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Abstract

For the advancement of spin-based electronics applications, as well as the advancement of

semiconductor technology in general, an understanding of spin-related phenomena in semi-

conductors is of crucial importance. This work focuses on two effects, namely the manipu-

lation of electron spins via spin-orbit coupling, and the generation of spin polarization using

an all electrical means known as current-induced spin polarization. Optical measurements

via Faraday/Kerr rotation are systematically conducted on strained n-type InGaAs epilay-

ers. The anisotropic spin-orbit splitting is mapped for several samples taken from the same

wafer, and is represented as a spin-orbit effective magnetic field. Measurements of electri-

cally generated spin polarization are performed on the same sample locations. In accordance

with previous predictions, spins are dynamically polarized along the direction of the spin-

orbit field. However, contrary to previous predictions, the steady-state spin polarization

is deviated from the spin-orbit field direction. This is characterized quantitatively in this

work presenting a new model based on the anisotropic spin relaxation rate. Furthermore,

the magnitude of current-induced spin polarization is not proportional to the spin-orbit

splitting, but rather the two obey a negative differential relationship. That is, the crystal

direction having the weakest spin-orbit splitting exhibits the strongest current-induced spin

polarization. This is characterized phenomenologically by introducing a term that allows for

spin-dependent scattering accompanied by a spin flip. This is the first work to establish a

relationship between current-induced spin polarization and an anisotropic spin-orbit split-

x



ting. Our model agrees with previous measurements in the field. Furthermore, the crystal

directions corresponding to a spin polarization and spin-orbit field maxima are nearly or-

thogonal. We point out that this phenomenon has the potential to be extremely useful for

the advancement of spintronics applications, as it allows for independent spin polarization

and manipulation by application of orthogonal electric fields.
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Chapter 1

Introduction

The intrinsic angular momentum of a particle, known as its spin, and the magnetic dipole

moment it represents, establishes a class of physical properties that have sparked interest

since its discovery over a century ago [1]. Peculiar quantum mechanical aspects of spins

include the quantization of measured spin projections [2], as well as the statistical properties

obeyed by particles of a certain spin class, namely that integer spin particles obey Bose-

Einstein statistics [3], while half-integer spin particles obey Fermi-Dirac statistics [4, 5]. A

particularly interesting mathematical construct, and physical realization is the Pauli ex-

clusion principle [6] obeyed by Fermions (objects with half-integer spin), requiring that a

well-defined quantum mechanical state can be occupied by no more than a single particle at

any given time. This property is crucial for the existence of semiconductors.

Since the discovery and advancement of semiconductor technology in the past century,

spin-related phenomena in semiconductors has become a field of increasing interest. Both

quantum mechanical aspects, such as quantized spin projections and interactions with pho-

tons and phonons (quanta of light and sound energy, respectively), as well as classical as-

pects, i.e. manipulation of spins as classical magnetic dipoles, have undergone increasingly
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thorough investigation. Recently, a computational paradigm utilizing the two-state nature

of an electron spin (or other spin 1/2 systems) has been proposed and is becoming of in-

creasing interest as the lower size scale limits for classical (charge-based) computation based

on heating, and eventually quantum mechanical effects, are being reached [7]. Spintronics

(spin-based electronics) is a such a paradigm that utilizes the quantum and classical nature

of the two-state spin system.

Crucial to the development of a spintronics platform is the coherent generation and de-

tection of spin polarization, as well as manipulation of spins on a time scale that is fast

compared to the spin relaxation time [8]. In this dissertation we explore and character-

ize electrical generation of spin polarization as it pertains to spin-orbit interactions in the

conduction band of strained III-V semiconductors.

1.1 Background

The electron spin is the closest realization of a pure magnetic dipole moment (a magnetic

dipole defined at a zero-dimensional point in space). Semiconductors are a natural plat-

form for the investigation and manipulation of the electron spin. Through semiconductor

structure engineering, the electron effective mass and g-factor (coupling strength between

the spin and a magnetic field) can be manipulated. Electron confinement can be achieved

in zero-dimensional (quantum dot), one-dimensional (quantum wire), and two-dimensional

(quantum well) semiconductor structures. Transport properties, namely the electron mobil-

ity, can be manipulated through sample growth (such as by varying the doping density) and

device fabrication. The interaction of electrons with photons and phonons can be tuned,

primarily through the band gap and optical selection rules, by the choice of semiconductor

alloy components and growth conditions. Finally, manipulation of spins can be achieved

through spin-orbit interactions induced by the symmetry of the semiconductor alloy [9],
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heterostructure engineering [10], and strain [11].

Early optical investigation of electron spin phenomena in semiconductors [11] was able

to elucidate common carrier scattering mechanisms as well as the relevant spin relaxation

mechanisms [12, 13, 14, 15]. Exploiting these relaxation mechanisms, coherence times in

n-type GaAs were measured in excess of 100 ns [16]. Coherence times were found to be

extended in (001) [17] and (111) [18] quantum wells. Coupling between the electron and

nuclear spin systems was shown in Ref. [19], and proposed as a method for long term storage

of computational memory [20].

With the advent of pulsed laser technology, time-resolved optical measurements of spin

polarization [21] were conducted in which the manipulation of electron [16] and hole [22]

spin systems was observed. This was achieved via application of external magnetic fields,

through magnetic impurities [23], through mechanical strain [24], and through the use of

spin-orbit interactions [25, 26]. In the latter, it was found that the spin-orbit coupling in

semiconductor heterostructures could be manipulated using all-electrical means [27].

As a method of generating spin polarization, much work has been conducted on ferromag-

netic spin injection [28], optical spin orientation [11], and electrical spin polarization [29].

In semiconductors exhibiting the latter effect, it was shown that a spin-Hall current could

also be generated transverse to the electrical current [30, 31]. Spin selective readout was

shown to be possible with giant magnetoresistance [32, 33], as well as through optical means

such as polarized photoluminescence [34] and Faraday/Kerr rotation of linearly polarized

light [35]. The latter effect allowed for an extremely high resolution measurement of elec-

tron spin polarization with spin coherence times greatly exceeding the carrier recombination

time. Faraday rotation was also shown as a method of coupling electron spin states to optical

polarization [36].

This dissertation will focus on generating spin polarization using an electrical current.

The inverse of such an effect was proposed [37] in the context of a photogalvanic current in-
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duced upon absorption of circularly polarized light. It was first measured by the polarization

of holes in Tellurium induced by the application of a current [38]. It was proposed that such

an effect should be observable in semiconductors which exhibit a momentum-dependent spin

splitting [39]. This was measured in strained bulk InGaAs [29] as well as AlGaAs quantum

wells [40]. Believed to be an effect due to the spin-orbit interaction, it was, however, surpris-

ingly found in bulk GaN [41] having a weak spin-orbit splitting, and in ZnSe [42] in which the

spin-orbit splitting was immeasurable. Investigation of previous measurements [29] exhibit

no clear trend between current-induced spin polarization (CISP) and spin-orbit interactions,

and, as such, the mechanism that gives rise CISP remains an open question.

1.2 Results

This dissertation will focus on the investigation of current-induced spin polarization for the

purposes of direct comparison with the strength of spin-orbit interactions. Measurements

were conducted on the zincblende III-V semiconductor alloy InxGa1−xAs. Samples consisted

of 500 nm epilayers of Si-doped (n-type) InGaAs on (001) GaAs substrates. Indium substi-

tution on all samples in this work are either x = 3 or 4 %, and the doping concentration

is n = 3 × 1016 cm−3. Strain, and strain relaxation, due to lattice mismatch results in an

anisotropic spin-orbit effective magnetic field in the (001) plane. This is measured systemat-

ically on samples patterned in a four-contact geometry allowing for arbitrary orientation of

the electron momentum in the (001) plane, as well as in an orthogonal dual channel geom-

etry allowing for orientation of the electron momentum along the supposed spin-orbit field

maximum and minimum.

Using optical pump-probe measurements, the spin-orbit field is mapped as a function of

the magnitude and orientation of the electron momentum (~k). In accordance with previous

expectations, we find that the spin-orbit field is linear in momentum, indicating that strain-
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induced spin-orbit interactions dominate over the ~k-cubic Dresselhaus interaction inherent to

zincblende semiconductors. However, we find that for bulk samples, the measured spin-orbit

splitting magnitude does not obey the previously expected mapping, with the maximum

deviated by as much as 30◦ from the [110] or [110] crystal axis. We attribute this to an

additional strain axis resulting from anisotropic strain relaxation for InGaAs grown beyond

the critical thickness. We also observe that for several samples taken from the same wafer,

the magnitude and orientation of the spin-orbit field is strongly inhomogeneous. Due to these

effects we point out the necessity to directly measure the spin-orbit effective magnetic field for

each momentum direction in each sample, rather than extrapolating based on measurements

along [110] and [110], as has been done in the past [26].

Steady-state and time-resolved current-induced spin polarization measurements are con-

ducted on the same samples and along the same orientations as the spin-orbit field mea-

surements so that a direct comparison can be made. We find, in accordance with previous

measurements and expectations, that the magnitude of the current-induced spin polarization

is proportional to the electron velocity and that spins are dynamically oriented along the

spin-orbit effective magnetic field. Contrary to previous predictions, however, we show that

the steady-state spin polarization deviates from the spin-orbit field direction based on the

orientation of the electron momentum. We build a theoretical model to explain this effect

using the framework of an anisotropic spin relaxation tensor with eigenvectors along the

[110], [110], and [001] crystal axes. We find the deviation of the steady-state spin polariza-

tion from the spin-orbit field to be zero for ~k ‖ [110], [110] and maximized for ~k ‖ [100]. The

model we present shows excellent agreement with experimental observations.

Finally, we show that, contrary to previous predictions, the magnitude of the current-

induced spin polarization is not proportional to the magnitude of spin-orbit splitting, but

rather the two obey a negative differential relationship. That is, for momentum along the

direction having the weakest spin-orbit splitting, the current-induced spin polarization is
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strongest, and vice versa. Furthermore, we show from measurements of different samples

taken from the same wafer, that the current-induced spin polarization does not have a simple

functional form with the spin-orbit splitting, but rather that the spin-orbit field anisotropy

plays an influential role. The mechanism that gives rise to this effect is investigated based

on a qualitative model presented in this work.

We point out the remarkable nature of our discovery. The momentum directions corre-

sponding to the current-induced spin polarization and spin-orbit field maxima are found to

be nearly orthogonal to each other. This effect has been exploited very recently by Stepanov,

et. al. [43] in which orthogonal pairs of gates were used to rapidly seed a net spin polarization

and then manipulate it using up to a π rotation pulse. This was achieved without the use of

any external magnetic fields. We propose that by incorporating such a scheme into a sample

exhibiting a spin helix state [44], one could take advantage of the weak modulation fields

required to rapidly switch between large current-induced spin polarizations when momentum

is nearly along the direction for which the spin-orbit field vanishes. Such a device would have

a far reaching impact on the advancement of semiconductor spintronics applications.

1.3 Organization

This dissertation is organized as follows. Chapter 2 builds the framework for the concepts of

electron spin and spin polarization. Lifted spin degeneracy, due to spatial inversion or time

reversal symmetry breaking, is investigated, and the time-dependent Bloch representation

of spin polarization is presented. The zincblende band structure, in particular for GaAs, is

investigated at the Γ point, and the concepts of parabolic bands and carrier effective masses

are introduced. Chapter 2 concludes with an introduction of the different types of spin-orbit

interactions, including their momentum dependence, and a spatial map of the anistotropic

spin-orbit effective magnetic field due to these interactions.
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Chapter 3 introduces the concepts of carrier scattering in semiconductors. The relevant

scattering mechanisms for electrons in the conduction band are investigated, and numerical

evaluations of the energy dependent scattering time, as well as the energy and momentum

relaxation times, are presented. Low field transport is discussed with an introduction of the

Boltzmann transport equation and numerical evaluation of the carrier mobility, which shows

excellent agreement with the measured values. From this we determine ionized impurity

and polar optical phonon scattering are the dominant scattering mechanisms for low and

high temperature, respectively, in our region of interest. Finally the relevant spin relaxation

mechanisms are introduced. We investigate the anisotropic nature of the D’yakonov-Perel

spin relaxation rate, which we will ultimately take to be the dominant mechanism.

Chapter 4 introduces the experimental paradigm used throughout the work presented in

this dissertation. Optical spin generation is presented, with a discussion of the relevant equip-

ment, and an introduction to the optical selection rules for zincblende semiconductors. We

then present the optical spin polarization detection routine, namely Faraday and Kerr rota-

tion. Practical aspects involving the measurement of Faraday/Kerr rotation are discussed in

reference to the balanced photodiode bridge and digital signal processing techniques. Time-

and spatially resolved measurement techniques are introduced, with a presentation of the

optical setup and relevant measurements of material properties. Chapter 4 is concluded with

a discussion of steady-state spin polarization measurements.

Chapter 5 is devoted to presenting our measurements of the spin-orbit effective magnetic

fields. The relevant sample design and experimental geometry is presented. Practical aspects

of the experimental setup are introduced, including the spatial overlap of the probe with the

pump-induced spin packet. The components of the spin-orbit effective magnetic field are

independently measured, from which the magnitude and orientation of the spin-orbit field

are deduced. Finally the anisotropic spin-orbit effective magnetic field is spatially mapped as

a function of electron momentum. This set of measurements is conducted for several samples
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from the same wafer, at which point we make note of the inhomogeneity of the spin-orbit

splitting.

Chapter 6 is devoted to presenting the measurements of current-induced spin polariza-

tion for direct comparison with the spin-orbit field measurements presented in Ch. 5. The

experimental geometry as it pertains to the sample design and spin polarization is presented.

We introduce a model that allows for anisotropic spin relaxation in the context of the Bloch

equation. The time-dependent and steady-state behavior, with and without precession, is

investigated numerically based on the anisotropic spin-relaxation rate. The experimental

results are then presented. The practical aspects, including dependence on laser power,

wavelength, and electric field modulation frequency, are investigated. Finally the current-

induced spin polarization is mapped as a function of the electron momentum and compared

to the measurements of the spin-orbit fields.

The observed negative differential relationship between current-induced spin polarization

and the spin-orbit splitting is discussed as it pertains to spin generation and manipulation

devices and ultimately as its usefulness as a tool for spintronics applications.
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Chapter 2

Spin Splitting in Semiconductors

2.1 Introduction

This chapter will be devoted to providing the framework for understanding spin-related

phenomena in semiconductors. It will be organized as follows. Sec. 2.2 will introduce the

concept of spin, defining what it means for spins to be polarized. This will be approached in

the presence of a constant and uniform magnetic field in terms of the Zeeman interaction,

and in the presence of an electron momentum (~k) dependent magnetic field in terms of spin-

orbit interactions. The concept of symmetry breaking will be discussed as it pertains to

Kramers degeneracy, and the Bloch representation of spin polarization will be introduced.

In Sec. 2.3, I will introduce the zincblende crystal structure, in particular gallium arsenide

(GaAs). I will build the state wave functions for conduction and valence band electrons at

the Γ (~k = 0) point, and expand around this point to show the parabolic nature of the bands

for low ~k. At this point, the concepts of electron and hole effective masses as well as the

nearly free electron will be introduced. Finally, in Sec. 2.4, I will discuss spin-orbit splitting

in the conduction band as it pertains directly to the measurements and analysis in Chs. 5

9



and 6. The spin-orbit effective magnetic field will be introduced and mapped as a function

of electron momentum ~k at which point the spin-orbit field anisotropy will be discussed.

2.2 Spin polarization

The term “spin” is used to describe the intrinsic angular momentum of a particle and the

magnetic moment it represents. The nomenclature is due to the original thought that the

magnetic moment observed was the result of a spinning charged particle [45]. Dirac showed

soon after, with the Dirac equation providing a relativistic treatment of the quantum me-

chanical electron, that the intrinsic angular momentum and magnetic moment were necessary

properties of the electron [46]. The Stern-Gerlach experiment [2] observed that silver atoms

passing through a magnetic field gradient would experience deflections based on the projec-

tion of the spin of the atom along this gradient, and that the deflection took on two discrete

values, rather than a continuum. This was important as it indicated the quantized nature

of particle spin projections.

Defining the spin quantum number as s, it was shown that the projection of the spin along

a particular axis of quantization, once measured, could only take on discrete values given by

ms = −s,−s+ 1, ..., s−1, s, where integer separation is required. The two-state spin system

is extremely common in modern physics experiments [47] and consists of manipulations of

spin 1/2 particles. An electron is such a particle with s = 1/2. It is typical to describe

“spin up” as the spin species which minimizes the interaction Hamiltonian and “spin down”

as that which maximizes it. With ensembles of spins, the term spin polarization is used to

describe the net alignment of carrier spins along such an axis of quantization and is usually

described by S = (n↑ − n↓)/(n↑ + n↓), with n↑(↓) the density of up (down) spins. In this

context the spin polarization falls in the range −1 ≤ S ≤ 1.
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2.2.1 Zeeman interaction

To see how the effect of an external magnetic field can give rise to a spin-splitting, consider

the most general, free space Hamiltonian in the presence of a magnetic field ~B [48]:

H =
~P 2

2m
=

1

2m

(
~p+ e ~A

)2

(2.1)

where ~P is the canonical (conserved) momentum, ~p is the quantum mechanical momentum

operator defined by ~p = −ih̄∇, e and m are the magnitudes of the electron charge and mass

respectively, and ~A is the vector potential defined by ~B = ∇× ~A. In this case we explicitly

take the electric (scalar) potential to be zero (i.e. in the absence of sources). To understand

the equilibrium behavior we will begin with the time-independent Schrödinger equation [49]

Hψ = εψ, which gives us

− h̄2

2m
∇2ψ − ieh̄

2m

[
∇ ·
(
~Aψ
)

+ ~A · ∇ψ
]

+
e2 ~A2

2m
ψ = εψ, (2.2)

where ε is the energy eigenvalue corresponding to the Hamiltonian H. In regards to the

vector potential ~A, the physical quantity is the magnetic field ~B. We are free to choose ~A

up to gauge transformation, as long as the proper magnetic field ~B = ∇ × ~A is recovered.

We will begin by using the Coulomb gauge given by ∇· ~A = 0. Then the first term in square

brackets becomes ∇ · ( ~Aψ) = (∇ · ~A)ψ + ~A · ∇ψ = ~A · ∇ψ. If we further assume that the

magnetic field is uniform in space, we can define the vector potential as

~A = −1

2

(
~r × ~B

)
(2.3)

with ~r the usual spatial vector. We can see this satisfies both our Coulomb gauge ∇ · ~A = 0

and the definition of the magnetic field ~B = ∇× ~A. Eq. 2.2 becomes
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− h̄2

2m
∇2ψ +

ieh̄

2m

(
~r × ~B

)
· ∇ψ +

e2

8m

(
~r × ~B

)2

ψ = εψ. (2.4)

The first term on the left is the normal kinetic term for a free electron, while the last term

on the left is generally neglected except in the case of extremely large magnetic fields [48].

Focusing on the middle term, we can use the familiar vector relation ~A · ~B × ~C = ~A× ~B · ~C

to show that (~r× ~B) · ∇ψ = − ~B · (~r×∇ψ). Remembering that ∇ = i~p/h̄, and defining the

angular momentum operator ~L using the relation ~L = ~r × ~p, Eq. 2.4 becomes

(
− h̄2

2m
∇2 +

e

2m
~L · ~B

)
ψ = εψ. (2.5)

The Zeeman Hamiltonian is [50]

H = H0 +HZ =
p2

2m
− ~µ · ~B (2.6)

with H0 the free electron Hamiltonian, HZ the Zeeman contribution, ~µ the angular momen-

tum vector defined by ~µ = −e~L/(2m) = −µB~L/h̄, and µB the Bohr magneton. The negative

sign in the definition of ~µ arises from the fact that the “current loop” that arises from the

angular momentum of an electron has the opposite sign due to its negative charge. For an

atomic system, ~µ will have both orbital angular momentum and spin components. In this

case we must include a spin term and the magnetic moment becomes ~µ = −µB(~L + g~S)/h̄,

where g is the electron g-factor and describes the strength with which the electron spin in-

teracts with magnetic fields. The fact that it is nearly two, rather than simply one as is the

case for the orbital angular momentum, requires a relativistic treatment and the use of the

Dirac equation [46]. The Hamiltonian becomes

H =
p2

2m
+
µB
h̄

(
~L+ g~S

)
· ~B (2.7)
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For the moment, the interaction between the spin and orbital angular momenta will be

ignored.

The total magnetic moment will in general be defined by the particular quantum numbers

describing the orbital (l) and spin (s) states of the system. For these quantum numbers we

will take the prescription that capital letters (L, S, J) correspond to the observable quantity

of interest, in this case the angular momentum, having units of h̄, and the corresponding

lowercase letters (l, s, j) their respective unitless quantum numbers, such that S = h̄s and

so on.

The total angular momentum is defined by J = L ± S with projections along the axis

of quantization mj = −j,−j + 1, ..., j − 1, j. In the simplest case of a discrete two-state

system, we take l = 0 (s-like orbital) and s = σ/2 for which mj = ms = ±1/2. Here σ are

the two-state Pauli matrices given by

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 (2.8)

As the magnetic field is the only direction of interest, we will choose its direction as

the axis of quantization ( ~B = Bẑ). The Schrödinger eigenvalue equation for the Zeeman

component of the Hamiltonian becomes

HZ |↑ (↓)〉 =
gµBB

2
σz |↑ (↓)〉 = ε↑(↓) |↑ (↓)〉 (2.9)

The energy eigenvalues are ε↑(↓) = ∓gµBB/2. The Zeeman splitting for a two-state

electron spin system is then

∆ = ε↓ − ε↑ = gµBB. (2.10)

The spin polarization that results from this spin splitting will depend on the distribution
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function of the electron. In equilibrium this will be described by the Fermi-Dirac distribution

function. In the case of a non-degenerate semiconductor (i.e. low doping concentrations and

high temperatures), this can usually be approximated by a Maxwell-Boltzmann distribution

function [51]. In non-equilibrium cases, the distribution function must be calculated using

other means, such as the Boltzmann transport equation. In general, to determine the average

value of some observable quantity a for a system described by distribution function f(ε), we

use the formula

〈a〉 =

∑
s asD (εs) f (εs)∑
sD (εs) f (εs)

(2.11)

where s defines the state of the system, with as, εs, and D(εs) the observable, energy eigen-

value, and corresponding density of states, respectively, for that particular state. Assuming

a constant density of states we can define the fractional occupation of a given state i as

ni =
f (εi)∑
s f (εs)

. (2.12)

In a two-state spin system we are interested in the polarization, defined by P = (n↑ −

n↓)/(n↑+ n↓). Using Eq. 2.12, the polarization is given in terms of the distribution function

and spin splitting by

P =
f (−∆/2)− f (∆/2)

f (−∆/2) + f (∆/2)
(2.13)

2.2.2 Spin-orbit interaction

The spin-orbit interaction stems from a concept of special relativity, that an electron with

velocity perpendicular to an electric field in the lab frame observes an additional magnetic

field in the rest frame of the electron. Using a prime notation to denote the vector quantities

in the rest frame of the electron, and the lack of a prime to denote the lab frame, we have
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the following set of relations for the electric ( ~E) and magnetic ( ~B) fields.

~E ′ = γ
(
~E + ~υ × ~B

)
− γ2

c2 (1 + γ)
~v
(
~v · ~E

)
(2.14)

~B′ = γ

(
~B − 1

c2
~υ × ~E

)
− γ2

c2 (1 + γ)
~v
(
~v · ~B

)
(2.15)

where γ = [1− (v/c)2]
−1/2

, υ is the electron velocity in the lab frame, and c is the speed of

light. We will begin by making a few assumptions. The first is that the electron velocity is

significantly less than the speed of light. For the purposes of this dissertation, υ/c ∼ 3×10−6.

In this case, we ignore terms of order (υ/c)2, in which case γ ∼ 1 and the last terms on the

right are ignored. Furthermore, for now, we will take there to be no magnetic field in the

lab frame, that is, ~B = 0. The fields in the electron rest frame become

~E ′ = ~E (2.16)

~B′ = − 1

c2
~υ × ~E =

1

mc2
~p×∇V (2.17)

where in the last step, I used the electron momentum ~p = m~v and the definition of the

electric potential ~E = −∇V . Eq. 2.17 is the spin-orbit effective magnetic field seen from the

rest frame of the electron. We use the term “orbit” because such a spin-orbit interaction is

typical of the fine structure splitting in atoms, for which an electron is taken to orbit around

a nucleus. For example, in Hydrogen, using a potential gradient of

~E =
e

4πε0

~r

r3
(2.18)

the spin-orbit magnetic field is
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~BSO,Hydrogen =
αh̄

emc

~L

r3
(2.19)

with the fine structure constant defined by α = e2/(4πε0h̄c) and the orbital angular momen-

tum ~L = ~r × ~p. Analogous to the Zeeman splitting, we can define a spin-orbit Hamiltonian

as HSO = −~µ · ~BSO = (gµB/h̄)~S · ~BSO. In this case, we explicitly only include the spin

angular momentum in the definition of µ. This is because the spin-orbit magnetic field is

defined in the rest frame of the electron, in which there is no orbital angular momentum.

The spin-orbit Hamiltonian is

HSO,Hydrogen =
1

2

gh̄α

2m2c

~S · ~L
r3

. (2.20)

The factor of 1/2 arises due to relativistic effects and taking a proper Lorentz transform to

the non-rotating electron rest frame. This introduces an additional factor of g − 1 and is

known as Thomas precession [52].

For semiconductors, there is no “orbital” angular momentum in the strictly spherically

symmetric sense, as with hydrogen, yet using Eq. 2.17 we see the analogous definition of

linear momentum in a transverse electric potential gradient. The general form of the spin-

orbit Hamiltonian in semiconductors is

HSO,Semiconductor =
h̄

4m∗2c2
(∇V × ~p) · ~σ (2.21)

where m∗ is the effective mass (Sec. 2.3.2) and ~σ = ~S/(2h̄) are the Pauli matrices.

2.2.3 Kramers degeneracy

In the last two sections, we stumbled upon the breaking of Kramer’s degeneracy. Here it will

be explained in a little more detail. For an in-depth discussion consult Ref. [53]. In general we
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can define the time reversal operator Θ acting on a particular quantum mechanical operator

A by the following

ΘAΘ−1 = ±A (2.22)

where the +A(−A) corresponds to an operator that is even (odd) under time reversal sym-

metry. It is, of course, easy to envision which operators are even or odd. For example, the

position operator is even under time reversal, while momentum and angular momentum are

odd. The time reversal operator is antiunitary, with {Θ, i} = Θi+ iΘ = 0. For an arbitrary

electron state defined by angular momentum quantum numbers |j,mj〉, the time reversal

operator acting on the state gives [53]

Θ |j,mj 〉 = i2mj |j,−mj 〉. (2.23)

We can see the time reversal operator changes the sign of the angular momentum of the

system. Using the above equation and the antiunitary property of the time reversal operator,

we can build the following set of operations for systems having integer and half integer spin:

Θ2 |j,mj〉 = |j,mj〉 integer j (2.24)

Θ2 |j,mj〉 = − |j,mj〉 half integer j. (2.25)

For a Hamiltonian that is even under time reversal (i.e. the Hamiltonian commutes with the

time reversal operator) it can be shown that if a state |n〉 is an eigenstate of the Hamiltonian

such that H |n〉 = εn |n〉 then Θ |n〉 is also an eigenstate of H, where |n〉 and Θ |n〉 refer to

the same state if and only if the following is true:

Θ2 |n〉 = |n〉 (2.26)
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Figure 2.1: Spin splitting: Energy splitting for constant (a) and k-linear (b) spin-splitting
terms. Time reversal symmetry is broken in (a) while spatial inversion symmetry is broken in (b).

But from Eqs. 2.24 and 2.25 this can only be true if j is an integer. This result is the definition

of Kramer’s degeneracy [54, 55]; for half integer spin systems that have a Hamiltonian that

is even under time reversal, there are two distinct and degenerate states |n〉 and Θ |n〉. If

we include a spatial inversion symmetry argument as well, we have the following pair of

equations defining the degeneracy of spin states

ε↑ (~p) = ε↑ (−~p) spatial inversion symmetry

ε↑ (−~p) = ε↓ (~p) time reversal symmetry
(2.27)

We can see that with combined time reversal and spatial inversion symmetry, the spin states

of a spin 1/2 system are two-fold degenerate (i.e. ε↑(~p) = ε↓(~p)). However, by breaking either

symmetry the spin degeneracy is lifted. It is common to view the inclusion of an external

magnetic field (i.e. Zeeman splitting) as breaking of time reversal symmetry. However, the

spin degeneracy can be lifted by breaking spatial inversion symmetry as well. This is common

in semiconductor systems lacking a spatial inversion centre, such as zincblende structures.

In this case, a gradient in the periodic lattice potential acts as an effective magnetic field,

as described by Eq. 2.21, and the degeneracy is lifted.
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Fig. 2.1 displays the energy dispersion for a parabolic Hamiltonian lacking spin degener-

acy. The parabolic term is simply the energy for a free electron, given by ε0 = h̄2k2/(2m∗),

where here we use ~k to denote the electron momentum, defined by ~p = h̄~k. Panel (a) shows a

spin-splitting that is a constant with respect to k, such as with the application of an external

magnetic field. We see that spatial inversion symmetry is maintained, ε↑(k) = ε↑(−k), but

time reversal symmetry is broken, ε↑(k) 6= ε↓(−k).

For semiconductor systems, it is common to have a spin-orbit splitting that is linear in

the electron momentum. This is depicted in Fig. 2.1(b). We notice that the sum of the

two energy states recovers the free electron energy, while the difference gives the spin-orbit

splitting. This corresponds to a splitting in k-space between the up and down spin bands.

Notice that time reversal symmetry is maintained, ε↑(k) = ε↓(−k), while spatial inversion

symmetry is broken, ε↑(k) 6= ε↑(−k). How spatial inversion asymmetry gives rise to a spin-

orbit splitting for specific cases will be discussed in Sec. 2.4. It is worth pointing out that

it is also common to have spin-orbit splitting that is cubic in momentum, in which case the

energy dispersion for each spin can no longer be parabolic.

2.2.4 The Bloch sphere

We derived in Sec. 2.2.1 the form of the Hamiltonian in the presence of an external magnetic

field as

H = H0 +HZ =
p2

2m
+
gµB

2
~σ · ~B (2.28)

where here we have restricted ourselves to the two-state spin system (i.e. in the absence of

orbital angular momentum and the fine structure). According to the Heisenberg picture of

quantum mechanics, we can cast the time dependence of any operator A by the following

prescription:
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∂A

∂t
= − i

h̄
[A,H] (2.29)

where [, ] denotes the commutator given by [A,H] = AH−HA. In general, we are interested

in the time dependence of the spin system given by

∂si
∂t

=
1

2

∂σi
∂t

=
−i
2h̄

[σi, H] (2.30)

We note that the Pauli matrices commute with functions of the momentum operator ([σi, f(p)] =

0), and recall the commutation relations for the Pauli matrices given by [σi, σj] = 2iσkεijk.

In this case, the commutator becomes

[σi, H] =
∑
j

gµBBj

2
[σi, σj] = i

∑
j,k

gµBBjσkεijk. (2.31)

with εijk = +(−)1 for even (odd) permutations of indices and 0 for any repeated indices.

Component-wise, Eq. 2.31 becomes

[σx, H] = igµB (Byσz −Bzσy) (2.32)

with the others given by an even permutation of indices. We recognize Eq. 2.32 as the general

form for the cross product. With the definition of the Larmor precession frequency given by

Ωi = gµBBi/h̄, the time dependence of the spin operator is described by

∂~S

∂t
= ~Ω× ~S. (2.33)

Using the vectorial nature of spin, it is common to describe the spin polarization of the

electron system, be it a single spin or an ensemble, by using the Bloch sphere depicted

in Fig 2.2. In this case, the axis of energy quantization is taken along the ẑ axis with

20



Figure 2.2: Bloch sphere representation of spin polarization: Spin polarization ~S is de-
picted on the Bloch sphere. Energy is quantized along the ẑ axis, with the splitting between up
and down spins described by Eq. 2.10. Spin alignment in the xy plane is constructed from a linear
superposition of up and down spin states.

eigenvalues of ±1 for eigenstates |↑〉 and |↓〉 respectively. The phase of the spin is described

by the orientation of the ~S in the xy plane. The unit vectors x̂ and ŷ are linear superpositions

of |↑〉 and |↓〉 and are unit eigenvectors of the σx and σy Pauli matrices respectively.

Eq. 2.33 describes the time dependence of a single electron spin in the presence of a

magnetic field in which the projection of the spin along the magnetic field is constant. In

other words, energy is conserved. If the electron-magnetic field system were truly isolated

and energy was never allowed to leave, this equation would be sufficient. In general, however,

scattering processes will occur that allow the electron to lose or gain energy and therefore a

diagonal component is necessary. This is most easily understood in the context of ensembles

of electron spins. We consider the net spin polarization along the axis of quantization given
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by Sz = n↑−n↓, with n↑(↓) the fractional occupation of up (down) spins. The time dependence

of the up spins is described by [56]

∂n↑
∂t

= − n↑
2T1

+
n↓
2T1

(2.34)

where 1/2T1 is the transition rate between up and down spins, assumed to be spin-independent.

To understand this form, we consider the first term on the right as the transition of up to

down spins weighted by the fractional occupation of up spins, n↑. The second term on the

right conversely describes the transition of down to up spins with the appropriate weighting

factor n↓. Here it is assumed the equilibrium state is such that n↑ = n↓. Conservation of

spins in this picture requires the following.

∂n↓
∂t

= −∂n↑
∂t

. (2.35)

Finally, we phenomenologically allow the equilibrium spin polarization to reach a value Seq

which is, in general, not zero in the presence of a magnetic field. In this case, the time

dependent spin polarization along the quantization (magnetic field) axis is

∂Sz
∂t

= − 1

T1

(Sz − Seq) . (2.36)

Here, we have taken explicitly that Ωx = Ωy = 0. The solution to this equation is an

exponential decay, where T1 is defined as the longitudinal spin relaxation time and defines

the characteristic time scale over which the energy of the system relaxes to the equilibrium

value.

