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ABSTRACT

Time-Optimal Paths for a Dubins Car and Dubins Airplane
with a Unidirectional Turning Constraint

by

Heejun Choi

Chair: Ella M. Atkins

The primary goal of an aircraft emergency landing planner is to safely and efficiently

land on a runway. One commonly used tool is the solution of Dubins problem, which

defines minimal-time paths for vehicles moving in a plane with constraints on turn

rate. The Dubins solution presumes that vehicles can follow straight paths and turn in

both directions. A vehicle, however, can be constrained to unidirectional (i.e., either

clockwise or counterclockwise) turning motions after experiencing severe structural

damage and/or control failure. A unidirectional turning constraint specifies lower and

upper bounds on turn rate, both of the same sign. This dissertation addresses, for the

first time, the problem of finding time-optimal paths for Dubins vehicles constrained

to unidirectional turning motions.

This dissertation initially considers a Dubins vehicle in a plane, called Dubins car,

with unidirectional turning constraints for which the optimal paths are characterized

by employing Pontryagin’s minimum principle. A geometric interpretation of the

identified extremal paths enables direct identification of the optimal path. To extend

these planar results to aircraft emergency landing planning, it is necessary to consider

the unidirectional Dubins airplane where the planar motions of this unidirectional

x



Dubins car are supplemented by allowing changes in altitude. Optimal paths for the

unidirectional Dubins airplane have one of two transition times: the shortest time

for the unidirectional Dubins car or the time equal to the absolute altitude difference

required to descend divided by the maximum vertical rate. In some instances of the

latter case, a suboptimal path must be constructed to guarantee a feasible solution.

Both the unidirectional Dubins car and airplane algorithms developed in this

dissertation can be implemented in real-time, thus integrated easily into embedded

vehicle management systems. Moreover, these algorithms are complete, thus can

be guaranteed to find a feasible solution which in most cases is also time-optimal.

Throughout the dissertation, the proposed algorithms are validated through a series

of test cases. The dissertation applies the unidirectional Dubins airplane algorithm to

aircraft emergency landing at LaGuardia airport to demonstrate its ability to rapidly

identify and present a full suite of landing options to the pilot and automation.

xi



CHAPTER I

Introduction

1.1 Motivation

On May 1, 1983, an F-15 aircraft was flying on a training exercise over the Negev

desert, Israel. After colliding with an A-4 Skyhawk, the F-15 lost its right wing,

resulting in a descending spiral flight. The A-4 pilot ejected immediately, but the

F-15 pilot was miraculously able to regain control of the F-15. Eventually, the F-15

made an emergency landing on a runway at the nearest base despite the structural

damage.

Aviation is safe but accidents still occur. Most accidents occur due to multi-

ple contributing factors. Degradation in performance such as the asymmetric lift

experienced by the F-15 pilot remains a particularly difficult challenge to handle.

To conduct experiments to assess automation aids that may reduce the likelihood

of loss-of-control (LOC) in off-nominal flight conditions, NASA Langley Research

Center has developed the Airborne Subscale Transport Aircraft Research (AirSTAR)

testbed (Jordan et al. (2004); Bailey et al. (2005)). The AirSTAR aircraft is a 5.5%

dynamically scaled model of a twin-engine transport aircraft called a Generic Trans-

port Model (GTM). This platform has been modeled, simulated, and flight-tested to

characterize the in-flight effect of damage and failure conditions, providing a model-

ing and simulation environment for which researchers have evaluated and validated

1



technologies for Integrated Resilient Aircraft Control (IRAC) (Krishnakumar et al.

(2010)).

NASA’s IRAC program has evolved to focus on loss-of-control (LOC) more gen-

erally. Models and control strategies continue to be developed to enable an aircraft

experiencing damage or failure conditions to operate safely and efficiently. Adaptive

control has long been studied to handle stability and control problems resulting from

damage or failure such as structural damage or a control surface jam (Rysdyk and

Calise (1998); Bosworth and Williams-Hayes (2007); Nguyen et al. (2008)). The goal

of adaptive control is to regain or maintain control of the aircraft despite reduced

performance such that an aircraft can safely land.

Automation aids to promote safe landing in emergency situations have been devel-

oped. Chen and Pritchett (2001) proposed an Emergency Fight Planner to compute

and display emergency landing trajectories to a flight crew. Such trajectories are de-

fined by a series of pilot-centric actions (e.g., fly to waypoint, descend at a given rate).

Atkins et al. (2006) proposed the Adaptive Flight Planner (AFP) to generate landing

plans by first selecting a destination runway then building a trajectory to that runway

that met flight envelope constraints. Meuleau et al. (2009) developed the Emergency

Landing Planner to optimize landing plans with respect to risk. Their planner lists

possible landing trajectories with different runways by measuring risk to the aircraft

based on performance and en-route environment constraints (e.g., weather) as well

as approach and runway properties (e.g., runway length).

Balachandran and Atkins (2013) proposed the Envelope-Aware Flight Manage-

ment System (EA-FMS) including the AFP to prevent LOC, as shown in Figure 1.1.

The notion of the EA-FMS is similar to that of Aircraft Integrated Resilient Safety

Assurance and Failsafe Enhancement (AIRSAFE) proposed by Belcastro and Jacob-

son (2010). The EA-FMS consists of the following six main modules: (1) Flight

Safety Assessment and Management, (2) Sensor Diagnostics, (3) System Identifica-

2



tion, (4) Envelope Estimation, (5) Adaptive Control, and (6) Adaptive Planning and

Guidance. These modules interact in real-time to prevent or recover from LOC

Adaptive Planning
& Guidance

Envelope
Estimation

Adaptive
Control

System
Identification

Sensors

Diagnostics

Interfaces
Flight Crew

FADECs

Actuators

Diagnostics

Envelope-Aware Flight Management System (EA-FMS)
Autopilot & Flight Director System (AFDS)

Sensor
Diagnostics

Flight Safety
Assessment &
Management

Envelope 
Database

Datalink(s)

WX/wind

Traffic

Figure 1.1: Envelope-Aware Flight Management System (Balachandran and Atkins
(2013)).

The Flight Safety Assessment and Management module continuously monitors and

evaluates airplane health and flight safety. In case of a LOC accident, this module

gives the flight crew a LOC warning based on data from the Sensor Diagnostics mod-

ule. The System Identification module (Zhong et al. (2013)) estimates the degraded

dynamic model based on measurements of system inputs and outputs. The Enve-

lope Estimation module (McDonough et al. (2014)) evaluates the achievable flight

envelope resulting from the LOC accident. The Adaptive Control module regains or

maintains stability and maneuverability employing the updated dynamic model from

the System Identification module.

To continue the flight or land the airplane, safe trajectories are computed by

the Adaptive Planning and Guidance module. Solutions must respect envelope and

other constraints such as remaining fuel available or local terrain. Flight envelope

constraints are specified in terms of climb/descent rate, turn rate, and airspeed as a

3



function of air density (altitude). This dissertation concentrates on path planning,

and thus assumes modules (1) through (5) in the EA-FMS are available.

Safely landing following an in-flight emergency is time-critical because continued

flight under emergency conditions may induce secondary damage or system failures.

Therefore, it is important that length-optimal or time-optimal paths are computed

in real-time, i.e., quickly enough so they are effective in the EA-FMS. Perhaps even

more important is employing a path planner that is capable of always finding a

solution (i.e., a complete algorithm) in real-time. Given an initial state, final state,

and turning constraints, the Dubins path planner (Dubins (1957)) offers an optimal

geometric path construction algorithm that is guaranteed to be minimum-length and

that is complete. The Dubins planner defines length-optimal paths for a vehicle that

moves forward in a plane with constant speed and constraints on turn rate.

Dubins solutions have been frequently applied to aircraft path planning problems

(Yang and Kapila (2002); Atkins et al. (2006); Techy and Woolsey (2009)) and are

comprised of three segments, typically with a “turn-fly (straight)-turn” construction.

The Dubins car problem was extended to the Dubins airplane problem by Chitsaz and

LaValle (2007), which defines time-optimal paths for an airplane moving forward in

a space with constant horizontal speed and constraint on turn and climb rates. Turn

and climb rates are typically assumed to be independent of each other. Figure 1.2

illustrates an example path, generated by the AFP in Atkins et al. (2006). They

considered a loss-of-thrust emergency and extended the solution of the Dubins car

problem to reach the chosen runway by adding an intermediate turn or final approach

straight segment. To follow a Dubins-based landing path (e.g., Figure 1.2), the aircraft

must have the ability to maintain straight flight and turn in both directions.

Although rare, a damaged aircraft may lose the ability to fly straight and/or turn

in both directions. An aircraft with damage to a wing, aileron, or rudder, for example,

can exhibit asymmetric turning constraints (Nguyen et al. (2006)). Figure 1.3 illus-

4



(a) Horizontal plane. (b) Three-dimensional space.

Figure 1.2: A Dubins path with final approach leg for a loss-of-thrust case study with
landing on JFK 31L ( Atkins et al. (2006)).

trates the Generic Transport Model (GTM) with such damage as modeled in Nguyen

et al. (2006). Nguyen et al. suggest that maintaining steady-state flight requires

bank angle constraints that place straight flight near or potentially beyond envelope

constraints. Tang et al. (2007) computed the full steady-state flight database for the

damaged GTM with a missing left wingtip. Figure 1.4 shows flight envelopes of the

GTM with a missing left wingtip at different altitudes from 10 ft to 30,010 ft, in in-

crements of 10,000 ft. In this figure, a green point indicates a stable and controllable

steady-state flight condition, while a blue point indicates a naturally unstable but

stabilizable flight condition. The damaged GTM allows a narrow range of clockwise

turn rates at lower altitudes and few to no clockwise turn rates at higher altitudes. A

wider range of counterclockwise turn rate options are available at all altitudes. This

means turning left is easier than turning right. As indicated in the analysis by Tang

et al. (2007) introduction even a modest safety margin, e.g., to account for wind dis-

turbances, renders the aircraft unable to maintain straight flight and clockwise turns.

Such an aircraft thus has a unidirectional turning constraint.

Strube et al. (2004, 2005) present another of an aircraft constrained to unidirec-

tional turns. Strube et al. computed the steady-state flight database for an F-16

5



Figure 1.3: Damaged GTM (Nguyen et al. (2006)).

(a) An altitude of 10 ft.
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(b) An altitude of 10,010 ft.
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(c) An altitude of 20,010 ft.
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(d) An altitude of 30,010 ft.

Figure 1.4: Flight envelopes of the GTM with left wing damage at different altitudes
(Tang et al. (2007)).
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aircraft with rudder or aileron jammed at different deflection angles. Figure 1.5 illus-

trates the flight envelope for an F-16 aircraft with an aileron jammed at +14 degrees

at an altitude of 10,000 ft. In this case, the disabled F-16 aircraft can hold a straight

flight condition for an airspeed less than or equal to 225 ft/sec, but the aircraft may

encounter stall before it reaches a nominal stall airspeed of 200 ft/sec. This follows

from the fact that the stall speed for turning flight is higher than that for straight and

level flight, and with asymmetric lift the stall speed in the preferred turning direction

is lower than it in the non-preferred turning direction. Therefore, the disabled F-16

aircraft can fly in control but cannot fly straight for an airspeed above 225 ft/sec at

10,000 ft or above.

(a) The F-16 aircraft with jammed aileron.
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(b) Damaged F-16 flight envelope at an alti-
tude of 10,000 ft.

Figure 1.5: Flight envelope for an F-16 aircraft with an aileron jammed at 14 degrees
(Strube et al. (2004)).

1.2 Problem Statement

This dissertation addresses the problem of finding time-optimal paths for vehi-

cles constrained to forward motion and unidirectional (clockwise or counterclockwise)

turns to transfer from a given initial oriented point to a given final oriented point. In

two-dimensional Euclidean space, this optimal path-finding problem is a variant of

7



the classical Dubins car problem first solved by L. E. Dubins (1957). Dubins consid-

ered a car moving forward at constant speed with a given minimum turning radius

but no maximum radius. Unlike the Dubins problem, this dissertation studies motion

planning with constraints on both maximum and minimum turning radii correspond-

ing to lower and upper bounds on turn rate that are of the same sign. We generate

paths for vehicles constrained to forward and unidirectional turning motions which

has not yet been carefully considered in the literature.

The planar (or two-dimensional) solution to the time-optimal path planning prob-

lem is applicable without modification to an aircraft that maintains a constant alti-

tude (or cruise condition). To support the descent required for an emergency landing,

we adapt the Dubins car with unidirectional turning constraints to consider altitude.

Chitsaz and LaValle (2007) formulated a variant of the Dubins car problem to find

time-optimal paths in three-dimensional Euclidean space. They considered an air-

plane, called the Dubins airplane, moving forward with given maximum turn and

climb (or descent) rates that are independent of each other. In a similar manner,

we extend the unidirectional Dubins car to the Dubins airplane with unidirectional

turning constraints. Thus, this dissertation proposes a complete solution to the unidi-

rectional Dubins airplane problem to provide time-optimal emergency landing paths

in conditions where straight flight is not possible.

In this dissertation, we make the following assumptions:

1. The Earth is flat and not rotating.

2. The vehicle is modeled as a particle at its center of gravity. The simple kine-

matic models for the particle are adopted from the unidirectional Dubins car

(Boissonnat et al. (1994)) and airplane (Chitsaz and LaValle (2007)). These

models can be regarded as reference models even given damage and failure con-

ditions since envelope constraints associated with the degraded condition are

incorporated. The simple kinematic models used in the dissertation are pre-
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sumed valid and an (inner-loop) adaptive controller is also presumed able to

follow geometric paths that respect specified kinematic constraints.

3. The vehicle can only move forward and turn unidirectionally (clockwise or coun-

terclockwise). The rate of turn is allowed to vary within given lower and upper

bounds that are of the same sign. These bounds are determined from the ex-

tremes of the current flight envelope updated by the envelope estimation mod-

ule. Such bounds are presumed applicable throughout landing since achievable

flight conditions at high altitude are typically contained in the flight envelope

available at low altitude, as illustrated in Figure 1.4 (see Tang et al. (2007)).

1.3 Approach

To find optimal paths for the unidirectional Dubins vehicle, we first show that

such optimal paths always exist. Proof of existence involves two steps. We construct

piecewise continuous controls bounded on a control region (called admissible controls).

Then, we employ Filippov’s theorem in Cesari (1983) to demonstrate the existence

of optimal paths connecting given initial and final oriented points.

Even though we can construct admissible paths, this construction alone does not

provide a means of fully computing optimal paths for the unidirectional Dubins car

and airplane. To construct these optimal paths, we determine their structure using

Pontryagin’s minimum principle, which was formulated in Pontryagin et al. (1962).

A path or control satisfying necessary conditions from the minimum principle is said

to be extremal. Since this principle provides only necessary conditions for optimal-

ity, further conditions on the identified extremal paths are established to enable the

generation of optimal paths.

For the Dubins car with unidirectional turning constraints, the identified extremal

paths are concatenations of alternating arcs of two tangent circles with minimum and
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maximum turning radii or subpaths of these concatenations. These concatenations

are specified as four combinations of initial arc and final arc, based on their respec-

tive turning radii. For each combination, we derive the geometric interpretation of

extremal paths to provide further necessary conditions for optimality. We then de-

velop an algorithm for finding optimal paths for the unidirectional Dubins car.

For the Dubins airplane with unidirectional turning constraints, optimal paths

must have one of two transition times to reach a given final oriented point. One of

these times equals the shortest time for the unidirectional Dubins car, and the other

is determined by the difference between the initial and final altitudes. Thus, the

algorithm to find optimal paths for the Dubins airplane with unidirectional turning

constraints will consist of two parts. In the former case, the algorithm for finding

optimal planar paths can be used to compute optimal paths in three-dimensional

Euclidean space. In the latter case, we extend optimal planar paths to pass through

the final oriented point at the greater time required to descend safely. This follows

from the assumption that turn and vertical rates are independent of each other.

This dissertation develops a real-time algorithm for finding optimal paths for the

unidirectional Dubins airplane and evaluates its completeness, optimal path’s exis-

tence (optimality), and applicability to an emergency landing case study. In this

dissertation, “real-time” means “fast enough so that a pilot or autopilot can execute

planned paths.” This implies the computation time for finding optimal paths is suf-

ficient for the pilot to receive the plan as an advisory by the time he/she recognizes

the need for such a plan. Real-time performance is achieved if the algorithm has a

worst-case execution time less than a maximum time constant, e.g. 1 second, given

available onboard processing resources.

1.4 Contributions and Innovations

The main contributions of this dissertation are as follows:
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1. This dissertation provides a real-time algorithm to compute time-optimal paths

for vehicles under unidirectional turning constraints imposed by damage and/or

failure conditions.

2. This algorithm solves a problem that is rare but almost impossible for a human

pilot to handle: quickly computing a precise geometric path to place an aircraft

on a runway (or final approach) with only turning trajectory segments.

3. This dissertation proposes complete algorithms for two-dimensional and three-

dimensional spaces. These algorithms can readily be transitioned to a ground

vehicle or an aircraft cockpit.

4. Because the time-optimal metric in this study is derived independently of plan-

ners and/or controllers, it can be used as an effecitive benchmark to compare

the performance of different planners and/or controllers.

The main innovations of this dissertation are summarized as follows:

1. Previous studies in the field of motion planning have extensively dealt with

finding the optimal path for vehicles able to travel along straight paths because

vehicles are usually assumed capable of driving or flying straight. This study for

the first time finds time-optimal paths for vehicles unable to travel straight due

to extreme kinematic constraints imposed by damage and/or failure conditions.

2. Through a combination of the minimum principle of Pontryagin and geomet-

ric considerations, this research enables a complete characterization of optimal

paths for the unidirectional Dubins car.

1.5 Thesis structure

The dissertation is organized as follows. Chapter II is devoted to reviewing rel-

evant background material. In particular, we present a brief summary of Dubins
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vehicles, Filippov’s theorem, and Pontryagin’s minimum principle, and also review

the literature related to these concepts. In Chapter III, we present an initial explo-

ration into admissible but potentially suboptimal controls which yield paths of the

Dubins car and airplane given a unidirectional turning constraint to reach a given

final oriented point. Filippov’s theorem is used to demonstrate the existence of opti-

mal paths for unidirectional Dubins vehicles. Chapters IV and V begin by applying

the minimum principle of Pontryagin to our optimal path-finding problems in two-

and three-dimensional spaces, respectively.

In Chapter IV, we determine the structure of shortest paths (i.e. minimal-time

paths presuming constant speed) for the unidirectional Dubins car based on Pon-

tryagin’s minimum principle. We then derive geometric properties of the identified

extremal paths. Using these properties, we present algorithms to find the optimal

path for the unidirectional Dubins car and analyze their ability to rapidly and con-

sistently identify solutions.

Chapter V addresses the problem of finding time-optimal paths for the unidirec-

tional Dubins airplane. Using a similar approach to that employed in Chapter IV for

the unidirectional Dubins car, we derive necessary conditions for time-optimal paths

using the minimum principle. We then extend time-optimal planar paths to reach a

given final oriented point at a time greater than that of optimal planar paths based

on the requirement to extend the path for the descent. We develop an algorithm to

find the optimal path in three-dimensional Euclidean space using the algorithm for

the unidirectional Dubins car and the extended optimal planar paths. A case study

applies the unidirectional Dubins airplane algorithm to an aircraft experiencing a

failure constraining the system to clockwise turns near LaGuardia airport.
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CHAPTER II

Background and Related Work

2.1 Introduction

The Dubins problem refers to finding minimum-length (or minimum-time) paths

for vehicles that move forward in a plane with constant speed and a given minimum

turning radius subject to specified initial and final conditions. Dubins (1957) char-

acterized the optimal paths carefully by proving geometric arguments. This problem

was approached again by Boissonnat et al. (1994) and Sussmann and Tang (1991)

using optimal control theory known as the minimum principle of Pontryagin, which

resulted in simpler and easier solution derivations.

The advent of modern high-speed digital computers led to a renewed interest

in optimal control theory and gave rise to a whole new discipline, computational

optimal control. The survey in Betts (1998) gives a comprehensive overview of com-

putational optimal control, distinguishing direct and indirect methods. The direct

method applies nonlinear programming (Betts (2010)) to a finite dimensional opti-

mization problem derived from the optimal control problem. The indirect method

is a process for solving the multiple-point boundary value problem resulting from

the necessary conditions for optimality which are given by optimal control theory

(Pontryagin et al. (1962)).

Computational optimal control has been widely used to solve complex problems.
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In general, such problems have no analytical solution. However, even the modern

techniques of computational optimal control face challenges with computational effi-

ciency, convergence, and solution accuracy given a space with numerous local minima.

The computational issues that arise in numerical optimal control may not enable

its real-time implementation. Such real-time issues are not present for solutions that

can be computed analytically. The most common method of finding an analytic

solution to path planning problems is founded upon the necessary conditions for

optimality. Two research teams, Bellman and Kalaba (1965) and Pontryagin et al.

(1962), independently developed optimality conditions. Specifically, Bellman and

Kalaba (1965) introduced a necessary and sufficient condition for optimality that is

expressed by a first-order nonlinear partial differential equation system called the

Hamilton-Jacobi-Bellman (HJB) equation. This equation provides a rule for defining

optimal controls of continuous-time systems directly and easily from the solution of

the equation. However, the HJB equation is not easy to solve.

Pontryagin et al. (1962) introduced a necessary condition for optimality called

Pontryagin’s minimum principle. This principle can also be derived from the Hamilton-

Jacobi-Bellman equation only under very strong conditions. However, the statement

of Pontryagin’s minimum principle directly provides necessary conditions for optimal

control. This set of necessary conditions is used widely to characterize in certain

ways analytic solutions to optimal control problems. This thesis also uses Pontrya-

gin’s minimum principle to characterize time-optimal paths.

This chapter is organized in two primary parts. The first, consisting of Sections 2.2

and 2.3, discusses existence of optimal solutions and the Pontryagin’s minimum prin-

ciple. The second introduces the Dubins car and airplane problems in the context of

optimal path characterization.
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2.2 Optimal Path Existence

Pontryagin’s minimum principle provides necessary conditions for optimal paths

assuming they exist. The existence of optimal paths was proved by Filippov (1962), Ce-

sari (1965) and many others including Cesari (1966). The Filippov-Cesari existence

theorem has multiple formulations for different optimal problems. Since problems

presented in this dissertation are time-optimal, the Filippov-Cesari existence theo-

rem for the time-optimal problem (Filippov (1962)) ensures the existence of optimal

paths. This theorem will be presented here without proof.

