obtain a draw from the normal approximation to the posterior predictive 

distribution of these parameters: 

'

*( ) ( )

'
ˆ

u

t t
V

z
V





 
 

   
  

, where z is a vector 

containing 1 2 1p Q H p H       independent random normal variates, 



 

113 

 

'

'

u

V

V





 
 
  

 are components of the cholesky root of ( )ˆ t  corresponding to the fixed 

effects and random cluster effects, respectively. 

3) Any residual scale parameter is drawn as in the SRS setting. 

4) Finally, the missing values are drawn from the following distribution: 

 ( ) *( ) *( ) 1 *( ) *( ) *( ) *( )| , , ~ log( )t t t t t t t

i mis i mis j i mis i j i misY X u g X D u w   

         

Point and variance estimates and 95% confidence intervals are then obtained using the 

standard Rubin MI combining rules as previously described. 

 

4.3 Synthetic MI using the weighted FPBB for stratified samples 

In this section, we extend the two-step multiple imputation methodology proposed 

by Zhou et al. (2013a, 2013b) to a stratified two-stage sample design where a 

combination of complex sampling techniques are considered, namely, stratification, 

clustering and unequal inclusion probability. We develop methods for an unrestricted 

number of clusters per stratum, but for our simulations and application we focus on the 

special case of two primary sampling units (PSUs) selected per stratum, which mimics 

the form of a public use dataset that is commonly released for analyses.  

 

4.3.1 Synthetic data generation to account for complex sample designs 

Consider a finite population P, which is stratified into H strata with hN  PSUs in 

the thh  stratum, and hence the population size of PSUs is 
1

.
H

hh
N N


  For the thh  

stratum, select hn  PSUs with/without replacement from some probability sampling plan, 

independently across strata, and hence the total sample size of PSUs is 
1

.
H

hh
n n


  
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Subsampling of him  elements (treated as the ultimate sampling units in this example) 

from a total of hiM  is then conducted within the thi  sampled PSU of the thh  stratum, for 

1,..., , 1,2,..., .hi n h H   Hence the overall sample size and population size of elements 

are 
1 1 1

hH n H

hi hh i h
m m m

  
     and 

1 1 1

hH N H

hi hh i h
M M M

  
    , respectively, where 

hm  and hM  are sample size and population size of elements for the thh  stratum, 

respectively. The population consists of four types of survey variables: a single outcome 

Y, a single covariate X, a design matrix [ , , ]Z S C w   including the stratum indicators (S), 

the cluster indicators (C) and the sample weight (w), and the response indicator R. Let 

 ( , ) { , , , , 1,..., , 1,..., , 1,..., }s ns hij hij hij hij h hiD D D Y X Z R h H i N j M      denote the 

population of values measured on the survey variables, which is divided into the sampled 

component (
sD ) and the nonsampled ( nsD ) component.  

We generate synthetic populations using a two-stage procedure. The first stage 

accommodates stratification and clustering, and the second weighting. We have two 

broad approaches. The first, which we term SYN1, assumes that first (cluster-level) and 

second (PSU-level) stage sample weights are available for the analysis, and implements a 

weighted finite population Bayesian bootstrap (FPBB) at each level to generate the 

synthetic population. The second, which we term SYN2, assumes that only final weights 

are available for the analysis, and uses a Bayesian bootstrap to account for stratification 

and clustering at the first stage, and the weighted FPBB to account for the final weight at 

the second stage.  

4.3.1.1 Double Weighted Finite Population Bayesian Bootstrap (SYN1) 

For the h
th

 stratum, let ,s ht  and ,ns ht  index the sampled and nonsampled clusters, 
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respectively, and 
1{ ,..., ,..., , 1,..., }hrq

hb b b q r  be the 
hr  (1 )h hr N   distinct matrices of 

real numbers each of dimension | | | |q q

row colb b  with no row vectors in common. Each 

cluster in the stratum can take the form of one of 'sqb . Let hit q  when the 
thi  cluster 

takes on the values of qb , for 1,..., .hi N  Assume h hn r  and ,|| ||s hit

him b  (the number 

of distinct row vectors in ,s hit
b ) for convenience of exposition. Let 

,
( )

s htw i  be the sample 

weight of the i
th

 sampled cluster in the h
th

 stratum which equals qb , for 1,..., .hi n  and 

, ,, ( )
s h s hi

t Dw j  be the sample weight of the j
th

 sampled element in the i
th

 sampled cluster 

which equals ,s hit

kb ,  for 1,..., .hij m  Finally, let 
,
( )

s htc q  and 
,
( )

ns htc q  be the number of 

sampled and nonsampled clusters that equal qb , and 
,, ( )

h s h

hi

t Dc k  and 
,, ( )

h ns h

hi

t Dc k  be the 

number of sampled and nonsampled elements that equal ,s hit

kb . 

 Zhou et al. (2013b) showed that, within a stratum h, the Polya posterior for the 

counts of distinct unobserved elements 
,ns hD  is given by 

   

   

'
,

'
, ,,

, ,

1

,,
1

( | ) ( ( )) / ( ( )) / ( ) / ( )

( ( )) / ( ( )) / ( ) / ( )

h

s hh

h

s h s hh ns h

r

ns h s h t h ht
q

m

t D h ht D
k

p D D w q w q N n

w k w k M m





 
     
 

 
     
 





,             [4.6] 

where '
, ,

( ) ( ) ( )
s h ns hh

t tt
w q w q c q   and '

, , ,,
, ,,

( ) ( ) ( )
s h s h h ns hh ns h

hi

t D t Dt D
w k w k c k  , for  

,,1
( )

h

h s h

m hi

h t Dk
m c k


  and 

'

,

'

,1
( )

h

h ns h

m hi

h h h t Dk
m M m c k


   . The full posterior is then given 

by the product of the posteriors within each stratum, since these strata are independent 

and all strata in the population are in the sample:  
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, ,1
( | ) ( | )

H

ns s ns h s hh
p D D p D D


 .                             [4.7] 

A Monte Carlo procedure to simulate from this posterior distribution is then given as 

follows: 

(i) Draw the h hN n  nonsampled clusters in the population based on the Polya 

posterior distribution independently for each stratum. Each of the sampled 

clusters is resampled with probability 

 

, , 11

, 1,.. , 1

)

.

(

1

s h

h h
hi k

h

hi h h

h h
h h

h

t

N n
w l

n
k N n

N n
N k

n

i

n





 
   

    
 

    
 

,            [4.8] 

where 
, 1hi kl 

 is the number of times that the i
th

 cluster in the h
th

 stratum has been 

resampled at the (k-1)
th

 resampling, and 
,
( )

s htw i  is the weight for the i
th

 sampled 

cluster in the h
th

 stratum which is normalized to sum up to the total number of 

clusters, i.e. 
,1
( )

h

s h

n

t hi
Nw i


 . 

(ii) From Step 1, form a population of clusters 

1 1 1

* * * * * *

11 12 1 11 12 1 1 2 1 2{ , ,..., , , ,..., ,..., , ,..., , , ,..., }
H H Hn N n H H Hn H H HN nc c c c c c c c c c c c 

. Record the 

number of times each of the clusters from the original sample appears in the 

FPBB population of clusters, denoted by , 1,..., , 1,..., .hi hi n h H   , and 

1 1

hH n

hih i
N

 
  . Then update the within cluster element-level conditional 

weights as follows: *

| | , 1,..., , 1,..., .j hi j ihi h hi h Hw w n    , where |j hiw  is the 

inverse of the conditional probability that element j is selected given cluster i in 

stratum h is selected. Now pool all elements from these clusters together and treat 



 

117 

 

them as a single FPBB sample (i.e., as if they have no stratum or cluster 

boundaries). Note that this FPBB sample has the same sample size 

1 1

hH n

hih i
m m

 
   but different sampling weights than the original sample. We 

then apply the weighted FPBB again to these pooled elements to generate M m  

units from the m units in the FPBB sample. We resample from each of the 

resampled clusters M m  elements, cycling through M m  times and 

resampling with probability 

 

*

| , 1

|

1

,    1,..., ( 1)

1

j hi hij k

j hi

M
w l

k

m

m
M m

k
M m

M m
m









 
   

    
 

   
 

,               [4.9] 

where 
,hij kl  is the number of times that the 

thj  element in the thi  cluster in the thh  

stratum has been resampled at the thk  resampling, and |j hiw  is the updated 

conditional weight for the 
thj element in the thi  cluster in the thh  stratum. Again, 

they are normalized to sum up to the total number of units in the entire population, 

i.e. 
|1 1 1

h hiH n m

j hih i j
w M

  
   . Thus we create a single synthetic population. 

Repeat step 2 B times to obtain B FPBB synthetic populations. 

(iii) Repeat steps 1-2 L times to obtain L bootstrap samples, yielding L B  

FPBB populations 
( ) ( ) ( )( , ), 1,..., , 1,... .syn syn syn

lb lb obs lb misP P P l L b B   , each of which 

consists of both responding elements and nonresponding elements on a vector of 

variables { , , , }Y X Z R . 

 



 

118 

 

4.3.1.2 Bootstrap — Weighted Finite Population Bayesian Bootstrap (SYN2) 

Because we often do not know the first- and second-stage weights in public-use 

dataset, we consider an alternative to the procedure proposed in subsection 4.3.1.1. 

Rather than obtaining a sample of clusters from a draw from a Polya posterior, we use 

replication methods (Rust & Rao, 1996) to capture the cluster-level sampling variance. 