In addition to the longitudinal relaxation time, there is a characteristic time scale over

which an electron spin will lose its phase, or coherence information. To understand this con-

cept, consider a single spin initially polarized in the xy plane, such that Sz = 0 in the presence

of an external magnetic field ~B = Bẑ. In this case, the “in-plane” (i.e. perpendicular to ẑ)
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components of the spin are given by

Sx(t) = Sx0 cos (Ωt)− Sy0 sin (Ωt) (2.37)

Sy(t) = Sx0 sin (Ωt) + Sy0 cos (Ωt) (2.38)

We can apply a unitary rotation R on the basis in the xy plane, which is equivalent to a

rotation of the spin vector in the opposite direction. Denoting the rotated basis with a prime

notation, and choosing the basis to rotate at the Larmor precession frequency, we achieve

the following definition of the spin polarization:


Sx′(t)

Sy′(t)

Sz′(t)

 = RT


Sx(t)

Sy(t)

0

 =


cos(Ωt) sin(Ωt) 0

− sin(Ωt) cos(Ωt) 0

0 0 1



Sx0 cos (Ωt)− Sy0 sin (Ωt)

Sx0 sin (Ωt) + Sy0 cos (Ωt)

0


(2.39)

The solution in the rotating frame is


Sx′(t)

Sy′(t)

Sz′(t)

 =


Sx0

Sy0

0

. (2.40)

This isn’t a particularly surprising result. For a spin initially polarized in the xy plane, in

a basis rotating at the Larmor precession frequency, the spin appears motionless. In the

same sense that the longitudinal spin relaxation time T1 describes the characteristic time

over which the spin system will relax to its equilibrium state, we now define a transverse

spin coherence time T2 that describes the rate at which a spin will lose its particular phase

information, that is, the rate at which a spin will no longer be pointing along its original
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direction in the rotating frame. In this system, we make the simplifying assumption that T2

is the same for the x̂ and ŷ directions, in which case the time dependence of the in-plane

spin polarization is given by

∂Sx′(y′)
∂t

= − 1

T2

Sx′(y′). (2.41)

An added complication in the transverse coherence time is the inclusion of inhomogeneity

in the spin system. For example, for an ensemble of spins, there is, in general, an inhomo-

geneity in the electron g-factor centered around the average value. While each spin may

appear stationary in its own rotating frame, because of the inhomogeneous g-factor in the

Larmor precession frequency, each spin will have a different rotating frame, and the measured

transverse coherence time will be reduced. This time scale is known as the inhomogeneous

transverse spin coherence time, or the inhomogeneous spin dephasing time T ∗2 . The inhomo-

geneous transverse coherence time is necessarily less than the transverse coherence time (i.e.

T ∗2 < T2) and is, in general, the quantity that is experimentally measured. To determine

the transverse spin coherence time T2, one would usually employ a method to rephase an

ensemble of spins, such as a Hahn echo [57].

The Bloch equation, rotated back to the stationary basis, is given in matrix form by

∂

∂t


Sx

Sy

Sz

 =


− 1
T ∗2
−Ω 0

Ω − 1
T ∗2

0

0 0 − 1
T1



Sx

Sy

Sz

+


0

0

1
T1
Seq

 (2.42)

where again we explicitly take Ωx = Ωy = 0. This is in a slightly limiting form, though it

can be generalized to the following vector form

∂~S

∂t
= −

↔
Γ · ~S + ~Ω× ~S + Γeff ~Seq (2.43)
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where now we allow ~Ω to have components along all axes. This is particularly useful for

situations in which it is no longer appropriate to take the axis of quantization along the

direction of an external magnetic field, as we will see in Ch. 6. Furthermore, it will be shown

that the inhomogeneous transverse spin coherence time T ∗2 will not necessarily be isotropic,

in which case we define
↔
Γ as the spin relaxation rate tensor (behaving like Γ ∼ T−1) that,

in general, has three orthogonal eigenvectors with unique eigenvalues. We finally describe

the equilibrium spin polarization as a vector ~Seq, with effective relaxation rate Γeff , which

we point out need not be along an eigenvector of the spin relaxation rate. Eq. 2.43 will be

the form of the Bloch equation used throughout this work.

2.3 GaAs band structure

The semiconductor on which measurements are taken is InGaAs, having the same zincblende

structure as GaAs in which the gallium and arsenic structures form two interpenetrating face-

centered cubic lattices separated by a
√

3/4 along the [111] crystal axis, where a is the lattice

parameter. It has the same structure as the diamond lattice (e.g. silicon), forming tetrahedral

bonds, except with alternating gallium and arsenic atoms, as shown in Fig. 2.3(a). It is a

member of the Td point group and is a common crystal structure for III-V semiconductors.

Fig. 2.3(b) depicts the first Brillouin zone in reciprocal (k) space [58]. The conduction

band exhibits local minima at the center of the Bruiloiun zone (Γ point) for which ~k = 0,

and along its edges at points of high symmetry (L and X points). There are other local band

minima, but these are sufficient for our purposes. For direct band gap semiconductors, such

as GaAs, the minimum of the conduction band is located at the Γ point for which the band

is spherically symmetric. That is, the energy is the same for ~k along x̂, ŷ, and ẑ very near

k = 0. For the indirect band gap semiconductors silicon and germanium, the conduction

band minima are located at the X and L points respectively and have ellipsoidal constant
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Figure 2.3: Zincblende structure and first Brilloiun zone: (a) Zincblende structure for
GaAs. Gallium and arsenic (maize and blue spheres respectively) alternate in a tetrahedral bond.
(b) First Bruilloiun zone for tetrahedral crystals. Γ valley is spherically symmetric and centered at
k = 0. Eight identical L valleys (red) and six identical X valleys (blue) are centered at the edge of
the Bruilloiun zone and are, in general, ellipsoidal.

energy surfaces. An advantage to zincblende semiconductors over silicon and germanium is

that they have a direct band gap at the Γ point and are therefore optically accessible without

the need of phonon assisted transitions, as will be discussed in Sec. 4.1.3.

2.3.1 The Γ point

The valence electron configurations for gallium and arsenic are 4s24p and 4s24p3. For the

isolated atoms, the s orbitals have lower energy than the p orbitals. With tetrahedral

bonding, however, we observe a hybridized 4s4p3 shell for each [59], in which case each the

s and p orbitals are split into bonding and antibonding states. The bonding states typically

have lower energy than the antibonding, and we see the bonding p orbital pushed down to a

lower energy than the raised antibonding s orbital. The result is that the valence electrons

occupy the bonding s and p orbitals in a polar bond, while the antibonding s orbital is

held above the bonding p orbital by an energy splitting defined as the band gap (Eg). The

representation of the s and p orbitals at the Γ point are given by the Γ6 and Γ15 double
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groups, respectively [60], where the irreducible representation Γ6 is two-fold degenerate, and

Γ15 can be separated into the irreducible representations Γ7 and Γ8, which are two- and

four-fold degenerate, respectively. Γ8 corresponds to the heavy-hole and light-hole states,

which split in energy away from the Γ point, and Γ7 corresponds to the split-off band, which

is separated in energy from Γ8 by the valence band spin-orbit splitting ∆0. One typically

refers to the bonding p orbital described by Γ15 as the valence band and the antibonding s

orbital described by Γ6 as the conduction band. We point out that the antibonding p and

bonding s orbitals at the Gamma point are far separated above and below the conduction

and valence bands, respectively. For more information about the double and single group

symmetries, see Ref. [61].

From the Bloch theorem, for an electron in a periodic potential, we can define the electron

wave function as having the form [62]

ψn,~k (~r) = ei
~k·~run,~k (~r) (2.44)

where un,~k(~r) is a periodic wave function matching the periodicity of the crystal such that

un,~k(~r) = un,~k(~r + ~R) (2.45)

with ~R a vector pointing between identical points in two different unit cells of the lattice.

That is ~R =
∑3

i=1mi~ai, where mi are integers and ~ai the three primitive vectors of the

Bravais lattice. For cubic semiconductors, such as diamond and zincblende, the ~ai are all

equal in magnitude and orthogonal with a = |~a| the lattice parameter. The subscript n

denotes the particular state to which the wave function un,~k refers. At the Γ point, we take

~k = 0, in which case the electron wave function is approximated by ψn,0 (~r) = un,0 (~r) and

matches the periodicity of the lattice. With our knowledge of the s-like behavior of the

conduction band and the p-like behavior of the valence band, we choose three valence band
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states (corresponding to ml = 0,±1), denoted by |X〉, |Y 〉, and |Z〉 and one conduction band

state (corresponding to ml = 0), denoted by |1〉. The valence and conduction band states

have the same symmetry as the Γ15 and Γ6 double groups (i.e. T1 and A1 point symmetries)

respectively [61]. We will see that the states |X〉, |Y 〉, and |Z〉 behave similarly to the

corresponding spatial coordinate variables near the Γ point, though we point out that they

necessarily obey a cubic, rather than spherical symmetry.

Nonetheless, we find that such a suitable choice for the form of these states, namely the

nearly free electron wave functions [60], allows us to build the familiar angular momentum

eigenvalue equations:

Lz |1〉 = 0 |1〉 , L2 |1〉 = 0 |1〉
Lz |Z〉 = 0 |Z〉 , L2 |Z〉 = 2h̄2 |Z〉
Lz |+〉 = Lz

(
− |X〉+i|Y 〉√

2

)
= h̄ |+〉 , L2 |+〉 = 2h̄2 |+〉

Lz |−〉 = Lz

(
|X〉−i|Y 〉√

2

)
= −h̄ |−〉 , L2 |−〉 = 2h̄2 |−〉

I have made the definitions for |+〉 and |−〉 in accordance with Ref. [60]. In this case, the

angular momentum operator L is given by the form of the spin-orbit splitting Hamiltonian

in Eq. 2.21, namely HSO = λ~L · ~S with ~L ∝ ∇V × ~p. We can see from the above eigenvalue

equations that these states map exactly to the angular momentum eigenstates described

by Lz |l,ml〉 = mlh̄ |l,ml〉 and L2 |l,ml〉 = l(l + 1)h̄2 |l,ml〉. In analogy to the spherically

symmetric spin-orbit Hamiltonian, we can build our total angular momentum states |j,mj〉

from linear superpositions of the states |l,ml〉 ⊗ |ms〉 where it is implied for the electron

s = 1/2. The conduction band at the Γ point is simple. As l = 0 (and therefore ml = 0),

there is no spin-orbit splitting and the |j,mj〉 states are defined trivially as

|j = 1/2,mj = ±1/2〉 = |1〉 ⊗ |↑ (↓)〉 . (2.46)

Here I have made the familiar definition |ms = ±1/2〉 ≡ |↑ (↓)〉, and by inspection of the
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eigenvalue equations above, |1〉 ⇔ |l = 0,ml = 0〉.

The valence band at the Γ point can be built without much difficulty. Due to spin-orbit

splitting, j can be allowed integer values ranging between j = l ± s, each with a discrete

energy. With l = 1 and s = 1/2, we have j = 1/2, 3/2, with j = 3/2 the heavy-hole/light-hole

band and j = 1/2 the split-off band. The energy splitting between the heavy-hole/light-

hole and split-off bands is denoted by ∆0 and is commonly referred to as the valence band

spin-orbit splitting.

We first build the heavy-hole/light-hole bands by noticing the lowest angular momentum

state (|j = 3/2,mj = −3/2〉) is as trivial as the conduction band and is given simply by

|j = 3/2,mj = −3/2〉 = |−〉 ⊗ |↓〉 (2.47)

as this is the only combination that gives the proper angular momentum mj = −3/2. Again,

from inspection of the eigenvalue equations, I have made the relation |−〉 ⇔ |l = 1,ml = −1〉.

The mj = −1/2 state is built using the angular momentum raising operator:

J+ |j = 3/2,mj = −3/2〉 = (L+ + S+) |−〉 ⊗ |↓〉 (2.48)

√
3 |j = 3/2,mj = −1/2〉 =

√
2 |Z〉 ⊗ |↓〉+ |−〉 ⊗ |↑〉 (2.49)

|j = 3/2,mj = −1/2〉 =
1√
3

(√
2 |Z〉 ⊗ |↓〉+ |−〉 ⊗ |↑〉

)
(2.50)

where the raising operator is, in general, given by J+ |mj〉 =
√
j(j + 1)−mj(mj + 1) |mj + 1〉.

For a derivation of the raising operator see [48]. We continue this procedure until we reach

the highest angular momentum state in the heavy-hole/light-hole band. The final step is

to determine the split-off band states. We note that the |j = 1/2,mj = −1/2〉 state is built

from a linear superposition of the same states as |j = 3/2,mj = −1/2〉, as they give the same

overall z-projection of the angular momentum. However, they have different eigenvalues of
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the J2 operator and must therefore be orthogonal, that is

〈j = 1/2,mj = −1/2|j = 3/2,mj = −1/2〉 = 0. (2.51)

By inspection of Eq. 2.50, we can define the spin down split-off band state as

|j = 1/2,mj = −1/2〉 =
1√
3

(√
2 |−〉 ⊗ |↑〉 − |Z〉 ⊗ |↓〉

)
. (2.52)

The coefficients are chosen in this way to satisfy orthonormality, while the state is defined up

to an arbitrary overall phase factor. The angular momentum raising operator is used from

here to determine the spin up split-off band state. Table 2.1 below summarizes the angular

momentum states in terms of the Bloch states at the Γ point for GaAs. The coefficients will

be used to build the optical selection rules in Ch. 4.

Conduction |j = 1/2,mj = 1/2〉 |1〉 ⊗ |↑〉 ∼ l=0,ml=0
s=1/2,ms=1/2

Band (Γ6) |j = 1/2,mj = −1/2〉 |1〉 ⊗ |↓〉 ∼ l=0,ml=0
s=1/2,ms=−1/2

HH Valence |j = 3/2,mj = 3/2〉 − 1√
2

(|X〉+ i |Y 〉)⊗ |↑〉 ∼ l=1,ml=1
s=1/2,ms=1/2

Band (Γ8) |j = 3/2,mj = −3/2〉 1√
2

(|X〉 − i |Y 〉)⊗ |↓〉 ∼ l=1,ml=−1
s=1/2,ms=−1/2

LH Valence |j = 3/2,mj = 1/2〉 1√
6

[2 |Z〉 ⊗ |↑〉 − (|X〉+ i |Y 〉)⊗ |↓〉] ∼ l=1,ml=0,1
s=1/2,ms=±1/2

Band (Γ8) |j = 3/2,mj = −1/2〉 1√
6

[2 |Z〉 ⊗ |↓〉+ (|X〉 − i |Y 〉)⊗ |↑〉] ∼ l=1,ml=0,−1
s=1/2,ms=∓1/2

SO Valence |j = 1/2,mj = 1/2〉 1√
3

[(|X〉+ i |Y 〉)⊗ |↓〉+ |Z〉 ⊗ |↑〉] ∼ l=1,ml=1,0
s=1/2,ms=∓1/2

Band (Γ7) |j = 1/2,mj = −1/2〉 1√
3

[(|X〉 − i |Y 〉)⊗ |↑〉 − |Z〉 ⊗ |↓〉] ∼ l=1,ml=−1,0
s=1/2,ms=±1/2

Table 2.1: Angular momentum states at the Γ point for GaAs: The left center column
lists the total angular momentum states, while the right center column lists their constructions
from the orthonormal Bloch states. The right column lists the analogous spin and orbital angular
momentum states for a spherically symmetric potential.
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2.3.2 Parabolic bands and effective mass

The band diagram near the Γ point, but with ~k 6= 0, can be built using ~k · ~p theory. Going

back to the Bloch wave function (Eq. 2.44), Schrödinger’s equation for the states un,~k(~r) near

the Γ point becomes

(
p2

2m
+
h̄~k · ~p
m

+
h̄2k2

2m
+ V (~r)

)
un,~k (~r) = εn,~kun,~k (~r) (2.53)

where it is understood that V (~r) represents the periodic lattice potential and the un,~k(~r) obey

the periodicity described by Eq. 2.45. The solutions to εn,0 and un,0(~r) give the energies and

Bloch states at the Γ point (for which ~k = 0). Assuming the states and energies are known,

expansion around this point is achieved using perturbation theory, treating the components

involving ~k as small perturbations. For the conduction band, this is straightforward as

nondegenerate perturbation theory applies. We take a local minimum in the conduction

band to occur at the Γ point, for which the energy is expanded to second order as [60]

εc,k = εc,0 +
h̄2k2

2m
+
h̄2

m2

∑
n6=c

∣∣∣〈un,0|~k · ~p |uc,0〉∣∣∣2
εc − εn

(2.54)

εc,k = εc,0 +
h̄2k2

2m∗
(2.55)

where the conduction band electron effective mass has been defined as

1

m∗
=

1

m
+

2

m2k2

∑
n6=c

∣∣∣〈un,0|~k · ~p |uc,0〉∣∣∣2
εc − εn

(2.56)

Fig. 2.4(left) shows a schematic of the band diagram near the Γ point. As this is the point

at which optical transitions occur, and doping levels for the samples studied are relatively
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2.5 Band Structure Calculations by Pseudopotential Methods 65
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Fig. 2.14. Electronic band structure of GaAs calculated by the pseudopotential technique.
The energy scale and notation (double group) are similar to those for Fig. 2.13 [Ref. 2.8,
p. 103]
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Figure 2.4: GaAs band diagram: (left) Band diagram near the Γ point shows a nearly parabolic
band energy dispersion. The split off band (SO) separation is increased in the figure for clarity.
(right) Full band diagram for GaAs along directions of high symmetry using the pseudopotential
method. The figure is reproduced from Ref. [60] with permission from Springer-Verlag under License
No. 3374190701099.

low (1016 - 1017 cm−3), we treat conduction band electrons to be well described as free with

an effective mass.

The effective masses for the valence bands are found in a similar form, though degenerate

perturbation theory must be used. We notice that the effective masses in the valence band

are negative, in which case the energy is maximized for ~k = 0. In this case, when a single

electron is removed from the valence band, the gap left, which is typically called a hole, will

move to the Γ point at the top of the valence band. As such, we will refer to a valence band

effective mass as a hole effective mass. We note that the light-hole band has a steeper band

dispersion than that of the heavy-hole, corresponding to a lighter hole effective mass (hence

the heavy-hole/light-hole nomenclature). The difference in effective masses for these states

stems from the values of the matrix elements 〈un′,~k|~k · ~p |un,~k〉.

It was determined both numerically and experimentally that for ternary compounds, such

as InxGa1−xAs, the effective masses, as well as relevant energy splittings, can be approxi-
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Parameter GaAs InAs C In0.04Ga0.96As
Eg 1.519 0.417 0.477 1.457
∆0 0.341 0.39 0.15 0.34
m∗ 0.067 0.026 0.0091 0.065
m∗HH 0.35 0.33 -0.145 0.35
m∗LH 0.090 0.027 0.0202 0.087
m∗SO 0.172 0.14 0 0.17

Table 2.2: InGaAs material parameters: Band structure parameters near the Γ point for
GaAs, InAs, and In0.04Ga0.96As as well as relevant bowing parameters. Energies Eg and ∆0 are in
units of eV, while effective masses m∗ are in units of the free electron mass m0.

mated as a linear interpolation of such a parameter for each of the pure binary compounds,

with a bowing parameter [63]. In this way the effective mass can be described in quadratic

form using the formula

m∗ (InxGa1−xAs) = xm∗ (InAs) + (1− x)m∗ (GaAs)− Cx (1− x) (2.57)

where C is the bowing parameter determined both numerically and from experiment, and

m∗(...) represents the effective mass of the structure in parentheses. Table 2.2 shows the

band gap (Eg), valence band spin-orbit splitting (∆0), and the conduction and valence band

effective masses, as well the corresponding bowing parameters (C) for InAs, GaAs, and

In0.04Ga0.96As as this is the structure on which measurements are taken. These parameters

are approximated for low temperature.

The band diagram away from the Γ point can be achieved using the pseudopotential

technique [64] and is shown for GaAs in Fig. 2.4(right). In this case, the bands are neither

parabolic nor spherically symmetric. In fact, we point out that the parabolicity of the light-

hole valence band is lost very rapidly as a function of k. This is a result of mixing between the

light-hole and split-off band states [65]. Finally, we also point out that while the conduction

band is spherically symmetric near the Γ point, the valence band obeys an obvious and

strong cubic symmetry, with band dispersion differing even for momentum along different
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points of high symmetry (i.e. ~k ‖ [100], [110], and [111]). While it is sometimes suitable to

take an average of the hole effective masses over all ~k directions as an approximation very

near the Γ point [60], it is necessary to point out that the heavy-hole/light-hole valence band

effective masses have a directional dependence which can be described by the Kohn-Luttinger

parameters [66]. In table 2.2, the valence band effective masses are shown only for ~k ‖ [100].

2.4 Spin-orbit splitting in the conduction band

Our applications involve n-type doped InGaAs in which both equilibrium and transient

behavior is measured on electron spins in the conduction band. As such, it is necessary to

discuss how spatial inversion symmetry breaking leads to a spin splitting in the conduction

band. While this effect also occurs in the valence band, leading to a splitting away from the

Γ point, we treat this additional interaction as negligible for the time being. As before, we

treat the spin-orbit interaction as having the form

HSO =
h̄2

4m∗2c2

(
∇V × ~k

)
· ~σ (2.58)

in which case we will treat ~k as the electron momentum described by ~p = h̄~k, and ~σ as

describing the vector electron spin.

2.4.1 Bychov-Rashba spin-orbit field

The Bychov-Rashba spin-orbit splitting (frequently called simply the Rashba spin-orbit split-

ting) arises from the inherent nonzero potential gradient present in heterostructures along

the growth axis. Consider the transition from material A to material B (Fig. 2.5(a)) where

the interface represents a location of spatial inversion symmetry breaking along the growth

axis, resulting in lifted degeneracy in the spin state as discussed in Sec. 2.2.3. This type
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Figure 2.5: Rashba spin-orbit effective magnetic field: (a) Heterostructure stacking results
in structural inversion asymmetry (SIA). Internal or external electric fields can be used to generate
two-dimensional electron gases at the interfaces. (b) Rashba spin-orbit effective magnetic field is
isotropic and perpendicular to momentum in the plane orthogonal to the growth axis.

of spin-orbit splitting is typically referred to as structural inversion asymmetry (SIA). The

resulting spin-orbit Hamiltonian is traditionally given by [10]

HR = α
(
~σ × ~k

)
· n̂ (2.59)

where n̂ is the unit vector along the axis of broken symmetry and α is the Rashba coefficient,

proportional to the gradient in the electric potential, i.e. the electric field, at the band

interface.

To intuitively understand the Rashba spin-orbit Hamiltonian, consider an electron in a

potential well at the heterostructure interface confined to travel in the plane perpendicular

to the growth axis. From the rest frame of the electron, the electric field contained in

the Rashba coefficient α will give rise to an in-plane effective magnetic field transverse to

the electron momentum. With the analogy of a Zeeman-type spin Hamiltonian given by

HZ = gµB~σ · ~Beff , we can then define a Rashba spin-orbit effective magnetic field as
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~BR =
α

gµB
(kyx̂− kxŷ) . (2.60)

Fig. 2.5(b) depicts the Rashba spin-orbit effective magnetic field as a function of electron

momentum ~k; it is found to be linear in momentum, isotropic, and is always perpendicular

to ~k.

One might argue that a bound electron should observe no net electric field. In truth,

as pointed out in Ref. [67], the electric field experienced by the electron along the growth

direction averages to very nearly zero, and predicts a spin-orbit splitting in the conduction

band orders of magnitude smaller than that measured experimentally. A sufficient model

explained this effect by expanding the 2×2 conduction band Hamiltonian to include interac-

tions with not only the Γ7 and Γ8 valence bands, but also with the higher energy Γ7 and Γ8

antibonding p orbitals above the conduction band. This 14×14 Hamiltonian was treated in a

five-level degenerate perturbation theory using the ~k ·~p approach. The theoretical framework

was in good agreement with previously observed experimental results.

It was finally pointed out that inclusion of an external electric field, in the form of a

top gate as in Ref. [68], does not actually serve to increase the electric field experienced

by the electron, which still must be near zero for the bound state. Rather, the top gate

serves to distort the symmetry of the electron wave function in the quantum well, thereby

causing an enhancement of the effect. It was found that while the Rashba effect is strong at

heterostructure interfaces, it falls off very rapidly for electrons that are not near the interface

and is therefore expected to be the dominant effect only in tightly confined geometries such

as quantum wells and two-dimensional electron gases (2DEGs). It plays less of a role in bulk

semiconductors.
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2.4.2 Dresselhaus spin-orbit field

The Dresselhaus spin-orbit splitting is a result of bulk inversion asymmetry in zincblende

semiconductors. At the center point between gallium and arsenic atoms (Fig. 2.6(a)), there

is a nonzero potential gradient pointing between the two atoms. Each atom is surrounded by

four such points of broken inversion symmetry in a tetrahedral bond. While the Dresselhaus

spin-orbit splitting can be derived using the Td group basis functions [9], it can be useful to

directly investigate the symmetry from a geometric standpoint.

From the ∇V × ~k term in the spin-orbit splitting, we know that momentum along or

against the direction of the potential gradient results in a vanishing spin splitting. In

Fig. 2.6(a) this corresponds to 8 directions for which the Dresselhaus spin-orbit splitting

vanishes given by permutations of ±1 along each of the principal crystal axes. Furthermore,

we know that for ~k along a particular direction of symmetry perpendicular to the potential

gradient, an effective magnetic field perpendicular to both ∇V and ~k must result.

We can examine these conditions in turn. Consider ~k from the center gallium atom

(maize) to the front arsenic atom (blue) in the figure to be defined as ~k‖ = −k(x̂+ ŷ+ ẑ)/
√

3

(with x̂ ‖ [100], ŷ ‖ [010], and ẑ ‖ [001]) such that ~k is along the bond (i.e. ~k‖ ‖ ∇V ). By the

definition of the spin-orbit field we require ~BD(~k‖) = 0. The same is true for ~k = −~k‖. Now

consider ~k ⊥ ∇V . By the three-fold rotational symmetry of the tetrahedral bond we can

choose one of three identical such momentum vectors. We will choose ~k⊥ = k(x̂+ ŷ−2ẑ)/
√

6.

Again from the definition of the spin-orbit field, we require ~BD(~k⊥) to be nonzero and

perpendicular to both ~k⊥ and ∇V . In this case that would give ~BD(~k⊥) ∝ x̂− ŷ. There are

two additional definitions of ~k⊥ that will satisfy this condition and are given by rotations of

±120◦ from ~k⊥ along the [111] axis. In passing, such a rotational symmetry is said to belong

to the 8C3 class of symmetry operations. Table 2.3 displays the conditions for the one parallel

and three perpendicular momentum vectors with respect to ∇V and the requirements on
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Figure 2.6: Dresselhaus spin-orbit field: (a) Gallium (maize sphere) atom surrounded by
arsenic (blue sphere) atoms in a tetrahedral bond (same as methane CH4 molecule). The center
point of each bond (gray cylinder) represents a point of spatial inversion symmetry breaking along
the bond axis. (b) Resulting Dresselhaus spin-orbit effective magnetic field for ~k confined in the
(001) plane.

the spin-orbit fields they must generate for the bond along the [111] axis.

The definitions for ~k‖ and ~k⊥ is repeated for each of the other three bonds and a form

for the Dresselhaus spin-orbit field is established. The field that satisfies Table 2.3 for each

of the four bonds is, to lowest order,

~BD ∝ γ
[
kx
(
k2
y − k2

z

)
x̂+ ky

(
k2
z − k2

x

)
ŷ + kz

(
k2
x − k2

y

)
ẑ
]

(2.61)

where γ is the cubic Dresselhaus coefficient and is a material specific parameter. It may

be obvious that Eq. 2.61 is not the only form for ~BD. Indeed there are many definitions

to increasingly higher order in momentum that will satisfy the symmetry of the zincblende

structure. This represents the lowest order which will dominate in cases of small ~k which is

usually the case. One may notice that the form of Eq. 2.61 obeys the exact same symmetry

as the basis function for the three dimensional irreducible representation T1 of the Td point
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~k ∝ ~BD ∝
~k‖ (1, 1, 1) (0, 0, 0)
~k⊥,1 (1, 1,−2) (1,−1, 0)
~k⊥,2 (−2, 1, 1) (0, 1,−1)
~k⊥,3 (1,−2, 1) (−1, 0, 1)

Table 2.3: Dresselhaus spin-orbit field constraints: Constraints on the directionality of the
Dresselhaus spin-orbit field for different directions of ~k parallel and perpendicular to ∇V , with
∇V ‖ [111]. These requirements stem from the form of ~B ∝ ∇V × ~k and the symmetry of the
tetrahedral crystal structure.

group, and in particular of the Γ5 irreducible representation of the T1 ⊗D1/2 double group

of which the zincblende structure is a member. This is not a coincidence, and in fact is

required due to the invariant nature of the Hamiltonian under certain symmetry operations.

For more detail consult Ref. [69].

In situations for which the average momentum along ẑ goes to zero, such as epilayers and

quantum wells, Eq. 2.61 reduces to the two dimensional form

~BD,(001) ∝ γ
[
kx
(
k2
y − 〈k2

z〉
)
x̂+ ky

(
〈k2
z〉 − k2

x

)
ŷ
]
. (2.62)

The term 〈k2
z〉 represents the confinement along the z axis which increases as the confinement

becomes stronger (i.e. the well thickness decreases). For epilayers, which approach the bulk

regime, the confinement term is typically neglected, though it is important to point out that

in such cases it is possible to have a localized nonzero kz, even if averaged over the entire

structure it is zero. The Dresselhaus field in the (001) plane is depicted in Fig. 2.6(b). We

can see that it is neither isotropic, nor does its magnitude depend only on the magnitude of

~k; it is cubic in |~k| for ~k ‖ [110], [110], and vanishes for ~k ‖ [100], [010] when the confinement

term is negligibly small.

It is finally worth noting a few more interesting cases for the Dresselhaus field. For con-

finement in the (111) plane (i.e. a quantum well perpendicular to [111]), the Dresselhaus
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field takes on a two dimensional symmetry equal to that of the Rashba field [18], and for

confinement along the [111] axis, such as with a quantum wire, the Dresselhaus field van-

ishes entirely. These conditions are particularly useful for situations in which one desires to

minimize the spin-orbit interaction, such as to increase the spin coherence time (Sec. 3.4.1).

2.4.3 Strain-induced spin-orbit fields

Due to heterostructure stacking, strain is necessarily present in non lattice-matched materi-

als, as is the case for In0.04Ga0.96As grown on a (001) GaAs substrate. The mismatch in the

lattice parameters causes compressive strain of the InGaAs epilayer in the plane perpendic-

ular to the growth axis and tensile strain along the growth axis. Furthermore, anisotropic

strain relaxation throughout the epilayer can give rise to a shear strain equivalent to that

of a uniaxial strain applied in the plane perpendicular to the growth axis. These strain

components give rise to an additional source of spatial inversion symmetry breaking and will

result in a spin splitting in the conduction band as well.

This splitting will be characterized by a perturbation of the Hamiltonian in the presence

of strain and is given by [61]

Hαβ
ε =

∑
i,j

Dαβ
ij εij (2.63)

where εij are the elements of the strain tensor, Dij is the deformation potential operator and

α and β represent the states of the unperturbed Hamiltonian given in Table 2.1. The strain

tensor elements are built in the symmetric form according to [61]

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.64)

where ui represents the displacement field of the structure from the equilibrium position and

xi represents the coordinate basis in the unstrained Bravais lattice.
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In general, the form of the deformation potential will satisfy a set of symmetry constraints

to which the crystal is subject. We introduced the concept of symmetry operations in the last

section, with the C3 rotation around the axes of the tetrahedral bond. For zincblende struc-

tures, there are five such classes of symmetry operations, formed from different magnitudes

and orientations of rotations and reflections relative to the tetrahedral molecule. These form

24 total and distinct symmetry operations (for diamond structures, an additional reflection

symmetry exists for each bond and the total number of distinct symmetry operations be-

comes 48). The Td point group can be broken into a set of irreducible representations that

build basis functions which behave according to this set of symmetry operations. The ta-

ble that relates the irreducible representations to the symmetry class is called the character

table for the group [61]. We saw earlier that the symmetry class C3 gave rise to the basis

functions of the Γ5 irreducible representation which is how the Dresselhaus spin-orbit field is

defined. Another common three-dimensional irreducible representation is Γ4 and has basis

functions that are vectorial in nature, i.e. of the form {x, y, z}. The electron momentum

~k falls into the Γ4 irreducible representation. As was pointed out in the previous section,

the invariant nature of the Hamiltonian must obey a particular set of symmetry operations;

for the spin-orbit Hamiltonian of the form HSO ∝ ~B · ~σ, this requires that ~B must belong

to the Γ5 irreducible representation. We can build the form of the strain-induced spin-orbit

Hamiltonians to meet the requirements of the symmetry operations. The details can be

found in Ref. [60]. We present them here as

Hbiaxial = D [(εyy − εzz) kxσx + (εzz − εxx) kyσy + (εxx − εyy) kzσz] (2.65)

Huniaxial =
C3

2
[(εzxkz − εxyky)σx + (εxykx − εyzkz)σy + (εyzky − εzxkz)σx] (2.66)

where C3 and D are material parameters and are related to the matrix elements mixing the
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conduction and valence band states [11]. As with the case of the Dresselhaus spin-orbit field,

we confine carriers in the plane perpendicular to ẑ. In this case, with the Hamiltonian given

by the form HSO ∝ ~BSO · ~σ, we can define strain-induced spin-orbit effective magnetic fields

to have the form

~Bbiaxial ∝ D (εzz − εxx) (kxx̂− kyŷ) (2.67)

~Buniaxial ∝
C3εxy

2
(kyx̂− kxŷ) . (2.68)

The biaxial and uniaxial strain-induced spin-orbit effective magnetic fields are displayed in

Fig. 2.7(a) and (b) respectively. We can see that the uniaxial strain-induced field is linear

in ~k, is isotropic, and in fact maps exactly to the Rashba spin-orbit effective magnetic field,

up to a potential minus sign, depending on the sign of εxy. On the other hand, the biaxial

strain-induced field is linear in ~k, but is no longer anisotropic, and maps to the directionality

of the Dresselhaus spin-orbit field.

2.4.4 Anisotropic spin-orbit fields

The total spin-orbit effective magnetic field experienced by the electron will be the sum of

the effects discussed in the previous sections. We pull symmetric terms together and get the

following form for the spin-orbit field:

~BSO =
(
αky + βkx + γkxk

2
y

)
x̂−

(
αkx + βky + γkyk

2
x

)
ŷ (2.69)

where the term α contains both the Rashba and uniaxial strain-induced spin-orbit fields,

β contains both the linear Dresselhaus and biaxial strain-induced spin-orbit fields, and γ

contains only the cubic Dresselhaus term. We note that the form of Eq. 2.69 is anisotropic
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Figure 2.7: Strain-induced spin-orbit field: Biaxial strain (a) is a result of lattice mismatch
and obeys the same symmetry as the linear Dresselhaus SO field. Uniaxial strain (b) is a result of
anisotropic strain relaxation throughout the epilayer and obeys the same symmetry as the Rashba
SO field.

in momentum, and for small γ exhibits a set of extremum for kx = ±ky. For α > 0, the

minimum occurs for kx = −ky corresponding to ~k ‖ [110]. By including the Dresselhaus term,

γ we find that the minimum is shifted symmetrically to either side of the [110] direction,

with the magnitude of the deviation given by

θ =
π

4
− cos−1

[
1

2
+

1

2

√
1− 2α (2β + γk2)

γ4k2 (4β + γ2k2)2

]
. (2.70)

For a specific set of spin-orbit field parameters, this deviation is only defined for k greater

than some minimum value for which the second term in the square root is equal to one. As

we do not observe a deviation in the minimum spin-orbit field, and as no cubic behavior is

observed for ~k ‖ [110], [110], we take the cubic Dresselhaus term to be negligibly small for

electron momentum k in the range of our measurements. The spin-orbit field in this case is

described by
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a b c

Figure 2.8: Anisotropic spin-orbit field: Mapped for uniaxially dominated (a), biaxially
dominated (b), and matched (c) strain-induced spin-orbit terms.

~BSO = (αky + βkx) x̂− (αkx + βky) ŷ. (2.71)

This is the form of the in-plane spin-orbit field that will be used throughout this work.