To state this theorem, we first define some terminology. The set of all real numbers

is denoted R. Rn denotes Euclidean n-space which is defines as the set of all n-tuples

(x1, x2, · · · , xn) of real numbers xi ∈ R, 1 ≤ i ≤ n. A control is a function given by

u : [0, T ] → U ⊂ Rr where U is called the control region. Note that the control

region U depends on t and x in Filippov (1962), but not in this dissertation. The

control u (t), 0 ≤ t ≤ T , is said to be measurable if for every open subset O of Rr,

the set of all t for which u (t) ∈ O is Lebesgue measurable in the interval [0, T ]. The

control u (t), 0 ≤ t ≤ T , transfers an object from a given oriented point x0 ∈ Rn to a

given oriented point xT ∈ Rn. The path x = (x1, x2, · · · , xn) of the controlled object

is a solution of the system of differential equations

ẋ (t) = f (t, x (t) , u (t)) , (2.1)

where f : Rn+r+1 → Rn is a vector-valued function given by

f (t, x, u) = (f1 (t, x, u) , f2 (t, x, u) , · · · , fn (t, x, u))

for (t, x, u) ∈ Rn+r+1.

The time-optimal control problem is to find the control u (t) such that x (t) from
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x (0) = x0 passes through xT at minimum time. With these definitions, the Filippov-

Cesari existence theorem for the time-optimal problem with a fixed set U takes the

following form:

Theorem II.1. (Filippov (1962)) There exists a time-optimal path x (t) from x0 that

passes through xT at minimum time T if the following conditions hold:

(1) f is a continuous function of t, u, x and a continuously differentiable function

of x.

(2) There exists a constant C such that for all t, x and all u ∈ U ,

〈x, f (t, x, u)〉 ≤ C
(
1 + ‖x‖2) .

(3) The control region U is compact. Furthermore, when u varies in U, the image

set described by f (t, x, u) is convex for all t and x.

(4) There exists an admissible path from x0 to xT .

2.3 The Minimum Principle

Filippov’s theorem guarantees the existence of time-optimal paths, but it does

not provide a formula for such paths. Such a formula can be obtained using the

minimum principle of Pontryagin. In this section, we will briefly review this principle

formulated in Pontryagin et al. (1962). The principle is first given in the more general

situations considered in Pontryagin et al. (1962), and then the principle for time-

optimal problems is derived. We want to find a control u minimizing the functional

J =

T∫
0

f0 (x (t) , u (t)) dt
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such that x (t) satisfies the boundary conditions

x (0) = (x1 (0) , · · · , xn (0)) , x0 and x (T ) = (x1 (T ) , · · · , xn (T )) , xT .

To formulate the minimum principle of Pontryagin, we introduce additional vari-

ables ψ = (ψ0, ψ1, · · · , ψn) that are solutions of a system of the following differential

equations

dψi
dt

= −
n∑
j=0

∂fj (x, u)

∂xi
ψj, i = 0, 1, · · · , n. (2.2)

Let H : R2n+2+r → R be a function defined by

H (ψ, x, u) =
n∑
i=0

ψifi (x, u) .

The function H is the inner product of ψ and ẋ and is called the Hamiltonian. It

follows that systems (2.1) and (2.2) can be expressed in terms of the Hamiltonian by

the formulas

dxi
dt

=
∂H
∂ψi

, i = 0, 1, · · · , n,

dψi
dt

= −∂H
∂xi

, i = 0, 1, · · · , n.

With this notation, the statement of Pontryagin’s minimum principle is as follows.

Theorem II.2. (Pontryagin et al. (1962)) If the trajectory x (t) determined by u (t) ∈

U is optimal, then there exists a non-zero continuous solution ψ = (ψ0, ψ1, ψ2, · · · , ψn)

such that

(1) The control u (t) minimizes the Hamiltonian at every time t; that is,

H (ψ (t) , x (t) , u (t)) = min
z∈U
H (ψ (t) , x (t) , z) .
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(2) ψ0 (t) and H (ψ, x, u (t)) are constant, and

ψ0 (t) ≥ 0 and H (ψ (t) , x (t) , u (t)) = 0.

For the time-optimal problem, f0 is a constant function, f0 (x (t) , u (t)) = 1 for

all t in [0, T ], and consequently ψ0 (t) is constant. Let H be defined by the equation

H = H− ψ0 =
n∑
i=1

ψifi (x, u) .

If the trajectory x (t) determined by u (t) ∈ U is time-optimal, then it follows from

Theorem II.2 that

min
z∈U
H (ψ (t) , x (t) , z) = min

z∈U
H (ψ (t) , x (t) , z)

and H (ψ (t) , x (t) , u (t)) is a constant function such that H (ψ (t) , x (t) , u (t)) ≤ 0.

This fact leads to the following theorem:

Theorem II.3. (Pontryagin et al. (1962)) If the trajectory x (t) determined by u (t) ∈

U, 0 ≤ t ≤ T , is time-optimal, then there exists a non-zero continuous solution

ψ (t) = (ψ1 (t) , ψ2 (t) , · · · , ψn (t)) such that

(1) The control u (t) minimizes the Hamiltonian at every time t; that is,

H (ψ (t) , x (t) , u (t)) = min
z∈U

H (ψ (t) , x (t) , z) .

(2) H (ψ (t) , x (t) , u (t)) is constant, and

H (ψ (t) , x (t) , u (t)) ≤ 0.

Therefore, condition (2) can be checked at any time t, 0 ≤ t ≤ T .
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2.4 Dubins Car Problem

The Dubins car problem (Dubins (1957)) defines length-optimal paths for a vehi-

cle that moves forward in a plane with constant speed and constraint on turn rate.

Variations of this problem have been studied over a wide range of motion planning

applications. Reeds and Shepp (1990) conducted a study for a vehicle capable of both

forward and backward motions, identifying shortest-length paths with cusps. Balk-

com and Mason (2002) extended the Dubins problem to consider differential drive

(i.e., two independently driven coaxial wheels), which yielded time-optimal paths

with at most three straight segments and two turns. Balkcom et al. (2006) char-

acterized time-optimal paths for a robot capable of instantaneously moving in any

direction. Salaris et al. (2010) and (2012) presented a complete characterization for

length-optimal paths of the unicycle with field-of-view constraints and visibility con-

straints. Bakolas and Tsiotras (2011) modified the Dubins problem to allow different

minimum radii for clockwise versus counterclockwise turns. Dolinskaya and Mag-

giar (2012) characterized time-optimal paths for the Dubins vehicle with the speed

function depending on the direction and the minimum-turning radius function.

The kinematic models of the above vehicles are based on the simplified kinematic

model of the Dubins car. The optimal paths taken by the Dubins car and its variants

were characterized by employing Pontryagin’s minimum principle in numerous papers,

e.g., Reister and Lenhart (1995), Balkcom and Mason (2002), Balkcom et al. (2006),

Chitsaz and LaValle (2007), Bakolas and Tsiotras (2011). In particular, necessary

conditions for the Dubins path were derived again by Boissonnat et al. (1994) and

Sussmann and Tang (1991) using this principle because this method is much simpler

and easier. In this section, the formulation of Boissonnat et al. (1994) for the Dubins

car problem will be reviewed.
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A path (x, y) of the Dubins car is a solution of the system of differential equations

ẋ (t) = cosφ (t) ,

ẏ (t) = sinφ (t) ,

φ̇ (t) = u (t) ,

(2.3)

where φ (t) represents the angle between unit tangent vector (ẋ, ẏ) and the x-axis,

and u (t) represents the turn rate, called the control. The turning radius is assumed

to be bounded by a given minimum turning radius r > 0. Therefore, the control u (t)

is bounded on control region

U =
[
−r−1, r−1

]
.

Note that the constraint on r (i.e., r > 0) will be changed when a maximum turning

radius is given. Also note that if a path taken by the Dubins car has a non-zero

constant speed, the path can be reparametrized by its length and have unit speed.

In this case, the Hamiltonian is given by

H (ψ, x, u) = ψ1 cosφ+ ψ2 sinφ+ ψ3u, (2.4)

and the adjoint system is given by

ψ̇1 (t) = −∂H
∂x

= 0,

ψ̇2 (t) = −∂H
∂y

= 0,

ψ̇3 (t) = −∂H
∂φ

= ψ1 sinφ (t)− ψ2 cosφ (t) .

(2.5)

In system (2.5), ψ1 and ψ2 are constant on [0, T ]. To state the results in a more

intuitive form, we introduce notations λ and θ defined by λ =
√
ψ2

1 + ψ2
2 ≥ 0 and

θ = tan−1 (ψ2/ψ1) ∈ (−π/2, π/2], respectively. Note that θ = π/2 when ψ1 = 0.
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Then the Hamiltonian and system (2.5) become

H = λ cos (φ− θ) + ψ3u,

ψ̇3 = λ sin (φ− θ) .
(2.6)

Since the Dubins car problem is time-optimal, it follows from Theorem II.3 that

ψ3 (t)u (t) ≤ ψ3 (t) ζ (t) (2.7)

for all piecewise continuous ζ (t) and for all t in [0, T ], and the Hamiltonian (2.4) is

constant. The optimal control found from (2.7) is then

u (t) =


−r−1 if ψ3 > 0,

ζ ∈ U if ψ3 = 0,

r−1 if ψ3 < 0.

(2.8)

It may appear as though (2.8) does not provide information on open intervals for

which ψ3 (t) = 0. However, it can be shown that u (t) = 0 on those intervals, and

consequently (2.8) becomes

u (t) =


−r−1 if ψ3 > 0,

0 if ψ3 = 0,

r−1 if ψ3 < 0.

(2.9)

Using (2.9) with further geometric analysis, Boissonnat et al. (1994) proved the fol-

lowing theorem:

Theorem II.4. (Boissonnat et al. (1994)). Every shortest path in R2 is either (1)

an arc of a circle of radius r, followed by a line segment, followed by an arc of a circle
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of radius r; or (2) an arc of a circle of radius r, followed by an arc of a circle of

radius r and length greater than πr, followed by an arc of a circle of radius r; or (3)

a subpath of a path of type (1) or (2). For every path of type (2), it is oriented either

clockwise-counterclockwise-clockwise or counterclockwise-clockwise-counterclockwise.

2.5 Dubins Airplane Problem

The Dubins car problem and its variations in the preceding section only considered

motion in two-dimensional Euclidean space, i.e., planar motions. ∼ To allow changes

in altitude, the Dubins car problem has been extended into three-dimensional Eu-

clidean space. Walsh et al. (1994) solved the problem of determining an optimal path

for an airplane on the Lie group SE(3) to minimize the sum of the squares of the

inputs. Sussmann (1995) formulated the Dubins car problem in R3 based on Pon-

tryagin’s minimum principle on manifolds. He provided the structure of the shortest

path for the Dubins car in three-dimensional Euclidean space. Chitsaz and LaValle

(2007) characterized time-optimal paths for the Dubins airplane with independently-

bounded vertical and turn rates.

The problem of aircraft path planning in this dissertation is a variant of the Dubins

airplane problem, thus we briefly review this problem. Note that the Dubins airplane

is an extension of the Dubins car that considers altitude. A path (x, y, z) of the

Dubins airplane is a solution of the system of differential equations

ẋ (t) = cosφ (t) ,

ẏ (t) = sinφ (t) ,

ż (t) = v (t) ∈ V,

φ̇ (t) = u (t) ∈ U.

(2.10)
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In this case, the Hamiltonian is given by

H (ψ, x, u) = ψ1 cosφ+ ψ2 sinφ+ ψ3v + ψ4u, (2.11)

and the adjoint system is given by

ψ̇1 (t) = −∂H
∂x

= 0,

ψ̇2 (t) = −∂H
∂y

= 0,

ψ̇3 (t) = −∂H
∂z

= 0,

ψ̇4 (t) = −∂H
∂φ

= ψ1 sinφ (t)− ψ2 cosφ (t) .

(2.12)

Using the notations λ and θ defined in Section 2.4, the Hamiltonian and system (2.12)

are given by

H = λ cos (φ− θ) + ψ3v + ψ4u,

ψ̇4 = λ sin(φ− θ).
(2.13)

It follows from Theorem II.3 that

ψ3 (t) v (t) + ψ4 (t)u (t) ≤ ψ3 (t) ζ (t) + ψ4 (t) η (t) (2.14)

for all piecewise continuous ζ (t) and η (t) and for all t in [0, T ], and the Hamilto-

nian (2.11) is constant. Therefore, the optimal control found from (2.14) is

v (t) =


− sgn (ψ3) if ψ3 6= 0,

ζ ∈ V if ψ3 = 0,

(2.15)
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and

u (t) =


−r−1 if ψ4 > 0,

η ∈ U if ψ4 = 0,

r−1 if ψ4 < 0.

(2.16)

Using (2.15) and (2.16) with further geometric analysis, Chitsaz and LaValle (2007)

proved the following theorem:

Theorem II.5. (Chitsaz and LaValle (2007)). Every time-optimal path in R3 has

either (1) the shortest time for the Dubins car problem or (2) the time equal to the

time required to climb (or descend) between initial and final altitudes at maximum

rate.
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CHAPTER III

Admissible Paths

3.1 Introduction

This chapter includes a compilation of initial efforts to explore unidirectional Du-

bins path geometries. We define admissible but not necessarily optimal paths and

investigate their use in aircraft emergency path planning with and without transi-

tions connecting path segments of different turning radii. These admissible paths

will be subsequently used to guarantee the existence of minimum-time paths for the

unidirectional Dubins car (Chapter IV) and airplane (Chapter V) where Pontryagin’s

minimum principle is used to characterize time-optimal paths.

In this chapter, admissible paths for a unidirectional Dubins car are defined as

concatenations of alternating circular arcs of two different radii that each follows an

arc or line segment connecting centers of two circular arcs containing prescribed initial

and final oriented points. For a unidirectional Dubins airplane, a concatenation of

alternating circular helices of two different radii and constant pitch is defined whose

projection onto the xy plane is a concatenation of alternating circular arcs. The

geometric properties of these concatenations will be shown to guarantee the existence

of admissible paths.

We extend the problem of finding admissible paths for a unidirectional Dubins

car to consider continuous curvature. Admissible paths having continuous curvature
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allow the robot or vehicle to more precisely follow these paths. A clothoid whose

curvature is a linear function with constant slope is used to connect circular arcs of

different radii. Finding such clothoids proves the existence of admissible paths having

continuous curvature.

The chapter is organized as follows. Section 3.2 defines the concatenation of al-

ternating circular arcs connecting given initial and final oriented points and shows

the existence of admissible paths for all unidirectional Dubins car cases. Section 3.3

applies an algorithm to find the admissible path to the planar unidirectional Dubins

problem. Section 3.4 defines the concatenation of alternating circular helices connect-

ing given initial and final oriented points and shows the existence of admissible paths

for a unidirectional Dubins airplane. Section 3.5 applies an algorithm to find the

admissible path to an emergency landing problem. In Section 3.6, we find admissible

paths having continuous curvature. In Section 3.7, we show the existence of optimal

paths for unidirectional Dubins vehicles.

3.2 Admissible Paths for Unidirectional Dubins Cars

In this section, we define admissible paths for a unidirectional Dubins car joining

an initial oriented point with a final oriented point. Given two points (x0, y0) and

(xT , yT ) in R2 with corresponding directions φ0 and φT , we want to find a continuous

and piecewise C2 path (x, y) subject to the following constraints:

(i) The radius of curvature lies between r and 1 where 0 < r < 1. The reciprocal of

the radius, called the control (or the curvature) and denoted u, is also bounded

on control region U . Since a path is continuous and piecewise C2, the control is

piecewise continuous.

(ii) The sign of the curvature remains unchanged. Therefore, the control region U

is [1, r−1]. The case U = [−r−1, −1] can be treated similarly to U = [1, r−1].
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(iii) The path (x, y) has unit speed. Even if the path has non-zero constant speed,

the path has a unit-speed reparametrization (do Carmo (1976)), so the path

with unit speed produces no loss of generality.

Throughout this section, it will be assumed that the control u (t) is a switching

function whose values are 1 and r−1. Paths which correspond to the constant controls

u ≡ 1 and u ≡ r−1 are circular arcs of radius 1 and radius r, respectively. It follows

that extremal controls produce a concatenation of alternating circular arcs of radius 1

and r. The initial and final segments are also circular arcs of radius 1 or r. Thus, given

an initial state x0 and a final state xT , we can draw two possible circular arcs that

lead away from the initial state and two possible circular arcs that lead into the final

state. Since we have two possible initial circular arcs and two possible final circular

arcs, we have four possible combinations of initial and final arcs. Each combination

is determined by the values of the extremals at t = 0 and t = T . We will refer to each

combination as an ordered pair (u (0) , u (T )). For simplicity, only the combinations

(1, 1) and (r−1, r−1) are considered in this chapter. All four cases will be considered

in subsequent chapters.

Given any combination (u (0) , u (T )) with u (0) = u (T ), we seek to find centers

of a concatenation of alternating circular arcs. We assume all these centers lie on

a circular arc from P and Q. Such a circular arc will be referred to as a reference

arc and denoted A. The center of a reference arc A is a point on the perpendicular

bisector of the line segment PQ, as shown in Figure 3.1. Let rA be the radius of

A. Then rA ≥
∣∣PQ∣∣ /2, and the central angle corresponding to PQ, denoted α, is

defined as follows: α = 2 sin−1
(∣∣PQ∣∣ / (2rA)

)
for a semicircle or minor reference arc

and α = 2π − 2 sin−1
(∣∣PQ∣∣ / (2rA)

)
for a major reference arc. Note that a reference

arc is a straight line when rA =∞.

Given any combination (u (0) , u (T )) with u (0) = u (T ) and any reference arc A,

we construct centers of the concatenation of alternating circular arcs. Let P and Q
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PQ

A

rA
α

Figure 3.1: A reference arc A.

be two centers of the initial circular arc and the final circular arc, respectively. By the

definition of a reference arc, two centers P and Q are the end points of the reference

arc A. The center of the second circular arc (i.e., the arc immediately following

and tangent to the initial arc) is defined as the intersection of A and its chord with

length 1 − r through P , as shown in Figure 3.2. In general, given n centers of the

concatenation of alternating circular arcs, the center of the n + 1th circular arc is

defined as an end point of a chord of A with length 1 − r that has as the other end

point the center of the nth circular arc.

By construction, the centers of each pair of alternating circular arcs with radius

1 and r are the end points of a chord of a reference arc A with length 1 − r. Since

the distance between these two centers is 1 − r, each pair has a common tangent

vector where u (t) switches between 1 and r−1. Each point where u (t) switches is the

intersection of each pair and the line through its centers. It follows that all circles

of radius 1 and r have the same angular path change, denoted ∆φ, as shown in
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Q P

x0xT

A

β

∆φ

∆φ
1 − r

Figure 3.2: The construction of a concatenation of alternating circular arcs on A.

Figure 3.2. Let β be the central angle corresponding to the chord of A with length

1− r. Then β = 2 sin−1 ((1− r) / (2rA)), thus ∆φ is either π−β or π+β, depending

on A. For n distinct pairs, the central angle corresponding to the chord of A joining

two centers of the initial and 2nth circular arcs equals (2n− 1) β.

Even if reference arcs can be characterized for all radii rA ≥
∣∣PQ∣∣ /2, not all

reference arcs allow extremal paths to join the initial state x0 with the final state

xT . Thus, we need to formulate the condition for extremal paths to satisfy boundary

conditions x (0) = x0 and x (T ) = xT . This condition will guarantees the existence

and uniqueness of such extremal paths from x0 to xT .

Except for the initial and final circular arcs, circular arcs are specified as pairs of

tangent circular arcs of radius 1 and r whose angular path changes are ∆φ. referred

to as basic pairs. Although a pair of an initial arc and arc following it is not a basic

pair, this pair will be considered as the first basic pair to include cases where the

extremal path is a circular arc.

For some number n of basic pairs, their centers together with center Q are joined

to form a polygon with 2n + 1 edges inscribed in the circle including a reference arc

A such that:

(1) 2n− 1 edges have length 1− r.
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(2) One edge of the remaining edges has length
∣∣PQ∣∣.

(3) The other edge has length equal to the distance between the centers of the 2nth

and final circular arcs.

Such a polygon will be called a cyclic polygon, as indicated in Figure 3.3 (a). If the

chord of A joining the centers of the 2nth and final circular arcs has length 1 − r,

then these circular arcs have a common tangent vector where u (t) switches, as shown

in Figure 3.3 (b). Thus, the extremal path constructed on a reference arc A satisfies

boundary conditions x (0) = x0 and x (T ) = xT if

α = 2nβ (3.1)

for some number n of basic pairs.

Q P

x0xT

A
1 − r

cyclic polygon

(a) A cyclic polygon.

Q P

x0xT

A

1 − r

(b) An admissible path constructed on A.

Figure 3.3: A concatenation of alternating circular arcs satisfying boundary condi-
tions x (0) = x0 and x (T ) = xT .

The number n of basic pairs for which condition (3.1) holds is in

{
n ∈ N : n >

∣∣PQ∣∣ / (2 (1− r))
}
. (3.2)

Let n >
∣∣PQ∣∣ / (2 (1− r)). Then there exists a unique cyclic polygon for a reference

arc A having 2n edges of length 1− r and an edge of length
∣∣PQ∣∣. This follows from

30



the existence and uniqueness theorem for convex cyclic polygons (Pinelis (2005)) and

the fact that each of the edge lengths of a cyclic polygon for A is less than the sum

of all other edge lengths. Note that such a polygon is convex. Thus, condition (3.1)

holds for n, and consequently the extremal path constructed on A joins x0 with xT .

The set in (3.2) is a nonempty set of positive integers that is bounded below, and

thus has a minimum which is denoted nm. The minimum number nm of basic pairs

is then defined by

nm =


d
∣∣PQ∣∣

2 (1− r)
e if

∣∣PQ∣∣
2 (1− r)

/∈ N

d
∣∣PQ∣∣

2 (1− r)
e+ 1 if

∣∣PQ∣∣
2 (1− r)

∈ N
(3.3)

where d e denotes the ceiling function.

The condition that
∣∣PQ∣∣ / (2 (1− r)) is an integer implies that the extremal path

constructed on the line segment PQ joins an initial oriented point x0 with a final

oriented point xT . If the centers of a concatenation of alternating circular arcs lie

on PQ and their distance is 1 − r, then each pair of alternating circular arcs has

a common tangent vector at its intersection with the line
←→
PQ (Figure 3.4). At its

intersection, the control u (t) switches between 1 and r−1. It follows that all circles of

radius 1 and r have the same angular path change ∆φ as π. Since the center of the

initial circular arc is the end point of PQ, the sequence of centers of a concatenation

is then defined recursively.