The final sampling weights instead of the adjusted element-level conditional weights are 

then directly used as input in the second-stage weighted FPBB. We use Rao and Wu 

(1988)’s rescaling bootstrap, which is a generalized extension of McCarthy and Snowden 

(1985)’s “with replacement bootstrap”. The reason for choosing replication methods, 

particularly this special type of bootstrap, is three-fold: 1) replication methods in general 

are simple and direct to implement, and the formation of replicate samples further creates 

replicate weights that inherently represent the effects of a complex sample design in 

addition to reflecting the effects of a wide range of reweighting techniques such as 

calibration weighting; 2) among various replication methods, while the standard delete-1 

jackknife is known to give an inconsistent variance estimator for a quantile as a classic 

example of nonsmooth statistics, the bootstrap yields sensible estimates for a variety of 

estimators. In fact, for stratified multistage samples, both consistency of the bootstrap 

variance estimators and confidence intervals for both smooth statistics and nonsmooth 

statistics have been established by researchers. Examples include functions of sample 

means by Rao and Wu (1988), and sample quantiles and sample low income proportions 

by Shao and Chen (1998). Asymptotic consistency of the Balanced Repeated Replication 

(BRR) and the bootstrap has also been established by Shao and Wu (1992) and Rust and 

Rao (1996). The bootstrap is adopted here because its application extends readily to more 

PSU sample allocations other than two-PSU-per-stratum design; 3) The Rao-Wu variant 
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of the conventional bootstrap yields adequate and stable variance estimates when the 

sample sizes are small, which occurs most often with stratified multistage sampling 

where only a small number of PSUs are selected within each stratum. Once the PSUs 

have been sampled, we continue with the weighted FPBB approach to complete the 

synthetic population data generation. The proposed procedure is as follows:    

(i) Select a sample of 
* 1h hn n   PSUs from the parent sample in each stratum via 

SRSWR sampling; 

(ii) Apply the “ultimate cluster principle” (Wolter, 2007), that is, once a PSU is taken 

into the bootstrap replicate, all elements in that PSU are taken into the replicate 

also. Thus, we obtain our first bootstrap sample; 

(iii) Repeat the previous steps L  times to obtain L  bootstrap samples 

{ _ , 1,..., .}Boot l l L ; 

(iv) Within each bootstrap sample, update the element-level sampling weights as: 

*

*

,  if the  PSU selected in the bootstrap sample
1( )

0,  if the  PSU not selected in the bootstrap sample 

thh
hijh

hhij hij hi

h th

n
w in

nw w
n

i






   
 

 

As *

hijw  itself implicitly carries over the strata and PSU information in addition to 

unequal inclusion probability, we can drop the subscripts hi  henceforth by 

pooling all elements in the bootstrap sample regardless of which stratum and PSU 

they originally came from. Normalize 
*

jw ’s to sum up to *m :
*

* *

1

m

jj
w m


 , where 

*m  is the bootstrap sample size.  

(v) For the thl  bootstrap sample, 1,...,l L , apply the weighted FPBB algorithm to 

create an entire population *( , )ns sD D D   based on the posterior predictive 
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distribution of elements in the nonsampled population 

*{( , , , ), 1,..., }ns j j j jD Y X Z R j m M    given the elements in the bootstrap 

sample 
* *{( , , , ), 1,..., }s j j j jD Y X Z R j m  :  

* *

* *

1 1 1 11 1

1 111* 0 0

1 1 1 11 1

1 1110 0

* *

1

*

... (1 ) ...
( | )

... (1 ) ...

( ) / ( )
             ,          

( ) / ( )

j j K K

j K

K Kw r w r

j j Kjj

ns s K Kw w

j j Kjj

K

j j jj

d d
p D D

d d

w r w

M m

   

   

    



  










  


 

 

 


              [4.10] 

where jr  is the number of elements in the nonsampled FPBB population that take 

on the same value as the thj  element in the bootstrap sample, for 

*1,..., ( )j K m  . Operationally, we draw a Polya sample of size 

* *M M m  from
*

1( ; ,..., )Kmult M     where the selection probability 

, 1,..., .k k K   is a function of 
*

jw :   

 

*

, 1

*

*

*
*

*

*

1 l

,  1,..., 1.

1

j j k

k

w

k M

k

M

m

M
M

m




 
   

   
 

   
 

,                             [4.11]                                                                              

Repeat Step (v) for B times to obtain L B  FPBB populations.  

 

4.3.2 Imputation of the synthesized populations 

Once the set of FPBB synthetic populations ( )

( ){ , 1,..., , 1,..., }syn l

bP P l L b B   , 

where ( ) ( ) ( )

( ) ( ) ( )( , )l l l

b b mis b obsP Y P  are created using either SYN1 method or SYN2 method, we 

generate imputations 
( )

( ){ , 1,..., , 1,..., , 1,..., .}imp l

baP P l L b B a A     from the posterior 

predictive distribution ( ) ( )

( ) ( )( | )l l

b mis b obsp Y P  based on a parametric model that does not 
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condition on sample design features, i.e. a model taking similar form as the SRS model 

stated in section 4.2.1. We consider imputations based on the covariate (X) only 

(SYN1_srs or SYN2_srs) or imputations that include the log of the sample weights in the 

linear predictors (SYN1_lwt or SYN2_lwt). 

We obtain the MI inference by applying the combining rules developed in Zhou et 

al. (2013a) to the L B A   estimates, based on both the observed set 

( )

( ){ , 1,..., , 1,..., }l

R b obsP P b B l L    and the imputed set 

( )

( ){ , 1,..., , 1,..., , 1,..., }l

ba misR
P Y l L b B a A     of the synthetic populations, where R  and 

R  represent responding and nonresponding, respectively. We estimate the population 

mean of Y  by calculating the mean of the synthetic population  

ˆ [ ] /
R R

P

lba i ji P j P
Y y y M

 
   ,                                 [4.12] 

To estimate a generalized linear regression parameter, we solve the regression score 

function  

1 1( ) [ ( ( )) ( ( ))]
R R

P T T T T

lba i i i j j ji P j P
U x y g x x y g x   

 
     ,          [4.13]  

where ( )g  is the link function for the transformation of the mean, so that 

 ˆ : ( ) 0P P

lba lbaU    . For quantile estimation, we proceed by first obtaining the 

empirical distribution function based on the thlba  imputed synthetic population:  

ˆ ( ) [ ( ) ( )] /
R R

P

lba i ji P j P
F y I y y I y y M

 
     ,                        [4.14] 

Then we estimate the th  quantile ( q ) as: 

1

,
ˆ ˆˆ ( ) ( ) inf{ : ( ) }P P

lba lba lbaq F y F y     ,                              [4.15] 

The MI point estimator for the population statistic of interest Q (mean, regression 
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estimator, quantile) is then given by the mean of the thlba  point estimators:  

1ˆ ˆ
MI lbal b b

Q Q
LBA

    ,                                     [4.16] 

The MI variance estimator is: 

1 1 21 1ˆ ˆ ˆ ˆˆ (1 ) (1 ) ( ) ,  where 
1

MI L l MI l lbal b a
V L V L Q Q Q Q

L BA

      

   ,     [4.17] 

We then construct the 95% interval estimate for quantiles based on t reference 

distribution with degrees of freedom equal to min{ , 1}com h synh
v n H v L    . These 

results arise from the fact that, by the standard Rubin (1987) MI combining rules, we 

have 

1

1| ~ ( ,(1 ) )imp

L L LQ P t Q L V

  ,                                     [4.18] 

where ( )1 l

L

l

Q Q
L

  , ( ) 21
( )

1

l

L L

l

V Q Q
L

 

 , and ( ) 1 ˆliml

lba
B

b aA

Q Q
BA



  . Replacing ( )lQ  

with its finite simulation estimator ˆ
lQ  replaces LQ  with ˆ

MIQ  and gives the results above. 

Note that the generation of the synthetic population sets the within imputation variance to 

0 so that the posterior variance of Q can be obtained using the between-bootstrap 

variance only; see Dong et al. (2014) and Zhou et al. (2013a). The result assumes that  

ˆ( )baE q Q  – a result guaranteed by our Bayesian bootstrap estimator if the imputation 

model is also correct – as well as a sufficiently large sample size for the t approximation 

to be reasonable. 

Lo (1988) showed that the variance estimator for the FPBB mean in a simple 

random sample setting should be inflated by the factor (
1

1

n

n




). Thus in the double-

weighted FPBB (SYN1) setting, a small sample correction to the variance estimate needs 
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to be used when the number of clusters per stratum is small. When 
hn a  is a constant 

across all strata, we use 
1

1

h

h

n

n




(1+L

-1
) VL; otherwise we suggest 

1

1

h

h

n

n




(1+L

-1
) VL, where 

1

h hh
n H n  . 

 

4.4 Simulation Study 

We conducted a simulation study to investigate the performance of the proposed 

method for incorporating stratified cluster sampling effects in multiple imputation. We 

targeted three population statistics: 1) population quantiles, 2) proportions of binary event 

data, and 3) logistic regression parameters relating the covariate to the binary data. The 

simulation is a 2 2  factorial design based on the following factors: 1) keeping the first 

stage sampling plan constant, we let the subsampling rate 2f  of elements within sampled 

clusters be a) independent of or b) dependent on the stratum effects, and 2) assume a) the 

missingness on the Y-variable (continuous or binary) depends only on the covariate ( X ) 

(MAR_X), or b) depends on both X  and the final sampling weight W (MAR_X,W). 

We focus on a two-PSU-per-stratum sample design, both because it is a common 

design, especially in public use settings, and because it is a “limiting case” in terms of the 

number of PSUs per stratum. In addition to the two variants of our synthetic MI 

estimators, we consider standard parametric MI under the SRS, appropriate fixed effect 

(FX_APR), and appropriate random effect (RE_APR) models. 

 

4.4.1 Description of the Design 

 Data generation 
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Let i  be the index for strata, j  be the index for clusters, and k  be the index for 

elements. Suppose there are 50 strata in the population. First, the number of PSUs in each 

stratum was randomly determined according to a uniform distribution, 

i.e. ~ (2,54), 1,...,50iC Unif i  ; second, the number of population elements within PSUs 

was randomly generated as ~ (20,80), 1,...,50, 1,...,ij iN Unif i j C  . Thus we obtained a 

population of size 67385N  . The complete data for four survey variables 

1 2 3 4( , , , )TY Y Y Y Y  were generated from a super-population model according to a two-step 

process: In the first step, 1Y  and 2Y  were randomly selected from a bivariate linear mixed 

effects model; let  2N   denote a bivariate normal distribution function: 

 
1

2

2

~ , ,
ijk

ijk

Y
N

Y


 
 

 
 where 

1 1 1 11 12

2 2 2 12 22

,
i ij ijk

ij ijk

S u

u

   


   

     
         

,             [4.19] 

Let 1 2 15    be the fixed covariate effects, 
5

i

i
S   be the fixed stratum effects, and let 

1 2

T

ij iju u    and 
1 2

T

ijk ijk    be the random cluster effects and random error terms 

drawn from two independent bivariate normal distributions:  2 0, uN   and  2 0,N  .  

