
Microstructure Evolution and Tensile

Deformation in Mg Alloy AZ61 Through

Thixomolding and Thermomechanical Processing

by

Tracy Dianne Berman

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied Physics)

in The University of Michigan
2014

Doctoral Committee:

Professor J. Wayne Jones, Co-Chair
Professor Tresa M. Pollock, University of California Santa Barbara, Co-
Chair
Professor John E. Allison
Professor Michael Atzmon
Assistant Professor Samantha H. Daly



“Only those who will risk going too far can possibly find out how far one can go.” - T.S. Eliot



© Tracy Berman 2014
All Rights Reserved



To my cherished son, Cedric and husband, Greg.

ii



ACKNOWLEDGEMENTS

Many people have assisted me on my circuitous journey through graduate educa-

tion. Without their encouragement, knowledge, feedback, and support this disserta-

tion would have never come to fruition.

I would first like to recognize my co-advisors, Professor Tresa Pollock and Profes-

sor Wayne Jones. Professor Pollock was supportive of my situation as a new mother

and has served a role model for myself as a female scientist. I appreciate the feedback

she continued to provide me, even as she moved on to UCSB. Professor Wayne Jones

has been an outstanding source of feedback and suggestions. Words cannot express

the respect I have for him.

Dr. Ray Decker and nanoMAG provided financial support, my materials, and

interesting discussions. Dr. William Donlon assisted me microscopy and supplied

critical feedback on my analysis and interpretation of data. I could also like to

acknowledge the contributions of Ford Motor Company in the beginning of my career

at Michigan, in particular Dr. Mei Li and Professor John Allison. Professor Allison

continued to support me on my journey when he became a full-time faculty member.

Professor Daly was also a great help.

Many students and post-docs from the Jones/Pollock group assisted me with

training my project, including Dr. Jason Von Sluytman, Dr. Raghav Adharapurapu,

and Dr. Jessica Terbush. In addition, I would like to recognize the contributions of

iii



Victoria (Tori) Miller, Eric (Chung-Kai) Hung, Patrick Milligan, and Weston Lawson

who aided me as undergraduate research assistants. Since Tori began her own grad-

uate studies, it’s been a great privilege to listen to her thoughts on recrystallization

in magnesium alloys.

My fellow members in the Allison, Daly, Pollock, and Jones research groups have

been a joy to work with. I feel incredibly lucky to have worked amongst all of you.

My offices mates, Michael Kimiecik, Sinsar Hsie, and Dr. Jiashi Miao, deserve spe-

cial recognition for dealing with my occasionally hyperactive nature and incessantly

messy desk. Also, extra appreciation to Erin Deda, with whom I could commiserate

with about magnesium sample preparation. Our mutual obsession with athletic en-

deavors helped decrease the guilt (a tiny bit) when I was running out of lab to get

in a workout.

I truly appreciate the support and guidance of my first graduate research advisor,

Dr. Timothy Ohno at the Colorado School of Mines. Significant aid came from

my mentor at Mines, Dr. Joseph Beach. I would not have been able to endure the

brutality of those first few years of graduate school without Joe’s input, perspective,

and support. I would not be the microscopist I am today without the training

provided by Dr. John Chandler in the CSM electron microscopy laboratory.

I would also like to recognize the support of my family, in particular my husband,

Greg. Becoming an Ironman and a Magnesium Woman within a 1-year period would

have been absolutely impossible without his support. The two-body problem is

formidable, but at least I have an amazing collaborator. Lastly, I must thank my

son, Cedric, for the joy he has brought into my life. And Cedric, yes, mommy is

done with her thesis.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Improvement of Formability Through Microstructure Modification . . . . . . 3

1.2.1 Grain Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Secondary Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Texture Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Alloying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Static Recrystallization Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Tensile Deformation Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.1 Deformation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 Yield Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.3 Work Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.4 Lankford r-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.5 Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Forming of Mg Alloy Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7 Objectives and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

II. Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Material Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.1 Thixomolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.2 Rolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.3 Thermal Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Microstructural Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



2.2.2 Optical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.3 Scanning Electron Microscopy (SEM) . . . . . . . . . . . . . . . . . 43
2.2.4 Transmission Electron Microscopy (TEM) . . . . . . . . . . . . . . 48

2.3 Mechanical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.1 Tensile Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.2 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

III. Microstructure and Texture Evolution Through Thixomolding and Ther-
momechanical Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Microstructure of Thixomolded Plate . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Microstructure of as-Rolled Sheet . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Recrystallization in TTMP AZ61 Sheet . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Isochronal Recrystallization Treatments . . . . . . . . . . . . . . . 62
3.3.2 Isothermal Recrystallization Treatments . . . . . . . . . . . . . . . 64
3.3.3 Recrystallization Kinetics . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.4 Low Temperature Annealing Treatments . . . . . . . . . . . . . . . 67
3.3.5 Grain Orientation Spread . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.6 Mechanisms of Recrystallization . . . . . . . . . . . . . . . . . . . . 71

3.4 Microstructure of Annealed Sheets . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 Microstructure of Sheet Annealed at 285°C for 10 minutes . . . . . 76
3.4.2 Microstructure of Sheet Annealed at 300°C for 20 hours . . . . . . 79
3.4.3 Microstructure of Sheet Annealed at 420°C for 28 hours . . . . . . 80
3.4.4 Summary of Microstructure in Annealed Sheets . . . . . . . . . . . 81

3.5 Texture Evolution During TTMP . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6 Evolution of β-phase through TTMP . . . . . . . . . . . . . . . . . . . . . . 87
3.7 Grain Size Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

IV. Deformation Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1 Tensile Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1.1 Yield Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.1.2 Work Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Lankford r-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3 Texture Evolution During Tensile Deformation . . . . . . . . . . . . . . . . . 129
4.4 Twinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5 Damage Evolution During Tensile Deformation . . . . . . . . . . . . . . . . . 136
4.6 Fractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

V. Conclusions and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2 Recommendations for Future Research . . . . . . . . . . . . . . . . . . . . . 158

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

vi



LIST OF FIGURES

Figure

1.1 Relationship between texture intensity and Erichsen dome height at room temper-
ature for various Mg sheets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Typical (a) conventional texture represented by a commercial AZ31 sheet and (b)
RE texture illustrated by a hot-rolled ZEK100 sheet. . . . . . . . . . . . . . . . . . 9

1.3 Illustration of the most common slip planes and slip directions in Mg. . . . . . . . 19

2.1 SE image used for determination of β-particle size and area fraction. . . . . . . . . 44

2.2 Image resulting from adjusting the threshold such that the β-particles are the only
remaining feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Comparison between particles as determined by ImageJ (left) and and the original
SE image (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Representative microstructure of the as-molded plate. . . . . . . . . . . . . . . . . 54

3.2 Grain size distribution of > 4000 grains in the as-molded plate. . . . . . . . . . . . 54

3.3 (a) Inverse pole figure map and (b) basal and prismatic pole figures representing
the as-molded plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Typical β-particle morphology of one of the larger particles in the as-molded condition. 56

3.5 Optical micrograph revealing the distribution of bright, externally solidified grains
through the thickness of the as-molded plate. . . . . . . . . . . . . . . . . . . . . . 57

3.6 SE micrograph showing porosity in the as-molded microstructure. . . . . . . . . . . 58

3.7 Representative scanning electron micrograph of the as-rolled microstructure. . . . . 59

3.8 IPF map representing the as-rolled sheet. . . . . . . . . . . . . . . . . . . . . . . . 59

3.9 Transmission electron micrograph of a region containing several dynamically re-
crystallized grains indicated by α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 (a) The typical microstructure via TEM in the as-rolled condition and (b) a de-
formed grain neighboring a region of sub-micron dynamically recrystallized grains
and β-precipitates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



3.11 Evolution of hardness after 10 minute annealing treatments at temperatures be-
tween 130°C and 340°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.12 Fraction recrystallized in material annealed for ten minutes at temperatures be-
tween 130°C and 340°C, as calculated from hardness measurements. . . . . . . . . . 63

3.13 Fraction recrystallized in material annealed at 285°C for between 30 and 900 sec-
onds, as calculated from hardness measurements. . . . . . . . . . . . . . . . . . . . 64

3.14 Evolution of microstructure during recrystallization at 285°C observed by SEM. . . 65

3.15 JMAK model fit to the isochronal and isothermal recrystallization curves in as-
rolled TTMP AZ61 sheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.16 Hardness following low temperature annealing treatments. . . . . . . . . . . . . . . 68

3.17 SE micrograph presenting the representative microstructure of sheet annealed for
210°C for 12 h demonstrating a lack of grain boundaries which would indicate
recrystallization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.18 Grain orientation spread maps for sheet annealed for (a) 0.5 min and (b) 10 min
at 285°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.19 Larger grain orientation spread maps for sheet annealed for 10 min at 285°C. . . . 71

3.20 SE micrograph of sheet annealed for 0.5 minutes at 285°C featuring (a) the general
recrystallization behavior and (b) recrystallization behavior in a cluster of β-particles. 71

3.21 SE micrograph of regions of obvious grain boundary pinning by β-particles in sheet
annealed for 10 minutes at 225°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.22 GOS map superimposed on the associated SE image in sheet annealed at 285°C for
0.5 min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.23 The three annealing temperatures used are indicated with red arrows on the Mg-Al
phase diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.24 SE micrograph presenting the representative microstructure of sheet annealed for
285°C for 10 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.25 IPF maps of all three sheet faces in the sheet annealed for 285°C for 10 minutes. . 77

3.26 Grain size distribution of sheet annealed for 285°C for 10 minutes in all three sheet
planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.27 STEM of the annealed sheet showing a non-uniform distribution of β-precipitates,
which tend to be clustered near grain boundaries. . . . . . . . . . . . . . . . . . . . 79

3.28 (a) Bright and (b) dark-field TEM image demonstrating a non-uniform distribution
of the fine β-precipitates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.29 SE micrograph presenting the representative microstructure of sheet annealed for
300°C for 20 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



3.30 (a) SE micrograph presenting the representative microstructure of sheet annealed
for 420°C for 28 hours and (b) IPF map demonstrating the presence of annealing
twins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.31 Grain size distributions for the as-molded plate and annealed sheets. . . . . . . . . 82

3.32 Basal and prismatic pole figures after molding, rolling, and subsequent annealing. . 84

3.33 (a) SE micrograph of an externally solidified grain in the as-rolled sheet and (b)
the associated IPF map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.34 The volume fraction and distribution of the β-particles (a) and the particle size
and morphology (b) in the as-molded plate. . . . . . . . . . . . . . . . . . . . . . . 87

3.35 The volume fraction and distribution of the β-particles (a) and the particle size
and morphology (b) in the plate following a 315°C for 5 minutes thermal exposure. 88

3.36 β-phase platelets in the molded plate following a 315°C for 5 minutes thermal
exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.37 The volume fraction and distribution of the β-particles (a) and the particle size
and morphology (b) in the as-rolled sheet. . . . . . . . . . . . . . . . . . . . . . . . 90

3.38 The surfaces of the large β-particles in the as-rolled sheet are coated with a con-
glomerate of many smaller particles, as shown in higher magnification on the right. 90

3.39 The volume fraction and distribution of the β-particles (a) and the particle size
and morphology (b) in sheet annealed for 285°C for 10 min. . . . . . . . . . . . . . 91

3.40 Evolution of the β-particle size distribution during TTMP for (a) particles greater
than 0.2 µm in diameter and (b) particles greater than 0.5 µm in diameter. . . . . 92

3.41 The number density of β-particles at different stages of TTMP. . . . . . . . . . . . 93

3.42 Illustration of the bounding box technique to define particle length in the RD and
TD directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.43 Evolution during TTMP of the aspect ratio of of particles larger than 0.5 µm2 as
described by a bounding box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.44 IPF maps illustrating the grain size after (a) 10 min and (b) 20 hours at 285°C and
(c) their associated grain size distributions. . . . . . . . . . . . . . . . . . . . . . . 96

3.45 (a) SE image highlighting particles residing on grain boundaries and (b) a compar-
ison of the size distribution of particles that are and are not associated with grain
boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.46 Optical micrographs of (a) sheet annealed for 300°C for 20 h and (b) sheet annealed
for 420°C for 28 h demonstrating abnormal grain growth following the higher tem-
perature anneal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1 Tensile behavior along RD and TD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

ix



4.2 A summary the yield strength and elongation in Mg alloy sheets reported in the
literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Hall-Petch Behavior of TTMP AZ61 . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4 The dashed circles on the basal pole figure for as-rolled sheet indicate the regions
at which grains are favorably oriented for basal slip along the RD and TD (red and
black circles, respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5 Tensile behavior along 0°, 45°, 90° for (a) as-rolled sheet and (b) sheet annealed at
285°C for 10 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6 Hall-Petch Behavior of TTMP AZ61 presented with a summary Hall-Petch behavior
of Mg-Al and Mg-Zn alloys by Stanford et al.. . . . . . . . . . . . . . . . . . . . . . 115

4.7 A log-log plot of the true stress-strain behavior for sheet annealed for 285°C for 10
minutes, with a best fit to the Hollomon equation between 5% and 15% strain. . . 120

4.8 Best linear fit between Eqn. 4.12 and the tensile properties of annealed TTMP
AZ61 sheets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.9 Relationship between the percentage of grains oriented favorably for basal slip and
the work hardening coefficient for each TTMP sheet condition. . . . . . . . . . . . 123

4.10 Relationship between the percentage of grains oriented favorably for basal slip and
the work hardening coefficient for each TTMP sheet condition. . . . . . . . . . . . 126

4.11 Relationship between r̄ and Erichsen dome height at room temperature for various
Mg sheets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.12 Relationship between r̄ and basal texture intensity for various Mg sheets. . . . . . 128

4.13 Texture evolution following 10% strain along either the RD or TD. . . . . . . . . . 129

4.14 Illistration of the texture component arising in the basal pole figure due to twinning
during tensile deformation in the vertical direction. . . . . . . . . . . . . . . . . . . 132

4.15 SE micrographs highlighting twinning in (a) sheet annealed for 285°C/10min and
(b) sheet annealed for 420°C/28h at ε=10% along the RD. . . . . . . . . . . . . . . 133

4.16 EBSD twinning maps highlighting {101̄2}〈101̄1〉 extension twins in (a) sheet an-
nealed for 285°C/10min and (b) sheet annealed for 420°C/28h at ε=10% along the
RD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.17 BSE micrographs highlighting twinning in (a) sheet annealed for 285°C/10min and
(b) sheet annealed for 420°C/28h approximately 1 mm from the fracture surface. . 135

4.18 Interrupted and monotonic engineering stress -strain curves along the RD of sheet
annealed for 285°C/10min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.19 The microstructure of sheet annealed for 285°C/10min and loaded to ε=16% along
the TD at the (a) surface and (b) subsurface. . . . . . . . . . . . . . . . . . . . . . 137

x



4.20 Damage accumulation in sheet annealed for 285°C for 10 min when loaded along
the RD (right) and TD (left) at increasing levels of deformation. . . . . . . . . . . 139

4.21 Graphs comparing (a) the average crack length and (b) the crack number density
at 4%, 8%, and 16% along the RD or TD in sheet annealed for 285°C for 10 min. . 140

4.22 Distribution of the aspect ratio of the bounding box for different sized β-particles. 141

4.23 Damage near the fracture surface in sheet annealed for 285°C for 10 min and loaded
along the RD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.24 Shear angle in (a) as-molded plate and (b) sheet annealed for 285°C for 10 min and
loaded along the RD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.25 SE images of fracture surface in (a) as-molded, (b) as-rolled, (c) rolled and annealed
for 285°C for 10 min, and (d) rolled and annealed for 420°C for 28 hours. . . . . . . 144

4.26 Higher magnification SE images of fracture surface in (a) as-molded, (b) as-rolled,
(c) rolled and annealed for 285°C for 10 min, and (d) rolled and annealed for 420°C
for 28 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.27 SE image of a portion of the fracture surface in the as-molded plate exhibiting a
large, more cleaveage-like feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.28 SE micrograph of fragmented β-particles at the bottom of voids in the sheet an-
nealed for 285°C for 10 min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1 Change in shape and orientation of x-ray stop size as a function of radial tilt and
Bragg angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.2 Theoretical intensity correction curves for two different values of 2Θ and receiving
slit widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.3 Diffracted intensity from Θ/2Θ scan of as-molded AZ61 aside peaks from the
JCPDS file 04-003-2526 for Mg powder. . . . . . . . . . . . . . . . . . . . . . . . . 170

A.4 Raw 0002 pole figure for the Thixomolded plate. . . . . . . . . . . . . . . . . . . . 172

A.5 XRD pole figures of the as-rolled sheet at different stages in the recalculation process.173

A.6 110 pole figures for a low carbon steel generated by XRD and by varying numbers
of EBSD grain measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.7 Basal and prismatic pole figures for as-rolled AZ61 sheet generated by XRD and
for an increasing number of EBSD grain orientation measurements. . . . . . . . . . 177

A.8 Basal and prismatic pole figures for by both XRD and EBSD for the primary
materials in this dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xi



LIST OF TABLES

Table

1.1 Letter designation for common Mg sheet alloying additions. . . . . . . . . . . . . . 9

1.2 Comparison of room temperature properties of Mg alloys processed using different
techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Composition of received AZ61L in wt % . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Parameters used for JMAK model . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Grain size and β-phase volume fraction, fβ , following the three annealing treatments. 81

4.1 Tensile properties of as-molded plate and TTMP AZ61 sheet . . . . . . . . . . . . 107

4.2 Best fit for the Hall-Petch coefficient, k, in annealed sheet. . . . . . . . . . . . . . . 111

4.3 Fraction of grains favorably oriented for basal slip per condition. . . . . . . . . . . 113

4.4 Strain hardening exponent of as-molded plate and TTMP AZ61 sheet . . . . . . . 121

4.5 Best fit parameters for n0 and z, from Eqn. 4.12 in annealed sheet. . . . . . . . . . 122

4.6 The r-values in as-rolled and annealed AZ61 sheet . . . . . . . . . . . . . . . . . . 126

A.1 Data used for calculation of preferred orientation. . . . . . . . . . . . . . . . . . . . 171

xii



LIST OF ABBREVIATIONS

α-Mg primary hexagonal close-packed Mg phase

AA5083 aluminum alloy, Al - 4.5% Mg - 0.7% Mn - 0.15% Cr

Al-5182 aluminum alloy, Al - 4.5% Mg - 0.35% Mn

AM60 magnesium alloy, Mg - 6% Al - < 0.5% Mn

AZ31 magnesium alloy, Mg - 3% Al - 1% Zn

AZ61 magnesium alloy, Mg - 6% Al - 1% Zn

AZ71 magnesium alloy, Mg - 7% Al - 1% Zn

AZ80 magnesium alloy, Mg - 8% Al - < 0.5% Zn

AZ91 magnesium alloy, Mg - 9% Al - 1% Zn

β or β-Mg17Al12 secondary phase in Mg-Al alloys

BSE backscattered electron

CI confidence index, degree of confidence that TSL software has

correctly calculated the orientation

CRSS critical resolved shear stress

DC direct chill

DSR differential speed rolling

EBSD electron backscatter diffraction

El. elongation to failure

εT true strain

xiii



εt strain along thickness

εw strain along width

FEG field emission gun

fβ β-phase volume fraction

GOS grain orientation spread, average misorientation between all

data points within a given grain

H24 temper strain hardened and partially annealed

hcp hexagonal close-packed

IPF inverse pole figure

JCPDS Joint Committee on Powder Diffraction Standards

JMAK Johnson-Mehl-Avrami-Kolmogorov

MRD multiples of a random distribution or density

n-value strain hardening exponent

ND normal direction

O temper fully annealed

ODF orientation density function

PSN particle stimulated nucleation

QPF quick plastic forming

RD rolling direction

RE rare earth element

RUB repeated uniaxial bending

SE or SEI secondary electron or secondary electron imaging

SEM scanning electron microscopy

σSS solid solution strengthening

σT true stress

xiv



STEM scanning transmission electron microscopy

TD transverse direction

TEM transmission electron microscopy

TRC twin roll cast(ing)

TTMP Thixomolded and Thermomechanically Processed

UTS or σUTS ultimate tensile strength

WE43 magnesium alloy, Mg - 4% Y - 3% RE

XRD X-ray diffraction

YS or σYS yield stress

Z1 magnesium alloy, Mg - 1% Zn

ZE10 magnesium alloy, Mg - 1% Zn - < 0.5% RE

ZEK100 magnesium alloy, Mg - 1% Zn - < 0.5% RE - < 0.5% Zr

ZK10 magnesium alloy, Mg - 1% Zn - < 0.5% Zr

ZK61 magnesium alloy, Mg - 6% Zn - 1% Zr

ZM21 magnesium alloy, Mg - 2% Zn - 1% Mn

ZW41 magnesium alloy, Mg - 4% Zn - 1% Y

xv



ABSTRACT

Mg alloy sheets are of considerable interest in automotive, personal electronic, and

medical applications because of their low specific density. However, conventional

sheet develops a strong basal texture during rolling that persists through further

processing, leading to poor room temperature formability. A reduction in basal

texture coupled with grain refinement may significantly improve formability.

Thixomolding and thermomechanical processing (TTMP) has been shown to pro-

duce sheet with a good balance of strength and ductility. The objective of this

research has been to identify the deformation and microstructural evolution phe-

nomena responsible for these favorable properties.

We have demonstrated that TTMP of AZ61 produces a fine grain size stabilized

by β-particles and with a weaker deformation texture than commercial Mg sheet, due

in part to the presence of the β phase. Texture is further reduced during annealing,

leading to decreased planar anisotropy.

Indicators of formability determined from tensile deformation, such as elongation

to failure, work hardening coefficient, and r-value, indicate that TTMP AZ61 has the

potential for excellent room temperature formability. Yield strength in the annealed

sheets varies according to the Hall-Petch relationship; however, texture must also be

taken into account. Yield strength and the work hardening coefficient are orientation

dependent, and are directly related to the fraction of grains oriented favorably for

xvi



basal slip in the loading direction.

Damage accumulation in the β-particles during tensile deformation does not prop-

agate into the matrix, consistent with the observation that ductility was independent

of the β-phase volume fraction. Fractography reveals that failure results from mi-

crovoid coalescence in the matrix following the development of shear instability.

This dissertation has identified the microstructural mechanisms responsible for

the promising deformation behavior in TTMP AZ61. It also demonstrates the value

of considering the addition of secondary phase particles to Mg alloys subjected to

rolling. These particles can act to stabilize the grain size and promote a weaker

deformation texture, and if kept sufficiently small, will not limit ductility. As the

arrangement and distribution of particles evolves little during TTMP, the largest

amount of control in the secondary phases will likely be attained during the molding

phase of TTMP.
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CHAPTER I

Introduction

1.1 Motivation

Magnesium alloys are of considerable interest in automotive, personal electronic,

and medical applications because of their low specific density. Magnesium, with

a density of 1.7g/cm3, is the lightest structural metal. It exists in a hexagonal

close-packed (hcp) structure, with the c/a ratio close to the ideal packing ratio [1].

Substitution of an Al sheet component with a Mg component of the same shape

results in a 37% reduction in weight. Widespread use of Mg alloys requires the pro-

duction of high strength sheet, however, due to the disproportionate slip activity on

the close-packed basal planes, a strong basal texture generated during the sheet pro-

duction results in poor formability at ambient temperatures. This complication can

be overcome by forming at elevated temperatures, but this introduces an increased

cost as the energy requirements increase. Higher temperature forming also requires

the selection of suitable lubrications and tooling.

The most commonly used Mg alloy sheet is AZ31 [2, 3], which has alloying addi-

tions of nominally 3 wt% Al and 1 wt% Zn. The AZ31 alloy was developed in the

1960s, yet for the most part it remains the only widely available Mg alloy for sheet

[3]. Today, these sheets are found most commonly in portable electronic devices and
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automotive applications [4, 5]. During the second world war, Mg sheet was used in

German aircraft [6]. Part of the success of AZ31 is due to its resistance to corrosion

and good weldability [7]. However, the limited formability of this alloy has prevented

more widespread use of lightweight Mg sheets.

Conventional AZ31 sheet shows considerable tensile-compressive yield anisotropy;

typical values for the tensile yield strength and a compressive yield strength in an-

nealed sheet are 150 MPa and 110 MPa, respectively [7]. They also typically exhibit

anisotropy in the plane of the sheet. The yield strength is often 15 MPa higher along

the transverse direction (TD) than along the rolling direction (RD). These through-

plane and in-plane anisotropies often create earing (formation of wavy edges at edges

of drawn component), cracking, and unsuitable surfaces during drawing and stamp-

ing.

The poor formability of commercial AZ31 sheet, and the necessity for warm form-

ing are a consequence of the lack of symmetry in the hcp crystal structure. The

dominant activity of basal slip during rolling of Mg leads to the alignment of a ma-

jority of grains in the sheet such that their c-axis is nearly parallel to the sheet

normal [8]. This basal texture usually has a maximum intensity of nearly 10 mul-

tiples of a random distribution (MRD) [8]. Once a basal texture develops, these

grains are oriented unfavorably for basal slip both within the plane of the sheet and

through the sheet thickness. An elevation in temperature allows for increased acti-

vation of prismatic and pyramidal slip to accommodate through-thickness strain and

to compensate for the lack of basal slip activity [8]. Annealed AZ31 sheets require a

forming temperature of approximately 160°C for anything but the most basic shapes

[7]. Forming at elevated temperatures can lead to grain growth in the sheet, reducing

the strength of the component.
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Commercially available AZ31 sheet is produced from homogenized, direct chill

(DC) cast slabs [3, 9]. The homogenized slabs are then passed through a rolling mill.