For n distinct pairs of alternating circular arcs, the line segment between the

centers of the initial and 2nth circular arcs has length (2n− 1) (1− r). If the distance

between the centers of the 2nth and final circular arcs equals 1−r, then these circular

arcs have a common tangent vector where u (t) switches. Thus, the extremal path
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constructed on PQ joins an initial oriented point x0 with a final oriented point xT if

∣∣PQ∣∣ = 2n (1− r) (3.4)

for some number n of basic pairs.

The construction of extremal paths on PQ requires slight modification to the set

in (3.2) and the minimum number nm of basic pairs. The number n of basic pairs for

which condition (3.1) or condition (3.4) holds is contained in

{
n ∈ N : n ≥

∣∣PQ∣∣ / (2 (1− r))
}
. (3.5)

The minimum number nm becomes

nm = d
∣∣PQ∣∣

2 (1− r)
e. (3.6)

Q P

1 − r

x0xT

Figure 3.4: The construction of a concatenation of alternating circular arcs on PQ.

Previously, we constructed a concatenation of alternating circular arcs on a refer-

ence arc A or the line segment PQ, and enumerated its geometric properties to derive

the conditions under which it joins x0 with xT . In summary, the concatenation of

alternating circular arcs of radius 1 and r constructed on a reference arc A or the line

segment PQ has the following properties:

(1) It is smooth in the sense that at juncture points of the concatenation the two
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circles have a common tangent vector.

(2) The angular path changes for all circles of radius 1 and r are ∆φ which is either

π − β or π + β where β = 2 sin−1 ((1− r) / (2rA)) for A and β = 0 for PQ.

Since the set in (3.5) is nonempty for
∣∣PQ∣∣ 6= 0, we conclude with the following

theorem:

Theorem III.1. There exists an admissible path (x, y) from an initial oriented point

(x0, y0, φ0) to a final oriented point (xT , yT , φT ) subject to constraints (i)-(iii) (on

page 26).

Algorithm 3.1 presents a method to determine and generate a concatenation of

alternating circular arcs from an initial state x0 to a final state xT . For each com-

bination (u (0) , u (T )) with u (0) = u (T ), we choose one between a reference arc A

and the line segment PQ to construct such a concatenation. If PQ/ (2 (1− r)) is an

integer, the concatenation is constructed on PQ. Otherwise, the minimum number

nm of basic pairs for A is evaluated using (3.6). To identify A which is either a minor

arc or a major arc, it suffices to compute the number of basic pairs when A is a

semicircle, denoted by ns. Note that α = π and rA =
∣∣PQ∣∣ /2 for a semicircle A. If

nm ≤ ns, then the concatenation of alternating circular arcs with nm basic pairs is

constructed on a semicircle or minor reference arc A. Otherwise, A is a major arc.

This procedure is summarized in Step I of Algorithm 3.1. Since A is determined by

its radius rA, rA allows the concatenation to be constructed on A.

For each radius rA in
[∣∣PQ∣∣ , ∞), there are two reference arcs from P and Q,

one for which ∆φ = π + β and the other for which ∆φ = π − β, denoted by A+

and A−, respectively. If a reference arc A is chosen to construct the extremal path,

each combination (u (0) , u (T )) has two concatenations of alternating circular arcs

with nm basic pairs from x0 to xT . Note that every combination (u (0) , u (T )) has

one concatenation for the line segment PQ. For each (u (0) , u (T )), every reference
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arc A in {A+, A−} or the line segment PQ yields a family of extremal controls that

concatenate circular arcs. Therefore, the sequence of points of the concatenation at

which u (t) switches can be found as stated in Step II of Algorithm 3.1.

Algorithm 3.1. Generating admissible paths with nm basic pairs constructed on a
reference arc A or line segment PQ.
Given initial state x0 = (x0, y0, φ0), final state xT = (xT , yT , φT ), minimum ra-
dius of curvature r and maximum radius of curvature 1, generate admissible paths
with nm basic pairs constructed on a reference arc A or line segment PQ for each
combination (u (0) , u (T )) ∈ {(1, 1) , (r−1, r−1)}.
I. For each combination (u (0) , u (T )) ∈ {(1, 1) , (r−1, r−1)},

1. Determine the two centers P and Q of the initial and final circular arcs and
compute the length of PQ.

2. Compute the minimum number nm of basic pairs using
nm = d

∣∣PQ∣∣ / (2 (1− r))e
and the number ns of basic pairs when reference arc A is a semicircle using
(3.1) with the floor function:

ns = bπ/
(
4 sin−1

(
(1− r) /

∣∣PQ∣∣))c.
3. If

∣∣PQ∣∣ / (2 (1− r)) is an integer, then the admissible path constructed

on the line segment PQ has nm basic pairs. Go to Step 1 for the next
combination. Otherwise, continue.

4. Compute the radius rA of a reference arc A which is a solution to α = 2nmβ
in the interval

[∣∣PQ∣∣ /2, ∞) using conventional numerical methods, e.g.,
Newton-Raphson.

5. Determine the type of the reference arc A on which the admissible path
with nm basic paris for the current combination is constructed.
5a. If nm ≤ ns, then the admissible path with nm basic pairs is con-

structed on the semicircle or minor reference arc A of radius rA.
5b. Otherwise, the admissible path with nm basic pairs is constructed

on the major reference arc A of radius rA.
Go to Step 1 for the next combination.

II. For each combination (u (0) , u (T )) ∈ {(1, 1) , (r−1, r−1)}, compute the se-
quence of points at which u (t) switches. If a reference arc A is chosen in Step
I, two admissible paths are constructed on each A in {A+, A−}. If the line
segment PQ is chosen in Step I, one admissible path is constructed on PQ.
1. Determine the first time (or length) t1 at which u (t) switches between 1

and r−1.
1a. If u (0) = 1, then t1 = θ + β/2− φ0 + π for A+, t1 = θ − β/2− φ0

for A− and t1 = θ − φ0 + π/2 for PQ.
1b. If u (0) = r−1, then t1 = r (θ + β/2− φ0) for A+, t1 =

r (θ − β/2− φ0 + π) for A− and t1 = r (θ − φ0 − π/2) for PQ.
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Note that, for A+ and A−, θ represents the angle between
−→
RP and

the x-axis. For PQ, θ represents the angle between
−→
PQ and the

x-axis.
2. Compute the point (x (t1) , y (t1)) by integrating ẋ (t) = cosφ (t), ẏ (t) =

sinφ (t) and φ̇ (t) = u (t) over [0, t1].
3. For i = 2, 3, · · · , 2nm,

3a. Determine the ith time (or length) ti at which u (t) switches between
1 and r−1.

ti = u−1 ((ti−1 + ti) /2) ∆φ+ ti−1

where ∆φ = π + β for A+, ∆φ = π − β for A− and ∆φ = π for PQ.
3b. Compute the point (x (ti) , y (ti)) by integrating ẋ (t) = cosφ (t),

ẏ (t) = sinφ (t) and φ̇ (t) = u (t) over [ti−1, ti].

3.3 Case Study: The Unidirectional Dubins Car

In this section, we apply Algorithm 3.1 to a series of test cases and evaluate its

completeness and solution computation times. We consider an Unmanned Ground

Vehicle (UGV) in the unobstructed plane and assume the UGV is constrained to

clockwise turning motions after its steering wheel is locked. Specifically, control u

(i.e., the curvature) is bounded on the interval [π/24 rad/sec, π/18 rad/sec]. The

initial state x0 = (x0, y0, φ0) is uniformly distributed on

[73.7104◦W, 73.8475◦W]× [40.5712◦N, 40.7083◦N]×× [0, 2π) .

Ten sample points on each axis (i.e., the x-axis, y-axis and φ-axis) are considered

as each component of x0. For every initial state x0, the UGV is asked to return to

base at latitude 40.6398◦N and longitude 73.7789◦W with a final orientation of 130

degrees.

For every initial state x0, we evaluate the computation times of Algorithm 3.1 for

finding admissible paths constructed onA or PQ, implemented in Matlab. Over 1,000

initial states, the average computation time of Algorithm 3.1 is 3.9 × 10−3 seconds
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on a 2.93GHz Intelr Xeonr X5570 processor, running Linux. Figure 3.5 shows a

histogram of computation times for Algorithm 3.1 over 1,000 initial states. Each

bar represents an execution time interval of width 1.8 × 10−3. In about 50% of the

test cases, the computation time of Algorithm 3.1 is near the mean value. Since the

minimum number nm of basic pairs is proportional to
∣∣PQ∣∣, the computation time of

Algorithm 3.1 increases approximately linearly with
∣∣PQ∣∣.
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Figure 3.5: Histogram of computation times of Algorithm 3.1 over 1,000 initial states.

Figure 3.6 illustrates concatenations of alternating circular arcs joining x0 with

xT for combination (1, 1). In Figure 3.6 (a) and (b), concatenations of alternating

circular arcs joining x0 with xT have the minimum and the maximum nm of 1 and

47, respectively, over the 1,000 initial states x0. These minimum and maximum nm

occur when PQ is minimum and maximum, respectively. The concatenation in Figure

3.6 (a) is constructed on a major reference arc A. In contrast, the concatenation

in Figure 3.6 (b) is constructed on a minor reference arc A. In Figure 3.6 (c), a

concatenation of alternating circular arcs is constructed on the line segment PQ

because
∣∣PQ∣∣ = 2nm (1− r) for nm = 3. Note that one admissible path is constructed

36



on PQ.

3.4 Admissible Paths for Unidirectional Dubins Airplanes

In Section 3.2, we constructed an admissible path (x, y) from an initial oriented

point (x0, y0, φ0) to a final oriented point (xT , yT , φT ). Such an admissible path was

defined as a concatenation of alternating circular arcs constructed on a reference arc

A or the line segment PQ. This concatenation always exists because there exists

a number of basic pairs in
{
n ∈ N : n ≥

∣∣PQ∣∣ / (2 (1− r))
}

. We now extend this

result to define admissible solutions for the unidirectional Dubins airplane as follows:

Given two oriented points (x0, y0, z0, φ0) and (xT , yT , zT , φT ) in R3 × S1, define a

continuous and piecewise C2 path (x, y, z) subject to constraints (i), (ii) and (iii),

and the following additional constraints:

(iv) The rate of change in altitude, called the control (or the vertical rate) and

denoted v, is bounded on control region V = [−vmax, vmax] where 0 < vmax < 1.

1 The control is piecewise continuous.

(v) The controls u and v are independent of each other.

An algorithm to find a sequence of admissible controls is also developed.

Under constraints (iv) and (v), altitude z is a solution of the differential equation

ż (t) = v (t) ∈ V. (3.7)

Without loss of generality, we assume that z0 = 0.

1A value vmax = 1 would imply a 45◦ flight path angle. Fixed-wing aircraft will climb and descend
at a more shallow angle. Additionally, an aircraft may have asymmetric bounds on vertical rate,
e.g., it may be capable of descending faster than climbing. Each Dubins airplane problem posed will
require either a climb or descent, indicating the appropriate value of vmax for that particular path
planning activity.
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(c) An admissible path constructed on PQ.

Figure 3.6: Some Concatenations of alternating circular arcs joining 1,000 initial
states with xT = (73.7789◦W, 40.6398◦N, 130◦).
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The projection of a path (x, y, z) onto the xy plane is a continuous and piecewise

C2 path (x, y) subject to constraints (i), (ii) and (iii). It follows from Theorem III.1

that an admissible path (x, y) exists. The length of such an admissible path ap-

proaches ∞ as the number n of basic pairs approaches ∞. This follows from the

fact that such a concatenation joins an initial oriented point with a final oriented

point for the number of basic pairs in
{
n ∈ N : n ≥

∣∣PQ∣∣ / (2 (1− r))
}

. Thus, we

can construct a sequence of alternating circular arcs joining an initial oriented point

with a final oriented point (Section 3.2), denoted by (Tn).

To find an admissible path (x, y, z), it suffices to find control v that transfers z0 to

zT for a given (Tn). The result follows from constraint (v). Let T∆z = |zT | /vmax and

T1 be the first term of the sequence (Tn). There are two cases to consider: T1 ≥ T∆z

and T1 < T∆z. For T1 ≥ T∆z, |zT | /T1 ≤ vmax, and thus v ≡ zT/T1 transfers z0 to

zT . For T1 ≤ T∆z, an extremal path (x, y) of length (or time) T1 constructed on

a reference arc A or line segment PQ satisfies boundary conditions (x0, y0, φ0) and

(xT , yT , φT ) before the final altitude zT can be reached. Since the sequence (Tn)

diverges to +∞, there exists a time Tn > T1 such that Tn ≥ T∆z. Thus, an initial

oriented point (x0, y0, z0, φ0) is joined to a final oriented point (xT , yT , zT , φT ) by a

path (x, y, z) of length Tn whose projection onto the xy plane is a concatenation of

alternating circular arcs constructed on A or PQ. Using these results, we can state

the following theorem:

Theorem III.2. There exists an admissible path (x, y, z) from an initial oriented

point (x0, y0, z0, φ0) to a final oriented point (xT , yT , zT , φT ) subject to constraints

(i)-(v).

For such an admissible path, the control u is a switching function whose values

are 1 and r−1, and the control v is a constant function whose value is a final altitude

divided by the length Tn of a concatenation of alternating circular arcs. Note that

the value of the control v is in V = [−vmax, vmax]. Paths which correspond to the

39



constant controls u ≡ 1 and u ≡ r−1 with the constant control v are circular helices

of radius 1 and radius r, respectively, and of pitch 2π |v|. These circular helices have

a common tangent vector where u (t) switches between 1 and r−1. This follows from

the fact that φ (t) and v (t) are continuous functions that define the direction of the

tangent vector. Therefore, controls produce a concatenation of alternating circular

helices of radius 1 and r and of pitch 2π |zT/Tn| where Tn is a length of its projection

onto the xy plane such that Tn ≥ T∆z. Algorithm 3.2 finds the minimum value of n

such that Tn ≥ T∆z. It then generates the sequence of points at which u (t) switches.

Note that control v (t) is constant in this algorithm.

Algorithm 3.2. Generating admissible concatenations of alternating circular helices.
Given initial state x0 = (x0, y0, z0, φ0), final state xT = (xT , yT , zT , φT ), and
minimum radius of curvature r, generate admissible concatenations of alternating
circular helices for each combination (u (0) , u (T )) ∈ {(1, 1) , (r−1, r−1)}. Note
that the maximum radius of curvature is assumed to be 1, the vertical rate (i.e.,
the rate of change in altitude) is bounded on [−1, 1] and z0 = 0.
I. For each combination (u (0) , u (T )) ∈ {(1, 1) , (r−1, r−1)},

1. Determine the two centers P and Q of the initial and final circular arcs and
compute the length of PQ.

2. Compute the minimum number nm of basic pairs using
nm = d

∣∣PQ∣∣ / (2 (1− r))e
and the number ns of basic pairs when a reference arc A is a semicircle
using (3.1) with the floor function:

ns = bπ/
(
4 sin−1 (1− r) /

∣∣PQ∣∣)c.
3. Set n = nm.
4. If n =

∣∣PQ∣∣ / (2 (1− r)), then the admissible path with n basic pairs is

constructed on the line segment PQ. Otherwise, continue.
5. Compute the radius rA of a reference arc A which is a solution to α = 2nβ

in the interval
[∣∣PQ∣∣ /2, ∞) using conventional numerical methods, e.g.,

Newton-Raphson.
6. Determine the type of the reference arc A on which the admissible path

with n basic paris for the current combination is constructed.
6a. If n ≤ ns, then the admissible path with n basic pairs is constructed

on the semicircle or minor reference arc A of radius rA.
6b. Otherwise, the admissible path with n basic pairs is constructed on

the major reference arc A of radius rA.
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7. Compute the length Tn of the admissible path with n basic pairs constructed
on A or PQ. If a reference arc A is chosen, compute the lengths of two
admissible paths constructed on each A in {A+, A−}. If the line segment
PQ is chosen, compute the length of the one admissible path constructed
on PQ.
7a. Compute the first time (or length) t1 at which u (t) switches between

1 and r−1.
If u (0) = 1, then t1 = θ + β/2− φ0 + π for A+, t1 = θ − β/2− φ0

for A− and t1 = θ − φ0 + π/2 for PQ.
If u (0) = r−1, then t1 = r (θ + β/2− φ0) for A+, t1 =
r (θ − β/2− φ0 + π) for A− and t1 = r (θ − φ0 − π/2) for PQ.

Note that, for A+ and A−, θ represents the angle between
−→
RP and

the x-axis. For PQ, θ represents the angle between
−→
PQ and the

x-axis.
7b. Compute the angular path change ∆φ as follows: ∆φ = π + β for

A+, ∆φ = π − β for A− and ∆φ = π for PQ.
7c. Compute the length Tn.

Tn = t1 + (n− 1) (1 + r) ∆φ+ ru (0) ∆φ+ u−1 (0) (φT − φ (t2n)).
8. Determine the control v (i.e. the vertical rate) transferring z0 to zT .

8a. If Tn ≥ T∆z for some Tn, then the control v = zT/Tn transfers z0 to
zT . Go to Step 1 for the next combination.

8b. Otherwise, set n = n+ 1, and go to Step 4.
II. For each combination (u (0) , u (T )) ∈ {(1, 1) , (r−1, r−1)}, compute the se-

quence of points at which u (t) switches. If a reference arc A is chosen in Step
I, two admissible concatenations are constructed. If the line segment PQ is
chosen in Step I, one admissible concatenation is constructed.
1. Compute the point (x (t1) , y (t1) , z (t1)) by integrating ẋ (t) = cosφ (t),

ẏ (t) = sinφ (t), ż (t) = w and φ̇ (t) = u (t) over [0, t1].
2. For i = 2, 3, · · · , 2n,

2a. Determine the ith time (or length) ti at which u (t) switches between
1 and r−1.

ti = u−1 ((ti−1 + ti) /2) ∆φ+ ti−1.
2b. Compute the point (x (ti) , y (ti) , z (ti)) by integrating ẋ (t) =

cosφ (t), ẏ (t) = sinφ (t), ż (t) = v and φ̇ (t) = u (t) over [ti−1, ti].
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3.5 Application: An Emergency Landing Problem for Uni-

directional Dubins Airplanes

In this section, we present an application of Algorithm 3.2 to the emergency land-

ing planning problem that motivated our work. Figure 3.7 illustrates the discretized

flight envelope of an F-16 for aileron jam over a range of altitude from 0 ft to 10, 000

ft. Axes in Figure 3.7 are airspeed V , turn rate φ̇ and climb rate ż. Each trim point

shown in Figure 3.7 is feasible over the full range of specified jam angles and altitudes.

We assume that a −10◦ aileron jam occurs at an altitude of 10, 000 ft, and that

the true airspeed is 250 ft/sec. At the given altitude of 10, 000 ft and true airspeed

of 250 ft/sec, the F-16 has a range of turn rates varying from −10 deg/sec to −7.5

deg/sec and from 7.5 deg/sec to 10 deg/sec; non-turning (straight flight) states are

not feasible except at slower airspeeds. We assume the F-16 is in an initial left-turning

state; as shown it cannot transition through straight flight to a right turning state so

it is commmanded to land with a unidirectional left turning path. Thus, the control u

(i.e., the curvature) is bounded on the interval [π/24 rad/sec, π/18 rad/sec] assuming

z is positive up. Moreover, the F-16 has a range of vertical rates varying from −25

ft/sec to 0 ft/sec, thus the control v (i.e., the vertical rate) is bounded on the interval

[−25, 0].

The initial state x0 of the F-16 is given by

x0 = (x0, y0, z0, φ0) = (73.76◦W, 40.64◦N, 10, 000 ft, 210◦) .

The final oriented point state xT is the end of JFK runway 31L at latitude 40.6398◦N

and longitude 73.7789◦W and at an altitude of 11.8 ft. Figure 3.8 illustrates example

concatenations of alternating circular helices joining x0 with xT . Consequently, the

F-16 can land on JFK runway 31L by following each admissible path corresponding

to the given x0. Although the minimum number nm of basic pairs are 4 and 3 for
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Figure 3.7: Flight Envelope for an F-16 aircraft over an Aileron Jam Interval [−10, 10]
degrees and Altitude Interval [0, 10000] ft (Strube (2005) and Choi et al.
(2010)).

combinations (1, 1) and (r−1, r−1), respectively, the determined emergency landing

trajectories have an increased number 6 and 7 of basic pairs to yield the necessary

altitude change from the initial state to the final (landing) state. In Figures 3.8 (a)

and (b), the concatenations of alternating circular helices have vertical rates of -23.86

ft/sec and -22.53 ft/sec, respectively. These vertical rates lie in the control region

[−25, 0].

3.6 Admissible Paths with Smooth Transitions for Unidirec-

tional Dubins Cars

In Sections 3.2 and 3.4, we presumed switching the curvature (i.e., the control

u (t)) was instantaneous. However, it is likely the robot or vehicle would require a

finite switching interval over which curvature is smoothly transitioned. It then follows

that the robot or vehicle can more precisely follow the path with continuous curvature.

We investigate such a solution for the Dubins car problem given unidirectional turning

constraints. Given two oriented points (x0, y0, φ0) and (xT , yT , φT ) in R2 × S1, we
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Figure 3.8: Example admissible paths comprised of alternating circular helices from
x0 = (73.76◦W, 40.64◦N, 10, 000 ft, 210◦) to the JFK 31L runway
threshold.
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now want to find a C2 and piecewise C3 path (x, y) subject to constraints (i), (ii) and

(iii), and the following additional constraints:

(iv) The derivative of the curvature with respect to the path’s length, called the

control and denoted w, is bounded on the control region W = [−m, m].

For unidirectional Dubins cars, we defined a concatenation of alternating circular

arcs constructed on the reference arc A or the line segment PQ. All centers of

alternating circular arcs lie on A or PQ at a distance 1−r from each other, depending

on whether
∣∣PQ∣∣ / (2 (1− r)) is an integer. In the same manner, we assume all

centers of alternating circular arcs of radius 1 and radius r̄ in [r, 1) lie on A or PQ

at a distance ∆d ∈ (0, 1− r) from each other. All statements in Section 3.2 hold if

|1− r| is replaced by ∆d, except for the properties of the concatenation of alternating

circular arcs. Thus, if the number n of pairs of alternating arcs of radius 1 and r̄ is in{
n ∈ N : n >

∣∣PQ∣∣ / (2∆d)
}

, then some cyclic polygon of A has 2n edges of length

∆d and an edge of length PQ. If n =
∣∣PQ∣∣ / (2∆d), the line segment PQ consists

of 2n line segments of length ∆d. Thus, alternating circular arcs with the minimum

number nm of basic pairs can be constructed on a reference arc A or the line segment

PQ, as shown in Figure 3.9.