Elements of u were set as: 
1 2 1 2

2 24, 1, 0.2,u u u u      and elements of   were set as: 

1 2 1 2

2 24, 3, 1.732.         This results in conditional intraclass correlations (ICC) of 

1Y  and 2Y  as 
1

0.5Y   and 
2

0.25Y   (note that the unconditional ICC for the two 

variables may be smaller than these values). In the second step, a random effects logistic 

regression model (Anderson & Aitkin, 1985; Stiratelli, Laird, & Ware, 1984) was used to 

simulate two binary outcome variables 3Y  and 4Y  as a function of 2Y . Under this model, a 

random effect is added to the linear part of the logistic regression model for each element 
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in the cluster. The conditional mean of 3ijkY  and 4ijkY  is 

0 1 2 2

0 1 2 2
2 2( | , ) Pr( 1| , )

1

i ijk ij

i ijk ij

S Y u

ijk ijk ijk ij ijk ijk ij S Y u

e
E Y Y u Y Y u

e

  

  






  

      
   


,             [4.20] 

where  2

3 ~ 0,6iju N ,  2

4 ~ 0,10iju N  and 0 1 2( , , )T     is the vector of fixed 

covariate effects. We fixed 2 1.5   and vary 0  and 1  to obtain two different binary 

variables 3ijkY  and 4ijkY , with either moderate ( 0 15, 1.5     ) or rare probabilities 

( 0 18, 6     ). Given iju , the 'ijkY s  in the cluster are independent Bernoulli 

variables, that is, | ~ ( )ijk ij ijkY u Bern   .  

Figure 4.1 shows the correlations among variables in the simulated population, 

where the different shades of grey represent different degrees of association between any 

of the two variables. The darker shades indicate higher correlation. All survey outcome 

variables ( 1 3 4, ,Y Y Y ) have moderate to strong (0.2~0.8) stratum effect (  or H strID ) and 

clustering effect ( 1 3 4, ,U U U ), indicating that accounting for these effects in the analysis 

of missing data is essential. 



 

126 

 

 

Figure 4.1 Correlation among variables in the simulated population (darker shades = higher correlation) 

 

 The Sample Design 

Within each stratum, we drew a two-stage cluster sample according to the 

following procedure: first, we drew a sample of 2 PSUs without replacement with 

probability proportional to the cluster size 
1

2* ij

ij

ij

j

N
f

N



; second, we sampled elements 

from each sampled cluster by two different subsampling schemes: 1) sampling 

probability independent of iS which was defined in [4.19]: SRS with an equal sampling 

fraction of 2 | 1/ 5k ijf  ; 2) sampling probability related to iS : SRS with varying sampling 

fractions across strata, i.e. 
1

2 | expit( 0.8 0.12* ),  where expit( ) 1/(1 e ( )).k ij if S x x      

An average of 1122 elements are selected in each of the 200 simulation replications. The 

distributions of sampling weights are shown in Figure 4.2. The distributions of sampling 

weights under the two subsampling schemes are generally very similar with somewhat 

more skewness under subsampling scheme 2. 
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Figure 4.2 Distribution of weights under the two subsampling schemes  

 

 Imposing missingness 

Throughout the simulation study, we assume that 2Y  is always completely 

observed and we impose missing values on 1Y , 3Y  and 4Y  independently according to the 

following deletion function conditional on 2Y  and/or log transformation of the weight:  

0 1 2 2
2

0 1 2 2

exp( * *log( ))
Pr( 0 | , )

1 exp( * *log( ))

Y W
R Y W

Y W

  

  

 
 

  
,                              [4.21] 

where R is the response indicator and W is the overall sample weight. Setting 2 0  , we 

obtain the first MAR mechanism (i.e. MAR_X, note we treat 2Y  as X here), under which 

we further set 0 13.42, 0.2    and 0 12.58, 0.2     for deleting values on 1Y  and 

3 4,Y Y , respectively. Setting 2 0.6   , we obtain the second MAR mechanism (i.e. 

MAR_X,W), under which we fix 1 0.2   and set two values on 0 ( 0.274 or 0.33   ) 
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for deleting values on all three outcome variables under subsampling scheme 1 and 

subsampling scheme 2, respectively. All deletion functions result in approximately 40% 

missingness.  

 Parametric Multiple Imputation 

Both simple random sample SRS (including SRS, SYN1_srs and SYN2_srs) and 

fixed-effected model FX_APR can be implemented in R (R Core Team, 2013) using mice 

routines; for the logistic model associated with the binary outcome, the method ‘logreg’ 

must be specified. We use the pan package (Schafer, 1997b) in R for the mixed effects 

imputation (RE_APR) for the missing continuous outcome; logistic mixed effects 

imputation is programmed in SAS for the missing binary outcome, as there is no package 

readily available for use. 

 Parameters of interest and inference 

We focus on inference for the following population parameters: the mean of the 

continuous variable 1Y , the mean of the binary variables 3Y  and 4Y  (i.e. Bernoulli 

proportions), linear regression coefficients of 1Y  on 2Y , logistic regression coefficients of 

3Y  (or 4Y ) on 2Y , and the population percentiles of the continuous variable 1Y .  

Weighted analyses and sandwich variance estimators accounting for strata and 

clusters are used to estimate smooth statistics (including proportions and regression 

parameters) under the three fully parametric MI methods. For estimating quantiles of the 

distribution of a continuous survey variable, we construct the sample-weighted point 

estimator with confidence intervals based on the test inversion method (Francisco & 

Fuller, 1991). We chose the test-inversion method instead of Woodruff’s method 

(Woodruff, 1952) despite the computational intensity, because the literature suggests that 
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it may outperform Woodruff in heavily stratified samples or in small-to-moderate-sized 

samples (Kovar et al., 1988), and these are the sample designs we are particularly 

interested in in this chapter. Based on the tha  imputed dataset, the empirical distribution 

function can be written as  

( ) ( )ˆ ( ) [ ( ) ( )] /
R R

a obs a

hij hij hij hij hijS S S
F y w I y y w I y y w      ,                  [4.22] 

where RS  and 
R

S  are subsets of the sample data S , consisting of respondents and 

nonrespondents, respectively. The estimator ˆ ( )F y  and its associated estimated variance 

ˆ( ( ))v F y can then be obtained using the variance estimator proposed by Francisco and 

Fuller (1991) together with standard Rubin combining rules as previously described. The 

sample th  quantile estimator thus is 1ˆˆ ( ) ( )q F  , with 95% asymptotic confidence 

interval given by  

   1 1

0.025 0.025
ˆ ˆ ˆ ˆ[ , ] [ ] var( ( )) ,  [ ] var( ( ))L U F t F q F t F q      

  
,          [4.23] 

  

4.4.2 Results 

Figures 4.3 through 4.6 plot the point estimates as well as their upper and lower 

confidence interval lines for 19 population quantiles (from 0.05 to 0.95 with an increment 

of 0.05). These were obtained from the two proposed finite population Bayesian 

bootstrap procedures (SYN1 and SYN2). These graphs demonstrate visually how the 

proposed methods work in incorporating complex sample design features for estimating 

population quantiles. From left to right in each figure, we compare the proposed methods 

in the absence of missing data (synthetic BD), the proposed methods in the presence of 

missing data under mechanism MAR_X (synthetic ADX) and under MAR_X,W 
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(synthetic ADXW), with the design-based quantile estimation method based on the actual 

replication samples (Complete Data). The perfect overlapping of the red plot and black 

plot indicates that all point and interval estimates obtained from the synthetic BD (both 

SYN1 and SYN2) are identical to those using the design-based method. This provides 

good evidence that both proposed procedures were able to accommodate all sample 

design features to produce synthetic populations that behaved as simple random samples 

from the underlying true population. In the missing data setting, the point estimates are 

generally very close. The variance estimates increased as expected — note the green 

dashed lines always encompass the black dashed lines — due to the added noise from 

multiply imputing missing data. Hence, we further investigate the performance of the 

synthetic MI in comparison with fully parametric MI methods, by looking at several key 

summary measures under the four simulation conditions in Table 4.1. 

 Table 4.1 compares the average width 210 and average coverage rates of the 

95% CI of ( )q  , where 0.05,0.10,0.25,0.50,0.75,0.90 and 0.95,   corresponding to 

seven selected population quantiles. Among all methods considered, the SRS imputation 

model yields the poorest coverage. This results from the compounding effects of biases 

and variance underestimation, due to ignoring stratum effects and clustering effects, 

respectively. As we increase the dependence of both the sampling mechanism and 

response mechanism on stratum effects and sampling weights, the performance of SRS 

gets even worse, as exhibited by the markedly increased RelBias and decreased coverage 

rates. In addition, ignoring stratum and/or weight effects that are highly relevant to either 

mechanism seems to impact the median and 2
nd

 and 3
rd

 quartiles more than the tail 

quantiles under SRS, as evident in the relatively lower coverage rates in the right block of 
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Table 4.1.  

The FX_APR model (Reiter et al., 2006; Rubin, 1996; Schenker et al., 2006), 

generally performs fairly well in our simulation study with respect to estimation of 

population quantiles. There is some modest underestimation of the small percentile 

quartiles with the second stage sampling constant. The RE_APR model also performs 

well, with the exception of moderate to high overcoverage when the second stage 

sampling probability is associated with the stratum mean and the missingness mechanism. 

In contrast, our synthetic MI (SYN2 in particular) compares favorably with all of 

its competitors, and in most cases yield comparable results to the RE_APR, which is 

regarded as a “gold standard” as it is compatible with the data generating mechanism. 

There is some undercoverage when the stratified double-weighted FPBB estimator 

(SYN1) is used, perhaps due to the fact that the Lo small-sample adjustment is not as 

accurate when 2hn  . However, use of a stratified bootstrap-weighted FPBB estimator 

(SYN2) generally eliminates this issue. Although an imputation model assuming SRS 

suffices for the synthetic MI method in most scenarios, we need to include the sampling 

weight as a predictor when the outcome Y and the response indicator R  are strongly 

associated with each other through the sampling mechanism I , as is the case with the 

second subsampling scheme, when both the missingness indicator and the second-stage 

sampling rate are functions of the stratum mean.  