Generally warm rolling is employed in Mg, where the rolling temperature is above

or near the recrystallization temperature allowing for dynamic recrystallization [3].

Multiple rolling passes are normally employed, as many as eighteen, usually with

intermediate heating steps [3, 9]. In order to minimize edge cracking, larger rolling

reductions employ higher deformation temperatures and the first pass may be limited

to only a 10% reduction [9]. The rolling temperature may be reduced after the initial

reduction passes, and a final cold rolling pass may be used. The sheets often require

flattening and annealing following rolling. AZ31 sheets are commercially available in

both cold-worked and annealed conditions.

In order to improve upon the formability of commercially available Mg sheets, it

is essential to maintain a fine grain size, which is beneficial for both strength and

formability, and as much as possible, to avoid the formation of a basal texture. This

may be achieved both through variations in the alloying and in the processing route.

1.2 Improvement of Formability Through Microstructure Modification

1.2.1 Grain Refinement

It is well known that grain refinement improves both strength and ductility in Mg

and its alloys [10, 11], and thus grain refinement is an active area of investigation.

Several authors have demonstrated that grain refinement results in an increase in

ductility [12–15]. As the grain size is refined, the fracture mechanism has been

observed to change from less ductile, intragranular failure, to more ductile rupture by

microvoid coalescence in AZ31 [16, 17], AZ91[18], and WE43 [19]. In addition, grain

sizes below 10 µm makes superplastic forming at elevated temperatures achievable
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as grain boundary sliding becomes active [20–24].

Early work on the plastic deformation behavior of Mg focused on single crystals,

which showed extensive evidence of basal slip but little evidence of other slip sys-

tems [8]. Basal slip provides only two independent slip systems, where the von Mises

criterion requires five independent slip systems to accommodate an arbitrary shape

change. If basal slip were the only deformation mechanism active at room tempera-

ture, Mg alloys would exhibit brittle failure. However, most polycrystalline Mg alloys

exhibit some ductility [8]. Grain boundaries are thought to either impose constraints

that act to promote non-basal slip or to provide a source for non-basal dislocations

[8]. Grain refinement leads to an increase in grain boundary area, and therefore

seems to promote an increased number of deformation mechanisms. Refinement also

acts to suppress twinning, which may have a negative effect on ductility [11].

1.2.2 Texture

As basal slip is the predominant deformation mechanism, the orientation of the

basal planes with respect to the loading direction plays a critical role in the de-

formation of Mg. Experiments designed to study the influence of starting texture,

independent of grain size, by machining samples at different orientations from a tex-

tured plate show that the orientation of the basal planes to the loading direction has

a strong effect on both the strength and ductility [25, 26]. As texture increases, the

level of anisotropy approaches that of a Mg single crystal [27]. Since there have been

only a few examples of sheet with significant non-basal texture components [28–30],

the emphasis falls on modifying the basal texture intensity rather than on changing

the character of the texture. Reduction of the basal texture can lead to dramatic

improvements in ductility [31–34]. Figure 1.1 demonstrates how the dome height
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at fracture when stretching sheet specimens over a 20 mm hemispherical punch at

room temperature (Erichsen test) increases with a decreasing basal texture intensity

(measured in terms of multiples of random density (MRD)) [32, 35–39].

Figure 1.1: Relationship between texture intensity and Erichsen dome height at room temperature
for various Mg sheets. Data referenced from

1.2.3 Secondary Phases

The introduction of secondary phases to Mg sheet has been reported to have

both positive and negative effects on ductility. An increase in the volume fraction

of intermetallic particles is often associated with embrittlement and an decrease in

ductility [7, 40]. Yet, secondary phases can serve to decrease texture and stabilize a

fine grain size [41]. Since the contribution of particles to these processes is still not

understood, the engineering trade off cannot be established.

Brittle secondary phases are usually assumed to decrease ductility. Particle crack-

ing during deformation in Mg alloys has been reported by several authors in AZ91
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[18, 42–46], AZ80 [47], AZ31 with Sr additions [48] and in Mg-6.5 Gd-1.3 Nd-0.7

Y-0.3 Zn [28]. Only the work of Lu et al. [44] in a coarse grained, cast AZ91 with

a high volume fraction of interconnected β-eutectics definitively shows that failure

resulted from cracking in the secondary phase. Other studies reasonably hypothesize

that damage in the brittle particles will lead to localized deformation in the α-Mg

matrix near the crack tip, leading to propagation of the crack into the matrix or

a reduction in load bearing area which nucleates voids in the nearby matrix. It is

assumed that linkage of this damage plays a significant role in failure of the material.

The size, morphology, volume fraction, and distribution of the secondary particles

are likely important factors determining the effect of the secondary particles on

the deformation behavior. While continuous networks of a second phase eutectic

allow for rapid crack propagation and brittle failure, shorter cracks in smaller, more

evenly distributed precipitates are likely less significant. Several studies show cracks

confined within the precipitates, with no evidence of propagation into the matrix

[18, 45, 46, 48].

It is difficult to vary the size and volume fraction of secondary particles without

also affecting grain size and texture, this complicates our understanding of how the

secondary particles affect ductility. Chung et al. [18] observed an increase in ductility

after 2 passes of equal channel angular pressing, which they credited in part to the

removal of the the large, blocky β-particles, but it is clear that the grain size was

refined as well. Sadeghi et al. [48] observed an increase in the ductility of AZ31

with the addition of 0.05 and 0.4 wt% Sr, but a decrease when the Sr addition

was increased to 0.8%. They hypothesized the decreased ductility resulted from the

increase of secondary phases within which cracks developed during deformation. As

both the grain size and texture that resulted from the Sr addition is modified as well
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[49, 50], it is difficult to asses the contribution of the particle cracking to the failure

process.

The particle shape may also have an influence on ductility. Hou et al. [28]

observed a difference in yield strength and ductility along the RD and TD, with the

elongation along the RD being 20 to 100% higher than that along the TD depending

on the deformation temperature and annealing treatment. The spread of the basal

texture along the TD texture in the rolled Mg-6.5 Gd-1.3 Nd-0.7 Y-0.3 Zn sheets in

that study favors basal slip along the TD more than along the RD, so some of the

difference is certainly a result of the texture itself. Additionally, the elongation of

the eutectic phases along the rolling direction results in a larger secondary particle

cross section in the plane of the stress when the specimens are loaded along the TD.

Hou et al. [28] conjecture that cracking within the secondary phases and interfacial

decohesion may have contributed to the lower ductility of the material when loaded

along the TD. Scanning electron microscopy (SEM) fractographs in the as-rolled

alloy show deeper dimples when loaded along the RD and cracked particles in the

bottoms of shallow dimples when loaded along the TD. It is difficult to evaluate the

accuracy of this conclusion since the size and distribution of the elongated particles

is neither shown nor described. The discrepancy between the RD and TD elongation

in the as-rolled sheet increased following an aging treatment, which preserved the

deformation texture, but it was not noted whether the elongated particles coarsened

during aging.

As secondary particles can provide for grain size stability by Zener pinning, and

can affect the deformation texture by altering the recrystallization kinetics and mech-

anisms, it is important to understand their impact on ductility [41]. The issue has

not yet been adequately addressed. Engineering of the optimal microstructure re-
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quires knowledge of the suitable size and volume of secondary phases. It is clear

that further research on the contribution of the distribution and volume fraction of

secondary phase particles to tensile deformation in Mg is needed.

1.3 Texture Modification

In order to improve formability, a significant amount of research has been con-

ducted on texture reduction in Mg sheet alloys. Effective strategies to reduce or

eliminate the strong basal texture in Mg alloy sheet include solute additions to in-

crease activity of non-basal slip and/or to alter the kinetics of dynamic recrystal-

lization [34, 51–54] and alternatives or modifications to the conventional process of

hot rolling of a DC cast slab, such as asymmetric rolling [55–59], cross rolling [37],

repeated unidirectional bending [39, 60], twin-roll casting [61, 62], and changes to

the multiple pass rolling temperatures or final annealing treatment [16, 35, 38]. The

impact of these approaches is summarized in the following sections.

1.3.1 Alloying

Before discussing Mg alloys, it is helpful to describe the naming convention used

in commercial alloys. The names consist of letters designating the alloying additions

in order of abundance followed by integers giving their respective rounded weight

percentages [7]. The letter designations for common alloying additions in Mg sheets

are listed in Table 1.1. Additional letters may be appended to distinguish alloys that

have similar concentrations of primary alloying additions, but differ in the amount

of lesser additions and impurities and also to demote the temper.
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Table 1.1: Letter designation for common Mg sheet alloying additions.

Designation Element
A Aluminium
E Rare Earth
H Thorium
J Strontium
K Zirconium
L Lithium
M Manganese
T Tin
X Calcium
W Yttrium
Z Zinc

In terms of their associated texture, alloys used in Mg sheet can roughly be divided

into two groups, those with rare earth elements (RE) and those without, commonly

referred to as conventional alloys. Figure 1.2 shows a representative example of

each. The conventional Mg sheet texture can be symmetric about the normal direc-

tion (ND), but the intensity is more often either split, or elongated along the RD

[8, 35, 38, 39, 54, 63–65]. As shown in Figure 1.2, the split usually represents a tilt of

7 to 15° from the ND towards the RD [8]. This splitting is thought to result from the

activation of 〈c+a〉 pyramidal slip during warm rolling [51]. The maximum texture

intensity in commercial alloys is often around 10 MRD [8, 14, 37, 63, 66, 67].

Figure 1.2: Typical (a) conventional texture represented by a commercial AZ31 sheet [8] and (b)
RE texture illustrated by a hot-rolled ZEK100 sheet [54].

9



The most commonly used and readily available Mg sheet alloy is AZ31, and so,

logically, research on this alloy comprises a signification portion of the body of Mg

sheet literature. Aluminum improves castability, provides solid solution strengthen-

ing, and allows for the forming of age hardening β-Mg17Al12 precipitates [40]. Zinc

acts to increase the solid solution strengthening [68]. In addition to AZ31, within the

Mg-Al-Zn alloy system, texture has been studied in sheets of AZ61 [69, 70], AZ80

[71], and AZ91 [58]. The increased Al content in these alloys provides increased age

hardening, but in general this comes at the cost of ductility [7, 40]. The sheet texture

has also been reported on the non-RE containing alloys AM60 [72], Mg-Zn [73], Z1

[30], ZK10 [54], ZK61 [74], ZM21 [54], and Mg-Mn-Sr [75]. All of these sheets, aside

from the ZK10, exhibit conventional texture. For unknown reasons, the ZK10 has

an intermediate texture with a higher intensity like the conventional alloys, but a

distribution more similar to the texture in the RE materials.

Recent studies have demonstrated that the addition of rare earth (RE) elements

such as yttrium, gadolinium, cerium, neodymium, and misch metal (∼ 50% cerium

and ∼ 25% lanthanum and small amounts of praseodymium and neodymium) to

Mg alloys results in a weaker texture and also leads to a more refined recrystallized

grain size [2, 76]. The texture of RE sheets also often exhibits the split peak in the

RD, but is distinct in two ways, (1) the spread in c-axis orientation is broader along

the TD than along the RD, and (2) the maximum texture intensity is usually below

4 MRD [30, 32, 54, 77]. There is also a tendency for preferential alignment of the

{101̄0} planes with the RD. The development of the RE texture is not yet under-

stood. It has been hypothesized that the atomic mismatch of RE additions results in

an increase in non-basal slip during deformation brought about by a modification of

the c/a ratio in the hcp crystal or segregation of the large atoms to grain boundaries
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leads to solute drag which can alter the grain boundary mobilities and alter the dy-

namic recrystallization kinetics [30, 78]. While RE additions have been shown to be

effective in generating a weaker deformation texture, they are costly and in limited

supply [79]. Therefore, RE alloys are not the best choice for texture reduction if the

goal is large-scale production of more formable Mg alloy sheets.

1.3.2 Processing

Modifying the rolling and intermediate reheating temperatures, the application of

shear, the magnitude of strain per pass, and the total strain can affect the deforma-

tion and recrystallization mechanisms, and thus the as-rolled texture. This section

will describe some of the modifications and variations of the hot rolling process that

have been shown to influence the sheet texture.

Multiple Pass Hot Rolling

Hot rolling is generally used to describe rolling above the recrystallization tem-

perature. There are numerous variables to consider in multiple pass hot rolling,

including the number of passes, the reduction per pass, the rolling speed, the roll

temperature, and the intermediate reheat time and temperature. The problem is

complicated, and it is challenging to make broad conclusions from the literature as

multiple variables are changed between each report. Huang and co-workers varied

the final pass rolling temperature in seven-pass rolling and found that the deforma-

tion texture increased slightly from 5.4 to 6.3 MRD when the final pass temperature

increased from 450°C to 555°C. However, following annealing at 350°C for 1 hour,

the higher final pass rolling temperatures resulted in the weakest textures [35]. Miao
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et al. [16] also observed an increase in deformation texture with increasing roll tem-

perature. Another study shows an increase in texture (from 7.4 MRD to 10.2 MRD)

with an increase in the temperature of the intermediate reheat from 390°C to 450°C.

Unfortunately only the texture of annealed material is given [38].

Asymmetric Rolling

Asymmetrical rolling produces shear deformation by running the top and bottom

rolls at different speeds (also known as differential speed rolling (DSR)) or using

top and bottom rolls with different diameters. This process has also been shown to

lead to a more refined grain size and weaker texture than symmetric rolling [3]. The

texture of AZ31 sheet produced by asymmetric rolling can be reduced by as much

as 50%, but may still have an intensity of ∼ 9 MRD in [56, 59]. Huang et al. [80]

reported a maximum basal texture intensity of 3.7 MRD in an AZ61 sheet, but does

not include a symmetrically rolled sheet for comparison. Chino et al. [57] observed

a decrease in texture intensity from 7 to 5 MRD by moving from normal rolling to

asymmetric rolling.

Cross Rolling

Cross rolling may entail altering the feed direction of the sheet between rolling

passes as well as the use of a mill in which the top and bottom rollers are not paral-

lel. Chino et al. [37] demonstrated a basal texture intensity reduction from 10.1 to

7.3 MRD in AZ31 sheet when a 7.5° tilt was introduced between the rollers in the

RD-TD plane. Alternating the rolling direction by 90° between passes was shown

to reduce texture from 11.2 to 9.6 MRD in Mg-0.6 wt%Zr [81]. Zhang et al. [82]
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explored the difference in texture of an AZ31 sheet after 9 rolling passes in sheet in

which (a) each pass was conducted along the same direction, (b) the rolling direc-

tion alternated between two perpendicular orientations, and (c) alternated between

3 orientations, the second and third being 90° and 135° from the first. All three

samples were annealed following rolling. The resulting basal texture was lowest in

the material rolled at three orientations (7.3 MRD) and highest in the unidirectional

sheet (11.9 MRD).

Repeated Uniaxial Bending

Commercial hot rolled AZ31 sheets, processed by repeated uniaxial bending (RUB)

have exhibited a decrease in the basal texture intensity [39, 60]. This procedure in-

troduces shear by using a motor to pull the sheets through a 90° bend. In the first

report, they perform six-passes and alternating the bending direction between the

RD and TD while also flipping the sheet over between passes. This processing re-

sulted in a basal texture reduction from 8.5 to 7.3 MRD and an increased spread

along the RD in the basal pole figure [60]. In the second report, all six passes were

performed with the bend parallel to the RD [39]. The results of this study are un-

usual, as they reported a maximum texture intensity of 30.6 in the as-received sheet,

which is significantly higher than the texture commonly reported for hot rolled AZ31.

After RUB processing, the texture had decreased to 9.3 MRD and spread dramati-

cally along the RD. While this reduction is substantial, the texture remains higher

than what was measured on the as-received sheet in the first study. The starting

sheet for thickness between the two studies varied slightly, with 0.8 mm in the first

publication and 0.6 mm in the second.
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Twin Roll Casting

Twin roll casting (TRC) is a process that integrates the casting and rolling pro-

cesses, and has been successfully applied to large-scale aluminum sheet production

[83]. The rolls can be oriented either horizontally or vertically. One of the benefits

of this processing route is savings in the time and cost needed to homogenize and

preheat extruded and cast plates prior to reheating. The primary issue, which can be

improved by modification of the liquid metal temperature and the casting speed, is

inhomogeneity of the microstructure in terms of grain size and chemical segregation.

Masoumi and co-workers observed a significantly weaker, and more RE-like texture

in a TRC alloy (∼ 3 MRD) which changed dramatically with annealing [61], while

Bayandorian et al. [62] observed a conventional basal texture of 5 MRD, so it is clear

there is a lot of room for texture control. Another benefit of TRC is that the rapid

solidification rate can lead to a fine microstructure [3].

Thixomolding and Thermomechanical Processing

Decker and co-workers at Thixomat, LLC developed a new process designated

as Thixomolded Thermomechanical Processing (TTMP), which produces Mg alloy

sheet by utilizing Thixomolded plates as the warm-rolling feedstock [84, 85]. Thixo-

molding is an injection molding process, where the shearing of the liquid metal in

the barrel decreases the viscosity, allowing casting to be done at lower tempera-

ture. The rapid solidification rate produces finer grain sizes, an isotropic texture,

refined secondary phases, low porosity, and a relatively homogeneous microstructure

[86, 87]. It was demonstrated that Mg- 6 wt%Al and Mg- 6 wt%Al-1 wt% Zn alloys

produced by TTMP had a fine grain size, assumed to be stabilized by the refined
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β-Mg17Al12 phase [84]. The TTMP sheets exhibit very limited edge cracking, and

both the strength and ductility was improved from the as-Thixomolded condition.

Our studies of TTMP AZ61 sheet have demonstrated a basal texture intensity less

than 5 MRD, which can be reduced following a recrystallization annealing treatment

[88–92].

Summary

While several processing techniques reduce the basal texture, in most studies the

texture remained above 5 MRD. Those studies achieving lower textures were in asym-

metrically rolled or TTMP AZ61 [80, 92] and in TRC AZ31 with numerous coarse

intermetallics [61]. It is unclear whether secondary particles or the the processing

route itself is responsible for the lower texture. However, this work establishes the

feasibility of the production of weakly textured Mg alloy sheet without the use of

RE additions.

Table 1.2 lists the grain size, basal texture intensity, and room-temperature tensile

properties in AZ31 and AZ61 sheet produced by different processing routes. The

initial strain rate used during deformation is noted, though AZ31 has weak strain

rate sensitivity at room temperature [8].
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1.4 Static Recrystallization Behavior

Texture generally does not change appreciably during static annealing of Mg alloy

sheets [26, 30, 41, 94–97]. The maximum basal texture intensity may decrease slightly

(usually no more than 30%), but new texture components are rarely observed. Dis-

continuous static recrystallization is the mechanism most commonly reported in Mg

[98–104]. However, continuous static recrystallization in Mg alloys has also been

reported [97, 105]. The term “discontinuous” is used to refer to recrystallization pro-

cesses with distinct nucleation and growth phases. Discontinuous recrystallization is

generally observed in the form of preferential nucleation of grains at grain bound-

aries and secondary particles. Continuous refers to a process where the nucleation

is more homogenous throughout the microstructure, and nucleation and growth are

less distinct processes. Huang et al. [103] made the observation that continuous re-

crystallization is often observed in materials that have undergone significant dynamic

recrystallization while discontinuous static recrystallization is observed in materials

with little or no dynamic recrystallization. In continuous recrystallization, as the re-

crystallized grains tend to adopt an orientation close to that of their parent grain, no

new texture components develop. It is reported that discontinuous recrystallization

can alter the deformation texture [41]. Substantial changes during annealing have

been observed in Mg sheets with a significant amount of intermetallics and those

with RE additions.

An increase in the volume fraction of intermetallic particles can lead to a sizable

reduction in texture intensity upon annealing [106, 107]. Large particles, usually

greater than 1 µm in diameter, can lead to a texture reduction via the mechanism of

particle stimulated nucleation (PSN) [41]. PSN is the mechanism by which recrys-
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tallization nuclei develop within dislocation gradients near particles. As the number

of randomly oriented grains increases, the intensity of the deformation texture will

decrease; a computer generated model for PSN showed a texture decrease from 5.4

to 3.1 times random [108]. Masoumi et al. [107] have demonstrated RE-like texture

upon annealing of twin-roll cast AZ31, which they attributed to PSN arising from a

higher volume fraction of secondary phases.

Small, closely spaced particles have also been shown to influence recrystallization

behavior, though the effects are still not well understood [41]. The primary effect

seems to be grain boundary pinning, which can slow the recrystallization kinetics

and lead to an extended recovery period. In RE alloys, texture reduction and the in-

crease of new texture components can occur, even in dilute alloys without secondary

phases [53, 109]. Similar to the effect of small precipitates, this is thought to be a

consequence of retardation of the recrystallization dynamics as grain boundaries are

pinned by the relatively large RE elements by solute drag effects [34, 52, 110, 111]. A

few studies have shown a dramatic change in texture upon static annealing [29, 30].

As the size and distribution of secondary particles can be controlled by alloying and

processing, it is important to understand their effect their influence on recrystalliza-

tion for design of weakly textured, high formability Mg alloy sheets.

1.5 Tensile Deformation Behavior

Uniaxial tensile deformation yields information about the strength and ductility,

and enables the calculation of parameters that provide insights into the formability of

the material. This section will discuss the typical tensile deformation behavior of Mg

alloy sheets, which factors control strength, and how the work hardening coefficient
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and Lankford r-value predict formability. It will also explore the relative activity

of different deformation mechanisms during formability. Finally, we will discuss the

damage and failure mechanisms reported in Mg alloy sheets.

1.5.1 Deformation Mechanisms

Figure 1.3: Illustration of the most common slip planes and slip directions in Mg.

The hcp magnesium crystal can deform through basal 〈a〉, prismatic and pyrami-

dal 〈a〉, and pyramidal 〈c+a〉 slip as well as mechanical twinning. The common slip

planes and directions are illustrated in Figure 1.3. Basal and prismatic 〈a〉 each pro-

vide two independent slip systems, while pyramidal 〈a〉 provides four. Deformation

parallel to the c-axis requires activation of 〈c+a〉, which requires higher stress or a

higher deformation temperature [112].

Early studies on the plastic properties of Mg focused on single crystals, which

showed extensive evidence of basal slip, but little evidence of other slip systems.

Thus it was assumed that the stress needed to activate non-basal slip was much

higher than that needed to activate basal slip [8]. Since the von Mises criterion

requires five independent slip systems to accommodate an arbitrary shape change, if
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basal slip were the only deformation mechanism active at room temperature, then Mg

alloys would exhibit brittle failure. In reality, most polycrystalline Mg alloys exhibit

some ductility [8]. Grain boundaries are thought to either impose constraints that act

to promote non-basal slip or to provide a source for non-basal dislocations [8, 113].

The critical resolved shear stress (CRSS) of basal slip at room temperature has been

measured to be two to three times less than the next easiest deformation mode [51].

Regions of grains more favorably oriented for basal slip are considerably “softer” than

those not favorably oriented, which leads to considerable grain to grain variability

[114]. Different slip mechanisms may exhibit different grain size dependencies [115].

The CRSS for 〈c+a〉 slip is high at room temperature, but decreases rapidly as

temperature increases [116].

Twinning is common in magnesium, especially during compression along the c-

axis, and is thought to make a contribution to the five slip systems needed to meet the

von Mises criterion [8, 117]. The CRSS for twinning has been found to be insensitive

to temperature [118]. It has been observed that the twinning density is higher in the

neck area than in the region of uniform elongation [69], and has been reported to

only occur near failure [8]. The amount of deformation that can be accommodated

by twinning is directly related to the volume fraction twinned [8]. Schmid and Boas

[119] calculated that the maximum strain that can be accommodated by twinning

alone is 0.065; perhaps the main contribution of twinning is to reorient grains such

that 〈a〉 slip become favorable [51, 69]. Samples mounted such that the stress axis is

perpendicular to the c-axis is unfavorable for basal slip but facilitates {101̄2}〈101̄1〉

twinning. However, {101̄2} twins do occur in samples loaded along the RD, and are

thought to result from compressive strain along the c-axis imposed by neighboring

grains [8, 120]. Twinning is reported more frequently in grains larger than 10 µm,
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and is suppressed by grain refinement [113, 118].

The activity of slip systems can be determined by transmission electron mi-

croscopy dislocation analysis, though little work has been done to explore non-basal

slip in polycrystalline Mg alloys and analysis is limited to first few percent of plas-

tic deformation [8, 113, 121]. Another method to track the activity of deformation

mechanisms is through the evolution of texture during deformation. During tension,

deformation by slip leads to a rotation of the lattice such that the active slip direction

tends to become aligned along the tensile axis and the active slip plane parallel to the

tensile stress axis [122]. During tensile deformation, dislocation slip leads to the slip

plane rotating perpendicular to the tensile axis. As a result, samples tested along

the RD showed an increased spread in the TD, and the samples tested along the

TD showed an increased spread of the basal poles along the RD [8]. Therefore, tex-

ture evolution during deformation provides insights regarding the relative slip system

activities. If basal slip is the dominant deformation mechanism, the basal texture

intensity tends to increase [123, 124]. The exhaustion of basal slip may be evident

if there is a decrease in intensity of peaks representing grains oriented favorably for

basal slip [122]. Prismatic 〈a〉 slip activity can be recognized by the development of

six-fold symmetry in the {101̄1} and {101̄0} pole figures [8].