Since ∆d is arbitrary, alternating circular arcs of radius 1 and radius r̄ may have

no juncture point at which the arcs have a common tangent vector. Now we want

to find a smooth curve joining each pair of alternating arcs so that at each juncture

point the curve has the same tangent vector and control u (t) (i.e., curvature) as the

corresponding circular arc. Throughout this section, it is assumed that the curvature

of such a smooth curve is a linear function with slope m or −m. Paths which cor-

respond to the constant controls v ≡ −m and v ≡ m are arcs of clothoids. Such a

clothoid joining two arcs of radius 1 and r̄ can be uniquely characterized by radius

r̄ if r̄ is in some restricted interval (to be established below). This follows from the

results of Meek and Walton (1989).
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Figure 3.9: The construction of alternating circular arcs of radius 1 and radius r̄ on
A.

By the construction of alternating circular arcs on a reference arc A or the line

segment PQ, it suffices to find a clothoid connecting the one pair of such alternating

arcs, as shown in Figure 3.10. For simplicity, we choose a coordinate system in such

a way that the centers of this one pair are in the first quadrant and the clothoid is

defined by

x (t) = C (t) and y (t) = S (t) , (3.8)

where C (t) and S (t) are the Fresnel integrals defined by

C (t) =

t∫
0

cos
(m

2
τ 2
)
dτ and S (t) =

t∫
0

sin
(m

2
τ 2
)
dτ. (3.9)

Then the center of curvature of the clothoid at t is given by

(
CI (t)

t
,
SI (t) +m−1

t

)
, (3.10)

46



where CI (t) and SI (t) represent the integrals of the Fresnel integrals C (t) and S (t),

respectively, defined by

CI (t) =

t∫
0

C (τ) dτ = tC (t)− 1

m
sin
(m

2
t2
)

SI (t) =

t∫
0

S (τ) dτ = tS (t) +
1

m
cos
(m

2
t2
)
− 1

m
.

(3.11)

The circle of radius r̄ must be inside that of radius 1, that is ∆d < 1− r̄. The proof

of this result will be found in Stoer (1982).

A

∆d

r̄

Figure 3.10: A clothoid connecting a pair of alternating circular arcs of radius 1 and
r̄.

Let t1 and t2 be the times at which the clothoid meets the circular arcs of radius

1 and radius r̄, respectively. Since u (t) = mt for the clothoid and since the control

u (t) equals 1 at t = t1 and r̄−1 at t = t2,

t1 = m−1 and t2 = m−1r̄−1. (3.12)
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Since the centers of curvature u (t) of the clothoid at t = t1 and t = t2 are the centers

of alternating arcs, it follows from (3.10) that

∆d

=

√
m2 (r̄ · CI (m−1r̄−1)− CI (m−1))2 + (m (r̄ · SI (m−1r̄−1)− SI (m−1)) + r̄ − 1)2.

(3.13)

Therefore, the behavior of ∆d depends only on the radius r̄.

By the results in Meek and Walton (1989), there is a one-to-one correspon-

dence between r̄ and ∆d for all r̄ in
[
max

{
r, 1/
√
m2 + 1

}
, 1
)
. Note that r ≤

r̄ < 1. Thus, the clothoid connecting two circular arcs of radius 1 and radius r̄

whose centers are at a distance ∆d can be uniquely characterized by each value

of r̄ in
[
max

{
r, 1/
√
m2 + 1

}
, 1
)
. This follows from the fact that the geometry of

this clothoid depends only on r̄ for given m. Furthermore, the geometry of this

clothoid can be employed for any alternating circular arcs of radius 1 and radius r̄

in
[
max

{
r, 1/
√
m2 + 1

}
, 1
)

because its geometry does not depend on the choice of

coordinate system. Therefore, if all centers of alternating circular arcs of radius 1

and radius r̄ in
[
max

{
r, 1/
√
m2 + 1

}
, 1
)

lie on a reference arc A or the line segment

PQ at a distance ∆d given by (3.13), then there exists a unique clothoid joining each

pair of these alternating circular arcs so that at each juncture point the curve has the

same tangent vector and control u (t) (i.e., curvature) as the corresponding circular

arc (Figure 3.11). Using the preceding results, we obtain the following theorem:

Theorem III.3. There exists an admissible path (x, y) from an initial oriented point

(x0, y0, φ0) to a final oriented point (xT , yT , φT ) subject to constraints (i)-(iii) and

(vi).

A concatenation of a circular arc with radius 1, a clothoid arc withm, a circular arc

with radius r̄ and a clothoid arc with −m is such an admissible path that correspond
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Figure 3.11: A concatenation of a circular arc with radius 1, a clothoid arc with m,
a circular arc with radius r̄ and a clothoid arc with −m

to the constant controls v ≡ 0, v ≡ m, v ≡ 0 and v ≡ −m, respectively, as shown in

Figure 3.12. At each juncture point, v (t) switches between 0 and m or between −m

and 0. The control u (t) (i.e., the curvature) is a constant function for v ≡ 0 and a

linear function of the path’s length for v ≡ ±m. It follows that the curvature u (t)

and angle φ (t) are continuous.

Figure 3.13 illustrates example concatenations of a circular arc with radius 1

and alternating clothoid arcs with curvature slope of ±m joined by a circular arc

with radius r̄ for different m. In both these figures, initial state x0 is given by

x0 = (x0, y0, φ0) = (4, 4, 2π/3), the final state xT is given by xT = (xT , yT , φT ) =

(0, 0, 3π/2), and r = 1/4. Note that the maximum radius of curvature is assumed

to be 1. In Figure 3.13 (a) and (b), m equals 10, and thus we can find a unique

clothoid joining the each pair of alternating circular arcs of radius 1 and radius r̄ in

the interval
[
max

{
r, 1/
√
m2 + 1

}
, 1
)

= [r, 1). For r̄ = r, all centers of these arcs

lie on a reference arc A at a distance ∆d = 7.39 × 10−1 and the number n of basic

pairs is 3. Note that ∆d < 1− r. As m is decreased to 2, as shown in Figure 3.13 (c)

and (d), the interval
[
max

{
r, 1/
√
m2 + 1

}
, 1
)

becomes
[
1/
√
m2 + 1, 1

)
. Thus, the

end point 1/
√
m2 + 1 approaches 1 as m approaches 0. Note that the clothoid may
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Figure 3.12: v (t), u (t) and φ (t).
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be not uniquely determined for alternating circular arcs of radius 1 and radius r. For

r̄ = 1/
√
m2 + 1 = 1/

√
5, the distance ∆d is decreased to 5.33× 10−1 and the number

n is increased to 4.
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0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

u(
t)

u(t)

(b) u (t) for m = 10.

−1 0 1 2 3 4 5
−1

0

1

2

3

4

x

y

Combination (1,1) and rA = 4.3311

 

 
(x0,y0)

(xT,yT)

rA
Cyclic Polygon

(c) An admissible path for m = 2

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

u(
t)

u(t)

(d) u (t) for m = 2

Figure 3.13: Concatenations of a circular arc with radius 1 and alternating clothoid
arcs with ±m joined by a circular arc with radius r̄ from x0 =
(x0, y0, φ0) = (4, 4, 2π/3) to xT = (xT , yT , φT ) = (0, 0, 3π/2) for dif-
ferent m.
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3.7 Existence of Optimal Paths for Unidirectional Dubins

Vehicles.

In this section, we demonstrate the existence of optimal paths for unidirectional

Dubins vehicles using Filippov’s theorem II.1. In the preceding sections, we showed

the existence of admissible paths for the unidirectional Dubins car and airplane given

two oriented points x0 and xT . Moreover, the systems (2.3) and (2.10) are continuous

functions of t, u, x and a continuously differentiable function of x. Thus, it suffices to

show that conditions (2) and (3) in Filippov’s theorem II.1 hold for the unidirectional

Dubins car and airplane.

We first consider the unidirectional Dubins car. We verify condition (2) as follows.

Let C =
√

1 + 1/r2/2. Then C > 0 and

〈x, f (t, x, u)〉 ≤ ‖x‖ · ‖f (t, x, u)‖ ≤ 1/2 ‖f (t, x, u)‖
(
1 + ‖x‖2)

≤
√

1 + 1/r2/2
(
1 + ‖x‖2) = C

(
1 + ‖x‖2)

where f is system (2.3). For condition (3), since the control region U = [1, r−1] is

bounded and closed, U is compact. Furthermore, it follows from the continueity of f

in the u variable, the image set described by f is convex for all t and x. By Filippov’s

theorem II.1, we conclude with the following theorem:

Theorem III.4. There exists an optimal path (x, y) from an initial oriented point

(x0, y0, φ0) to a final oriented point (xT , yT , φT ) subject to constraints (i)-(iii) (on

page 26).

We next consider the unidirectional Dubins airplane. For condition (2), let C =√
1 + v2

max + 1/r2/2. Then C > 0 and

〈x, f (t, x, u)〉 ≤ ‖x‖ · ‖f (t, x, u)‖ ≤ 1/2 ‖f (t, x, u)‖
(
1 + ‖x‖2)

≤
√

1 + v2
max + 1/r2/2

(
1 + ‖x‖2) = C

(
1 + ‖x‖2)
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where f is system (2.10). Thus, condition (2) holds for the unidirectional Dubins

airplane. Since f is continuous in the u and v variables, the image set described by

f is convex for all t and x. By Filippov’s theorem II.1, we also conclude with the

following theorem:

Theorem III.5. There exists an optimal path (x, y, z) from an initial oriented point

(x0, y0, z0, φ0) to a final oriented point (xT , yT , zT , φT ) subject to constraints (i)-(v).

3.8 Conclusion

This chapter has presented admissible paths for an object moving at a constant

horizontal speed. The object’s path are subject to the turn rate bounded on an

interval whose end points are either both positive or both negative and the vertical

rate bounded by its maximum rate. For simplicity, the turn and vertical rates are

independent of each other. These admissible paths can be used as emergency landing

trajectories for cases where steady straight flight is not possible.

For the unidirectional Dubins car, admissible paths generated by extremal controls

are concatenations of alternating circular arcs of two different radii at every switching

point. For the unidirectional Dubins airplane, admissible paths are concatenations of

alternating circular helices of two different radii with constant vertical (climb/descent)

rate. The concatenations for unidirectional Dubins vehicles exist. Using Filippov’s

theorem, we showed the existence of optimal paths for the unidirectional Dubins car

and airplane.

In this chapter, we developed efficient algorithms for generating admissible paths

joining an initial state with a final state. Both algorithms are applied to find emer-

gency landing trajectories. These algorithms have real-time performance and com-

pleteness.
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CHAPTER IV

Time-Optimal Paths for Unidirectional Dubins

Cars

4.1 Introduction

This chapter characterizes minimum-length paths for a unidirectional Dubins ve-

hicle that can only follow paths comprised of unidirectional (clockwise or counter-

clockwise) turns. Recall that Dubins paths specify shortest paths comprised of at

most three segments, each of which is either a line segment or a circular arc with

minimum radius. This chapter extends the Dubins formulation to consider cases in

which bounds on curvature are either both positive or both negative. Thus, the turns

are either always clockwise or always counterclockwise.

Variations of the Dubins problem have been studied over a wide range of motion

planning applications. Reeds and Shepp (1990) conducted a similar study for a vehi-

cle with forward and backward motions, identifying shortest-length paths with cusps.

Balkcom and Mason (2002) extended the Dubins problem to consider the differen-

tial drive (i.e., two independently driven coaxial wheels), which yielded time-optimal

paths with at most three straight segments and two turns. Balkcom et al. (2006) char-

acterized time-optimal paths for a robot capable of instantaneously moving in any

direction. Chitsaz and LaValle (2007) derived necessary conditions for time-optimal
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paths of the Dubins airplane with independently bounded climb (or descent) and

turn rates. Salaris et al. (2010) and (2012) presented a complete characterization for

length-optimal paths of the unicycle with field-of-view constraints and visibility con-

straints. Bakolas and Tsiotras (2011) modified the Dubins problem to allow different

minimum radii for clockwise versus counterclockwise turns. Dolinskaya and Mag-

giar (2012) characterized time-optimal paths for the Dubins vehicle with the speed

function depending on the direction and the minimum-turning radius function.

All these existing solutions presume a vehicle has the ability to follow a straight

path and turn in both directions. Under the unidirectional turning constraint moti-

vated above, a new solution is required. We employ Pontryagin’s minimum principle

to characterize the length-optimal path for a unidirectional Dubins vehicle. This

principle has previously been applied to solve a number of path planning problems,

as discussed previously in Chapter II.

The chapter is organized as follows. Section 4.2 applies the minimum principle

of Pontryagin to characterize length-optimal paths subject to prescribed initial and

final conditions. Section 4.3 enumerates the geometric properties of the identified

extremal paths given arbitrary boundary conditions. Section 4.4 presents algorithms

to find the optimal path using these properties and provides example solution paths.

Section 4.5 analyzes algorithm efficiency and optimal solution properties.

4.2 Necessary Conditions for Optimality

Given two points (x0, y0) and (xT , yT ) in R2 with corresponding directions φ0 and

φT , we want to find a continuous and piecewise C2

path (x, y) of minimal length subject to the following constraints:

(i) The radius of curvature lies between r and 1 where 0 < r < 1. The reciprocal of

the radius, called the control (or the curvature) and denoted u, is also bounded
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on control region U . Since a path is continuous and piecewise C2, the control is

piecewise continuous.

(ii) The sign of the curvature remains unchanged. Therefore, the control region U

is [1, r−1]. The case U = [−r−1, −1] can be treated similarly to U = [1, r−1].

(iii) The path (x, y) has unit speed. Even if the path has non-zero constant speed,

the path has a unit-speed reparametrization (do Carmo (1976)), and thus the

path with unit speed produces no loss of generality.

Under these constraints, a path (x, y) is a solution of the system of differential equa-

tions

ẋ (t) = cosφ (t) ,

ẏ (t) = sinφ (t) ,

φ̇ (t) = u (t) ∈ U.

(4.1)

Let x = (x (t) , y (t) , φ (t)). Then the boundary conditions are

x (0) = (x0, y0, φ0) , x0 and x (T ) = (xT , yT , φT ) , xT , (4.2)

where φ (t) is the angle between unit tangent vector (ẋ, ẏ) and the x-axis and is a real

number modulo 2π. The cost to be minimized is the length of the path (x (t) , y (t))

from 0 to T given by

J (u) =

T∫
0

dt = T.

Therefore, our problem becomes a time-optimal problem.

We now characterize the necessary conditions for the path (x, y) of minimal length

using Pontryagin’s minimum principle in Section 2.3. Let ψ1, ψ2 and ψ3 be the adjoint

variables corresponding to x, y and φ, respectively. The Hamiltonian is then defined
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by

H (ψ, x, u) = ψ1 cosφ+ ψ2 sinφ+ ψ3u,

where ψ = (ψ1, ψ2, ψ3), and the adjoint system is defined by

ψ̇1 (t) = −∂H
∂x

= 0,

ψ̇2 (t) = −∂H
∂y

= 0, (4.3)

ψ̇3 (t) = −∂H
∂φ

= ψ1 sinφ (t)− ψ2 cosφ (t) .

Therefore, ψ1 and ψ2 are constant on [0, T ]. To state our results in a more intuitive

form, we introduce the notations λ and θ defined by λ =
√
ψ2

1 + ψ2
2 ≥ 0 and θ =

tan−1 (ψ2/ψ1) ∈ (−π/2, π/2], respectively. Note that θ = π/2 when ψ1 = 0. Then

the Hamiltonian and system (4.3) become

H = λ cos (φ− θ) + ψ3u,

ψ̇3 = λ sin (φ− θ) .
(4.4)

By Pontryagin’s minimum principle, if the trajectory x (t) determined by u (t) ∈ U

is time-optimal, then there exists a non-zero continuous solution ψ = (ψ1, ψ2, ψ3) such

that

(1) The control u (t) minimizes the Hamiltonian at every time t; that is,

H (ψ (t) , x (t) , u (t)) = min
z∈U

H (ψ (t) , x (t) , z) .

(2) H (ψ, x (t) , u (t)) is constant, and

H (ψ (t) , x (t) , u (t)) ≤ 0.
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It follows from condition (1) that ψ3 (t)u (t) ≤ ψ3 (t) ξ (t) for all piecewise continuous

ξ (t) and for all t in [0, T ]. Since there is no open interval on which ψ3 (t) = 0, the

optimal control is

u (t) , umin (ψ3 (t)) =


1 if ψ3 (t) > 0,

r−1 if ψ3 (t) ≤ 0.

(4.5)

Accordingly,

ψ3 (t) · umin (ψ3 (t)) = H − λ cos (φ (t)− θ) .

For λ = 0, it follows that ψ3 (t) is constant and non-positive. Since ψ (t) 6= 0, ψ3 (t) is

negative. Thus, u ≡ r−1. For λ > 0, the minimum principle remains invariant when

the adjoint vector is multiplied by λ. Therefore, we can hereafter assume without

loss of generality that λ = 1. Then system (4.4) can be simplified to

ψ̇3 (t) = sin (φ (t)− θ) ,

ψ3 (t) · umin (ψ3 (t)) = H − cos (φ (t)− θ) .
(4.6)

For H ≤ −1, it follows that ψ3 (t) ≤ 0 and u ≡ r−1, that is, the same possible

result as when λ = 0. Thus, hereafter we only consider −1 ≤ H ≤ 0. Since u (t) ≥ 1,

it follows that φ (t) is strictly increasing and there is a one-to-one correspondence

between t and φ (t) for all t. For −1 < H ≤ 0, the variation in ψ3 (t) · umin (ψ3 (t))

versus φ (t) is illustrated in Figure 4.1. In Figure 4.1, ψ3 (t1) = ψ3 (t2) = 0. Thus,

ψ3 (t) changes sign from negative to positive at t1 and from positive to negative at t2.

This follows from the fact that ψ̇3 (t1) > 0 and ψ̇3 (t2) < 0. Therefore, extremal u (t)

changes magnitude from r−1 to 1 at t1 and from 1 to r−1 at t2. It is clear that u (t) = 1

for t1 < t < t2 and u (t) = r−1 for t2 < t < t3. Since ψ3 (t1) = ψ3 (t2) = ψ3 (t3) = 0
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ψ3 (t) · umin (ψ3 (t))

0

H

φ (t1) φ (t2) φ (t3) φ (t4) φ (t)

− 1

Figure 4.1: ψ3 (t) · umin (ψ3 (t)) for H = −0.5.

and φ (t) is strictly increasing,

φ (t2)− φ (t1) = ∆φ and φ (t3)− φ (t2) = 2π −∆φ. (4.7)

where ∆φ , 2 cos−1 (−H). Consequently, t2 − t1 = ∆φ and t3 − t2 = r (2π −∆φ).

For −1 ≤ H ≤ 0, 0 ≤ ∆φ ≤ π. Note that u ≡ r−1 when H = −1 or ∆φ = 0. It is

also clear that φ (t3)− φ (t1) = 2π.

u (t)

r−1

1

0 t1 t2 t3 t4 t

(a) u (t)

0 t1 t2 t3 t4 t

φ (t1)

φ (t2)

φ (t3)

φ (t4)

φ (t)

∆φ

2π − ∆φ

φ̇ (t) = 1

φ̇ (t) = r−1

(b) φ (t)

Figure 4.2: φ (t) and u (t).

Since the variation in ψ3 (t) · umin (ψ3 (t)) versus φ (t) has period 2π, the above
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argument can also be applied for t > t3. As shown in Figure 4.2, u (t) is a periodic

function with values 1 and r−1 and φ (t) is a periodic function with modulo 2π.

Since ∆φ , 2 cos−1 (−H), there is a one-to-one correspondence between H and ∆φ

for −1 ≤ H ≤ 0. Therefore, either of these variables together with θ can be used

to characterize the family of extremal controls. Note that θ, as seen from (4.6),

corresponds to shifting the extremal u (t) in time and −π < θ ≤ π.

Now we can geometrically characterize the path generated by extremal controls.

Control u (t) is a periodic switching function whose values are 1 and r−1. Paths which

correspond to the constant controls u ≡ 1 and u ≡ r−1 are circular arcs of radius 1

and radius r, respectively. These circular arcs of radius 1 and radius r have lengths

∆φ and r (2π −∆φ), respectively, as shown in Figure 4.3. In addition, these circular

arcs have a common tangent vector where u (t) switches between 1 and r−1. This

follows from the fact that φ (t) is a continuous function that defines the direction of

the tangent vector. Since u (t) is periodic, extremal controls produce a concatenation

of alternating circular arcs of radius 1 and r. The preceding results are summarized

in the following theorem:

Theorem IV.1. The planar paths generated by extremal controls are concatenations

of alternating circular arcs of radius 1 and r. The concatenation has the following

properties:

(1) It is smooth in the sense that at juncture points of the concatenation the two

circles have a common tangent vector.

(2) The angular path change for all circles of radius 1 is ∆φ where 0 ≤ ∆φ ≤ π.

(3) The angular path change for all circles of radius r is 2π −∆φ.

Note that u ≡ r−1 for ∆φ = 0. A pair of circular arcs of radius 1 and r having the

above properties of the concatenation will be referred to as a basic pair of circular
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arcs of radius 1 and r. This basic pair has length ∆T , (1− r) ∆φ + 2rπ. The

distance between the beginning and ending points of this pair equals

∆d , 2 (1− r) sin (∆φ/2) , (4.8)

as shown in Figure 4.3.

2 sin
∆φ

2

cos
∆φ

2∆φ

(a) A circular arc of ra-
dius 1

2r sin
∆φ

2

r cos
∆φ

22π − ∆φ

(b) A circular arc of
radius r

switching line

∆d

∆T

(c) The concatenation of alternat-
ing circular arcs of radius 1 and r
(A basic pair appears in solid line
and its adjoining arcs of radius 1
and r appear in dotted line. )

Figure 4.3: Circular arcs of radius 1 and radius r.

As illustrated in Figure 4.3, all circular arcs have juncture points that lie on a

common “secant line”. At these juncture points, ψ3 (t) changes sign, so extremal

u (t) switches between 1 and r−1. This secant line will be called the switching line

and denoted by L. This follows from the fact that φ (t) defines the direction of the

tangent vector and the adjoint system is defined by (4.3). From this fact, θ is the

angle between the switching line L and the x-axis. Since the distances between L and

circle centers of radius 1 and between L and circle centers of radius r are constant,

the locus of circle centers for radius 1 and the locus of circle centers for radius r are

parallel to the switching line, and denoted by L1 and Lr, as shown in Figure 4.4.