Tables 4.2 and 4.3 compare the absolute relative bias 

ˆ| |
100 %

complete

complete

relbias
 




  , RMSE and 95% nominal CI coverage for the estimated 

mean/proportions of 1Y , 3Y  and 4Y , and the slopes of the three outcome variables on 2Y , 
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respectively. ( complete  is the estimated parameter with complete data, and ̂  is the 

estimated parameter under one of the different MI methods.) As in the estimation of the 

quantiles, the SRS imputation model is biased and has poor coverage as it ignores stratum 

and cluster effects. Again, dependence of subsampling on stratum effects and dependence 

of response on sampling weights damage the performance of SRS even further. 

FX_APR generally performs well in estimating the mean of a continuous variable 

( 1Y ) and a regular binary variable ( 3Y ) with moderate probability as well as the slopes.  

However, it fails for proportion estimation for rare events data ( 4Y ), yielding biased point 

estimates and less than nominal coverage throughout all scenarios. One interpretation 

might be that overfitting occurs when including too many dummies to account for fixed 

strata and cluster effects. This damages the predictive efficacy when the fitted model is 

used for drawing missing values. The problem is particularly prominent when the logistic 

fixed effects imputation model is used along with the current sampling design where an 

average of only 10 elements are selected per PSU within each stratum; and this results in 

even more substantial biases on 4Y  than the SRS model. 

Compared with FX_APR, RE_APR avoids the overfitting issue through shrinkage 

effects: note that under RE_APR, we pooled all PSUs from all strata as if there were no 

strata bounds, and the stratum effects can be thought as being implicitly modeled in the 

random intercept term ( ( )j h h ju I u  ). This in some sense alleviates the small sample 

issue though not a complete solution (e.g. the estimated 4Y  under RE_APR is still 

moderately biased). 

As in the quantile estimation setting, our synthetic MI compares favorably with 
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all of its competitors, and in most cases yields comparable results to the RE_APR for 

estimation of means and logistic regression parameters. In the case of rare events data, 

our proposed new method increases the analytical size through generating synthetic 

population data thus is even superior to RE_APR, consistently yielding negligible biases 

and close to nominal coverage. The impact of ignoring the weights in the imputation 

(under MAR_X,W mechanism) is less than in the quantile estimation setting, with the 

exception of the estimation of the continuous mean 
1Y , where including the weight is 

required to obtain approximately correct coverage.   

A disadvantage of the method lies in the relative inefficiency for estimating 

nonlinear parameters (regression coefficients) (e.g. the synthetic MI results in unbiased 

point estimates but a larger RMSE than the two model-based MI methods). This is typical 

in that nonparametric methods cannot typically compete with their fully parametric 

counterparts under the correct model, and is a tradeoff made to improve robustness to 

model misspecification, and, in our setting, simplicity in implementation. 
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(a)                                                           (b)                                                            (c) 

  
Figure 4.3 Comparison of point and interval estimation for 19 population quantiles using the Stratified Boot-FPBB and the design-based complete data analysis 

for subsampling scheme1 (
2  constantf  ). (a) before deletion (b) imputation based on covariates under MAR_X (c) imputation based on covariates and 

sampling weights under MAR_X,W. 

                                                                (a)                                                               (b)                                                          (c) 

 
Figure 4.4 Comparison of point and interval estimation for 19 population quantiles using the Stratified Boot-FPBB and the design-based complete data analysis 

for subsampling scheme2 (
2 ( )if h S ). (a) before deletion (b) imputation based on covariates under MAR_X (c) imputation based on covariates and sampling 

weights under MAR_X,W. 
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(a)                                                           (b)                                                          (c) 

   
Figure 4.5 Comparison of point and interval estimation for 19 population quantiles using the stratified double weighted-FPBB and the design-based complete 

data analysis for subsampling scheme1 (
2  constantf  ). (a) before deletion (b) imputation based on covariates under MAR_X (c) imputation based on 

covariates and sampling weights under MAR_X,W. 

(a)                                                             (b)                                                           (c) 

 
Figure 4.6 Comparison of point and interval estimation for 19 population quantiles using the stratified double weighted-FPBB and the design-based complete 

data analysis for subsampling scheme2 (
2 ( )if h S ). (a) before deletion (b) imputation based on covariates under MAR_X (c) imputation based on covariates 

and sampling weights under MAR_X,W. 
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Table 4.1 Comparison of average width 
210 and 95% CI coverage rates of ( )q   for 0.05,0.10,0.25,0.50,0.75,0.90 and 0.95.   

Sampling 

Scheme 

Missingness 

Mechanism 
 Methods 

Average width of 95% CI x 10
2 

95% CI coverage
 

0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.05 0.1 0.25 0.5 0.75 0.9 0.95 

2  const.f   

Complete 

Data 

Actual 170 144 123 106 116 142 165 90.5% 92.5% 94.5% 93.5% 95.5% 91.5% 91.0% 
Syn1BD 172 144 126 105 117 146 165 90.5% 90.0% 95.0% 94.0% 95.0% 94.0% 89.0% 

Syn2BD 182 154 132 113 122 150 171 94.0% 95.0% 96.0% 94.5% 96.5% 96.0% 92.5% 

MAR_X 

SRS 165 134 112 101 108 132 158 93.0% 91.5% 86.0% 82.5% 83.0% 89.0% 93.5% 
FX_APR 171 143 120 105 116 146 172 92.5% 90.5% 90.5% 92.5% 93.5% 94.0% 95.0% 

RE_APR 184 154 131 115 125 156 186 93.5% 94.0% 93.0% 97.5% 95.5% 95.5% 97.0% 

Syn1_srs 171 145 123 109 122 148 165 91.0% 89.5% 92.5% 95.0% 90.5% 89.5% 94.0% 

Syn2_srs 182 158 134 118 129 156 175 93.5% 93.0% 94.5% 96.5% 94.5% 94.5% 95.0% 

MAR_X,W 

SRS 178 146 120 109 110 139 163 89.0% 81.0% 70.5% 69.0% 80.0% 90.0% 91.0% 
FX_APR 186 153 126 115 125 155 190 89.5% 92.5% 93.5% 95.5% 92.5% 92.5% 96.0% 

RE_APR 197 166 140 127 136 168 197 95.0% 97.0% 97.0% 98.0% 96.0% 95.0% 96.0% 

Syn1_srs 173 150 124 111 119 146 163 91.5% 92.0% 93.0% 91.5% 90.0% 94.0% 92.5% 

Syn2_srs 183 160 134 119 123 153 172 93.5% 95.5% 96.5% 92.5% 92.0% 93.0% 95.5% 

Syn1_lwt 174 151 126 115 124 148 166 90.0% 89.0% 93.0% 94.5% 90.5% 96.0% 94.0% 

Syn2_lwt 184 161 136 122 132 155 174 92.0% 93.0% 95.5% 96.0% 94.5% 96.0% 95.0% 

2 ( )if h S  

Complete 

Data 

Actual 170 143 120 110 121 148 169 92.5% 94.5% 95.0% 96.0% 92.5% 87.5% 87.5% 
Syn1BD 177 142 120 108 121 152 175 91.0% 92.5% 92.0% 94.5% 92.5% 87.5% 87.5% 

Syn2BD 182 152 128 116 126 154 178 95.0% 97.0% 96.0% 97.0% 94.5% 90.0% 90.5% 

MAR_X 

SRS 175 139 121 111 116 141 169 86.5% 73.0% 57.0% 48.5% 61.0% 72.0% 80.5% 
FX_APR 174 142 121 113 124 162 202 95.5% 95.0% 98.0% 95.5% 93.5% 92.5% 95.5% 

RE_APR 181 150 128 119 131 168 205 94.0% 96.5% 97.0% 96.5% 97.0% 94.0% 96.0% 

Syn1_srs 166 140 119 111 126 156 180 93.5% 94.0% 96.5% 92.5% 92.0% 91.0% 90.0% 

Syn2_srs 179 152 129 119 132 162 185 94.5% 95.5% 98.0% 96.5% 95.0% 93.5% 92.5% 

MAR_X,W 

SRS 191 157 127 117 122 147 168 47.0% 31.5% 9.5% 8.0% 30.0% 60.0% 73.5% 
FX_APR 186 153 125 119 138 179 227 96.5% 97.0% 93.5% 96.5% 97.0% 95.0% 94.5% 

RE_APR 190 161 135 131 148 184 220 98.0% 99.5% 97.5% 98.0% 98.5% 96.5% 95.0% 

Syn1_srs 168 146 124 114 128 155 174 94.0% 92.5% 84.0% 73.0% 76.0% 87.5% 88.0% 

Syn2_srs 184 160 135 122 134 160 179 95.0% 95.5% 88.0% 77.5% 79.0% 87.0% 89.0% 

Syn1_lwt 168 143 121 113 130 158 176 92.5% 92.5% 94.5% 92.0% 89.0% 92.0% 91.5% 

Syn2_lwt 178 155  131  122 138 166 185 96.0% 95.5% 95.5% 92.5% 95.5% 95.0% 93.0% 
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Table 4.2 Comparison of RelBias, RMSE and 95% CI coverage rates for the mean of Y1 and proportions of Y3 and Y4, 

Population True Value: 
1 20.4Y  , 

3
0.608YP  , 

4
0.117YP   

Sampling 

Scheme 

Missingness 

Mechanism 

  

Methods 

 

RelBias RMSE 95% CI coverage 

1Y   
3YP   

4YP  
1Y   

3YP   
4YP  

1Y   
3YP   

4YP  

 

 

 

2  const.f   

 

Actual samples BD: 

1 20.3Y   

3
0.604YP   

4
0.117YP   

Complete 

Data 

Actual - - - 0.220 0.042 0.024 95.0% 94.0% 90.5% 

Syn1BD 0.0% 0.0% 0.0% 0.221 0.042 0.024 94.5% 94.0% 91.5% 

Syn2BD 0.0% 0.0% 0.0% 0.222 0.043 0.024 95.0% 94.5% 93.0% 

MAR_X 

SRS 0.8% 1.6% 10.8% 0.309 0.041 0.028 76.9% 90.0% 85.0% 

FX_APR 0.0% 1.3% 39.2% 0.243 0.040 0.054 91.0% 96.5% 72.5% 

RE_APR 0.0% 1.3% 15.1% 0.236 0.040 0.026 93.0% 93.5% 91.0% 

Syn1_srs 0.0% 0.3% 0.4% 0.255 0.044 0.025 94.5% 93.5% 91.5% 

Syn2_srs 0.0% 0.2% 0.4% 0.254 0.044 0.025 97.0% 95.0% 94.5% 

MAR_X,W 

SRS 1.4% 2.8% 19.4% 0.398 0.042 0.035 72.0% 85.5% 77.5% 

FX_APR 0.0% 2.7% 48.4% 0.260 0.042 0.065 91.5% 96.0% 60.0% 

RE_APR 0.1% 0.3% 6.8% 0.250 0.041 0.022 97.5% 95.5% 86.0% 

Syn1_srs 0.4% 1.4% 4.2% 0.285 0.043 0.026 92.0% 95.5% 91.5% 

Syn2_srs 0.5% 1.4% 4.4% 0.283 0.043 0.026 96.5% 95.0% 96.0% 

Syn1_lwt 0.0% 0.6% 0.3% 0.273 0.045 0.027 95.5% 93.5% 89.0% 

Syn2_lwt 0.0% 0.5% 0.0% 0.271 0.045 0.026 96.0% 96.0% 94.0% 

 