Fig. 2.8 displays the resulting anisotropic spin-orbit field for various choices of the ratio

α/β. As we do not expect the Rashba spin-orbit field to play a significant role in bulk

semiconductors, and the linear Dresselhaus field, which is proportional to the confinement

along the growth axis, is expected to be small for bulk semiconductors, we expect the terms

α and β to be dominated by the uniaxial and biaxial strain-induced fields, respectively. We

notice an interesting case, that when α = β the system enters a spin helix state [44] in which

the spin-orbit effective magnetic field points along one of two opposing directions for all ~k.

Such a state is particularly useful in helping to minimize inhomogeneous dephasing due to

scattering according to the D’yakonov-Perel dephasing mechanism, as will be discussed in

Sec. 3.4.1.
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Chapter 3

Carrier Scattering and Spin

Relaxation

3.1 Introduction

In the previous chapter, we built the framework for the electron spin and its interactions

in the conduction band of the GaAs band structure. We discussed the behavior of the spin

in the Bloch sphere representation and built the time dependence of the spin polarization

in Eq. 2.43. This chapter will expand on the time dependence by addressing the nature of

the spin relaxation mechanism. It will be organized as follows. In Sec. 3.2, the mechanisms

giving rise to electron scattering in the conduction band will be introduced, from which the

momentum and energy relaxation times will be found. Sec. 3.3 will introduce the electron

transport in low field conditions, building the mobility and distribution functions. Finally, in

Sec. 3.4, the relevant spin relaxation mechanisms will be discussed, and the spin relaxation

rate tensor will be developed.
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3.2 Carrier scattering

Quantum mechanically, we treat scattering as an approximation that, over an infinitesimal

time scale, a particle changes its momentum from some initial state ~k to a final state ~k′.

The mechanism that causes the scattering and the available initial and final momenta will

depend on the situation. We can envision scattering as a “black box” and define the rate

at which the scattering takes place to be S(~k,~k′) where the prime notation will be used

throughout this chapter to denote the final state, and the unprimed notation will denote the

initial state. This process is depicted in Fig. 3.1.

Figure 3.1: Momentum scattering diagram: Carrier scatters from initial momentum state ~k
to final state ~k′ at a rate S(~k,~k′).

The scattering rate can be calculated using Fermi’s golden rule [70, 71]. We start with

a Hamiltonian of the form H = H0 +H1 where H0 is the unperturbed Hamiltonian and H1

is a small perturbation that results in scattering. The solutions to H0 are presumed to be

known, and are given by
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H0 |ψ0
~k

(~r)〉 = ε~k |ψ
0
~k

(~r)〉 (3.1)

|ψ0
~k

(~r, t)〉 = e−iε~kt/h̄ |ψ0
~k

(~r)〉 (3.2)

where ~r = 0 represents the location of the scattering event. The unperturbed wave function

is typically taken to be that of the free electron (i.e. a plane wave). We begin by assuming

that the electron is in the state |ψ0
~k
〉 at time t = 0 and in the state |ψ0

~k′
〉 as t → ∞. In this

case, the transition matrix element H~k′,~k is approximated in terms of the unperturbed wave

function as

H~k′,~k (t) = 〈ψ0
~k′

(~r)|H1 (~r, t) |ψ0
~k

(~r)〉 . (3.3)

Suppose the perturbation causing scattering has an oscillatory time dependence, such as an

oscillating field or lattice. We can represent this by taking the time dependence of the matrix

element to have the form

H~k′,~k (t) = Ha,e
~k′,~k
e±iωt. (3.4)

Then the scattering rate from an initial momentum state ~k to a final state ~k′ is expressed as

(see Ref. [51] for details)

S
(
~k,~k′

)
=

2π

h̄

[∣∣∣Ha
~k′,~k

∣∣∣2 δ (ε~k′ − ε~k − h̄ω)+
∣∣∣He

~k′,~k

∣∣∣2 δ (ε~k′ − ε~k + h̄ω
)]
. (3.5)

Eq. 3.5 is the statement of Fermi’s golden rule for determining the scattering rate between

two momentum states ~k and ~k′. The dirac-δ functions serve to indicate conservation of

energy. Essentially it states that the energy of the final state must equal the energy of the

initial state plus or minus a quanta of energy that was absorbed or emitted respectively.
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This quanta of energy is usually a phonon or a photon (a quanta of acoustic wave or light

energy respectively). If no energy is absorbed or emitted upon a scattering event, indicating

that the perturbation is a constant in time, then Eq. 3.5 reduces to

S
(
~k,~k′

)
=

2π

h̄

∣∣∣H~k′,~k

∣∣∣2 δ (ε~k′ − ε~k) . (3.6)

The rest of this section will be devoted to building characteristic times for different scattering

mechanisms in GaAs.

3.2.1 Scattering rate: momentum and energy relaxation times

We have a general form for the scattering rate for elastic (Eq. 3.6) and inelastic (Eq. 3.5)

scattering mechanisms in terms of the initial and final momentum states ~k and ~k′, respec-

tively. To get the relaxation rate for a particular momentum state ~k, then, we must sum the

scattering rate over all final momenta ~k′, weighted by the probability that the final state is

unoccupied. We saw in Sec. 2.2.1 this sum takes the form

1

τ̃
(
~k
) =

∑
~k′

S
(
~k,~k′

) [
1− f

(
~k′
)]
. (3.7)

With f(~k′) the distribution function, then 1 − f(~k′) is just the probability that the state

~k′ is unoccupied. That the state ~k′ must be unoccupied for the scattering event to occur

is a result of the Pauli exclusion principle [6]. The term τ̃ in Eq. 3.7 is called the carrier

relaxation time and gives the characteristic time scale between scattering events. The ∼

accent indicates that it is the relaxation time for a particular momentum ~k. The final carrier

relaxation time will be achieved by summing over all momenta with appropriate weightings.

The momentum relaxation time is a measure of the time it takes for the momentum of

a carrier to become randomized. In many semiconductors, the momentum relaxation time
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is significantly longer than the carrier relaxation time, as it is the scattering rate for each

momentum weighted by the fractional change in the momentum direction. The momentum

relaxation time is given by

1

τ̃m

(
~k
) =

∑
~k′

S
(
~k,~k′

) [
1− f

(
~k′
)] [

1− k′

k
cosα

]
(3.8)

where α is the angle between ~k and ~k′ (Fig. 3.1).

Similar to the momentum relaxation time, the energy relaxation time is a measure of the

time it takes for the energy of a carrier to become randomized. It is built from the carrier

relaxation time with a similar weighting factor and is given by

1

τ̃ε

(
~k
) =

∑
~k′

S
(
~k,~k′

) [
1− f

(
~k′
)] [

1−
ε~k′

ε~k

]
. (3.9)

Notice that the energy relaxation time is necessarily only important for inelastic scattering

events. Each of the sums in Eqs. 3.7, 3.8, and 3.9 are converted to integrals with the

prescription (assuming spin conserving scattering mechanisms)

∑
~k′

g
(
~k′
)
→ 1

8π3

∫
~k′
g
(
~k′
)
d~k′. (3.10)

For electrons in thermal equilibrium, f(~k′) is the Fermi-Dirac distribution function given

by

f
(
~k
)

=
1

1 + exp [(εk − µ) /kBT ]
(3.11)

with µ the chemical potential defined as the Fermi energy at temperature T = 0. For

semiconductors with a parabolic conduction band in the absence of any additional potential

energy terms, the energy is εk = εC + h̄2k2/(2m∗), with εC the energy of the bottom of the
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conduction band. We will use the Joyce-Dixon approximation [72] for the chemical potential

µ− εC
kBT

≡ η ∼= ln

(
n

NC

)
+

n

NC

√
8
. (3.12)

with n the free carrier concentration and NC the effective density of states. In the case of

parabolic bands it is given by

NC = 2

(
m∗kBT

2πh̄2

)3/2

. (3.13)

The free carrier concentration in the conduction band is evaluated by taking the overlap

integral of the Fermi distribution and the density of states.

n =

∫ ∞
0

dε [D (ε) f (ε)] = NCF1/2 (η) (3.14)

F1/2 is the Fermi-Dirac integral of order 1/2 and the density of states in three dimensions is

D(ε) = m∗
√

2m∗ε/(π2h̄3). In this definition of the density of states, as well as in Eq. 3.14,

I have taken ε to be just the kinetic energy component of the electron energy, namely

ε = h̄2k2/(2m∗). In the sections to follow, we will evaluate the relaxation times for the

degenerate semiconductor using the Fermi distribution function.

3.2.2 Ionized-impurity scattering

For doped semiconductors that give up an electron (n-type), the ionized impurity acts as the

perturbing potential discussed in the previous section. For GaAs, a common n-type dopant

is silicon (Si). For the samples in this study, the Si dopant concentration is n = 3 × 1016

cm−3. To evaluate the scattering matrix element, we must first determine the form of the

perturbation potential created by the ionized impurity. We can start by assuming, for a lone

electron, that this is simply the Coulomb potential energy
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H ′1 (r) =
e2

4πεr
(3.15)

where ε is the dielectric constant in the material, e is the electron charge, and r is the

radial distance between the electron and the ion. Notice that the perturbing Hamiltonian

is time independent, indicating that ionized impurity scattering of this form is elastic, and

the scattering rate is given by Eq. 3.6. When the electron concentration is high enough,

we have to account for the attraction of electrons to the ion which effectively screen the

Coulomb potential. The simplest model is to assume a uniform density of unequal positive

and negative charge distributions around the ion. Poisson’s equation in this form is

∇2V (r) =
e

ε
(n− nd) (3.16)

where V (r) is the electric potential, nd is the ionized impurity density, and n is the electron

density given by

n = NCF1/2

(
µ− εC + eV (r)

kBT

)
. (3.17)

The fluctuation of n around equilibrium is described in terms of the perturbation of the

potential δV by

δn =
∂n

∂V
δV. (3.18)

Using the familiar relation for Fermi-Dirac integrals ∂Fn(η)/∂η = Fn−1(η), we have the

following form for the perturbation Hamiltonian:

H1,II (r) =
e2

4πεr
exp

(
− r

LD

)
(3.19)

where LD is the Debye screening length given for degenerate semiconductors by
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LD =

√
εkBT

e2n0

√
F1/2 (η)

F−1/2 (η)
(3.20)

and n0 is the equilibrium carrier concentration. The matrix element for the perturbation

Hamiltonian is evaluated according to Eq. 3.3 and the scattering rate from Eq. 3.6. The

result after taking the integral is

H~k′,~k,II =
e2

ε
[
4k2 sin2 (α/2) + 1/L2

D

] (3.21)

SII

(
~k,~k′

)
=
πnde

4

h̄ε2
δ
(
ε~k′ − ε~k

)[
4k2 sin2 (α/2) + 1/L2

D

]2 . (3.22)

As in Fig. 3.1, α is the scattering angle. The factor nd in the second line is just a multiplicative

factor taking into account the scattering rate for all of the ionized impurities, in which case

nd represents the ionized impurity density. In this form, we take scattering events to be

independent. We can define the incoming electron momentum along ẑ, in which case α is

equivalent to the polar angle θ. We use Eq. 3.7 to determine the relaxation rate as a function

of electron energy:

1

τ̃II (ε)
=

√
πe4NCnd

h̄ε2 (kBT )3/2

∫ π

0

dθ

∫ ∞
0

dε′

 sin θ
√
ε′δ (ε′ − ε)(

8m∗

h̄2
ε′ sin2 θ

2
+ 1

L2
D

)2

 . (3.23)

By using the substitution x = 1− cos θ and making the following definition

γ2 =
8m∗L2

Dε

h̄2 (3.24)

the relaxation rate becomes
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1

τ̃II (ε)
=

√
πe4NCndL

4
D

h̄ε2 (kBT )3/2

√
ε (1− f (ε))

∫ 2

0

dx

[1 + (γ2/2)x]2
. (3.25)

The integral is solvable, and we get for the carrier relaxation rate due to ionized impurity

scattering

1

τ̃II (ε)
=

2
√
πe4NCndL

4
D

h̄ε2 (kBT )3/2

√
ε (1− f (ε))

1 + γ (ε)2 . (3.26)

The momentum relaxation time simply requires that we include a factor of 1− cos(θ) before

integration. Again, the integral is solvable, and we get the momentum relaxation rate due

to ionized impurity scattering

1

τ̃m,II (ε)
=

4
√
πe4NCndL

4
D

h̄ε2 (kBT )3/2

√
ε (1− f (ε))

γ (ε)4

[
ln
(
1 + γ (ε)2)− γ (ε)2

1 + γ (ε)2

]
. (3.27)

The relaxation time and momentum relaxation time for In0.04Ga0.96As at T = 10 K with

a doping concentration of n = 3 × 1016 cm−3 is shown in Fig. 3.2. Recall that for purely

elastic scattering, the energy relaxation time diverges. We can illustrate the behavior of

the relaxation times in a more convenient form using some approximations. For the above

analysis, we find a numerical evaluation of γ ∼= 25.4 eV−1/2
√
ε. In this case, except for

small energy, we can make the approximation 1 + γ2 ≈ γ2. The carrier relaxation time and

momentum scattering time are then approximately given in power law form by

τ̃II (ε) ≈ τ0

√
ε

kBT
(3.28)

τ̃m,II (ε) ≈ τm,0

(
ε

kBT

)3/2

. (3.29)
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Figure 3.2: Ionized impurity relaxation time: Scattering time (red line, right axis) and mo-
mentum relaxation time (blue line, left axis) as a function of electron kinetic energy. Parabolic
bands are assumed. Numerical evaluation is for In0.04Ga0.96As at T = 10 K with a doping con-
centration of n = 3 × 1016 cm−3. Dashed black lines represent scattering times having power law
form.

The pre-factors are given by τ0 = 1.96 × 10−3 ps and τm,0 = 0.0185 (ln (γ2)− 1)
−1

ps. The

power law approximations are shown as the dotted black lines in Fig. 3.2. We can see that

for sufficiently high energy the carrier relaxation time is in excellent agreement with the

power law form of Eq. 3.28. The momentum relaxation time, however, involves a slowly

varying function of the energy given by the ln(γ) term in Eq. 3.29. The dashed black line

shows the power law form specifically for γ evaluated at ε = 0.225 eV. We can see that the

power law form for the momentum relaxation time due to ionized impurity scattering is only

valid over a small energy range. In general, we will evaluate the relaxation times according

to Eqs. 3.26 and 3.27.
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3.2.3 Deformation potential scattering

The term phonon is used to describe a quanta of lattice vibration energy and obeys much

of the same statistics and physical laws as a photon. For example, both obey Bose-Einstein

statistics [3]. Phonons, however, can be classified into a broader set of groups each obeying

its own distinct set of physical properties, particularly the ε vs. ~k dispersion. A phonon can

be thought of as a displacement wave traveling down a lattice. This displacement can be

allowed three orthogonal directions that are linearly independent. For longitudinal waves,

the displacement is along the direction of propagation, while for transverse waves, there are

two orthogonal displacement directions. The longitudinal and transverse waves are depicted

in the left and right columns, respectively, of Fig. 3.3.

In addition to the displacement direction, we can also classify a phonon by its mode. In

the lowest order vibrational mode, each atom moves in the same direction as its neighboring

atom, with the separation in phase described by the wave velocity. This is similar, in concept,

to the first harmonic of a guitar string (with the exception that a guitar string is a standing

wave). The next order mode consists of neighboring atoms moving in opposite directions,

so we can think of a virtual node located at the halfway point between two adjacent atoms

in the standing wave analogy. We typically call the lowest order mode an acoustic phonon,

since this is the mode by which sound waves travel. All higher order modes are called optical

phonons, though it is typical to refer to the optical phonon as just the mode directly above

the acoustic mode in which neighboring atoms move in opposite directions. The acoustic

and optical phonons are depicted in the top and bottom rows, respectively of Fig. 3.3.

To determine the scattering rate, we must first determine the perturbing Hamiltonian

due to the lattice displacement induced by the phonon. The perturbations are due to the

change in the conduction and valence band edges as a function of the change in the lattice

parameter and are characterized by the deformation potentials. Consider in one dimension
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Figure 3.3: Phonons in 1D lattice: Atom (filled circle) is displaced from its equilibrium position
(open circle) by a traveling displacement wave. Longitudinal and transverse phonons are depicted
in the left and right columns, respectively, while acoustic and optical phonons are depicted in the
top and bottom rows, respectively.

an acoustic wave of the form

u (x, t) = u0e
i(βx−ωt) + u∗0e

−i(βx−ωt) (3.30)

where u is taken to be a dimensionless displacement normalized to the lattice parameter a.

It is common to use the Greek letter ~β to represent the phonon momentum (analogous to ~k

for electrons). For an acoustic wave, the difference in displacement for adjacent atoms, that

is, u(x, t)− u(x+ a, t), can be approximated by the derivative

δuA ≈
∂u

∂x
a (3.31)

This approximation is valid when the phonon wavelength is long compared to the lattice
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parameter, as is expected for acoustic phonons involved in intravalley scattering [51]. For

optical waves, the derivative approach is no longer valid as the wavelength is necessarily

on the order of the lattice parameter. However, we note that the displacement between

two adjacent atoms is just described by the sum of their respective displacements. Noting

that their displacements are roughly equal and opposite, the difference in displacement for

adjacent atoms is given by

δuO ≈ u (3.32)

For acoustic and optical phonons, we have our perturbing potentials of the form

H1,A (~r, t) = DA∇u (~r, t) (3.33)

H1,O (~r, t) = DOu (~r, t) (3.34)

We have made the generalization to three dimensions, and have assumed a spherical band.

For semiconductors having conduction band minima at the L and X points (such as germa-

nium and silicon respectively) the band has elliptical constant energy surfaces. Furthermore,

for a p-type valence band orbital, the band has a symmetry that is more cubic than spherical,

as discussed in Sec. 2.3.1. In these cases, the deformation potential constants DA and DO

will have a directional dependence. For the conduction band of GaAs, the spherical band

approximation will be used and these parameters are constant. We finally point out that

the difference between longitudinal and transverse waves is contained in the form of u(~r, t)

and in the ε vs. ~β dispersions.

For a full treatment of phonon dispersion, consult Ref. [73]. I will point out a few details

here. The phonon band is built in much the same way as the band structure for the crystal

and is reduced to the first Brillouin zone, ranging over ±π/a. The acoustic mode is the
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Figure 3.4: Phonon scattering: Electron scatters from initial momentum state ~k to final state
~k′ by absorption (a) or emission (b) of a phonon with momentum state ~β. θ is the angle between
the initial electron and phonon momenta, and α is the angle between initial and final electron
momenta.

lowest energy and obeys the relation limβ→0 εA(β) = 0, with εA ∝ β near β = 0. The optical

mode, however, necessarily has a nonzero energy as the wave vector goes to zero. This is

understood in that a minimum threshold energy must be achieved to induce the creation of

an optical phonon. The optical phonon is roughly constant near β = 0. For electron-phonon

scattering, the wave vectors for electrons and phonons are on the same order of magnitude

(k ∼ β). For electrons near the Γ point then, for which ~k = 0, we will make the following

approximations for acoustic and optical phonons:

ωA (β) = υsβ , ωO (β) = ωo (3.35)

with υs the sound velocity of acoustic waves.

We build interactions of electrons with phonons first by requiring conservation of both

energy and momentum. From Fig. 3.4, this can be expressed in terms of the initial electron,

final electron, and phonon momentum states ~k, ~k′, and ~β respectively by
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h̄2k′2

2m∗
=
h̄2k2

2m∗
± h̄ω (β) (3.36)

~k′ = ~k ± ~β (3.37)

where the plus and minus refer to absorption and emission of a phonon by the electron,

respectively. These equations together imply that the magnitude of the phonon momentum

can be expressed as

β = ∓2k cos θ ± 2m∗

h̄β
ω (β) . (3.38)

In this expression, θ is the angle between the phonon and the incoming electron momenta.

By inspection of Eq. 3.38, we notice that there is a maximum value allowed for β as a result

of simultaneous energy and momentum conservation. This is given by

βmax = 2k

(
1± m∗

h̄k

ω

βmax

)
(3.39)

For phonon absorption or emission, we notice the maximum phonon momentum occurs when

θ = π or 0, respectively. This corresponds to a phonon “hitting” the electron head on, or

the electron imparting as much of its linear momentum as possible into the creation of a

phonon, respectively.

We will start with the acoustic deformation potential. Using Eq. 3.33 and the periodic

form for u(~r, t), the perturbation potential is

H1,ADP (~r, t) = iβDAu (~r, t) . (3.40)

The scattering matrix element and rate, given by Eqs. 3.3 and 3.5 respectively, are
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H~k′,~k,ADP = βDAu0δ~k′,~k±~β (3.41)

SADP

(
~k,~k′

)
=
πm∗D2

A

h̄2kρυs

(
Nβ +

1

2
∓ 1

2

)
δ

(
± cos θ +

β

2k
∓ m∗υs

h̄k

)
(3.42)

with ρ the mass density. The form of the prefactor has to do with the correct treatment

of our wave amplitude u0 and the quantum mechanical energy of an oscillator given by

ε = (Nβ + 1/2)ω. For a detailed discussion, see Ref. [51]. The sign along the top or

bottom in Eq. 3.42 is due to absorption or emission of a phonon upon the scattering event,

respectively. The prefactor implies that for absorption to occur, we must have Nβ 6= 0. To

get the carrier relaxation rate, we integrate Eq. 3.42 according to Eq. 3.7, which gives

1

τ̃ADP

(
~k
) =

m∗D2
A

8π2h̄2kρυs
×

∫
~β

(
Nβ +

1

2
∓ 1

2

)[
1− f

(
k2 + β2 ± 2kβ cos θ

)]
δ

(
± cos θ +

β

2k
∓ m∗υs

h̄k

)
d~β.

(3.43)

As there is a one-to-one mapping between ~k′ and ~β, we have the liberty of integrating over ~β

space instead of ~k′ space. The delta function in the integral over cos θ sets the value of cos θ in

the Fermi distribution, and allows us to restrict our integral in β to the range 0 ≤ β ≤ βmax.

For acoustic phonons we use the dispersion relation ω = υsβ to get βmax = 2k[1−m∗υs/(h̄k)].

In this case, the relaxation rate is

1

τ̃ADP

(
~k
) =

m∗D2
A

4πh̄2kρυs

∫ βmax

0

dβ

{
β2

(
Nβ +

1

2
∓ 1

2

)[
1− f

(
k2 ± 2βm∗υs

h̄

)]}
. (3.44)
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As phonons are bosons, Nβ is given by the Bose-Einstein distribution function

Nβ =
1

exp
[
h̄υsβ
kBT

]
− 1

. (3.45)

Eq. 3.44 does not have an analytical solution, in general, and must be solved numerically.

The energy relaxation time is a trivial extension. We must simply include a factor of

1− k′2

k2
= ∓2m∗υsβ

h̄k2

in the integral over β. This gives the energy relaxation rate due to acoustic deformation

potential scattering

1

τ̃ε,ADP

(
~k
) =

m∗2D2
A

2πh̄3k3ρ

∫ βmax

0

dβ

{
∓β3

(
Nβ +

1

2
∓ 1

2

)[
1− f

(
k2 ± 2βm∗υs

h̄

)]}
. (3.46)

The overall negative sign for absorption just indicates that an absorption event serves to

counteract the energy relaxation due to an emission event. For acoustic deformation potential

scattering in most semiconductors, even at low temperatures, these events happen at a similar

rate, and therefore energy relaxation times can be extremely long. As such, this is usually

ignored as a source of energy relaxation. In fact, in the high temperature limit, we can

approximate Nβ + 1 ≈ Nβ and 1− f(k′) ≈ 1, in which case the energy relaxation rate goes

to zero and acoustic deformation potential scattering becomes an elastic process.

To calculate the momentum relaxation rate, we introduce a factor of 1−k′ cosα/k in the

integral over β. Using the definition ~β = ±(~k′ − ~k) and conservation of energy, we have the

expression

1− k′

k
cosα =

β

k2

(
β

2
∓ m∗υs

h̄

)
.
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Figure 3.5: Acoustic deformation potential relaxation time: Relaxation rate (left) and
time (right) as a function of electron kinetic energy. Parabolic bands are assumed. Numerical
evaluation is for In0.04Ga0.96As at T = 10 K with a doping concentration of n = 3 × 1016 cm−3.
For low temperature, the scattering rate is roughly linear and several orders of magnitude weaker
than ionized impurity scattering.

The momentum relaxation rate due to acoustic deformation potential scattering is

1

τ̃m,ADP

(
~k
) =

m∗D2
A

4πh̄2k3ρυs
×

∫ βmax

0

dβ

{
β3

(
β

2
∓ m∗υs

h̄

)(
Nβ +

1

2
∓ 1

2

)[
1− f

(
k2 ± 2βm∗υs

h̄

)]}
.

(3.47)

Fig. 3.5 shows the carrier and momentum relaxation rates and times as a function of

electron kinetic energy for In0.04Ga0.96As at a temperature of T = 10 K with a doping

density of n = 3× 1016 cm−3. We see that the scattering rate is roughly a linear function of

the electron energy, in contrast to the room temperature behavior obeying a
√
ε dependence.

We also notice that the relaxation time and momentum relaxation time are nearly equal.

This implies that the scattering due to acoustic deformation potential phonons is nearly
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isotropic. In the high temperature limit of elastic scattering and equipartition, we find that

the functional forms of the relaxation time and momentum relaxation time are exactly the

same. We finally notice that the relaxation time is several orders of magnitude longer than

that of ionized impurities. We will see in Sec. 3.2.6 that this implies that relaxation due to

acoustic deformation potential scattering is a non-dominant effect.

The optical deformation potential scattering term is found in a similar way, where now

we use the approximate form of the optical phonon dispersion given by ω = ωo. The

perturbation Hamiltonian, given by Eq. 3.34, gives us a matrix element and scattering rate

of

H~k′,~k,ODP = Dou0δ~k′,~k±δ (3.48)

SODP

(
~k,~k′

)
=

πm∗D2
o

h̄2kρωoβ

(
Nβ +

1

2
∓ 1

2

)
δ

(
± cos θ +

β

2k
∓ m∗ωo

h̄kβ

)
. (3.49)

The scattering rate is achieved by substituting DA → Do/β and υs → ωo/β in Eq. 3.42. We

can figure out the scattering rate using Fermi’s golden rule, as before. We must first, however,

determine both the maximum and minimum allowed phonon momenta β from conservation

of energy and momentum. For acoustic phonons, we could have arbitrarily small β as ωβ → 0.

For optical phonons, however, we take ω(β) = ωo = const. For absorption (emission), we

substitute θ = 0 (π) and π (0) into Eq. 3.38 to get βmin (βmax) and βmax (βmin) respectively.

This gives

βmax,ODP = k

(
1 +

√
1± 2m∗ωo

h̄k2

)
, βmin,ODP = k

(
∓1±

√
1± 2m∗ωo

h̄k2

)
. (3.50)

Notice that for absorption, all electron momenta k are allowed. For emission to occur,

however, the term in the square root must be positive, implying that h̄2k2/(2m∗) ≥ h̄ωo.
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This makes sense, as this just requires that for an electron to emit an optical phonon in

a scattering event, the initial electron energy must be greater than or equal to the optical

phonon energy that it emits.

As with the acoustic deformation potential, we can take the integral over ~β space and

find that the carrier relaxation rate is

1

τ̃ODP

(
~k
) =

m∗D2
o

4πh̄2kρωo

∫ βmax

βmin

dβ

{
β

(
Nβ +

1

2
∓ 1

2

)[
1− f

(
k2 ± 2m∗ωo

h̄

)]}
(3.51)

We notice that when the optical phonon dispersion can be treated as roughly constant with

respect to β, then Nβ = Nωo = 1/[exp(h̄ωo/kBT ) − 1]. This term, as well as the term

involving the Fermi distribution function, comes out of the integral, and, substituting for

βmin and βmax, we have the carrier relaxation rate due to optical deformation potential

phonons as

1

τ̃ODP (ε)
=

(2m∗)3/2D2
o

4πh̄3ρωo

(
Nωo +

1

2
∓ 1

2

)
[1− f (ε± h̄ωo)]

√
ε± h̄ωo (3.52)

where I have substituted the electron kinetic energy ε = h̄2k2/(2m∗). We see that, in the

approximation of a parabolic, spherical conduction band having a constant optical phonon

dispersion, the optical deformation potential relaxation rate has a
√
ε dependence. To cal-

culate the energy relaxation, we include the term 1− ε′/ε in the integrand, where the final

electron energy is ε′ = ε± h̄ωo for absorption and emission, respectively. This is a constant

term and comes out of the integral. The energy relaxation rate due to optical deformation

potential scattering is

1

τ̃ε,ODP (ε)
= ∓ h̄ωo

ε

1

τ̃ODP (ε)
. (3.53)
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The momentum relaxation rate is deceptively simple. As before we must include a term

1− (k′ cosα)/k = β2/(2k2)∓m∗ωo/(h̄k2) in the integrand. After evaluating the integral we

have the term

β4

8k2
∓ m ∗ ωoβ2

2h̄k2

∣∣∣∣βmax

βmin

= 2k2

√
1∓ 2m∗ωo

h̄k2
.

We notice that this is equal to (β2
max − β2

min)/2, which was the result of the integral of the

relaxation rate. The result for the momentum relaxation rate is

1

τ̃m,ODP (ε)
=

1

τ̃ODP (ε)
(3.54)

This implies that scattering due to optical deformation potential phonons is isotropic. There

is a caveat. If we look closely at Eq. 3.38, we realize that very near k = 0 there is no solution

when ω is a constant. As such, optical deformation potential scattering does not have

an effect at the Γ point. Perturbations in the electric field produced by optical phonons,

however, do have an effect that can become very strong at high temperatures, as we will see

in Sec. 3.2.5.

3.2.4 Piezoelectric scattering

Piezoelectric scattering can be a common feature in polar semiconductors in which the

neighboring atoms are partially ionized. When an acoustic phonon travels through the

crystal, in addition to inducing a perturbation due to the deformation of the lattice, there

is an additional perturbation due to the electric dipole wave generated by the phonon. The

absorption and emission of an acoustic wave obeys the same physics as in the previous

section, we just need to amend the form of the perturbation potential. In the same way

that the acoustic phonon perturbed the lattice spacing by the form δa ∝ ∂u/∂x, we can

characterize local fluctuations in the electric dipole moment by the relation
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εE = −epz
∂u (x, t)

∂x
(3.55)

where E is the electric field, epz is a material constant, ε is the permittivity of the material,

and u(x, t) is the form of the phonon wave function. Using the familiar relation H = qV =

q
∫
dx[E(x))], we get that the perturbation potential is

H1,PZ (~r, t) = −eepzu (~r, t)

ε
. (3.56)

The matrix element and scattering rate are

H~k′,~k,PZ =
eepzu0

ε
δ~k′,~k±~β (3.57)

SPZ

(
~k,~k′

)
=

πm∗e2e2
pz

h̄2kε2ρυsβ2

(
Nβ +

1

2
∓ 1

2

)
δ

(
± cos θ +

β

2k
∓ m∗υs

h̄k

)
. (3.58)

The scattering rate obeys a very similar form to that of the acoustic deformation potential

in Eq. 3.42, with the functional dependence differing only by a factor of 1/β2. We can build

the carrier relaxation time in much the same way, and we get

1

τ̃PZ

(
~k
) =

m∗e2e2
pz

4πh̄2kε2ρυs

∫ βmax

0

dβ

{(
Nβ +

1

2
∓ 1

2

)[
1− f

(
k2 ± 2βm∗υs

h̄

)]}
. (3.59)

Similarly the energy and momentum relaxation times are given by

66



Figure 3.6: Piezoelectric relaxation time: Relaxation rates (left) and times (right) as a func-
tion of electron kinetic energy. Momentum and energy relaxation times are shown. Parabolic bands
are assumed. Numerical evaluation is for In0.04Ga0.96As at T = 10 K with a doping concentration
of n = 3 × 1016 cm−3. Momentum scattering rate is an order of magnitude weaker than ionized
impurity scattering.

1

τ̃ε,PZ

(
~k
) =

m∗2e2e2
pz

2πh̄3k3ε2ρ

∫ βmax

0

dβ

{
∓β
(
Nβ +

1

2
∓ 1

2

)[
1− f

(
k2 ± 2βm∗υs

h̄

)]}
(3.60)

1

τ̃m,PZ

(
~k
) =

m∗e2e2
pz

4πh̄2k3ε2ρυs
×

∫ βmax

0

dβ

{
β

(
β

2
∓ m∗υs

h̄

)(
Nβ +

1

2
∓ 1

2

)[
1− f

(
k2 ± 2βm∗υs

h̄

)]}
.

(3.61)

The momentum and energy relaxation times due to piezoelectric scattering are depicted

in Fig. 3.6 for In0.04Ga0.96As at T = 10 K with a doping concentration of 3 × 1016 cm−3.

The scattering rate at high temperature is characterized by roughly a 1/
√
ε dependence.

At low temperature such a form is not accurate and the value is achieved through direct

integration of Eqs. 3.59- 3.61. We finally make a note that the integral in Eq. 3.59 diverges

as β → 0. Such is true for the form presented in this section, however, to more accurately

treat piezoelectric scattering for low β (and low energy, for that matter), it is necessary to

67



include a screening term as in Ref. [74]. Piezoelectric scattering is not expected to dominate

in this case [75], however, so we will will forego such rigorous analysis.

3.2.5 Fröhlich scattering

In the same sense that piezoelectric scattering was caused by polar acoustic phonons, Fröhlich

scattering (sometimes called longitudinal optical (LO) phonon or polar optical phonon scat-

tering) is a result of the polarization wave generated by polar optical phonons. We build it

in a similar way as we did for piezoelectric scattering. In the case of optical phonons, we

can characterize local fluctuations in the electric field normalized to the unit cell by

ε0E = −q′u (x, t) (3.62)

where q′ represents a fraction of the electron charge e that participates in the polar bond.

The perturbation Hamiltonian is given by H1 = −eV = e
∫
dx(E). With the form of the

LO phonon wave, this gives

H1,FR (~r, t) =
ieq′

βε0
u (~r, t) (3.63)

The transition matrix element is evaluated as for the optical deformation potential phonon,

and we have

H~k′,~k,FR =
ieq′u0

βε
(3.64)

SFR =
πm∗e2q′2

h̄2kρωoε20β
3

(
Nωo +

1

2
∓ 1

2

)
δ

(
± cos θ +

β

2k
∓ m∗ωo

h̄kβ

)
. (3.65)

We can evaluate the fractional charge participating in the polar bond according to the

dielectric constant of the material at zero frequency and for β → ∞. Details can be found
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in Ref. [74]. We present the results here, with the definition of the dielectric constant as

ε = κε0:

q′2

ρωo
= ε0ωo

(
1

κ∞
− 1

κ0

)
(3.66)

where κ0 and κ∞ represent the dielectric constant at zero and infinite frequency respectively.