1.5.2 Yield Strength

The yield strength of Mg alloys is controlled by the grain size, solid solution

strengthening additions, texture, and precipitation strengthening. The orientation

of the tensile sample with respect to the initial texture plays a significant role in

determining the yield stress [26, 125]. Basal textured sheet materials have a strong

tension-compression asymmetry that is associated with the anisotropic nature of
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twinning in the hcp crystals. This asymmetry results in non-uniform bending char-

acteristics and forming failures [126]. Materials with the conventional texture exhibit

a higher strength along the TD than along the RD, which is directly related to the

broader spread of the c-axis along the RD than along the TD [8]. As the c-axes of

the grains are tilted more towards the RD than the TD, the Schmid factor for basal

slip of 〈a〉 dislocations in a “typical” grain is larger for the RD samples than for the

TD samples. Therefore soft basal slip can accommodate more of the deformation

in the RD than in the TD orientation, leading to a higher strength along the TD

orientation. If grains are not favorably oriented for basal slip, then they must deform

by other, harder deformation modes. With tilted basal textures, in the early stages

of deformation basal slip occurs in the soft grains, however, as the sample elongates

and the c-axis rotates towards a direction perpendicular to the tensile axis, basal slip

activity decreases. Non-basal slip accommodates more of the strain in the TD sam-

ples. Through transmission electron microscopy (TEM) analysis, Agnew observed

that up to 80% of the strain in the TD orientation under tension is accommodated

by non-basal slip [121]. For the same reason, sheets with the RE texture exhibit a

yield anisotropy with the highest yield strength along the RD and the lowest along

the TD [54]. Sheets with a RE texture, exhibit a broader spread in the TD and thus

are more favorably oriented for soft basal slip along this direction.

In Mg-Al alloys, Al provides for solid solution strengthening (σSS) following Eqn.

1.1, where n=1/2, m=5.6, Bn=21.2 (at.)1/2, and c is the at.% Al [127]. The aluminum

in the AZ31 alloy contributes a maximum of 20 MPa to the yield strength at room

temperature.

(1.1) σSS ≈ mBnc
n

The contribution of grain size to the yield strength of the material is given by the
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Hall-Petch relationship (Eqn. 1.2), where σo is the lattice resistance of the matrix to

slip, k is the Hall-Petch coefficient, and d is the average grain size of the material.

Hall-Petch coefficients between 4 and 10 MPa×mm1/2 have been reported in AZ

series alloys [128].

(1.2) σgs = σo + kd−1/2

Assuming a uniform distribution of precipitates with identical strength, the con-

tribution of precipitates to yield strength can be modeled by Orowan strengthening

[129]:

(1.3) σOrowan =
MGb

2π
√
1− ν

1

λ
ln

(

dA
ro

)

where M is the Taylor factor (5), G is the shear modulus of the matrix (17.2 GPa),

b is the Burgers vector for basal slip in Mg (0.32 nm), ν is the Poisson’s ratio (0.35),

λ is the mean particle spacing in the slip plane, dA is the mean particle diameter,

and ro is the inner cut-off radius of the dislocation. AZ31, with only 3 wt% Al, is

not an age hardenable alloy. Generally, alloys with the potential for a significant for-

mation of precipitates are avoided, as they are believed to have more brittle behavior.

1.5.3 Work Hardening

Hollomon’s equation (Eqn. 1.4) models work hardening as a power law relation-

ship between the true stress and true strain, where n is referred to as the strain

hardening exponent. Higher strain hardening coefficients indicate more resistance

to shear localization, and thus predict better formability during stretching [130].

Strain hardening exponents between 0.12 and 0.31 have been reported in Mg sheet

[8, 32, 35, 39, 56, 61, 80, 82]. Conventional AZ31 sheet has the lowest coefficient[8]
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and the highest value was measured in AZ31 sheets with a maximum basal texture

intensity less than 4 MRD [80].

(1.4) σT = Kσn

1.5.4 Lankford r-value

The r-value, also referred to as the Lankford value or the anisotropy factor (Eqn.

1.5), is a comparison of the strain in width direction, εw=Ln(wf/ wo), to the strain

in the thickness direction, εt=Ln(tf/ to) after a specified amount of tensile straining,

where wf and wo are the final and initial width and tf and to are the final and initial

thickness [131].

(1.5) r = εw/εt

(1.6) r̄ = |r0 + 2 ∗ r45 + r90|/4

(1.7) ∆r = |r0 − 2 ∗ r45 + r90|/2

In steel, a high r-value indicates a material with good drawing properties [130].

However, in hcp materials a high r-value is associated with strong anisotropy and

poor formability [63, 132]. Instead, reduced r-values in Mg-sheet indicate improved

sheet thinning and improved formability for stretching operations [35, 54, 63]. In

magnesium the r-value is generally measured at a fixed strain between 8 and 11%

[8]. From the r-value determined by loading at 0°, 45°, and 90° from the RD, two

additional forming parameters can be calculated, the average r-value, r̄ (Eqn. 1.6),

and ∆r ( Eqn. 1.7). In hcp Mg sheet, a low r̄ and low ∆r indicate optimal formability

with more isotropic behavior. Large variations in r̄ can cause forming problems such
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as earing [32]. The r-value is highly dependent on texture [133]. Values from 0.8 to

3 have been reported for r̄ [8, 32, 35, 37–39, 54, 56, 57, 63, 80, 93, 134, 135], with

conventional AZ31 sheets having the highest values [8, 38]. Materials with r̄ between

0.8 and 1.2 tend to be those with the weakest basal texture intensities [32, 35, 54, 63].

Polycrystal plasticity models suggest that a reduction in r-value can result from the

activation of 〈c+a〉 slip [136].

1.5.5 Fracture

Despite the perception that only basal slip operates extensively at room temper-

ature, commercial AZ31 and other Mg alloy sheets typically have an elongation to

failure of 15% [7]. Mg sheets usually exhibit a shear angle of near 45° [137]. Duc-

tile microvoid coalescence has been observed by several authors in Mg alloy sheets

[42, 48, 69, 138–140]. As grain size increases to above 10 µm, the fracture surface

shows more brittle fracture modes [16, 18, 19]. Particles are often observed in the

bottom of dimples [42, 44, 48, 140], and as discussed in Section 1.2.3, the cracks that

develop in the brittle intermetallics are often associated with failure of the material,

though the evidence in most cases is inconclusive.

1.6 Forming of Mg Alloy Sheet

Formability of Mg alloy sheet at room temperature is limited. Investigations of

formability in Mg alloy sheet have established that due to the prevalence of basal slip

at ambient temperatures, formability can be improved through a decrease in the basal

texture intensity or an increase in forming temperature [32, 35, 37, 39, 56, 141–144].

As temperature is elevated, and non-basal slip systems are more easily activated, the
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advantages of a weak basal texture are reduced [39, 142].

Stretch formability is accessed by the measurement of the maximum dome height

achieved at failure as sheet is loaded by the bulge media (a ridged punch or pressur-

ized liquid or gas). Limiting dome height and Erichsen tests, utilize a ridged punch

to deform the sheet. Liquid and gas bulge tests utilize pressurized liquid or gas. Boba

et al. [142] observed a limiting dome height of 29.7 mm vs. 12.7 mm at room tem-

perature in the more weakly textured ZEK100 compared to commercial AZ31 sheet.

In both alloys the limiting dome height increased with forming temperature, however

the improvement was more substantial in AZ31. Randman et al. [145] also observed

that ZEK100 exhibited an dome height nearly twice that measured in AZ31B formed

at the same temperature. Interestingly, in Randman’s work increasing the forming

temperature to 425°C did not increase the limiting dome height in either alloy. Zhang

et al. [39] found that commercial AZ31B sheet required a temperature of at least

100°C for successful deep drawing, but that weakly textured AZ31 sheet produced by

repeated uniaxial bending could perform deep drawing at room temperature. Zhang

and coworkers [82] were able to increase the room temperature Erichsen value of a

commercial AZ31 sheet by 50% by pre-stretching it for a 5% elongation at 250°C,

which provided for a ∼ 80% reduction in basal texture.

Bulge tests on 1.56 mm thickness TTMP AZ61 sheets (the material studied in this

dissertation) demonstrate that the maximum dome height achieved at a strain rate

of 1.3 × 10 −3s −1 can be increased from 7 mm to 30 mm by increasing the forming

temperature from 25°C to 300°C [141]. A similar increase in dome height with

increase temperature was observed at strain rates of 1.3×10 −2s −1 and 1.3×10 −1s −1.

Liquid bulge tests preformed on TTMP AZ61 at 255°C achieved a bulge height of

18 mm [86]. Gas bulge tests performed by the Interlaken Technology Corporation
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between 200°C and 300°C on Al-5182 and TTMP AZ61 demonstrate that warm

forming in TTMP AZ61 can be performed at faster rates and lower stresses, likely

decreasing the cost of components [86].

Failure during forming usually results from a catastrophic shear instability [143].

Dreyer et al. [143] observed that failure in warm forming of ZW41 resulted from

transgranular ductile tearing, and not cleavage or intergranular cracking. Formation

of compression twin shear bands in biaxially deformed AZ31 sheet at room temper-

ature contributed to a lower forming limit in both biaxial and plane strain tensile

specimens [146]. Another potential source for instabilities are secondary phase parti-

cles, however little work has been done in order to explore the effect of second phase

particles on the formability of Mg alloy sheet. Carter et al. [147] observed that dome

height achieved in continuous cast Mg alloy sheet was lower than expected based on

grain size due to failure caused by long stringers of inter metallic particles. Verma et

al. [148] also observed random location failures during pneumatic testing of AZ31B

sheets due to stringers of intermetallics along the RD.

Mg alloy sheet components have been successfully formed at elevated temper-

atures. Successful stamping of simple components using AZ31 sheet, such as 125

mm deep rectangular pans, have been achieved at temperatures between 150°C and

350°C [5]. Carter et al. [147] tested numerous commercial grade Mg alloy sheets

via pneumatic biaxial bulge testing at 450°C and found that several of them ex-

hibited formability similar to a fine-grain AA5083 Al sheet that has already been

established for quick plastic forming (QPF) of automotive components. The temper

of the sheet was found to determine if the sheet would successfully meet the form-

ing requirements, with fully recrystallized O-temper sheets exhibiting lower biaxial

formability than sheets in the strain hardened and partially recrystallized H24 tem-
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per. In the same work the authors also demonstrated that commercial AZ31B sheet

could be used successfully to produce inner door panels using the existing QPF pro-

cess and dies at 450°C. Randman and coworkers [145] demonstrated that wide sheets

of asymmetrically rolled AZ31B and ZEK100 sheet could be successfully formed into

automotive parts, though the weak texture of ZEK100 allowed for more rapid form-

ing.

1.7 Objectives and Approach

The use of Mg alloy sheet, which could provide significant weight savings in many

applications, is limited due to its poor formability. It has been demonstrated that the

formability can be improved through refinement of the grain size and a decrease in

the basal texture developed during sheet rolling. RE additions are quite effective in

producing weakly textured sheets, but these additions are limited in availability and

are costly. Alterations to the conventional multiple pass hot rolling route can also

produce more weakly textured sheets. This dissertation explores the use of TTMP

to produce high strength, weakly textured sheets with good formability.

AZ31 is the most commonly used wrought Mg alloy sheet, however AZ61 was

chosen as it can be successfully Thixomolded with low porosity [86] and allows for

the possibility of increased precipitation and solid solution strengthening as it has a

higher Al content. Thixomolded AZ61 has a significant volume fraction of β-Mg17Al12

particles, so study of this alloy allows for evaluation of the influence of secondary

particles on texture and grain refinement. It had been established that TTMP can

produce favorable tensile properties, yet the mechanisms responsible were not well

understood. The objectives of this research are to (1) develop an understanding of
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the microstructure and texture evolution during TTMP, (2) determine the effect of

TTMP on the tensile deformation behavior and use the tensile behavior to predict the

room-temperature formability of TTMP AZ61, and (3) evaluate the contribution of

the β-phase to grain size stability, texture evolution, and failure of the TTMP AZ61

sheets.

Chapter II describes the experimental procedures used in this investigation. Chap-

ter III discusses the evolution of microstructure and texture during TTMP and ex-

plores the stability of the recrystallized grain size. Chapter IV explains how the

microstructure and texture evolution determine the room-temperature tensile de-

formation behavior. The active deformation modes are explored by studying the

evolution of texture during deformation. Finally, we describe the failure mechanisms

observed in the as-Thixmolded plate and TTMP sheet. Chapter V summarizes the

major conclusions of this work and provides suggestions for further studies on TTMP

and Mg sheet production.
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CHAPTER II

Experimental Procedures

This chapter describes the experimental methods used in this thesis. The Thixo-

molding, rolling, and annealing processes used to produce TTMP AZ61L sheet

are presented. The preparation, procedures, and analysis used to characterize mi-

crostructure and mechanical properties are also described.

2.1 Material Production

Thixomolded and Thermomechanically Processed (TTMP) sheet is produced by

warm-rolling of a Thixomolded plate followed by subsequent annealing. This section

describes the process of each of the three primary steps; Thixomolding, rolling, and

annealing.

2.1.1 Thixomolding

Thixomolding is an injection molding process, where the shearing of the liquid

metal in the barrel decreases the viscosity (thixotropy), allowing casting to be done

at lower temperature. Thixomolding is generally a semi-solid processing route; the

injected slurry usually contains a solid fraction of 5 to 60% [1]. The rapid solidifica-
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tion rate achieved as a result of the reduced casting temperature leads to finer grain

sizes, an isotropic texture, refined secondary phases, low porosity, and a relatively

homogeneous microstructure [2, 3].

For this research, thirty plates with dimensions of 20.3 cm x 20.3 cm x 3 mm were

produced with a 280 ton commercial Thixomolder. The Thixomolder was run with a

maximum barrel temperature of 638°C and a screw injection speed of 305 cm/s. The

Thixomolding parameters were selected by Thixomat, LLC to achieve low porosity

and low (< 5%) solid fraction. Argon was used as the cover gas in the barrel. The

nominal composition of the Thixomolded plates, as determined by spectrographic

chemical analysis by Dead Sea Magnesium, is given in Table 2.1.

Table 2.1: Composition of received AZ61L in wt %

Al Zn Mn Si Fe Mg
6.5 0.46 0.14 0.01 0.003 bal.

2.1.2 Rolling

Twenty five of the thirty Thixomolded plates were rolled to produce sheet using

a mill with 150 mm diameter x 150 mm wide rolls. During the rolling process, the

bottom plate and rollers were held at 245°C and 195°C, respectively. A proprietary

lubrication was used. The plates were preheated for 5 minutes at 315°C and then

warm-rolled in a single-pass with a feed rate of 50.8 mm/s to produce a final sheet

thickness of 1.8 mm, a thickness reduction of 42%. The rolled sheets were allowed to

cool to room temperature in ambient air. Fourteen of the TTMP sheets were used

for this dissertation.

The strain rate during rolling is approximately 1.4 s−1 as estimated by:
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(2.1) ε̇ ) 0.9V

√

r

Dt

where V is the velocity, expressed in mm/s, r is the reduction in thickness as a deci-

mal, D is the roll diameter in mm, and t is the initial thickness in mm [4].

2.1.3 Thermal Treatment

Thermal exposures below 300°C were conducted in a Techne SBL-2D fluidised

bath with an alumina media. A thermocouple placed in contact with the sample

monitored the temperature, which was stable to ± 2°C. Higher temperature anneal-

ing treatments were performed in a Lindberg tube furnace. Temperature was again

monitored with a thermocouple in contact with the sample. Annealed samples were

water quenched.

2.2 Microstructural Characterization

Optical, scanning electron and transmission electron microscopies were used to

characterize the microstructure. This section details the sample preparation proce-

dures and analysis techniques utilized.

2.2.1 Sample Preparation

As magnesium and its alloys are quite difficult to prepare reproducibly for met-

allographic study, considerable detail is presented. Sample preparation for all mi-

crostructure characterization (excluding fractography) differs only in the final step.

Metallographic specimens were prepared by using a Buehler EcoMet 250 automatic
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grinder-polisher with samples embedded in 31.8 mm diameter cold mount epoxy

resin. Settings on the polishing system were 150 rpm base speed, 60 rpm head

speed, complementary rotation, and 25 N of pressure. The specimens were ground

until planar using 200 grit SiC with water lubricant, and then ground for 30 s each

with 400, 600, 800, and 1200 grit SiC with water. If at any of these grinding steps

the surface was not uniform, the SiC paper was replaced and the sample was ground

for another 30 s. The samples and sample holder were rinsed thoroughly with water

between each step. To prevent oxidation, water was avoided after grinding.

All polishing was performed using either Lapmaster (6 µm) or Buehler (3 µm and

1 µm) diamond pastes on Buehler Chemomet pads with the Buehler MetaDi Fluid

lubricant. The sample was polished at 6 µm for 10 minutes, and for 5 minutes at

the 3 µm and 1 µm steps. Between steps the sample was rinsed well with ethanol,

blown dry with an air gun, and then set in front of a low speed air dryer for a few

minutes. The pads were cleaned by rinsing with ethanol while gently scraping with

the edge of a scoopula before being returned to a ventilated storage box. Between

polishing steps the sample holder was rinsed thoroughly with water, and dried with

paper towel. Clean gloves were applied at every polishing step. In order to clean

and dry the samples as quickly as possible, only two specimens were polished at one

time.

To reveal grain boundaries, wrought material was etched for 3 s at room temper-

ature in a picral solution composed of 10 mL water, 10 mL acetic acid, 4.3 grams

of picric acid, and 70 mL of ethanol. For the as-Thixmolded material, etching for

3-5 s in a ∼ 5°C solution of 60 mL ethanol, 20 mL water, 15 mL glacial acetic acid,

and 3 mL of nitric acid produced the best results. The acetic-nitric solution was also

used to best reveal the β-particle morphology and as the final preparation step for
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electron backscatter diffraction (EBSD). No etchant was used on samples intended

for microprobe analysis or backscattered electron (BSE) imaging.

To avoid oxidation, samples were usually prepared immediately before examina-

tion. For general optical and SEM analysis, the sample surface was of sufficient

quality for approximately 2 weeks following preparation. For EBSD analysis, surface

oxidation caused the pattern quality to decrease in as little as two hours following

etching when stored in a sample box with desiccant. A ∼ 33% reduction in the

average confidence index (confidence of the software that the chosen orientation cor-

rectly represents the real orientation) in samples that were re-examined 1-7 days

after preparation was common. In order to obtain the highest quality EBSD data,

an effort was made to have the sample in the SEM vacuum chamber within 0.25 h

of etching.

2.2.2 Optical Microscopy

Optical microscopy was performed on an Nikon Epiphot inverted microscope

equipped with a digital camera.

2.2.3 Scanning Electron Microscopy (SEM)

SEM examination was conducted with a Philips XL30 field emission gun (FEG)

SEM and a Tescan Mira FEG microscope. Both microscopes are equipped with a

backscattered electron detector, an EDAX energy dispersive spectroscopy (EDS) de-

tector, and an EDAX electron backscatter diffraction camera. EDAX TSL OIM data

collection and EDAX TSL OIM analysis software were used on both systems. Each

of these detectors was utilized to characterize different aspects of the microstructure.
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Wavelength Energy Dispersive Spectroscopy

A Cameca SX100 electron microprobe was used to quantify the Al concentration

in a few of the samples. An accelerating voltage of 15 keV and a probe current of

10 nA was used, resulting in an estimated spot size of 2 µm. The samples and cal-

ibration standards were carbon coated prior to analysis. The chemical composition

is calculated as the average of 10 point counts (1 minute in duration) at the grain

interiors.

Particle Size and Volume Fraction

Secondary electron imaging (SEI) was used to characterize the size and volume

fraction of the β-phase particles. Typical microscope operating conditions were an

accelerating voltage of 15 keV and a working distance of 5 to 15 mm. At least 20

secondary electron images with an area of 2500 µm 2 were used per condition. A

representative microstructure is shown in Figure 2.1.

Figure 2.1: SE image used for determination of β-particle size and area fraction. This particular
micrograph represents sheet annealed for 285°C for 10 min. The rolling direction is vertical.
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ImageJ software [5] developed by the National Institutes of Health was utilized

for segmentation and quantitative analysis of microstructure. After the pixels per

micron ratio was calibrated, the greyscale threshold was adjusted so that, as much

as possible, only the particles appear black (Figure 2.2). Inclusion of a few bright

pixels in the matrix was usually unavoidable. The “Analyze Particles” function was

used to determine the size, aspect ratio, major axis inclination, length along the

horizontal and vertical directions for each particle, as well as the area fraction of

particles. A lower limit was set on the possible particle size to exclude single pixels,

removing most of the erroneously created particles resulting from the threshold set-

ting. For particle size and morphology measurements, particles on the perimeter of

the image were excluded. For volume fraction determination, particles on the edges

were retained. The “show outlines” option was used so that the particles selected

by the software could be compared to the microstructure to confirm the validity of

the measurement. Each particle in the outlined image is automatically numbered for

reference. Figure 2.3 shows the generally good agreement between a subset of Figure

2.1 and the generated particle outlines. The results from each image were compiled

into a single file in order to calculate mean particle size and particle size distribu-

tions. The resolution of micrographs used for this technique neglects all secondary

particles less than 0.1 µm in diameter.
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Figure 2.2: Image resulting from adjusting the threshold such that the β-particles are the only
remaining feature. This image is 25 µm in width.

Figure 2.3: Comparison between particles as determined by ImageJ (left) and and the original SE
image (right).

Electron Backscatter Diffraction

General operating conditions for EBSD were a working distance between 18 and

20 mm, an accelerating voltage of 30 keV, and a beam intensity of 18. The large

accelerating voltage and beam intensity give a predicted spot size of ∼ 50 nm and

were chosen in order to give the best quality of patterns with a collection rate of

30 to 40 patterns per second. A step size of approximately 1/15 of the average grain
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diameter and a scan area providing for 500 to 1000 grains was used for most scans.

A finer step size of 0.08 µm was used for some of the data sets in which the intention

was to study the evolution of grain misorientation during recrystallization.

The general cleaning procedure for EBSD maps was (1) neighbor orientation cor-

relation, (2) one iteration of grain dilation, and (3) grain Confidence Index (CI)

standardization. After the cleaning routine, a partition was generated to only retain

points with a CI > 0.1. In the TSL OIM analysis program, a CI of 0.1 indicates the

software is 90% certain of the grain orientation. Manual examination of the selected

pattern for points with a CI < 0.1 usually demonstrates an incorrect match, while

points above a CI of 0.1 are a correct match.

A second set of scans was used to determine texture. Here the scan parameters

were selected such that the step size would result in an average of 2-5 measurements

per grain and that the scan area would sample approximately 10,000 grains. For the

highly deformed, as-rolled material and the larger grained solution treated material,

a large scan area was needed in order to obtain the desired 10,000 orientations. To

avoid the collection of poor patterns due to defocusing as the beam is rastered over

the surface in large scans, the orientation information of several smaller scans was

merged. It was observed that increasing the scan area from 200 x 200 µm to 400

x 400 µm resulted in a 50% decrease of quality data points in the highly deformed

as-rolled material. For larger grained, recrystallized materials, high quality data was

obtained on scans as large as 850 x 850 µm. For the large step size EBSD scans

intended to only provide texture information, the definition of grain loses validity,

and thus the only “cleaning” process was creating a partition to drop all of the low

(< 0.1) CI points. The appendix provides a more detailed description of how the

texture generated by EBSD compares to that determined by X-ray Diffraction.
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Grain Size Determination

The grain size distribution for each condition was determined from the EBSD

data. After the routine cleaning procedure, the grain properties in the OIM software

were modified to require grains to contain at least 10 points and occupy multiple

rows of the scan. A misorientation of > 5° was used to define a grain boundary.

Extension twin boundaries of {101̄2}〈101̄1〉 at 86° ± 3° were included in the parent

grain size. The resulting EBSD data and grain properties were used to construct

an inverse pole figure map. Black grain boundaries were superimposed on the map.

The ImageJ software was used to threshold these images such that only the grain

interiors remained black and the “Analyze Particles” function could be used. At

least 1000 grain area measurements were collected. Circular grains were assumed in

order to convert grain area to grain diameter.

2.2.4 Transmission Electron Microscopy (TEM)

Sample preparation for TEM consisted of first thinning a ∼ 10 mm by 30 mm

coupon of material to less than 300 µm in thickness. 3 mm diameter disks were then

punched from the sheet using a Gatan foil punch. These disks were ground with 1200

grit SiC with ethanol as lubrication, and polished with diamond pastes to 1 µm on

both sides; the foil thickness after polishing was between 70 and 100 µm. A Gatan

Precicion Ion Polishing system was used to thin the sample to electron transparency.

The thinning was done in two steps, one at a gun tilt of 5° at 4.5 keV until a hole

formed (this usually required about 10 hours) and a lower energy step at 3° and

3.0 keV for 20 minutes to remove some of the damage from the first step. A liquid
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nitrogen cold finger was used to cool the foil during the entire process.

TEM was conducted on either a Phillips CM12 AEM or a JEOL 2010F TEM.

Both microscopes were equipped with a double-tilt holder.

2.3 Mechanical Testing

Both hardness and tensile tests were used to evaluate mechanical properties. This

section describes the specimen geometry, preparation, and testing procedures used.