 

 

2 ( )if h S  

 

Actual samples BD: 

1 20.4Y   

3
0.609YP   

4
0.117YP   

Complete 

Data 

Actual - - - 0.218 0.037 0.023 96.0% 97.5% 92.0% 

Syn1BD 0.0% 0.0% 0.0% 0.220 0.037 0.023 93.5% 94.0% 92.0% 

Syn2BD 0.0% 0.0% 0.3% 0.219 0.038 0.023 96.0% 97.0% 94.0% 

MAR_X 

SRS 2.4% 4.7% 29.6% 0.540 0.048 0.045 42.0% 80.5% 62.5% 

FX_APR 0.0% 1.5% 42.0% 0.237 0.036 0.058 94.0% 97.0% 70.5% 

RE_APR 0.2% 1.6% 16.1% 0.230 0.039 0.025 96.5% 93.5% 91.5% 

Syn1_srs 0.1% 0.0% 0.9% 0.266 0.042 0.025 92.5% 95.5% 91.5% 

Syn2_srs 0.1% 0.1% 0.5% 0.266 0.042 0.025 94.0% 96.0% 93.5% 

MAR_X,W 

SRS 4.4% 9.2% 54.0% 0.912 0.067 0.071 6.5% 56.0% 34.5% 

FX_APR 0.1% 1.2% 55.3% 0.288 0.037 0.074 93.5% 95.5% 55.0% 

RE_APR 0.0% 0.7% 5.1% 0.239 0.038 0.022 97.5% 95.5% 87.0% 

Syn1_srs 1.5% 3.3% 15.0% 0.401 0.045 0.033 77.5% 91.5% 88.0% 

Syn2_srs 1.5% 3.2% 15.0% 0.400 0.045 0.033 82.0% 94.5% 91.5% 

Syn1_lwt 0.1% 0.2% 0.9% 0.281 0.042 0.025 89.5% 93.0% 91.0% 

Syn2_lwt 0.0% 0.1%  1.2%  0.278  0.043 0.025  93.5%  95.5% 92.5% 
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Table 4.3 Comparison of RelBias, RMSE and 95% CI coverage rates for the regression coefficients of Y1, Y3 and Y4 on Y2, 
Population True Value: 

1 21, | 0.488Y Y  , 
3 21, | 0.227Y Y  , 

4 21, | 0.083Y Y   

Sampling 

Scheme 

Missingness 

Mechanism 
Methods 

RelBias RMSE 95% CI coverage 

1 21, |Y Y   
3 21, |Y Y   

4 21, |Y Y  
1 21, |Y Y   

3 21, |Y Y   
4 21, |Y Y  

1 21, |Y Y   
3 21, |Y Y   

4 21, |Y Y  

2  const.f   

 

Actual samples BD: 

1 21, | 0.481Y Y   

3 21, | 0.232Y Y   

4 21, | 0.086Y Y   

 

 

Complete 

Data 

Actual - - - 0.103 0.065 0.098 98.0% 96.0% 90.0% 

Syn1BD 0.4% 1.1% 1.9% 0.104 0.067 0.098 96.0% 93.5% 88.0% 

Syn2BD 0.2% 2.8% 5.0% 0.103 0.067 0.100 98.0% 97.5% 91.5% 

MAR_X 

SRS 4.6% 4.6% 24.7% 0.110 0.071 0.100 93.0% 90.0% 91.0% 

FX_APR 0.2% 1.0% 44.7% 0.103 0.063 0.087 97.0% 97.0% 92.5% 

RE_APR 0.3% 2.1% 22.6% 0.100 0.056 0.068 98.0% 95.5% 95.0% 

Syn1_srs 0.0% 0.5% 2.8% 0.114 0.079 0.111 95.5% 93.0% 88.0% 

Syn2_srs 0.2% 3.0% 4.4% 0.115 0.082 0.111 96.5% 96.5% 94.5% 

MAR_X,W 

SRS 7.3% 7.5% 45.6% 0.121 0.070 0.100 93.0% 90.5% 87.0% 

FX_APR 0.4% 1.7% 53.5% 0.114 0.064 0.087 96.5% 96.0% 91.5% 

RE_APR 0.2% 6.5% 22.9% 0.105 0.054 0.073 97.5% 96.0% 96.0% 

Syn1_srs 3.6% 2.7% 9.7% 0.123 0.076 0.105 94.5% 91.5% 91.0% 

Syn2_srs 3.5% 0.5% 4.6% 0.121 0.076 0.107 96.5% 96.0% 93.0% 

Syn1_lwt 1.8% 1.4% 2.8% 0.121 0.075 0.104 95.5% 93.0% 90.0% 

Syn2_lwt 2.2% 1.5% 2.1% 0.120 0.075 0.106 96.5% 96.0% 96.5% 

2 ( )if h S  

 

Actual samples BD: 

1 21, | 0.481Y Y   

3 21, | 0.229Y Y   

4 21, | 0.090Y Y   

 

 

 

Complete 

Data 

Actual - - - 0.108 0.066 0.088 95.0% 96.0% 95.0% 

Syn1BD 0.1% 0.6% 2.2% 0.109 0.068 0.089 95.0% 95.0% 93.0% 

Syn2BD 0.4% 2.9% 6.5% 0.109 0.069 0.090 95.0% 96.5% 96.0% 

MAR_X 

SRS 12.8% 9.1% 52.0% 0.136 0.074 0.096 89.5% 90.0% 88.0% 

FX_APR 0.5% 0.6% 43.5% 0.114 0.069 0.079 93.5% 95.0% 97.0% 

RE_APR 0.8% 2.5% 19.0% 0.111 0.061 0.065 95.0% 95.5% 97.0% 

Syn1_srs 0.4% 0.7% 5.6% 0.126 0.082 0.097 94.0% 92.0% 91.5% 

Syn2_srs 0.0% 3.5% 2.7% 0.124 0.082 0.098 95.0% 94.0% 96.5% 

MAR_X,W 

SRS 17.6% 12.4% 69.5% 0.141 0.069 0.101 86.0% 94.0% 83.0% 

FX_APR 0.4% 5.7% 42.2% 0.118 0.066 0.082 93.5% 95.5% 55.0% 

RE_APR 1.7% 3.1% 30.1% 0.111 0.054 0.073 97.5% 98.0% 97.5% 

Syn1_srs 6.7% 3.1% 23.0% 0.136 0.073 0.093 93.0% 94.0% 94.5% 

Syn2_srs 7.4% 0.4% 19.0% 0.136 0.075 0.095 96.0% 97.5% 97.0% 

Syn1_lwt 0.9% 0.9% 6.0% 0.130 0.075 0.092 93.0% 95.5% 93.5% 

Syn2_lwt 1.7% 2.6%  3.3%  0.126  0.076 0.094  97.0%  98.0% 97.5% 
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4.5 Application to NHANES III 

We apply our method to the National Health and Nutrition Examination Survey 

(NHANES) III (1988-1994), which is designed to provide national estimates of health 

and nutritional status of the civilian noninstitutionalized population of the United States 

aged 2 months and older (NCHS 1994). The data is obtained from a stratified, multistage 

area probability sampling design with oversampling of certain age and ethnicity groups. 

For confidentiality and computational reasons, the public use data provides two pseudo 

PSUs per stratum. Another unique feature of NHANES is that data are collected through 

both interview and actual physical examinations of the sampled persons. Both unit- and 

item-level nonresponse occurs in both components of the survey, and there is a 

particularly high missing rate on the body mass index (BMI) measure for youth data in 

the physical examination component (30%). As a popular measure of overweight status 

and obesity, the percentiles of BMI for children and youths are of particular interest for 

public health reasons. The upper percentiles and the lower percentiles are also closely 

monitored for overweight and underweight status, respectively. As a result, we restrict 

our analysis sample to children and youths 2 months to 16 years of age.  

We estimate population quantiles (from 0.05 to 0.95 with an increment of 0.05 

along with two extreme percentiles: 0.03 and 0.97) of BMI for children and youths by 

gender. We also estimate the proportion of such a population being covered by health 

insurance, overall and by race. To assure congenial inference, we include the following 

variables that are either of primary interest in the substantive analysis, or are important 

predictors for BMI measures in the imputation model: age, gender, race, education, 

mother’s BMI, father’s BMI and family income (Yuan & Little, 2007a). We compared 
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three different methods in treatment of  the missing data: 1) Complete case analysis (CC) 

with design-based estimation; 2) fully parametric model-based MI using design-based 

estimation, within which we apply both an imputation model assuming SRS and the 

appropriate model conditional on all three sample design features (i.e. dummy variables 

indicating cluster and stratum memberships as well the log transformation of sampling 

weights); and 3) our proposed finite population Bayesian bootstrap method (using 

SYN2_lwt, since we do not have separate weights for the first and second stages of 

sampling). Estimates of the median BMI and the proportion of children with health 

insurance are given in Table 4.4. The CC method appears to overestimate both the median 

of the BMI measure and health insurance coverage for full sample and race domains 

relative to the MI approaches, and yields the widest confidence intervals or largest 

standard errors as a result of decreased sample size. On the other hand, the median of 

BMI obtained from synthetic MI is quite similar to that from the model-based MI, while 

demonstrating some advantages in efficiency by yielding shorter intervals. The generally 

lower health insurance coverage estimates under the synthetic MI relative to model-based 

MI might be attributable to the fact that the synthetic MI are able to capture certain 

interactions between the sample design variables and the regular covariate matrix which 

are not explicitly modeled in the fully model-based MI.  
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Table 4.4 Alternative methods in estimating the median of BMI and the health insurance coverage rate, for 

full sample and by gender and race, respectively 

Variable Domain Methods 

CC Model-based MI Synthetic MI 

BMI Overall 17.2 [17.1, 17.4] 17.1 [16.9, 17.3] 17.0 [16.9, 17.2] 

Male 17.2 [16.9, 17.4] 17.0 [16.7, 17.2] 17.0 [16.8, 17.2] 

Female 17.3 [17.0, 17.7] 17.1 [16.8, 17.4] 17.1 [16.8, 17.3] 

Health 

Insurance 

Overall 0.785 (0.020) 0.778 (0.019) 0.761 (0.019) 

White 0.822 (0.018) 0.815 (0.017) 0.799 (0.016) 

Non-White       0.645 (0.036) 0.643 (0.033) 0.634 (0.036) 

 

Figure 4.7 displays a visual comparison of the percentile estimation for the three 

methods under consideration. We look at how those methods perform in three different 

percentile ranges by gender domains: the middle percentiles from 0.5 to 0.75, the upper 

percentiles from 0.90 to 0.97 and the lower percentiles from 0.03 to 0.1. We chose these 

percentile ranges because: first, the extreme lower and upper percentiles of BMI are 

typically used to monitor under- and over-weight for children and youths; second, there is 

evidence that gender difference exists in these BMI percentile ranges (particularly when 

age is considered, i.e. growth patterns in BMI). In general, both MI methods result in 

very similar BMI estimates, and they are lower than those obtained from CC analysis. 