The integral over β space to determine the carrier relaxation rate is achieved in the usual

fashion, where the δ-function again puts restrictions on the range of the integral over β. The

carrier relaxation rate is

1

τ̃FR (k)
=

m∗e2ωo

4πh̄2ε0k

(
1

κ∞
− 1

κ0

)(
Nωo +

1

2
∓ 1

2

)[
1− f

(
k2 ± 2m∗ωo

h̄

)]∫ βmax

βmin

dβ

β
. (3.67)

The integral becomes ln(βmax/βmin). With βmax and βmin given for optical phonons in

Eq. 3.50, we have the carrier relaxation rate for Frölich scattering:

1

τ̃FR (ε)
=

m∗e2ωo

4πh̄ε0
√

2m∗ε

(
1

k∞
− 1

k0

)
[1− f (ε± h̄ωo)]

(
Nωo +

1

2
∓ 1

2

)
×

ln

(
1 +

√
1± h̄ωo/ε

∓1±
√

1± h̄ωo/ε

)
(3.68)

where again for emission we only evaluate the rate when ε ≥ h̄ωo. To evaluate the momentum

and energy relaxation times, we proceed in the same fashion as with the optical deformation

potential scattering, including the terms 1−(k′ cosα)/k and 1−ε′/ε respectively. The results

are
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Figure 3.7: Fröhlich relaxation time: Scattering and momentum relaxation rates (left) and
times (right) as a function of electron kinetic energy. Parabolic bands are assumed. Numerical
evaluation is for In0.04Ga0.96As at T = 10 K with a doping concentration of n = 3× 1016 cm−3.

1

τ̃m,FR (ε)
=

m∗e2ωo

4πh̄ε0
√

2m∗ε

(
1

k∞
− 1

k0

)
[1− f (ε± h̄ωo)]

(
Nωo +

1

2
∓ 1

2

)
×[√

1± h̄ωo
ε
∓ h̄ωo

2ε
ln

(
1 +

√
1± h̄ωo/ε

∓1±
√

1± h̄ωo/ε

)]
(3.69)

1

τ̃ε,FR (ε)
= ∓ h̄ωo

ε

1

τ̃FR (ε)
. (3.70)

Fig. 3.7 shows the carrier and momentum relaxation times due to Fröhlich scattering for

In0.04Ga0.96As at T = 10 K with a doping concentration of n = 3× 1016 cm−3. Note that the

relaxation rate increases by many orders of magnitude once phonon emission is allowed. One

may notice that the Fröhlich relaxation rate appears to dominate over ionized impurities,

which is true at very high electron energies. However, we point out that, at low temperatures,

the Fermi distribution function goes to nearly zero at energies well below that required for

phonon emission. At high temperatures, however, Fröhlich scattering can play an important,
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and usually dominant, role as the relaxation rate due to phonon absorption increases by

many orders of magnitude and is on the order of that due to emission. Furthermore, the

high energy tail of the Fermi distribution extends further at high temperature as well. This

will be discussed in more detail in the following section.

3.2.6 Other scattering effects and the total scattering time

There are other scattering effects that are worth mentioning, even if they do not contribute

significantly to the relaxation rates for GaAs at our temperatures and doping concentrations

of interest. One of these is intervalley scattering, in which a phonon of sufficient momentum

is absorbed or emitted such that the electron undergoes a transition to a neighboring valley.

For GaAs, this most commonly occurs at high doping concentrations, in extremely high

fields or temperatures [76] such that an electron in the Γ valley can move to one of the

eight neighboring L valleys or six neighboring X valleys. It is also common in indirect band

gap semiconductors such as silicon or germanium. In these cases, we can have transitions

between different types of valleys (i.e. L ↔ X), or between the same type of valley (i.e.

L↔ L and X ↔ X) as there are multiple instances of these valleys.

Neutral impurity scattering can play an influential role [77] as well, particularly at ex-

tremely low temperatures such that the donor electrons (or acceptor holes) are “frozen out.”

It also occurs in situations where a dilute neutral substitutional atom is introduced. Using

~k · ~p theory (Sec. 2.3.2), we found that we can treat an electron in a pure, infinite semi-

conductor with parabolic, isotropic bands as a free electron with an effective mass different

from that of the free electron mass. In the simplest view, then, the ionized impurity can be

treated as a Hydrogen atom, causing scattering from either polarization effects or through

exchange interactions. For doping impurities, it is only expected when the dopant electrons

are donor bound. For our purposes, we are beyond the metal to insulator transition for

GaAs [78], and we treat the silicon impurities as ionized.
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Electrons can also scatter off other electrons in semiconductors for which the free carrier

level is beyond a certain threshold. This can be treated as a binary process, which is similar

in principle to the process of scattering due to ionized impurities with the exception that

the scattering center is no longer stationary. This requires a rather rigorous treatment

to determine the distribution function of the “target” electron. Scattering can also occur

between an electron and local oscillations in the electron density. Such oscillations occur at

the plasma frequency. As long as the scattering rate does not exceed the oscillation frequency,

these oscillations are sustained and can contribute significantly to scattering. This frequency

is called the plasmon frequency and is used to classically describe the frequency dependence

of the dielectric constant

ε (ω) = 1−
ω2
p

ω2
.

For GaAs, plasmon scattering is not expected to contribute significantly for doping con-

centrations below 1 × 1017 cm−3 [79], which is an order of magnitude above our doping

concentrations of interest. As such, we will ignore the effects of electron-plasmon scattering,

as well as electron-electron scattering.

We are now in a position to evaluate the total scattering rate due to the mechanisms

described in the previous sections. As is common with time dependent differential equations,

we treat the time derivative of a certain function f as a sum of the individual influences Γ on

f (assuming these influences are noninteracting). As a simple analogy to classical mechanics,

consider the total force (d~p/dt) acting on an object is given by the sum of the forces. In this

sense, we can build the total scattering rate from the sum of the scattering rates due to all

processes, given by

Γ̃ ≡ 1

τ̃
=

1

τ̃II
+

1

τ̃ADP
+

1

τ̃ODP
+

1

τ̃PZ
+

1

τ̃FR
+ ... (3.71)
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Figure 3.8: Total relaxation rate and time: Relaxation rate (left) and time (right) deter-
mined from Eq. 3.71. It is dominated almost entirely by ionized impurity and Fröhlich scattering.
Numerical evaluation is for In0.04Ga0.96As at T = 10 K with a doping concentration of n = 3×1016

cm−3.

where I have introduced the Greek letter Γ to represent the scattering rate. From the

form of Eq. 3.71, it is apparent that those mechanisms having the shortest relaxation times

will contribute most strongly to scattering. The same form applies to the momentum and

energy relaxation times. Fig. 3.8 shows the total carrier and momentum relaxation rate

(left) and time (right) due to the mechanisms worked out in this chapter. Comparison to

the previous plots shows that relaxation is dominated almost entirely by ionized impurity

scattering at low electron kinetic energy, and by the combined effect of ionized impurity and

Fröhlich scattering beyond the threshold for optical phonon emission. These calculations are

evaluated for In0.04Ga0.96As at T = 10 K at a doping concentration of 3× 1016 cm−3.

3.3 Low field transport

The above methods were used to describe electron scattering, particularly with an emphasis

on the momentum relaxation rate, describing the rate at which an ensemble of electrons with

a particular initial momentum ~k will become randomized. But the distribution function we

used was isotropic in ~k, which suggests that no net momentum can exist. We can see this

by taking the average momentum, defined by
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〈~k〉 ≡

∫
~k
~kf
(
~k
)
d~k∫

~k
f
(
~k
)
d~k

= 0

To treat the distribution function properly, we must go out of equilibrium. To do this, we will

use the Boltzmann transport equation. We will see that at low electric fields, and therefore

low electron velocities, we can describe the electrons as being in near equilibrium, and we

will use a modified form of the Fermi-Dirac distribution function. For a detailed discussion,

consult Ref. [80].

3.3.1 Boltzmann transport equation

Our goal is to build the time dependence of the electron distribution function in near equi-

librium conditions. Obviously, in equilibrium, df/dt = 0. In carrier transport, it is common

to assume that the distribution function is characterized by three variables: position, mo-

mentum, and time. In this case, the time dependent distribution function is given by

df

dt
=
∂f

∂t
+
∂f

∂~p
· d~p
dt

+
∂f

∂~r
· d~r
dt

(3.72)

where it is understood that ∂f/∂~r = ∇rf , and similarly for ~p. It is common to use the

definitions d~p/dt = ~F and d~r/dt = ~υ, where ~F and ~υ are the force and velocity respectively,

in which case we have

df

dt
=
∂f

∂t
+ ~F · ∇pf + ~υ · ∇rf. (3.73)

The next step is to evaluate what physical phenomena give rise to the transient behavior of

the distribution function. We saw that the scattering mechanisms presented in the previous

section were one such case, and this is the case that we will focus on. We will also include

terms that allow for generation and decay of carriers as well. This could be, for example, due
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to optical generation and recombination of electron-hole pairs, which will be characterized

by the terms G and R respectively. Plugging these terms into the left side of Eq. 3.73, we

have

df

dt

∣∣∣∣
scatt

+G−R =
∂f

∂t
+ ~F · ∇pf + ~υ · ∇rf. (3.74)

Eq. 3.74 is the Boltzmann transport equation [81]. It is typically solved for ∂f/∂t to de-

termine the functional time dependence of the distribution function. We point out that f

could depend on any number of variables, in which case we must include additional partial

derivatives on the right. For the moment, we will take G = R, such that carrier generation

and recombination is in equilibrium. Our last remaining goal is to evaluate the scattering

derivative on the left. We can evaluate this, for a particular momentum, based on the scat-

tering rate determined in the previous section (Eq. 3.71). To treat this for all momenta, we

then simply need to integrate over ~k space with the appropriate weighting function. This is

given by

df

dt

∣∣∣∣
scatt,out

= − 1

8π3

∫
~k

1

τ̃~k
f
(
~k
)
d~k = − 1

(8π3)2

∫
~k

d~k

∫
~k′
d~k′
{
S
(
~k,~k′

)
f
(
~k
) [

1− f
(
~k′
)]}
(3.75)

where in the last step I substituted in the integral form of Eq. 3.7. Eq. 3.75 represents

the rate at which carriers scatter “out” (hence the overall minus sign) from a particular

momentum ~k to ~k′ summed over all ~k and ~k′. However, to conserve carrier numbers, for

every “out” scattering event, we must consider that this corresponds to an “in” scatter into

a different momentum. Including both in- and out-scattering, the total scattering derivative

becomes
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df

dt

∣∣∣∣
scatt

=
1

(8π3)2

∫
~k

d~k

∫
~k′
d~k′
{
S
(
~k′, ~k

)
f
(
~k′
) [

1− f
(
~k
)]
− S

(
~k,~k′

)
f
(
~k
) [

1− f
(
~k′
)]}

(3.76)

Eq. 3.76 is used to determine the distribution function in the Boltzmann transport equation

when scattering processes are present. We finally point out that this was demonstrated

by defining a state according to its momentum, however this can be achieved using any

definition of the electron state, as long as the appropriate weighting function is used.

3.3.2 Mobility calculations

As was pointed out previously, in equilibrium the distribution function is given by the Fermi-

Dirac form, which is isotropic in momentum and, as such, implies no net current flow. In

the relaxation time approximation [51], we can approximate that the distribution function

can be described almost entirely by the equilibrium distribution plus a small anisotropic

perturbation, namely

f
(
~k, t
)

= fµ∗
(
~k
)

+ fA

(
~k, t
)
. (3.77)

The term µ∗ is the quasi-chemical potential [62], with a deviation from the chemical po-

tential described by the material and conditions giving rise to scattering. We make the

approximation, under low field conditions, that fµ∗ does not contribute to the scattering

derivative [51], which can be seen by taking the integral in Eq. 3.76 using the Fermi-Dirac

distribution function. In this case, the scattering derivative is given by

df
(
~k, t
)

dt

∣∣∣∣∣∣
scatt

=
dfA

(
~k, t
)

dt

∣∣∣∣∣∣
scatt

= −
fA

(
~k, t
)

τ̃m

(
~k
) (3.78)
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where the last step is the relaxation time approximation, with τ̃m the momentum relaxation

time. It is valid under low field conditions when the scattering mechanism is either elastic

or isotropic. Using the Boltzmann transport equation in the presence of a weak electric

field ( ~E), assuming no temporal or spatial dependence in the distribution function, the

asymmetric part of the distribution function is given by

fA

(
~k
)

= eτ̃m ~E · ∇pf
(
~k
)
. (3.79)

We can make the approximation in the low field limit that ∇pf ≈ −υf/(kBT ). Using some

foresight, we know that an electric field gives rise to a nonzero average velocity of carriers,

and we can evaluate this velocity by integrating over momentum:

〈υ〉 =
1

m∗

∫
~k
d~k [pf (p)]∫
~k
d~k [f (k)]

(3.80)

where I used the substitution p = m∗υ. Noting that
∫

[pfµ′(p)]dp = 0, as was discussed

previously, and recognizing that the mobility (µ) is defined for electrons by the relation

〈~υ〉 = −µ~E, we can solve Eq. 3.80 to get

µ =
e

m∗
〈ετm (ε)〉
〈ε〉

(3.81)

where here µ is defined to be the carrier mobility, not to be confused with the chemical

potential. We can use the momentum relaxation times from the previous section to solve

for the carrier mobility. This is shown, as a function of temperature for In0.04Ga0.96As at

a doping concentration of n = 3 × 1016 cm−3 in Fig. 3.9. The blue line is the calculated

mobility using the total momentum relaxation time described by Eq. 3.71, while the dashed

red and green lines represent the mobility calculated using only the ionized impurity and

Fröhlich momentum relaxation times. Blue circles are measurements of the mobility for a
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Figure 3.9: Electron mobility: Depicted for In0.04Ga0.96As as a function of temperature at a
doping concentration of 3 × 1016 cm−3. Blue line is numerical calculation according to Eq. 3.81,
while blue circles are data taken from van der Pauw measurements [82]. Dashed red and green
lines display mobility expected due to only ionized impurity and Fröhlich scattering mechanisms
respectively.

sample having the given parameters using the four-contact van der Pauw technique [82]. We

can see that the calculated mobility is in agreement with the measurements.

3.4 Spin relaxation mechanisms

In the two previous sections we calculated the relaxation times and mobility for electrons

assuming spin conserving scattering mechanisms. Now we are in a position to address spin

relaxation, both by allowing spin coupling while undergoing ballistic transport, and by al-

lowing scattering that is accompanied by a spin flip. This will be addressed in terms of the

common spin relaxation mechanisms for GaAs, but is in no way an exhaustive treatment.

For a more complete enumeration of spin relaxation in semiconductors, consult Ref. [83].
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Figure 3.10: D’yakonov-Perel spin relaxation mechanism: Electron momentum depicted by
blue arrow and spin depicted by black arrow. After each scattering event the electron experiences
a new spin-orbit effective magnetic field, causing a change in the spin precession direction and rate.
Adapted from Ref. [83].

3.4.1 D’yakanov-Perel

We saw in the previous chapter that spatial inversion symmetry breaking in semiconductors

gives rise to a momentum dependent spin splitting that can be characterized by a spin-orbit

effective magnetic field ~BSO. This field was found to be linear in momentum and anisotropic

in the (001) crystal plane (see Fig. 2.8). We also found in Sec. 2.2.4 that the presence of

a magnetic field, be it external or spin-orbit induced, serves to couple the initial electron

spin to the direction orthogonal to the magnetic field via spin precession, as described by

Eq. 2.33. For a ballistic electron, the momentum direction does not change, and so too does

the spin direction remain the same in the frame rotating at the precession frequency. However

each scattering event changes the electron momentum direction, which in turn changes the

spin-orbit field magnitude and direction experienced by the electron, as depicted in Fig. 3.10.

For an ensemble of electrons with a spread in velocities centered around the drift veloc-
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ity, this effect will serve to randomize the electron spins. Such an effect was proposed by

D’yakonov and Perel [12] in 1971 and is termed the D’yakonov-Perel spin relaxation mech-

anism. We present the general form of the spin relaxation rate. For a detailed discussion,

consult Ref. [11]. The spin relaxation rate is, in general, a tensor with matrix elements given

by

1

τ̃s,ii

(
~k
) = γl

(
Ω2 − Ω2

i

)
τ̃m

(
~k
)

(3.82)

1

τ̃s,ij

(
~k
) = γl

(
ΩiΩj

)
τ̃m

(
~k
)

(3.83)

where τ̃m is the momentum relaxation time determined in Sec. 3.2. γl is a term involving

the expansion of the Hamiltonian in spherical harmonics. The choice of subscript l depends

on the symmetry of the function ~Ω(~k). For our purposes, it will suffice to say that l = 1 and

γl = 1 [11]. The term ΩiΩj is the product of Larmor precession frequencies along directions

êi and êj averaged over the solid angle in k space. This is given by

ΩiΩj =
1

4π

∫ 2π

0

dφ

∫ π

0

d (cos θ) {Ωi (k, θ, φ) Ωj (k, θ, φ)} . (3.84)

We now build a form for the spin relaxation rate tensor in the presence of an anistropic

spin-orbit effective magnetic field. From Eq. 2.71, we can address the spin-orbit field

component-wise as

80



Ωx = k (α′ sin θ sinφ+ β′ sin θ cosφ) (3.85)

Ωy = −k (α′ sin θ cosφ+ β′ sin θ sinφ) (3.86)

Ωz = 0 (3.87)

with x̂, ŷ, and ẑ along the [100], [010], and [001] crystal axes respectively, and θ and φ are

the usual polar and azimuthal angles in spherical coordinates, respectively. We used the

prime notation to relate the coefficients for the field with those of the precession frequency,

namely

α′ =
gµB
h̄
α

and similarly for β. The components of the spin relaxation tensor are then

ΩxΩx =
k2

4π

∫ 2π

0

dφ
(
α′2 sin2 φ+ β′2 cos2 φ+ 2α′β′ sinφ cosφ

) ∫ π

0

dθ
(
sin3 θ

)
(3.88)

ΩyΩy =
k2

4π

∫ 2π

0

dφ
(
α′2 cos2 φ+ β′2 sin2 φ+ 2α′β′ sinφ cosφ

) ∫ π

0

dθ
(
sin3 θ

)
(3.89)

ΩxΩy = ΩyΩx =
k2

4π
×∫ 2π

0

dφ
(
α′2 sinφ cosφ+ β′2 sinφ cosφ+ α′β′

[
sin2 φ+ cos2

]
φ
) ∫ π

0

dθ
(
sin3 θ

)
(3.90)

ΩzΩz = ΩxΩz = ΩzΩx = ΩyΩz = ΩzΩy = 0 (3.91)

Using Eqs. 3.82 and 3.83, and taking the integrals, the spin relaxation tensor is
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1

τ̃s

(
~k
) =

k2τ̃m

(
~k
)

3


α′2 + β′2 2α′β′ 0

2α′β′ α′2 + β′2 0

0 0 2 (α′2 + β′2)

 (3.92)

With the assignment r = α′/β′ = α/β, and Γ̃0(~k) = (gµBβ)2k2τ̃m(~k)/(3h̄2), the spin relax-

ation tensor is

1

τ̃s

(
~k
) = Γ̃0

(
~k
)


1 + r2 2r 0

2r 1 + r2 0

0 0 2 (1 + r2)

 (3.93)

We finally recognize that this matrix can be diagonalized by rotating the basis by π/4, and

we have, in the [110], [110], [001] crystal axis basis, the spin relaxation tensor:

1

τs (υd)
= Γ0 (υd)


(1 + r)2 0 0

0 (1− r)2 0

0 0 2 (1 + r2)

 (3.94)

In the last step, we integrated τ̃m(~k) over k space with the distribution function centered

at the drift velocity (given by ~υd = µ~E). In general, we will allow Γ0 to be a fit parameter

for comparisons with measurements, as will be discussed in Ch. 6. We note finally that the

spin relaxation rate can be minimized by minimizing the spin-orbit effective magnetic field.

Clever sample design can be used to minimize the Dresselhaus spin-orbit coupling inherent to

zincblende structures, as has been seen with (001) [17] and (111) [18] GaAs quantum wells.

In both cases, a sizable increase in the spin relaxation time was observed. For example, the

increase was up to two orders of magnitude for (111) quantum wells [18].
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3.4.2 Elliott-Yafet

Whereas the D’yakonov-Perel spin relaxation mechanism involves relaxation between scatter-

ing events, the Elliott-Yafet mechanism involves spin relaxation due to spin flips at scattering

events. It was proposed by Elliott [13] in 1954, and its temperature dependence was char-

acterized by Yafet [14] in 1963. It is a result of the fact that the Bloch states examined in

Sec. 2.3.1 are not eigenstates of the spin basis. As such, there is an non-diagonal component

that allows for spin mixing between the conduction and valence bands. We treat this by

expanding the transition Hamiltonian to include a spin interaction.

The matrix element is given by

Hs′k′,sk =
∑
m

Hs′k′,mk′Hmk′,mkHmk,sk

(εs′ − εm) (εs − εm)
(3.95)

where s and s′ are the initial and final conduction band electron spin states, k and k′ are

the corresponding initial and final momentum states, and m is the valence band spin state

mediating the interaction. The interaction Hamiltonian Hmk′,mk is one of the spin conserving

scattering mechanisms discussed in Sec. 3.2. The terms εm,s,s′ represent the energies of the

spin-split bands. As this treatment describes an interaction between the conduction and

valence band states, we expect εs − εm ∼ εg, εg + ∆0 with εg the band gap and ∆0 the

energy separation of the split-off band. It is worth pointing out that a similar treatment for

just the conduction band states was examined by Boguslawski [84] in 1980, specifically for

electron-electron scattering. As we do not expect this to be a significant source of scattering,

however, it will not be addressed here.

As with the carrier relaxation rates discussed in Sec. 3.2, we can represent the spin

relaxation rate according to the same prescription:
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1

τ̃s

(
~k
) =

4π

h̄

∑
~k′

|Hs′k′,sk|2 δ (εk′ − εk + ∆ε) (3.96)

where ∆ε = ±h̄ω, 0 for phonon interactions and ionized impurity scattering respectively.

The extra factor of two accounts for both spin states. The matrix elements in Eq. 3.95 can

be evaluated using the Kane 8 × 8 matrix (see Ref. [11] for details). If we assume that the

contribution of the spin-orbit splitting in the conduction band is negligible compared to the

band gap and split-off band energies, then the matrix element is given by

Hs′k′,sk = Hk′,k
2iεkη sin θ (1− η/2)

3εg (1− η/3)
(3.97)

where η = ∆0/(∆0 + εg), εk is the electron kinetic energy, and θ is the angle between ~k

and ~k′. In this treatment, we have approximated the scattering process to be elastic. As

the dominant scattering mechanism at low temperatures is ionized-impurity scattering (as

in Fig. 3.9), we will take this to be a valid approximation. The spin relaxation rate becomes

1

τ̃s

(
~k
) =

8

9

(
εk
εg

)2 [
η (1− η/2)

1− η/3

]2

2π

h̄

∑
~k′

|Hk′,k|2 sin2 θδ (εk′ − εk + ∆ε)

 (3.98)

It is typical to cast the term in curly braces in terms of the momentum scattering rate. To

do so, we must introduce a factor Φ̃(k) given by

Φ̃ (k) =

∫ 1

−1
d (cos θ)

[
|Hk′,k|2 (1− cos2 θ)

]∫ 1

−1
d (cos θ)

[
|Hk′,k|2 (1− cos θ)

] (3.99)

In doing so, the spin relaxation rate due to the Elliott-Yafet mechanism is

1

τs (υd)
=

8

9

(
〈εk〉
εg

)2 [
η (1− η/2)

1− η/3

]2
Φ (υd)

τm (υd)
(3.100)
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where again, in the last step, we integrate over k space weighted by the distribution function

centered at the drift velocity.

There are a few comparisons to make between the Elliott-Yafet and D’yakonov-Perel spin

relaxation rates. The first is that the Elliott-Yafet mechanism was found to be a scalar func-

tion described by Eq. 3.100, while the D’yakonov-Perel mechanism is, in general, a tensor

with a specific eigenbasis described by Eq. 3.94. Furthermore, the Elliott-Yafet spin relax-

ation rate is proportional to the momentum relaxation rate. This is understood, as a higher

rate of electron scattering increases the overall probability of a spin-flip (which is presumed

roughly constant for each scattering event at a particular momentum). The D’yakonov-Perel

spin relaxation rate, however, is proportional to the inverse of the momentum relaxation rate

(τm is contained in the definition of Γ0). This is also understood because a very high rate of

momentum scattering will not allow for appreciable spin precession, and therefore dephasing,

between scattering events.

As the mobility is proportional to the momentum relaxation time, averaged over k space,

we then expect samples with high mobility to be dominated by the D’yakonov-Perel dephas-

ing mechanism, while samples with low mobility are dominated by the Elliott-Yafet mecha-

nism. For GaAs, the turning point occurs at a doping density of n ∼ 2×1016 cm−3 [78]. The

samples in this study have a doping concentration of n = 3 × 1016 cm−3, and therefore the

D’yakonov-Perel spin relaxation is expected to dominate. Indeed, we will see in Chs. 4 and 6

that the measured spin relaxation is anisotropic, having a tensor form. However we point

out that the Elliott-Yafet mechanism, though not dominant, may still play an influential role

in spin relaxation.

3.4.3 Bir-Aronov-Pikus

We conclude spin relaxation by mentioning the Bir-Aronov-Pikus mechanism, which involves

the exchange interaction between electron and hole spins [15]. It can be described in a similar
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form as the D’yakonov-Perel relaxation mechanism, with electron spins precessing around

the effective magnetic field generated by the hole spin. It has the added complication of

allowing holes to have a spread in velocities and their own set of scattering mechanisms. As

was pointed out by Fabian and Sarma [83], it is only expected to be a significant source

of spin relaxation in semiconductors having a sizable overlap between the electron and hole

wave functions. For n-doped semiconductors, it is not expected to contribute.
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Chapter 4

Equipment and Data Collection

In the previous chapters we built a framework to describe the physical behavior of carriers

and spins in the conduction band of III-V semiconductors, namely In0.04Ga0.96As. This

chapter will be devoted to introducing the measurement techniques and associated equipment

used throughout this research. It will be organized as follows. In Sec. 4.1, I will discuss

optical spin generation techniques, including the pulsed Ti:Sapphire laser and photoelastic

modulator used to excite carriers, and address the optical selection rules that give rise to

a spin polarization. Sec. 4.2 will introduce the concept of Faraday/Kerr rotation used to

measure the spin polarization, as well as the equipment and signal processing techniques to

isolate signal from noise.

The optical setup and measurements of the time evolution of spin polarization will then be

discussed in Sec. 4.3. This is where the pump-probe measurement scheme will be introduced

in Sec. 4.3.1. I will conclude the chapter with a discussion of steady-state spin polarization

in Sec. 4.4, introducing the concept of Hanle measurements. This chapter will serve to build

the framework for the measurements presented in the chapters to come.
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4.1 Optical spin generation

This section will go through the fundamental principles of optically generating spin po-

larization. This will be seen to be an important procedure for measurements of material

parameters presented in this chapter as well as the spin-orbit splitting presented in Ch. 5.

4.1.1 Pulsed titanium-sapphire laser

Optical measurements throughout this work are performed using a mode-locked MIRA 900

titanium sapphire laser that is pumped by a 532 nm beam from the Verdi V-10, both of

which are Coherent products.

The Verdi is a diode-pumped solid state (DPSS) [85] laser system separated into a power

supply and a laser head [86]. The power supply drives current to a laser diode array, in

addition to controlling temperature and optical servo loops. The diode array output is sent

to the laser head [87] by use of an optical fiber and umbilical. Once in the head, light

passes through a unidirectional resonating ring cavity [88] in which the gain medium is a

neodymium vanadate crystal [89] lasing at 1064 nm. Finally a non-linear, phase matched

lithium triborate (LBO) crystal is used as a frequency doubler to generate the output 532

nm green light which is used to pump the MIRA 900.

The MIRA 900 is a bidirectional laser cavity with a broad band titanium-doped sapphire

crystal (Ti:Sapphire) as the active gain medium and is wavelength tunable in the range

700-1000 nm, and is controlled by temperature and optical servo loops [90]. The wavelength

is tunable by rotating a birefringent filter in the beam path. The MIRA 900 is designed

specifically to produce coherent light pulses (in the time domain) through a procedure known

as mode-locking. The term “mode” refers to the longitudinal modes for standing waves that

are allowed in the cavity (note the sum of all non-standing waves will destructively interfere

and do not contribute to lasing). When some appreciable number of these modes are in
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phase, the laser is said to be mode-locked. The MIRA 900 can operate in either femtosecond

mode or picosecond mode. In the former, a larger range of cavity modes (corresponding to a

larger bandwidth) is phase-matched and the pulse duration is shorter. In the latter, a more

narrow range of cavity modes is locked and therefore the pulse duration is longer. For most

of our applications, the picosecond mode provides sufficiently short pulses and offers a much

narrower bandwidth than the femtosecond mode. For this reason, we typically operate in

picosecond mode.

The MIRA 900 uses a passive mode-locking method known as Kerr lens mode-locking

(KLM), in which an optically active medium focuses high intensity light to a narrower focus

than lower intensity light due to the field produced in the material by the electromagnetic

radiation. The Ti:Sapphire crystal is such a material. An aperture placed in the beam

path blocks low intensity light while allowing narrowly focused high intensity laser pulses

through. In principle, the mode-locking can be self starting, where even slight vibrations

can be sufficient to initialize phase matching. In the MIRA 900, however, this is achieved

more efficiently by a Brewster window mounted to a galvo motor, the oscillations of which

seed mode-locking. The Brewster window also serves the purpose of polarizing the light in

the cavity.

The ends of the cavity are the output coupler and a Gires-Tournois Interferometer (GTI,

only available in picosecond mode), the latter of which monitors and adjusts the group ve-

locity dispersion in a process known as β-lock. Our typical operation uses β-lock, although it

is often not necessary to achieve and maintain mode-locking. The temporal spacing between

successive optical pulses, referred to as the laser repetition rate, is determined by the length

of the optical cavity. The repetition of our MIRA 900 is trep = 13.16 ns. This number can

vary slightly between different lasers, and can also vary slightly based on temperature and

humidity. To avoid humidity problems, the cavity is continuously purged with nitrogen gas.

Care must be taken with the nitrogen flow, as too high of a flow rate can generate significant
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vibrations that interfere with the ability to achieve mode-lock. Finally, an adjustable slit

(two razor blades that may be horizontally traversed and variably spaced) just before the

output coupler can be used to filter out any remaining continuous wave (CW) component.

4.1.2 Photoelastic modulator

To optically excite spin-polarized carriers, we must first convert the linearly polarized output

light from the laser into circularly polarized light (Sec. 4.1.3). While this may be done using

a quarter wave plate, it is beneficial to use a method that rapidly oscillates the light between

left and right circular polarizations. This is useful as it modulates the measurement signal

and allows for lock-in detection (Sec. 4.2.3). The photoelastic modulator (PEM) is a device

that provides such a method.

PEM operation is based on the photoelasticity of an optically transparent material. For

the Hinds Model I/FS50, this material is a fused silica bar, which is made to vibrate at a

natural resonance frequency of 50 kHz by a quartz piezoelectric transducer. This corresponds

to periodic compressive and tensile strain along the modulation axis at a rate of 50 kHz.

When the bar is compressed, the component of light polarized along the compression axis

will travel faster through the material and lead the polarization perpendicular to the axis

of compression. Likewise, when the fused silica bar is stretched, the component along the

modulation axis will lag. The phase difference (in length units) between the two polarization

components is given by

θ = d (nx − ny) (4.1)

where d is the thickness of the material, and nx and ny are the indices of refraction along and

perpendicular to the modulation axis, respectively. The Hinds PEM-100 controller sets the

amplitude of oscillation to vary the indices of refraction based on the wavelength of light and
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the desired retardation [91]. It has two modes, operating with a peak retardation at either

λ/2 or λ/4, corresponding to a half or quarter wave plate respectively. The controller works

most efficiently when the incoming linear light polarization is at a 45◦ angle with respect

to the modulation axis. In half wave plate mode, the modulation will be between linear

polarization parallel and perpendicular to the original polarization direction. In quarter wave

plate mode, the output light will modulate between left and right circular polarizations.

4.1.3 Optical selection rules in GaAs

Right or left circularly polarized light from the pump beam, tuned to the band gap energy,

is used to excite electrons from the light-hole/heavy-hole valence bands into the conduction

band. The laser line width is sufficiently narrow to avoid simultaneous excitation from the

split-off valence band. To build the optical transition strengths for each subband, we make

use of the angular momentum state definitions for these bands presented in Table. 2.1 to

address the transition matrix elements directly.

We will use the dipole approximation [92], in which we can treat the field induced by

the light as directly exciting dipole oscillations. This approximation is valid as the photon

dispersion is extremely strong compared to that of the crystal [93] (ω = υck with υc the speed

of light in the material). As such, we treat dipole transitions as being nearly vertical and,

when tuned to the band gap, occurring near the Γ point. We further treat the field-induced

dipole oscillations as having an orthonormal basis analogous to that of the cubic Bloch states

in the valence band. Defining D̂ as the dipole moment operator, it then follows that [11]

〈1|Di |Xj〉 = |D| δij (4.2)

where |Xj〉 is one of the p-like valence band states |X〉, |Y 〉, |Z〉 discussed in Sec. 2.3.1,

and |1〉 is the s-like conduction band state. Eq. 4.2 makes sense from a conservation of
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momentum standpoint. A dipole oscillation along x̂ should not affect the |Y 〉 state in the

p-like valence band. We will take the transition matrix to have the form 〈ψf | D̂ |ψi〉 with

f and i representing the final and initial state respectively. We have defined |D| as the

magnitude of the matrix element. Due to the cubic symmetry of the crystal, it is expected

to be the same for each of the orthogonal basis vectors. As we are concerned only with the

ratio of transition matrix elements, we will not directly evaluate the integral.

We will now build the transition matrix elements from the valence band states to the

spin up conduction band state with the laser axis along the axis of quantization |Z〉. In this

case, we take the dipole operator for right and left circularly polarized light as

D− =
1√
2

(Dx − iDy) , D+ = − 1√
2

(Dx + iDy) (4.3)

respectively. Consider first the transition from the mj = +3/2 heavy-hole valence band

state. For right circularly polarized light we have

〈j=1/2
mj=1/2|D

− |j=3/2
mj=3/2〉 = −1

2
〈1| (Dx − iDy) (|X〉+ i |Y 〉) . (4.4)

Here I have used the orthonormality of spin states, namely 〈↑ | ↑〉 = 1, and the definition

of the spin +3/2 heavy-hole valence band state |j = 3/2,mj = 3/2〉 from Table 2.1. Using

Eq. 4.2 this gives

〈j=1/2
mj=1/2|D

− |j=3/2
mj=3/2〉 = − |D| (4.5)

Notice that if we perform the same transition using left circularly polarized light, we get

〈j = 1/2,mj = 1/2|D+ |j = 3/2,mj = 3/2〉 = 0. Keeping in mind that the orthonormality

of spin states requires that 〈↑ | ↓〉 = 0, we immediately see that a transition from the

mj = −3/2 valence band state to the mj = +1/2 conduction band state is not allowed.

We can similarly build the transition matrix element from the |j = 3/2,mj = −1/2〉
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valence band state using left circularly polarized light to get

〈j=1/2
mj=1/2|D

+ |j=3/2
mj=−1/2〉 =

1√
12
〈1| (Dx + iDy) (|X〉 − i |Y 〉)

= − 1√
3
|D| . (4.6)

From Fermi’s golden rule, the transition rate is proportional to the square of the transition

matrix element. We find the ratio of transition strengths is:

∣∣∣〈j=1/2
mj=1/2|D− |

j=3/2
mj=−1/2〉

∣∣∣2∣∣∣〈j=1/2
mj=1/2|D+ |j=3/2

mj=3/2〉
∣∣∣2 =

1

3
. (4.7)

We build a similar set of relative transition strengths for each valence to conduction band

transition. The results are shown in Fig. 4.1. We see that by pumping with left circularly

polarized light (σ+), we create three times as many spin down carriers as spin up. The spin

polarization induced in the conduction band is

P =

∣∣∣∣n↑ − n↓n↑ + n↓

∣∣∣∣ =
3− 1

3 + 1
=

1

2
. (4.8)

We point out that the allowed transitions represent conservation of angular momentum.