2.3.1 Tensile Tests

Dogbone tensile specimens with a gauge length of 25.45 mm and a width 6.35 mm

were machined from a total of twelve sheets and one plate. In the sheets, specimens

were machined with the tensile axis oriented at either 0°, 45°, and 90° from the rolling

direction. The specimen thickness was equal to the material thickness, 3 mm for the

Thioxmolded plates and ∼ 1.8 mm for the sheets. Annealing treatments were always

conducted after machining. An oxide layer that formed during annealing on some

of the solution treated samples was removed with 1200 grit SiC before testing. A

few samples were polished before deformation to allow for evaluation of shear band

activity.

Room temperature tensile tests were performed with an Instron 5505B load frame

equipped with a 100 kN load cell. A constant displacement rate of 0.01 mm per

second resulted in an initial strain rate of 4x10−4s−1. The samples were preloaded

to 20 MPa to remove the rolling curvature. An extensonometer with a 25.4 mm

gage was used to measure tensile elongation. At least 4 specimens for each condition

were loaded monotonically to failure. The yield strength was calculated using a 0.2%
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offset.

Three additional samples, strained to 10% were used to calculate the r-value (r),

the mean r-value (r̄) and the planar anisotropy of r-value (∆r) which are given by:

(2.2) r = εw/εt

(2.3) r̄ = |r0 + 2 ∗ r45 + r90|/4

(2.4) ∆r = |r0 − 2 ∗ r45 + r90|/2

where εw and εt are the strains in the width and thickness directions, respectively

and the subscripts indicate the orientation of the tensile axis with respect to the

rolling direction [6].

In order to observe damage accumulation during deformation, interrupted tensile

tests were also conducted. The tensile tests were stopped at the desired strain and

∼ 50 µm was removed from the surface by grinding and polishing to 1 µm to remove

topology before examination via SEM. The first set of interrupted tests examined

deformation at 1%,2%, 4%, 8%, and 16% plastic strain. No damage was observed at

1% or 2%, so these steps were dropped in further studies.

Crack length and crack density information was collected on nominally twenty

BSE micrographs at each strain increment. The micrographs were taken along the

polished surface beginning at one of the gauge ends and then at 1 mm intervals

towards the opposite end of the specimen. Each image had a field of view of approx-

imately 1000 µm2, resulting in a resolution of 33.2 pixels per µm. Crack length was

measured using ImageJ.

The fracture surfaces were inspected both optically and in the SEM. In several

cases, one piece of the specimen was polished to either mid-width or mid-thickness
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to characterize the damage at failure by BSE imaging. Twinning was studied as

a function of strain in several mid-thickness samples following etching in the picral

solution described in 2.2.1.

2.3.2 Hardness

Vickers microhardness measurements were made with a Clark Microhardness

tester with a dwell time of 15 s and a 200 g load. At least 10 measurements were

taken per condition.
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CHAPTER III

Microstructure and Texture Evolution Through

Thixomolding and Thermomechanical Processing

This chapter describes the evolution of the microstructure through the TTMP pro-

cess, starting from the as-Thixomolded plate pre-cursor to annealed TTMP sheets.

The α-Mg grain size and β-particle size, volume fraction, and distribution are dis-

cussed. Recrystallization in the rolled sheet is characterized, and the kinetics of

recrystallization are determined. Grain size stability during annealing is also be ex-

amined.

3.1 Microstructure of Thixomolded Plate

Thixomolded plate was chosen as the precursor for rolling because produces a

microstructure composed of fine α-Mg grains (darker grey) surrounded by blocky

β-particles and some divorced β-eutectic (brighter grey) (Fig. 3.1). The average

grain diameter of the as-Thixomolded material is 4.3 µm, but as shown in Figure

3.2, the grain size distribution is broad. There are some grains as large as 20 µm

in diameter. The cast plate is essentially untextured, which was desirable to aid in

producing rolled sheet with low texture (Figure 3.3).
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Figure 3.1: Representative microstructure of the as-molded plate.

Figure 3.2: Grain size distribution of > 4000 grains in the as-molded plate.
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Figure 3.3: (a) Inverse pole figure map and (b) basal and prismatic pole figures representing the
as-molded plate. EBSD data courtesy of Victoria Miller of UCSB.

The rapid cooling rate during Thixomolding leads to a supersaturation of alu-

minum and results in an average volume fraction of β-phase of only 4.2%, compared

to 10% at equilibrium, as determined by area fraction measurements. It should be

noted that determination of the β-phase volume fraction by area fraction neglects

β-particles finer that 200 nm in diameter, however the analysis of the phase fractions

by XRD yielded a similar β-phase volume fraction of 3%. Aluminum is likely segre-

gated to regions in the vicinity of the grain boundary, an average Al concentration of

3.6 wt.% was measured in the grain interiors by wavelength dispersive spectroscopy.

The β-particles are distributed primarily along grain boundaries, and have an aver-

age diameter of 1 µm. Figure 3.34 illustrates a typical β-particle morphology in the

as-molded condition.

There are also some large grains 50 to 100 µm in diameter, as shown in Figure

3.5, which likely solidified in the nozzle of the Thixomolding machine at a higher

temperature and thus contain less Al [1]. These externally solidified grains tend to
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Figure 3.4: Typical β-particle morphology of one of the larger particles in the as-molded condition.

be segregated in bands in the plate thickness. The average volume fraction of these

grains is ∼ 4%.

Thixomolding is generally a semisolid processing, with a solid fraction of 5 to

60%, though components have been made successfully with a solid fraction of 85%

[2]. The solid particles promote more laminar flow, reducing porosity, though lower

solid fractions (5 to 10%) are generally employed for thinner components [2].

Both elongation to failure and tensile strength have been shown to increase with

decreasing solid fraction, and therefore the Thixomolded plates for TTMP were pro-

cessed to have a solid fraction less than 5% [3, 4]. Although they persist through

processing in TTMP AZ61, no correlation between these externally solidified grains

and damage and failure of the as-molded or TTMP sheets was observed. This is

consistent with work by Nandy et al.. [3], in which particle-matrix decohesion was

infrequent, even in alloys with solid fractions of 30%. Based on the work of Nandy

et al.., and the low solid fraction in TTMP AZ61, it is assumed that these particles

play a limited role in the deformation behavior of TTMP AZ61 and their evolution

through processing is not addressed.
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Figure 3.5: Optical micrograph revealing the distribution of bright, externally solidified grains
through the thickness of the as-molded plate.

A small amount of porosity, highlighted in Figure 3.6, exists in the as-molded

plate. A few of these casting pores are highlighted by white arrows in Figure 3.6.

Thixomat, LLC measured a porosity of 1.5% in the Thixomolded AZ61 plates by

the Archimedies method. Though a detailed characterization of the porosity was not

conducted, visual inspection of the area fraction of pores seems to be consistent with

the measured porosity level.
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Figure 3.6: SE micrograph showing porosity in the as-molded microstructure.

3.2 Microstructure of as-Rolled Sheet

The rolling process produces highly deformed grains elongated in the rolling di-

rection. No grain boundaries or equiaxed grains are observable in the microstructure

by SEM (Figure 3.7). The deformed state of the as-rolled sheet yields generally poor

EBSD pattern quality. Figure 3.8 illustrates an inverse pole figure (IPF) map, gen-

erated by EBSD, for the as-rolled sheet. Black pixels indicate that an orientation

could not be determined at that location. Possible causes for a lack of indexing are

the presence of a β-particle, shadowing by topography, overlapping diffraction pat-

terns at grain boundaries, and poor pattern quality due to a high dislocation content

in the material. An indexing rate of less than 40% of the points is common in the

as-rolled material.
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Figure 3.7: Representative scanning electron micrograph of the as-rolled microstructure.

Figure 3.8: IPF map representing the as-rolled sheet. The black pixels are points that could not
be indexed. The black lines indicate boundaries with a 5 ° misorientation.
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Figure 3.9: Transmission electron micrograph of a region containing several dynamically recrystal-
lized grains indicated by α.

Transmission electron microscopy of as-rolled microstructure reveals regions of

dynamically recrystallized grains (Figure 3.9). The dynamically recrystallized re-

gions appear to be associated with regions with a numerous β-precipitates, though

a rigorous analysis of the relationship between dynamically recrystallized grains and

β-precipitates was not established. The majority of the microstructure contains a

high density of dislocation networks (Figure 3.10(a)). Figure 3.10(b) illustrates one

region in which a highly deformed grain (labeled A) neighbors a region of fine dynam-

ically recrystallized α-Mg grains and β-particles (labeled B). Due to the complexity

of the microstructure, and the inherently small area that can be examined via TEM,

a dynamically recrystallized grain size was not rigorously determined, but an average

dynamically recrystallized grain diameter of 0.5 µm appears reasonable.
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Figure 3.10: Transmission electron micrographs showing the complexity of the as-rolled sheet mi-
crostructure. (a) The typical microstructure via TEM in the as-rolled condition and (b) a deformed
grain neighboring a region of sub-micron dynamically recrystallized grains and β-precipitates.

In the as-rolled sheet, the volume fraction of the β-phase increased to 7.6% from

4.2% in the as-molded plate. This results from the additional time at temperature

during the preheat (315°C) and rolling process. Rolling results in the tendency for the

β-particles to be arranged in chains aligned roughly parallel to the rolling direction.

Finer β-precipitates observed via TEM (Figure 3.9) have a platelet shaped geometry

consistent with that observed by TEM in AZ91 [5]. These finer β-precipitates are

heterogeneously distributed throughout the microstructure. The evolution of the β-

phase during TTMP is discussed in more detail in Section 3.6.
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3.3 Recrystallization in TTMP AZ61 Sheet

Recrystallization treatments were performed in order to recover ductility loss due

to the high dislocation density in the as-rolled sheet. In order to quantify the re-

crystallization kinetics, both isochronal and isothermal annealing treatments were

conducted. A modified Johnson-Mehl-Avrami-Kolmogorov (JMAK) recrystalliza-

tion model gives a reasonable description of recrystallization in the as-rolled TTMP

sheet [6–8].

3.3.1 Isochronal Recrystallization Treatments

Figure 3.11: Evolution of hardness after 10 minute annealing treatments at temperatures between
130°C and 340°C.

Ten minute annealing treatments at temperatures between 130°C and 340°C were

performed on the as-rolled sheet. The resulting hardness evolution is summarized

in Figure 3.11. The hardness begins to significantly decrease above 250°C. Based

on the premise that the fraction recrystallized (X) is proportional to the amount of

softening, we can approximate recrystallization as a function of temperature by Eqn.
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3.1 [6, 8–10].

(3.1) X =
Hmax −H

Hmax −Hmin

H , Hmax, and Hmin are the hardness, the maximum hardness (cold worked state),

and the minimum hardness (recrystallized state), respectively. A value of 95.7 HV,

the hardness of sheet that has been annealed at 130°C for 12 hours, is used for Hmax.

Following this low temperature heat treatment, the sheet softens slightly from the as-

rolled hardness of 99 HV. Observations of the microstructure after 12 hours at 130°C

show no signs of recrystallization, so it is assumed that the reduction in hardness is

a result of recovery. Hmin is approximated as 75.9 HV, the average hardness of the

four highest temperature annealing treatments. Figure 3.12 shows the resulting re-

crystallization curve. From this 285°C was chosen as the recrystallization annealing

treatment temperature as it provides a nearly fully recrystallized microstructure (∼

80% based on hardness) after only 10 minutes and it is lower than the β-solvus for

AZ61 (∼ 300°C).

Figure 3.12: Fraction recrystallized in material annealed for ten minutes at temperatures between
130°C and 340°C, as calculated from hardness measurements.
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3.3.2 Isothermal Recrystallization Treatments

In order to better understand the recrystallization kinetics at the selected recrys-

tallization temperature of 285°C, an isothermal recrystallization curve was deter-

mined for times between 30 and 900 seconds following the same procedure used for

the isochronal curve. Figure 3.13 presents the results of this analysis, and Figure 3.14

demonstrates the microstructure evolution during recrystallization. Aside from the

value at 480 seconds, which is low compared to its neighboring points, the hardness

seems to be relatively stable at times above 360 seconds.

Figure 3.13: Fraction recrystallized in material annealed at 285°C for between 30 and 900 seconds,
as calculated from hardness measurements.
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Figure 3.14: Evolution of microstructure during recrystallization at 285°C observed by SEM. Arrows
highlight some of the recrystallized grains which surround the deformed grains, some of which are
indicated by “D.”

3.3.3 Recrystallization Kinetics

Researchers have described recrystallization in Mg reasonably well using JMAK

kinetics [6, 11–15]. The JMAK model assumes homogeneous nucleation of recrystal-

lized grains at a constant rate, isotropic growth, and a linear growth rate [8]. If these

criteria are satisfied, then the Avrami exponent would be 4 [8, 16]. In reality, nucle-

ation is neither spatially or temporally homogeneous; reported Avrami exponents in

AZ31 range between 1.18 and 1.38 [6, 11, 14].
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The results from both recrystallization studies in TTMP AZ61 were used to fit

a modified Johnson-Mehl-Avrami-Kolmogorov (JMAK) recrystallization model ex-

pressed below [6, 7].

(3.2) X = 1− exp (−0.693 (t/t0.5)
n)

(3.3) t0.5 = BZrexp (Qrex/RT )

Here t0.5 is the time to 50% recrystallization, which is calculated using Equation

3.3. Z is the Zener-Hollomon parameter, Z = ε̇× exp(Qdef/RTd), and R is the ideal

gas constant (8.314 JK−1mol−1). The activation energy for Mg self-diffusion, 135

kJmol−1, is used to approximate, Qdef , the activation energy for deformation [6].

Td, the temperature of deformation, was approximately 300°C. The expressions for

t0.5 and Z were substituted into Equation 3.2 and fit to the experimental data for

the fraction recrystallized (Figure 3.12 and Figure 3.13). A nonlinear regression al-

gorithm was used to solve for n (the Avrami exponent), Qrex (the activation energy

for recrystallization), and the fitting constants r and B. The best fit parameters, are

presented in Table 3.1. A decrease in the B parameter (to which the isochronal curve

is less sensitive) is the only difference from previously reported parameters obtained

by considering the isochronal recrystallization curve exclusively [17]. Figure 3.15 dis-

plays the resulting JMAK model with the isochronal and isothermal recrystallization

curves in as-rolled TTMP AZ61 sheet.

Table 3.1: Parameters used for JMAK model
Parameter Value
n 0.94
Qrex 137 kJmol−1

r -0.87
B 1.63 s0.13
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Figure 3.15: JMAK model fit to the isochronal and isothermal recrystallization curves in as-rolled
TTMP AZ61 sheet.

The Avrami exponent, n, of 0.94 in the TTMP AZ61 sheet is slightly lower than

reported Avrami exponents in AZ31 [6, 11, 14]. This low exponent may be due

to non-random nucleation in the deformed material, for instance an exponent of 1

has been found when modeling nucleation of random sites on grain boundaries [18].

Clusters of β particles along grain boundaries may be preferential nucleation sites.

Another factor is that the driving force for recrystallization increases with increasing

strain and n decreases as dislocation density increases [8, 11].

3.3.4 Low Temperature Annealing Treatments

In order to evaluate the potential for age hardening in the as-rolled sheet, an-

nealing treatments between 5 and 720 minutes were conducted at 130°C, 170°C, and

210°C. The hardnesses resulting from these low temperature annealing treatments

are shown in Figure 3.16. Unsurprisingly, no age hardening response is seen in the

material with a non-uniform distribution of Al, but the results do provide some in-

sights into the recovery and recrystallization processes in the as-rolled sheet. Unlike

at temperatures above 250°C, no substantial decrease in hardness is seen at the low

temperatures, even after 12 h. Thus, 210°C is below the recrystallization tempera-
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ture in the as-rolled sheet. The 4 HV decrease between the as-rolled material and

sheets annealed at the low temperatures can be attributed to recovery.

Figure 3.16: Hardness following low temperature annealing treatments.

The recrystallization temperature, TRX , is often defined as the temperature at

which the material is 50% recrystallized after 1 hour [8]. Based on this criterion the

recrystallization temperature for as-rolled TTMP AZ61 sheet lies between 210°C and

260°C. Our JMAK model would predict TRX to be 230°C. However, since our model is

largely based on the kinetics at higher temperatures (with an emphasis at 285°C), it

loses validity as the temperature, and therefore energy available for recrystallization,

is decreased. Indeed, it would predict that after 12 hours at 210°C the sheet is more

than 80% recrystallized, when no evidence of recrystallization after this treatment

was detected by hardness measurements or observation of the microstructure (Figure

3.17). The recrystallization temperature is often approximated as either 1/3 or 1/2 the

melting temperature, which is 620°C in AZ61 [19]. This predicts a recrystallization

temperature between 205°C and 310°C, in agreement with our observations. Recrys-

tallization temperatures between 200°C and 300°C have been reported in Mg and a
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wide variety of Mg alloys [11–13, 15, 20–22].

Figure 3.17: SE micrograph presenting the representative microstructure of sheet annealed for
210°C for 12 h demonstrating a lack of grain boundaries which would indicate recrystallization.

3.3.5 Grain Orientation Spread

Another method used to characterize the fraction recrystallized is by calculating

the internal misorientation of a subset of grains via EBSD orientation measurements.

The grain orientation spread (GOS) is a measure of the mean misorientation of all

pixels within a grain from the average grain orientation. Grains with a GOS less than

1.5° or 1° are usually considered recrystallized [22–24]. Figure 3.18 compares GOS

maps for sheet annealed for (a) 0.5 min and (b) 10 min at 285°C. As there are no

grains in either map with a GOS greater than 10°, this appears to be near the limit

for the maximum deformation above which TTMP AZ61 does not produce sufficient

image quality for reliable indexing. Using 1° as the cutoff between recrystallized and

un-recrystallized grains, a dramatic increase in the fraction of recrystallized grains

(blue) from 5% at 0.5 minutes to 63% after 10 minutes is apparent.
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Figure 3.18: Grain orientation spread maps for sheet annealed for (a) 0.5 min and (b) 10 min at
285°C. Grain color indicates the GOS.

It should be noted that these are relatively small maps (50 µm square), collected

with the intentions of exploring potential interactions between β-particles and recrys-

tallized grains (to be discussed in Section 3.3.6), and so the fraction of recrystallized

grains in Figure 3.18 is not necessarily representative of the material condition. Yet,

a larger scan (115 µm square) of the 10 minute anneal at 285°C demonstrates a

nearly identical recrystallized fraction of 64% (Figure 3.19). It is common for hard-

ness to predict a higher fraction recrystallized than the GOS method [23]. In the
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case of of the 0.5 min and 10 min annealing treatments at 285°C, the hardness based

predictions are 20% higher than the fraction determined from the GOS maps.

Figure 3.19: Larger grain orientation spread maps for sheet annealed for 10 min at 285°C. Grain
color indicates the GOS.

3.3.6 Mechanisms of Recrystallization

Figure 3.20: SE micrograph of sheet annealed for 0.5 minutes at 285°C featuring (a) the general
recrystallization behavior and (b) recrystallization behavior in a cluster of β-particles.
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The microstructure of partially recrystallized materials indicates that the recrys-

tallized grains nucleate primarily at grain boundaries. The black arrows in Figure

3.20(a) illustrate some of the recrystallized grains in a necklace structure surround-

ing the deformed grains. Recrystallized grains also nucleate in regions of dense

β-particles (Figure 3.20(b)), but as these particles also tend to lie near grain bound-

aries, it is difficult to isolate nucleation on grain boundaries versus nucleation on the

β-particles themselves. However, the grain boundary serration and obvious pinning

of grain boundaries in Figure 3.21 clearly illustrate that the β-particles reduce grain

boundary mobility. It is feasible that fine grains in Figure 3.20(b) did not nucleate on

the β-particles, but their growth was arrested once their grain boundaries became

pinned by the comparatively large β-particles. The microstructure in this region

seems to be equivalent to that observed by TEM in Figure 3.9, in that both exhibit

the coincidence of a large number of fine (∼ 1 µm) recrystallized grains in a field

of β-particles. Our model of recrystallization kinetics indicates that sheets annealed

for 285°C for 0.5 minutes and 225°C for 10 minutes are 25% and 8% recrystallized,

respectively.

72



Figure 3.21: SE micrograph of regions of obvious grain boundary pinning by β-particles in sheet
annealed for 10 minutes at 225°C. Some of the pinned and serrated grain boundaries are highlighted
by dotted lines.

An effort was made to relate the location (and crystallographic orientation) of

recrystallized grains to the β-particle distribution. The β-phase does not produce

EBSD diffraction patterns, and so in order to relate the two phases, GOS maps

(collected at 70°, the calibrated EBSD geometry) were superimposed on the SE

image collected at 0°. Unfortunately, the best EBSD preparation method leads to

a significant amount of relief between the β-phase and the matrix, which allows for

easy identification of the β-phase in SE imaging, but also interferes with the EBSD

analysis. At a 70° tilt angle, the β-particles shadow the region below them from

the electron beam. Therefore, it is not possible to index the matrix adjacent to a

large portion of the β-phase and it would be difficult to capture sub-micron grains

that nucleated on β-particles. With a step size of 0.08 µm and a requirement that

a grain contain at least ten points, only grains with a diameter larger than 0.25 µm

can be detected. With these limitations in mind, Figure 3.22 represents the GOS
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with relation to the bright β-phase particles. Recrystallized grains are found both

adjacent to, and removed from the observable β-particles. Grains with a higher

misorientation also show no specific spatial relationship to the β-phase. Based on

this analysis it is not reasonable to conclude that recrystallized grains are nucleating

on β-particles.

Figure 3.22: GOS map superimposed on the associated SE image in sheet annealed at 285°C for
0.5 min. The bright grey and white particles are the β-phase.

Discontinuous static recrystallization (recrystallization with distinct nucleation

and growth phases) such as that observed in the TTMP AZ61 sheets, has been

observed by other researchers in Mg alloys [11, 12, 25–28]. In discontinuous recrys-

tallization, nucleation of new grains tends to occur at grain boundaries and secondary

phase particles [11, 15, 25]. Continuous static recrystallization in Mg alloys has also

been reported. Huang et al.. [28] made the observation that continuous recrys-

tallization is often observed in materials that have undergone significant dynamic

recrystallization while discontinuous static recrystallization is observed in materials
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with little, or no dynamic recrystallization. This is consistent with our observations,

as the as-rolled TTMP AZ61 sheet exhibited limited dynamic recrystallization.

3.4 Microstructure of Annealed Sheets

Figure 3.23: The three annealing temperatures used are indicated with red arrows on the Mg-Al
phase diagram [29].

To be able to explore the effect of grain size and β-particle size and distribution on

the mechanical properties, three annealing treatments were selected for the as-rolled

sheet. The first is the 285°C for 10 minute annealing treatment intended to produce

a nearly fully recrystallized microstructure in a relatively short time while remaining

below the β-solvus. The second and third annealing treatments of 300°C for 20 hours

and 420°C for 28 hours were selected to provide a materials with a reduced volume

of β-phase and no β-phase respectively. The three annealing temperatures are indi-

cated with respect to the Mg-Al phase diagram in Figure 3.23. This illustration is

intended as a reference, not to imply that any of these annealing treatments result
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in the equilibrium microstructure.

3.4.1 Microstructure of Sheet Annealed at 285°C for 10 minutes

Figure 3.24: SE micrograph presenting the representative microstructure of sheet annealed for
285°C for 10 minutes.

SE images of the sheet annealed for 285°C for 10 minutes reveal equiaxed grains

with an average diameter of 3.1 µm in the RD-TD plane of the sheet (Figure 3.24).

IPF maps were collected from all three sheet faces (RD-TD, ND-RD, and ND-TD) to

evaluate if the grains are truly equiaxed after the recrystallization anneal, or if due to

the 50% reduction in thickness during sheet processing, were flattened in the normal

direction. A composite of those maps is shown in Figure 3.25. Visual inspection

shows that any difference between the grain size on each face is insignificant. Analysis

of the grain size reveals a similar average and distribution in all three planes (Figure

3.26). The inverse pole figure maps demonstrate the basal texture of the sheet; the

grains have a tendency for their c-axis to be almost parallel to the ND. As a result

the IPF map in the RD-TD plane has a higher number of red, and warm tone grains.
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The near alignment of the c-axis with the ND, means that the orthogonal directions

{101̄0} and {21̄1̄0} lie near the RD-TD plane and so correspondingly the IPF maps

in the ND-TD and ND-RD planes are more blue-green. The texture of the annealed

sheet is discussed in depth in Section 3.5.

Figure 3.25: IPF maps of all three sheet faces in the sheet annealed for 285°C for 10 minutes. The
Black pixels represent locations with poor EBSD pattern quality, which in this material usually
indicates the location of the β-phase.
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Figure 3.26: Grain size distribution of sheet annealed for 285°C for 10 minutes in all three sheet
planes.

Scanning transmission electron microscopy (STEM) on the annealed sheet reveals

that the fine β-precipitates are non-uniformly distributed, and tend to be clustered

near the α-Mg grain boundaries (Figures 3.27 and 3.28). Phase identification in

these figures is based on the similarity in particle morphology to particle compo-

sition confirmed by diffraction patterns and energy dispersive spectroscopy during

TEM analysis of an earlier batch of TTMP AZ61 material. Rigorous TEM analysis

of the fine β-precipitates was not conducted for this dissertation. The size and mor-

phology of the coarser β-particles is discussed in Section 3.6.
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Figure 3.27: STEM of the annealed sheet showing a non-uniform distribution of β-precipitates,
which tend to be clustered near grain boundaries.