This makes sense, because by comparing the distributions of age for complete cases and 

for missing cases on the BMI measure, we found that younger children are more 

susceptible to missingness, and therefore CC analysis tends to overestimate BMI by 

excluding those younger missing cases. The inclusion of the age variable as a predictor in 

the imputation model corrects such an overestimation. The magnitude of this correction 

for boys is bigger than that for girls in estimating the lower percentiles (0.03, 0.05). By 

examining a report on BMI-for-age percentiles by gender released from CDC 
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(http://www.cdc.gov/nchs/data/series/sr_11/sr11_246.pdf), we find that baby boys 

(corresponding to the lower quantiles here) have relatively higher BMI, which might be 

the explanation. Therefore, it is convincing to believe that our synthetic MI method is 

comparable to the appropriate model-based MI in adjusting for potentially incorrect 

estimation under CC analysis. 

http://www.cdc.gov/nchs/data/series/sr_11/sr11_246.pdf
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Figure 4.7 Comparison of methods for quantile estimation of BMI, by gender
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4.6 Discussion 

While multiple imputation has become a popular option for the analysis of 

missing data, open issues remain in its practical application with complex sample survey 

data. The complex features of sampling compounded with nonresponse in survey data 

often result in a rather complicated data structure, which prevents the standard MI 

techniques (such as a multivariate normal model assuming simple random sampling) 

from being applied straightforwardly. In this paper, we develop a general purpose 

approach to account for various design features in a highly stratified two-stage sample, 

using the two-step synthetic MI framework proposed by Zhou et al. (2013a). We have 

focused on evaluating the performance of the new method compared with existing 

methods, with respect to several missing data issues frequently encountered in large 

population-based socioeconomic and epidemiological studies. These include: i) 

accommodating stratification and multi-stage sampling in the imputation process; ii) the 

employment of nonstandard or non-normal imputation models for estimating 

probabilities of rare events; and iii) the estimation of population quantiles with multiply 

imputed data.  

We demonstrate that the coverage properties of the proposed method are fairly 

good for nonsmooth statistics. Specifically, our stratified variations of the weighted Polya 

posterior exhibits robustness to the loss function for estimating upper and lower tails of 

the distribution function where even the appropriate model-based method (i.e. FX_APR) 

fails. In contrast with existing fully parametric MI methods, most of which perform 

poorly when applied to rare outcome binary data, the proposed method yields quite stable 

parameter estimates regardless of the rarity of the outcome.  
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It is worth stressing that our method requires only the simplest form of imputation 

model and combining rules for inference, because the effects of complex sample designs 

and the effect of estimating the nuisance parameter (e.g. regression coefficient in the 

regression imputation scheme is an example of a nuisance parameter, since our main 

parameters of interest are the population mean/quantiles of Y) in imputation are both 

correctly reflected in the replication variance estimation given the design-reversed and 

multiply imputed synthetic populations. The simplicity of the imputation model and the 

inference rules mean that any higher-level and nonlinear interactions in the covariate data, 

including those with the weights, clusters, or strata, will automatically be captured in the 

synthesizing step. However, when the imputation is conducted parametrically, as we do 

here, such design variable interactions will still need to be considered if they are 

associated with the missingness mechanism, although the impact of misspecification will 

generally be attenuated. Similarly, not-missing-at-random mechanisms that are dependent 

on the missing values are not accommodated in this framework.    

Future research will investigate the inferential properties of the proposed method 

in situations where auxiliary information on all population units is available, using a 

constrained version of the Polya posterior. Two other possible research directions include:  

(i) extending the two-step synthetic MI framework to deal with unit nonresponse 

problems, and (ii) extending it to deal with generating synthetic data for disclosure risk 

limitation. 
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CHAPTER 5 

CONCLUSION AND FUTURE RESEARCH 

 

5.1 Contribution 

Complex sample survey estimation and multiple imputation (MI) for survey 

nonresponse are two important areas in survey research. Coming up with a proper 

imputation model that is attentive to all complex sample design features can be difficult 

in many practical settings. In this thesis, we modified the classical MI framework of  

Rubin (1987) by dividing up the need to account for both sample designs and missing 

data into two separate steps. In the first step, we reversed the sampling mechanism by 

utilizing a noninformative Bayesian approach to finite population sampling. In the 

second step, we imputed the missing values in the created pseudo-population by 

constructing a parametric Bayesian model for the missing data under an IID assumption. 

Thus, the new framework stays within the Bayesian fundamentals underlying the 

standard MI theory. Yet it also generalizes naturally to increased flexibility for imputation 

with complex sample design surveys, because once a population with missing values is 

synthesized in a fashion that accommodates the sample design, a variety of imputation 

methods not limited to model-based MI can then be applied, for example, nonparametric 

hot deck imputation (Andridge & Little, 2010).  

Chapters 2 to 4 develop different procedures but are methodologically interrelated 

within the general conceptual framework of the proposed two-step MI, in the sense that 

the weighted finite population Bayesian bootstrap (FPBB), or equivalently the weighted 
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Polya posterior, serves as the basic approach to the different procedures developed in 

each chapter.  

Chapter 2 derives the theoretical formulation of the two-step MI from the 

traditional MI, filling a gap in the literature resulting from the fact that most current 

methods cannot adequately accommodate sampling weights. Chapter 3 addresses the 

compound effects of clustering and unequal selection probability in the imputation 

process. It derives a posterior predictive distribution of the population that improves upon 

the “two-stage Polya posterior” of Meeden (1999). The posterior under the new 

procedure relaxes an inherent exchangeability assumption about the correlational 

structure among survey variables between the sampled clusters and nonsampled clusters 

not guaranteed by the population data generation mechanism, yet required by Meeden’s 

“two-stage Polya posterior”. It therefore allows for a wider range of population data 

structures to be considered. Chapter 4 further extends the two-step MI approach into the 

area of stratified, clustered, and unequal probability-of-selection sample designs. It also 

explores the potential of the new method to deal with quantile estimation, and the 

estimation of proportions for binary rare events in the presence of item nonresponse.  

In Chapters 3 and 4, we considered two variations of a two-stage procedure to 

create a synthetic population with missing data. One applies the weighted FPBB at each 

level of sampling and hence requires known design weights for units at all stages of 

sampling. The other employs replication methods at the PSU level and only applies the 

weighted FPBB to the ultimate sampling units using final weights (products of the design 

weights at each stage). Since the final weights are often the only design information 

available in public-use databases, the latter version has important practical value. The 
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simulation results demonstrated good repeated sampling properties of the proposed 

methodology in several sampling design settings, including PPS, two-stage clustering and 

highly stratified two-stage cluster samples. The proposed method also performed well 

with respect to estimation of means, regression parameters, and quantiles.  

The proposed MI framework provides advantages over the existing fully 

parametric model-based MI in three ways:  

(i) modeling: the “untying” step of the proposed MI procedure recovers most of the 

information about the data generating mechanisms, including the data model, the 

sampling process and part of the response process. Thus a simple imputation 

model assuming IID suffices (in most cases) for the resulting pseudo population. 

This strikes a balance between congeniality and sparsity simultaneously required 

of the model, something difficult to attain with the fixed effects modeling strategy 

(as shown in the simulation results in chapter 4) 

(ii) computation: the proposed algorithms can be easily programmed in the R 

language (example codes for their applications on the BRFSS data and the 

NHANES data are provided in the Appendix). To be quite conservative for the 

proposed method to work properly, we purposefully generated a very large 

number of synthetic populations (i.e. L and S) for both the simulation study and 

the real data application. This required, for example, about 1.5 hours for imputing 

the missing BMI in the NHANES III data, with L=50 at the PSU level, S=5 at the 

element level and M=5 multiple imputations, on a 2.50 GHz Intel Core i5 laptop. 

Meanwhile, the proposed method does not need 

complex numerical integration methods as is the case with random effects 
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modeling. Hence, they offer a feasible alternative to the random effects model 

which is well-known to have convergence issues with high dimensional 

categorical data;  

(iii) analysis: the weighted Polya sampling draws all variables jointly, and hence 

preserves the population-level multivariate relationships that can then be used for 

a variety of analyses (as evident by the real data applications). Since the 

relationships of the survey variables with the sample weights are also maintained 

in the draws, once we simulate sensible copies of the entire population, these 

analyses become fairly straightforward without appeal to design-based estimation 

(as is the case with quantile estimation).  

 

5.2 Limitations 

A full retrospective appreciation of the work done in this thesis also reveals 

several limitations of the proposed methods that suggest directions for further 

investigation. A major limitation lies in the fact that the simulation studies are restricted 

to one-stage element sampling or at most a stratified two-stage cluster sampling. Methods 

are not fully developed for multistage designs that involve more than two stages of 

sampling. For example, for the application on NHANES III, we considered the data as a 

two-stage sample, and assumed that lower-than-PSU-level sampling design effects could 

be neglected. In seeking for an improved solution, analysts should consider mapping 

multistage sampling designs to an “ultimate cluster design” (Kalton, 1979) before 

implementing the proposed procedure developed in this thesis.  