61



L

Lr

L1

r cos
∆φ

2

cos
∆φ

2

Figure 4.4: L, Lr and L1.

4.3 Geometric Interpretation of Switching Lines

In this section, we describe the geometric properties of extremal paths. For sim-

plicity, only the case u (t) > 0 is considered. By Pontryagin’s minimum principle,

extremal paths are concatenations of alternating circular arcs of radius 1 and r. Their

initial and final segments are circular arcs of radius 1 or r. Thus, given an initial state

x0 and a final state xT , we can draw two possible circular arcs that lead away from

the initial state and two possible circular arcs that lead into the final state. Since we

have two possible initial circular arcs and two possible final circular arcs, we have four

possible combinations of initial arc and final arc. Each combination is determined by

the values of the externals at t = 0 and t = T . Thus we will refer to a combination

as an ordered pair (u (0) , u (T )).

Given any combination (u (0) , u (T )), we seek to find points at which the extremal

u (t) switches between 1 and r−1. All these points lie on the switching line L. There-

fore, the first point is the intersection of L and the initial arc with radius u−1 (0). At

this intersection, the initial arc and arc following it have a common tangent vector.

According to Theorem IV.1, the next arc also intersects L if 0 < ∆φ ≤ π. By repeat-

edly finding these intersection points, the concatenation of alternating circular arcs

can be constructed. Note that if ∆φ = 0, then u ≡ r−1; it follows that all intersection

points are the same.

We now construct the switching line L for each combination (u (0) , u (T )). It

will be seen that each switching line L is uniquely characterized by ∆φ ∈ [0, π]. For
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each combination (u (0) , u (T )) of initial and final arcs, the center of each respective

arc lies on either of the loci L1 or Lr depending on which of the four combinations

is considered. Since the distances between the switching line L and the loci L1 and

Lr are cos (∆φ/2) and r cos (∆φ/2), respectively, the switching line L is a common

external tangent line to two circles of radii u−1 (0) cos (∆φ/2) and u−1 (T ) cos (∆φ/2),

as indicated in Figure 4.5. One of these two circles has the same center as the initial

circular arc, and the other has the same center as the final circular arc. Note that

u−1 (t) represents the reciprocal of the control (or the curvature) and is either r or 1.

Let P and Q be two centers of the initial circular arc and the final circular arc,

respectively. For u (0) = u (T ), P and Q both lie either on L1 or Lr, and thus the

line through P and Q is parallel to the loci L1 and Lr. For two circles with centers

P and Q with radii u−1 (0) cos (∆φ/2), their common external tangent line (i.e., L)

is parallel to the line passing through P and Q. Therefore, for u (0) = u (T ), the

switching line L is a line obtained by translating the line passing through P and Q

by a vector which has magnitude u−1 (0) cos (∆φ/2) and is formed by rotating
−→
PQ

by −π/2 (Figure 4.5 (a)).

For u (0) 6= u (T ), two centers P and Q lie on different loci L1 and Lr (i.e., one

is on L1, the other on Lr). For two circles with centers P and Q and with radii

u−1 (0) cos (∆φ/2) and u−1 (T ) cos (∆φ/2), their common external tangent line (i.e.,

L) passes through their external center of similitude, denoted by S. As illustrated

in Figure 4.5, the external center S of similitude is a fixed point on the line passing

through P and Q which makes an angle α with L given by

α = sin−1

(
u−1 (0)− u−1 (T )∣∣PQ∣∣ cos

∆φ

2

)
, (4.9)

where
∣∣PQ∣∣ is the length of the line segment PQ. Therefore, for u (0) 6= u (T ), the

switching line L is a line obtained by rotating the line passing through P and Q
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through an angle α in the xy-plane (Figure 4.5 (b)).

L
L1

cos
∆φ

2
P

x0

xT

Q

x

y

(a) A combination (u (0) , u (T )) = (1, 1).

x0

xT

P

Q

x

y
L

L1

Lr

S

α

(b) A combination (u (0) , u (T )) =
(
r−1, 1

)
.

Figure 4.5: The construction of switching line L.

Although the switching lines are uniquely determined for all values of ∆φ, not ev-

ery switching line generates an extremal path having the properties of Theorem IV.1.

Let I denote the set of values for ∆φ where the conditions of Theorem IV.1 are met.

We obtain the determination of I by considering each of the four combinations for

(u (0) , u (T )).

Since ẋ = cosφ and ẏ = sinφ in (4.1), it follows from (4.3) that ψ̇3 = ψ1ẏ − ψ2ẋ

where ψ1 and ψ2 are constant on [0, T ]. Then there is a constant c ∈ R such that

ψ3 (t) = ψ1y (t)− ψ2x (t) + c (4.10)

for 0 ≤ t ≤ T . In the above equation, the right-hand side represents the signed

distance from a point (x (t) , y (t)) to the switching line L. This follows from the

facts that ψ3 = 0 on the switching line L. If ψ3 (t) > 0, that is, if u (t) = 1, then the
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distance between (x (t) , y (t)) and L must be nonnegative. Otherwise, the distance

between (x (t) , y (t)) and L must be nonpositive.

To illustrate the sign of the distance between (x (t) , y (t)) and L, we define two

regions divided by L. One of these two regions includes both Lr and L1, and the

other does not. For u (t) = 1, the positive distance between (x (t) , y (t)) and L is

equivalent to (x (t) y (t)) in the region without both Lr and L1. For u (t) = 0, the

negative distance between (x (t) , y (t)) and L is equivalent to (x (t) y (t)) in the region

with both Lr and L1.

Let ∆φt be ∆φ in [0, π] such that L characterized by ∆φ contains (x (t) y (t)).

If we can find ∆φt, L characterized by ∆φ in [∆φt, π] is a nonnegative distance

away from (x (t) , y (t)) when u (t) = 1, and L characterized by ∆φ in [0, ∆φt] is a

nonpositive distance away from (x (t) , y (t)) when u (t) = r−1. Otherwise, u (t) must

equal r−1, that is, u (t) cannot be 1. Depending on whether ∆φ0 and ∆φT exist, the

possible values of ∆φ can thus be evaluated for each combination (u (0) , u (T )). See

Table 1.

Table 4.1: The set I for each combination.
(u (0) , u (T )) I

(1, 1)
If both ∆φ0 and ∆φT exist, set I = [∆φ0, π]

⋂
[∆φT , π].

Otherwise, set I = ∅.

(r−1, r−1)

If both ∆φ0 and ∆φT exist, set I = [0, ∆φ0]
⋂

[0, ∆φT ].
If only ∆φ0 exists, set I = [0, ∆φ0]. If only ∆φT exists,
set I = [0, ∆φT ].
Otherwise, I = [0, π].

(1, r−1)

If both ∆φ0 and ∆φT exist and ∆φ0 ≤ ∆φT , set I =
[∆φ0, ∆φT ].
If only ∆φ0 exists, set I = [∆φ0, π].
Otherwise, I = ∅.

(r−1, 1)

If both ∆φ0 and ∆φT exist and ∆φ0 ≥ ∆φT , set I =
[∆φT , ∆φ0].
If only ∆φT exists, set I = [∆φT , π].
Otherwise, I = ∅.

Not all switching lines defined by each ∆φ in I allow extremal paths to join the
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initial state x0 with the final state xT . Thus, we next need to formulate the condition

for extremal paths to satisfy boundary conditions x (0) = x0 and x (T ) = xT . This

condition will provide values of ∆φ in I for defining such extremal paths.

Except for the initial and final circular arcs, the circular arcs are specified as basic

pairs of length ∆T . Given an initial angle φ0 and a final angle φT , it is obvious that

each basic pair has a point of an extremal path with φT . This follows from the fact

that the angular path change for each basic pair is 2π. The time at which the ith

basic pair has a point with φT will be denoted by Ti. Although a pair of an initial arc

and arc following it is not a basic pair, this pair will be considered as the first basic

pair to include cases where the optimal path is a circular arc or a pair of initial and

final arcs. This argument is also applied for a final arc. Then Ti+1 − Ti = ∆T and

the distance between two points at Ti and Ti+1 equals ∆d, as shown in Figure 4.6.

Note that ∆d is also the distance between the centers of two circular arcs with the

same radius.

L
x0

x (T1)xT

(a) T1.

L
x (Ti)x (Ti+1)

∆d

∆T

(b) Ti and Ti+1.

Figure 4.6: T1, Ti and Ti+1.

Given an initial state x0 and a final state xT , the line segment connecting (x (T1) ,

y (T1)) and (xT , yT ) is parallel to the switching line L, as indicated in Figure 4.7.

The distance of this line segment is denoted by D. This follows from the fact that

φ (T1) = φT and the loci L1 and Lr are parallel to L. Moreover, the line segment

connecting two points at Ti and Ti+1 is also parallel to L and its length is ∆d. Thus,

the extremal path characterized by ∆φ satisfies boundary conditions x (0) = x0 and
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x (T ) = xT if

D = (n− 1) ∆d (4.11)

for some number n of basic pairs. (4.11) implies that T = Tn = T1 + (n− 1) ∆T .

x0

x (T1)

xT

∆d

L

D

P

Q

(a) A case where u (0) = u (T ) = 1.

x0

xT

x (T1)∆d

L

D

P

Q

(b) A case where u (0) = r−1 and u (T ) = 1.

Figure 4.7: Paths satisfying the boundary conditions x (0) = x0 and x (T ) = xT .

To evaluate the value of ∆φ for which (4.11) holds, we derive a formula for D that

involves
∣∣PQ∣∣. This formula together with (4.11) provides an exact value of ∆φ for

the given number n of basic pairs. For u (0) = u (T ), the initial and final circular arcs

contain points of the extremal path at T1 and T , respectively, as shown in Figure 4.8

(a). For u (0) 6= u (T ), the second circular arc (i.e., the arc following the initial arc)

and the final arc contain the points of the extremal path at T1 and T , respectively,

as shown in Figure 4.8 (b). Since the tangent direction of the extremal path at T1 is

identical to that at T , D =
∣∣PQ∣∣ for u (0) = u (T ) and D =

∣∣RQ∣∣ for u (0) 6= u (T )

where R is the center of circular arc following the initial arc. When u (0) 6= u (T ),

two centers P and Q and the intersection point of the line through Q and R with

a perpendicular transversal of the loci L1 and Lr, passing through P , form a right
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triangle, as shown in Figure 4.8 (b). Thus,

D =



∣∣PQ∣∣ if u (0) = u (T )√∣∣PQ∣∣− (1− r)2 cos2 (∆φ/2)

−∆d/2

if u (0) 6= u (T )
(4.12)

x (T1)

xT

∆d

D

L

L1

P

x0

Q

D

x

y

Lr

(a) A combination (u (0) , u (T )) = (1, 1).

x0

xT

x (T1)∆d

D

D

P

Q

x

y
L

L1

Lr

α

R

∆d

2

(b) A combination (u (0) , u (T )) =
(
r−1, 1

)
.

Figure 4.8: The distance between two points at T1 and T .

4.4 Algorithm for Finding the Optimal Path

We now present an algorithm to determine the optimal path from an initial state

x0 to a final state xT . This algorithm first determines extremal paths according to

their geometric interpretations (Section 4.3) and then finds the one with the least time

of transit which corresponds to minimal length. For each combination (u (0) , u (T )),

we define switching lines for extremal paths joining x0 with xT . The switching line

can be characterized by a value of ∆φ which is a function of the number n of basic

pairs. Since each combination (u (0) , u (T )) has its own domain I of possible values

of ∆φ and since n decreases as ∆φ increases, the minimum number of basic pairs,
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denoted nm, can be evaluated by the supremum of I. The value of ∆φ corresponding

to nm generates a switching line and thus an extremal path from x0 to xT .

The sequence of feasible extremal paths is then defined recursively by increasing

n. This procedure is continued until the length of the current extremal path is greater

than that of the previous extremal path or until ∆φ determined by n is not in the

domain I. This iterative process results in an extremal path with minimal length

among all paths of the same combination. Consequently, we can have at most four

candidate paths, one for each (u (0) , u (T )), joining x0 with xT . By comparing the

lengths of these paths, we can choose the shortest path from the initial state to the

final state.

Algorithm 4.1 describes this procedure to find the optimal path connecting two

oriented points x0 and xT . The algorithm first determines the two centers P and

Q of the initial and final circular arcs for each of the four possible combinations

(1, 1), (1, r−1), (r−1, r−1) and (r−1, 1). We consider as an example the combination

(r−1, 1), as shown in Figure 4.9 (b). Since we can only find a value ∆φT such that the

switching line characterized by this value contains the final point, I = [∆φT , π] as

shown in Table 1. From the supremum of I (i.e., π), nm can be evaluated, as stated

in Step 3 of Algorithm 4.1. This follows from the fact that the number of basic pairs

decreases as ∆φ increases.

If nm = 1, then the length T of the extremal path can be calculated directly from

the geometry of each combination. When u (0) = u (T ), the initial and final circular

arcs are the same. When u (0) 6= u (T ), the initial and final circular arcs must be

tangent at the one point. As nm > 1, (4.11) together with (4.12) provides a value of

∆φ for nm. The switching line L characterized by this value defines the extremal path

from x0 to xT . This follows from the fact that every intersection point of L with a

concatenation of alternating arcs is a point at which the extremal u (t) switches. For

combination (r−1, 1), the values of ∆φ are determined recursively by incrementing n,
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and by using (4.11) and (4.12). Since the length of the extremal path with nm basic

pairs is less than that with nm + 1 basic pairs in this case, the extremal path with nm

basic pairs has minimal length among all paths of combination (r−1, 1). A similar

argument applies to the remaining combinations (1, 1), (1, r−1) and (r−1, r−1).
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(a) Extremal path with minimal length for
a combination (u (0) , u (T )) =
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)
.

(The number of basic pairs is nm = 7.)
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(b) Extremal path with minimal length for a
combination (u (0) , u (T )) =

(
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)
. (The

number of basic paris is nm = 4.)

Figure 4.9: Extremal paths from x0 = (x0, y0, φ0) = (4, 4, 2π/3) to xT =
(xT , yT , φT ) = (0, 0, 3π/2).

Figure 4.9 illustrates extremal paths for combinations (r−1, r−1) and (r−1, 1) gen-

erated by Step I of Algorithm 4.1 when x0 = (x0, y0, φ0) = (4, 4, 2π/3), xT =

(xT , yT , φT ) = (0, 0, 3π/2) and r = 1/4. Since the maximum radius of curvature is

1, it suffices to deal only with combinations (r−1, r−1) and (r−1, 1). The other two

combinations have no values of ∆φ such that the switching line contains x0. By com-

puting and comparing the lengths of the extremal paths in Figure 4.9, the optimal

path is the extremal path for combination (r−1, 1).

To represent the run time of Algorithm 4.1, we use O-notation providing an

asymptotic upper bound and Ω-notation providing an asymptotic lower bound (Cor-
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Algorithm 4.1. Finding the optimal path using nm.
Given initial state x0 = (x0, y0, φ0), final state xT = (xT , yT , φT ), and minimum
radius of curvature r, find an optimal path which is characterized by a combination
(u (0) , u (T )) and ∆φ. Note that the maximum radius of curvature is assumed to
be 1.
I. For each combination (u (0) , u (T )) ∈ {(1, 1) , (1, r−1) , (r−1, r−1) , (r−1, 1)},

1. Determine the two centers P and Q of the initial and final circular arcs and
compute the length of PQ.

2. Determine ∆φ0 and ∆φT in [0, π] and determine I using Table 1. If I = ∅,
then go to Step 1 for the next combination because the current combination
is impossible. Otherwise, continue.

3. Compute the minimum number nm of basic pairs using (4.11) and (4.12)
with the ceiling function.

nm = dD/∆d+ 1e.
whereD =

∣∣PQ∣∣ for u (0) = u (T ) andD =
√
|PQ| − (1− r)2 cos2(∆φ/2)−

∆d/2 for u (0) 6= u (T ), and ∆d = 2 (1− r) sin (∆φ/2) with ∆φ = sup I.
4. Set n = nm and Tm =∞.
5. If n = 1, then compute the length Tn of the extremal path and go to Step

9. Otherwise, continue.
6. Compute the value of ∆φ corresponding to n using (4.11) and (4.12).

∆φ (n) = 2 sin−1 (D/ (2n (1− r))).
If ∆φ (nm) /∈ I, then go to Step 1 for the next combination. Otherwise,
continue.

7. Determine the switching line L characterized by the value of ∆φ found in
Step 6.
7a. If u (0) = u (T ), then find L by translating the line passing through

P and Q by a vector which has magnitude u−1 (0) cos (∆φ/2) and is

formed by rotating
−→
PQ by −π/2.

7b. If u (0) 6= u (T ), then find L by rotating the line passing through P
and Q through an angle α defined by (4.9).

8. Compute the length Tn of the extremal path using the switching line L
determined in Step 7.

9. Find the extremal path with minimal length for the current combination.
9a. If Tn > Tm or ∆φ (n) /∈ I, then the extremal path characterized

by the value of ∆φ (n− 1) has minimal length Tm for the current
combination. Go to Step 1 for the next combination.

9b. Otherwise, set Tm = Tn and n = n+ 1, and go to Step 6.
II. Choose the one among the (at most four) combinations of ∆φ with the

shortest path length. The extremal path defined by the chosen combination
(u (0) , u (T )) and the corresponding value of ∆φ is optimal. Return this opti-
mal path.
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men et al. (2001)). The worst-case and best-case run times for Algorithm 4.1 are

O (n∗ − nm) and Ω (1), respectively, where n∗ is the number of basic pairs of the

optimal path. Since n∗ approaches ∞ as r approaches 0, finding an optimal path

could theoretically require a very long time for some input. In practical applica-

tions, however, robots or vehicles under damage and/or failure conditions have their

own constraints, e.g., maximum fuel available, or environmental constraints. If these

constraints are considered in Algorithm 4.1, its run time can be within acceptable

bounds. Therefore, a hard upper bound can be given for the run time for real-time

applications.

Although Algorithm 4.1 is acceptable for real-time implementation, it is possible

to modify Algorithm 4.1 so as to find an optimal path even more efficiently. The

modified algorithm uses a reference value of ∆φ to enable direct identification of the

extremal path with the shortest length for each combination (u (0) , u (T )). To find

this reference value, we now turn to the study of the path length (or time) T as a

function of ∆φ. Since T = T1 + (n− 1) ∆d, we derive formulas for the time T1 and

the number n of basic pairs. By the definition of T1, it is easy to see that for every

combination

T1 = u−1 (T )φT − u−1 (0)φ0 −
(
u−1 (T )− u−1 (0)

)
φ (t1) (4.13)

where t1 represents the first time when u (t) switches. If u (0) = 1, then φ (t1) =

π + ∆φ/2 + θ. If u (0) = r−1, then φ (t1) = π −∆φ/2 + θ. Note that T1 is negative

when u (0) = u (T ) and φ0 > φT . Since θ is the angle between the switching line L

and the x-axis, it is the sum of two angles; one is the angle α in (4.9), and the other is

the angle between the vector
−→
PQ and the x-axis. For each combination, the number

n of basic pairs is defined by the expression inside the ceiling function in Step 3 of

Algorithm 4.1.
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For each combination (u (0) , u (T )), both T1 and n are functions of ∆φ, and thus

T is a function of ∆φ. If ∆φ is a continuous variable, then it follows from the second

derivative test that the path length T has a minimum at the same ∆φ on [0, π] for

all combinations. The value of ∆φ at which T is minimum for each combination is a

solution of the equation

∆T cos (∆φ/2) = ∆d, (4.14)

or equivalently,

tan (∆φ/2) = ∆φ/2 + rπ/ (1− r) . (4.15)

This value of ∆φ is denoted ∆φR. Note that (4.15) has only one solution between 0

and π and can be solved by conventional numerical methods, e.g., Newton-Raphson.

For each combination (u (0) , u (T )), as ∆φ decreases from π, T first decreases,

reaches a minimum at the solution of (4.14), and then increases. Note that this

behavior of T , as a function of ∆φ, guarantees that the sequence of extremal paths

generated by Step I of Algorithm 4.1 converges in a finite number of iterations to the

extremal path with the shortest length for each combination. Since each combination

has its own domain I of possible values of ∆φ, using ∆φR allows direct identification

of ∆φ that minimizes length among all paths for the same combination.

If the interior of the domain I (i.e., the set excluding its endpoints) does not

contain ∆φR, the path length T (∆φ) is strictly decreasing or increasing on I. In the

former case, the supremum of I can be used to evaluate the number n of basic pairs

which corresponds to a value ∆φ in I closest to ∆φR. In the latter case, the infimum

of I can be used to evaluate n. By contrast, if the interior of the domain I contains

∆φR, T (∆φ) is strictly decreasing and increasing on the interval [inf I, ∆φR] and the

interval [∆φR, sup I], respectively. To find the extremal path with minimal length for

each combination, the two candidates for n corresponding to a value of ∆φ in each

interval closest to ∆φR are considered. One candidate is computed by using ∆φR and
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the ceiling function, and the other is calculated by using ∆φR and the floor function

to choose values of ∆φ in I. Table 2 summarizes candidates of such n.

Table 4.2: Candidates of n for the shortest path among all paths of the same com-
bination. (Here ∆d = 2 (1− r) sin (∆φ/2), and d e and b c denote the
ceiling function and the floor function, respectively.)

Case n
∆φR /∈ Interior I and
sup I ≤ ∆φR

n = dD/∆d+ 1e and ∆φ = sup I

∆φR /∈ Interior I and
∆φR ≤ inf I

n = bD/∆d+ 1c and ∆φ = inf I

∆φR ∈ Interior I and
[inf I, ∆φR]

n = dD/∆d+ 1e and ∆φ = ∆φR

∆φR ∈ Interior I and
[∆φR, sup I]

n = bD/∆d+ 1c and ∆φ = ∆φR

Algorithm 4.2 finds the optimal path using the reference value ∆φR. In the first

step, (4.15) is solved to obtain ∆φR. Let us again consider the combination (r−1, 1),

as shown in Figure 4.9 (b), in the same manner as for Algorithm 4.1. As previously

discussed, I = [∆φT , π]. Since ∆φR lies in the interior of I, the switching line

characterized by ∆φR lies between the line
←→
PQ and the switching line characterized

by ∆φT . Thus, for combination (r−1, 1), the extremal path with minimal length is

defined by one of two switching lines, one lying between the switching lines defined by

∆φT and ∆φR and the other lying between
←→
PQ and the switching line defined by ∆φR.