Figure 3.28: (a) Bright and (b) dark-field TEM image demonstrating a non-uniform distribution of
the fine β-precipitates.

3.4.2 Microstructure of Sheet Annealed at 300°C for 20 hours

Figure 3.29 illustrates the typical microstructure after the 300°C for 20 hour an-

nealing treatment. This treatment results in sheets with a slightly larger grain size,
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and lower β-phase volume fraction than those annealed for 10 minutes at 285°C. A

β-phase volume fraction of 3% indicates that equilibrium fraction of nearly 0% was

not achieved. The average grain diameter is 5.6 µm.

Figure 3.29: SE micrograph presenting the representative microstructure of sheet annealed for
300°C for 20 hours.

3.4.3 Microstructure of Sheet Annealed at 420°C for 28 hours

Figure 3.30(a) illustrates the typical microstructure after the 420°C for 28 hour

annealing treatment. This treatment results in complete dissolution of the β-phase,

as observed by SEM and also by XRD. The bright precipitates that remain are Al-

Mn intermetallics based on energy dispersive spectroscopy, which dissolve at 610°C

in AZ31 [30]. This annealing treatment results in the largest grain size studied in this

work, 11.7 µm. Some annealing twins were observed in these sheets (Figure 3.30(b)).
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Figure 3.30: (a) SE micrograph presenting the representative microstructure of sheet annealed for
420°C for 28 hours and (b) IPF map demonstrating the presence of annealing twins.

3.4.4 Summary of Microstructure in Annealed Sheets

Table 3.2 summarizes the microstructure in the annealed sheet materials. In ad-

dition, the grain size distributions are summarized in Figure 3.31. The difference in

grain size and β-phase volume fraction allows us to study the effect of these parame-

ters on the mechanical properties, as described in Chapter IV. Unfortunately, grain

size and volume fraction could not be varied independently. In addition, the basal

texture intensity after each of these thermal treatments is slightly different as well,

as described in the next section.

Table 3.2: Grain size and β-phase volume fraction, fβ, following the three annealing treatments.

Annealing Treatment Grain Diameter (µm) fβ(%)
285°C/10 min 3.1 5
300°C/20 h 5.6 3
420°C/28 h 11.7 0
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Figure 3.31: Grain size distributions for the as-molded plate and annealed sheets.

3.5 Texture Evolution During TTMP

One of the motivations for starting with Thixomolded plate as the precursor for

rolled sheet, is its lack of crystallographic texture (Figure 3.3). Formability decreases

as the basal texture intensity increases, so in order to produce high-formability Mg

alloy sheet, a weak texture is preferred. Here we discuss the texture resulting from the

single-pass warm-rolling, and then investigate how subsequent annealing treatments

affect crystallographic texture.

Figure 3.32 summarizes the texture evolution in AZ61 after molding, rolling, and

subsequent annealing. Rolling introduces a near basal texture with a maximum

texture intensity of 4.8 MRD. The peak is split, and tilted slighting along the RD.

There is a broader spread in the c-axis tilt along the TD than along the RD. In the

prismatic pole figure, there is a tendency for the prismatic planes to align with the

RD. The texture weakens following all three annealing treatments. After 285°C/10

min the basal texture intensity is reduced to 3.7 MRD and the orientation of 〈a〉
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becomes uniform around the basal fiber. The texture intensity is even lower following

300°C/20 h, at 2.4 MRD, but increases slightly, to 3.0 MRD, following 420°C/28 h.

The basal texture is typical in Mg sheet. The splitting, or elongation of the basal

peak in the rolling direction is also commonly observed [31–38]. Peak splitting along

the rolling direction likely results from increased activity of the 〈c+a〉 slip mode [39].

However, the texture of the as-rolled TTMP AZ61 sheet is distinct among AZ series

alloys. Firstly, the texture intensity is relatively weak; 10 times random is typical

for a basal pole figure intensity in commercial AZ31 [31, 35, 40–43]. The second

notable feature is the 〈101̄0〉 fiber texture. Other reports on AZ series alloys that

provide the 101̄0 pole figure show a random orientation of 〈a〉 and exhibit a tighter

spread along the TD than along the RD in the basal pole figure [31, 35, 38, 40].

Though not usually observed in AZ series alloys, textures similar to that in as-rolled

TTMP AZ61 sheet have been reported in RE containing wrought Mg sheets [32, 44].

The mechanisms behind the development of the so-called RE textures are still not

understood [45].

It is not clear why the as-rolled TTMP AZ61 sheet does not develop a strong

texture, though it is likely that the β-particles play some role, as the formation of

the normal deformation texture can be interrupted by secondary particles [8]. Li el

al conducted a study on AZ31, AZ61, and AZ91 in hot plane-strain compression,

and observed that the higher levels of β-particles resulted in weaker deformation

textures [46]. They proposed enhanced dynamic recrystallization via particle stim-

ulated nucleation (PSN) as the mechanism. Miller et al.. [47], produced a weaker

deformation texture by increasing the Zn concentration from 4.5 wt% to 9% to allow

for the formation of Mg-Zn intermetallics in a binary Mg-Zn sheet. Along the same

vein, Masoumi et al.. [48] observed a weaker texture in AZ31 sheet with a higher
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Figure 3.32: Basal and prismatic pole figures after molding, rolling, and subsequent annealing.
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volume fraction (12%) of 1 µm β-particles than in sheet with a lower volume (6%) of

3 µm particles. It is interesting, that in both Miller and Masoumi’s work, the particle

containing materials exhibit textures with spread along the TD, similar to the RE-

texture. However, a higher β-phase content does not guarantee a weak deformation

texture or TD spreading; Kim et al.. [49] produced AZ91 sheet by differential speed

hot rolling with a 65% reduction in thickness after a single pass, this sheet exhibited

a strong basal texture with a maximum intensity of 16.3 MRD.

PSN is not necessary for the development of the RE texture; dilute alloys with RE

elements in solution can exhibit weak textures as well [50–52]. It has been proposed

that solute drag alters the recrystallization mechanisms responsible for the conven-

tional basal texture by suppressing the mobility of the high angle grain boundaries

[50–52]. We observed precipitates pinning grain boundaries during recrystallization

in as-rolled TTMP AZ61, so perhaps Zener pinning, rather than PSN, is the mech-

anism from which the weak RE-like texture arises. Hadorn et al.. [52] reached a

similar conclusion while investigating weak textures in a Nd containing Mg alloys

with second-phase particles. In their study, alloys with secondary-phase particles

large enough to enable Zener pinning developed weaker deformation textures, even

if the particles were smaller than required for PSN. Zener pinning in TTMP AZ61

will be addressed in Section 3.7.

An interesting observation in the as-rolled sheet is that the few externally solidified

grains studied by EBSD exhibited a basal texture. One such grain, and its associated

IPF map is shown in Figure 3.33. These grains do not contain precipitates, and so

they provide anecdotal evidence that in the absence of β-particles, a strong, basal

texture would result from rolling. However, even if the orientation of a significant

number of these grains had been studied, differences in the deformation mechanisms
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Figure 3.33: (a) SE micrograph of an externally solidified grain in the as-rolled sheet and (b) the
associated IPF map.

due to significantly larger grain size must be considered.

The already weak basal texture is further reduced during static annealing with

the texture intensity reduced 20% following the 285°C/10 min anneal and 50% fol-

lowing the 300°C/20 h anneal. However, texture generally does not change during

static annealing [8, 53–57]. Masoumi et al.. [48] have shown texture reduction dur-

ing the annealing of twin-roll cast AZ31, which they attributed to PSN arising from

a higher volume fraction of secondary phases. This mechanism may be active in

the TTMP AZ61L sheet as well. The reduction in texture observed after annealing

of the TTMP sheet is consistent with a reduction from 5.4 to 3.1 MRD produced

by a computer model of PSN [58]. Another postulate is that discontinuous static

recrystallization allows for texture randomization [28]. Recrystallization occurring

via lattice rotations at grain boundaries can lead to a change in recrystallization

texture [8]. Discontinuous static recrystallization is the dominant recrystallization

mechanism in the TTMP AZ61L as pinning of grain boundaries and dislocations

by β-particles (as observed in Figure 3.20) likely hinders dynamic recrystallization

as well. Similar observations have been made during recrystallization of RE alloys

[51, 59]. As will be shown in Chapter IV, the texture of the TTMP AZ61 sheet has
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important effects on mechanical behavior.

3.6 Evolution of β-phase through TTMP

TTMP involves both thermal exposures and mechanical deformation that may af-

fect the size, morphology, and distribution of the secondary phase particles. Here we

focus on characterizing the β-phase after four processing stages; molding, preheating,

rolling, and the 10 minute at 285°C annealing treatment.

Figure 3.34 illustrates (a) the volume fraction and distribution of the β-particles

and (b) the particle size and morphology. The rapid cooling rate during Thixomold-

ing leads to a supersaturation of aluminum; an average volume fraction of β-phase of

only 4.2% is determined by area fraction measurements. AZ61 has a maximum equi-

librium β-phase volume fraction of 10.3%. Segregation of Al to the grain boundary

regions due to the solidification path leads to the variation in shading in the α-phase

highlighted in Figure 3.34(b). The β-particles are distributed primarily along grain

boundaries, and have an average diameter of 0.5 µm.

Figure 3.34: The volume fraction and distribution of the β-particles (a) and the particle size and
morphology (b) in the as-molded plate.
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Before rolling, the plates are preheated to 315°C for 5 minutes. Preheating does

not affect the spatial arrangement of the β-phase particles (Figure 3.35(a)) but leads

to an increase in the number of fine particles and thus an increase in the β-phase

volume fraction to 5.5% (Figure 3.35(b)). As illustrated in Figure 3.36, the new

particles have a platelet or lath shape, and a thickness of less than 50 nm. These

platelets, appear rod-like when viewed on edge. Based on the decreased variation of

shading in the α-phase, the Al concentration is likely more uniform after the preheat.

Figure 3.35: The volume fraction and distribution of the β-particles (a) and the particle size and
morphology (b) in the plate following a 315°C for 5 minutes thermal exposure.
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Figure 3.36: β-phase platelets in the molded plate following a 315°C for 5 minutes thermal exposure.

Rolling leads to a slight elongation of the β-particle network along the RD (Figure

3.37(a)). The β-phase volume fraction further increases to 7.6%. Once again, this

increase results from an increase in fine β-particles (Figure 3.37(b)). No evidence

of brittle fracture of the β-particles as a result of rolling was observed. A close

examination of the largest β-particles in the as-rolled material reveal that at least

superficially, they are conglomerates of small spherical particles (Figure 3.38).
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Figure 3.37: The volume fraction and distribution of the β-particles (a) and the particle size and
morphology (b) in the as-rolled sheet.

Figure 3.38: The surfaces of the large β-particles in the as-rolled sheet are coated with a conglom-
erate of many smaller particles, as shown in higher magnification on the right.

Annealing at 285°C/10 min led to some dissolution of the β-phase. Figure 3.39

highlights a reduction in in the β-phase volume fraction to 4.8%. The β-particles

become less angular. Strands of β-particles still tend to be aligned with the rolling

direction, but are now spaced further apart due to the dissolution. Some of the

β-platelets persist.
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Figure 3.39: The volume fraction and distribution of the β-particles (a) and the particle size and
morphology (b) in sheet annealed for 285°C for 10 min.

Comparison of Figures 3.34(a), 3.35(a), 3.37(a), and 3.39(a) show that, aside from

a slight elongation after rolling, the spatial distribution of β-particles remains fairly

constant during TTMP. The particle size distribution also does not show much vari-

ation during processing (Figure 3.40). Precipitation of the β-phase during rolling

results in the as-rolled sheet having the largest fraction of fine β-particles (Figure

3.40(a)). If we focus on particles larger than 0.5 µm in diameter (Figure 3.40(b)), we

can observe variations in the fraction of smaller β-precipitates as they precipitate and

grow during the preheating and then again during rolling, and decrease slightly dur-

ing dissolution. Another way to track the precipitation and growth during processing

is to look at the number density of particles after each step.

Figure 3.41 chronicles this evolution of the number density for two different par-

ticle sizes, those with an average diameter between 0.2 and 0.5 µm, and those larger

than 0.5 µm which can play significant roll in PSN and Zener pinning. It is clear

that the preheating step does not affect the number of large particles, but results

in the precipitation of new, fine particles. Rolling results in significant β-phase pre-
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cipitation. It also appears that the number of large particles increases after rolling

as well, but this could be the result an increase in the area in the RD-TD plane to

conserve volume as the β-particles are flattened during rolling (recall that the rolling

process results in a 50% reduction in the sheet thickness). Another possibility, sup-

ported by the morphology of the large β-particle in Figure 3.38, is that particles

can agglomerate during deformation, leading to the formation of some larger parti-

cles. Dissolution during the post-rolling thermal treatment results in a decrease in

the number of fine β-particles. The number of large particles is not affected. The

similarity between the particle size distribution between the as-molded and as-rolled

conditions indicates that rolling does not break-up the larger β-particles. However,

it does change their shape slightly.

Figure 3.40: Evolution of the β-particle size distribution during TTMP for (a) particles greater
than 0.2 µm in diameter and (b) particles greater than 0.5 µm in diameter.
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Figure 3.41: The number density of β-particles at different stages of TTMP.

To determine the extent of the elongation of β-particles along the RD, a bounding

box can be constructed around each particle. Figure 3.42 illustrates some of these

boxes around particles in the sheet annealed for 285°C for 10 min. The elongation

can be quantified by taking the ratio of the bounding box length along the RD to

that along the TD. These bounding box measurements were done automatically as

an option of the ImageJ “Analyze Particle” routine when doing the particle size anal-

ysis as described in 2.2.3. Log normal fits of the ratio for particles larger than 0.5

µm2 in size are summarized in Figure 3.43. The plate materials have approximately

the same mean and mode, at 1.1 and 0.8, respectively. The as-rolled material has

the largest extent of elongation along the RD; the distribution of the bounding box

ratio in this material has a mode of 1.1 and a mean of 1.5. As the particles are

slightly reduced in size following the post-rolling anneal, the ratio decreases slightly

but remains higher than in the undeformed plates.
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Figure 3.42: Illustration of the bounding box technique to define particle length in the RD and TD
directions. In this threshold adjusted micrograph of β-particles in the sheet annealed for 285°C for
10 min, red boxes, which bound the particle in both the RD and TD direction have been added. A
rough approximation for the maximum particle length in either direction can be made by assuming
the particle can be described by the dimensions of this box.

Figure 3.43: Evolution during TTMP of the aspect ratio of of particles larger than 0.5 µm2 as
described by a bounding box.

94



3.7 Grain Size Stability

Grain size stability is an important consideration as Mg sheet may require elevated

temperatures in order to successful form complex parts. Grain growth during forming

at elevated temperatures will result in a loss of strength via the Hall-Petch effect.

The 420°C for 28 hour solution treatment resulted in a grain size (11.7 µm) twice

that observed after 20 hr at 300°C (5.6 µm). This difference may be a result of

faster grain growth kinetics at the higher temperature. A portion of the difference

may also be a result of the dissolution of the β-particles which could have been

pinning grain boundaries during the 300°C for 20 hour treatment. To develop a better

understanding of the thermal stability, we conducted a 20h treatment at 285°C to

see whether the desirable 3.1 µm grain size that resulted from the 10 min treatment

at the same temperature is stable, perhaps as a consequence of the β-particles.

Figure 3.44 shows the grain size after (a) 10 min and (b) 20 hours at 285°C.

The grain size increased from an average of 3.1 µm to 4.8 µm after the extended

annealing treatment. The grain size distribution (Figure 3.44(c)) for the longer

annealing treatment is also broader, indicating that not all grains grow at an equal

rate. The two annealing treatments result in the same texture (Figure 3.44(a and b)).

The longer annealing treatment results in a larger grain size, a fully recrystallized

microstructure, and dissolution of the smaller β-phase particles, which improves

the EBSD image quality, reducing the number of black pixels in the IPF maps.

Examination of the microstructure after the 20 hour annealing treatment at 285°C

(Figure 3.45(a)) reveals that the larger particles (a few of which are highlighted by

black arrows) reside on grain boundaries. Dividing the particles in this image into

two groups, those that are found on grain boundaries, and those that are not, we
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Figure 3.44: IPF maps illustrating the grain size after (a) 10 min and (b) 20 hours at 285°C and
(c) their associated grain size distributions compared to that of the as-molded plate.
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can evaluate the likelihood that these particles are providing grain size stability. The

results of this analysis are shown in Figure 3.45(b). The fact that smaller particles

are less likely to be associated with the grain boundaries than the larger particles is

clear evidence of Zener pinning. The minimum particle diameter effective in pinning

the grain boundaries in the TTMP AZ61 sheet after 20h at 285°C ∼ 0.5 µm.

Figure 3.45: (a) SE image highlighting particles residing on grain boundaries and (b) a comparison
of the size distribution of particles that are and are not associated with grain boundaries.
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Whether Zener drag is effective at restricting grain growth depends on the size and

number of the particles. The Zener drag pressure exerted by a uniform distribution

of spherical particles, with a radius of r, on the grain boundary is given by Eqn.

3.4, where fβ is the particle volume fraction and γ is the grain boundary energy

[8, 52, 60]. The pressure for grain growth is given by Eqn. 3.5, where D is the grain

diameter and α is a geometric factor [8, 52, 60]. Classically, a value of 2 is used for the

geometric constant, α, though further studies have suggested values between 0.5 and

1 when considering grain and particle size distributions, non-uniform distribution of

particles, and several other geometric factors [52, 60]. The critical grain diameter

above which Zener pinning will occur, Dc, as given in Eqn. 3.6, is determined by

setting PZ=PG and solving for D [8].

(3.4) PZ =
3fβγ

2r

(3.5) PG =
αγ

D

(3.6) Dc =
2rα

3fβ

Following the 285°C for 10 minute treatment, the average particle diameter is 0.34

µm and fβ is 4.8%. Using these parameters in Eqn. 3.6 with the classical value

of α=2, the Zener pinning limiting grain size is 4.7 µm. If α is reduced to 0.5,

then the critical grain size is only 1.2 µm. As the distribution of β-particles is so

non-uniform, the larger size seems more reasonable (though it was based on the

assumption of homogeneously distributed particles). Though the assumptions used

to arrive at Dc oversimplify the TTMP microstructure, the range in predicted grain

size overlaps with the experimentally determined grain size in TTMP sheets annealed

at 285°C (3.1 to 4.8 µm).
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Based on this analysis and observation of the microstructure, it is clear that the

β-particles provide for grain size stability in the TTMP AZ61 sheet. The similarity

between the grain size distribution after 20 hr at 285°C to that in the as-molded

plates in Figure 3.44(c) is not a coincidence. As the size and distribution of larger β-

particles is only slightly altered by rolling, β-particles will pin the grain boundaries in

a similar interval as to how they decorated the boundaries in the as-molded material.

The as-molded grain size acts to predetermine the stable grain size if a majority of

the β-phase is maintained. Annealing treatments that result in a reduction of the

β-phase volume fraction, such as the 300°C for 20 h treatment result in a larger

grain size. This gives the AZ61 sheet some benefit over the commonly used AZ31

which has only 3% Al. The grain size stability in TTMP AZ61 could be improved

by producing a higher quantity of fine, uniformly distributed precipitates.

At 420°C for 28 h, above the β-solvus, we begin to see the excessive growth of a

few grains. This is typically referred to as abnormal grain growth [8]. Optical mi-

crographs of sheet annealed for 300°C for 20 h (Figure 3.46(a)) demonstrate a fairly

uniform microstructure. On the other hand, the sheet annealed for 420°C for 28 h

(Figure 3.46(b)) contains some grains that are an order of magnitude larger than the

average grain size. The size of these large grains is consistent with their being the

remnants of some of the externally solidified grains in the as-molded microstructure.

Abnormal grain growth can be a result of a non-uniform distribution of secondary

phase particles or the result of texture [8]. The externally solidified grains are free of

β-particles. Without the presence of particles to pin grain boundaries, the growth of

recrystallized grains inside the volume of the prior externally solidified grain is unre-

stricted until they impinge upon β-particles at the perimeter of the prior externally

solidified grain.
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In textured materials, certain grain boundaries may have higher mobilities, and

thus grains with specific orientations grow at the expense of the other grains [8].

Abnormal grain growth at annealing temperatures above 350°C has been reported

by several authors in Mg sheet, and has been associated with an increase in the basal

texture [11, 51, 61, 62]. Indeed, the 420°C for 28 h sheet has a stronger texture than

the 300°C for 20 h sheet. The texture of the abnormal grains was not evaluated in

this study.

Figure 3.46: Optical micrographs of (a) sheet annealed for 300°C for 20 h and (b) sheet annealed
for 420°C for 28 h demonstrating abnormal grain growth following the higher temperature anneal.

3.8 Summary

Starting with a Thixomolded plate, which exhibits a fine α-Mg grain size, a distri-

bution of relatively fine β-precipitates, low porosity, and no crystallographic texture,

we succeeding in producing sheet 1.8 mm in thickness with a texture much weaker

than that observed in conventional AZ31 sheet. This weak texture may arise as Zener

pinning of high angle grain boundaries by β-particles prevents the development of

the typical Mg sheet deformation texture. It was shown that discontinuous static re-
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crystallization following a 285°C/10 minute annealing treatment results in an average

grain size of 3.1 µm and a further decrease in texture. Additional annealing treat-

ments at 300°C for 20 h and 420°C for 28 h, resulted in average grain sizes of 5.6 and

11.7 µm respectively, and also a reduction in the β-phase volume fraction. Variations

in the grain size, β-phase volume fraction, and texture in the TTMP achieved by

annealing provide for the evaluation of the influence of these variables on tensile de-

formation behavior as is discussed in Chapter IV. In addition to promoting a weaker

deformation texture, the β-particles also pin boundaries during thermal exposure,

providing for grain size stability which is desirable for warm-forming applications.

It is found that the spatial distribution of the β-particles is relatively stable during

processing, so modifications to optimize the texture reduction or grain size stability

would likely need to be made by varying the Thixomolding parameters or pre-rolling

heat treatment.
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CHAPTER IV

Deformation Behavior

The deformation behavior of TTMP AZ61 was studied by room temperature uni-

axial tensile tests. From these results, the dependence of strength and ductility on

the grain size and texture is explored. The r-value and strain hardening coefficient

are calculated and used to predict the formability of TTMP AZ61. The influence

of texture and grain size on these parameters is discussed as well. Finally, in order

to understand how the formability in TTMP AZ61 might be improved, the damage

and failure processes are described.

4.1 Tensile Behavior

Representative monotonic tensile curves of the as-Thixomolded plate, as-rolled

sheet, and annealed sheets loaded along the RD and TD are shown in Figure 4.1.

Table 4.1 summarizes the tensile properties for these conditions as well as the results

of tests in which the loading direction was 45° from the RD. Very little scatter was

observed in either the yield or tensile strength of any of the materials. The maximum

scatter was 14 MPa. There was much more variability in ductility. The difference

in elongation to failure between the most ductile and least ductile specimens was as

little a 1% strain for some conditions and as large as 13% strain for other conditions.
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It was also observed that ductility between sheets could vary by 2% strain.

Figure 4.1: Tensile behavior along RD and TD.

Table 4.1: Tensile properties of as-molded plate and TTMP AZ61 sheet. Properties are given as
an average, based on testing of 3 to 8 samples.

Thermal Treatment Orientation YS (MPa) UTS (MPa) El. (%)

as-molded 160 320 19

as-rolled 0° 320 370 10
as-rolled 45° 270 345 17
as-rolled 90° 260 345 15

285°C/10 min 0° 220 310 22
285°C/10 min 45° 215 310 26
285°C/10 min 90° 210 310 20

300°C/20 h 0° 190 300 25
300°C/20 h 45° 185 300 25
300°C/20 h 90° 185 305 25

420°C/28 h 0° 140 270 21
420°C/28 h 90° 120 270 24

The as-molded plate has a yield strength of 160 MPa and an average ductility of

19%. Rolling results in a two-fold increase in yield strength due to strain hardening

as well as the presence of some dynamically recrystallized grains, which reduce the

average grain size. Fine β-precipitates may also be present and increase the yield

107



strength by Orowan strengthening. The strain hardening leads to a reduction in the

ductility.

In the sheet annealed for 285°C for 10 minutes, the establishment of a recrystal-

lized grain size of about 3 µm results in a decrease in the yield strength to 220 MPa.

The yield strength is further reduced following both the 300°C for 20 hour and 420°C

for 28 hour annealing treatments.

For all sheet conditions, the orientation dependence of the tensile properties can

be summarized: (1) the yield stress is highest along the RD for all conditions and

decreases with increasing angle from the RD and (2) work hardening is highest along

the TD for all conditions and decreases as the orientation approaches the RD. This

anisotropy is the greatest in the as-rolled sheet and decreases following annealing.

In the as-rolled sheet, the elongation to failure along the TD is 15%, 50% higher

than along the RD. For the annealed sheets, the elongation to failure and UTS are

insensitive to orientation.

TTMP AZ61L has a good balance of strength and ductility. Figure 4.2 plots the

elongation to failure vs. the yield strength for various Mg alloy sheets found in the

literature [1–20]. In the case where properties along more than one orientation were

provided, the values were averaged. The data from this work, highlighted in red,

illustrates the success of TTMP in simultaneously producing high strength and good

ductility.
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Figure 4.2: A summary the yield strength and elongation in Mg alloy sheets reported in the
literature. Results from this work are indicated in red.