The transition ratios for carrier recombination are the same, and, as such, polarized pho-

toluminescence can be used to measure the spin polarization of electrons in the conduction

band [94] or holes in the valence band [95].

Note that for these transition strengths we used only circularly polarized light along the

axis of spin quantization. If we allow the light polarization to be orthogonal to the axis of

quantization (such that D+ ∝ |Y 〉 ± i |Z〉, for example), then a vertical transition is also al-

lowed (with ∆mj = 0), having a relative strength of two compared to the transition strengths
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Figure 4.1: Optical selection rules: Shown for right (σ−) and left (σ+) circularly polarized
light absorption in GaAs. For each handedness, heavy-hole to conduction band transitions occur
at a rate three times greater than light-hole to conduction band transitions.

in Fig. 4.1. Such would be an important transition if the spin measurement axis were per-

pendicular to the optically-induced spin polarization axis. As we will see in Sec. 4.3.1, we

choose these axes to be parallel and such a transition is not considered.

We finally point out that the transition ratios depicted in Fig. 4.1 assume equal numbers

of available conduction and valence band states for each transition. This is, in general, not

the case, and the transition rates will need to be weighted by the joint density of states [73]

for the transition as the deviation from the Γ point increases. Furthermore, in cases for

which the semiconductor structure does not obey cubic symmetry, such as with a strain axis

or quantum confinement, or when the light-hole/heavy-hole degeneracy at the Γ point is

lifted, these transition ratios will no longer be valid.

4.2 Optical spin detection

We mentioned in the previous section that spin polarization measurements have been con-

ducted using polarized photoluminescence. Such a method, however, requires measurement

of the light produced from electron-hole recombination. For this reason, it is not an effec-
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Figure 4.2: Faraday rotation optical selection rules: Optical selection rules give rise to a
circular birefringence for samples with a spin polarization in the conduction band.

tive method for measuring the conduction band spin population after carrier recombination

has occurred. For this task, Faraday and Kerr rotation are an effective and extremely high

resolution method of measuring spin polarization.

4.2.1 Faraday/Kerr rotation

Faraday rotation is defined as the rotation of linearly polarized light upon transmission

through an optically active material. The Faraday effect was first discovered by Michael

Faraday in 1846 in a piece of glass in a magnetic field [96]. It can also be described in

the context of a spin-polarized conduction band in GaAs (or other such materials with spin

polarization generating optical selection rules). An unequal population of up and down spins

in the conduction band (Fig. 4.2) results in a shift in the absorption curves for left and right

circularly polarized light (Fig. 4.3), known as circular birefringence. In the figure, the spin

up conduction band has a higher carrier density than spin down. For the energy transition

depicted at the dashed green line, then, only optical absorption into the spin down state is

allowed. We see that, due to the optical selection rules, this occurs at a ratio of 3:1 for left

and right circularly polarized light, respectively.

Fig. 4.3(a) depicts the shift in absorption curves for left and right circularly polarized
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Figure 4.3: Circular birefringence: (a) Spin polarization in the conduction band gives rise
to a shift in the absorption edge for left and right circularly polarized light. (b) Through the
Kramers-Kronig relations this translates to a difference in refractive indices. Principal value of the
integral was obtained using the Python quadrature integration package (in the SciPy library) with
a Cauchy weighting.

light. These are treated as being proportional to
√
ε− εg with a saturation at high energy, in

accordance with three dimensional semiconductors. An exponentially decaying Urbach tail

below the band gap [97] has been added to more accurately depict the observed behavior.

The absorption is described by the imaginary component of the complex index of refraction.

Using the Kramers-Kronig relations [73], this corresponds to a shift in the real part of the

indices of refraction for left and right circularly polarized light, depicted in Fig. 4.3(b). The

difference in indices of refraction contains extrema of opposing sign on either side of the

band gap.

To see how this difference in index of refraction gives rise to a rotation of linearly polarized

light, consider that we can decompose linearly polarized light into a superposition of left

and right circularly polarized light. Using the standard Jones matrix notation for light

polarization [98], we can represent the incident horizontally polarized light as

~Ei = E0

1

0

ei(kz−ωt) =
E0

2


1

i

+

 1

−i


 ei(kz−ωt) (4.9)
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For light of a particular polarization transmitting through a material with index of refraction

n and thickness d, the light will experience a shift in phase given by ∆φ = nkd [99]. We

assume, for simplicity, normal incidence. Letting nr and nl correspond to the index of

refraction for right and left circularly polarized light respectively, then the light polarization

after transmission through a material of thickness d is given by

~Et =
E0

2


1

i

ei(nrkd−ωt) +

 1

−i

ei(nlkd−ωt)


=
E0

2
exp

[
i

(
nr + nl

2
kd− ωt

)]
1

i

e∆nkd/2 +

 1

−i

e−∆nkd/2

 (4.10)

where in the last line I made the substitution ∆n = nr − nl. We ignore the overall phase

factor as the intensity of light will go as the square of the polarization. Using the definition

θ = ∆nkd/2, the final light polarization is

Ef = E0


1

0

 cos θ −

0

1

 sin θ

 = E0

 cos θ sin θ

− sin θ cos θ


1

0

. (4.11)

We see that a circular birefringence has the effect of rotating the polarization of linearly po-

larized light upon passing through the material. The angle of rotation is called the Faraday

rotation angle (or Kerr rotation angle for rotation of linearly polarized light upon reflection).

In Sec. 4.2.2 we will describe how this angle is measured. It is found that for small polar-

izations, the angle of Faraday/Kerr rotation is proportional to the component of the spin

polarization along the direction of laser propagation [11].

Fig. 4.4 displays the measured Kerr rotation amplitude due to optically oriented electron

spin polarization for an In0.03Ga0.97As semiconductor sample as a function of probe wave-
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Figure 4.4: Kerr rotation vs. laser wavelength: Kerr rotation amplitude measured as a
function of laser wavelength for In0.03Ga0.97As at T = 10 K. We see rotation extrema occur in
opposite directions on either side of the band gap.

length. We can see that as we tune through the band gap energy, we sweep from a Kerr

rotation minimum to a maximum. We will discuss in Chs. 5 and 6 the advantages to taking

measurements at the low or high energy Kerr rotation peaks.

4.2.2 Photodiode bridge

The spin polarization is obtained by measuring the angle of Faraday/Kerr rotation of light

intensity upon transmission through or reflection off of the sample. This is achieved by using

a balanced photodiode bridge. Light is split into horizontal and vertical components using

a Wollaston prism, with each component fiber-coupled to a photodiode circuit. The circuit

diagram is shown in Fig. 4.5(a). Three Texas Instruments A128JM low noise operational

amplifiers magnify the difference current between the two photodiodes, as well as the two
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Figure 4.5: Photodiode bridge and Faraday rotation: (a) Photodiode bridge circuit diagram
(adapted from Ref. [100]). (b) Faraday rotation angle extracted from light polarization intensities.

reference currents. We label each reference voltage A and B and the difference voltage A−B.

The A − B output is proportional to the difference in light intensities for horizontally and

vertically polarized light, while A and B are proportional to each of the individual intensities.

Fig. 4.5(b) shows the Kerr rotation angle and how it is extracted from measurements

of the light polarization intensities. A half wave plate is placed in front of the Wollaston

prism to match the polarization intensities for the unrotated signal. In such a situation the

photodiode bridge is said to be balanced. When the polarization is rotated by an angle θ we

can write the polarization components as

EA = E sin
(
θ +

π

4

)
(4.12)

EB = E cos
(
θ +

π

4

)
(4.13)

where EA,B represents the light electric field for horizontal (A) and vertical (B) light. Keep-

ing in mind that the light intensity goes as the square of the electric field (for which the

polarization is defined) we have the polarization intensities
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IA = I sin2
(
θ +

π

4

)
=
I

2

[
1− cos

(
2θ +

π

2

)]
=
I

2
[1 + sin (2θ)] (4.14)

IB = I cos2
(
θ +

π

4

)
=
I

2

[
1 + cos

(
2θ +

π

2

)]
=
I

2
[1− sin (2θ)] (4.15)

where I = IA + IB = E2
A + E2

B. I used the trigonometric identity cos(α + π/2) = − sin(α).

Using Eqs. 4.14 and 4.15, we can represent the Faraday/Kerr rotation angle in terms of the

ratio of difference and sum intensities as

sin (2θ) ≈ 2θ =
IA − IB
IA + IB

(4.16)

where the approximation holds in the paraxial approximation (i.e. for small angles). The

photodiode current, which is proportional to these intensities, is amplified and sent from the

photodiode bridge output to a lock-in amplifier.

One practical consideration is that the A − B voltage is amplified by a factor of two

greater than each of the A and B voltages (R0 = 2R1). As such, we must divide Eq. 4.16 by

an additional factor of two to get the correct rotation angle.

4.2.3 Digital signal processing and lock-in detection

As discussed in Sec. 4.1.2, the photoelastic modulator (PEM) modulates the pump beam

between left and right circular polarizations according to a sine wave at 50 kHz. Due to

the symmetry of the optical selection rules, we expect the photo-induced conduction band

spin polarization to oscillate between spin up and down at the same frequency, ultimately

resulting in oscillations of the measured Faraday/Kerr rotation angle.

The Signal Recovery Model 7265 DSP Lock-in Amplifier [101] is designed to isolate such

measurements occurring at a known frequency from noise (which is presumed to have a
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frequency distribution). The measurement signal is coupled from the photodiode bridge to

the lock-in input using an impedance-matched 50 Ω BNC cable. Meanwhile, a reference

signal from the PEM (also a sinusoid oscillating at the PEM frequency) is BNC coupled to

the reference input on the lock-in.

The measurement signal is passed through an input amplifier to a line frequency rejection

filter centered at 60 and 120 Hz designed to reject signal induced by the American standard

AC electrical line frequency. This signal then passes through an AC gain and antialiasing

filter into the main analog to digital converter (ADC), which has a sampling rate of 166 kHz.

The now digital signal is sent to two digital signal processors (DSPs), which measure the in-

phase and quadrature components relative to the reference signal. Meanwhile, the reference

signal goes through its own ADC and is converted into a pair of sine and cosine waves. The

cosine and sine components are sent to the in-phase and quadrature DSPs, respectively.

The DSP digitally multiplies the measurement signal by the reference signal. We will

examine this for the in-phase component. Consider measurement (Vm) and reference (Vr)

signals of the form

Vm =
∑
i

Vi cos (ωit+ δ) =
∑
i

Vi [cos (ωit) cos (δ)− sin (ωit) sin (δ)] (4.17)

Vr = cos (ωrt) (4.18)

where the measurement signal is presumed to be an infinite sum of appropriately weighted

frequency components. These are composed of a DC offset, low and high frequency noise, and

the desired measurement signal oscillating at the PEM frequency ωr, with a corresponding

amplitude V0. Other than the DC offset, we expect the component oscillating at the reference

frequency to strongly dominate over other individual components, though we point out that

the infinite sum, which represents the noise, may be several orders of magnitude larger than

101



the desired measurement signal. The digital signal processor multiplies signals Vm by Vr,

resulting in (with some trigonometric identities)

V =
1

2

∑
i

Vi {cos δ (cos [(ωi − ωr) t] + cos [(ωi + ωr) t]) −

sin δ (sin [(ωi − ωr) t] + sin [(ωi + ωr) t])} (4.19)

The signal given in Eq. 4.19 is sent to a low pass digital filter with cutoff frequency set by

the time constant. In practice, the filtration efficiency has a frequency dependence that is

usually given in decibels (dB), where 6 dB corresponds to a signal attenuation by a factor of

roughly 2. The lock-in has up to 4 stage filtration, each of which has an attenuation slope of

6 dB per octave (where an octave corresponds to a factor of 2 increase in the frequency). As

such, the available output filters are 6, 12, 18, and 24 dB per octave. Consider in Eq. 4.19,

we expect the largest signal to be that occurring at ωi = ωr, corresponding to the desired

measurement signal, as well as a DC offset for which ωi = 0. Keeping these terms, we have

V =
V0

2
cos δ + VDC cos δ cos (ωrt) +

V0

2
cos (2ωrt+ δ) (4.20)

We desire only the first term to survive filtration as it is V0 that we wish to measure. As

such, we need a low pass filtration slope that attenuates the signal sufficiently well below a

frequency of ωr. The low pass digital filtration is achieved using a discrete Fourier transform

method [102], and has an attenuation equivalent to that of a Butterworth filter, expressed

in terms of the frequency, in decibels, by

G(ω) = −10 log

[
1 +

(
ω

ωc

)2n
]

(4.21)

where n is the stage of filtration, given by n = 1, 2, 3, 4 for a slope of 6, 12, 18, 24 dB per
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octave, respectively. ωc is the cutoff frequency defined as TC−1 with TC the time constant

of the lock-in which is selectable by the user. With the PEM operating at a frequency of 50

kHz, we select a time constant of TC = 160 µs. According to Eq. 4.21, this would correspond

to an attenuation of 68 dB and 80 dB at a frequency of ωr and 2ωr respectively, which is

sufficient to filter out the DC offset and double frequency component given by the second

and third terms in Eq. 4.20.

The resulting filtered signal given by

VX =
V0

2
cos δ (4.22)

is half the amplitude of the component of the measurement signal oscillating at the PEM

frequency, weighted by cos δ, where δ is the phase difference between the signal and reference

waves. VX is the in-phase component of the processed signal. There is also a quadrature

component VY that has a sin δ weighting factor which is achieved by multiplying the mea-

surement signal by sin(ωrt). The Signal Recovery Model 7265 Lock-in Amplifier has an

autophase feature, which, when applied on the X and Y signals, attempts to set the phase

δ to 0 and π/2, respectively.

A practical consideration to note here is that the output processor of the lock-in amplifier

multiplies the output signal by an additional factor of
√

2, such that the output signal is

VX = (V0 cos δ)/
√

2, that is, the root mean square (RMS) voltage. This is simply because

RMS voltage is the commonly reported unit for AC electronics applications. We point out

that when the input measurement signal has a square wave form, instead of sinusoidal, only

the first harmonic of the square wave survives the digital signal processing and filtration.

This is a factor of 0.6365 times the peak to peak square wave voltage, which, when multiplied

by the factor of 1/
√

2 from the DSP and output processor, results in an output voltage of

0.45 times the peak to peak square wave voltage, or 90% of the signal amplitude.
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After the first stage of low pass filtration, but before the output processor, the lock-in

amplifier also sends the signals through digital to analog converters (DACs) to the FAST X

and FAST Y outputs. This allows for a cascaded lock-in procedure. As discussed earlier, a

PEM in the pump path results in modulation of the handedness of the circularly polarized

light and, thus, the sign of the spin polarization and resulting Faraday rotation. We can

perform an additional stage of lock-in amplification and noise filtration by including an

optical chopper in the probe path, as it is the probe polarization intensities that are measured

by the photodiode bridge. The FAST X output of the first lock-in, modulated by the PEM

at 50 kHz, is sent to a second lock-in input, which is modulated by the optical chopper at a

frequency of 1370 Hz. This cascaded lock-in procedure greatly increases the signal to noise

ratio.

There are some practical considerations to address when performing cascaded lock-in

detection. The desired measurement signal will now be described by a product of cosinusoidal

functions modulating at the PEM (ω1) and optical chopper (ω2) frequencies, given by

Vm = V0 cos (ω1t+ δ1) cos (ω2t+ δ2) (4.23)

where I have ignored the infinite sum of frequency components representing noise for simplic-

ity. When multiplied by the PEM reference signal, modulated at frequency ω1, the resulting

digital signal is

V = V1 [cos δ cos (ω2t+ δ2)− cos (2ωrt+ δ1) cos (ω2t+ δ2)] . (4.24)

This is the signal that is sent through the FAST X output of the first lock-in into the input of

the second. We note that filtration, as described earlier, is used to remove the second term;

however, the first term is also time dependent. As such, we must choose an appropriate time

constant such that the first term is not filtered out. We also see that this implies ω2 < 2ωr,
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and ωr � ω2 such that efficient filtration can occur.

It is typical to consider an attenuation of 3 dB (∼ 1/
√

2 decrease is signal strength) as

the signal rolloff point. To have the FAST X output of the first lock-in retain the signal up

to the 3 dB point, from Eq. 4.21, we require the cutoff frequency to be no less than

ωc ≥
ω2

(100.3 − 1)2n (4.25)

For a slope of 12 dB per octave, and ω2 = 2π× 1370 Hz = 8608 rad/s, this corresponds to a

time constant no greater than TC= 116 µs. Our nearest options allowed by the lock-in are 80

µs and 160 µs. To obtain a cleaner signal, we are willing to sacrifice some signal magnitude

for greater noise filtration and chose the latter option, with a time constant of TC= 160 µs.

However, when the full signal is required, it is recommended, at these frequency settings, to

decrease the time constant to 80 µs. For further noise filtration, the 24 dB per octave option

can be used in this case.

One final point to notice about the cascaded lock-in procedure is that the FAST X

output on the first lock-in has not yet gone through output signal processing. As such, the

magnitude of the signal, which has gone through a series of amplifications based on the gain

settings and sensitivity, as well as loss due to filtration, is not a well defined measurement

parameter. While the FAST X output will be proportional to the desired measurement

signal, the proportionality constant is not known. For this reason, the amplitude read from

the second lock-in cannot be used to measure the absolute Faraday rotation. When this angle

is needed, the value should be read from the first lock-in. Another option instead of using a

cascaded lock-in procedure is to design a circuit that produces a reference frequency that is

a sum of the two modulation frequencies. As long as this can be matched to the frequencies

of the individual devices (for example, to account for frequency jitter), the resulting sum

frequency can be sent to the lock-in reference, and the signal can be measured using only a
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single lock-in amplifier.

4.3 Time-resolved spin polarization measurements

This section is devoted to presenting the temporal dynamics of conduction band electron

spins and how measurements are conducted in both the time and frequency domains.

4.3.1 Pump-probe measurement scheme

The optical setup is shown in Fig. 4.6. The output horizontally polarized light from the

Ti:Sapph laser is sent through a pair of collimating lenses, and then split into pump and

probe pulses using a 50:50 cube beam splitter. The pump is then sent through a polarizing

beam splitter (which transmits horizontally polarized light and reflects vertically polarized

light) into the mechanical delay line.

The mechanical delay line is a retroreflector mirror attached to a cart on a track, the

position of which is set by a computer-controlled stepper motor. After one pass down the

delay line, the pump beam goes through a quarter wave plate, converting it to left circularly

polarized light, then reflects off a mirror at normal incidence, converting it to right circularly

polarized light, and finally through the quarter wave plate, again converting the initially

horizontally polarized light to vertically polarized. The light then continues on its reflection

path back through the delay line. As such, this is called a “double-pass” delay line, and has

a range of ∼ 8 ns. An advantage to using a double-pass delay line over a single-pass is that

one can achieve the same temporal separation range in half the space.

On the return path, the now vertically polarized light reflects off of the polarizing beam

splitter rather than transmitting through. This serves a dual purpose. The first, and obvious,

is that more of the pump light gets to the sample than if a 50:50 beam splitter were used.

The less obvious, but even more important reason, is to prevent light from coupling back
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Figure 4.6: Pump-probe experimental setup: Pump (blue) is temporally separated from
probe (red) using a mechanical delay line. A steering mirror in the pump path allows for spatial
positioning of the pump relative to the probe. A PEM is used to optically excite spin polarization
with the pump. The probe measures spin polarization through Faraday (Kerr) rotation upon
transmission through (reflection off of) the sample. The rotation angle is measured using a balanced
photodiode bridge.

into the laser, as this dramatically decreases the ability to achieve mode-lock. Note that this

requirement is a feature of using a double-pass delay line; coupling light back into the laser

is not an issue for a single-pass delay line. For a perfectly aligned delay line, there is no

way to isolate the return beam from the outgoing beam without using polarization optics.

After going through the delay line, the pump beam passes through another collimating lens

pair that doubles the pump spot size, and into the photoelastic modulator (PEM) which

modulates the beam between left and right circular polarization at a frequency of 50 kHz

used for lock-in detection. The pump beam then passes through a vertical periscope and
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variable neutral density filter wheel, to a steering mirror and finally continues on to the

focusing lens to the sample. The steering mirror is used to allow for two-dimensional spatial

positioning of the pump spot on the sample.

Meanwhile, the probe beam goes through a fixed delay path that is equal in length to

the pump delay line when it is set to zero delay (near the far right end of the track in the

figure). It then passes through a collimating lens pair that doubles the probe spot size. An

optical chopper is placed at the focus of the lens pair, modulating at a frequency of 1.370

kHz and is also used for lock-in detection. The probe beam then goes through a variable

neutral density filter wheel to the focusing lens to the sample.

The neutral density filter wheels are used to adjust the power of the pump and probe

beams. Typical measurements are taken with a pump power of ∼ 800 µW and a probe power

of ∼ 150 µW. On the approach to the final focusing lens, the pump and probe beams are

vertically offset from one another and parallel, with the probe going through the center of

the lens and the pump offset by ∼ 1 cm. As such, a two inch diameter lens is used to avoid

spherical aberrations. When the beams are parallel, the pump and probe spots should focus

to the same location on the sample. The overlap can be adjusted using the pump beam

steering mirror and an overlap scan. The pump is deflected vertically upon reflection off of

or transmission through the sample and is then blocked.

The sample is mounted onto the cold finger of a liquid Helium flow cryostat. For trans-

mission, the Janis Model ST-300 cryostat is used, while, for reflection, the ST-500 is used.

The cryostat is, in turn, mounted to a three dimensional translation stage, which allows for

the position of the sample relative to optics to be adjusted, including the focus. In addition,

when Kerr rotation in reflection is used, the cryostat is mounted to a rotatable stage, which

allows the sample to be rotated along the laser axis as well. This is particularly useful when

one wishes to take measurements along different crystal axes without having to warm up the

cryostat and remount the sample. This option is not available for the transmission cryostat,
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and, as such, the bulk of the measurements in this work are taken using Kerr rotation.

The cryostat cold finger is held between two poles of an external electromagnet, with a

field range of ∼ ±300 mT at a pole spacing that allows for the cryostat to have a reasonable

amount of translational and rotational flexibility. The maximum field can be increased,

if desired, by reducing the pole spacing, or using chilled water flow to allow for a higher

current. The magnet, run by the Kepco Power Supply, has a failsafe procedure that shuts

off the current if the temperature gets too high. Without chilling, for a pole spacing of ∼ 2.8

cm, a field of 250 mT running for ∼ 30 minutes will trigger the failsafe.

The linearly polarized probe beam continues through, or reflects off of, the sample under-

going Faraday or Kerr rotation, respectively, and on to the collection path. In transmission

the sample can be oriented such that the laser is at normal incidence. For reflection, how-

ever, to allow the probe beam to be picked off in the collection path, a slight angle must

be introduced. For our purposes, the cryostat is angled ∼ 5◦ from normal incidence. We

keep this angle at a minimum so that we may still use the optical selection rules for normal

incidence. In Fig. 4.6, only the transmission diagram is shown. In the collection path, an

additional collimating lens pair is used to reduce the laser spot size. At the focal point of

this lens pair, a pinhole is used to cut out as much scattered light from the pump beam

as possible. The probe beam then passes through a quarter wave plate and the Wollaston

prism, splitting into horizontal and vertical polarizations, and finally to the fibers coupling

the light to the photodiode bridge.

4.3.2 Time domain measurements

Time-domain measurements are conducted by fixing the strength of the external magnetic

field, and varying the pump-probe time delay (∆t). By making the pump delay line shorter,

we are causing the pump beam to be incident on the sample at an earlier time, and therefore

increasing the delay time between the pump and probe. By measuring the Kerr rotation
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at each time delay, we can examine the temporal behavior of the conduction band spin

polarization induced by the pump. We take the polarization of spins by the pump to occur

on a near instantaneous time scale compared to the free evolution of spins thereafter. As

such, we model the time-dependent spin polarization according to the form presented in

Sec. 2.2.4, and given here as

∂~S

∂t
= −

↔
Γ · ~S + ~Ω× ~S (4.26)

where ~Ω = gµB ~Bext/h̄ is the Larmor precession frequency, with g the electron g-factor, µB

the Bohr magneton, h̄ the reduced Planck constant, and ~Bext the external magnetic field

vector, taken to be in-plane in the Voigt geometry with ~Bext = Bextx̂. Here I have neglected

spin-orbit effective magnetic field contributions to ~Ω.
↔
Γ is the anisotropic spin relaxation

rate, and I have taken the equilibrium spin polarization to be zero. In the [110], [110], [001]

crystal axis basis Eq. 4.26 is given in matrix form as

∂~S

∂t
=


−Γx 0 0

0 −Γy −Ω

0 Ω −Γz



Sx

Sy

Sz

 (4.27)

where I have dropped the subscript on the precession frequency for notational simplicity.

The pump initially polarizes spins along the ẑ direction, so we will take Sx(0) = Sy(0) = 0,

and Sz(0) = S0. We see that Eq. 4.27 represents a pair of coupled differential equations

in the ŷ and ẑ directions. These can be decoupled to arrive at a second order differential

equation in the ẑ (measured) component of the spin polarization:

∂2
t Sz + (Γy + Γz) ∂tSz +

(
Ω2 + ΓyΓz

)
Sz = 0. (4.28)

In the limit that Ω� Γy, Γz, this has solutions of the form
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Sz (∆t) = S0 exp

(
−∆t

τ

)
cos (ω∆t) (4.29)

with the following definitions:

τ = 2 (Γx + Γy)
−1 (4.30)

ω =

√
Ω2 − 1/4 (Γz − Γy)

2. (4.31)

We note that this solution is only defined for Ω ≥ |Γz − Γy|/2. Fig. 4.7(a) shows a set

of time-resolved Kerr rotation measurements of the free evolution of conduction band spin

polarization. The pump initializes spins at a time delay of ∆t = 0. Measurements are

conducted with an external magnetic field strength of 100 (black), 200 (red), and 300 (blue)

mT. Lines are fits to Eq. 4.29. From the fit function we can extract the average spin

relaxation time and the Larmor precession frequency. A linear fit of the Larmor precession

frequency (Fig. 4.7(b)) gives the conduction band electron g-factor. Here we have taken

the anisotropy in the spin relaxation rate to be negligibly small compared to the precession

frequency, namely (Γz − Γy)
2/(8Ω2)� 1, in which case we make the approximation Ω ≈ ω.

This approximation is valid when the precession frequency is proportional to the external

magnetic field. For small Bext, we see that the linear behavior breaks down due to the spin

relaxation rate anisotropy.

The Lakeshore Model 331 temperature controller allows for temperature tuning using

a resistive heater and thermocouple. Calibration curves are specific to each cryostat. By

controlling the liquid helium flow and PID settings of the temperature controller, the tem-

perature of the cryostat can be maintained in a range from ∼ 5 K up to room temperature.

Time resolved Kerr rotation measurements are taken at a variety of temperatures, the re-

sults of which are displayed in Fig. 4.8. Panel (a) displays the measured Kerr rotation peak
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Figure 4.7: Time-resolved Kerr rotation: (a) Time-resolved Kerr rotation signal for an
external voltage of 100 mT (black squares), 200 mT (red circles), and 300 mT (blue triangles). Lines
are fits to Eq. 4.29. (b) The precession frequency is proportional to the external magnetic field;
the constant of proportionality is the electron g-factor. Measurements are taken on In0.03Ga0.97As
at a temperature of T = 30 K and a wavelength of λ = 839.4 nm.

wavelength. This is in excellent qualitative agreement with the measured and theoretical

behavior of the band gap energy for GaAs [103]. Panel (b) shows the Kerr rotation ampli-

tude as a function of temperature. As we expect the optically generated spin polarization to

be independent of temperature [11], the decrease in amplitude is a result of the temperature

dependence of the optical activity of the material. The measured conduction band electron

g-factor is displayed in panel (c) and is also in qualitative agreement with the measured and

theoretical behavior for GaAs [103, 104, 105, 106]. The spin relaxation time extracted from

the fits is shown in panel (d). A log-log plot (inset) shows that, for a temperature of T = 50

K and above, the spin relaxation time obeys a T−2.2 dependence, in precise accordance with

the measured [16] and theoretical [107] temperature behavior above ∼ 70 K when spin re-

laxation is dominated by the D’yakonov-Perel spin relaxation mechanism. This is due to

the high temperature behavior of the spin relaxation rate in which the non-degenerate limit

may be used and the principle of energy equipartition applies, namely τ−1
s ∝ τmT

3, with T

the temperature and τm the momentum relaxation time. Here polar optical phonon scat-

tering dominates. We can use measurements of the mobility to estimate the temperature
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Figure 4.8: Kerr rotation vs. temperature: (a) and (b) Peak Kerr rotation wavelength
and amplitude, respectively. (c) and (d) Electron g-factor and spin relaxation time, respectively,
extracted from fits to Eq. 4.29. Inset of (d) log-log plot shows spin relaxation time power law
dependence of ∼ T−2.2

dependence of τm, from which we get τm ∝ T 0.8, and hence τs ∝ T−2.2. The low tempera-

ture behavior is more complicated as the degenerate case must be used and equipartition no

longer applies. Ref. [107] attributes a weak temperature and doping dependence of the spin

relaxation time to an incomplete thermalization of carriers. In this case the spin relaxation

time is expected to obey a ∼ T−1/2 dependence, also due to the D’yakonov-Perel mechanism,

with scattering dominated by ionized impurities.
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4.3.3 Frequency domain measurements

In addition to fixing the frequency and measuring the time evolution of spins by varying the

pump-probe time delay, it is also possible to vary the precession frequency while maintaining

the pump and probe at a fixed time delay. In the absence of a net drift of spins, when the

spin relaxation time is sufficiently long, that is, on the order of the laser repetition rate, we

must account for the spin polarization induced by a series of pump pulses occurring at the

laser repetition rate. In this case, the time dependent spin polarization in Eq. 4.29 must be

modified to

Sz (ω) = S0

∞∑
n=0

Θ (∆t+ ntrep) exp

(
−∆t+ ntrep

τ

)
cos [ω (∆t+ ntrep)] . (4.32)

where trep is the laser repetition time taken to be trep = 13.16 ns and Θ(∆t + ntrep) is

the Heaviside function, defined to be zero when its argument is negative and one when its

argument is positive. It serves the purpose of allowing us to account for an instantaneous

spin polarization generated during each pump pulse. Eq. 4.32 reduces to Eq. 4.29 when

only the n = 0 term in the sum is considered. In this case, at a fixed time delay, the spin

polarization is described by a cosine function in the precession frequency ω. By including

previous pump pulses, we are including terms of higher order in frequency weighted by

exponentially decaying amplitudes. The result, shown in Fig. 4.9(a), is a cosine wave with

“sharpened” peaks, which correspond to the frequency for which all pulses have rephased at

the given time delay. This phenomenon is known as resonant spin amplification (RSA) [16].

When the spin relaxation time is significantly longer than the laser repetition time (τ �

trep), each individual peak can be approximated as a Lorentzian function, the width of

which can be used to determine the relaxation rate for each magnetic field about which the
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Figure 4.9: Resonant spin amplification: Measurements are shown over a narrow (a) and
broad (b) external magnetic field range. Depression of center peak is due to anisotropic spin
relaxation time. Line in (a) is fit to Eq. 4.32, from which the average relaxation time and g factor
are extracted.

Lorentzian is centered [108]. We are not in a regime where such an approximation is valid.

Instead, we fit the data in Fig. 4.9(a) to Eq. 4.32, from which the overall spin relaxation

time and g-factor are determined. Only the first four terms in the sum are used.

Notice that the center peak is depressed compared to the surrounding peaks. This is a

result of the anisotropic spin relaxation rate. Recall the solutions given in Eqs. 4.29 and 4.32

are only valid when the precession rate is sufficiently large compared to the spin relaxation

rate. In the case in which the precession frequency is zero (i.e. Bext = 0), then the spin

relaxation is no longer given by the average of the rates along the ŷ and ẑ directions, but

is rather described only by Γz. Recall from the D’yakonov-Perel spin relaxation mechanism,

we expect Γz = 2Γy (Sec. 3.4.1). The spin relaxation time, then, is reduced at Bext = 0, and,

as a result, the center peak is diminished. The ratio in heights of the center peak compared

to the surrounding peaks is given by [108]

hcenter
hside

=
exp (trepΓ)− 1

exp (trepΓz)− 1
(4.33)

Taking the height ratio to be ∼ 0.9, and assuming a spin relaxation time of τ ≈ 3trep/2
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(determined from the fit), we get that Γz ≈ 1.2Γy. Notice that this is less than the expected

anisotropy in the spin relaxation rate due to the D’yakonov-Perel relaxation mechanism

alone, and suggests that an additional spin relaxation mechanism is present. We expect this

to be due to inhomogeneous relaxation and the Elliott-Yafet mechanism [78].

We finally note that the side peaks are expected to have constant amplitude as a function

of Bext only when the time delay is equal to the laser repetition time (∆t = trep). If this is not

the case, then there is an overall cosinuoidal envelope function with a frequency increasing

with ∆t− trep [16]. This behavior is shown in Fig. 4.9(b), for which the fixed time delay is

∆t = 13 ns.

4.3.4 Spatial separation of pump and probe

One final practical measurement consideration to discuss is the drift of electrons under action

of an applied current, as is the case in many of the experiments conducted and discussed in

this work. A “packet” of electron spins, induced by the pump, is Gaussian distributed at

the pump spot at time ∆t = 0. However when a current is applied the electron spin packet

will have a net drift velocity given by the mobility. The probe is incident on the sample at

time ∆t > 0, for which the spatial separation between the pump and the spin packet will be

∆x = υd∆t. To measure the spin polarization at the spin packet center, it is then necessary

to provide a spatial separation between the pump and probe. This scenario is depicted in

Fig. 4.10.

The pump-probe spatial separation is achieved by including a two dimensional steering

mirror in the pump path, which is chosen over the probe path to avoid having to continuously

realign the collection path. The steering mirror is composed of a high precision two-axis

kinematic mount (Newport Part No. U100-G) with motorized actuators (Newport Model

No. TRA12PP) which are servo-controlled by a Newport Model ESP301 Motion Controller.

The mirror steers the pump beam prior to the focusing lens and allows variable positioning
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Figure 4.10: Pump-probe spatial separation: Pump (solid circle) and probe (dashed circle)
spots are spatially separated on sample to provide maximum overlap of probe spot with pump-
induced spin packet.

of the pump beam on the sample. The angle change is extremely small and as such we take

the pump beam to be normal to the sample over the range of motion of interest. Linear

behavior is confirmed. The actuators have submicron resolution, which translates to an

angular resolution depending on the separation of the mirror from the lens and the focal

length of the lens. For our applications, this translates to a submicron resolution of the

position of the pump on the sample. The actuators have a backlash of ∼ 15µm, which must

be overcome when the direction is reversed.