This follows from the fact that T is decreasing and increasing on [∆φT , ∆φR] and

[∆φR, π], respectively. These two candidates for the switching line are characterized

by n, as shown in Table 2.

The candidate path with shorter length is then selected for combination (r−1, 1).

In Figure 4.9 (b), the extremal path with minimal length comes from a switching line

defined by ∆φ between ∆φT and ∆φR. Note that if ∆φR does not lie in the interior of

I, the value of ∆φ corresponding to n determined by Table 2 defines the extremal path

with minimal length among all paths of the same combination. A similar argument

applies to the remaining combinations (1, 1), (1, r−1) and (r−1, r−1). Of the (at most
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four) paths, the shortest can then be chosen, as stated in Step III of Algorithm 4.2.

Algorithm 4.2. Finding the optimal path using ∆φR.
Given initial state x0 = (x0, y0, φ0), final state xT = (xT , yT , φT ), and minimum ra-
dius of curvature r, find an optimal path characterized by combination (u (0) , u (T ))
and ∆φ. Note that the maximum radius of curvature is assumed to be 1.

I. Find a solution to tan (∆φ/2) = ∆φ/2 + rπ/ (1− r) in the interval [0, π] using
conventional numerical methods, e.g., the Newton-Raphson method; let ∆φR
represent this solution.

II. For each combination (u (0) , u (T )) ∈ {(1, 1) , (1, r−1) , (r−1, r−1) , (r−1, 1)},
1. Determine the two centers P and Q of the initial and final circular arcs and

compute the length of PQ.
2. Determine ∆φ0 and ∆φT in [0, π] and determine I using Table 1. If I = ∅,

then go to Step 1 for the next combination because the current combination
is impossible. Otherwise, go to Step 3.

3. Compute the number n of basic pairs using Table 2. If ∆φR ∈ Interior I,
then compute n for the interval [∆φR, sup I].

4. Set m = n.
5. If m = 1, then compute the length Tm of the extremal path and go to

Step 9. Otherwise, continue.
6. Compute the value of ∆φ corresponding to m using (4.11) and (4.12).

∆φ (m) = 2 sin−1 (D/ (2m (1− r))).
If ∆φ (n) /∈ I, then go to Step 9. Otherwise, continue.

7. Determine the switching line L characterized by the value of ∆φ found in
Step 6.
7a. If u (0) = u (T ), then find L by translating the line passing through

P and Q by a vector which has magnitude u−1 (0) cos (∆φ/2) and is

formed by rotating
−→
PQ by −π/2.

7b. If u (0) 6= u (T ), then find L by rotating the line passing through P
and Q through an angle α defined by (4.9).

8. Compute the length Tm of the extremal path using the switching line L
determined in Step 7 and go to Step 10.

9. If ∆φ (m) /∈ I, then check whether or not ∆φR ∈ Interior I.
9a. If ∆φR /∈ Interior I, then go to Step 1 for the next combination

because the current combination is impossible.
9b. If ∆φR ∈ Interior I and m = n, then set m equal to the number of

basic pairs for the interval [inf I, ∆φR] in Table 2 and return to Step
6.

9c. If ∆φR ∈ Interior I and m 6= n, then check whether or not ∆φ (n) ∈
I. If ∆φ (n) /∈ I, then go to Step 1 for the next combination because
the current combination is impossible. Otherwise, the extremal
path characterized by the value of ∆φ (n) has minimal length Tn for
the current combination. Go to Step 1 for the next combination.
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10. If ∆φ (m) ∈ I, then check whether or not ∆φR ∈ Interior I.
10a. If ∆φR /∈ Interior I; then the extremal path characterized by the

value of ∆φ (m) has minimal length Tm for the current combination.
Go to Step 1 for the next combination.

10b. If ∆φR ∈ Interior I and m = n, then set m equal to the number of
basic pairs for the interval [inf I, ∆φR] in Table 2 and return to Step
6.

10c. If ∆φR ∈ Interior I and m 6= n, then check whether or not ∆φ (n) ∈
I. If ∆φ (n) /∈ I, then the extremal path characterized by the value
of ∆φ (m) has minimal length Tn for the current combination. Go to
Step 1 for the next combination. Otherwise, choose the one between
∆φ (m) and ∆φ (n) with the shorter path length. The extremal path
characterized by the chosen value of ∆φ has minimal length for the
current combination. Go to Step 1 for the next combination.

III. Choose the one among the (at most four) combinations of ∆φ with the
shortest path length. The extremal path defined by the chosen combination
(u (0) , u (T )) and the corresponding value of ∆φ is optimal. Return this opti-
mal path.

It follows from the behavior of the path length (or time) T that both Algorithms

1 and 2 generate the same time-optimal solution. Except for Step I of Algorithm

4.2 to find the reference value ∆φR, there is no recursive procedure, so Algorithm 4.2

runs in Θ (1) for any input (where Θ-notation refers to an asymptotically tight bound

(Cormen et al. (2001))). This enables Algorithm 4.2 to find an optimal path more

efficiently than Algorithm 4.1 as n∗ − nm grows large.

By Algorithm 4.1 or 4.2, we can select combination (u (0) , u (T )) and the corre-

sponding ∆φ that define the optimal path from the initial state x0 to the final state

xT . The combination (u (0) , u (T )) and the corresponding value of ∆φ uniquely

characterize the switching line yielding the family of extremal controls of the optimal

path. Therefore, the sequence of points of the optimal path that lie on its switching

line L can be found as stated in Algorithm 4.3.
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Algorithm 4.3. Compute points of an optimal path lying on its switching line L.
Given the combination (u (0) , u (T )) and the corresponding value of ∆φ that define
the optimal path determined in Algorithm 4.1 or 4.2, compute the sequence of points
of the optimal path lying on its switching line L.

I. Determine the first time (or length) t1 at which u (t) switches between 1 and
r−1.
1. If u (0) = 1, then t1 = π + ∆φ/2 + θ − φ0.
2. If u (0) = r−1, then t1 = r(π −∆φ/2 + θ − φ0).
Note that θ represents the angle between L and the x-axis and is determined
in Step 7 of Algorithm 4.1 or 4.2.

II. Compute the point (x (t1) , y (t1)) by integrating ẋ (t) = cosφ (t), ẏ (t) =
sinφ (t) and φ̇ (t) = u (t) over [0, t1].

III. Set N = 2n − 2 for combinations (1, 1) and (r−1, r−1) and N = 2n − 1 for
combinations (1, r−1) and (r−1, 1) where n is the number of basic pairs corre-
sponding to ∆φ.

IV. For i = 2, 3, · · · , N ,
1. Determine the ith time (or length) ti at which u (t) switches between 1 and

r−1.
1a. If u (t) = 1 for ti−1 < t < ti, then ti = ∆φ+ ti−1.
1b. If u (t) = 1/r for ti−1 < t < ti, then ti = r (2π −∆φ) + ti−1.

2. Compute the point (x (ti) , y (ti)) by integrating ẋ (t) = cosφ (t), ẏ (t) =
sinφ (t) and φ̇ (t) = u (t) over [ti−1, ti].

4.5 Algorithm Performance

We investigated the performance of Algorithms 1 and 2 over 1,000 different cases.

Two performance metrics were considered: computation time and extremal path’s

existence for each combination. The initial state x0 = (x0, y0, φ0) was uniformly

distributed on [−100, 100] × [−100, 100] × [0, 2π). Ten sample points on each axis

(i.e., the x-axis, y-axis and φ-axis) were considered as each component of x0. For

every initial state x0, the final state xT was given by xT = (xT , yT , φT ) = (0, 0, π/2)

and r = 1/4.

For every initial state x0, we evaluated the computation times of Algorithms 1

and 2, for finding the optimal path, implemented in Matlab. Over 1,000 initial states,

the average computation times of Algorithms 1 and 2 were 3.07 × 10−3 seconds and

1.99 × 10−3 seconds, respectively, on a 2.66 GHz Intel Core i7, running Mac OS X.
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Figure 4.10 shows a histogram of computation times for Algorithms 1 and 2 over

1,000 initial states. The bars are for intervals of width 0.5. The computation times

for Algorithm 2 are nearly constant as expected. In about 50% of the test cases, the

computation time of Algorithm 1 is near the mean value which is slightly higher than

the average execution time for Algorithm 2. Since n∗ − nm is proportional to
∣∣PQ∣∣,

the computation time of Algorithm 1 increases approximately linearly with
∣∣PQ∣∣.

Therefore, while both algorithms have good real-time performance, Algorithm 2 is

slightly better in terms of average run time and run time variance with
∣∣PQ∣∣. Note

that the average computation time of Algorithm 3 is 9.0×10−4 seconds and the same

order of magnitude as the running times for Algorithms 1 and 2 with little variation.
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Figure 4.10: Histogram of computation times of Algorithms 1 and 2 over 1,000 initial
states.

Figures 4.11 (a) and (b) respectively illustrate histograms of feasible combinations

78



for which there is an extremal path satisfying the boundary conditions and of the

optimal path’s combination for each case. Figure 4.11 (a) indicates the existence

of extremal paths as the following percentages of the 1,000 test cases: 21.8 % for

combination (1, 1), 35 % for combination (1, r−1), 100 % for combination (r−1, r−1)

and 35.4 % for combination (r−1, 1). Every initial state x0 is joined to the final state

xT by an extremal path of combination (r−1, r−1). This follows from the fact that

the domain I for this combination is of the form [0, ∆φ] for some ∆φ ∈ [0, π] and

the fact that the number n of basic pairs increases toward infinity as ∆φ decreases.

As a final analysis, we examined the likelihoods of selecting each of the four pos-

sible combinations as optimal over our 1,000 initial states. Figure 4.11 (b) shows

the results: 13.7% selection of combination (1, 1), 23.1% selection of combination

(1, r−1), 38.9% selection of combination (r−1, r−1) and 24.3% selection of combination

(r−1, 1). Thus, in the simulation, the most common and least common combinations

of optimal paths are (r−1, r−1) and (1, 1), respectively. Normalizing the frequency of

each optimal path’s combination in Figure 4.11 (b) by its extremal path’s feasibility

frequency in Figure 4.11 (a) shows that more than 60% of the extremal paths for

combination (1, 1), (1, r−1) or (r−1, 1) were selected as an optimal path. For com-

bination (r−1, r−1), less than 40% of the extremal paths were optimal even though

extremal paths always exist. These results are related to the value of r and domain

I for each combination. Since ∆φR increases with r and ∆φ of the optimal path is

close to ∆φR, the percentages of combinations (1, 1) and (r−1, r−1) for an optimal

path, respectively, increase and decrease as r approaches 1.

4.6 Conclusions

This chapter has presented the a characterization of shortest paths for a unidirec-

tional Dubins car, subject to the turn rate bounded on an interval whose end points

are either both positive or negative. While previous studies have extensively dealt
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(a) Feasible combinations of extremal paths.
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(b) Combinations of optimal paths.

Figure 4.11: Histograms of combinations over 1,000 initial states.

with finding the shortest path for objects able to travel along straight paths, this

study for the first time finds optimal paths for objects unable to travel straight due

to extreme kinematic constraints. We applied Pontryagin’s minimum principle to

characterize the optimal path. As a result, we were able to determine the following

three possible candidates for the optimal path: a circular arc with normalized maxi-

mum radius 1, a circular arc with normalized minimum radius r, or the concatenation

of alternating arcs of two tangent circles with radii r and 1 at every switching point.

Not all extremal paths are optimal. In Section 4.3, we derived geometric interpre-

tations for each of the four possible combinations of initial arc and final arc. Each

combination and each value of the Hamiltonian (or ∆φ) uniquely characterize the

switching line yielding the family of extremal controls. The geometric interpretations

for extremal paths were employed to develop an efficient algorithm for determining

the optimal path (i.e. the combination and the value of the Hamiltonian).
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CHAPTER V

Time-Optimal Paths for Unidirectional Dubins

Airplanes

5.1 Introduction

Aircraft experiencing an emergency situation induced by damage or failure must

rapidly identify a path to safe landing site to minimize risks associated with continued

flight. A fixed-wing aircraft cannot travel in reverse, nor can it change heading

instantly. Therefore, the traditional aircraft motion planning problem is to find an

optimal path for a rigid-body aircraft, treated as a particle, moving only forward with

a given maximum turn rate and maximum climb/descent rate. As shown in Chapter I,

an aircraft can have unidirectional turning capabilities imposed by structural damage

or jammed control surfaces.

This chapter extends the unidirectional Dubins car problem studied in Chapter IV

to a Dubins airplane with unidirectional turning constraints. To simplify our problem,

we suppose that vertical and turn rates are independent of each other. Additionally,

we assume in this work that the aircraft travels at constant horizontal velocity. This

assumption requires that we select a speed that is possible to maintain over all path

segments.

For the unidirectional Dubins airplane, we again apply the minimum principle
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of Pontryagin to characterize the time-optimal path to reach a given final oriented

point. The optimal path will be divided into two paths, one with the same transition

time as the shortest path for the unidirectional Dubins car (see Chapter IV), and the

other with transition time determined by the difference between the initial and final

altitudes. An algorithm is presented to find optimal paths for Dubins airplanes with

unidirectional turning constraints. This algorithm selects the appropriate formulation

based on initial and final 4-D states as well as turning and climbing constraints. To

ensure completeness, the optimal algorithm is augmented by a feasible but suboptimal

path planning option to handle rare but possible cases for which no optimal solution

is defined.

The chapter is organized as follows. Section II of the chapter provides a char-

acterization of the optimal 3D path using the minimum principle of Pontryagin. In

Section III, the shortest unidirectional Dubins path is extended to pass through the

final oriented point at the time determined by altitude difference and maximum climb

(or descent) rate. Section IV presents an algorithm to find the optimal or suboptimal

(but feasible) path given any initial and final oriented points. Section V validates the

algorithm on a series of test cases, and Section VI applies the proposed algorithm to

an aircraft emergency landing planning problem.

5.2 Necessary Conditions for Optimality

Given two points (x0, y0, z0) and (xT , yT , zT ) in R3 with corresponding directions

φ0 and φT in S1, we want to find a continuous and piecewise C2 path (x, y, z) of

minimal length subject to the following constraints:

(i) The radius of curvature lies between r and 1 where 0 < r < 1. The reciprocal of

the radius, called the control (or the curvature) and denoted u, is also bounded

on control region U . Since every path is continuous and piecewise C2, the control
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is piecewise continuous.

(ii) The sign of curvature remains unchanged. Therefore, the control region U is

[1, r−1]. The case U = [−r−1, −1] can be treated similarly to U = [1, r−1].

(iii) The path (x, y) has unit speed. Even if the path has non-zero constant speed,

the path has a unit-speed reparametrization (do Carmo (1976)), and thus the

path with unit speed produces no loss of generality.

(iv) The rate of change in altitude (or the vertical rate), called the control and

denoted v, is bounded on the control region V = [−vmax, vmax] where 0 <

vmax < 1. 1

(v) Bounded controls u and v are independent of each other.

Under these constraints, a path (x, y, z) is a solution of the system of differential

equations

ẋ (t) = cosφ (t) ,

ẏ (t) = sinφ (t) ,

ż (t) = v (t) ∈ V,

φ̇ (t) = u (t) ∈ U,

(5.1)

where φ (t) is the angle between unit tangent vector (ẋ, ẏ) in the xy plane and the

x-axis, and φ (t) is a real number modulo 2π. Let x = (x (t) , y (t) , z (t) , φ (t)). Then

the boundary conditions are

x (0) = (x0, y0, z0, φ0) , x0 and x (T ) = (xT , yT , zT , φT ) , xT . (5.2)

1A value vmax = 1 would imply a 45◦ flight path angle. Fixed-wing aircraft will climb and descend
at a more shallow angle. Additionally, an aircraft may have asymmetric bounds on vertical rate,
e.g., it may be capable of descending faster than climbing. Each Dubins airplane problem posed will
require either a climb or descent, indicating the appropriate value of vmax for that particular path
planning activity.
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The cost to be minimized is the transition time from an initial oriented point x0 to a

final oriented point xT given by

J (u, v) =

T∫
0

dt = T.

Therefore, our problem becomes a time-optimal problem.

We now characterize the necessary conditions for the time-optimal path (x, y, z)

using Pontryagin’s minimum principle. Let ψ1, ψ2, ψ3 and ψ4 be the adjoint variables

corresponding to x, y, z and φ, respectively. The Hamiltonian is then defined by

H (ψ, x, u, v) = ψ1 cosφ+ ψ2 sinφ+ ψ3v + ψ4u,

where ψ = (ψ1, ψ2, ψ3, ψ4), and the adjoint system is defined by

ψ̇1 (t) = −∂H
∂x

= 0,

ψ̇2 (t) = −∂H
∂y

= 0,

ψ̇3 (t) = −∂H
∂z

= 0,

ψ̇4 (t) = −∂H
∂φ

= ψ1 sinφ (t)− ψ2 cosφ (t) .

(5.3)

It follows from this adjoint system that ψ1, ψ2 and ψ3 are constant on [0, T ]. Using

notations λ and θ defined in Section 4.2, the Hamiltonian and system (5.3) become

H = λ cos (φ− θ) + ψ3v + ψ4u,

ψ̇4 = λ sin (φ− θ) .
(5.4)

By Pontryagin’s minimum principle, if the trajectory x (t) determined by (u (t) , v (t)) ∈

U×V is time-optimal, then there exists a non-zero continuous solution ψ = (ψ1, ψ2, ψ3, ψ4)

such that
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(1) The control (u (t) , v (t)) minimizes the Hamiltonian at every time t; that is,

H (ψ (t) , x (t) , u (t) , v (t)) = min
(ζ, η)∈U×V

H (ψ (t) , x (t) , ζ, η) .

(2) H (ψ, x, u (t) , v (t)) is constant, and

H (ψ (t) , x (t) , u (t) , v (t)) ≤ 0.

It follows from condition (1) that ψ3 (t) v (t) + ψ4 (t)u (t) ≤ ψ3 (t) ζ (t) + ψ4 (t) η (t)

for all ζ (t) ∈ U and η (t) ∈ V , and for all t in [0, T ]. Thus, the optimal control is

v (t) =


− sgn (ψ3 (t)) · vmax if ψ3 (t) 6= 0,

ζ ∈ V if ψ3 (t) = 0,

(5.5)

and

u (t) =


1 if ψ4 (t) > 0,

η ∈ U if ψ4 (t) = 0,

r−1 if ψ4 (t) < 0.

(5.6)

For ψ3 = 0, if ψ4 (t) = 0 on some open interval, then φ (t) is constant on that

interval because ψ (t) is non-zero. Thus, u (t) = 0, contradicting the assumption that

u (t) ≥ 1. Therefore, there is no open interval on which ψ4 (t) = 0, and consequently

the optimal control u (t) becomes

u (t) , umin (ψ4 (t)) =


1 if ψ4 (t) > 0,

r−1 if ψ4 (t) ≤ 0,

(5.7)
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and system (5.4) becomes

ψ̇4 (t) = sin (φ (t)− θ) ,

ψ4 (t) · umin (ψ4 (t)) = H − λ cos (φ (t)− θ) .
(5.8)

Therefore, for ψ3 = 0, the projection of a path (x, y, z) onto the xy plane is an

extremal path for the Dubins car with unidirectional turning constraints. Note that

in this case, the optimal control v (t) can have any value in V = [−vmax, vmax]. For

ψ3 6= 0, it follows from (5.1) and (5.5) that T = |z (T )− z (0)| /vmax. Consequently,

the transition time from an initial oriented point x0 to a final oriented point xT is

fixed. Therefore, for ψ3 6= 0, our problem is equivalent to the problem of finding a

continuous and piecewise C2 path (x, y) of fixed time T with the prescribed x0 and

xT subject to constraints (i), (ii) and (iii). Thus, hereafter we only consider ψ3 6= 0.

For λ = 0, it follows that ψ4 (t) is constant. Since H + vmax · |ψ3| is the constant

function with value in R, it follows that u ≡ 1 for H + vmax · |ψ3| > 0 and u ≡ r−1 for

H+vmax · |ψ3| < 0. When H+vmax · |ψ3| = 0, the control u (t) is singular. In this case,

the minimum principle gives no information about control u (t). For λ > 0, there is

no open interval on which ψ4 (t) = 0. It follows that u (t) ≡ umin (ψ4 (t)), that is, the

same result as when ψ3 = 0. Since the minimum principle remains invariant when the

adjoint vector is multiplied by λ, we can hereafter assume without loss of generality

that λ = 1. Instead of working with H in (5.4), we work with H , H + vmax · |ψ3|

because H is a constant function with value in R. Consequently, the system (5.4) can

be simplified to

ψ̇4 (t) = sin (φ (t)− θ) ,

ψ4 (t) · umin (ψ4 (t)) = H− cos (φ (t)− θ) .
(5.9)
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For H ≤ 0, system (5.9) is equivalent to system (5.8) with λ = 1, so the extremal

control u (t) generates extremal paths for Dubins cars with unidirectional turning

constraints. The only difference is that the optimal control v (t) is defined as either

−vmax or vmax instead of any value between−vmax and vmax. For unidirectional Dubins

cars, an extremal path is a concatenation of alternating circular arcs of radius 1 and

r with the following properties:

(P1) It is smooth in the sense that at juncture points of the concatenation the two

circles have a common tangent vector.

(P2) The angular path change for all circles of radius 1 is ∆φ , 2 cos−1 (−H) where

0 ≤ ∆φ ≤ π.

(P3) The angular path change for all circles of radius r is 2π −∆φ.

This follows from the results in Chapter IV.

For H > 0, there are two cases to consider: H > 1 and 0 < H ≤ 1. For

H > 1, it follows that ψ4 (t) > 0 and u ≡ 1. For 0 < H ≤ 1, the variation in

ψ4 (t) · umin (ψ4 (t)) versus φ (t) is illustrated in Figure 5.1. This variation is obtained

from −H − λ cos (φ (t)− θ) by translating vertically upward. Thus, in this case,

the planar paths generated by extremal controls are concatenations of alternating

circular arcs of radius 1 and r with smoothness property (P1) and the following

reversed turning properties:

(P2′) The angular path change for all circles of radius 1 is 2π −∆φ.

(P3′) The angular path change for all circles of radius r is ∆φ.

The condition that 0 < H ≤ 1 reverses the angular path changes for circles of radius

1 and radius r. A concatenation satisfying (P1), (P2′) and (P3′) is denoted as the

reverse of a concatenation satisfying (P1), (P2) and (P3).
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φ (t1) φ (t2)0 φ (t3) φ (t4)
φ (t)

1

H

ψ4 (t) · umin (ψ4 (t))

Figure 5.1: ψ4 (t) · umin (ψ4 (t)) for H = 0.5.