Two groups of researchers have been able to achieve both higher strength and

ductility than obtained in the TTMP AZ61 sheet annealed for 285°C for 10 minutes,

Kim et al. [14] and Miao et al. [18]. Kim and co-workers produced a 0.6mm thick

sheet of AZ31 by differential speed rolling at 160°C, where the ratio of speed between

the top and bottom roll was 3:1 [14]. The precursor material was a 2 mm thick plate

with a grain size of 30 to 60 µm and the reduction was done in a single pass after

pre-heating to the rolling temperature. Their as-rolled sheet has a similar elongation

to the TTMP sheet, but a higher strength, consistent with a finer grain size (1.5 µm

compared to 3.1 µm). After annealing at 200°C for 1 hour, they observed a 50 MPa

decrease in strength as the grain size increased to 2.5 µm and an increase in ductility.

They attribute the increase in ductility to a reduction in basal texture intensity from

11.6 to 8.2 MRD.

Miao et al. [18] produced a 0.7 mm thick AZ31 sheet by 4 warm-rolling passes

with decreasing temperature. A 35% reduction in thickness was imparted per pass.
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The starting material was a 4 mm thick plate with an average grain size of 25 to

40 µm. They achieved the most favorable properties, a yield stress of 236 MPa and

an elongation of 35% by having a final rolling pass temperature of 160°C and then

annealing at 200°C for 1 hour. This resulted in sheet with a 3 µm grain size and a

basal texture with an intensity of 9.4 MRD. The texture intensity before annealing

was 12.9 MRD. As observed by Kim et al., this decrease in texture strength led to

an improvement in ductility. As discussed in Chapter I, ductility and formability

increase with a decrease in texture. Despite the excellent performance in tensile

properties of these materials, based on the texture strength, they are likely to have

poor performance at ambient temperatures in forming operations requiring through-

thickness deformation. Due to the fine grain sizes in these materials, high ductility

is maintained despite a strong texture. In addition, grain boundary sliding likely

allows for superplastic forming of these sheets at elevated temperatures [21].

4.1.1 Yield Strength

The contribution of grain size to the yield strength of the material is given by the

Hall-Petch relationship (Eqn. 4.1), where σo is the lattice resistance of the matrix

to basal slip, k is the Hall-Petch coefficient, and d is the average grain size of the

material.

(4.1) σgs = σo + kd−1/2

The Hall-Petch coefficient can be orientation dependent in textured hcp materials

[22–25], so we consider a separate coefficient determined for the RD and TD. Using

the 0.2% offset yield strength and the grain sizes determined in Chapter III, the

Hall-Petch slope for the annealed sheets is found by fitting a linear slope to σYS
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versus d−1/2. The Hall-Petch coefficients are found to be 9.1 MPa×mm1/2 along the

RD and 10.2 MPa×mm1/2 along the TD (Table 4.2). Figure 4.3 illustrates the best

fit lines for data along the RD, TD, and for all of the data in recrystallized TTMP

sheets. Based on the limited number of data points, it is difficult to conclude that

the orientation dependence of the Hall-Petch parameters is statistically significant.

Table 4.2: Best fit for the Hall-Petch coefficient, k, in annealed sheet.

Orientation YS (MPa) k (MPa×mm
1

2 )

0° 60 9.1
90° 33 10.2
All 51 9.4

Figure 4.3: Hall-Petch Behavior of TTMP AZ61

Though it is not conclusive from the available TTMP AZ61 sheet data, it is

reasonable to believe that sheet loaded along the RD will have a higher σo and lower

k-value based on the distribution of texture in the TTMP AZ61 sheet. Armstrong

observed that σo is related to the CRSS for basal slip (the easy slip system in Mg)

[26]. A stronger basal texture intensity leads to a higher value of σo. σo is also
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dependent on the Taylor factor, the more grains oriented favorably for basal slip, the

lower σo [27]. The Hall-Petch coefficient, k, is controlled by the extent of prismatic

slip activity [27–29]; as prismatic slip becomes more favorable, k decreases.

The relative activity of prismatic and basal slip are dictated by the variations

in the texture intensity and texture components, which affect the fraction of grains

oriented for “easy” basal slip for a specific orientation. Basal slip is the easiest when

the basal plane fiber is tilted 45° from the tensile axis. We can determine the fraction

of orientations (roughly proportional to the fraction of grains) oriented for soft basal

slip by calculating the fraction of EBSD measurements within a certain radius of this

fiber, here we use 20°; the red, dashed circles imposed on the pole figures in Figure

4.4 illustrate the area favorably oriented for basal slip along the RD. The results of

this calculation for the three orientations studied are summarized in Table 4.3. As

a note, in a perfectly uniform pole figure, the percentage of favorable grains for any

orientation would be 12 for the criterion used here.

Figure 4.4: The dashed circles on the basal pole figure for as-rolled sheet indicate the regions at
which grains are favorably oriented for basal slip along the RD and TD (red and black circles,
respectively).
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Table 4.3: Fraction of grains favorably oriented for basal slip per condition.

Thermal Treatment Orientation Percentage of Grains Favorably Oriented
for Basal Slip

as-molded 12
as-rolled 0° 8.1
as-rolled 45° 10.9
as-rolled 90° 18.2
285°C/10 min 0° 13.2
285°C/10 min 45° 13.9
285°C/10 min 90° 15.9
300°C/20 h 0° 13.8
300°C/20 h 45° 14.9
300°C/20 h 90° 16.9
420°C/28 h 0° 14.3
420°C/28 h 90° 15.8

For each sheet condition, fewer grains are oriented favorably for basal slip along

the RD than along the TD, resulting in a lower CRSS for basal slip along the TD

than along the RD. Therefore, we observe that σYS is higher along the RD due to

a higher value of σo in that direction. The ratio of the percent of favorable grains

along the RD to the percent of favorable grains along the TD can be used as a rough

indicator as to how much anisotropy will be observed in σYS. The as-rolled sheet

exhibits the lowest ratio at 0.45, and the largest anisotropy. The annealed sheets

have ratios above 0.8, and no more than 20 MPa difference in σYS between the RD

and TD. Figure 4.5 illustrates the difference in anisotropy of the yield stress between

the as-rolled sheet and the recrystallized sheet.
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Figure 4.5: Tensile behavior along 0°, 45°, 90° for (a) as-rolled sheet and (b) sheet annealed at
285°C for 10 minutes.

The small difference between the favorable fractions in the recrystallized sheet,

combined with the concurrence of grain growth and texture evolution convolute the

determination of orientation dependent Hall-Petch parameters. In Mg alloys pro-

duced by equal channel angular pressing, the texture can be modified so dramatically

that the materials seem to exhibit a negative Hall-Petch coefficient [30, 31]. To truly

isolate the orientation effect requires a set of data representing different grain sizes,

but an identical texture, a task that may be experimentally unachievable, depending

on the active recrystallization and grain growth processes.

Assuming it is appropriate to describe all of the recrystallized sheet orientations

with the same parameters, we arrive at a Hall-Petch coefficient of 9.4 MPa×mm1/2,

which is consistent with the Hall-Petch values measured in studies of Mg-Al and

Mg-Zn [32]. A comparison between these data and the average Hall-Petch coefficient

for TTMP AZ61 sheets, is shown in Figure 4.6. The materials referenced in Figure

4.6, all have a strong rolling or extrusion texture [32], and are therefore expected to

have a higher yield strength due to increased non-basal slip activity. This difference

is observed in Figure 4.6; the yield strength in weakly textured TTMP AZ61 falls

below that of the more strongly textured materials. As strain hardening is an im-
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portant mechanism in the as-rolled sheet, it was not included on the plot.

Figure 4.6: Hall-Petch Behavior of TTMP AZ61 presented with a summary Hall-Petch behavior of
Mg-Al and Mg-Zn alloys by Stanford et al. [32]. Image adapted from [32], which summarizes the
work of [28, 33–38]

Regardless of the particular parameters chosen, the strength in the Thixomolded

plate is not well described by the Hall-Petch relationship. Based on the Hall-Petch

relationship derived in the wrought sheets, the Thixomolded plate would be expected

to have a yield strength of ∼ 200 MPa, 40 MPa higher than the observed strength

of 160 MPa. Several microstructural mechanisms may be responsible for this differ-

ence. Aluminum is an effective solid solution strengthening addition to Mg, however

the rapid solidification of the Thixomolded plate results in segregation of Al to the

grain boundaries [39]. Cáceres studied solid solution effects in Mg-Al systems for Al

concentrations between 1 and 8% and found that the change in strength due to the

solution addition (in MPa) is well modeled by:

(4.2) σSS ≈ mBnc
n
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where n=1/2, m=5.6, Bn=21.2 (at.)1/2, and c is the at.% Al [40]. In an AZ61 alloy

with a uniform Al distribution, the expected solid solution strengthening contribution

to the yield strength is only about 30 MPa. Furthermore, based on the wavelength

dispersive spectroscopy measurements discussed in Chapter 3, the Al content in the

interiors of grains in the Thixomolded condition is 3.3± 1 at.% and therefore we could

expect perhaps a maximum reduction in strength due to grain boundary segregation

of only 10 MPa. Other possible contributors to the reduced strength are the larger

grains on the tail end of the grain size distribution, precipitation strengthening in the

wrought alloys, and a lower flow stress due to easy basal slip activity in the randomly

oriented as-molded plate. Yield stress in Mg alloys has been shown to be insensitive

to porosity, so higher porosity in the as-molded plate is not likely to be accountable

for the difference [41].

Few studies look at precipitation strengthening in AZ61, compared to AZ91, with

9 wt% Al versus 6 wt% Al [42, 43]. Kim et al. [44] observed a 13.3 HV increase in

hardness after 40 h at 200°C and Hong et al. [45] reported an 11.6 HV increase after

35 h at the same temperature. Hardness (H) can be converted to yield stress (Y) by

assuming H = cY, and setting c = 0.3 [46], which would then predict an increase in

σYS following aging at 200°C for 35 to 40 hours to be 39 to 44 MPa.

Taking a more mechanistic approach, we can use the work by Hutchinson et al.

[43] in modeling precipitation strengthening in AZ91, to approximate how much

strengthening may be achieved in AZ61. Based on the shear modulus of the β-

precipitates and the matrix, they predicted that dislocations will bow around any

particles larger than 6 nm in diameter. Assuming a uniform distribution of pre-

cipitates and that the precipitates have the identical strength, the increase in yield
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strength can be modeled by Orowan strengthening [43]:

(4.3) σOrowan =
MGb

2π
√
1− ν

1

λ
ln

(

dA
ro

)

where M is the Taylor factor (5), G is the shear modulus of the matrix (17.2 GPa), b

is the Burgers vector for basal slip in Mg (0.32 nm), ν is the Poisson’s ratio (0.35), λ

is the mean particle spacing in the slip plane, dA is the mean particle diameter, and ro

is the inner cut-off radius of the dislocation (set to b). For lath-shaped precipitates,

the mean particle spacing is given by Eqn. 4.4, where t is the precipitate thickness

and NV is the number of precipitates per unit volume [43].

(4.4) λ =
1√

NV ∗ t
− dA

Hutchinson et al. determined by TEM measurements and stereographic analysis

that dA = 3.6w/2, where w is the lath width, and that w=L/4 and t=L/10, where L is

the length of the lath. L can be determined by considering the relationship between

the volume of the precipitate and the volume fraction of the β-phase, fβ. Assuming

a uniform distribution of particles, NVV=NAA = fβ, where A and V are the average

precipitate area (in a planar section) and volume and NV and NA are the precipitate

number density per unit volume and unit area, respectively. Thus, the volume of an

individual precipitate can be determined by:

(4.5) V =
fβ
NV

= π
w

2

L

2
t

In order to approximate NV , we refer to work by Celotto on precipitation in AZ91,

in which he measured a maximum number density of precipitates of ∼ 8.5 ×109 per

mm−3 [47]. In another study, Celotto et al. [48] compared the precipitation kinetics

of AZ91 to that of AZ61, and concluded that the kinetics in AZ61 are slower than

those in AZ91, and that AZ61 has less growth nuclei. Since the nucleation rate is
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proportional to the Al content [43] we will approximate NV as two thirds of the

maximum value measured in AZ91, ∼ 5.6 ×109 mm−3.

The maximum volume of the β-phase is limited by the amount of Al in the alloy.

At equilibrium, the Al-Mg phase diagram [49] predicts the maximum weight fraction

of the β-phase at 200°C is 7.7 wt%. To convert this to volume fraction, we calculate

the volume of the β and α phases in 1 gram using:

(4.6) Vβ =
wt%β × 1g

Dβ

(4.7) Vα =
(1− wt%β)× 1g

Dα

where wt % β is the equilibrium weight fraction from the phase diagram and Dα and

Dβ are the densities of the α and β phases in g/cm3. From the Joint Committee on

Powder Diffraction Standards (JCPDS) files #04-003-2934 and #04-003-2526, Dα is

1.74 g/cm3 and Dβ is 2.08 g/cm3. Finally, the volume fraction of the β phase, fβ, is

given by:

(4.8) fβ =
wt%β × 1g

Dβ × Vtot

Here, Vtot is a sum of Eqn. 4.6 and Eqn. 4.7. Based on this analysis, we expect an

equilibrium volume fraction of 6.5% at 200°C.

Using this value, we approximate a precipitate length of ∼ 650 nm by solving Eqn.

4.5 for L. Therefore, the the maximum contribution to precipitate strengthening at

200°C, as determined by Eqn. 4.3 is 44 MPa or 13.2 HV in agreement with the

experimentally determined measurements of 11.6 to 13.3 HV [44, 45]. This value is

higher than what we might expect to see in the TTMP AZ61 materials.

As the sheet annealed for 420°C for 28 h was immediately water quenched, we

do not expect any precipitates in that material. The as-rolled sheet and remaining
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annealed sheet conditions have some of the Al tied up in the more massive, and

non-homogeneously distributed β-precipitates discussed in detail in Chapter III. Of

the β-phase containing conditions, the sheet annealed for 300°C for 20 h has the

lowest fraction of massive β-particles. Electron microprobe measurements indicated

5 wt% Al in the grain interiors of this material, so an even smaller concentration of

Al is available for the precipitation strengthening than the 6% assumed above, and

if that Al was all tied up in fine β-precipitates it would be at the expense of the solid

solution strengthening. It should be noted that an effort was made to induce the

formation of age hardening precipitates by aging for 36h at 200°C following the 28 h

at 420°C solution treatment in as-rolled sheet. The hardness of the solution treated

coupons was 61.6 HV, with a standard deviation of 3.5 HV. After the 200°C/36 h

annealing treatment the hardness was 62.2 ± 3.1 HV, thus no age hardening was

observed.

Based on this analysis, and the lack of evidence of fine and uniform precipitates in

the TTMP AZ61 microstructure, we will proceed assuming that difference between

between the yield strength in the as-molded plate and TTMP sheets can not be ac-

counted for by Orowan, solid solution, or Hall-Petch strengthening. The most likely

explanation is that the lack of crystallographic texture allows for easy basal slip and

therefore a lower σo value.

4.1.2 Work Hardening

Hollomon’s equation (Eqn. 4.9) models work hardening as a power law relation-

ship between the true stress and true strain. The strain hardening exponent, n, was

determined by performing a least-squares fit between the Eqn. 4.9 and the exper-

imental data (converted from an experimental stress-strain curve to a true stress-
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strain curve by Eqn. 4.10 and Eqn. 4.11). An attempt was made to fit n between

5% and 15% true strain, however if a sample had a ductility less than 15%, or the

log-log plot of the true stress-strain curve became non-linear before 15%, then the

upper limit on εT was decreased until the plot was linear over the entire range. Fig-

ure 4.7 is a representative plot of the quality of fit for a sample of sheet annealed at

285°C for 10 minutes; this sample begins to deviate from the Hollomon hardening

relationship at ∼ 14%.

(4.9) σT = Kσn

(4.10) εT = Ln[1 + ε]

(4.11) σT = σ(1 + ε)

Figure 4.7: A log-log plot of the true stress-strain behavior for sheet annealed for 285°C for 10
minutes, with a best fit to the Hollomon equation between 5% and 15% strain.
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Table 4.4: Strain hardening exponent of as-molded plate and TTMP AZ61 sheet

Thermal Treatment Orientation Grain size (µm) n-value

as-molded 4.3 0.34

as-rolled 0° NA 0.07
as-rolled 45° NA 0.11
as-rolled 90° NA 0.15

285°C/10 min 0° 3.1 0.21
285°C/10 min 45° 3.1 0.24
285°C/10 min 90° 3.1 0.28

300°C/20 h 0° 5.6 0.27
300°C/20 h 45° 5.6 0.30
300°C/20 h 90° 5.6 0.35

420°C/28 h 0° 11.7 0.32
420°C/28 h 90° 11.7 0.39

Table 4.4 summarizes the average strain hardening exponent calculated for each of

the as-molded plate and TTMP sheet conditions. The table also includes the average

grain size of each material. The work hardening exponent increases with increasing

grain size. A relationship between grain size and work hardening is consistent with

the rate of dislocation storage decreasing with decreasing grain size [50]. del Valle

et al. [50] discuss the effect of grain size on work hardening, and conclude that the

current theoretical models are insufficient due to the complexity of the problem. del

Valle et al. point out that many of the same processes that affect the yield strength of

the material, such as the generation, mobility, and pile-up of dislocations, also affect

the work hardening behavior. With that in mind, we looked for a simple empirical

relationship between work hardening and grain size.

Based on the work of Morrison, we use the following equation to relate the yield

strength of a material to its work hardening coefficient [51]:

(4.12) n = z ∗ σYS + n0

The value of the constants, z and n0, were determined for each orientation using

the values of n and σYS for each of the three annealing treatments. A plot of the
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best fit of Eqn. 4.12 for each orientation in the annealed sheets is shown in Figure

4.8. Because there were no tests conducted at 45° from the RD for the 420°C/28 h

annealing treatment, this point was approximated by averaging the properties from

the RD and TD orientations, for the purposes of fitting the trend line. Based on

the available data, the linear fit seems a reasonable relationship between the yield

stress and the work hardening coefficient. The best fit parameters are summarized

in Table 4.5.

Table 4.5: Best fit parameters for n0 and z, from Eqn. 4.12 in annealed sheets.

Orientation n0 z (MPa-1)

0° 0.511 -1.34×10−3

45° 0.530 -1.31×10−3

90° 0.529 -1.10×10−3

Figure 4.8: Best linear fit between Eqn. 4.12 and the tensile properties of annealed TTMP AZ61
sheets. The point for 45° from the RD for the 420°C/28 h annealing treatment was approximated
by averaging the values from 0° and 90°.

Recalling our discussion on the anisotropy in the yield strength, we can use the

fraction of grains favorably oriented for basal slip as a numerical parameter with

which to model the effect of orientation on work hardening. Figure 4.9 plots the n-
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value versus the percentage of grains oriented favorably for basal slip. The trend lines

are a linear best fit; a point at (0,0) was included in each fit to ensure that a material

with 0% of favorably oriented grains behaves perfectly plastically, in other words with

n=0. As with Figure 4.8, Figure 4.9 indicates that the strain hardening coefficient

increases with increasing angle from the RD and also increases with increasing grain

size. In order to examine the effect of the texture distribution on the strain hardening

coefficient, it is useful to minimize the grain size contribution to strain hardening

from Figure 4.9.

Figure 4.9: Relationship between the percentage of grains oriented favorably for basal slip and the
work hardening coefficient for each TTMP sheet condition.

Referring back to Eqn. 4.12, the linear dependence between the work hardening

coefficient and yield stress allows us to describe the grain size dependence of work

hardening with the Hall-Petch relationship (Eqn. 4.1). The difference in yield stress

between a material with an average grain size of d, and a material with an aver-

age grain size of deffective is given by Eqn. 4.13, where the appropriate orientation

dependent value of k is used from section 4.1.1. The n-value of each condition can
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be adjusted to an effective grain size by Eqn. 4.14, where σYS is the experimentally

determined yield stress and z and n0 are the orientation dependent best fit values.

A grain size after the 285°C/10 min annealing treatment of 3.1 µm was used for

deffective.

(4.13) σYSdiff =
k(
√
d−

√
deffective)√

d
√
deffective

(4.14) n = z ∗ (σYS + σYSdiff) + n0

The as-rolled material was not used to fit the relationship between the n-value

and yield stress, as it does not have a well defined grain size, and has an extra

contribution to yield stress from dislocation interactions. However, it has the largest

orientation dependence on the percentage of favorably oriented grains, and so in

order to develop the most useful model between texture (percentage of favorably

oriented grains calculated from the basal pole figure) and work hardening, it would be

beneficial to describe the n-value of sheet with the as-rolled texture and an effective

grain size of 3.1 µm as well. Once again, Eqn. 4.13 and Eqn. 4.14 were used to

determine the work hardening coefficient for a material with the same texture as

the original material, but with an effective grain size of 3.1 µm. The “grain size”,

d, of the as-rolled material was varied between 1 and 2.5 µm in increments of 0.1

µm, and a linear best fit trend line for the resulting adjusted as-rolled n-values for

each increment was determined. The difference between these trend lines and the

experimental trend line for the percentage of favorable grains and the n-value in the

sheet annealed for 10 min at 285°C was determined by a least squares difference in

increment of 1% between the values of 8% and 19% favorably oriented grains. The

results of this analysis conclude that a difference in grain size and strain hardening

between the as-rolled sheet and sheet annealed for 10 min at 285°C could be best
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described by assigning the as-rolled material and artificial grain size of 2.1 µm.

Figure 4.10 summarizes the adjusted n-values. The red dashed trend line, fit to all

of the adjusted data points, represents the variation that might be expected for the n-

value in material with an average grain size of 3.1 µm, depending on the distribution

of texture. The black dashed trend line was the best fit to the experimental data for

sheet annealed for 10 min at 285°C. The trend line for the adjusted n-values varies

by less than 0.003 between 8 to 18% favorably oriented grains from the trend line for

285°C/10min sheet. The maximum difference of an adjusted point to the adjusted

n-value trend line is 0.041. In the range of 8 to 18% one might expect to be able to

predict the work hardening exponent to within 0.04 in TTMP AZ61L for any given

grain size using the basal pole figure and the orientation dependent parameters of

n0, z, and k from Tables 4.5 and 4.2. At some point the linear relationship breaks

down, as it predicts a strain hardening coefficient of 1.65 for a material in which all

of the grains are oriented favorably for basal slip.

Based on this analysis, strain hardening is dependent on both grain size and

texture. The strain hardening coefficient increases with increasing grain size, and in-

creases with increasing favorability of basal slip. Higher strain hardening coefficients

indicate more resistance to shear localization, and thus should predict materials with

better formability [52].
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Figure 4.10: Relationship between the percentage of grains oriented favorably for basal slip and the
work hardening coefficient for each TTMP sheet condition.

4.2 Lankford r-value

In order to evaluate formability, some tests on the as-rolled sheet and 285°C/10

min sheet were interrupted at 10% strain at which point the width and thickness

strains were calculated for the determination of the Lankford r-value. The results

are summarized in Table 4.6.

Table 4.6: The r-values in as-rolled and annealed AZ61 sheet
Material r0 r45 r90 r̄ ∆r ∆r2

as-rolled 1.48 1.59 1.10 1.44 0.30 0.49
rolled + 285°C/10 min 0.96 1.14 1.09 1.12 0.12 0.18

The r-value, r̄, and ∆r values provide indicators as to material formability. In

steel, the average r-value, r̄, relates to the drawability of the material. In general,

a high r̄ value indicates that the material resists thinning and should have good

drawing properties [52]. However, in hcp materials a high r̄-value is associated with

strong anisotropy and poor formability, and thus requires a different interpretation

[20]. Instead, reduced r̄ values in Mg-sheet indicate good formability for stretching
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operations [3, 11, 20] . The r̄-values for the TTMP AZ61L sheet material are all

quite low for a Mg sheet alloy, even in the as-rolled condition. Average r-values of 3

or more are typical in commercial AZ31 sheet [1].

The association between the r̄-value and room temperature formability is high-

lighted by a compilation of results from the literature in Figure 4.11. The maximum

dome height achieved in an Erichsen biaxial stretch test decreases as r̄ increases.

The two black arrows indicate that dome heights of 6 to 7mm might be expected in

the as-rolled TTMP AZ61 and TTMP AZ61 sheet annealed for 10 minutes at 285°C

based on r̄ in those materials and the literature-based trend line.

Figure 4.11: Relationship between r̄ and Erichsen dome height at room temperature for various
Mg sheets.

Calculation of ∆r provides a measure of anisotropy, and predicts the extent of

earing[52]. Bohlen et al. [3] discusses that earing in the hcp Mg crystal structure

might be better predicted by instead looking at the maximum variation of the r-value

in the sheet, ∆r2 = rmax - rmin. In the TTMP AZ61 sheet annealed for 10 minutes

at 285°C, ∆r2 is 0.18, which is very low. To the authors knowledge, the only lower
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value that has been reported is 0.10 in hot rolled ZE10 [3]. Values of 1 or more for

∆r2 are not uncommon in Mg sheet [1, 3, 5–7, 12, 13, 20, 53–55]. In TTMP AZ61

∆r is also quite low, comparable with values in RE alloys [3]. Values of at least 0.3

are typical for ∆r [1, 3, 5–7, 13, 19, 20, 53, 55].

Figure 4.12: Relationship between r̄ and basal texture intensity for various Mg sheets.