The steering mirror is calibrated by traversing the pump beam across a 150 µm optical

slit (Thorlabs Part No. S150R, with width tolerance of ±4µm) and measuring the power of

the transmitted beam using a photodiode detector. An optical chopper is included in the

pump path for these measurements alone to allow for lock-in detection. We treat the edge

of the slit as a Heaviside step function and the pump beam as having a Gaussian power

distribution from the center, with Gaussian widths that are different along the lab vertical

and horizontal. The laser power transmitted is a convolution of the Gaussian distribution

with the Heaviside function, which we recognize as the error function given by [93]
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Figure 4.11: Steering mirror calibration: Pump is traversed across a 150 µm slit and trans-
mitted power is measured. Each edge is fit to an error function. The separation between the error
functions corresponding to opposite edges of the slit are used to calibrate the mirror actuators.
The width of each error function gives the pump spot size. The procedure is performed for both
the vertical and horizontal axes.

erf (x) =

∫ x

0

exp
(
−z2

)
dz. (4.34)

We calibrate the vertical and horizontal actuators by traversing the pump across the slit

in the horizontal and vertical directions respectively and measuring the distance between

the resulting centers of the error function fits. From the width of the error function fit, we

can also determine the vertical and horizontal pump widths. An example of the calibrated

pump-slit overlap curve, with error function fits at each edge, is shown in Fig. 4.11.

To determine the probe spot size, we perform a pump-probe overlap scan on the sample.

The resulting measurement is a convolution of two Gaussians, which is also a Gaussian, with

width given by σ =
√
σ2
pump + σ2

probe. With σpump determined from the mirror calibration,
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Horizontal (µm) Vertical (µm)

Pump 12.8 9.5

Probe 6.7 17.5

Table 4.1: Pump and probe spot sizes: Horizontal and vertical Gaussian widths (σ) of pump
and probe spots at the focal point.

and σ measured from the pump-probe overlap, we can extract σprobe. Table 4.1 shows the

pump and probe spot sizes at the focal point using a 150 mm focal length lens. These are

presented as the Gaussian width (σ) defined by

f(x) = exp

(
− x2

2σ2

)
. (4.35)

It is related to the full width at half max by FWHM = (2
√

2 ln 2)σ.

4.4 Steady-state spin polarization measurements

We finally briefly mention steady-state measurements of the spin polarization, in which case

spins are being continuously polarized by some mechanism. This can be done electrically, as

will be discussed in detail in Ch. 6. In this case, the optical pump is blocked. The equation

describing the time dependence of the spin polarization given by Eq. 4.27 will be amended

to include the source of spin polarization and will have the form

∂~S

∂t
=


−Γ 0 0

0 −Γ −Ω

0 Ω −Γ



Sx

Sy

Sz

+


0

γy

γz

 (4.36)

The directions for ~Ω and ~γ, as well as the isotropy of the relaxation rate Γ = τ−1, are chosen

to simplify the discussion. The general form will be addressed in Ch. 6. In the steady-state,
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we take ∂~S/∂t = 0, in which case we have the steady state component of the spin polarization

along the ẑ axis of

Sz = γyτ
Ωτ

1 + (Ωτ)2 + γzτ
1

1 + (Ωτ)2 (4.37)

The first term has an odd Lorentzian form, while the second is an even Lorentzian (typically

the “even” qualifier is left off) in the precession frequency Ω. The amplitude for each

term is given by the expected steady state value in the absence of precession (i.e. γτ).

A typical Hanle measurement [109] will use circularly polarized light to continuously excite

spins along the ẑ direction and measure the polarized photoluminescence. This can by done

using continuous wave excitation. In this case γy = 0 and the resulting measurement follows

an even Lorentzian curve. On the other hand, a typical current-induced spin polarization

measurement [29] uses electrical current to continuously align spins along the ŷ direction (in

which case γz = 0) and the resulting measurement is an odd Lorentzian.
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Chapter 5

Spin-Orbit Field Measurements

5.1 Introduction

The polarization and coherent manipulation of electron spins is of key importance for spin-

tronics applications [110]. While this can be accomplished by local magnetic fields either

externally or using on chip magnetic materials [111], all-electrical manipulation of electron

spins can be desirable as it offers significantly faster switching times and highly localizable

patterning.

Using the spin-orbit (SO) effects described in Sec. 2.4, the motion of electrons under

current translates to an effective magnetic field. The spin analog of the field effect transistor

(FET) presented by Datta and Das [68] proposes that electrical control of magnetism through

the use of spin-orbit effects can be potentially useful as a spin selective device for spintronics

applications.

Electrical spin manipulation using the Rashba spin-orbit interaction has been observed

in quantum wells [112, 113] and two-dimensional electron gasses (2DEGs) [114]. In bulk

materials, strain-induced fields have been observed to manipulate electron spins in the ab-
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sence of any external magnetic field sources and without use of magnetic materials [26].

Mechanical strain has also been used as a method of manipulating spins by allowing variable

control of the spin-orbit interaction strength [24, 115]. Such strain-induced spin manipu-

lation has been spatially mapped for electrons under drift and diffusion [116]. Anisotropic

spin-orbit interactions have also been observed and mapped as a function of current direction

in GaAs/InGaAs quantum wells [117] and bulk InGaAs epilayers [118, 119].

In addition to spin manipulation, control of spin coherence is also possible using spin-

orbit effects. This was observed in ZnO, in which application of an in-plane electric field

was found to nearly double the transverse spin coherence time [120]. More recently, spin-

orbit interactions have been tuned using electric fields in (111) GaAs quantum wells to

increase spin relaxation times by up to two orders of magnitude [18]. A similar effect was

shown previously in (001) GaAs quantum wells [17] using strain to manipulate spin-orbit

interactions. In both cases, the spin-orbit interactions were minimized in an effort to reduce

the effect of the dominant D’yakonov-Perel spin relaxation mechanism (Sec. 3.4.1).

This chapter will focus on III-V semiconductor heterostructures for which the momentum

~k- linear Bychov-Rashba [10] and ~k-cubic Dresselhaus [9] spin-orbit interactions are present.

Furthermore the samples are grown in an epilayer in which strain and strain relaxation are

present, giving rise to ~k-linear biaxial and uniaxial strain-induced spin-orbit interactions as

well [121]. These spin-orbit interactions and their corresponding effective magnetic fields

are described in more detail in Sec. 2.4. The Rashba spin-orbit magnetic field, due to

structural inversion asymmetry (SIA), and the unixial strain-induced field obey they same

~k-dependent symmetry (up to a potential minus sign), and can therefore be combined into

a single SIA-like spin-orbit field. Similarly the linear Dresselhaus, due to bulk inversion

asymmetry (BIA), and biaxial strain-induced fields can be combined into a single BIA-like

spin-orbit field. Combining the linear components of the in-plane spin-orbit interaction, the

spin-orbit effective magnetic field is generalized to
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~BSO = (αky + βkx) x̂− (αkx + βky) ŷ, (5.1)

where k represents the magnitude of the electron momentum, x and y the [100] and [010]

crystal axes, respectively, and α and β represent the SIA and BIA spin-orbit field compo-

nents, respectively. The resulting anisotropic spin-orbit field map was presented in Fig. 2.8.

Notice the special case, that when α = β, Eq. 5.1 becomes

~BSO,matched = α (kx + ky) (x̂− ŷ) (5.2)

In this case, the sample exhibits a spin-helix state for which the spin-orbit effective magnetic

field is always along one of two opposing directions, despite the direction of the in-plane elec-

tron momentum. This is particularly useful as it provides a means of significantly reducing

spin dephasing for drift electrons [44].

In this chapter, we present an optical means of measuring the spin-orbit effective magnetic

field, showing that the strength of the spin-orbit field components vary for different samples

taken across the same wafer. We use this method to measure the carrier velocity as a

function of applied electric field and show that the spin-orbit field strength is proportional

to the electron velocity. Using a four-contact geometry, we present the anisotropy of the

spin-orbit effective magnetic field for a single location in a sample. By varying the direction

of the electrical current, we will show that we can vary the strength of the spin-orbit effective

magnetic field. This will ultimately be used to compare the magnitude of current-induced

spin polarization with the strength of the spin-orbit field in Ch. 6.
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Figure 5.1: Sample designs: Schematic for cross (a) and L-shaped (b) sample patterns. InGaAs
epilayer is depicted in blue, ohmic contacts in orange, and the substrate in gray. Chip size is not
to scale.

5.2 Sample design

The samples are 500 nm epilayers of In0.04Ga0.96As grown on a (001) GaAs substrate and

capped with a 100 nm GaAs layer. The epilayer is n-doped (Si) at 3 × 1016 cm−3. Biaxial

strain results from the lattice mismatch between the epilayer and substrate. The InGaAs

epilayer has a larger lattice constant than the GaAs substrate, and therefore compressive

strain of the InGaAs epilayer results in plane, and tensile strain out of plane. Because the

epilayer is grown beyond the critical thickness [122], anisotropic and inhomogeneous strain

relaxation occurs resulting in non-uniform uniaxial strain as well.

Samples are patterned into one of two geometries, each of which are in the plane of the

(001) growth axis. Sample fabrication is performed using photolithography and a chemical

wet etch. The L-shaped pattern (Fig. 5.1(b)) has two orthogonal channels oriented in the

plane of the sample. The cross pattern (Fig. 5.1(a)) has a four-contact planar geometry

allowing arbitrary tuning of the strength and direction of the in-plane electric field.
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5.2.1 L-shaped pattern

The original sample design has discrete channels through which uniform electrical conduction

occurs. The sample dimensions are chosen to provide a large region of uniformity while still

keeping power dissipation at a minimum. The L-shape pattern gives two orthogonal channels

in the (001) plane. Fig. 5.2 displays the sample and experimental schematic with spin-orbit

field components. Samples were fabricated with channels along [110] and [110] or along [100]

and [010].

For channels along [110] and [110], the SIA and BIA components of the spin-orbit field are

either parallel or antiparallel, corresponding to a spin-orbit field maximum or minimum. In

this case, both components of the spin-orbit field are perpendicular to electrical conduction

(Sec. 2.4). For channels along [100] and [010], the spin-orbit field components are orthogonal,

with the SIA component perpendicular to electrical conduction, and the BIA component

either parallel or antiparallel. In this case, the spin-orbit effective magnetic field components

can be measured independently. If the total spin-orbit field is well-described by Eq. 5.1, then

we expect the following set of relations to hold true.

∣∣∣ ~B[110]

∣∣∣ = |BSIA +BBIA| (5.3)∣∣∣ ~B[110]

∣∣∣ = |BSIA −BBIA| (5.4)

As in Sec. 2.4, BBIA is taken to be positive and the sign of BSIA depends on the uniaxial

strain component. With the two-channel geometry, however, it is impossible to compare the

spin-orbit field extrema with the SIA and BIA components on any one sample and especially

for a specific location on this sample. This is particularly necessary because many samples

taken from the same wafer exhibit differing strengths of spin-orbit field components due to
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Figure 5.2: L-shaped sample schematic: (a) Epilayers are etched into two orthogonal conduc-
tive channels with electrical contacts at either end. An external voltage is applied to the contacts
to provide electrical conduction parallel to or perpendicular to the external magnetic field. (b) SIA
and BIA spin orbit field components for electron momentum along [110], [110], [100], and [010]. For
~k along [110] or [110], ~Bint is a maximum or minimum and is perpendicular to electron momentum.
For ~k along [100] or [010], the SIA and BIA spin-orbit field components are orthogonal, with SIA
perpendicular to momentum and BIA either parallel or antiparallel.

inhomogeneous strain relaxation.

5.2.2 Cross pattern

The four contact geometry was used to measure the magnitude of the spin-orbit effective

magnetic field for electron momentum (~k) along any direction in the (001) plane at a single

location on the sample. Fig. 5.3(a) depicts the sample schematic. The dimensions are

again chosen to maximize the region of electric field uniformity while minimizing the power

dissipation. When electron momentum (~k) is oriented along the external magnetic field, the

components of the spin-orbit effective magnetic field can be used to determine the spin-orbit

field orientation ξ with respect to electron momentum (Fig. 5.3(b)). This will be discussed

in detail in the following section.

Relaxation calculations to Poisson’s equation [123] are performed numerically to map the

electric potential and electric field throughout the cross region of the sample (Fig. 5.3(c) and

(d)). This is described in Appendix A. The orientation and magnitude of the electric field
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Figure 5.3: Cross-patterned sample schematic: (a) Cross sample schematic and experimental
geometry. (b) Spin-orbit field orientation (c) Relaxation calculations of the electric potential for
φ = −15◦. (d) Electric field mapping at the sample center from relaxation calculations, fit to a
parabolic curve (red line). The relative strengths of electrical bias applied to opposite contacts is
used to set the electron momentum direction φ.
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at the center is described by the following relations:

tan (φ+ π/4) =
V[110]

V[110]

(5.5)∣∣∣ ~Ec∣∣∣ = Emax − aφ2. (5.6)

The parameters Emax and a are determined using relaxation methods (Appendix A). The

angle φ with respect to the [100] crystal axis is used to describe the electron momentum

direction. Using the form of the spin-orbit Hamiltonian described in Eq. 5.1, the spin-orbit

effective magnetic field is given by

~BSO = k [(α sinφ+ β cosφ) x̂− (α cosφ+ β sinφ) ŷ] . (5.7)

It has proven useful to define the in-plane angle ξ (Fig. 5.3(b)) that the spin-orbit effective

magnetic field makes with the electron momentum ~k as a function of the momentum direction

φ. In this case, the magnitude and orientation of the spin-orbit field can be described by the

following set of relations:

∣∣∣ ~BSO

∣∣∣ =
k

gµB

√
α2 + β2 + 2αβ sin (2φ) (5.8)

ξ = − tan−1

(
α/β + sin (2φ)

cos (2φ)

)
(5.9)

.
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5.3 Experimental setup

To map the spin-orbit effective magnetic field, we measure the modulated spin precession

of electron spins subject to current in the semiconductor samples. This is done optically

in the pump-probe scheme described in Sec. 4.3.1. Measurements are taken in a liquid

helium flow cryostat at either 10 K or 30 K. The pump and probe beams are temporally

separated at a fixed time delay of 13 ns. This is done by setting the pump delay line to

-160 ps (the laser pulse period being 13.16 ns). The pump pulse rapidly induces a spin

polarization in the conduction band according to the optical selection rules that outlasts the

carrier recombination time (Sec. 4.1.3). This is approximated to occur on a time scale that

is considered instantaneous compared to the free evolution of the electron spins. The time

evolution (Sec. 2.2.4) is described by the Bloch equation

∂~S

∂t
= − 1

T ∗2
~S + ~ΩL × ~S (5.10)

where ~S represents the electron spin density, T ∗2 the transverse spin coherence time, and ~ΩL

the Larmor precession frequency given by ~ΩL = gµB( ~Bext + ~Bint)/h̄. The coherence time of

interest is taken to be the transverse, rather than longitudinal, (T2 rather than T1) because

spins will precess in the plane perpendicular to the external magnetic field axis, along which

energy quantization is defined. In the form given by Eq. 5.10, we made the approximation

that 1/T ∗2 is given by the average of the in plane and out of plane spin relaxation rates, as

discussed in Sec. 4.3.2.

Experimental measurements are taken in the Voigt geometry, with an external magnetic

field in the plane of the epilayer and the laser axis along the growth direction, and per-

pendicular to the external magnetic field. The time-dependent ẑ component of the electron

spin polarization is measured by Faraday or Kerr rotation of the linearly polarized probe
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beam (Sec. 4.2.1). Faraday rotation refers to rotation of the probe beam upon transmission

through the sample, whereas Kerr rotation refers to reflection.

5.3.1 External magnetic field measurements

The time-dependent behavior of the electron spin density is described by Eq. 5.10. As the

external and spin-orbit magnetic fields lie in the plane of the sample, we can simplify the

differential equation by taking Ωz = 0. In this case, Eq. 5.10 becomes

∂

∂t


Sx

Sy

Sz

 =


−1/T1 0 Ωy

0 −1/T ∗2 −Ωx

−Ωy Ωx −1/T ∗2



Sx

Sy

Sz

. (5.11)

Using a simple rotation matrix about the ẑ axis,

Rz (θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ,

and choosing tan θ = Ωy/Ωx, Eq. 5.11 can be cast as

∂

∂t


Sx′

Sy′

Sz

 =


−1/T̃1 0 0

0 −1/T̃ ∗2 −Ωtot

0 Ωtot −1/T̃ ∗2



Sx′

Sy′

Sz

. (5.12)

with Ωtot =
√

Ω2
x′ + Ω2

y′ . The prime notation represents the rotated basis, with ẑ′ = ẑ. The

longitudinal and transverse spin relaxation times will, in general, be rotated as well, however

we approximate this deviation will be small when Ωy � Ωx, as is usually the case, in which

case we take T̃ ≈ T . Notice that Eq. 5.12 has nearly the same form as Eq. 4.27 in Sec. 4.3.2,
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Figure 5.4: Spin-orbit field measurements: Optical Kerr rotation as a function of Bext at
a fixed time delay of ∆t = 13 ns for external voltages of 0 V (black squares), 1 V (red circles),
and 2 V (blue triangles). The component of the spin-orbit effective magnetic field parallel to Bext
shifts the phase while the perpendicular component modifies the height of the center peak. Fits to
Eq. 5.13 (solid lines) are used to extract these components.

with a corresponding solution to the ẑ-component of the spin polarization

Sz = Sz,0e
−∆t/T ∗2 cos

[
gµB∆t

h̄

√(
Bext +B‖

)2
+B2

⊥

]
. (5.13)

B⊥ and B‖ represent the components of the spin-orbit effective magnetic field perpendicular

to and parallel to the external magnetic field, respectively. From optical pumping, we ap-

proximate at time zero that spin polarization is aligned only along the laser (ẑ) axis. ∆t is

the pump-probe delay time.

At a fixed pump-probe time delay of ∆t = 13 ns, sweeps in the external magnetic field

from -40 to 40 mT are conducted and the ẑ-component of the spin polarization measured.
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In the absence of spin-orbit interactions, Eq. 5.13 reduces to a simple cosine function in

Bext. This function is modified by inclusion of the spin-orbit field terms. Fig. 5.4 shows Kerr

rotation measurements for various voltages. The component of the spin-orbit field parallel

to the external magnetic field shifts the phase of the cosine wave, while the perpendicular

component modifies the height of the center peak. We see that the strength of the spin-orbit

field increases as the electron current increases. This is expected; from Eq. 5.7 the spin-orbit

field is expected to be proportional to the electron velocity.

5.3.2 Spatial overlap

When the potential difference between contacts is nonzero, there will be a net drift velocity

experienced by the pump-induced electron spin packet. After the 13 ns pump-probe delay

time, this will correspond to a spatial migration which depends on the strength of the electric

current. In order to measure the spin polarization using the probe beam, it is therefore

necessary to control the pump-probe spatial separation as well. This is done by including a

two-axis steering mirror in the pump path prior to reaching the focusing optics (Sec. 4.3.4).

The pump mirror is steered rather than the probe to avoid having to realign the probe

collection path for each spatial separation.

The approximate pump-probe spatial separation for each external voltage is estimated

from the mobility in the samples. This separation is given by

∆x = µE∆t (5.14)

where µ is the electron mobility, E the applied electric field, and ∆t the pump-probe time

delay. For the L-shaped channels, the applied electric field is homogeneous and is given by

the familiar expression E = V/d, where V and d are the potential difference and physical

separation between the contacts, respectively. In the case of the cross sample, the electric
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a b

Figure 5.5: Spin-orbit field measurements vs. Bext, ∆x: Kerr rotation measurements of the
ẑ-component of the spin polarization used to extract spin-orbit magnetic field for an external bias of
0 V (a) and 2 V (b). For each pump-probe spatial separation (vertical axis), a magnetic field scan is
taken (horizontal axis) which is evaluated by Eq. 5.13. The phase shift and center peak depression
corresponding to the parallel and perpendicular spin-orbit field components, respectively, is clear
for the high external bias (b). It is present, but not pronounced, for zero bias (a) due purely to
electron diffusion.

field is estimated numerically. This electric field is taken to be approximately homogeneous

in the region of interest.

At each external voltage, spatial separation scans are taken at 5 µm intervals over a 50 µm

range centered at the expected pump-probe spatial separation. For each spatial separation,

an external magnetic field scan is performed. Fig. 5.5 shows Kerr rotation measurements of

the ẑ-component of the spin-polarization as a function of external magnetic field (horizontal

axis) and pump-probe spatial separation (vertical axis) for various voltages. The spin-orbit

field measurements as in Fiq. 5.4 represent horizontal cross-cuts. Fits to the amplitude in

Eq. 5.13 give the ẑ-component of the spin polarization density (Fig. 5.6(a)).

The laser has a Gaussian beam profile, and, as such, the probe beam and pump-induced

spin packet both have a Gaussian spatial profile as well. By scanning the pump beam, we

are, in effect, scanning the pump-induced spin packet across the probe beam profile, and a

convolution of the two Gaussian profiles is measured, which is itself Gaussian. Fig. 5.6(a)
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Figure 5.6: Spin packet velocity measurements: (a) Spin polarization amplitude as a function
of pump-probe spatial separation for 0 V (black), 0.5 V (green), 1.0 V (red), 1.5 V (orange), and
2.0 V (blue). The center of the Gaussian distribution is used to determine the location of the spin
packet center, from which the electron velocity (b) and spin-orbit field components are calculated.

shows this Gaussian distribution for several voltages. The Gaussian amplitude, given by

Sz,0 exp (−∆t/T ∗2 ) in Eq. 5.13, decreases for increasing electric field, indicating that the

spatial spin polarization density decreases with increasing voltage. This can be due either

to electric field-dependent spin dephasing or diffusion. As the spin packet width for each

voltage is approximately the same and does not show any trend, diffusion is not expected to

cause the decrease in spin polarization observed. As described in Sec. 3.4.1, spin relaxation

has a strong electric field dependence, and therefore the decreased spin polarization at higher

voltages is a result of the increased spin relaxation rate.

5.3.3 External electric field dependence

The center of each Gaussian fit in Fig. 5.6(a) is used to determine the electron drift velocity,

given by υd = xd/∆t and shown in Fig. 5.6(b). For each spatial separation, a fit of the

external magnetic field scan to Eq. 5.13 is used to determine the components of the spin-

orbit effective magnetic field perpendicular to and parallel to the external magnetic field.

Fig. 5.9(a-b) shows these components as a function of pump-probe spatial separation.

The pump-induced electron spin packet has a spatial distribution analogous to a displaced
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Maxwellian velocity distribution and can, in general, be described by

fs (δx) ∝ exp

[
−(δx− xd)2

2σ2
d

]
(5.15)

with xd the center of the electron spin packet, given by xd = υd∆t and σd the spatial width

of the electron spin packet. The subscript d denotes the drift-induced spin packet. xd is

expected to be proportional to the electric field for low field transport [51]. Eq. 5.15 describes

the spatial distribution of electrons, which in turn describes their velocity distribution. Those

electrons at the leading edge of the spin packet have moved faster than those at the trailing

edge. The probe beam, therefore, takes an average measurement over some finite range for

which the velocity distribution is not symmetric. As shown in Fig. 5.7, this means that the

average velocity over the probe range is not equal to the velocity given by the probe center

position.

The probe beam has a Gaussian spatial distribution similar to that of the electron spin

packet:

fp (δx) ∝ exp

[
−(δx− xp)2

2σ2
p

]
(5.16)

with the subscript p denoting the probe beam spatial distribution. To determine the mea-

sured spin-orbit effective magnetic field (BSO,meas) at a particular probe beam location, we

take a convolution of BSO weighted by the spatial distribution of electron spins with the

probe beam. This is described by

BSO,meas (xp) =

∫∞
−∞ dδx

{
BSO(δx) exp

[
− (δx−xd)2

2σ2
d

]
exp

[
− (δx−xp)2

2σ2
p

]}
∫∞
−∞ dδx

{
exp

[
− (δx−xd)2

2σ2
d

]
exp

[
− (δx−xp)2

2σ2
p

]} . (5.17)

From Eq. 5.7, to first order, the spin-orbit effective magnetic field is proportional to the

electron velocity, which is, in turn, proportional to the electric field. We approximate the

135



0 20 40 60 80 100
δx (µm)

p
ro

b
e
 p

o
w

e
r 

(a
rb

. 
u
n
it

s)

sp
in

 d
e
n
si

ty
 (

a
rb

. 
u
n
it

s)

spin packetprobe

xp xave

Figure 5.7: Spatial overlap of probe beam and spin packet: When the probe beam is
separated from the center of the pump-induced spin packet, the average velocity of measured
electrons is shifted from the velocity of the electrons at the center of the probe beam, due to the
asymmetric distribution of electrons.

electric field to be uniform and therefore BSO ∝ δx. Using this definition, the solution to

Eq. 5.17 is

BSO,meas (xp) =
Bint (xp)σ

2
d +Bint (xd)σ

2
p

σ2
d + σ2

p

. (5.18)

Eq. 5.18 represents the spin-orbit effective magnetic field measured by the probe beam at

a particular pump-probe spatial separation xp, with an average electron drift velocity given

by υd = xd/∆t. As shown in Fig. 5.7, when the probe is on the trailing edge of the spin

packet, the average velocity is greater than that of the probe beam center, and therefore a

larger spin-orbit field is measured. Similarly, when the probe beam is on the leading edge of

the spin packet, a smaller spin-orbit field is measured. The end result is that as the probe

traverses across the spin packet, the measured spin-orbit field obeys a linear relationship
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Figure 5.8: Measured spin-orbit field: The measured spin-orbit field at a particular probe
location is deviated from the actual spin-orbit field due to the finite size of the probe beam. The
deviation increases as the probe spot size (σp) increases compared to the electron spin packet (σd),
and goes to zero when the probe overlap with the spin packet is maximized (i.e. when xp = xd).

described by Eq. 5.18, but with a slope less steep than given by Eq. 5.7. This is shown in

Fig. 5.8.

The spin-orbit field as a function of drift velocity and the measured spin-orbit field

intersect at the spin packet center. Taking a linear fit of the measured spin-orbit field as a

function of pump-probe spatial separation (Fig. 5.9(a-b)) and evaluating at the spin packet

center as determined in Fig. 5.6(a), we can get the spin-orbit field as a function of electron

drift velocity. This is shown in Fig. 5.9(c). The components of the spin-orbit effective

magnetic field are found to be proportional to the electron drift velocity, as expected from

Eq. 5.7, and the proportionality constant κ is used to characterize its strength. The spin-orbit

field magnitude is given by
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Figure 5.9: Spin-orbit field components: Components perpendicular to (a) and parallel to (b)
the external magnetic field. The total spin-orbit field is determined from the vector sum of these
components. (c) The spin-orbit field components evaluated at the spin packet center are plotted
as a function of velocity. The proportionality constant κ is used to represent the strength of the
spin-orbit effective magnetic field.

∣∣∣ ~BSO (φ)
∣∣∣ = κ (φ) υd = υd

√
κ⊥ (φ)2 + κ‖ (φ)2. (5.19)

5.4 Spin-orbit field vs. carrier velocity

The L-shaped and cross patterned samples are designed to provide an approximately uniform

electric field, and therefore electron velocity, from which the spin-orbit effective magnetic

field components are calculated. Samples presented here are all taken from the same wafer

of InGaAs. For the L-shaped channel samples, we extract the spin-orbit field components,

and show that several samples from the same wafer do not exhibit the same strength of

spin-orbit interaction. In fact, it is found that samples can even have the opposite sign of

the SIA spin-orbit field.
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Sample [110] [110] [100] [001]

A 0.11(1) 1.80(9) 1.33(4) -

B 1.36(4) 3.40(4) 3.27(6) -

C 3.92(15) 0.496(96) - -

D 1.72(5) 4.97(18) - -

E 0.901(63) 4.89(36) - -

F - - 3.04 3.94

G - - 3.91(28) 3.35(2)

Table 5.1: Spin-orbit field proportionality constant κ: Proportionality constant κ with
respect to electron drift velocity in units of mT·ns·µm−1 for seven samples taken from the same
wafer.

5.4.1 Spin-orbit splitting components

Table 5.1 shows the spin-orbit field coefficient components extracted from several samples

taken from the same wafer. We clearly see that, not only do the spin-orbit field components

not add up according to Eq. 5.3, but that the individual SIA and BIA components vary

for different samples across the wafer. Fig. 5.10 shows a diagram of the wafer indicating

the sample locations before cleaving. There does not appear to be any trend relating the

spin-orbit splitting to the location of the sample on the wafer. We consider the spin-orbit

inhomogeneity to be due to strain relaxation as the epilayer is grown beyond the critical

thickness.

5.4.2 Mapping spin-orbit splitting

The spin-orbit field anisotropy is mapped as a function of electron momentum direction

φ in two cross patterned samples (samples A and B). Each data point represents a set of

spin-orbit field measurements as a function of electron velocity as presented in the previous

section. As the spin-orbit field is found to be proportional to the electron velocity, we use
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Figure 5.10: Wafer diagram: Locations of the seven samples presented in Table 5.1.

the proportionality constant κ to characterize its strength. Fig. 5.11 shows the spin orbit

field magnitude (κ) and orientation (ξ) with respect to the electron momentum direction as

a function of φ. The magnitude and orientation are fit to Eqs. 5.8 and 5.9 respectively.

In both samples, the spin-orbit field is oriented perpendicular to electron momentum for

~k ‖ [110], [110] (φ = 45◦,−45◦ respectively), which is expected from the form of the spin-

orbit effective magnetic field equation (see [110] and [110] crystal directions in Fig. 5.2(b)).

However the orientations are opposite for φ = −45◦. This is because for sample A, the BIA

spin-orbit field dominates, and the spin-orbit field points along [110]. For sample B, on the

other hand, the SIA spin-orbit field dominates and the spin-orbit field points in the opposite

direction ([110]). This behavior is displayed in the spin-orbit field maps in Fig. 2.8(a) and

(b). The relative strength of the SIA and BIA spin-orbit field components can be determined

from fits to the data in Fig. 5.11.

From the form of Eq. 5.7, the spin-orbit field is expected to be maximized or minimized for

~k ‖ [110], [110]. While the minimum in both samples does occur for ~k ‖ [110], the maximum

does not occur for ~k ‖ [110] in either sample. This behavior is not well understood, but
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Figure 5.11: Spin-orbit field map: Spin-orbit effective magnetic field as a function of electron
momentum direction φ for two cross patterned samples taken from the same wafer. (a) Magnitude
of the spin-orbit field proportionality constant κ with velocity. Solid lines are fits to Eq. 5.8.
Deviations from the expected field strength are apparent and stress the importance of measuring
the spin-orbit field directly. (b) In-plane angle ξ of the spin-orbit field with respect to the electron
momentum direction φ. Solid lines are fits to Eq. 5.9.

is most likely due to the inclusion of an additional strain axis due to growth beyond the

critical thickness, anisotropic strain relaxation, and sample mounting. It is important to

stress, however, that the spin-orbit field cannot be mapped by simply taking measurements

for ~k ‖ [110], [110] and extrapolating to all φ according to Eq. 5.7, as has been done in

the past [26]. The spin-orbit field must be directly measured for each electron momentum

direction of interest for comparison with the current-induced spin polarization magnitude,

as will be discussed in Ch. 6.
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Chapter 6

Current-Induced Spin Polarization

Measurements

6.1 Introduction

Current-induced spin polarization (CISP) is a general term used to describe the preferential

orientation of carrier spins under the action of an electrical bias. It has the potential to

be useful for spintronics applications such as spin-based information processing [124], the

electrical control of magnetization [125], and as a method of electrically generating a net

spin polarization [110]. As an all-electrical phenomenon, it avoids conductivity mismatch

problems observed in semiconductor-to-ferromagnet interfaces [126]. Furthermore, it is com-

patible with the current state of the art in semiconductor wafer processing and therefore

allows for a high level of on-chip localizability and fast tunability.

That carrier spins can be oriented using all electrical means was first proposed by Ivchenko

and Pikus [37], in which the inverse effect, a photogalvanic current induced by absorption

of circularly polarized light, was calculated for a hole current in tellurium. The rotation of
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linearly polarized light upon application of a current was subsequently measured in tellurium

by Vorob’ev et. al. [38]. It was found that the rotation angle of light was proportional to the

magnitude of the current, and changed sign with a reverse in direction of the current. This

was deemed the electrical analog of the Faraday effect [127], and describes a Faraday rotation

that is, for small polarizations, proportional to the spin polarization of free carriers. As such,

the measurements conducted by Vorob’ev et. al. are the first to observe a current-induced

spin polarization.

It was proposed by Aranov and Lyanda-Geller [39] that such a spin polarization should

be observable in semiconductors that exhibit a spin-splitting in the carrier band which is

proportional to the carrier momentum, such as with strain. It was suggested that this effect

could be detected through the use of either polarization-dependent photoluminescence or

nuclear resonance with an oscillating electric field. The effect was ultimately measured us-

ing Faraday/Kerr rotation techniques in strained bulk InGaAs [29]. It was further spatially

imaged along with the spin Hall effect in two-dimensional electron gases confined in AlGaAs

quantum wells [40]. Further work in InGaAs/InAlAs two-dimensional electron gases [128]

presented a unified picture of current-induced spin polarization, spin photocurrent, and the

Rashba spin-orbit effective magnetic field through measurements of Shubnikov-de Hass oscil-

lations. In this work, it was found that, along a particular crystal direction, the magnitude

of the electrically generated spin polarization was proportional to the spin-orbit splitting in

that both were proportional to the electrical current.

Current-induced spin polarization was soon after shown in the absence of an external

magnetic field by measuring the polarized photoluminescence from the in-plane edge of

InGaN/GaN superlattice samples [129], indicating that current-induced spin polarization is

a purely electrical phenomenon. It has been observed in bulk GaN crystals (wurtzite phase)

having a weak spin-orbit splitting [41] and in ZnSe (II-VI) having no measurable spin-orbit

splitting [42]. The former measured a spin polarization at temperatures up to 200K, while
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the latter was able to measure room temperature current-induced spin polarization. Time-

resolved measurements indicate that electron spins orient along the spin-orbit field within

picoseconds and then precess about the vector sum of the external and spin-orbit magnetic

fields [29, 130].

Aronov et. al. [131] attributed polarization of spins by current to two dominant mecha-

nisms: the equilibrium orientation of spins along the spin-orbit effective magnetic field, and

a non-equilibrium state filling for electrons that undergo scattering accompanied by a spin

flip. Engel et. al. [132] explained the observed out-of-plane spin polarization by using a

model that requires anisotropic scattering and nonparabolic bands. In each of these studies,

as well as the theories presented in the above cited papers, it was predicted that the strength

of the electrically generated spin polarization should be proportional to the strength of the

spin-orbit splitting, yet no clear trend has yet been observed experimentally [29]. Thus, the

mechanism that gives rise to current-induced spin polarization remains an open question.

This chapter is devoted to presenting our measurements and establishing a trend between

current-induced spin polarization and spin-orbit fields in n-type InGaAs. It will be organized

as follows. Sec. 6.2 will present the experimental design and sample geometry. Sec. 6.3 will

phenomenologically present the set of time evolution equations used to describe current-

induced spin polarization, with the time-dependent and steady-state behavior presented in

Secs. 6.4 and 6.5, respectively. Finally Sec. 6.6 will present our experimental findings, with

an emphasis on the relationship between the measured steady-state current-induced spin

polarization and the magnitude and orientation of the spin-orbit effective magnetic field.