5.3 The Extension of Optimal Paths for Unidirectional Du-

bins Cars

We have shown that optimal paths have one of two transition times:

(1) The shortest time, denoted T ∗, for the Dubins car with unidirectional turning

constraints transferring from an initial oriented point (x0, y0, φ0) to a final

oriented point (xT , yT , φT ).

(2) The time equal to the absolute altitude difference divided by the maximum

vertical rate.

In case (1), optimal paths can be defined using the results from the unidirectional

Dubins car problem. However, in case (2), the adjoint variable ψ4 can be zero during

the entire time interval so that the necessary condition provides no information about

the relationship between u (t) and ψ4 (t). Moreover, it is rare for both the concatena-

tions and their reversed concatenations to pass through a given final oriented point

at the time corresponding to case (2). This follows from the fact that the lengths of

extremal planar paths are not densely distributed throughout R.

We show in this section that if a time-optimal path for the unidirectional Dubins

car satisfies a certain condition, then it is extended to planar paths joining x0 and xT

whose length ranges over the closed interval with end points T ∗ and T ∗ + 2πr. The

geometric properties of extremal paths for unidirectional Dubins cars in Chapter IV

will be used to find the planar path. For simplicity, only the case u (t) > 0 is
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considered. For the unidirectional Dubins car, it follows from Pontryagin’s minimum

principle that extremal paths are concatenations of alternating circular arcs of radius

1 and r with properties (P1), (P2) and (P3). These concatenations are categorized

by four combinations of initial arc and final arc, depending on their radii which are

either r or 1. Thus, we will refer to a combination as an ordered pair (u (0) , u (T ))

following the same notation as in Chapter IV.

Except for the initial and final circular arcs, the circular arcs are specified as basic

pairs whose angular path change is 2π. We now extend the basic pair defined for

extremal paths of unidirectional Dubins cars. The extended basic pair is used to

construct feasible paths of length ranging from T ∗ to no less than T ∗ + 2πr. Let r1

and r2 be in [r, 1] such that r1 6= r2. Suppose that an arc of radius r1 is followed by

an arc of radius r2, and both have property (P1) as well as the following properties:

(P2′′) The angular path change for the circle of the larger of the radii r1 and r2 is ∆φ

where 0 ≤ ∆φ ≤ 2π.

(P3′′) The angular path change for the circle of the smaller of the radii r1 and r2 is

2π −∆φ.

Then the pair of arcs of radii r1 and r2 will be referred to as an extended basic pair of

circular arcs of radii r1 and r2. Note that the order of radii r1 and r2 is crucial since

extended basic pairs with radii r1 and r2 and with radii r2 and r1 are far from equal.

Note also that 0 ≤ ∆φ ≤ π for every concatenation C, and π ≤ ∆φ ≤ 2π for every

concatenation C̄. This extended basic pair has length

∆Te , |r1 − r2|∆φ+ 2πρ, (5.10)

where ρ , min {r1, r2}. The distance between the beginning and ending points of

this pair equals

∆de , 2 |r1 − r2| sin (∆φ/2) , (5.11)
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as shown in Figure 5.2.

2 sin
∆φ

2

cos
∆φ

2∆φ

(a) A circular arc of ra-
dius r1

2r sin
∆φ

2

r cos
∆φ

22π − ∆φ

(b) A circular arc of
radius r2

Figure 5.2: An extended basic pair of circular arcs of radius r1 and radius r2 for
r1 > r2.

Using extended basic pairs, we can extend concatenations C and C̄ for unidirec-

tional Dubins cars to allow for radius, denoted re, that varies over r ≤ re ≤ 1. Then it

is possible for planar paths from x0 to xT to have length ranging over [T ∗, T ∗ + 2πr].

The extremal paths C and C̄ are extended to the following concatenations:

(C1) If C or C̄ belongs to the combination (u (0) , u (T )) with u (0) = u (T ), it is

extended to a concatenation of extended basic pairs of two circular arcs of radius

u−1 (0) and re.

(C2) If C or C̄ belongs to the combination (u (0) , u (T )) with u (0) 6= u (T ), it is

extended to a concatenation of extended basic pairs of two circular arcs of radius

re and u−1 (T ) following the first basic pair with radii u−1 (0) and u−1 (T ). The

first time at which u (t) switches between u (0) and u (T ) remains unchanged.

These concatenations are referred to as extended concatenations. In this construction

of concatenations, the extremals u (0) and u (T ) remain unchanged to simplify the

solution, as indicated in Figure 5.3.

In the construction of extremal paths for unidirectional Dubins cars, all points

at which the extremal u (t) switches between 1 and r−1 lie on a certain line, called
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x0

xT

x (T1)∆d

L

D

P

Q

(a) The concatenation C for a combination
(u (0) , u (T )) =

(
r−1, 1

)

x0

xT

x (T1)
∆d

L

D
P

Q

e

(b) The extended concatenation C2 of C

Figure 5.3: The extended concatenations.

the switching line and denoted L. This switching line L is uniquely characterized by

∆φ in [0, π] for each combination (u (0) , u (T )). Since the construction of extended

concatenations leaves the extremals u (0) and u (T ) unchanged, the switching line for

extended concatenations is also characterized by ∆φ in [0, 2π] for any combination

(u (0) , u (T )) and any radius re in [r, 1]. The switching line for extended concate-

nations contains all points at which the control u (t) switches either between 1 and

r−1
e or between r−1

e and r−1. This switching line is denoted Le and referred to as the

extended switching line.

Let P and Q be two centers of the initial circular arc for u (0) = u (T ) (arc

following the initial arc for u (0) 6= u (T )) and the final circular arc, respectively.

It follows from the results in Chapter IV that the extended switching line Le is a

line obtained by translating the line passing through P and Q by a vector which

has magnitude u−1 (0) |cos (∆φ/2)| for u (0) = u (T ) (magnitude u−1 (T ) |cos (∆φ/2)|

for u (0) 6= u (T )) and is formed by rotating
−→
PQ by − sgn (cos (∆φ/2)) · π/2 (Figure

5.4). For each combination (u (0) , u (T )) with u (0) 6= u (T ), the first time where
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u (t) switches is unchanged by alterations of the radius re. Thus, the combination

(u (0) , u (T )) with u (0) 6= u (T ) can be regarded as the combination (u (0) , u (T ))

with u (0) = u (T ) by letting the arc following the initial arc be an initial arc and

letting the first time where u (t) switches be 0. Henceforth, only combinations with

u (0) = u (T ) will be considered.

L1

cos
∆φ

2
P

x0

xT

Q

x

y

Le

(a) A combination (u (0) , u (T )) = (1, 1).

x0

xT

P

Q

x

y

L1

Lr

Le

(b) A combination (u (0) , u (T )) =
(
r−1, 1

)
.

Figure 5.4: The construction of the extended switching line Le.

We now define the radius re of extended concatenations for any combination

(u (0) , u (T )) with u (0) = u (T ). This construction allows extended basic pairs to

join the initial state x0 with the final state xT . Let n∗ be the number of basic pairs

of the optimal path for unidirectional Dubins cars, and let n ≥ n∗ be fixed. Then

it follows from the results in Chapter IV that there is a closed interval in [0, 2π]

with end points satisfying
∣∣PQ∣∣ = 2 (n− 1) (1− r) sin (∆φ/2). This closed interval

is denoted by In. If the radius re is given by

re =


1−

∣∣PQ∣∣
2 (n− 1) sin (∆φ/2)

if u (0) = 1,∣∣PQ∣∣
2 (n− 1) sin (∆φ/2)

+ r if u (0) = r−1,

(5.12)
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which is defined for ∆φ in In, then the extended concatenation with radius u−1 (0)

and re satisfies boundary conditions x (0) = x0 and x (T ) = xT . In either case, by

(5.11), (5.12) becomes

|PQ| = (n− 1) ∆de, (5.13)

where ∆de = 2 |u−1 (0)− re| sin (∆φ/2). Since ∆de equals the distance between the

centers of two adjacent circular arcs with the same radius, the (n− 1)th extended

basic pair and the final circular arc are smooth in the sense that at their juncture

point lying on Le they have a common tangent vector. Therefore, the extended

concatenation with radius u−1 (0) and re defined by (5.12) passes through two oriented

points x0 and xT .

For each n ≥ n∗, the radius re of extended concatenations is defined for ∆φ. It is

straightforward to see that re (∆φ) is either strictly increasing or strictly decreasing

on the closed interval In and there is a one-to-one correspondence between ∆φ and

re for all ∆φ in In. Therefore, either of these variables can be used to characterize

extended concatenations. For u (0) = 1, as re increases, ∆φ first increases and then

reaches π. For u (0) = r−1, as re decreases, ∆φ first increases and then reaches π.

In either case, the extended switching line Le approaches the line passing through P

and Q as ∆φ approaches π that is the endpoint of In.

We are now prepared to derive a condition for extended concatenations joining

x0 and xT to have length ranging from T ∗ to no less than T ∗ + 2πr. It follows from

the results in Chapter IV that the optimal time (or length) T ∗ for the unidirectional

Dubins car is given by

T ∗ = T1 + (n∗ − 1) ∆T (5.14)

where T1 denotes the time at which the first basic pair has a point with φT and

∆T = (1− r) ∆φ∗ + 2πr. Since T1 is unchanged by alterations of the radius re, it

follows from (5.12) that the length T of the extended concatenation can be expressed
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as

T = T1 + (n− 1) ∆Te =


T1 + 2 (n− 1) π −

∣∣PQ∣∣ (2π −∆φ)

2 sin (∆φ/2)
if u (0) = 1,

T1 + 2 (n− 1) πr +

∣∣PQ∣∣∆φ
2 sin (∆φ/2)

if u (0) = r−1,

(5.15)

where n ≥ n∗. Note that T ∗ = T1 + 2 (n∗ − 1)πr +
∣∣PQ∣∣∆φ∗/ (2 sin (∆φ∗/2)) where

∆φ∗

Since we are concerned with the variation of the length of extended concatenations,

we need to deal with the difference T − T ∗ given by

T − T ∗ =


∣∣PQ∣∣ (2π −∆φ∗)

2 sin (∆φ∗/2)
−
∣∣PQ∣∣ (2π −∆φ)

2 sin (∆φ/2)
if u (0) = 1,∣∣PQ∣∣∆φ

2 sin (∆φ/2)
−

∣∣PQ∣∣∆φ∗
2 sin (∆φ∗/2)

if u (0) = r−1.

The behavior of T−T ∗, as a function of ∆φ, is the same in either case. For ∆φ = ∆φ∗,

T = T ∗. Then T −T ∗ increases with an increase in ∆φ and reaches a maximum value

∣∣PQ∣∣ (π −∆φ∗)

sin (∆φ∗/2)

that occurs at 2π −∆φ∗. Thus, if the maximum of T − T ∗ is greater than or equal

to 2πr, i.e., ∣∣PQ∣∣
2πr

(π −∆φ∗) ≤ sin (∆φ∗/2) (5.16)

then the extended concatenation has length T ranging from T ∗ to no less than T ∗ +

2πr.
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5.4 Algorithm for Finding an Optimal Path for the Unidi-

rectional Dubins Airplane

We now present an algorithm to determine an optimal path from an initial state

x0 to a final state xT for the unidirectional Dubins airplane. Let ∆z be the altitude

difference zT − z0 and let T∆z = |∆z| /vmax. The optimal path passes through xT

at either T ∗ or T∆z where T ∗ is the optimal time (or length) for the unidirectional

Dubins car. If the optimal path has T ∗ as the transition time, then it follows from

Pontryagin’s minimum principle that the vertical rate v (t) can have any value in V .

In this case, |∆z| ≤ vmaxT
∗. If vmaxT

∗ < |∆z|, the optimal path cannot pass through

xT at T ∗ because of the altitude difference and climbing/descending constraints. In

this case, the optimal path must have T∆z because T∆z is the least transition time.

Thus, there are three cases to consider: (1) T∆z ≤ T ∗, (2) T ∗ < T∆z < T ∗ + 2πr and

(3) T ∗ + 2πr ≤ T∆z.

We consider first the case where T∆z ≤ T ∗. The condition that |∆z| /T ∗ ≤

vmax means that the optimal transition time T ∗ for the unidirectional Dubins car

is sufficient to reach the final altitude zT . In this case, the optimal control v (t)

is the constant function with value ∆z/T ∗ in V . Note that v (t) can also be any

function satisfying ∆z =
∫ T ∗

0
v (t) dt. Therefore, for T∆z ≤ T ∗, the optimal path is a

concatenation of alternating circular helices of radii 1 and r and of pitch2 2π |∆z| /T ∗

whose projection onto the xy plane is the optimal path for the unidirectional Dubins

car from Chapter IV.

We next consider the case where T ∗+ 2πr ≤ T∆z. For this condition, the optimal

time T ∗, or any time less than T∆z, is not sufficient to reach the final altitude zT

because |v (t)| ≤ vmax. In this case, the optimal control v (t) is either +vmax or −vmax,

depending on the sign of ∆z. It follows that the transition time from x0 to xT is fixed

2The word “pitch” has a different meaning in aeronautics and in differential geometry. In this
chapter, pitch refers to the change in height of a circular helix over one revolution of the helix.
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and equal to T∆z. Thus, for T ∗ + 2πr ≤ T∆z, the optimal path for the unidirectional

Dubins airplane passes through the point xT at time T∆z. Since (T∆z − T ∗) / (2πr) >

0, there is exactly one positive integer m such that m ≤ (T∆z − T ∗) / (2πr) < m+ 1.

It follows that

2πr ≤ T∆z − T ∗

m
< 4πr. (5.17)

Therefore, if there is a planar path returning to the same oriented point of length

ranging from 2πr to 4πr, then this path with extremal control v (t) can join two

oriented points with the same x and y coordinates and the same direction φ, but with

a difference of ∆z ± vmaxT
∗ in altitude for any T∆z with T∆z ≥ T ∗ + 2πr.

Given any T∆z such that T∆z ≥ T ∗ + 2πr, there are two cases to consider: m ≥

r/ (1− r) andm < r/ (1− r). Form ≥ r/ (1− r), it follows that 2 (m+ 1) πr ≤ 2mπ.

Thus, m circles of radius (T∆z − T ∗) / (2mπ) have length T∆z−T ∗ between 2mπr and

2 (m+ 1) πr. Note that the radius of these circles is in the closed interval [r, 1]. In

that case, the optimal path for the unidirectional Dubins airplane is with a circular

helix of radius (T∆z − T ∗) / (2mπ) and pitch 2πvmax following a concatenation of

alternating circular helices of radii 1 and r and of pitch 2πvmax whose projection onto

the xy plane is the optimal path for the unidirectional Dubins car. For example, if

r ≤ 1/2, then m ≥ r/ (1− r) for all m ∈ N, so there exists an optimal path with

transition time T∆z for every time T∆z with T∆z ≥ T ∗ + 2πr.

For m < r/ (1− r), it follows that 2mπ < 2 (m+ 1) πr. If 2mπr ≤ T∆z − T ∗ ≤

2mπ, then the optimal path for the unidirectional Dubins airplane can be defined in

the same way as in the case where m ≥ r/ (1− r). This argument does not apply,

however, if 2mπ < T∆z −T ∗ < 2 (m+ 1) πr. This follows from unidirectional turning

constraints restricting the radius of curvature to lie between r and 1. Note that since

the Dubins airplane has no minimum absolute value of turn rate, its time-optimal

path followed by a circular helix successfully connects any pair of x0 and xT for the

case in which T ∗ + 2πr ≤ T∆z as stated in Chitsaz and LaValle (2007).
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The case where T ∗ + 2mπ < T∆z < T ∗ + 2 (m+ 1) πr can be handled using the

case where T ∗ < T∆z < T ∗ + 2πr. If there exists a planar path, starting at x0, that

passes through xT at T ranging from T ∗ to T ∗ + 2πr, then this path followed by

circles with radius in [r, 1] passes through the oriented point xT at any time T∆z with

T ∗+ 2mπ < T∆z < T ∗+ 2 (m+ 1) πr. This follows from the fact that 2 (m+ 1) πr <

2mπ + 2mπr for all m in N. Therefore, the control u (t) corresponding to the above

path and the control v (t) ≡ sgn (∆z) · vmax are optimal for the unidirectional Dubins

airplane. Henceforth only the case T ∗ < T∆z < T ∗ + 2πr will be considered.

For T ∗ < T∆z < T ∗ + 2πr, ψ3 (t) is a non-zero constant and the optimal control

v (t) equals sgn (∆z) · vmax. The extended concatenation illustrated in the preceding

section passes through xT at any time T with T ∗ ≤ T ≤ T ∗+2πr under the condition

that the optimal path for the unidirectional Dubins car satisfies (5.16). The extended

concatenation of the shortest unidirectional Dubins path with |v (t)| ≡ vmax followed

by a circular helix of radius 1 and pitch 2πvmax is the optimal path for the unidirec-

tional Dubins airplane if 2mπ < T∆z − T ∗ < 2 (m+ 1) πr. This follows from the fact

that T ∗ ≤ T∆z − 2mπ < T ∗ + 2πr. This concatenation has length |∆z| − 2mπvmax.

The extended concatenation has a maximum transition time T ∗+
∣∣PQ∣∣ (π −∆φ∗) ·

sin−1 (∆φ∗/2), even though (5.16) does not hold for the shortest unidirectional Dubins

path. This maximum length is denoted by Tmax. It follows that there is an optimal

path for the unidirectional Dubins airplane if T∆z − 2mπ ≤ Tmax. In this case,

such a path is an extended concatenation with extremal control v (t) followed by a

circular helix of radius 1 and pitch 2πvmax. The optimal path has transition time

T∆z. When Tmax < T∆z − 2mπ ≤ T ∗ + 2 (m+ 1) πr − 2mπ, a suboptimal path

for the unidirectional Dubins airplane is used to join two oriented points x0 and

xT . The shortest unidirectional Dubins path followed by m circles of radius r has

length T ∗ + 2mπr. With extremal control v (t), this path joins an initial oriented

point x0 and a point with the same x and y coordinates and the same direction φ as
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xT , but with a difference of vmax · (T∆z − T ∗ − 2mπr) in altitude. Since this altitude

difference is less than or equal to 2πr, an additional circle of radius r and with control

v (t) ≡ sgn (∆z) ·vmax ((T∆z − T ∗) / (2πr)−m) can connect such a point and the final

oriented point xT .

The preceding results are compiled in Algorithm 5.1 defining a complete solution

for the unidirectional Dubins airplane. Note that all cases return optimal solutions

except Step III-5 which is included to ensure the algorithm is complete.

5.5 Algorithm Performance

We investigate the performance of our algorithm, stated in the preceding section

over 10,000 test cases. Two performance metrics were considered: solution compu-

tation time and optimal (vs. suboptimal) path existence for each case. The initial

and final states are constructed in a similar manner to algorithm analysis for the

unidirectional Dubins car in Chapter IV. The initial state x0 = (x0, y0, φ0) is uni-

formly distributed on [−9, 9] × [−9, 9] × [0, 2π). For each x0, the values for the

initial altitude z0 vary over the set {0, 1/4, 1/2, 3/4, 1, 2, 3, 4, 5, 10}. Ten sam-

ple points on each axis (i.e., the x-axis, y-axis, z-axis and φ-axis) are considered

as each component of x0. For every initial state x0, the final state xT is given by

xT = (xT , yT , zT , φT ) = (0, 0, 0, π/2). The turn rate u and the vertical rate v are

bounded on U = [1, 4] and V = [−1/10, 1/10], respectively.

For every initial state x0, we evaluate the computation time of Algorithm 5.1,

implemented in Matlab. Over 10,000 initial states, the average computation time of

the algorithm is 3.33× 10−3 seconds, on a 2.40 GHz Intelr Xeonr E5645 processor,

running Linux Kernel 2.6.32. The average execution time of Algorithm 5.1 is of

the same order of magnitude as that of the algorithm for the unidirectional Dubins

car in Chapter IV because the algorithm for the unidirectional Dubins car is used

in Step I and there is no recursive procedure through the remaining steps. The
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Algorithm 5.1. Path-finding algorithm for the unidirectional Dubins airplane.
Given initial state x0 = (x0, y0, z0, φ0), final state xT = (xT , yT , zT , φT ), minimum
radius of curvature r, and maximum rate of climb (or descent) vmax, find an optimal
path from x0 to xT for the unidirectional Dubins airplane; if no optimal path exists,
find a suboptimal path (Step III-5). Note that the maximum radius of curvature is
assumed to be 1, and the vertical rate is bounded on [−vmax, vmax].

I. Compute the optimal time (or length) T ∗ for the unidirectional Dubins car
using Algorithm 4.2 in Chapter IV.

II. Compute the altitude difference ∆z = zT − z0 and T∆z.
III. Find the optimal or suboptimal controls u(t) and v(t) corresponding to a tran-

sition from x0 to xT .
1. If T∆z ≤ T ∗, then the optimal control v (t) equals ∆z/T ∗, and the optimal

control u (t) is the same as the control corresponding to the optimal path
for the unidirectional Dubins car from Chapter IV. Go to Step IV.

2. If T ∗ < T∆z, then determine the number m of circles such that m <
(T∆z − T ∗) / (2πr) ≤ m+ 1.
2a. If m 6= 0 and 2mπr < T∆z − T ∗ ≤ 2mπ, then the optimal control

v (t) equals sgn (∆z) ·vmax, and the optimal control u (t), 0 ≤ t ≤ T ∗,
is the same as the optimal control for the unidirectional Dubins car
and u (t) ≡ 2mπ/ (T∆z − T ∗), T ∗ ≤ t ≤ T∆z. Go to Step IV.

2b. Otherwise, compute the maximum time Tmax of the extended con-
catenation for the shortest unidirectional Dubins path and continue.

3. If Tmax ≥ T ∗ + 2πr, then the optimal control v (t) equals sgn (∆z) · vmax,
and the optimal control u (t), 0 ≤ t ≤ T∆z − 2mπr, is the same as the
control of the extended concatenation for the unidirectional Dubins car
and u (t) ≡ r−1, T∆z − 2mπr ≤ t ≤ T∆z. Go to Step IV.

4. If Tmax < T ∗ + 2πr and T ∗ < T∆z − 2mπ ≤ Tmax, then the optimal
control v (t) equals sgn (∆z) · vmax, and the optimal control u (t), 0 ≤ t ≤
T∆z − 2mπ, is the same as the control of the extended concatenation for
the unidirectional Dubins car and u (t) ≡ 1, T∆z − 2mπ ≤ t ≤ T∆z. Go to
Step IV.