As discussed in Chapter I, the r-value is strongly dependent on texture [56]. Look-

ing again at the same studies referenced in Figure 4.11, it is clear that r̄ is strongly

related to the maximum basal texture intensity (Figure 4.12). Values from the as-

rolled and annealed TTMP AZ61 sheet are consistent with the correlation. The low

r-value parameters TTMP AZ61 sheet are a direct consequence of the relatively weak

texture of the material. Though room temperature formability was not studied in

this dissertation, the favorable r̄ and ∆r2 measurements, as well as the high work

hardening coefficient, indicate that TTMP AZ61 sheet will perform better than com-

mercial AZ31 sheet during ambient forming operations.
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4.3 Texture Evolution During Tensile Deformation

In the discussion of yield stress and work hardening, the effect of the initial texture

on the tensile behavior was explored. The texture distribution and intensity in the

initial pole figure can be used as a predictor for the work hardening and yield stress

anisotropy. It is also useful to look at the texture evolution during deformation.

During tensile deformation slip leads to a rotation of the lattice such that the active

slip direction tends to become aligned along the tensile axis and the active slip plane

parallel to the tensile stress axis. Therefore, texture evolution during deformation

provides an insight about the relative slip system activity. Figure 4.13 summarizes

the texture evolution of samples loaded to ε=10% along either the RD or TD.

Figure 4.13: Texture evolution following 10% strain along either the RD or TD.

After deformation, the originally un-textured as-molded plate manifests a tight

distribution along the TD in the basal pole figure and two strong peaks parallel to the
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tensile axis in the prismatic pole figure. Sheets loaded along the RD exhibits similar

characteristics, with two notable differences, (1) the distribution along the TD is

denser in the RD and (2) evidence of six-fold symmetry arises in the prismatic pole

figure. In sheet loaded along the TD the spread along the tensile axis in the basal

pole figure is reduced, and the intensity perpendicular to the tensile axis increases. In

addition, six-fold symmetry develops in the prismatic pole figure, the two strongest

peaks in the prismatic pole figure are along the tensile axis in the annealed sheet

materials and the peaks appear to be roughly equal in the as-rolled sheet.

The spread in the basal pole figure perpendicular to the tensile axis and the strong

peaks in the prismatic pole figure parallel to the tensile axis are a result of basal slip.

Basal 〈a〉 slip tends to rotate the c-axis such that it becomes perpendicular to the

tensile axis. This leads to the development of 〈101̄0〉 fiber texture and an increase

in the maximum basal texture intensity [16, 20, 57]. For samples loaded along the

TD, the original spread of grains along the TD is reduced as the basal plane of these

favorably oriented grains rotates towards the tensile axis.

The additional component in the sheet materials, the development of the six-fold

symmetry in the prismatic pole figures, is a consequence of 〈a〉 slip on prismatic

planes [1, 16, 28, 58]. This slip will rotate the crystals such that the normals of

two of the prismatic planes are aligned with the tensile axis, the additional peaks

showcase the six-fold symmetry of the hexagonal crystal. The peaks from alignment

of the prismatic planes will intensify the peaks arising from rotation of the basal

planes.

Based on the lack of statistics in the EBSD generated pole figures, it would be

misleading to attempt to quantify the relative slip activity based on the intensity

of the two texture components. However, a qualitative statement can be made by
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looking at the materials with the weakest and strongest initial textures, the as-

molded plate and the as-rolled sheet. The 〈101̄0〉 fiber texture is the only texture

component that develops in the as-molded material, so it appears that basal slip was

dominant in this un-textured material. The as-rolled sheet has the smallest number

of grains favorably oriented for basal slip when loaded along the RD, therefore non-

basal slip must accommodate a larger fraction of the deformation. Correspondingly,

the texture of the as-rolled sheet loaded along the RD displays the strongest six-fold

component indicating increased prismatic slip activity.

A more accurate description of the relative activity of different slip systems can

be obtained by crystal plasticity modeling, which is outside the scope of this thesis.

The texture of the materials determines the relative activity of each slip system, and

the active slip systems determine the crystal rotations during deformation, so in an

iterative fashion, one can describe the texture evolution and relative activity of each

slip system during deformation. The aggregate response of the crystal rotations will

also determine the width and thickness strains that develop during deformation, and

so the r-value can be modeled as well. Agnew et al. [1] used a viscoplastic self-

consistent model to study tensile deformation in a commercial AZ31 sheet. Though

this sheet started with a stronger basal texture ( >9 MRD) and less spread along

the TD, the texture evolution at ε∼11% is quite similar to that observed in the

TTMP AZ61 sheets at 10% strain. They found the experimental r-value and texture

evolution were best replicated by assuming that the critical resolved shear stress at

room temperature for prismatic slip was 2.5 times that for basal slip.

As a final note on the texture evolution, there is an additional texture compo-

nent that may arise during deformation of Mg sheets that was not observed in the

TTMP AZ61 sheets. {101̄2} extension twinning during tensile deformation rotates
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the c-axis of grains from the normal direction of the sheet 86° towards the sheet

direction perpendicular to the tensile axis [28, 59]. An illustration of this texture

component is shown in Figure 4.14. The extent of twinning in TTMP AZ61 sheets

will be discussed in more depth in the next section, 4.4.

Figure 4.14: Illistration of the texture component arising in the basal pole figure due to twinning
during tensile deformation in the vertical direction.

4.4 Twinning

Twinning is a common deformation mechanism in Mg, and is often credited with

providing for an additional deformation mode in order to satisfy the von Mises re-

quirement [1, 60]. However, twinning is activated more easily in compression than

in tension, leading to an anisotropy that may complicate forming operations [61].

Twinning can be suppressed by grain refinement, as high local stresses are required

to nucleate twins grain boundaries [62]. The tendency for hcp crystals to twin in-

creases with the grain size [21, 63]. The extent of twinning at ε=10% and failure

was investigated in the as-molded plate and the as-rolled and annealed TTMP AZ61

sheets through observation of the microstructure and EBSD mapping.
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At 10% strain, in materials with an average grain size less than 10 µm (the

as-molded plates, as-rolled sheet, and sheets annealed for 285°C/10min and those

annealed for 300°C/20 hours) only a few twins are observed by SEM. The black

arrows in Figure 4.15(a) highlight some of the twins in the 285°C/10min sheet when

loaded along the RD. A larger area fraction of twins is observed in the larger (11.7

µm) grained 420°C/28 h sheet (Figure 4.15(b)).

Figure 4.15: SE micrographs highlighting twinning in (a) sheet annealed for 285°C/10min and (b)
sheet annealed for 420°C/28h at ε=10% along the RD.

In order to confirm that the highlighted features are in fact twins, and if so, to

determine their nature, EBSD twin maps were generated for the deformed mate-

rials. By using the orientation data provided by EBSD to isolate the orientation

relationships commonly observed in twinning of Mg, it was determined that only

{101̄2}〈101̄1〉 extension twins are present at ε=10%. These twins are highlighted in

red in the EBSD twin maps shown in Figure 4.16. Comparison of (a) sheet annealed

for 285°C/10min and (b) sheet annealed for 420°C/28h reveals that twinning is more

prevalent in the larger grained material at 10%. Indeed, in the fine grained materi-

als, twins accounted for less than 1% of the total area. In the larger grained sheet,
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twins account for approximately 6% of the total area. However, as ∼ 2% of the

area is twinned in undeformed sheet following 420°C/28h, only a 4% area fraction is

attributed to deformation twinning. It should be noted, that based on the selected

step size, the minimum detectable twin width is 0.6 µm.

Figure 4.16: EBSD twinning maps highlighting {101̄2}〈101̄1〉 extension twins in (a) sheet annealed
for 285°C/10min and (b) sheet annealed for 420°C/28h at ε=10% along the RD.

Following fracture, SEM reveals that twinning is more prevalent near the fracture

surface. The disparity between the extent of twinning in the large and fine grained

materials is even more evident at the higher strain. Figure 4.17 shows the microstruc-

ture, once again, in (a) sheet annealed for 285°C/10min and (b) sheet annealed for

420°C/28h. These micrographs were taken approximately 1 mm from the fracture

surface in specimens that failed near ε=20% along the RD. In the 285°C/10min sheet

approximately 5% of the area is twinned, whereas twinning is much more extensive

in the 420°C/28h sheet. EBSD maps were not collected on these specimens, as the

level of deformation would not provide for quality indexing. At both 10% and failure,

the amount of twinning was similar between the RD and TD orientations.

134



Figure 4.17: BSE micrographs highlighting twinning in (a) sheet annealed for 285°C/10min and (b)
sheet annealed for 420°C/28h approximately 1 mm from the fracture surface. Both samples have a
failure elongation of ∼19% along the RD.

The grain size dependency of twinning observed in the as-molded and TTMP

AZ61 sheets is similar to that observed by Chino et al. [64] in AZ31. Chino et al.

observed a twin area ratio less than 2% up to failure (at 20% strain) in material

with an 8 µm grain size, and more extensive twinning in material with a grain size

of 69 µm. The texture of the large and fine-grained annealed sheets are comparable

(all have a basal texture with a maximum intensity between 2.4 and 3.7 MRD), so

it is reasonable to attribute the difference to grain size alone. Sheet with a strong

basal texture is unfavorably oriented for {101̄2}〈101̄1〉 tensile twinning, so limited

twinning in such materials is likely more a result of texture than grain size [65].

Twinning itself is only able to contribute a maximum of 7% strain along the tensile

axis [66], so the main contribution of twinning is the reorientation of grains such that

slip becomes more favorable [4, 60].
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4.5 Damage Evolution During Tensile Deformation

It is a commonly held belief that cracking in the β-phase initiates tensile fracture.

In order to access the contribution of the β-phase to failure, damage accumulation

during deformation was explored using interrupted tensile tests. In order to un-

derstand the mechanisms of damage initiation, specimens were loaded to a specific

plastic strain and then unloaded, and examined in the SEM. The tensile curve for

the interrupted test along the RD of the recrystallized sheet can be seen in Fig. 4.18.

After a tensile specimen was reloaded, there was a small amount of static strain ag-

ing, otherwise the properties of the interrupted tests are equivalent to those found

in the monotonic tests.

Figure 4.18: Interrupted and monotonic engineering stress -strain curves along the RD of sheet
annealed for 285°C/10min.

In some of our early studies, the samples were not polished before SEM exam-

ination, so there is some surface topography caused by the rotation of grains at

the surface. This rotation leads to triple junctions and displacements at the grain
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boundaries that makes it appear that grain boundary sliding could be an active de-

formation mechanism. In specimens in which at least 50 µm has been removed from

the surface by grinding and polishing there is no indication that grain boundary slid-

ing is active in the bulk of these materials. Figure 4.19(a) shows an area of surface

of an sheet specimen annealed at 285°C for 10min and loaded to ε=16% along the

TD. The black arrows indicate displacements at grain boundaries. In comparison,

when looking at the bulk behavior of the sheet under the same conditions in Fig-

ure 4.19(b), no evidence of grain boundary sliding is observed. The grain boundary

displacements seem to only be a surface effect, and thus only the damage observed

in samples polished after deformation will be discussed further. As a note, grain

boundary sliding at room temperature in AZ31 alloys with a similar grain size has

been reported [21, 67]. In these studies, by measuring step heights on the surface

of tensile specimens, the contribution of grain boundary sliding was determined to

be of 8% of the total strain. The authors did not report analysis of the sub-surface

deformation.

Figure 4.19: The microstructure of sheet annealed for 285°C/10min and loaded to ε=16% along
the TD at the (a) surface and (b) subsurface. The black arrows indicate displacements at grain
boundaries.

Since the 285°C sheet exhibits the best balance of strength and ductility, we con-

centrated our efforts on characterizing the damage accumulation for this condition.
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The damage at increasing levels of strain along either the RD or TD is summarized

in Figure 4.20. During the interrupted tensile tests of the 285°C sheet, the first

signs of damage in the microstructure are observed at 4% plastic strain (Fig. 4.20(a)

and Fig. 4.20(b)). At this point cracks begin to appear in the β-particles. As the

strain is increased to 8% the crack width and density increases (Fig. 4.20(c) and Fig.

4.20(d)). At 16% strain cracks that initiated earlier continue to open and the crack

density increases as more cracks continue to develop. The cracks remain confined

almost exclusively to the β-network; no propagation of cracks into the matrix is ob-

served (Fig.4.20(e) and Fig.4.20(f)). The small, bright particles in these micrographs

are Al and Mn intermetallics.

One of the objectives of this work was to determine if the tendency for strings

of β-particles to be aligned along the RD would affect the growth of these cracks.

Analysis of the crack lengths and number density in the recrystallized sheet from a

nominal area of 20,000 µm2 for each strain level are found in Fig. 4.21. At 4% strain

the average crack length is longer when loaded along the TD than along the RD,

however there are ∼ 2.5 more cracks per 1000 µm2 when loaded along the RD. It

should be noted that the standard deviation for the crack length at 4% strain along

the TD is the largest as a result not only of the presence of some long cracks, but also

due to the limited number of cracks at this deformation level; the 4% TD specimen

had the lowest crack density. The longest crack observed in the TD specimen at 4%

is 17.9 µm, compared to 10.7 µm in the RD specimen. As the strain increases to

8% and then 16% the crack number density increases for both orientations, but the

difference between the two orientations remains constant as shown in Fig. 4.21(b).

The average crack length (and standard deviation) along the TD decreases, while the

average crack length in annealed sheet loaded along the RD increases moderately.
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Figure 4.20: Damage accumulation in sheet annealed for 285°C for 10 min when loaded along the
RD (right) and TD (left) at increasing levels of deformation.
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Figure 4.21: Graphs comparing (a) the average crack length and (b) the crack number density at
4%, 8%, and 16% along the RD or TD in sheet annealed for 285°C for 10 min.

Assuming a homogenous matrix and a uniform particle spacing, strain incompat-

ibility between the matrix and β-phase will be the greatest for the larger particles,

and so the increasing internal stresses cause the larger particles will fracture (or

debond) first. Successive cracks will occur in increasingly smaller particles. If the

local stress is not sufficient to for propagation of the crack into the matrix, then

the crack arrests at the matrix/particle interface and so the maximum crack length

is limited by the particle length in the plane of maximum stress. In this scenario,

the mean crack length would decrease with increasing strain. The initial difference

between the crack length in the two orientations at 4% strain is likely a consequence

of elongation of the particles, especially those larger than 1 µm, along the RD.

A quick approximation for the effective particle length along each direction can be

defined by constructing a bounding box around each particle as described in Section

3.6. By plotting the aspect ratio of the bounding box (the ratio of the length along

the RD to the length along the TD) for different sized grains, as done in Figure 4.22,

we can see that while the majority of grains have an aspect ratio near 1 (the average

is 1.3), by isolatating increasing larger β-particles, it becomes evident that there is a

population of large particles with a high aspect ratio. One of these large, high aspect
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Figure 4.22: Distribution of the aspect ratio of the bounding box for different sized β-particles.

ratio particles is apparent in Figure 3.42. This small population of large, elongated

β-particles is likely responsible for the initial difference in the crack length at 4%

between the samples loaded along the TD and those loaded along the RD. As most

of the particles are roughly equiaxed, as the number of cracked particles increases,

the difference in average crack length between the two orientations decreases.

The damage process described in the sheet annealed for 285°C for 10 min is

comparable to that observed in the other β-phase containing materials (the as-molded

plate, as-rolled sheet, and sheet annealed for 300°C for 20h). The β-particles begin to

fragment at 4% strain and the crack density then increases with increasing strain. In

all of the materials, crack length and number density are limited by the morphology

of the β-phase, so for example in the sheet annealed for 300°C for 20h, which has a β

volume fraction of 3% (compared to 4.8% after the 285°C for 10 min anneal), there

is less damage observed. In the solution treated sheet (420°C/28 h) damage is not
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Figure 4.23: Damage near the fracture surface in sheet annealed for 285°C for 10 min and loaded
along the RD. The majority of voids are associated with the β-particles.

observed until failure, and is only evident very near the fracture surface.

Despite the variations in the crack length and crack density between different

orientations and different treatments, the samples (excluding the as-rolled sheet,

in which the ductility is negatively affected the the strain hardening present from

rolling) the average elongation to failure only varies from 19% to 26%. Thus it seems

that damage associated with the β-phase has a minimal effect on ductility. Examina-

tion of tensile specimen polished to mid-width post-mortem shows minimal evidence

of coalescence of the voids associated with the β-phase (Figure 4.23). Thus we turn

to fractography to better understand the mechanism responsible for failure in the

as-molded and TTMP AZ61 sheet conditions.

4.6 Fractography

Macroscopically, shear fracture terminated tensile deformation. The average shear

angle is 50° in the as-rolled and annealed sheets and 60° in the as-molded plates.
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Figure 4.24: Shear angle in (a) as-molded plate and (b) sheet annealed for 285°C for 10 min and
loaded along the RD. The vertical arrows indicate the thickness direction.

Figure 4.24 shows two representative samples. The average is slightly higher in the

as-molded condition as a few of the specimens had a shear angles of ∼ 70°. The

higher shear angles, and lower ductility in some of the as-molded specimen may be

a result of the porosity in this condition. In Mg alloys failure commonly occurs near

the plane of maximum shear stress [68]. An attempt to observe the formation of

shear bands on tensile specimen polished before deformation was unsuccessful, so

it is likely that failure occurs soon after shear localization. Similarly, necking was

limited and observed in only a few of the higher ductility samples.

Fractography indicates that microvoid coalescence is the dominant failure mech-

anism for all of the material conditions. Figures 4.25 and 4.26 compare the fracture

surfaces of the (a) as-molded and (b) as-rolled materials as well as sheets annealed

for either (c) 285°C for 10 min or (d) 420°C for 28 hours. The dimples are finest

in the as-rolled sheet, in the other materials the dimple size is on the order of a
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Figure 4.25: SE images of fracture surface in (a) as-molded, (b) as-rolled, (c) rolled and annealed
for 285°C for 10 min, and (d) rolled and annealed for 420°C for 28 hours.
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Figure 4.26: Higher magnification SE images of fracture surface in (a) as-molded, (b) as-rolled, (c)
rolled and annealed for 285°C for 10 min, and (d) rolled and annealed for 420°C for 28 hours.

145



few micrometers. In the largest-grained material, sheet annealed for 420°C for 28

hours, several coarser features are apparent (Figure 4.25(c)). These features may be

a result of void nucleation at twins, which are much more numerous in this material

or indicate a transition to a more cleavage type failure due to the larger grain size.

In addition, a few 50 to 100 µm more cleavage-like features were observed in an

as-molded sample was well. Figure 4.27 shows one of these features, which based on

its size, is likely failure in one of the externally solidified grains.

Figure 4.27: SE image of a portion of the fracture surface in the as-molded plate exhibiting a large,
more cleaveage-like feature

146



Figure 4.28: SE micrograph of fragmented β-particles at the bottom of voids in the sheet annealed
for 285°C for 10 min.

Fragmented β-particles, such as those highlighted in Figure 4.28 are observable in

the bottom of many of the pores. Based on observations of failed specimens at mid-

width, such as the one shown in Figure 4.23, this is a consequence of the intersection

of the microvoids nucleating in the shear band with voids associated with the β-

phase. The particles themselves are not directly responsible for failure, though they

may affect the development of the shear localization.

Microvoid coalescence has been observed by several authors in Mg alloy sheets

[4, 69–73]. Grain size is one of the most important parameters in controlling the

failure in Mg alloy sheets, a brittle to ductile transition can be observed with grain

refinement [18, 74, 75]. Based on these studies, 10 µm seems to a benchmark below

which microvoid coalescence in the dominant mechanism, though some larger grained

materials, such as 41 µm SiC reinforced AZ91 studied by Luo, also exhibit uniform
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dimples. Fractography in the TTMP AZ61 is consistent with an evolution in the

failure mode to include more cleavage-like behavior as the grain size exceeds 10 µm.

In addition to grain size, brittle failure has also been attributed to the nucleation

of voids on cracked secondary particles [76]. As observed in TTMP AZ61, particles

often observed in the bottom of dimples [69, 70, 73, 76]. These cracks may terminate

ductility if the β-particles become too large [76] or too numerous [69], but otherwise,

as observed in the as-molded plates and TTMP AZ61 sheets, may not play a signif-

icant role in failure.

4.7 Summary

The tensile behavior in TTMP AZ61 is controlled primarily by the grain size and

crystallographic texture. In the annealed sheets, the yield strength varied in accor-

dance with the Hall-Petch relationship, though texture affected the yield strength

as well. In conditions where fewer grains were oriented for easy, basal slip, the

yield strength increases. This is likely a consequence of mechanisms with a higher

CRSS, such as prismatic slip, having to accommodate a larger fraction of the strain.

The texture evolution during tensile deformation is consistant with the activation

of prismatic slip in the sheet materials. Similarly, work hardening was also found

to correlate with the texture, the work hardening exponent decreases as the frac-

tion of grains oriented for basal slip decreases. These texture dependencies generate

anisotropic deformation behavior in the plane of the sheet. Texture reduction during

static recrystallization decreases this anisotropy.

Despite some anisotropy arising from the non-symmetric distribution of the basal

poles, the low basal texture intensity leads to excellent r-values. Materials with
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similar r-values have performed well during stretch forming at ambient temperature.

The balance of strength and ductility combined with the low r-values in the annealed

sheets indicates that TTMP is an outstanding processing route for the production

of Mg sheet with better formability than conventional AZ31.

During tensile deformation, damage accumulates preferentially in the β-phase par-

ticles. However, this damage does not lead to premature failure and low ductility.

In all of the annealed sheets, fractography indicates that failure results from coales-

cence of voids in the α-Mg matrix. Indeed, the average ductility to failure was near

23% in the annealed sheets, regardless of grain size or β-phase volume fraction. This

indicates, that at least in terms of tensile deformation, the beneficial properties of

the β-particles discussed in Chapter III, namely texture weakening and grain size

stability, outweigh consequences of the damage developing in the particles.

An increase in grain size to 11.7 µm following the 420°C for 28 hours annealing

treatment leads to a dramatic increase in twinning activity. Fractographic evidence

of more brittle features also begin to manifest at this grain size. This is consistent

with the body of Mg literature; grain refinement leads to an improvement in both

strength and ductility. The control of the grain size and texture, achieved by TTMP,

is essential to produce formable Mg alloy sheet.
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Magazine, 90 (2010), 2161–2190.

63. V. Meyers, M.A., Vohringer, O., Lubarda, Acta Materialia, 49 (19) (2001), 4025–
4039.

64. Y. Chino, K. Kimura, and M. Mabuchi, Materials Science and Engineering: A,
486 (1-2) (2008), 481–488.

65. S. Kleiner and P. Uggowitzer, Materials Science and Engineering: A, 379 (1-2)
(2004), 258–263.

66. S. Agnew, J. Horton, T. Lillo, and D. Brown, Scripta Materialia, 50 (3) (2004),
377–381.

67. M. Barnett, N. Stanford, P. Cizek, C. Bettles, Z. Xuebin, and Z. Keshavarz,
JOM, 61 (8) (2009), 19–24.

68. M. Barnett, Materials Science and Engineering: A, 464 (1-2) (2007), 8–16.

69. A. Sadeghi, S. Shook, and M. Pekguleryuz, Materials Science and Engineering:
A, 528 (25-26) (2011), 7529–7536.

70. A. Luo, Metallurgical and Materials Transactions A, 26 (September) (1995),
2445–2455.

71. M. Marya, L. G. Hector, R. Verma, and W. Tong, Materials Science and Engi-
neering: A, 418 (1-2) (2006), 341–356.

72. Z. Chen, J. Huang, R. F. Decker, S. E. Lebeau, L. R. Walker, O. B. Cavin, T. R.
Watkins, and C. J. Boehlert, Metallurgical and Materials Transactions A, 42 (5)
(2010), 1386–1399.

73. Z. Li, J. Dong, X. Q. Zeng, C. Lu, and W. J. Ding, Materials Science and
Engineering: A, 466 (1-2) (2007), 134–139.

74. T. Mukai, T. Mohri, M. Mabuchi, M. Nakamura, K. Ishikawa, and K. Higashi,
Scripta Materialia, 39 (9) (1998), 1249–1253.

75. C. W. Chung, R. G. Ding, Y. Chino, M. A. Hodgson, and W. Gao, IOP Confer-
ence Series: Materials Science and Engineering, 4 (2009), 012012.

76. Y. Lu, Q. D. Wang, W. J. Ding, X. Q. Zeng, and Y. P. Zhu, Material Letters,
44 (July) (2000), 265–268.

153



CHAPTER V

Conclusions and Recommendations

5.1 Conclusions

Increased use of Mg sheet in automotive applications would result in substantial

mass-reductions. Currently less than 1% of the weight of modern North American

automobiles are comprised of Mg components [1]. One of the barriers preventing

increased employment of Mg sheet has been limited formability. Due to its hcp crystal

structure, the production of Mg sheet results in a strong basal texture that generally

persists through further processing. This texture results in strong tensile-compressive

asymmetry, a resistance to sheet thinning, and generally poor formability. Some of

the limitations the basal texture can be overcome by utilizing warm forming, which

allows for the activation of 〈c+a〉 pyramidal slip, therefore providing for extension

along the c-axis. Yet, this increased manufacturing cost, has deterred increased usage

of Mg sheets.

It has been established that a reduction in the basal texture can dramatically

improve formability. One of the most successful approaches has been alloying with

RE elements [2]. For reasons not yet understood, RE alloys have weaker deforma-

tion textures, which can be altered by post-deformation annealing. However, RE

elements are advantageous additions in other applications as well, such as magnets
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and phosphors for lighting, and are in high demand for clean energy applications. RE

elements are expensive, and several of the most common RE additions to Mg alloys

(yttrium, neodymium, cerium, and lanthanum) are at critical or near-critical supply

risk [3]. Thus a need arises to achieve weaker textures by focusing on the processing

route and the addition of secondary-phase particles in conventional alloys.