We find that, contrary to previous theories, the strength of the current-induced spin

polarization is not proportional to the strength of the spin-orbit splitting, but in fact, the two

obey a negative differential relationship. That is, in crystals having an anisotropic spin-orbit

splitting (Sec. 2.4.4), those crystal directions having the weakest spin-orbit splitting have the

strongest current-induced spin polarization and vice versa. In fact, a strong current-induced
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spin polarization is even measured along a sample orientation for which the spin-orbit field is

nearly immeasurable. Furthermore, we find that the steady-state in-plane spin polarization,

even in the absence of an external precession mechanism, is shifted from the direction of the

spin-orbit effective magnetic field. A phenomenological model is used to explain the former

effect, while we present a new model to describe the latter in terms of an anisotropic spin

relaxation rate.

6.2 Experimental setup

Measurements of the electrically generated spin polarization are taken using optical Kerr

rotation (Fig. 6.1(a)) in a similar fashion as with the spin-orbit field, though without the

use of an optical pump. The conduction band electron spins are oriented electrically using

AC square wave generators modulated for lock-in detection at 1167 Hz. Measurements are

taken in a liquid helium flow cryostat with optical access out-of-plane. As spins are oriented

initially in-plane (Sec. 6.4.2), they must be rotated out-of-plane using an external magnetic

field in the Voigt geometry.

For cross-patterned samples, two phase matched square wave sources applied across op-

posite contacts at varying relative strengths determine the orientation (φ) of the in-plane

electron momentum ~k (Fig. 6.1(b)). By mounting the cryostat on a rotation stage, we can

vary the direction of the in-plane external magnetic field relative to the [100] crystal axis.

Throughout this chapter, we will use x̂ to denoted the [100] crystal axis, and a rotated

(prime) basis in plane with x̂′ along the external magnetic field.

As shown in Ch. 5, the spin-orbit effective magnetic field magnitude and orientation

will depend on the electron momentum direction. We assume that the current-induced

spin polarization alignment vector ~γ is aligned along the spin-orbit magnetic field ~BSO.

Throughout this chapter, we define ξ as the angle ~γ and ~BSO make with the external magnetic
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a b c

Figure 6.1: Experimental geometry for CISP measurements: (a) Kerr rotation in reflection
is used to measure the out-of-plane component of spin polarization. (b) Sample is patterned into a
four-contact geometry so that arbitrary in-plane momentum direction can be produced. (c) CISP
alignment vector ~γ is along the spin-orbit effective magnetic field, at an angle ξ with respect to the
external magnetic field. Steady-state in-plane polarization ~Sxy is shifted from gamma by an angle
ζ.

field ~Bext. The steady-state in-plane spin polarization ~Sxy is shifted from the spin polarization

alignment vector ~γ by an angle ζ. In this chapter, our goal is to characterize γ and ζ.

6.3 Spin polarization evolution equation

As the mechanism that gives rise to current-induced spin polarization is not well understood

and experimental measurements do not follow trends expected from theory, we will begin by

describing CISP phenomenologically assuming a spin-dependent relaxation rate:

Γ↓(↑) = Γ + (−) γ (6.1)

In the limit of small polarizations, Γ represents the average spin relaxation rate, and is

defined by Γ = (Γ↑+ Γ↓)/2. On the other hand, γ represents half the difference in scattering

rates between up and down spins, defined by γ = (Γ↓−Γ↑)/2. The scattering rates describe

both spin-conserving and spin-flip scattering mechanisms. In the definition above, taking γ

to be positive, down spins will scatter at a higher rate than up spins, where “spin up” is
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taken to mean orientation along the spin-orbit field ~Bint.

6.3.1 Spins polarized along SO field

To understand how Eq. 6.1 gives rise to a current-induced spin polarization, we can in-

vestigate spin-conserving and spin-flip scattering mechanisms in turn. For those scattering

mechanisms that conserve spin, such as the D’yakonov-Perel mechanism (Sec. 3.4.1), down

spins will scatter, and therefore dephase, at a rate faster than up spins. In the steady-state

limit, this gives rise to a net spin polarization with the majority spin up carriers. For scat-

tering mechanisms that flip spin, such as the Elliot-Yafet and Bir-Aronov-Pikus mechanisms

(Secs. 3.4.2 and 3.4.3), Γ↓(↑) represents the rate at which down (up) spins flip to up (down)

spins. Thus, a spin dependent scattering rate as in Eq. 6.1 gives rise to a net spin polarization

for spin flip mechanisms by preferentially driving spins towards a particular direction.

To see how a net spin polarization arises, consider the time dependent behavior of each

spin species in the absence of all interactions except relaxation according to Eq. 6.1:

∂n↑
∂t

= −Γ↑n↑ = − (Γ− γ)n↑ (6.2)

∂n↓
∂t

= −Γ↓n↓ = − (Γ + γ)n↓ (6.3)

where n↑(↓) represents the density of up (down) spin carriers and the total carrier density is

n = n↑ + n↓. In the simplest context of electrically generating spin polarization, the carrier

density n is independent of position and time. Eqs. 6.2 and 6.3 represent exponential decay.

The definition of the spin polarization is S = (n↑ − n↓)/n. Subtracting Eq. 6.3 from Eq. 6.2

and dividing by n we arrive at the time dependence of the spin polarization.
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∂S

∂t
=
−Γ (n↑ − n↓) + γ (n↑ + n↓)

n
(6.4)

∂S

∂t
= −ΓS + γ (6.5)

From Eq. 6.5, we immediately see that in addition to the decay term Γ there is also a spin

polarization driving term γ. The solution to the differential equation is

S (t) =
γ

Γ

(
1− e−Γt

)
(6.6)

in which case the steady-state spin polarization as t → ∞ is S = γτ with the definition of

the spin relaxation time τ = Γ−1. Eq. 6.6 gives a steady-state spin polarization proportional

to the spin-dependent scattering term γ defined in Eq. 6.1. As the spin-degeneracy is lifted

due to the spin-orbit interaction, we will begin with the assumption that ~γ aligns along

the spin-orbit effective magnetic field ~Bint. The goal is to characterize current-induced spin

polarization by characterizing the spin generation term γ.

6.3.2 Anisotropic spin relaxation

The samples measured in this study are Si-doped In0.04Ga0.96As epilayers exhibiting an

anisotropic spin-orbit field (Sec. 2.4.4 and Fig. 5.11) with a doping concentration of n =

3 × 1016 cm−3. For GaAs, a doping concentration beyond approximately 2 × 1016 cm−3 is

on the metal side of the metal to insulator transition (MIT) for which the D’yakonov-Perel

(DP) spin relaxation mechanism is expected to dominate [78]. The spin relaxation tensor

according to the DP mechanism (see Sec. 3.4.1 for more detail) is given by [11]
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↔
Γ =

1

τ0 (υd)


(1 + r)2 0 0

0 (1− r)2 0

0 0 2 (1 + r2)

 (6.7)

where τ0 is the electron drift velocity-dependent spin relaxation time in the absence of in-

plane anisotropy (i.e. r = 0) and 2r represents the unitless difference between the SO field

magnitudes for spins oriented along [110] and [110]. If the D’yakonov-Perel relaxation mech-

anism is the only one present, or strongly dominates all other spin relaxation mechanisms,

then r is defined as the ratio of the structural inversion asymmetry (SIA)- to bulk inversion

asymmetry (BIA)-like SO splitting terms (r = α/β). In Eq. 6.7, the eigenbasis states are

defined by:

[110] =

1

0

0

 , [110] =

0

1

0

 , [001] =

0

0

1


Note square brackets are used to represent the crystal axes and parentheses are used for

matrices and column vectors.

With an anisotropic dephasing rate, the spin polarization components can become cou-

pled, and we must, therefore, describe the spin polarization as a vector quantity. Eq. 6.5

becomes

∂~S

∂t
= −

↔
Γ · ~S + ~γ (6.8)

where the vector ~γ represents the spin alignment per unit time and is oriented along the

spin-orbit field. When ~γ is along an eigenbasis state of the spin relaxation tensor, the spin

polarization direction remains along the eigenvector, and the time-dependent solution is

analogous to Eq. 6.6. This is component-wise given by

149



Si (t) =
γi
Γii

(
1− e−Γiit

)
(6.9)

with corresponding steady-state solutions Si(t→∞) = γiτi and τi = Γ−1
ii .

6.4 Time-dependent behavior

Due to the direction of the spin-orbit effective magnetic field in the plane of the sample, it

is expected and observed that ~γ has no out-of-plane component. A quick analysis of the

spin polarization components given by Eq. 6.9 shows that for γz = 0, Sz(t) = 0. As Faraday

and Kerr rotation only measures the component of the spin polarization along the laser (ẑ)

axis, it is necessary to couple the spin polarization components. This is done in a controlled

way by the application of an in-plane external magnetic field. The time-dependence of the

spin-polarization in this case is given by:

∂~S

∂t
= −

↔
Γ · ~S + ~Ω× ~S + ~γ (6.10)

In certain simplified cases, Eq. 6.10 has a well-defined analytical solution. In general,

however, numerical techniques must be used. Throughout this section, when a numerical

solution is required, it will be achieved by using the Runge-Kutta method for solving ordinary

differential equations. This procedure is discussed in Appendix A. This section will be

devoted to simulating the time dependence of electrical generation of spin polarization for

comparison with measured steady-state behavior.

6.4.1 Time-dependent spin polarization without precession

In the absence of spin precession, the time dependence of the spin polarization is described

component-wise by Eq. 6.9, where the basis states i are defined to be the eigenbasis states
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Figure 6.2: Time-dependent spin polarization without precession: (a) As time increases,
the spin polarization increasingly deviates from the direction of the spin generation vector ~γ. (b)
The components of the spin polarization along the eigenbasis states of the spin relaxation tensor
relax to their steady-state values at their respective rates, as described in Eq. 6.9.

of the spin relaxation tensor, i.e. [110], [110], and [001]. The in-plane spin polarization is

plotted in Fig. 6.2(a). Blue filled circles represent the spin polarization at equally spaced

time steps of approximately 0.2 ns, ~Sxy represents the in-plane spin polarization as t→∞,

and ~γτave represents the in-plane spin polarization in the case that spin dephasing is isotropic

and described by τ−1
ave = (τ−1

[110]
+ τ−1

[110])/2. In the figure, τ[110] = 9 ns and τ[110] = 6 ns. In

the case that ~γ is constant, the in-plane spin polarization relaxes to the steady-state value

~Sxy on a time scale given by the relaxation time components. Fig. 6.2(b) shows the time

dependence of the spin polarization components. In these plots, we set γ[110] = γ[110]. In

other words, the polarization is generated equally along the [110] and [110] crystal axes. Yet

as time increases, the in-plane spin polarization increasingly deviates from alignment along

~γ. This is understood as spins that align along [110] dephase more rapidly than spins aligned

along [110]. This deviation will be quantified in Sec. 6.5.1.
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6.4.2 Time-dependent spin polarization with precession

With precession, spin polarization generated in-plane along ~γ is rotated out-of-plane at the

Larmor precession frequency (~Ω) and decays component-wise according to the spin relaxation

tensor. The precession frequency is a vector sum of the external magnetic field ( ~Bext) and

the spin-orbit effective magnetic field ( ~BSO) as in Ch. 5, given by |~Ω| = |~Ωext + ~ΩSO| =√
Ω2

[110]
+ Ω2

[110]. Taking ~γ to have only in-plane components, the matrix form of Eq. 6.10 is

∂

∂t


S[110]

S[110]

S[001]

 =


−1/τ[110] 0 Ω[110]

0 −1/τ[110] −Ω[110]

−Ω[110] Ω[110] −1/τ[001]



S[110]

S[110]

S[001]

+


γ[110]

γ[110]

0

. (6.11)

Eq. 6.11 is a set of coupled first order differential equations in time with source terms and,

in general, must be solved numerically. This is achieved by using the fourth order Runge

Kutta method for solving ordinary differential equations as outlined in Appendix A. In this

section, time-dependent solutions are simulated for various choices of parameters, and the

steady-state behavior is extrapolated.

In the simplest case, we assume that ~γ is constant for t > 0 and zero for t < 0. Time

zero can then be thought of as an instantaneous switching on of the current-induced spin

polarization. This approximately simulates the experiment with the assumption that an AC

square wave can instantaneously turn on the current to a constant high value. The time

dependence of the spin polarization components for several choices of external magnetic

field strength is show in Fig. 6.3. The steady-state spin polarization is reached within 50

ns. Notice that at low external magnetic fields the in-plane spin polarization component

dominates. As the field is increased, the out-of-plane component then dominates, and both

diminish with increasing field. We will show in Sec. 6.6 that the former corresponds to an
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even Lorentzian lineshape while the latter corresponds to an odd Lorentzian dependence on

the magnetic field.

In this simulation, we take ~γ ∝ ê[110] + ê[110], ~Ωext ∝ ê[110] − ê[110], and ~ΩSO ‖ ~γ. This

configuration is consistent with the commonly used measurement geometry. By orienting

the external magnetic field perpendicular to the spin-orbit field direction, the maximum

out-of-plane spin precession can be achieved. For all magnetic fields, the in-plane (~Sxy)

and out-of-plane (~Sz) components of the spin polarization oscillate according to the total

magnetic field strength, while relaxing to the steady state value. This relaxation occurs on a

time scale much shorter than the modulation period of the AC square wave used to generate

current-induced spin polarization (f = 1167 Hz), and we can therefore treat the square

wave as though it is modulating between two steady-state conditions. In all simulations, the

spin-orbit field is ΩSO = π/32 ns−1, corresponding to an internal field of BSO ∼ 5 mT. This

is in accordance with the measurements in Ch. 5.

The pulsed probe has the effect of inducing carriers at a repetition rate equal to that

of the laser. As the probe pulse is linearly polarized, the optically-induced carriers will

have no net polarization according to the optical selection rules for GaAs (Sec. 4.1.3). The

photo-induced carriers, however, will have higher energy depending on the light energy used

to excite electrons from the valence band, which will contribute to the current-induced spin

polarization. Taking the laser pulse to be roughly square and lasting a duration of tp = 10

ps, and assuming an intraband relaxation time of τp = 1 ps, the time dependence of the

polarization alignment γ can be described by:

∂γ

∂t
=


1
τp

(γp + γc)− 1
τp
γ for 0 < t ≤ tp

1
τp
γc − 1

τp
γ for t ≥ tp

(6.12)

where γc is the spin alignment term from current-induced spin polarization alone, γp is the

additional spin alignment due to the optically-induced carriers, and γ is used to describe
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Figure 6.3: Time-dependent spin polarization - sharp square wave: In-plane (red line) and
out-of-plane (blue line) components of spin polarization for an external magnetic field precession
frequency of 0 (a), π/16 (b), π/4 (c) and π (d) ns−1. Spin polarization is initially zero and
then relaxes to the steady-state value according to the relaxation rate tensor. Steady-state spin
polarization is reached within 50 ns. In all simulations, ~γ ∝ ê[110] + ê[110], ~Ωext ∝ ê[110]− ê[110], and

~ΩSO = (π/32)(ê[110] + ê[110])/
√

2.
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the combined spin alignment per unit time. We assume γp and γc are constant in time

and proportional to the external electrical bias. The proportionality between γp and γc is

expected to depend on the laser pulse energy. In this case, the solution to Eq. 6.12 is found

analytically. Requiring that limε→0[γ(tp− ε)− γ(tp + ε)] = 0 and γ(t = 0) = γc, the solution

is

γ (t) =


γc for t ≤ 0

γp
(
1− e[−t/τp]

)
+ γc for 0 ≤ t ≤ tp

γp
(
e[−(t−tp)/τp] − e[−t/τp]

)
+ γc for t ≥ tp

. (6.13)

The time dependence of γ and the ẑ component of the spin polarization are shown in

Fig. 6.4(a) and (b) respectively. The pulse sequence in (a) depicts a spin alignment term prior

to time zero that is due to current-induced spin polarization alone. At time zero, the laser

pulse increases the spin alignment by a factor given by the excitation energy. Throughout

the 10 ps pulse, the spin alignment has a constant source term described by the sum of

the steady-state and laser-enhanced current-induced spin polarization as well as a decay

term governed by the 1 ps intraband relaxation time. After the laser pulse is turned off, γ

undergoes free decay to the steady-state value.

The resulting ẑ component of the spin polarization is shown in Fig. 6.4(b). This is

calculated numerically using the Runge-Kutta method. In this simulation, ~γ ‖ ~BSO, as

before, and ~Bext ⊥ ~BSO. The current is “switched on” at a large negative time such that the

semi-steady-state spin polarization is reached. Oscillations around the steady state occur

according to the combined oscillation frequency ~Ω = ~Ωext + ~ΩSO and are triggered by the

pulse sequence depicted in Fig. 6.4(a). The pulses are repeated at the laser repetition rate

of 13.16 ns. The oscillations around the steady state value prior to time zero are a result of

the previous pulse. Notice that both the offset and oscillation amplitude increase linearly

with the applied voltage (i.e. γ), and the oscillation frequency changes slightly due to the
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Figure 6.4: Time-dependent spin polarization - single pulse with background: (a)
Pulsed current-induced spin polarization term (γ) due to the probe laser. Pulse duration is 10 ps
and intraband relaxation time is 1 ps. Background is due to current-induced spin polarization in
the absence of the laser pulse. (b) Resulting ẑ component of the spin polarization as a function of
time. Background and oscillating amplitude are proportional to electric current. The oscillation
frequency shifts slightly with external voltage due to the spin-orbit effective magnetic field. The
same color labeling is used in (a) and (b).

electric field dependent spin-orbit effective magnetic field. In this simulation, Ωext = 4π/3

ns−1 and ΩSO = π/8 × V ns−1 where V is the electrical bias providing current. The same

spin relaxation times are used as in Fig. 6.2.

The time-dependent current-induced spin polarization described in Fig. 6.4 can be mea-

sured using a linearly polarized pump and probe setup. These measurements are shown for

various voltages in Fig. 6.5. Using the same setup as in the time-resolved Kerr rotation

measurements in Sec. 4.3.2, the photoelastic modulator is removed from the pump path,

resulting in the pump pulse maintaining its linear polarization. A mechanical delay line is

used to temporally separate the pump and probe pulses. The laser wavelength is tuned to

the high energy Faraday rotation peak to increase the strength of the laser-enhanced current-

induced spin polarization. Without the use of the photoelastic modulator, we can use only

single-stage lock-in detection. This is done by applying an AC square wave bias to supply
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Figure 6.5: Time-dependent spin polarization measurements: Time-resolved current-
induced spin polarization measurements for various voltages using a linearly polarized pump and
probe scheme. Waveform is sinusoidal (odd) indicating initial polarization in-plane. Amplitude of
oscillations is proportional to electrical bias. A linear background is added to each scan for clarity.

the electron current. As with the simulations, increasing the current increases the amplitude

of oscillations. The wave obeys a sinusoidal dependence confirming that current-induced

spin polarization is generated in the plane of the sample. A background is added to each

scan for clarity.

6.5 Steady-state behavior

The bulk of the current-induced spin polarization measurements presented in this chapter

are taken by measuring the out-of-plane, steady-state spin polarization. This section will

therefore be devoted to describing the steady-state solutions to the spin polarization equa-

tions. In Sec. 6.5.1, there will be no spin precession mechanism, and the solution will remain

in the plane of the epilayer. We will characterize the deviation of the steady-state spin polar-
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ization direction from that of the spin-orbit effective magnetic field as a function of electron

momentum. In Sec. 6.5.2, the precession term will be added and an approximation to the

steady-state, out-of-plane spin polarization will be used to fit the experimental data.

6.5.1 In-plane without precession

The components of the spin polarization along the spin relaxation rate eigenvectors is de-

scribed by Eq. 6.8. To see how the vector spin polarization ~S(t) behaves when the spin

alignment term is not along an eigenvector of the relaxation tensor, we can choose ~γ having

two or more non-zero eigenvector components. As we saw in Sec. 6.4.1, the ratio of the

in-plane spin polarization components is

S[110] (t)

S[110] (t)
=
γ[110]τ[110]

γ[110]τ[110]

(
1− e−t/τ[110]

1− e−t/τ[110]

)
(6.14)

The steady-state solution (denoted by dropping the time dependence) is

S[110]

S[110]

=
γ[110]τ[110]

γ[110]τ[110]

(6.15)

It is immediately apparent that the ratio of spin components along ê[110] and ê[110] is not

equal to the ratio of the spin alignment components (γ[110]/γ[110]) when the components for

the spin relaxation tensor are not the same. It is more useful to quantify this deviation by

rotating the relaxation time tensor by an angle of θ+ 45◦ (θ is then the angle relative to the

[100] crystal axis) in the growth plane of the sample.

↔
Γ′ =

1

τ0 (υd)


1 + r2 − 2r sin 2θ 2r cos 2θ 0

2r cos 2θ 1 + r2 + 2r sin 2θ 0

0 0 2 (1 + r2)

 (6.16)
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With this definition, an angle of θ = −45◦ recovers the diagonal form given in Eq. 6.7. The

prime notation is used throughout to denote the rotated basis. The angle θ that defines

the basis vectors can be arbitrarily chosen, though it will make the equations simpler by

choosing θ such that ~γ ‖ ŷ′. Taking ~γ ‖ ~Bint, and assuming that ~Bint is well characterized

by Eq. 5.7, this angle is expressed in terms of the in-plane electron momentum direction φ

by

θ = tan−1

(
r cosφ+ sinφ

r sinφ+ cosφ

)
(6.17)

where in this equation r is explicitly taken to be the ratio of the SIA- and BIA-like spin-orbit

field components (r = α/β). Using this definition, we have γy′ = γ and γx′ = 0. Dropping

the ẑ dependence, the steady state spin polarization is achieved by solving Eq. 6.8 in the

prime basis in the limit that ∂~S/∂t→ 0,

1 + r2 − 2r sin 2θ 2r cos 2θ

2r cos 2θ 1 + r2 + 2r sin 2θ


Sx′
Sy′

 =

 0

γτ0

 (6.18)

which gives the steady-state, in-plane spin polarization components

Sx′ =
−γτ0 (2r cos 2θ)

(1− r2)2 (6.19)

Sy′ =
γτ0 (1 + r2 − 2r sin 2θ)

(1− r2)2 (6.20)

The first thing to notice is that, while there is no spin alignment term along the x̂′ direction

(γx′ = 0), there is a nonzero component of the steady-state spin polarization along this

direction. The only exception is when θ = ±45◦, which is expected as for these orientations

~γ is along an eigenbasis of the spin relaxation tensor and Eq. 6.9 applies. The angle that the
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steady-state spin polarization makes with the CISP alignment vector ~γ is given by

ζ = tan−1

[
−2r cos (2θ)

1 + r2 − 2r sin (2θ)

]
(6.21)

Using the definition given for θ in Eq. 6.17 this can be expressed in terms of the electron

momentum direction φ.

ζ = tan−1

[
2r
(
sin2 φ− cos2 φ

)
1− r2

]
(6.22)

The magnitude of the steady-state, in-plane spin polarization |~Sxy| can be described in

the familiar fashion by introducing an effective relaxation time.

Sxy = γτxy (6.23)

τxy =
τ0

√
1 + 6r2 + r4 − 4r (1 + r2) sin 2θ

(1− r2)2 (6.24)

Fig. 6.6 shows the deviation ζ of the steady-state, in-plane spin polarization from the

CISP alignment vector ~γ as a function of electron momentum direction φ for a few choices

of r. Notice that when r is greater (less) than one, ζ will be negative (positive) for φ in

the range −45◦ < φ < 45◦. Positive is defined in the same way as the azimuthal angle.

To understand this behavior, consider when r > 1, the SIA-like spin-orbit field dominates

giving a maximum SO field for ~k ‖ [110] (for which ~BSO ‖ [110]) and minimum for ~k ‖ [110]

(for which ~BSO ‖ [110]). According to the D’yakonov-Perel mechanism, the relaxation time

will be longest for the component of spin polarization oriented along [110] and shortest for

the component along [110]. As such, the [110] spin polarization component will dephase

more quickly and the net spin polarization will rotate towards [110] (ζ < 0). For φ = ±45◦

(corresponding to ~k ‖ [110], [110]) the deviation is zero as ~γ is along an eigenvector of the
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Figure 6.6: Steady-state in-plane spin alignment: Deviation (ζ) of the steady-state, in-plane
spin polarization (~Sxy) from the CISP alignment vector (~γ) as a function of the electron momentum
direction (φ) for various choices of spin-orbit field component ratios (r). Notice that for r > 1,
deviation is in one direction and for r < 1 deviation is in the other. For all r the magnitude of ζ
is maximized at φ = 0 (i.e. ~k ‖ [100]) and goes to zero for φ = ±45◦ (i.e. ~k ‖ [110], [110]). For
positive and negative ζ, the deviation becomes larger as r → 1.

spin relaxation tensor.

The magnitude of ζ reaches its maximum for all choices of r when φ = 0 (corresponding

to ~k ‖ [100]). In the limit as r → 1 there will be a momentum direction for which the

SIA- and BIA-like spin-orbit fields will exactly cancel. According to the D’yakonov-Perel

mechanism alone, along such a direction the relaxation time will diverge and the system will

become a spin-helix state [44]. In this case, for ~γ along any direction other than [110] and

[110], ζ will be ±90◦. Of course an infinite relaxation time cannot happen in practice as

other relaxation mechanisms will then necessarily dominate.

In the case that other spin relaxation mechanisms play an important role, such as the

Elliot-Yafet mechanism, it is necessary to determine the anisotropy factor r directly from
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the measured anisotropy in the spin relaxation rates. In this case we define the following set

of relations:

r =

√
τ[110] −√τ[110]
√
τ[110] +

√
τ[110]

(6.25)

1
√
τ0

=
1

2

(
1

√
τ[110]

+
1

√
τ[110]

)
. (6.26)

Out-of-plane measurements for ~S ‖ [110] and [110] are taken by precessing spins around the

axis perpendicular to both the steady-state in-plane spin polarization and the [001] crystal

axis. The average relaxation rate (denoted by an overbar) is expressed in terms of the

eigenvalues by

Γ[110] =
1

2

(
Γ[110] + Γ[001]

)
(6.27)

Γ[110] =
1

2

(
Γ[110] + Γ[001]

)
. (6.28)

Using the relation that Γ[001] = Γ[110] + Γ[110], the relaxation rate components Γ[110] and

Γ[110] are given by

Γ[110] =
2

3

(
2Γ[110] − Γ[110]

)
(6.29)

Γ[110] =
2

3

(
2Γ[110] − Γ[110]

)
. (6.30)

The values of Γ[110] and Γ[110] are estimated from measurements of the current-induced

spin polarization for spins polarized along these directions. These measurements will be

presented in Sec. 6.6.
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6.5.2 Out-of-plane with precession

The net spin polarization is measured along the optical axis using Faraday/Kerr rotation

measurements. As such, to measure a spin polarization due to CISP, it is first necessary

to rotate electron spins out of the plane of the sample into the optical axis, as discussed in

Sec. 6.4. We seek solutions to Eq. 6.10 in the limit that ∂~S/∂t→ 0. In the case of a constant

spin alignment term ~γ (i.e. not taking the laser pulse into account) the steady-state spin

polarization solution is

S[110] = γ[110]τ[110]

(
1 +

Ω[110]

γ[110]

Sz

)
(6.31)

S[110] = γ[110]τ[110]

(
1−

Ω[110]

γ[110]

Sz

)
(6.32)

Sz =
τz
(
γ[110]τ[110]Ω[110] − γ[110]τ[110]Ω[110]

)
1 +

(
Ω2

[110]
τ[110] + Ω2

[110]τ[110]

)
τz

(6.33)

Without knowing the functional form of ~γ and
↔
τ (Sec. 6.6) this is as far as we can go

with an exact solution. It is the goal to determine experimentally how ~γ and
↔
τ behave as

a function of the electron momentum direction φ.

To this end, we approximate that spins polarize rapidly along the steady-state in-plane

direction ~Sxy determined in Sec. 6.5.1, and then precess around the vector sum of the external

and spin-orbit magnetic fields. We will choose a rotated basis such that the external magnetic

field is along the x̂′ direction, with ẑ′ = ẑ. In this case the spin polarization can be described

component-wise by
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Sx′ = γx′τxy

(
1 +

Ωy′

γx′
Sz

)
(6.34)

Sy′ = γy′τxy

(
1− Ωx′

γy′
Sz

)
(6.35)

Sz =
τ 2
eff (γy′Ωx′ − γx′Ωy′)

1 + (Ωtotτeff )
2 (6.36)

with τxy given in Eq. 6.24, τeff the effective relaxation time given by τeff =
√
τxyτz, and

Ω2
tot = Ω2

SO + Ω2
ext + 2ΩSOΩext cos(ξ). Using the following set of relations (Fig. 6.1(c))

~γ = γ (φ) [cos (ζ + ξ) x̂′ + sin (ζ + ξ) ŷ′] (6.37)

~ΩSO = ΩSO (φ) [cos (ξ) x̂′ + sin (ξ) ŷ′] (6.38)

in addition to our choice of ~Ωext ‖ x̂′, the steady-state, out-of-plane spin polarization is given

by

Sz = γτ
Ωextτ sin (ζ + ξ) + ΩSOτ sin (ζ)

1 + (Ωtotτ)2 . (6.39)

For notational simplicity I have relabeled τeff as τ . Eq. 6.39 will be used to describe the

measurements of the component of spin polarization along the optical axis in the following

section. It is useful to define a measurement parameter θel = γτ sin(ζ + ξ) as the steady-

state, out-of-plane, electrically generated spin polarization. This parameter is maximized

when the steady-state in-plane polarization is perpendicular to the external magnetic field

(i.e. when ζ + ξ = 90◦).
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6.6 Experimental results

Initial measurements of the steady-state spin polarization are taken for ~k along [110] (φ =

45◦) or [110] (φ = −45◦) as these directions typically correspond to the steady-state current-

induced spin polarization extrema. In this case ζ = 0◦ (Fig. 6.6), ξ = 90◦, and Eq. 6.39

reduces to

Sz,φ=±45◦ = θel
Ωextτ

1 + (Ωtotτ)2 (6.40)

with θel = γτ . Eq. 6.40 resembles an odd Lorentzian, though with a modified denominator.

Fig. 6.7(a) displays a measurement of the current-induced spin polarization as a function

of external magnetic field for various external voltages with ~k ‖ [110]. The steady-state

spin polarization θel and effective spin dephasing time τ are extracted from the amplitude

and width of the curve respectively. These values are shown for several orientations of the

electron momentum in Fig. 6.7(b) and (c).

The inset of panel (c) shows the effective spin relaxation time τ as a function of the spin-

orbit magnetic field at an external voltage of 2 V. Each data point represents an individual

electron momentum direction. The value of the spin-orbit effective magnetic field is obtained

from the spin-orbit field measurements presented in Ch. 5. The red line represents a fit to

the spin relaxation time which can be approximated by τ ∼ Ω−2
SO. We point out that while

this relation is only exact for spin polarization along the relaxation tensor eigenvectors, the

approximate behavior it represents is still useful. Namely, we see that the relaxation time

decreases with increasing spin-orbit effective magnetic field. Furthermore, using the values

of the effective spin relaxation time for spins polarized along [110] and [110] we can extract

the measured anisotropy in the spin relaxation rate described by the factor r. Using the

values τ [110] ∼ 9 ns and τ [110] ∼ 6 ns, we get a value of r = 1/3. We point out that this is
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Figure 6.7: Current-induced spin polarization measurement: (a) Kerr rotation measure-
ments of steady-state current-induced spin polarization as a function of external magnetic field for
0.2 V (black squares), 1 V (red circles), and 2 V (blue triangles). Electron momentum is along
[110]. The steady-state spin polarization amplitude θel (b) and effective spin relaxation time τ (c)
are extracted from the amplitude and width of Eq. 6.39, respectively. (d) The spin polarization
alignment vector γ = θel/τ is extracted from the fit parameters. The proportionality constant η is
used to characterize the current-induced spin polarization strength. The same color scheme is used
for (b)-(d). Measurements are taken at T = 10 K.
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significantly lower than the measured anisotropy (maximized for r = 1) expected from the

ratio of spin-orbit splitting components from this sample given by α/β = 0.89, indicating

that an additional spin relaxation mechanism other than the D’yakonov-Perel must play an

important role.

The spin alignment term γ is found from the effective relaxation time and steady-state

spin polarization using the relation γ = θel/τ . In Fig. 6.7(d) we show that γ is proportional

to the electron velocity, verifying the assumption we made earlier in this chapter, and use the

proportionality constant η to represent the strength of the current-induced spin polarization.

This procedure is repeated for all samples. For the cross patterned samples a range of

electron momentum directions are used. For the L-shaped channel samples measurements

are conducted on only two orthogonal momentum directions.

6.6.1 Pulsed laser

A difficulty with taking current-induced spin polarization measurements is that the pulsed

probe beam induces unpolarized carriers as discussed in Sec. 6.4.2 and shown in Fig. 6.4.

The Kerr rotation peak wavelength is necessarily tuned close to the band edge, and as such

photoexcited carriers at this wavelength have an increased energy above the Fermi energy.

Using the same pulse sequence as in Fig. 6.4 we can simulate the measured semi-steady-state

spin polarization. The simulations are run for 150 ns, which is beyond the relaxation time

required to reach steady-state. The time of measurement is taken to be in the center of a

pulse. Fig. 6.8(a) displays the result of the simulation for varying levels of absorption as a

function of external precession frequency. Strong oscillations, odd in the external field, are

apparent and increase in amplitude with the level of light absorption.

Fig. 6.8(b) displays measurements as a function of external field for various probe wave-

lengths. The low energy Kerr rotation maximum occurs at λ = 848 nm, for which strong

oscillations are present. These oscillations disrupt the ability to fit the parameters accu-
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Figure 6.8: Pulsed current-induced spin polarization: (a) Simulations of steady-state
current-induced spin polarization due to pulsed laser for various laser wavelengths. By decreasing
the photoinduced carriers (absorption) the oscillations are suppressed. (b) Measurements showing
the oscillations for various laser wavelengths. Oscillations are suppressed while still maintaining a
sufficient signal to noise ratio for λ = 851 nm. Measurements are taken at T = 10 K.

rately from Eq. 6.40. By decreasing the probe energy (increasing wavelength) we can de-

crease the level of photoinduced carriers due to absorption, however, the measured Kerr

rotation decreases as well. Finding an appropriate wavelength is a balancing act of reducing

the oscillations while still maintaining a sufficient signal to noise ratio in the Kerr rotation

measurements. For the wafer from which measurements are taken in Fig. 6.8(b) the chosen

probe wavelength is λ = 851 nm. As the measured Kerr rotation depends strongly on the

probe beam energy, it is necessary to ensure all measurements for a particular set of samples

are conducted at the same wavelength, such that a comparison can be made.

6.6.2 Frequency and probe power dependence

The frequency of the AC square wave electric field used to supply the current, as well as the

power of the probe laser are both experimental parameters used to conduct measurements,

but are intended to have no influence on the magnitude of the measured spin polarization.

Rather, the measurement statistics, namely the signal to noise ratio will depend on these
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Figure 6.9: Frequency dependent spin polarization: Measured spin polarization per unit
time γ (a) and effective relaxation time τ (b) as a function of AC electric field modulation frequency.
Measurements are taken for ~k along [110] at T = 10 K.

parameters. In this section I will present measurements of the spin alignment rate γ and the

effective dephasing time τ as a function of the electric field frequency and probe power, so

that we can be assured that the these experimental parameters do not affect the measured

spin-polarization values.