Another limitation is the lack of development for the small sample degrees of 
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freedom (df) under the newly derived combining rules. As the method is a combination of 

multiple imputation and synthetic data generation, we attempted to draw theoretical 

support from both literatures (Raghunathan et al., 2003; Reiter, 2003, 2004; Reiter & 

Raghunathan, 2007; Rubin, 1987). However, despite the small sample df  derived in 

Barnard and Rubin (1999) that is aimed at MI inference at the sample-level, the fraction 

of missing information (FMI) is not well-defined in the context of synthetic data in the 

current literature. Hence df for constructing interval estimation for the small sample t-

approximation synthetic data cannot be constructed using FMI. In this regard, a next step 

is to break down the variance estimator under the new MI combining rules into 

components that may be used to define a sensible FMI.  

The efficiency loss under the proposed method in a complex sample design setting 

is a further, though expected, limitation, resulting from the gains in robustness to model 

assumptions by using a computational nonparametric technique. We should note that, the 

proposed method is typically not as efficient (with higher RMSE) as its fully parametric 

counterparts with correctly specified imputation model. Improvement might be made 

through the use of auxiliary information, which will be discussed in the next section.  

In addition, the validity of our method relies strongly on sample size. In chapter 4, 

we circumvented this problem by assuming a relatively large number of strata (H=50) in 

the sample. Hence, the synthetic procedure was still based on a reasonably large sample 

scenario, even though only 2 PSUs were selected within each stratum. The method will 

not work when both the number of strata and the number of clusters within strata are 

quite small and if single PSU strata exist in the sample. In such cases, we need to 

consider adaptation of the method by either collapsing strata or splitting PSUs. See Rubin 



 

151 

 

(1981) for a discussion of inappropriateness in using bootstrap and Bayesian bootstrap. 

 

5.3 Future Research 

The two-step MI framework developed in this thesis has meaningful extensions in 

several directions. 

Throughout the thesis, I consider only the statistical adjustments for item-level 

missing data, assuming no unit nonresponse in the selected sample. A natural extension of 

the method would be to adapt the two-step MI framework to incorporate unit 

nonresponse. Unit nonresponse is typically accounted for by weighting or weight 

adjustments, for which the sampling weight of non-respondents is spread over 

respondents using either weighting class adjustments or propensity modeling. When 

replication variance estimators (such as BRR and Jackknife) are used, it remains a 

practical question whether it is necessary to repeat every weighting step (including 

adjustments for unknown eligibility, unit nonresponse adjustments and post-stratification 

using auxiliary variables) separately for each replicate sample in order to produce 

consistent or approximately unbiased variance estimates (Valliant, 2004). Findings from 

previous research are mixed. Some evidence suggests the need to recalculate weights for 

each replicate (Lemeshow, 1979; Valliant, 1993); while others suggest that such extra 

efforts make little difference (Rust, 1987) or even lead to overestimation of the variance 

in small samples (Valliant, 2004). On all accounts, there is a need to develop an adapted 

version of the two-step MI method that propagates the uncertainty in unit nonresponse 

adjustments, given the fact that a replication method and hence a replication-type 

variance estimator is used under the proposed MI framework. It would also be interesting 
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to compare the variance estimator under such an adapted two-step MI method with that 

resulting from an expedient method that does not propagate this source of variability. A 

feasible way to achieve this in a single-stage sampling design would follow a three-step 

procedure: 1) generate a Bayesian bootstrap (BB) sample from the parent sample S  

(including the unit response indicator variable, the base weight 
basew , and the item-level 

missing data); 2) for each BB sample, apply regular unit nonresponse adjustments to the 

base weights for the respondent set RS , using available auxiliary variables for the entire 

sample, and obtain the nonresponse (NR)-adjusted weight NRw ; and 3) for each NR-

adjusted bootstrap sample, apply the weighted Polya posterior with NRw  as the input 

weight in the algorithm to create synthetic populations (with item-level missing data). 

The subsequent imputation method that assumes IID as well as the combining rules for 

inference would follow as described in chapter 2.  

A second valuable extension would be to investigate domain/small area 

estimation. Statistical agencies and survey organizations routinely produce estimates for 

subpopulations, called domains, to aid public and private sectors in effective policy 

making. Despite the growing demand, reliable domain estimates are difficult to obtain 

using standard frequentist approaches, primarily because domains are typically defined 

after a sample was selected. When cut across planned strata, they usually have very small 

associated sample size, leading to less precise estimates than those for the whole 

population. Complications of domain estimation and methods to tackle them are 

accounted in the complete data context to some degree (Cochran, 1977; Ghosh & Rao, 

1994). When missing data are present, multiple imputation for domain estimation 

remains an issue, especially when the domain size is small and response rate is low (Kim, 
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Brick, Fuller, & Kalton, 2006; Meng, 1994; Seaman, White, Copas, & Li, 2011). 

Theoretically, we should include domain indicators Z as well as their interactions with the 

survey weight W in the imputation scheme for the MI variance estimator to be 

approximately unbiased. In practice, however, many domain estimates of interest in the 

substantive analysis will not be identified at the time that the imputation was carried out. 

Even if they do, to model the interaction term W*Z for all possible domains is not 

feasible. In this case, the proposed two-step MI method is a logical choice because the 

association of the weights with survey variables in the population data can be resolved by 

generating synthetic populations. Once the numerous complete copies of the population 

are created and imputed, the simulated population-level estimates can be simply 

combined. This differs from the standard MI method where inference is based on explicit 

design-based domain estimators that may be lacking for certain estimands, e.g. the 

difference or ratio estimator of two domain medians.  

 Another related extension of the proposed MI procedure would be to incorporate 

auxiliary information at the first step of synthetic data generation. Auxiliary information 

is routinely used in finite population sampling to facilitate inference. For example, ratio 

and regression estimators are used when the population mean of an auxiliary variable is 

known a priori. The procedures developed in this thesis all assumed an absence of prior 

auxiliary information. Our future work will focus on adapting the current procedures by 

capitalizing on such information to improve the efficiency of imputation and inference as 

a whole. Lazar, Meeden, and Nelson (2008) showed that the Polya posterior can be easily 

adapted to incorporate different levels of prior information. In a similar fashion, I can 

restrict the weighted-FPBB to create pseudo-populations that satisfy certain constraints 
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specified by the prior information, such as known population means or ranges about the 

auxiliary variable(s). This would in effect extend the work of Sangeneh et al. (2011) to 

the missing data context. On the other hand, since the essence of all small area estimation 

methods lies in the use of available auxiliary variables (Rao, 2003), I believe a 

constrained version of the weighted-FPBB would also provide a nonparametric Bayesian 

solution for small area estimation in both complete data and missing data settings. Yet 

another utilization of such auxiliary information lies in the aforementioned nonresponse 

adjustments in each BB sample. 

We considered a special type of missing data mechanism which depends on the 

selection probability (or sample weights). On the one hand, the design-inversing step of 

the new method ensures a correct estimate of the population distribution in the presence 

of missing data and thus reduces the impact of misspecified missingness mechanisms by 

avoiding enhancement from misspecified data generation mechanisms. On the other hand, 

elimination of the weights from the self-weighting FPBB population does not obviate the 

need to account for the weights in the imputation process to attain valid inference. Future 

extensions of this work could use other imputation methods to account for such a weight-

dependent MAR missingness, for example, the weighted hot deck by Andridge and Little 

(2009). In some cases, the missingness may also depend on the unobserved random 

clustering effects and thus becomes nonignorable. We do not consider such scenarios here, 

since our method is proposed to address item nonresponse under the MAR assumption. 

But the method may be adapted to deal with nonignorable missing data problem under a 

two-stage cluster sampling design, by combining with the work of Yuan and Little (2007a, 

2007b, 2008), Andridge and Little (2011) and West and Little (2013). 
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APPENDIX 

 

1. R code for using the proposed two-step MI method on BRFSS 

require(mice) 

require(survey) 

set.seed(seed #) 

 

##################################################### 

#dt: sample data set for analysis, with recoded variables; 

#N: synthetic population size; 

#Bt1: number of BB samples created for stage 1; 

#Bt2: number of weighted FPBB populations created for stage 2; 

#Mt: number of multiple imputations; 

#ps.n: sample size of parent sample; 

##################################################### 

 

SynMI <- function(dt, N, Bt1, Bt2, Mt, ps.n) { 

##Step 1: synthesize populations; 

#Stage 1: draw bootstrap samples from the parent sample; 

#Normalize the final weights to sum up to the synthetic population size; 

dt[,"X_FINALWT"] <- dt[,"X_FINALWT"]*N/sum(dt[,"X_FINALWT"]) 

dsgn <- svydesign(ids = ~1, strata = NULL, nest = FALSE, data = dt, weights = 

~ X_FINALWT) 

dsgn.r <- as.svrepdesign(design = dsgn, type = "subbootstrap", replicates = Bt1) 

repwt <- as.matrix(dsgn.r$repweights) 

repwt[repwt==0] <- NA 

 

#Set up a data frame to store results from loglinear analysis; 

logcf <- matrix(0,20,Bt1) 

 

#Stage 2: within each bootstrap sample, draw weighted FPBB synthetic populations; 

for (j in 1:Bt1){ 

st.bb <- cbind(dt,repwt[,j]) 

#Delete those units with zero replicate weights for each bootstrap sample; 

st.BB <- na.omit(st.bb) 

#Recode those 9999 back to NA for imputation; 

st.BB[st.BB==9999] <- NA 

st.rp <- st.BB[rep(1:nrow(st.BB),round(st.BB$repwt)),] 

ns <- ps.n-1 

Samwts <- rep((ps.n/ns)*st.BB$X_FINALWT,round(st.BB$repwt))                          
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lgcf <- matrix(0,20,Bt2)  

#Write the algorithm for creating weighted FPBB populations based on Cohen;  

for(boot in 1: Bt2){  

l <- rep(0,ns)  

for(k in 1:(N-ns)){  

l <- l+rmultinom(1,1,((Samwts-1)+l*((N-ns)/ns))/((N-ns)+(k-

1)*((N-ns)/ns)))  