The objective of this research was to understand the mechanisms behind the

favorable mechanical properties observed in TTMP sheet. TTMP was developed

by Decker and co-workers to address the need for improved formability in Mg sheet

while maintaining strength [4, 5]. It was known that the as-molded plates had a

fine grain size, low porosity, intermetallics decorating the grain boundaries, and an

isotropic texture due to the casting process. The hypothesis was that the severe

plastic deformation introduced during rolling would refine the grain size, leading

to improvements in both strength and ductility [6]. It was also believed that rolling

would act to fracture the secondary phases, and thus improve formability as cracking

in the brittle intermetallics has been associated with a decrease in ductility [7, 8].

The microstructure evolution during TTMP and the effect of this evolution on the

tensile deformation behavior had not been throughly investigated. Of particular

importance, due to its significant influence on formability, was to understand the

texture evolution through TTMP.

We have demonstrated that Thixomolding followed by subsequent thermomechan-

ical processing of AZ61 results in sheet with an good balance of strength and ductility.

This success is a result of achieving sheets with a weak basal texture and a fine grain

size, which is stabilized by β-Mg17Al12 particles. The deformation texture has a

maximum texture intensity of less than 5 MRD, while the maximum intensity in

conventional AZ31 sheet is typically around 10 MRD [9]. This texture is reduced to
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less than 3 MRD during static recrystallization, leading to an increase in elongation

to failure and decreased planar anisotropy. Indicators of formability determined from

tensile deformation, such as the elongation to failure, work hardening coefficient, and

r-value, indicate that TTMP AZ61 will have excellent room temperature formability

for Mg sheet. The strength of the sheets varies according to the Hall-Petch rela-

tionship, however the texture must also be taken into account. The yield strength

and work hardening coefficient are directly related to the number of grains oriented

favorably for basal slip in the loading direction.

Based on this investigation, we cannot conclude which mechanisms are responsi-

ble for the weak deformation texture in TTMP AZ61, however it appears that the

β-Mg17Al12 particles play an important role. It was observed that the as-rolled sheet

exhibited a limited amount of dynamic recrystallization, and that the dynamically

recrystallized grains were associated with regions of a high density of β-particles.

The relative reduction of texture following annealing is consistent with that caused

by PSN [10]. Although PSN is usually associated with particles larger than 1 µm,

which is satisfied by only a small fraction of the β-particles observed in the TTMP

sheet, the critical size for PSN decreases with increasing strain. A 50% reduction of

thickness in a single pass, may have provided sufficient dislocation gradients to allow

smaller particles to serve as nucleation sites as well [11]. Furthermore, small, closely

spaced precipitates have been observed to alter the recrystallization kinetics by pin-

ning high angle grain boundaries, perhaps leading to an extended recovery period

[11]. Discontinuous static recrystallization, which is more likely to result in texture

reduction during annealing than continuous recrystallization, tends to be reported

more often in Mg alloy sheets that have undergone less dynamic recrystallization. It

is a reasonable assumption that the weaker deformation texture, and the reduction
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of texture during annealing, results from increased discontinuous static recrystal-

lization as β-particles hindered dynamic recrystallization. A similar mechanism has

been suggested for the formation of the RE-textures [12, 13].

The preheat, rolling, and annealing stages had only a moderate influence on the β-

particles. The amount of finer-precipitates fluctuated as thermal exposures resulted

in precipitation or dissolution, but the number of particles > 0.5 µm remained quite

stable. The large particles are not fractured during the rolling process, rather they

deform, becoming elongated parallel to the rolling direction. Aside from a moderate

elongation of the network of β-particles and deformation of the larger β-particles, the

distribution of the β-phase is largely pre-determined by the as-molded microstruc-

ture. In the as-molded plate, β-particles decorated the α-Mg grain boundaries. As

the β-particles stabilize the recrystallized grain size, it is not a coincidence that the

grain size in annealed sheets is so similar to that of the plates.

Though β-particles promote a stable, refined grain size and likely weaken the basal

texture of the sheet, they also initiate damage during deformation. Particles began

to fragment as early as 4% strain. Damage accumulation in the β-phase has been as-

sociated with decreased ductility. However, for the β-particle sizes and distributions

in the as-molded, as-rolled, and annealed TTMP sheets, failure was not attributed

to the damage in the secondary particles. The elongation to failure was insensitive to

the variation of the β-phase volume fraction achieved by annealing treatments. Fur-

thermore, analysis of the damage showed no evidence of cracks propagating from the

particles into the matrix. Fractography reveals that failure results from microvoid

coalescence in the matrix following the development of shear instability.

This work highlights the importance of considering the addition of an increased

amount of secondary phase particles to alloys subjected to rolling. In order to pro-
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duce weakly-textured and fine-grained Mg alloy sheet, it is logical to start with a

weakly-textured and fine-grained precursor, such as Thixomolded plate. Microstruc-

ture control can by obtained by the addition of secondary phase particles which

can act to stabilize the grain size and promote a weaker deformation texture. As

the arrangement and distribution of particles evolves little during TTMP, the largest

amount of control in the secondary phases will likely be attained in the molding phase

of TTMP. If kept sufficiently small, these particles will not limit ductility. However,

adaption of these materials to commercial applications requires consideration of the

consequence of β-particle fragmentation on fatigue and corrosion.

5.2 Recommendations for Future Research

The success of TTMP has been demonstrated, and many of the mechanisms re-

sponsible have been determined, but research on this production method and re-

crystallization in Mg sheets is far from exhausted. Based on this investigation, the

following future work is recommended.

1. A detailed study of the relationship between the β-particles and the weak de-

formation texture. Having only one condition of Thixomolded plate limited our

ability to evaluate the effect of β-phase particles on the dynamic recrystallization

mechanisms and kinetics. In order to understand the mechanisms resulting in

the significant difference between the deformation texture of commercial AZ31

and TTMP AZ61, it is important to isolate the effect of the rolling schedule

used in TTMP from the results of selecting an alloy with a higher quantity

of β-particles. Annealing of the Thixomolded AZ61 to reduce the fraction of

intermetallic particles will result in an increase in grain size. The relative ac-
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tivity of slips systems can depend on grain size, therefore, ideally the quantity

of secondarily phases should be varied independent of grain size. This could be

achieved by comparing different alloys. AZ31 does not Thixomold well, and it

may not be possible to find another production method for un-textured AZ31

with a grain size less than 5 µm for comparison to the Thixomolded AZ61. Use

of larger-grained, direct chill (DC) cast AZ31, AZ61, and AZ91, annealed such

that all three alloys have the same grain size, seems the best approach for de-

termining the relationship between the quantity of β-particles and deformation

texture.

Subjecting 3 mm thick DC cast plates of the three alloys to the same rolling

parameters used to produce the TTMP AZ61 in this study would also allow

for comparison between the deformation texture resulting from use of the fine-

grained Thixomolded AZ61 to that from the DC cast plates. Cooling rates in DC

casting are slower than that in Thixomolding, so the β-volume fraction will be

higher as well, though that could be modified by annealing. The slower cooling

rate will also result in a coarser β-particles and eutectics. The size and spacing

of the β-particles will determine their effect on dynamic recrystallization. It

may be that in DC cast alloys, PSN is most significant, whereas retardation

of the recrystallization kinetics by Zener drag is dominant when starting with

Thixomolded plate. Differences between the TD spread in materials with dif-

ferent sized β-particles could help elucidate the formation of the so-called RE

texture.

The rolling schedule used in the production of TTMP AZ61 may not be suitable

for the rolling of DC cast AZ31, AZ61, and AZ91. However, as the goal of this

study would be to understand the deformation texture; in this situation, edge
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cracking and poor surface quality are tolerable. Similarly, increased porosity in

the DC cast alloys is acceptable. As a final note, AZ71, AZ81, and AZ91 can

be successfully Thixomolded [14, 15], so there is an option to study TTMP in

alloys with increasing Al content.

2. Investigation of TTMP on more complicated alloy systems. Within the two-

phase system provided by AZ61, microstructure control is limited. It seems

feasible to design an alloy such that one phase serves to promote a weak recrys-

tallization texture while a second, thermally stable phase, acts to stabilize the

grain size. Selecting the first phase to have a low dissolution temperature, al-

lows these particles to be removed by annealing, decreasing the potential volume

of cracked particles during deformation. If processing could achieve a homoge-

nous distribution of the thermally stable particles, finer recrystallized grain sizes

could be attained. In addition to increasing strength via the Hall-Petch rela-

tionship, it would also be useful to produce TTMP sheets from age-hardenable

alloys.

3. Room temperature formability studies. Comparison of the tensile deformation

behavior, specifically the r-values, in TTMP AZ61 to other Mg alloy sheets

indicates that TTMP AZ61 may have excellent room temperature formability,

but this has yet to be established. Erichsen tests should be conducted on,

at minimum, sheet annealed for 285°C/10 min. Evaluating sheet annealed for

420°C/28 h would provide for a comparison with a larger grained material free

of secondary phases.

4. Investigation of the effect of variations in the TTMP rolling schedule on mi-

crostructure and texture evolution. As discussed in Chapter I, asymmetric
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rolling can produce more weakly textured material than symmetric rolling.

Comparing the deformation texture as a function of the ratio of speed be-

tween the top and bottom rolls in TTMP sheet could provide more insights

into the mechanisms responsible and potentially lead to further advancement

of TTMP. Maintaining the same pre-heat and rolling temperatures, as well as

thickness reduction will allow for comparison to the work in this dissertation.

It should be noted, that we have done some preliminary studies on the texture

in TTMP AM60 produced by multiple-pass cross rolling, a technique that has

also been demonstrated to reduce texture intensity. However, multiple variables

were changed in the production process, including the alloy, so the effect of the

cross rolling itself can not be isolated.

5. EBSD studies to explore the relationship between GOS and grain orientation

in deformed material. For this dissertation, EBSD was successfully conducted

on samples loaded to ε=10%. Partitioning the texture of large (> 1000 grain)

EBSD maps from deformed material based the internal misorientation (GOS)

would provide knowledge of which grain orientations are accommodating more

of the deformation. Performing this analysis on textured samples loaded along

different directions could provide further insights into how texture influences

deformation behavior.

6. Plasticity modeling. Use of a self-consistent polycrystal plasticity model would

allow for a more sophisticated theoretical description of the orientation depen-

dence of yield strength and work hardening based on texture than presented

in this investigation. This could be used to confirm, for instance, that the dif-

ference in strength between the as-molded and annealed sheets (not associated
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with Hall-Petch) is due to increased “soft” basal slip activity in the un-textured

as-molded material. Having an experimentally calibrated model for plasticity in

TTMP AZ61 would also increase the efficiency of further studies. For instance,

the proposed study on the effect of β-particles on the deformation texture will

yield crystallographic information that can be fed into the plasticity model.

Stress-strain curves can be predicted for each deformation texture. Based on

the results of the modeling, the conditions most constructive for further work

can be selected, reducing the time and cost needed to machine and test tensile

specimen.

7. Detailed TEM analysis of the dislocations following deformation of annealed

sheets. Information of the relative activity of the different slip systems in de-

formed sheet would complement, or suggest changes to, the slip-system depen-

dent hardening parameters used to calibrate the plasticity model. Dislocation

analysis can provide more information as to the activity of non-basal slip as

the loading direction is varied. Foils for TEM would need to be removed from

samples with only 1 to 2% plastic deformation. Foils removed such that the foil

normal is parallel to loading direction will allow for easy comparison of slip and

loading directions. As many of the grains are oriented such that their c-axis is

perpendicular to the loading direction, this foil orientation provides for viewing

the basal plane “edge-on” such that basal dislocations appear straight [9]. It is

also recommended to prepare foils with a normal parallel to that of the sheets

to examine prismatic slip, though care will have to be taken to track the loading

direction.

8. Detailed TEM analysis of fine β-precipitates through TTMP. Only limited TEM
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observations were conducted on the as-molded plate, as-rolled sheet, and sheet

annealed at 285°C for 10 minutes. It is unknown how the density and distribu-

tion of β-particles smaller than 200 nm evolve during processing. In addition,

while study of the as-rolled sheet is difficult due to the high dislocation density,

analysis of rolled sheet following an annealing treatment selected to promote

recovery, could provide insights into the activity of PSN and the interaction

between high angle grain boundaries and fine β-particles. Based on the work

demonstrated in Figure 3.16, 130°C for 100 minutes promotes recovery, but

not static recrystallization, such that the dynamic recrystallization mechanisms

active during TTMP could be studied.

9. Fatigue studies should be conducted in pre-strained TTMP AZ61. Though it

was demonstrated that damage accumulation in the β-phase during tensile load-

ing does not cause failure, the effect of this damage on fatigue has yet to be

investigated. Components formed from TTMP AZ61 sheets will contain voids

from the β-particle cracking, with the void density varying with the strain distri-

bution. It is unclear how these voids will behave during service. If the presence

of these cracks rapidly degrades the fatigue lifetime of the Mg alloy sheet com-

ponents, a recommendation to increase the fraction of secondary particles would

be unwise. Small fatigue crack growth studies should be conducted on TTMP

AZ61 that has been pre-strained to simulate forming. Focus should be made

on the relationship of the fatigue cracks and the β-particles and the preexisting

damage in the the particles. In addition, a comparison of fatigue lifetime to

pre-strained commercial AZ31 should be made. It should be noted that Chen

and co-workers have studied fatigue and small crack growth in Thixomolded and

TTMP AM60 [16, 17], though an emphasis was not made on the β-particles.
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Also, that batch of materials contains a higher porosity and much higher frac-

tion of externally solidified grains than the AZ61 materials used in this study,

since then the Thixomolding parameters have been adjusted; current batches of

TTMP AZ61 likely have a longer fatigue life.

10. Corrosion studies. Cracking in the β-particles during deformation will create

effective porosity in formed components. In addition, the effect of the β-phase

on corrosion is dependent on the particle size and volume fraction [18, 19]. The

corrosion rate resulting from (1) the size and distribution of β-particles resulting

from TTMP and (2) cracking of the β-particles during deformation will allow

for a more informed decision as to the appropriate amount of β-particles to

incorporate into TTMP and other Mg sheet production methods.
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APPENDIX

X-Ray Diffraction Texture Measurements and Comparison

to Texture via EBSD

Crystallographic texture has been conventionally measured by X-ray diffraction (XRD),

however analysis via electron backscatter diffraction (EBSD) is becoming more preva-

lent as the speed of EBSD systems increases [1, 2]. Both techniques were used to

characterize texture in the AZ61 materials in this research, but for consistency, the

texture evolution detailed in Chapters 3 and 4 was illustrated using only EBSD pole

figures. This appendix provides the experimental procedure used to generate XRD

pole figures, describes the differences between both techniques, and justifies the va-

lidity of the EBSD pole figures used in this dissertation.

A.1 Experimental Procedure for Generation of XRD Pole Figures

A Rigaku rotating anode X-Ray diffractometer with a computer automated pole

figure attachment was used to measure XRD intensity. Coupons of material of at

least 6.35 mm x 6.35 mm x 1 mm thick (the maximum sample size the pole figure

attachment can accept is 31.8 mm in diameter and 3 mm thick) were prepared by

grinding to 1200 grit SiC paper with water. Bragg peaks were determined by a Θ/2Θ

scan with a resolution of 0.01° and a scan rate of 4 points per second between 30° and
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65°. Incomplete pole figures of the {0002}, {101̄0}, {101̄1}, and {101̄2} were collected

by recording the intensity in increments of 3° out to 75° in the radial direction and

in 5° steps in the azimuthal direction. The azimuthal rotation speed was 180° per

minute. Oscillation of the sample under the beam maximized the number of grains

included in the measurement.

Multiple pole figures are required in order to uniquely determine texture; at mini-

mum the three pole figures with the smallest Bragg peaks should be used [3]. Due to

geometric constraints of XRD systems, Bragg peaks above 60° are not used. As the

specimen is tilted about the Θ/2Θ axes and radial axis the beam becomes spread out

on the specimen surface (Figure A.1), correspondingly the diffracted beam spreads

out as well [3]. Above a certain spread, not all of the beam enters the detector. As

a consequence, intensity will decrease towards the edges of a pole figure, even in a

randomly oriented sample, for purely geometric reasons. Thus, raw pole figures are

incomplete, only going to a radial tilt of 75° or 80°, and a defocusing correction is

required to increase the intensity near the edge of measured pole figures [3]. Figure

A.2 provides an example of a defocusing correction.
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Figure A.1: Change in shape and orientation of x-ray stop size as a function of radial tilt and Bragg
angle. Figure from [3].

Figure A.2: Theoretical intensity correction curves for two different values of 2Θ and receiving slit
widths. Figure from [3].

The best procedure for determining the defocusing correction is to measure the

intensity from a reference sample with a random texture. Random texture can be

verified by either examination of the pole figures or a Θ/2Θ scan, though the pole

figure method is preferred [4]. If using a Θ/2Θ scan to ascertain randomness, the

intensity ratios of the major peaks should be compared to the intensity ratios found
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in the Joint Committee on Powder Diffraction Standards (JCPDS) files. Preferred

orientation, phkil, can be quantified using the method of Harris:

(A.1) phkil = N

(

Ihkil
Iohkil

)

(

N
∑

hkil=1

Ihkil
Iohkil

)

−1

where N in the number of peaks within the region of interest, Ihkil is the measured

peak intensity, and Iohkil is the intensity from the JCPDS file [5]. If phkil < 1, the

preferred orientation is along an axis other than 〈hkil〉. A value of phkil > 1 indicates

a texture in the 〈hkil〉 axis. The maximum texture strength possible is N. A value

of phkil = 1 for all sets of hkil indicates a randomly oriented sample.

In this case, the as-Thixomolded plate was chosen as the reference sample; this is

a reasonable assumption as p0002 is 1.28 in this material as calculated from the data

given in Table A.1. Θ/2Θ measurements of the as-Thixomolded material shown in

Figure A.3 demonstrate the similarity of peak intensities to a random sample.

Figure A.3: Diffracted intensity from Θ/2Θ scan of as-molded AZ61 aside peaks from the JCPDS
file 04-003-2526 for Mg powder.
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Table A.1: Data used for calculation of preferred orientation. 2Θo and Iohkil values from JCPDS
file # 04-003-2526.

hkil 2Θo(°) Io
hkil 2Θ(°) Ihkil

101̄0 32.183 0.218 32.47 0.26
0002 34.447 0.253 34.67 0.33
101̄1 36.630 1.000 36.93 1.00
101̄2 47.856 0.174 48.20 0.12
112̄0 57.382 0.211 57.88 0.10
101̄3 63.140 0.237 63.55 0.11

It should be noted that the difference between the reference and measured peak

locations is due to the alteration of the lattice constant by the addition of Al. The

lattice parameters in pure Mg are a = 0.32092 nm and c = 0.52105 nm and the

lattice parameters in AZ61 are a = 0.319 nm and c = 0.518 nm [6].

The planar spacings, dhkl, in hexagonal crystals can be calculated by:

(A.2) dhkl =

[

4

3a2
(

h2 + hk + k2
)

+
l2

c2

]

−

1

2

The distance between lattice planes can be experimentally determined from XRD

using Bragg’s Law:

(A.3) nλ = 2d sinΘ

where λ is the wavelength of the X-Ray radiation, 0.1541 nm, n is an integer, and

Θ is the experimentally determined Bragg angle. By setting dhkl in Equation A.2

to d in Equation A.3 the lattice constants for any particular plane {hkl} can be

determined. Using the Bragg angles measured in the as-molded material (listed in

Table A.1) for {101̄0} and {0002} we find that a = 0.318 nm and c = 0.517 which

are in good agreement with [6], confirming that the shift in peak locations is due to

that alloying addition of Al.

Pole figures for a random sample should not have any peaks and the intensity

within each radial ring should be constant [4]. The intensity within 45° should show
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little variation, and should smoothly decrease as the radial angle increases outside

this bound. The raw 0002 pole for the Thixomolded plate in Figure A.4 meets this

conditions.

Figure A.4: Raw 0002 pole figure for the Thixomolded plate. The dashed circle is drawn at α =
45°.

Complete pole figures were calculated using MTEX, a MATLAB® toolbox created

for texture analysis [7]. Eight data files were imported in order to generate the a

full description of the texture of each material, the raw {0002}, {101̄0}, {101̄1},

and {101̄2} pole figures as well as their defocusing correction (here the as-molded

pole figures). The software requires knowledge of the sample symmetry (triclinic)

and crystal symmetry (point group is 6/mmm with a = 3.19 Å and c = 5.18 Å).

After the defocusing correction is applied to each pole figure, all four incomplete pole

figures are used in order to generate a orientation density function (ODF) for the

material.

The ODF is a tool for describing the normalized probability density of each texture

component, which can be described by three Euler angles. MTEX calculates the ODF

by using a series expansion method for fitting the coefficients of harmonic functions
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[7]. The ODF unites all of the incomplete pole figures into a complete representation

of all of the crystal orientations within the specimen volume. Once the ODF has

been constructed it can be used to calculate any pole figure for the material. Thus,

we can extract a complete {0002} pole figure. In addition, the generated pole figures

can be rotated to the sample orientation of choice. Figure A.5 shows raw, defocusing

corrected, and recalculated pole figures for the basal and prismatic pole figures for

the as-rolled sheet.

Figure A.5: XRD pole figures of the as-rolled sheet at different stages in the recalculation process.

A.2 XRD vs EBSD

Provided a sufficient number of grains are measured, the most accurate measure-

ment of the true texture is EBSD as it has better accuracy (orientations accurate
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to within 2°), there is no defocusing correction needed, and the inherent inaccura-

cies when recalculating the ODF by deconvolving the XRD pole figures are avoided

[8, 9]. XRD provides the most statistical representation of texture. Assuming a

beam diameter of 10 mm and a penetration depth of 0.05 mm, XRD samples about

40 million 5 µm diameter grains, far more than can be measured with EBSD [1].

Several researchers have studied the number of grains needed to accurately represent

texture, and 1000 grains has emerged as a rule of thumb [1, 8, 10]. Wright et al. [2],

however conducted a comparison of texture by EBSD and XRD in low carbon steel

and suggested that 10,000 grains be the benchmark for a good statistical representa-

tion of texture. Furthermore, they caution that no value is added by taking multiple

measurements per grain; scanning duration can be minimized by setting up scanning

parameters to sample grains only once or twice each. Figure A.6, from Wright and

co-workers demonstrates how pole figures for varying number of grains via EBSD

compares to the XRD pole figure. The EBSD scanning parameters in Chap II are

based on this work.

Figure A.6: 110 pole figures for a low carbon steel generated by XRD and by varying numbers of
EBSD grain measurements. Figure from [2].
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One more important consideration, especially in this work, is the dislocation con-

tent of the material. Lattice distortion by deformation produces a distribution of

plane spacing and, thus, a distribution of diffraction angles results. In XRD this

broadens the diffraction peak, and decreases the maximum raw intensity of each

pole figure, but the peak will likely remain far above of background level. As the

intensities are normalized in the ODF calculation, the texture intensity of the recal-

culated pole figures will not be affected as long as each grain orientation contains

similar amounts of deformation. In the case of EBSD, this peak broadening manifests

as blurring of the Kikuchi bands [11]. As the bands become more diffuse, and the

contrast approaches background levels, the likelihood of the software being able to

accurately determine the texture is greatly reduced. Mg, already has relatively poor

quality images due to its low atomic number (z=12), and thus scatters less electrons

than heavier metals such as brass (z=29 and 30 for copper and zinc, respectively).

If certain grain orientations or phases preferentially deform, then these grains will

be underrepresented in the final EBSD texture. Engler studied EBSD texture in as-

deformed and partially recrystallized cold-rolled Al-Mg alloy [1] and concluded that

in the partially RX material, since certain orientations recrystallize more rapidly, the

non-RX regions were underrepresented in the final texture. In the as-rolled sheet,

they observed a decrease in indexing rate but did not see bias towards certain texture

components.

With that in mind, we studied how the as-rolled texture generated by EBSD

compared to that from XRD for differing number of orientations, as shown in Figure

A.7. As the number of orientations increase, the data begins to smooth out and noisy

peaks are reduced. The maximum texture intensity by XRD is 4.5 MRD; the maxi-

mum intensity via EBSD is too high when less than 6400 orientations are measured,
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but converges near the XRD value with the inclusion of ∼ 12,000 orientations. This

data satisfies one of the measures of statistical significance for texture via EBSD, the

jackknife test, in which if you cut the number of grains measured in half, the texture

intensity should not increase appreciably [10]. This test was used to determine the

number of orientations needed to characterize the texture via EBSD in the as-rolled

sheet. For the as-molded plate and recrystallized sheets, a scan area large enough to

contain 10,000 grains was used. Figure A.8 summarizes the texture of the primary

conditions discussed in this dissertation by both XRD and EBSD. Based on this

work, we believe that EBSD characterization of texture in this dissertation is valid.
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Figure A.7: Basal and prismatic pole figures for as-rolled AZ61 sheet generated by XRD and for
an increasing number of EBSD grain orientation measurements. The number of orientations and
maximum texture intensity are listed below the pole figures.
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Figure A.8: Basal and prismatic pole figures for by both XRD and EBSD for the primary materials
in this dissertation.
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