Fig. 6.9 displays the spin alignment rate γ (a) and the effective spin relaxation time

τ (b) as a function of electric field modulation frequency. We note the large error at low

frequency. This is due to increased level of low frequency noise, as discussed in Sec. 4.2.3. In

this case, the lock-in amplifier has a decreased ability to filter out the noise from the signal.

Furthermore, the time constant for the lock-in at low frequencies must be extremely long. In

general, we use a time constant of roughly TC = 200× f−1 with f the reference frequency.

For the lowest frequency data point f = 10 Hz, requiring a time constant of 20 seconds.

This is a long enough time scale such that the variations in the laser, detector, and other

optoelectronic components will increase the statistical error in the measurements. We note

that by going to higher frequencies, however, the values of γ and τ remain constant. As the
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Figure 6.10: Probe power dependent spin polarization: Measured spin polarization per unit
time γ (a) and effective spin relaxation time τ (b) as a function of probe beam power. Measurements
are taken for ~k along [110] at T = 10K.

spin polarization reaches a semi-steady state within 50 ns, we expect even high frequencies

to be essentially DC compared to the time scale of the spin polarization dynamics. For all

current-induced spin polarization measurements, an AC electric field modulation frequency

of 1167 Hz is used.

Fig. 6.10 displays the spin alignment rate γ (a) and the effective spin relaxation time τ (b)

as a function of the probe laser power. Similar to the frequency-dependent measurements,

there is an increasing error with decreasing probe power. This is again a result of increased

statistical error due to the decrease in signal to noise ratio. Whereas with low frequency the

error level is increased, a low laser power decreases the signal measured by the photodiode

bridge. By increasing the laser power to a sufficiently high level (∼ 75 µW) a threshold is

passed in which the average error reaches a constant value. By increasing the power to too

high of a level, however, the sample will begin to exhibit significant heating, as well as an

increase in the oscillating signal due to photoexcited carriers, as shown in Fig. 6.8. For all

current-induced spin polarization measurements, a probe laser power of ∼ 150 µW is used.
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This is the same probe power as is used for the spin-orbit field measurements.

6.6.3 Current-induced spin polarization mapping

We showed in the previous section that the spin alignment per unit time γ is proportional

to the electron velocity, as is the spin-orbit effective magnetic field (Ch. 5), and used pro-

portionality constants η and κ to characterize their strengths respectively. Furthermore, we

showed in the previous chapter that the magnitude of the spin-orbit field does not closely

follow the expected formula due to strain and a lack of inversion symmetry, pointing out

the necessity to directly measure the spin-orbit field for each momentum direction individ-

ually. In this section, current-induced spin polarization measurements are conducted for

electron momentum along the same directions as the spin-orbit field measurements so that a

direct comparison between the two can be made. Measurements are conducted on two cross-

patterned samples (A and B) and three L-shaped channel samples (C-E) all taken from the

same InGaAs wafer. The results of these measurements are published in Ref. [119].

For each choice of the electron momentum direction φ, we rotate the cryostat to scan

the external magnetic field direction such that the measured out-of-plane spin polarization

is maximized (i.e. when ~Sxy ⊥ ~Bext). An odd-Lorenztian line shape is observed which is

antisymmetric when ~Sxy ‖ ~γ ⊥ ~Bext. By rotating the cryostat, we can vary the angle (ξ) that

~γ makes with ~Bext. The resulting data sets for φ = −30◦ (sample A) are shown in Fig. 6.11.

Fits to Eq. 6.39 are used to extract the steady-state electrically generated spin polarization

θel = γτ sin(ζ + ξ) and the effective spin dephasing time τ . The values for BSO and ξ are

obtained from the measurements in Ch. 5 and are fixed in the fits. We observe that the data

is nearly antisymmetric in Bext when the spin-orbit and external fields are perpendicular (i.e.

when ξ = 90◦). As ξ is decreased, the asymmetric behavior becomes increasingly noticeable

and the measured out-of-plane spin polarization (θel) gradually decreases, vanishing when

ζ + ξ = 0.
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Figure 6.11: Asymmetric spin polarization measurements: Current-induced spin polar-
ization measurements as a function of external magnetic field (Bext) for various angles (ξ) of the
spin-orbit effective magnetic field ( ~BSO) with respect to ~Bext. When ~BSO ⊥ ~Bext, the data is nearly
antisymmetric. As ξ is decreased, an asymmetry begins to dominate. Lines are fits to Eq. 6.39.

Fig. 6.12(a) presents the out-of-plane electrically generated spin polarization (θel) mea-

sured as a function of ξ for φ = −45◦, 0◦, and 45◦ (~k ‖ [110], [100], and [110], respectively).

For electron momentum along [110] and [110], θel is largest when ~γ ⊥ ~Bext, indicating that

the in-plane spin polarization ~Sxy is along the current-induced spin polarization alignment

vector ~γ, as expected. However, for ~k along [100], ~γ is no longer along an eigenstate of the

relaxation tensor and the in-plane spin polarization is shifted from ~γ by ζ ∼ 37◦. We expect

from Eq. 6.22 that ζ is maximized when ~k is along [100]. Fig. 6.12(b) displays ζ extracted

from the measurements in (a) (red circles) and as determined from fits to Eq. 6.39 when

~Sxy ⊥ ~Bext (black squares) at an external voltage of 2 V. The behavior of ζ as a function

of φ expected from our model is described by Eq. 6.22 (blue line). We point out that the

curve is not a fit from the data, but rather the theoretical model taken from measurements
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Figure 6.12: Deviation of steady-state CISP from ~BSO: (a) Steady-state spin polarization
as a function of angle (ξ) between ~BSO and ~Bext for φ = −45◦ (black squares), 0◦ (red circles), and
45◦ (blue triangles) all taken at an external voltage of 2 V. Solid lines are fits to a sine curve. θel is
maximized when ~Sxy ⊥ ~Bext. The dashed red line is the expected curve for φ = 0◦ if ~Sxy ‖ ~γ; it is
shifted from the experimental curve by ∼ 37◦. (b) Deviation (ζ) of the in-plane spin polarization
(~Sxy) from the spin alignment vector (~γ) extracted from measurements in (a) (red circles) and from
fits to Eq. 6.39 (black squares). The blue line is a curve expected from the model given in Eq. 6.22

of the spin relaxation time anisotropy. We can see that the model and experimental data

are consistent with each other.

6.6.4 CISP amplitude vs. spin-orbit field

Fig. 6.13 shows the current-induced spin polarization coefficient η compared to the measured

spin-orbit field coefficient κ for the cross-patterned samples A and B (a) and the L-shaped

patterned samples C-E having two orthogonal conductive channels along [110] and [110] (b).

All samples are taken from the same wafer. We can see that the electrically generated spin

polarization obeys a negative differential relationship with the spin-orbit field; for ~k along

the crystal direction having the weakest spin-orbit splitting, both the spin alignment rate γ

and the steady-state current-induced spin polarization are strongest. Furthermore, for each

sample, there is a different ratio of the SIA- to BIA- like spin-orbit splitting terms (α/β)
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Figure 6.13: Current-induced spin polarization vs. spin-orbit field: (a) Current-induced
spin polarization vs. spin-orbit field for various electron momentum directions (~k) in the cross-
patterned samples. A negative differential relationship is observed. (b) The same negative differ-
ential relationship is observed in the L-shaped samples which have two channels patterned along
[110] and [110].

due to inhomogeneous strain in the wafer corresponding to a different curve on which the

data points lie. From this it appears that current-induced spin polarization depends strongly

on the anisotropy in the spin-orbit splitting, rather than on the magnitude for a particular

crystal direction alone.

Fig. 6.14 displays the data presented in Ref. [29] taken on L-shaped samples having

orthogonal channels patterned along [110] and [110]. No clear relationship was established

between the magnitudes of current-induced spin polarization and the spin-orbit splitting,

however, we note that the two measurements taken from each individual sample (linked by

a solid line) obey the same negative differential relationship we have established here.

Dynamic nuclear polarization measurements for these samples were conducted to confirm

the sign of the alignment direction of the current-induced spin polarization, as shown in

Fig. 6.15. This was performed by measuring the change in the Larmor precession frequency
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Figure 6.14: CISP vs. SO from other sources: Current-induced spin polarization vs. spin-
orbit field for data taken from Ref. [29]. Two data points taken from each sample are linked by a
solid line. The same negative differential relationship is observed for each individual sample.

upon application of an electric field using time-resolved Kerr rotation measurements, as in

Sec. 4.3.2. The electric field was oriented such that ~k ‖ [110] or [110] with ~Bint ‖ ~Bext.

When the current is switched on (or changed from negative to positive), there is a rapid

change in the precession frequency due to the spin-orbit effective magnetic field (BSO in

figure). After several minutes the nuclear spin system will couple to the electron spin system

according to the nuclear spin relaxation time (shown by Bnuc,sat in the figure). This will

be along the direction of the current-induced spin polarization. We see that the dynamic

nuclear polarization is along the spin-orbit field direction, indicating that current-induced

spin polarization in these samples at these temperatures is along the direction of the spin-

orbit field as well. The strength of saturated nuclear spin polarization is consistent with

the steady-state current-induced spin polarization. See Ref. [133] for more details on the

dynamic nuclear polarization measurements.
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Figure 6.15: Dynamic nuclear polarization: Saturation of nuclear polarization along the spin-
orbit effective magnetic field indicates current-induced spin polarization aligns along the spin-orbit
field direction.

In summary, we have shown that the momentum directions that have the largest current-

induced spin polarization also have the weakest spin-orbit field. It is clear from this rela-

tionship that electrically generated spin polarization cannot depend on the magnitude of

the spin-orbit splitting alone, but that some other effects must contribute. We have fur-

ther shown that the anisotropy in the spin relaxation rate is significantly reduced compared

to what is expected from the D’yakonov-Perel spin relaxation mechanism and the measured

spin-orbit splitting anisotropy, indicating that another scattering mechanism must be playing

a significant role.

We found in these samples that the spin polarization is dynamically seeded along the

spin-orbit field direction. While this may not seem like a surprising result, we point out that

the g-factor for electrons in GaAs is negative, indicating that spin alignment against the spin-

orbit field is the lower energy state. We observe electrons being “pumped” out of equilibrium

into a higher energy state. This could be due to an Elliot-Yafet-type mechanism involving
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scattering accompanied by a spin flip. It is unclear what gives rise to this effect and would

require a thorough investigation of the transition matrix elements between the conduction

band and nearby energy bands, with the relevant spin-dependent energy splittings taken into

full account. Furthermore, it is not clear how this scattering mechanism would quantitatively

depend on the spin-orbit splitting magnitude and anisotropy. Another possibility is spin-

dependent scattering as a result of the extrinsic spin Hall effect dynamically seeding a current-

induced spin polarization [134] proportional to the magnitude of the transverse spin-orbit

field. This possibility will be investigated in future studies. With our phenomenological

model presented in Sec. 6.3, we now have a qualitative understanding of the behavior of the

spin polarization alignment per unit time ~γ, which has been characterized in terms of the

spin-orbit splitting in this chapter.
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Chapter 7

Conclusions and Future Work

In this dissertation, we have investigated current-induced spin polarization, characterizing

some unexpected phenomena, and ultimately shedding light on a process that is not well

understood. Previously expected to be a result of spin-orbit interactions in the conduction

band, this investigation focused on measuring both phenomena at a single location in a

single sample for direct comparison. This work comprises the first study of its kind in which

both spin-orbit interactions and current-induced spin polarization are directly compared as

a function of electron momentum direction.

Measurements were conducted on the III-V semiconductor alloy, InGaAs, in which a

strain-induced momentum linear spin-orbit interaction is present due to lattice mismatch

between the InGaAs epilayer and the GaAs substrate. We found this spin-orbit interaction

to be anisotropic with the electron momentum direction. Through the use of a four-contact

geometry we were able to vary the direction of the in-plane momentum, and therefore the

strength and direction of the spin-orbit effective magnetic field, at a single location in a

sample. We furthermore found that the strength and anisotropy of the spin-orbit interaction

varied for different samples taken from the same wafer. This allowed us the unique oppor-

178



tunity to have samples for which the spin-orbit interaction was varied while keeping other

material parameters constant.

Current-induced spin polarization measurements were conducted on the same samples

and for momentum along the same directions as the spin-orbit interactions, such that a

direct comparison could be made. We found that the spin alignment is dynamically oriented

along the spin-orbit effective magnetic field. While this may seem expected, we pointed out

that the g-factor for GaAs is negative, and therefore from a simple Zeeman-type polarization

perspective, one would expect spin alignment to be against the spin-orbit field. We presented

a phenomenological model based on spin-dependent scattering accompanied by a spin-flip to

describe this effect. This was characterized as a spin alignment per unit time, as well as the

steady-state spin polarization, which was ultimately measured.

By allowing for anisotropic spin relaxation, as with the D’yakonov-Perel mechanism, we

showed that spin polarization maintained its alignment along the spin-orbit field direction

only when this alignment was along one of the relaxation tensor eigenvectors, namely the

[110], [110], and [001] crystal axes. We presented a new, quantitative model to describe this

deviation, which was maximized for electron momentum along the [100] crystal axis. This

model agrees with our experimental observations.

Finally, we presented an unexpected result, that the magnitude of current-induced spin

polarization was maximized for those crystal directions having the weakest spin-orbit split-

ting, and vice versa. This was confirmed for several samples, and agrees with previous work

in the field. From the perspective of an Elliott-Yafet-type spin-flip process, we attribute

this result to a dynamic alignment of spins along the spin-orbit field direction (which is the

higher energy state) that is more efficient when the spin-splitting in the conduction band is

weaker. The quantitative analysis is not well understood at this time and a more rigorous

treatment of the band structure at the Γ point is required. To investigate this effect further,

the following future work is proposed.
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7.1 Investigation of electron and spin scattering by

varying doping density

According to Ref. [78], the turning point between GaAs being treated as an insulator to being

treated as a metal occurs at a doping density of n = 2×1016 cm−3. Below this concentration,

the donor electrons are more tightly bound and the lower mobility Elliot-Yafet spin relaxation

rate (proportional to the inverse of the scattering time) is found to dominate. Above this

concentration the higher mobility D’Yakonov-Perel spin relaxation rate (proportional to the

momentum scattering time) is expected to dominate. The measured spin relaxation rate

anisotropy, as well as the temperature dependence of the spin relaxation time presented in

this work, indicates that our samples are dominated by the D’Yakonov-Perel spin relaxation

mechanism. As our doping concentration is n = 3 × 1016 cm−3, this is expected. We point

out, however that as we are near the metal-to-insulator transition, we still expect the Elliott-

Yafet mechanism to play an influential rule, even when it is not the dominant spin relaxation

mechanism.

We suspect spin-dependent spin-flip scattering, described by the Elliott-Yafet mechanism,

to be the phenomenon that gives rise to current-induced spin polarization. The natural next

step to test this hypothesis is to investigate the strength of current-induced spin polarization

for various doping concentrations around the metal to insulator transition. We expect that,

for sufficiently high doping concentrations, spin-flip scattering becomes a less influential effect

and current-induced spin polarization should be weak. On the other hand, for lower doping

concentrations the spin-flip scattering rate should be increased, thereby increasing the rate

of dynamic spin alignment term in the current-induced spin polarization model presented in

this dissertation. As such, we have plans to have samples with doping concentrations of 1,

4, and 7 ×1016 cm−3 to be grown in the near future.
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7.2 Investigation of spin-orbit field anisotropy by

varying indium concentration

It is also a natural next step to vary the indium substitutional percentage in the InGaAs

epilayer. We expect an increase in the indium concentration to increase the strain in the

epilayer, and, for a particular layer thickness, to also increase the spin-orbit field anisotropy

due to strain relaxation. To test this effect we have already had In0.03Ga0.97As samples

grown for comparison with the 4% indium samples from which most of the measurements

in this dissertation are conducted. Preliminary measurements indicate that the spin-orbit

field anisotropy is reduced in the In0.03Ga0.97As samples. This results in spin-orbit fields

that are comparable for ~k along the [110] and [110] rather than one crystal axis dominating

significantly over the other.

We find the same negative differential relationship between current-induced spin polariza-

tion and the spin-orbit field in the 3% indium sample. The strength of the spin polarization,

however, is weaker than in the 4% indium samples, roughly by a factor of 2-3 for the maxi-

mum CISP direction. We suspect that by increasing the strain, and also the spin-orbit field

anisotropy, we can increase the current-induced spin polarization maximum. As such we

have plans to have samples with higher indium concentration grown in the future.

7.3 Spin amplification and the spin Gunn effect

Amplification of spin polarization to levels near unity, at room temperature was proposed

in Ref. [135] in an effect called the “spin Gunn effect.” It is based on the charge Gunn effect

which produces charge domains due to a negative differential resistance for Γ − L valley

transitions for conduction band electrons in GaAs. Such a domain is termed a “Gunn do-

main.” Because electron scattering is energy dependent, as described in Sec. 3.2, a difference
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Figure 7.1: E-field gradient sample design: Concentric rings (a) and tapered channels along
[110] and [110] (b) create an electric field gradient along the direction of electron momentum.
Electric field in (a) is shown by red arrows. InGaAs layer is depicted in blue, contacts in gold, and
substrate in gray.

in energy levels for up and down spins will result in a spin-dependent scattering rate similar

to that of the phenomenological model presented for current-induced spin polarization in

this work.

It was shown in Ref. [135] that an amplification rate, to offset the spin relaxation rate, was

proportional to the gradients in each the electric field, doping concentration, and mobility,

and calculated to be, under certain conditions, greater than the relaxation rate such that

a net spin polarization amplification, rather than decay, would result. To test this effect,

we have fabricated samples in which an electric field gradient is present. Such a sample is

shown in Fig. 7.1(a) and is composed of concentric ring contacts surrounding the InGaAs

epilayer. We have also designed linear channels similar to the L-shaped samples presented in

this work in which a gradient in the electric field is produced through a tapered width at one

end of the channel, as shown in Fig. 7.1(b). The advantage to the first design is that it would

allow for measurements along any crystal direction in the (001) plane. The advantage to the

second is that it would allow us to compare current-induced spin polarization in a uniform
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electric field to that in which there is an electric field gradient by the spatial position of the

probe along the length of the channel. In each sample, an anisotropy in the steady-state

spin polarization for momentum forward or backward (relative to the positive electric field

gradient) would indicated some level of spin polarization amplification.

7.4 Spin generation and manipulation devices

For the purposes of technological advancement, it is necessary to keep in mind practical ap-

plications of a newly discovered effect. Previously, current-induced spin polarization has been

shown to be an all-electrical method of generating spin polarization for potential spintronics

applications. Furthermore, extensive work in spin manipulation has been conducted using

spin-orbit fields. We have discovered an anomalous phenomenon in the samples studied in

this dissertation, namely that the momentum direction corresponding to a current-induced

spin polarization maximum is nearly orthogonal that which corresponds to a spin-orbit field

maximum.

This effect has recently been exploited using timed electrical pulses [43]. A four-contact

geometry, similar to that presented in this study, is patterned with two opposing contacts

oriented along the CISP maximum, and two other opposing contacts oriented along the

orthogonal SO field maximum. The spin generation pulse polarizes spins very rapidly to

the steady-state value in the plane of the sample. This pulse is then turned off, and soon

after, in the orthogonal direction, the spin-orbit field pulse rotates the net spin polarization.

This work was able to produce π/2 and π rotation pulses. The spin relaxation times were

significantly shorter than those measured in this dissertation. We believe with the spin

relaxation times present in our samples (∼ 10 ns) a 2π rotation pulse could be achieved

without difficulty.

We also present a class of spin generation devices exploiting the anomalous current-
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Figure 7.2: SO and CISP field maps in spin-helix device: (a) Spin-orbit field map for
a sample exhibiting a spin-helix state. For all momenta, the spin-orbit field is either along or
against [110]. (b) Resulting current-induced spin polarization map based on an inverse relationship
between the current-induced spin polarization coefficient η, and the spin-orbit field coefficient κ, as
discovered in Sec. 6.6.4

induced spin polarization phenomenon based on the ability to fabricate a sample exhibiting

a spin-helix state. That is, a sample for which the linear SIA and BIA spin-orbit field

components are matched, as depicted in Fig. 7.2(a). The resulting current-induced spin

polarization map is shown Fig. 7.2(b). A inverse relationship between the current-induced

spin polarization coefficient (η) and the spin-orbit field coefficient (κ) is assumed, in quali-

tative agreement with the measurements presented in Sec. 6.6.4. Such a device is shown in

Fig. 7.3(a).

For momentum along [110], the momentum-linear spin-orbit field vanishes, and as such

the net current-induced spin polarization is expected to vanish as well. However, for mo-

mentum slightly deviated from this direction the spin-orbit field is weak, corresponding to a

strong current-induced spin polarization (Fig. 7.2(b)). If the deviation is to the left, the spin

polarization will be up, whereas if the deviation is to the right, the spins will be polarized

down. This deviation could easily by modulated electrically using a pair of cross gates, in

which case the sample design presented in this work is ideal.
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Figure 7.3: CISP-based spin switching device: Electron momentum is oriented along the
direction of zero spin-orbit field ([110]). A slight deviation to the left (right) corresponds to current-
induced spin polarization along [110] ([110]). (b) Schematic for measuring low modulation field-
induced CISP. DC driving field ( ~ED, black) is oriented along [110]. External magnetic field ( ~Bext,
dark blue) and AC square wave modulation field ( ~Em, red), are oriented along [110]. Spin polar-
ization is modulated at AC frequency between spin up and spin down, as in (b). Measurement is
conducted via optical Kerr rotation.

We present a suitable measurement geometry to test this effect in Fig. 7.3(b). The driving

electric field (ED) is oriented along the zero spin-orbit field direction. Meanwhile an external

magnetic field, as well as the modulating electric field (Em), are oriented orthogonal to ED.

ED is a DC field while Em is an AC square wave. The spin polarization will be modulated

between spin up and spin down (along ED) at the frequency given by Em and rotated out of

the plane of the sample using the external magnetic field. This can be measured using the

same Kerr rotation and lock-in detection scheme presented in this dissertation.

One practical consideration is the ability to fabricate devices which exhibit such a spin-

helix. We propose that a sample which is nearly in a spin-helix state could be mechanically

strained to tune the SIA spin-orbit splitting, as in Ref. [24], to reach such a state. To ensure

minimal strain relaxation samples would need to be grown near or below the critical thickness.

We point out that, due to the nature of current-induced spin polarization discovered in this

work, a strong spin polarization could be generated and modulated very rapidly between up
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and down spin using a weak modulation field, and as such, this effect has the potential to

be extremely useful for the advancement of low power spintronics applications.
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Appendix A

Computational Methods

In the course of the work presented in this dissertation it has been necessary to perform

numerical algorithms for a few of the computational tasks that we encountered. These algo-

rithms will be discussed here. The first is the relaxation method for determining the electric

potential given a certain set of boundary conditions. This was performed to determine the

suitable dimensions for the cross patterned samples (Ch. 5) to maximize the region of uni-

formity while minimizing power dissipation. It was also used to determine the magnitude

and orientation of the electric field at the center of the sample. The second numerical algo-

rithm is the fourth order Runge-Kutta method for solving ordinary differential equations in

order to determine the temporal behavior of the dynamically generated spin polarization, as

discussed in Ch. 6.
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A.1 Relaxation method for determining electric

potential

The purpose of the relaxation method is to solve Poisson’s equation, which is a second order

partial differential equation given by

∇2Φ (~r) =
1

ε
ρ (~r) (A.1)

where Φ(~r) is the electric potential, ε is the dielectric constant, and ρ is the charge density.

We will begin with the assumption of space charge neutrality, namely ρ = 0. In truth we

need to care about the free charge density. However, we take this to be uniform in space so

the end result will simply be to multiply the resulting field by a constant. In this case, we

have Laplace’s equation

∇2Φ (~r) = 0 (A.2)

To approach the solution, one must first examine the symmetry of the problem to determine

the appropriate coordinate basis. For our purposes, we are attempting to solve for the cross

patterned sample which is best described using Cartesian coordinates. In this case, Eq. A.2

becomes

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ (x, y, z) = 0 (A.3)

We make use of the symmetrized version of the second order ordinary differential equation

using the finite differences approach, given by

∂2f (xn)

∂x2
=
f (xn+1)− 2f (xn) + f (xn−1)

∆2
x

(A.4)
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where n is the index referencing the nth element of position space, and ∆x the finite difference

separation in position space. Plugging Eq. A.4 into Eq. A.3, we get

Φ (xm+1, yn, zk) + Φ (xm−1, yn, zk) +

Φ (xm, yn+1, zk) + Φ (xm, yn−1, zk) +

Φ (xm, yn, zk+1 + Φ (xm, yn, zk−1)) = 6Φ(xm, yn, zk). (A.5)

We notice Eq. A.5 as taking the potential at a point (xn, yn, zn) as being the average of all the

surrounding points. This will be our prescription for determining Φ, working our way from

the known boundary conditions inward. We will work in two dimensions, approximating the

z-dependence of Φ to be uniform.

Our general problem to solve is the cross patterned sample, where the ends of the cross

are held at a known potential, and the edges running inward toward the center require no

transverse electric field. The latter condition is a result of the etch and requires that no

electrons enter or leave the InGaAs epilayer through the edge of the etched region. This is

depicted in Fig. A.1(a).

The cross region of interest is broken into a two dimensional grid with finite differences

∆x = ∆y chosen as large as possible to allow for the dimensions of the cross region. This is

depicted in Fig. A.1(b). Using the relaxation method, we take each point to be the average

of the 4 surrounding points. This is achieved by creating four temporary arrays, each one

shifted one cell in the positive or negative direction along either the x or y axis from the

array we wish to solve, and assigning to a new array the value of the average of the four

temporary arrays. At this point the total change between the original array and the new

array is calculated. This process is depicted by the following set of equations
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Figure A.1: Relaxation method for cross pattern: (a) Boundary conditions for cross pattern
relaxation algorithm. Ends of cross are held at constant potential. Edges of etched region require no
transverse potential gradient (depicted by arrows). (b) Grid method for setting up finite differences
calculation. From the symmetry of the problem we choose ∆x = ∆y.

Φi+1 (xm, yn) =
1

4
[Φi (xm−1, yn) + Φi (xm+1, yn) + Φi (xm, yn−1) + Φi (xm, yn+1)] (A.6)

∆ =
∑
m,n

|Φi+1 (xm, yn)− Φi (xm, yn)| . (A.7)

The process is repeated until the change between iterations (∆) falls below a threshold value

indicating convergence.

To avoid changing the grid points that we wish to remain constant, we build a mask. The

mask is depicted in Fig. A.2. Notice that to fix the values of the voltages at the contacts,

we must extend the grid by one grid point around the entire cross region. In the figure the

cross pattern is depicted by a thicker solid black line. All unshaded grid points in the mask

are allowed to change during each iteration according to Eq. A.6. The red points are fixed

at the specified voltages and do not change during each iteration. Likewise the gray grid

points are fixed at zero (though in truth their value doesn’t matter). The blue grid points
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Figure A.2: Cross pattern relaxation mask: All unshaded grid points are changed during
each iteration according to Eq. A.6. Red grid points are held constant during each iteration at the
voltage values specified. Gray grid points are held at zero. After each iteration blue grid points
are set to the values of the grid points one position inward from their adjacent edge. This ensures
zero potential gradient at the edge of the etched region.

are set to the value of the grid points one position inward after each iteration. This ensures

that the transverse potential gradient goes to zero at each edge of the etched region. The

computational manifestation of the mask is an array of zeros, indicating which values remain

fixed, and ones, indicating which values change during each iteration. During the iteration

then, the average in Eq.A.6 is multiplied element-wise by the mask.

In general this problem can take a very long time to converge. We are setting values along

the outer edges and waiting for successive averages to reach a convergence condition all the

way in to the center. There are a few tricks we can perform to increase the computational

efficiency. The first is known as the multi-grid method. This corresponds to successively

waiting for the convergence condition to be met for a particular grid, and then cutting the

grid size in half (i.e. turning each grid point into four grid points). From the grids depicted

in Figs. A.1 and A.2, we can see that the resolution is significantly less than what we would
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Figure A.3: Multi-grid relaxation method: Successive iterations using the multi-grid relax-
ation mechanism. Array sizes are 50× 50 (a), 100× 100 (b), and 400× 400 (c). Voltages used are
±1 V vertically and ±2 V horizontally.

like in order to accurately depict a continuous electric potential map. Indeed we choose the

largest possible finite difference (∆x) at the start to more quickly reach convergence, and then

successively reduce the size of each grid point until the desired resolution is achieved. The

relaxed potential maps for these successively reduced grid point sizes is shown in Fig. A.3.

We can see that as we go to smaller grid points the resolution is improved. We also note

that our boundary conditions are met, namely that the contacts are held at their proper

voltages, and that the transverse electric field at the edges of the etched regions are zero.

The latter is indicated by the fact that the equipotential lines are normal to these edges.

Another method for increasing the efficiency of the relaxation method is to perform what

is known as Gauss-Seidel over-relaxation [136] (also called successive over-relaxation). In this

case, instead of simply taking the average of neighboring points, we purposefully overshoot

by a factor r > 1. We can express the original change in potential from each iteration as

∆Φi (xm, yn) =
1

4
[Φi (xm−1, yn) + Φi (xm+1, yn) + Φi (xm, yn−1) + Φi (xm, yn+1)]−Φi (xm, yn) .

(A.8)

We then weight this change by the factor r to achieve the new potential
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Φi+1 (xm, yn) = Φi (xm, yn) + r∆Φi (xm, yn) . (A.9)

Thus the new potential for each iteration is given by

Φi+1 (xm, yn) = (1− r) Φi (xm, yn) +

r

4
[Φi (xm−1, yn) + Φi (xm+1, yn) + Φi (xm, yn−1) + Φi (xm, yn+1)] . (A.10)

For situations obeying a well-behaved geometry, this form of over-relaxation is stable for

r < 2. We find, however, that the four points located on the corners of the cross (white grid

point surrounded on two sides by blue in Fig. A.2) give rise to instabilities except for when

r ≈ 1. As such, we do not find over-relaxation to be a useful tool in this case.

The gradient of the electric potential is used to determine the electric field map. We can

define a circle located at the center within which the electric field magnitude and orientation

is defined to be uniform up to some threshold value. We choose this threshold value to be

such that the electric field magnitude deviates by no more than 5% and the angle deviates

by no more than 5◦. For optical measurements we desire a radius of 35 µm for our region

of uniformity. To achieve this we adjust the lengths of the contacts, as well as the overall

size of the cross region. Obviously the larger the cross, and contacts, the larger the region of

uniformity. However, the power dissipation, which contributes to heating, also scales with

the size of the cross region. We calculate the power dissipation per unit volume from [123]

P

V
=
J2

σ
(A.11)

where J is the current density (current per unit area) calculated from the electric field using

J = σE, and σ is the conductivity given by σ = ρµ with ρ the free charge density and µ

193



the mobility. We have measurements of the mobility (Fig. 3.9) and estimate the free charge

density to be the density of dopant carriers. With the electric field calculated from the

relaxation simulation we can estimate the total power dissipated for a given set of voltages.

We choose the dimensions shown in Figs. 5.3(a) and 6.1(b) such that the power dissipation

remains below 15 mW for a potential difference of 2 V across each pair of orthogonal contacts

and such that the radius of the region of electric field uniformity is at least 35 µm. Finally we

can determine the magnitude of the electric field as a function of momentum direction φ by

conducting relaxation simulations on various voltage settings. This is shown in Fig. 5.3(d).

A.2 Runge-Kutta method for solving ODEs

The Runge-Kutta method is used throughout this work for solving ordinary differential

equations for the spin polarization with respect to time. It is assumed that in the region of

electric field uniformity, the spin polarization is uniform in space. However, if this condition

is relaxed, then one must, in general, use a method for solving partial differential equations

in space and time, such as the Crank-Nicolson method [137]. In this treatment, we shall

maintain spatial uniformity. To introduce the Runge-Kutta method, we shall first start with

the most basic forward Euler method using a finite difference in the time domain. We will

conduct this analysis in the context of the spin polarization as it directly applies to our

purpose.

The general form of the spin polarization is given by the set of equations (Eq. 6.10)
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∂Sx
∂t

= −Sx
τx

+ ΩySz + γx (A.12)

∂Sy
∂t

= −Sy
τy
− ΩxSz + γy (A.13)

∂Sz
∂t

= −SZ
τz

+ (ΩxSy − ΩySx) . (A.14)

We begin with the definition of the forward Euler method for solving a differential equation

of the form ∂S/∂t = f(S, t), given by

S (tn + ∆t) = S (tn) + ∆tf (S (tn) , tn) . (A.15)

Hereafter we will denote the functional form of the time dependence of the spin polarization

using subscripts. Namely Sn = S(tn), Sn+1 = S(tn + ∆t), etc. Then we have for the

components of the spin polarization

Sx,n+1 = Sx,n + ∆t

[
− 1

τx
Sx,n + ΩySz,n + γx

]
(A.16)

Sy,n+1 = Sy,n + ∆t

[
− 1

τy
Sy,n − ΩxSz,n + γy

]
(A.17)

Sz,n+1 = Sz,n + ∆t

[
− 1

τz
Sz,n + (ΩxSy,n + ΩySx,n)

]
. (A.18)

In some cases simply using the forward Euler method is enough to solve for the time depen-

dence of a function. However we can improve upon this by not just evaluating at the end

times t and t+ ∆t, but also by including the midpoint. This has the form

Sn+1 = Sn + ∆tf

(
Sn+1/2, tn +

∆t

2

)
(A.19)
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and is known as the Runge-Kutta method for solving first order ordinary differential equa-

tions [138]. We can, in turn use a forward Euler step to solve for the term on the right, given

by

Sn+1/2 = Sn +
∆t

2
f (Sn, tn) . (A.20)

It is typical to make the following assignments,

k1 = ∆tf (Sn, tn) (A.21)

k2 = ∆tf

(
Sn +

k1

2
, tn +

∆t

2

)
(A.22)

which can be solved for, assuming the initial condition is known. Going back to Eq. A.19,

we then have

Sn+1 = Sn + k2 (A.23)

This is the form of the second order Runge-Kutta method. We can take the solution to

arbitrarily higher orders, though it is common in practice to use the fourth order Runge-

Kutta method, frequently referred to as RK4, given by

Sn+1 = Sn +
k1

6
+
k2

3
+
k3

3
+
k4

6
(A.24)
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with

k1 = ∆tf (Sn, tn) (A.25)

k2 = ∆tf

(
Sn +

k1

2
, tn +

∆t

2

)
(A.26)

k3 = ∆tf

(
Sn +

k2

2
, tn +

∆t

2

)
(A.27)

k4 = ∆tf (Sn + k3, tn + ∆t) . (A.28)

One can envision k1 and k4 as estimating the slope of the function (i.e. the derivative) at

times t and t + ∆t, respectively, and k2 and k3 as evaluating the slope on either side of the

midpoint. These parameters are evaluated for each of the spin components according to

the form given in Eqs. A.16 - A.18. The Runge-Kutta method has significantly improved

stability compared to the forward Euler method, particularly for functions that have an

oscillatory time dependence for which the forward Euler method is unable to “keep up.”

Furthermore, it offers significantly higher efficiency when compared to implicit methods such

as the backward Euler, or other predictor-corrector methods. The numerical evaluations of

the spin polarization components, given a particular set of time-dependent parameters and

initial conditions, is presented in Ch. 6.
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