}  

income <- as.factor(c(rep(st.rp[,6],l),st.rp[,6]))  

bmi <- as.numeric(c(rep(st.rp[,10],l),st.rp[,10]))  

bphigh <- as.factor(c(rep(st.rp[,9],l),st.rp[,9]))  

hlthplan <- as.factor(c(rep(st.rp[,1],l),st.rp[,1]))  

age <- as.numeric(c(rep(st.rp[,2],l),st.rp[,2]))  

racew <- as.factor(c(rep(st.rp[,5],l),st.rp[,5]))  

educa <- as.factor(c(rep(st.rp[,8],l),st.rp[,8]))  

employ <- as.factor(c(rep(st.rp[,7],l),st.rp[,7]))  

gender <- as.factor(c(rep(st.rp[,3],l),st.rp[,3]))  

lgwt <- as.numeric(log(c(rep(st.rp[,4],l),st.rp[,4])))  

 

##Step 2: Multiple imputation of synthetized populations;  

        #Imputation model ignores the design;  

temp1 <- data.frame(cbind(income, bmi, bphigh, hlthplan, age, racew, educa, 

employ, gender))  

        #Imputation model includes log of final weights;  

temp2 <- data.frame(cbind(income, bmi, bphigh, hlthplan, age, racew, educa, 

employ, gender, lgwt))  

        # Impute for each synthetic population;  

temp_impx <- mice(temp1)  

temp_impxw <- mice(temp2)  

mlx <- data.frame()  

mlxw <- data.frame()  

 

for (u in 1:Mt){  

mult <- as.vector(rep(u,nrow(temp1)))  

mlx <- rbind(mlx,cbind(complete(temp_impx, u),mult))  

mlxw <- rbind(mlxw,cbind(complete(temp_impxw, u),mult))  

}  

 

lcf <- matrix(0,20,Mt)  

 

##Analysis of the imputed synthetic populations;  

 

for (v in 1:Mt){  

for (mult in v:v){  

stx <- mlx[mlx[,"mult"]==v,]  

stxw <- mlxw[mlxw[,"mult"]==v,] 
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dsgnx <- svydesign(id=~1, strata= NULL, weights= NULL, 

data=stx)  

dsgnxw <- svydesign(id=~1, strata= NULL, weights= NULL, 

data=stxw)  

 

#loglinear analysis on the imputed data;  

ax <- svyloglin(~income+hlthplan+racew+gender,dsgnx)  

bx <- update(ax,~.^2)  

axw <- svyloglin(~income+hlthplan+racew+gender,dsgnxw)  

bxw <- update(axw,~.^2)  

lcf[,v] <- c(coef(bx),coef(bxw))  

}  

} 

 

#Calculate the synthetic MI point and variance estimates;  

lgcf[ ,boot] <- apply(lcf,1,mean)  

print(boot)  

}  

logcf[ ,j] <- apply(lgcf,1,mean)  

print(j)   

}  

smpm_log <- apply(logcf,1,mean)  

smpv_log <- (1+1/Bt1)*apply(logcf,1,var)  

stat <- cbind(smpm_log,smpv_log)  

write.table(stat,file="D:\\Dissertation\\paper1\\brfss_syn_loglin.csv",row.names=FALSE,

sep=",")  

}  

 

############;  

##Example run;  

dt<-read.csv("D:\\Dissertation\\ paper1\\brfss09.csv")  

#Need to collapse the medium and high income categories to avoid sparse cells;  

dt$INCOME[dt$INCOME==3]<-2  

#missing data were coded as ‘9999’ in data set brfss09.csv;  

SynMI(dt=dt, N=4500, Bt1=100, Bt2=30, Mt=5, ps.n=388) 
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2. R code for using the proposed two-step MI method on NHANES III  
require(survey)  

require(mice)  

require(polyapost)  

set.seed(seed #)  

 

syn_bmi<-function(dt, N, Bt1, Bt2, Mt){ 

  

##Step 1: Generate synthetic populations with missing data;  

#Stage 1: Create bootstrap samples from the parent sample; 

dsgn <- svydesign(ids = ~predcl, strata = ~pstrat, nest = TRUE, data = dat, 

weights = ~predwt)  

dsgn.RW <- as.svrepdesign(design = dsgn, type = "subbootstrap", replicates = Bt1)  

dim(dsgn.RW$repweights)  

repwt<-as.matrix(dsgn.RW$repweights)  

repwt[repwt==0]<-NA  

dim(repwt)  

 

#set up arrays to hold point estimates from bootstrap samples;  

btm<-matrix(0,nrow=Bt1,ncol=3)  

btqt<-matrix(0,nrow=Bt1,ncol=21)  

btqtm<-matrix(0,nrow=Bt1,ncol=21)  

btqtf<-matrix(0,nrow=Bt1,ncol=21)  

 

for (j in 1:Bt1){  

st.bb<-cbind(dat,repwt[,j])  

#delete those units with zero weights for each bootstrap sample;  

st.BB<-na.omit(st.bb)  

#recode those 999 back to NA so that the mice package can be used for 

imputation;  

st.BB$pybmi[st.BB$pybmi==999]<-NA  

 

#need to calculate the replicate weights;  

Samwt<-st.BB[,9]*st.BB[,13]  

#normalize again the adjusted weights;  

Samwts<-Samwt*N/sum(Samwt)  

np<-nrow(st.BB)  

ids<-seq(np)  

ns<-N-np  

 

##Stage 2: Create unweighted synthetic populations within each bootstrap sample;  

#Set up arrays to hold point estimates from imputed unweighted synthetic populations;  

fbm<-matrix(0,nrow=Bt2,ncol=3)  

fbqt<-matrix(0,nrow=Bt2,ncol=21)  

fbqtm<-matrix(0,nrow=Bt2,ncol=21)  
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fbqtf<-matrix(0,nrow=Bt2,ncol=21)  

 

for(boott in 1:Bt2){  

l<-vector()  

smp<-wtpolyap(ids, Samwts, ns)  

#input the adjusted weights in the weighted Polya sampling algorithm;  

for (k in 1:np){  

l<-c(l,length(smp[smp==k]))  

} 

#check if the vector of l sum up to the number of synthetic population size;  

sum(l);  

 

predY1<-c(rep(st.BB[,1],l)) #bmi  

predY2<-c(rep(st.BB[,2],l)) #race  

predY3<-c(rep(st.BB[,3],l)) #gender  

predY4<-c(rep(st.BB[,4],l)) #income  

predY5<-c(rep(st.BB[,5],l)) #education  

predY6<-c(rep(st.BB[,6],l)) #mother’s bmi  

predY7<-c(rep(st.BB[,7],l)) #father’s bmi  

predY8<-c(rep(st.BB[,8],l)) #age  

predwt1<-c(rep(st.BB[,9],l))  

predlwt<-log(predwt1) #log of sample weight  

predCID<-c(rep(st.BB[,12],l)) #cluster ID  

predSTID<-c(rep(st.BB[,11],l)) #stratum ID  

 

##Step 2: Multiple imputation of the unweighted synthetic populations;  

 

#use the imputation model including log of weight as a predictor (syn_lwt);  

temp1<-data.frame(cbind(predY1, predY2, predY3, predY4, predY5, predY6, 

predY7, predY8, predlwt))  

temp1_imp<-mice(temp1,method="norm", m=Mt)  

ml<-complete(temp1_imp, ‘long’)  

ml$bmit<-exp(ml$predY1) #back transform bmi to its normal scale  

mlmale<-subset(ml, predY3==1)  

mlfem<-subset(ml, predY3==2) 

multm<-cbind(as.vector(by(ml$bmit,ml$.imp,mean)), 

as.vector(by(mlmale$bmit,mlmale$.imp,mean)), 

as.vector(by(mlfem$bmit,mlfem$.imp,mean)))  

multqt<-sapply(with(ml,by(ml,.imp,function(x)quantile(x$bmit, 

c(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)  

multqtm<-sapply(with(mlmale,by(mlmale,.imp,function(x)quantile(x$bmit, 

c(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)  

multqtf<-sapply(with(mlfem,by(mlfem,.imp,function(x)quantile(x$bmit, 

c(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)  

 

fbm[boott,]<-t(apply(multm,2,mean))  



 

160 

 

fbqt[boott,]<-t(apply(multqt,1,mean))  

fbqtm[boott,]<-t(apply(multqtm,1,mean))  

fbqtf[boott,]<-t(apply(multqtf,1,mean))  

print(boott)  

}  

 

btm[j,]<-t(apply(fbm,2,mean))  

btqt[j,]<-t(apply(fbqt,2,mean)) 

btqtm[j,]<-t(apply(fbqtm,2,mean))  

btqtf[j,]<-t(apply(fbqtf,2,mean))  

print(j)  

}  

 

smpm<-apply(btm,2,mean)  

smpv<-(1+1/Bt1)*apply(btm,2,var)  

smpse<-sqrt(smpv)  

smpqt<-apply(btqt,2,mean)  

smpqtv<-(1+1/Bt1)*apply(btqt,2,var)  

smpqtse<-sqrt(smpqtv)  

smpqtm<- apply(btqtm,2,mean)  

smpqtvm<-(1+1/Bt1)*apply(btqtm,2,var)  

smpqtsem<-sqrt(smpqtvm)  

smpqtf<-apply(btqtf,2,mean)  

smpqtvf<-(1+1/Bt1)*apply(btqtf,2,var)  

smpqtsef<-sqrt(smpqtvf)  

 

tt<-cbind(smpqt,smpqtm,smpqtf,smpqtse,smpqtsem,smpqtsef)  

ss<-cbind(smpm,smpse)  

write.table(tt,file="D:/Dissertation/paper3/nhanes/synbmiqt_lwt.csv",row.names=FALSE

,sep=",")  

write.table(ss,file="D:/Dissertation/paper3/nhanes/synbmimn_lwt.csv",row.names=FALS

E,sep=",")  

}  

 

############;  

##Example run;  

syn_bmi(dt=dt, N=100000, Bt1=50, Bt2=5, Mt=5)  

dt<-read.csv("D:/Dissertation/paper3/nhanes/synbmi.csv")  

#Set the synthetic population size about 10 times the sample size;  

N<-100000  

#Normalize the weights to sum up to the assumed synthetic population size;  

dt[,"predwt"]<-dt[,"predwt"]*N/sum(dt[,"predwt"])  

sum(dt$predwt)  

#Recode the missing values to 999;  

dat[is.na(dat)]<-999 
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