5. If Tmax < T ∗ + 2πr and Tmax < T∆z − 2mπ ≤ T ∗ + 2 (m+ 1) πr − 2mπ,
then find the suboptimal controls u (t) and v (t) during a time interval of
length T ∗ + 2 (m+ 1) πr.
5a. For 0 ≤ t ≤ T ∗ + 2mπr, the control v (t) equals sgn (∆z) · vmax and

the control u (t), 0 ≤ t ≤ T ∗, is the same as the optimal control for
the unidirectional Dubins car and u (t) ≡ r−1, T ∗ ≤ t ≤ T ∗ + 2mπr.

5b. For T ∗ + 2mπr ≤ t ≤ T ∗ + 2 (m+ 1) πr, the control v (t) equals
sgn (∆z) · vmax ((T∆z − T ∗) / (2πr)−m), and the control u (t) equals
r−1. These controls generate an additional circular helix to compen-
sate for the altitude difference vmax · (T∆z − T ∗ − 2mπr). Go to Step
IV.

IV. Return u (t) and v (t) found in Step III.
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computation times for the algorithm are nearly constant because the control region

remains unchanged over 10,000 cases. This enables the algorithm to find an optimal

or suboptimal path in real-time.

We examined the existence of optimal paths for the unidirectional Dubins airplane

as percentages of the 10,000 test cases. In 99.9% of all cases, the algorithm found the

time-optimal path from an initial oriented point x0 to a final oriented point xT . In

0.1% of all cases, the paths generated by the algorithm are suboptimal with transition

times between T∆z and T∆z + 2πr. Note that for all 10,000 test cases the algorithm

successfully connected x0 and xT , demonstrating that the algorithm is complete.

Figure 5.5 shows the number of cases in which optimal solutions were found. For

each of the 100 initial points (x0, y0), there were 10 possible initial orientations φ0.

In Figure 5.5, a circled value of 10 implies all paths at that (x0, y0) were optimal.

The initial (x0, y0) with suboptimal paths are indicated as circled numbers less than

10. For each altitude, as shown, cases with suboptimal solutions had relatively small

distance between the initial oriented point x0 and final oriented point xT , therefore

the optimal transition time T ∗ for each of them is less than T∆z. Consequently, there

is a higher probability that the algorithm will be required to find a suboptimal path

from x0 to xT in each of these cases. For each initial point (x0, y0, φ0), the optimal

transition time T ∗ is invariant with |∆z|, while the transition time T∆z increases

with |∆z|. Therefore, more suboptimal solutions are found for lower |∆z| because

m ≥ r/ (1− r) for all m ∈ N and all r ≤ 1/2.

The likelihoods of selecting each of the five steps in Step III for each altitude

difference ∆z are shown in Table 1. For |∆z| = 0, there is no case in which a

suboptimal path joins x0 with xT because our problem is equivalent to the problem

of finding the shortest paths for the unidirectional Dubins car. As |∆z| increases

from 0, the number of cases in which T ∗ + 2πr ≤ T∆z increases and consequently the

number of optimal paths corresponding to Step III-2a increases, as shown in Table 1.
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Figure 5.5: Uniformly distributed initial states for initial altitudes z0 = 1/2, 3/4, 1.
States resulting in optimal paths and suboptimal paths are indicated as
the circled number 10 and numbers less than 10, respectively.

In particular, for |∆z| ≥ 4, every optimal transition time T ∗ is less than T∆z − 2πr,

so the algorithm only generates an optimal path corresponding to Step III-2a. This

follows from the fact that if r ≤ 1/2, then m ≥ r/ (1− r) for all m ∈ N. By contrast,

if 1/2 ≤ |∆z| ≤ 3, then there are cases in which T ∗ < T∆z < T ∗ + 2πr. In these

cases, the algorithm determines whether or not there is an extended concatenation

with transition time T∆z.

Figure 5.6 illustrates the optimal or suboptimal path generated by the algorithm

for different initial altitude cases when (x0, y0, φ0) = (−1, 3, 6π/5). Since the optimal

transition time T ∗ does not depend on z0, it follows that T ∗ = 6.4274 for z0 =

1/2, 3/4, 1. By comparing T ∗ with T∆z for each z0, the optimal path for z0 = 1/2 is a

concatenation of alternating circular helices of radii 1 and r and of pitch 2π |∆z| /T ∗

whose projection onto the xy plane is the optimal path for the unidirectional Dubins

car, as shown in Figure 5.6 (a). For z0 = 3/4, the optimal time T ∗ is not sufficient
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Table 5.1: The likelihoods of selecting each of the five steps in Step III over 10 initial
altitudes for r = 1/4 and for vmax = 1/10.

|∆z| Step III-1 Step III-2a
Step III-2b

Step III-3 Step III-4 Step III-5
|∆z| = 0 100% 0% 0% 0% 0%
|∆z| = 1/4 99.6% 0% 0.4% 0% 0%
|∆z| = 1/2 97.0% 1.3% 1.1% 0% 0.6%
|∆z| = 3/4 93.6% 4.2% 1.8% 0.1% 0.3%
|∆z| = 1 86.6% 9.7% 3.3% 0.3% 0.1%
|∆z| = 2 46.8% 46.0% 7.2% 0% 0%
|∆z| = 3 3.0% 94.1% 2.9% 0% 0%
|∆z| = 4 0% 100% 0% 0% 0%
|∆z| = 5 0% 100% 0% 0% 0%
|∆z| = 10 0% 100% 0% 0% 0%

to reach final altitude zT . To compensate for the increase in altitude difference |∆z|,

it suffices to add one circle of radius r to the path. Since Tmax < T∆z < T ∗ + 2πr,

the algorithm generates a suboptimal path, as shown in Figure 5.6 (b). For z0 = 1,

T ∗ + 2πr ≤ T∆z, so the algorithm finds an optimal path with transition time T∆z

corresponding to Step III-2a. As illustrated in Figure 5.6 (c), a circular helix of

radius in [r, 1] and pitch 2πvmax is needed during a time interval of length T∆z−T ∗.

Figure 5.7 illustrates optimal paths generated by the algorithm for different initial

orientations when (x0, y0, z0) = (−1, 3, 3/4). Since the optimal transition time T ∗

relies on φ0, time T ∗ has different values for different orientations: T ∗ = 7.0074 for

φ0 = 4π/5 and T ∗ = 6.51 for φ0 = π. Although T ∗ < T∆z < T ∗ + 2πr in either

case, the maximum transition time Tmax is greater than T∆z. Thus, the extended

concatenation with extremal control v (t) passes through the final oriented point xT

at time T∆z by decreasing the maximum turning radius on the solution path to re, as

shown in Figure 5.7.

As a final analysis, we examined the likelihoods of selecting each of the five steps

in Step III over our 10,000 initial states for different minimum turning radii r =

1/4, 1/2, 3/4, as summarized in Table 2. As r increases, the optimal transition time
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(a) An optimal solution path for z0 = 1/2.
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(b) A suboptimal solution path for z0 = 3/4.
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Figure 5.6: Example solution paths from (x0, y0, φ0) = (−1, 3, 6π/5) with initial
altitudes z0 = 1/2, 3/4, 1 to xT = (x0, y0, z0, φ0) = (0, 0, 0, π/2).
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(a) An optimal solution path for φ0 = 4π/5.
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Figure 5.7: Example solution paths from (x0, y0, z0) = (−1, 3, 3/4) with initial ori-
entations φ0 = 4π/5, π to xT = (x0, y0, z0, φ0) = (0, 0, 0, π/2).
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T ∗ of the unidirectional Dubins path for each initial state increases. This follows from

the fact that the number of basic pairs is inversely proportional to the difference 1−r.

Thus, the likelihood of choosing the case where T∆z ≤ T ∗ is increased. However, the

incidence of the suboptimal cases increases with r because the maximum transition

time of extended concatenations decreases with r.

Table 5.2: The likelihoods of selecting each of the five steps in Step III over 10 initial
altitudes for vmax = 1/10.

r
Optimal path Suboptimal path

Step III-1 Step III-2a Step III-3 Step III-4 Step III-5
r = 1/4 52.66% 45.53% 1.67% 0.04% 0.1%
r = 1/2 70.44% 26.54% 2.24% 0.41% 0.37%
r = 3/4 90.13% 7.15% 0.27% 1.57% 0.88%

5.6 Application: Emergency Landing for a Unidirectional

Dubins airplane

In this section, we present application of Algorithm 5.1 to an aircraft emergency

landing planning problem. For a damaged aircraft, the primary goal is to safely

land on a runway. In an emergency, the pilot or autopilot first selects a runway (or

landing site) within the local area that can safely accommodate the disabled aircraft

(see Atkins et al. (2006)). The flight management system, with appropriate flight

envelope knowledge, then constructs a landing trajectory to the selected runway.

Figure 5.8 recalls the discretized flight envelope for an F-16 aircraft flying at an

altitude of 10,000 ft with an aileron jammed at +14 degrees (Stevens and Lewis

(2003); Strube (2005)). In this case, the aircraft cannot fly straight at an airspeed

of 250 ft/sec. Even though the aircraft can fly straight for airspeeds slower than

250 ft/sec, the aircraft may encounter stall near 200 ft/sec which is still too high for

straight flight given even a slim margin from the envelope boundary. This follows

from the fact that the stall speed for turning flight is typically higher than that for
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straight and level flight. Since more feasible trim states are available at low altitudes

than at high altitudes due to higher-magnitude aerodynamic forces and moments, the

disabled F-16 aircraft retains the ability to follows a straight path at low altitudes (<

10,000 ft). To enable a straight final approach, we assume that this ability is possible

at an altitude of 2,000 ft or less, so we only need to apply a unidirectional turning

constraint down to a final approach waypoint to allow a stabilized final segment to

touchdown.
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Figure 5.8: Flight envelope for the F-16 aircraft flying at an altitude of 10,000 ft with
an aileron jammed at 14 degrees.

We model the disabled F-16 aircraft at a speed of 250 ft/sec whose performance

is shown in Figure 5.8. The aileron jam at 14◦ occurs at initial latitude 40.780◦N

and longitude 73.875◦W, with full initial state x0 is given by x0 = (x0, y0, z0, φ0) =

(73.875◦W, 40.780◦N, 10000 ft, 210◦). The F-16 has a range of turn rates varying

from −10 deg/sec to −5 deg/sec and from +5 deg/sec to +10 deg/sec consistent

with the discretized flight envelope shown in Fig. 5.8. Without loss of generality, we

treat the F-16 capable of turning right (or clockwise). The F-16 is assumed to have

a range of vertical rates varying from −25 ft/sec to 25 ft/sec; we are only interested

in a descent to landing.

LaGuardia Airport (LGA) is closest to the location where the emergency occurs.
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We presume no wind for this case study thus no preferred landing direction. LGA has

two runways, as shown in Figure 5.9. For each runway threshold, the final oriented

point xT is its final approach fix from which an aircraft executes a straight-in final

approach presumed possible since the altitude of the fix is less than 2,000 ft. Thus, for

the damaged F-16 aircraft, the algorithm can plan four possible landing trajectories,

one for each runway end, i.e., runways 4-22 and 13-31. For this case study, every path

generated by the algorithm is an optimal path corresponding to Step III-1 (i.e., the

shortest unidirectional Dubins path with an unsaturated vertical rate), as illustrated

in Figure 5.10 and summarized in Table 5.3.3 The optimal path to LGA runway 22

has the minimum transition time because it has the minimum distance from x0 to xT

of the four solution paths. If the F-16 has the same aileron damage at altitudes less

than 10,000 ft, the optimal time of the unidirectional Dubins car for each xT remains

unchanged. Therefore, at lower altitudes, the algorithm produces optimal paths with

3Coordinates of final approach fixes are based on an Area Naviation (RNAV) chart from
http://flightaware.com
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the same transition times as when z0 = 10, 000 ft, but with the smaller vertical rates

than when z0 = 10, 000 ft because the absolute altitude difference |∆z| decreases with

z0.

Table 5.3: Comparison of optimal paths to LGA final approach fixes.

Runway (xT , yT , zT )
z0 = 10, 000 ft

Step T dist (x0,xT )
LGA 04 (73.937◦W, 40.705◦N, 1700 ft) III-1 959.008 s 50,837 ft
LGA 13 (73.958◦W, 40.820◦N, 1800 ft) III-1 536.862 s 29,884 ft
LGA 22 (73.810◦W, 40.859◦N, 1900 ft) III-1 499.373 s 28,689 ft
LGA 31 (73.882◦W, 40.736◦N, 1700 ft) III-1 934.355 s 50,194 ft

In this case study, we assumed the disabled F-16 aircraft can fly straight at an

altitude of 2,000 ft. However, with more severe damage or failure, e.g., higher an-

gle jam, this ability might be impossible at any altitude. If the disabled F-16 loses

the ability to fly straight throughout the landing, it is better for a turning landing

trajectory to arrive at a runway threshold, not at its final approach fix. Figure 5.11

illustrates optimal paths to the four runway thresholds generated by the algorithm.

The change of final oriented points decreases the distance between x0 and xT de-

creasing the shortest time T ∗ for the unidirectional Dubins car, while it increases

the absolute altitude difference |∆z| increasing the time T∆z. Therefore, for each

threshold, the algorithm produces the optimal path corresponding to a different step

in Algorithm 5.1, as summarized in Table 5.4.

For runways LGA 04 and LGA 31, the optimal paths are the shortest paths for

the unidirectional Dubins car with unsaturated vertical rates, consequently they have

transition time T ∗. For runways LGA 13 and LGA 22, the shortest paths for the

unidirectional Dubins car with saturated vertical rate are not sufficient to reach the

final altitude zT , consequently the optimal paths have transition time T∆z. Of the

four solution paths, the optimal path to LGA runway 13 has the minimum transition

time. If the initial altitude is lower than 9740.58 ft, the optimal path to LGA runway

22 has the minimum transition time. This follows from the fact that the optimal
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Figure 5.10: Optimal paths to LGA final approach fixes for the F-16 aircraft with an
aileron jammed at +14 degrees.
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time of the unidirectional Dubins car for each xT remains unchanged and the fact

that time T∆z for each xT decreases with z0.

Table 5.4: Comparison of simulation results of optimal paths to LGA thresholds.

Runway (xT , yT , zT )
h0 = 10, 000 ft

Step T dist (x0,xT )
LGA 04 (73.884◦W, 40.769◦N, 20.6 ft) III-1 467.175 s 24,380 ft
LGA 13 (73.879◦W, 40.782◦N, 11.6 ft) III-4 399.536 s 20,073 ft
LGA 22 (73.871◦W, 40.785◦N, 11.5 ft) III-2a 399.540 s 19,382 ft
LGA 31 (73.857◦W, 40.772◦N, 6.7 ft) III-1 444.982 s 24,823 ft

5.7 Conclusions

This chapter has derived time-optimal paths for the unidirectional Dubins air-

plane as an extension of the unidirectional Dubins car. By Pontryagin’s minimum

principle, the optimal path is divided into two paths, one with transition time for the

unidirectional Dubins car, and the other with transition time equal to the absolute

altitude difference divided by the maximum vertical rate. The former has the same

optimal control as the unidirectional Dubins car with unsaturated vertical rate. The

latter has saturated vertical rate but the optimal or suboptimal turn rate depends on

the altitude difference and the absolute maximum vertical rate. In the latter case, the

shortest unidirectional Dubins path or its extended path with saturated vertical rate

followed by a circular helix of radius in [r, 1] is time-optimal if it exists. Otherwise, a

suboptimal but feasible path is planned by considering an additional circle of radius

r with saturated vertical rate.

The corresponding optimal path-finding algorithm was applied to a series of nu-

merical examples. The algorithm was able to plan optimal paths for most cases, but

there are some cases in which suboptimal paths are found. Moreover, an application

of our results to an emergency landing problem verified that the severely disabled

aircraft can generate landing trajectories to runways at a specific final position and
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Figure 5.11: Optimal paths to LGA runway thresholds for the F-16 aircraft with an
aileron jammed at +14 degrees.
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orientation. Of all such landing paths, the optimal path with the minimum transition

time does not necessarily translate to the minimum distance between two oriented

points.

We have defined the optimal or suboptimal path for the unidirectional Dubins

airplane in the unobstructed space. In future work, paths will be planned around

fixed and moving obstacles in the environment. Furthermore, a control scheme will

be developed to track optimal or suboptimal paths generated by the algorithm. Work

remains to identify a complete algorithm for which all solutions are guaranteed to be

optimal.
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CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

This dissertation has addressed the problem of finding time-optimal paths for

vehicles constrained to forward and unidirectional (clockwise or counterclockwise)

turning motion to travel from a given initial oriented point to a given final oriented

point. While previous motion planning research has extensively dealt with finding

time-optimal paths for vehicles with minimum turning radius constraints, this disser-

tation for the first time embarks on finding time-optimal paths for vehicles unable to

travel straight due to extreme constraints imposed by damage and/or failure condi-

tions. This research derives a complete and real-time path planning method for both

Dubins cars (two-dimensional) and Dubins airplanes (three-dimensional) constrained

to unidirectional turning motions.

The path-planning problem is posed as a variant of the Dubins car problem in

which vehicles move forward in a plane with constant speed and with a given maxi-

mum turn rate (i.e., minimum turning radius). Unlike the Dubins car and variations

previously derived, the rate of turn is allowed to vary within given lower and upper

bounds that are of the same sign, representing the unidirectional turning constraint.

In two-dimensional Euclidean space, we extend the Dubins car to a Dubins car with

unidirectional turning constraints. In three-dimensional Euclidean space, we then
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extend the Dubins car with unidirectional turning constraints to a Dubins airplane

with unidirectional turning constraints.

For both unidirectional Dubins vehicle formulations, this dissertation demon-

strates the existence of optimal paths connecting given initial and final oriented

points. We first defined admissible controls which yield paths of the Dubins car

and airplane with the unidirectional turning constraint to reach a given final oriented

point. In addition, we constructed continuous (not piecewise-continuous) controls

which transfer the unidirectional Dubins car to a specified final oriented point. We

then employed Filippov’s existence theorem for the time-optimal problem to show

the existence of optimal solutions. This work formed an initial basis of the solutions

derived in subsequent chapters.

Time-optimal paths for the unidirectional Dubins car

We applied the minimum principle of Pontryagin to characterize the optimal path

for the unidirectional Dubins car. As a result, we were able to determine the following

three possible candidates for the optimal path: the arc of a circle with normalized

maximum radius 1, the arc of a circle with normalized minimum radius r, or the

concatenation of alternating arcs of two tangent circles with radii r and 1 at ev-

ery switching point. On the basis of the geometric properties of the concatenations,

we showed that the time at which the concatenations passes through a given final

oriented point only depends on the value of the Hamiltonian. This fact enables di-

rect identification of the optimal path for the unidirectional Dubins car. We then

presented algorithms for finding time-optimal Dubins paths with unidirectional turn-

ing constraints and verified that these algorithms are complete and run in real-time

though Matlab simulations.
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Time-optimal paths for the unidirectional Dubins airplane

Pontryagin’s minimum principle was again applied to derive necessary conditions

of time-optimal paths for the Dubins airplane problem given unidirectional turning

constraints. Such optimal paths have one of two transition times: (1) the shortest

time for the unidirectional Dubins car and (2) the time equal to the absolute altitude

difference divided by the maximum vertical rate. The optimal path with the transition

time given by case (1) has the same optimal control as the unidirectional Dubins

car with an unsaturated vertical rate. The optimal path with the transition time

given by case (2) has a saturated vertical rate, but the optimal or suboptimal turn

rate depends on the altitude difference and the absolute maximum vertical rate. In

case (2), the shortest unidirectional Dubins car path or its extended path with the

saturated vertical rate followed by a circular helix of radius in [r, 1] is time-optimal

if it exists. Otherwise, to ensure the algorithm is complete, a suboptimal path is

planned by considering an additional circle of radius r with the saturated vertical

rate. Thus, we presented a complete algorithm for finding time-optimal paths for

the unidirectional Dubins airplane. We validated the completeness and real-time

performance of the Dubins airplane algorithm on a series of test cases. We also

applied the algorithm to an aircraft emergency landing case study, showing that a

severely disabled aircraft can successfully generate a family of landing trajectories to

nearby runways, each defined by a final approach position and orientation.

6.2 Future work

The generation of motion plans involves two steps: path planning, the compu-

tation of controls achieving specified tasks; and path tracking, the execution of the

motion following given paths. This dissertation has focused on path planning for vehi-

cles with unidirectional turning constraints. To execute the motions that follow these
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geometric paths, the trajectory tracking problem must also be considered, particu-

larly given the challenge of unidirectional turning constraints. To this end, a controller

might approximately linearize the error dynamics around a given geometric path, and

switch between controllers as turning radius (or rate) changes are commanded. Guar-

antees of stability will likely require a hybrid system analysis (Souères et al. (2001))

to ensure switching as well as nominal tracking control is stable.

The weather, especially wind, also can have a significant effect on the ability of a

vehicle to follow a given path. For example, an airplane flying even at its maximum

speed can be substantially blown off course by the wind. The path-planning problem

for the Dubins vehicles in steady uniform winds has been studied recently by McGee

and Hedrick (2007), Rysdyk (2007) and Techy and Woolsey (2009). In these studies,

time-optimal paths consist of straight and trochoidal segments. In future work, the

model for the unidirectional Dubins vehicles must also be augmented to consider wind

effects. To this end, we may again employ Pontryagin’s minimum principle to find

time-optimal paths in steady uniform winds.

Air Traffic Control (ATC) can provide emergency airspace and landing clearances

to the disabled aircraft, but to do so quickly any path planner must be integrated via

data link to the ATC system. New path planners must also be integrated with exist-

ing systems (capabilities) such as the Traffic Alert and Collision Avoidance Systems

(TCAS) (Harman (1989)) and the Center-TRACON Automation System (CTAS)

(Erzberger et al. (1993)). A key requirement for these technologies is the prediction

and resolution of path conflicts. The conflict resolution problem has been widely stud-

ied in a number of papers, e.g., Krozel et al. (1996), Zhao and Schultz (1997), Tomlin

et al. (1998), and Bicchi and Pallottino (2000). However, in these papers, all aircraft

have been assumed to have nominal, or in some cases matching, performance. As a

first step to integration, the disabled aircraft can be prioritized and all other aircraft

asked to deconflict with the emergency aircraft’s known path. In future work, conflict
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resolution algorithms should more tightly integrate heterogeneous sets of performance

constraints, including those present for a unidirectional Dubins airplane.
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