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ABSTRACT

Controlling Electromagnetic Fields with Tensor Transmission-Line Metamaterials

by

Gurkan Gok

Chair: Anthony Grbic

The advent of metamaterials and transformation electromagnetics have revolu-

tionized the use of materials in the control of electromagnetic fields. Metamateri-

als enabled the control of material properties, and transformation electromagnetics

provided a systematic procedure for designing these materials to achieve a speci-

fied electromagnetic field distribution. Greater control over the material parameters

amounts to greater control over electromagnetic fields. In particular, the ability to

design anisotropic materials with spatially varying material parameters is crucial to

the development of countless novel guided-wave and radiating structures.

This thesis shows how to develop electromagnetically anisotropic, inhomogeneous

materials using circuit networks: tensor transmission-line metamaterials. Tensor

transmission line metamaterials are circuit-based metamaterials possessing tenso-

rial effective material parameters. They are magnetically anisotropic, and their

anisotropic material parameters consist of a 2×2 permeability tensor and scalar per-

mittivity. A theoretical basis for analyzing, synthesizing and homogenizing tensor

transmission-line metamaterials is developed. Their propagation characteristics are

xix



verified through full-wave simulation and experiment.

In addition, a distinct method for arbitrarily controlling the phase progression and

power flow of electromagnetic fields within a region of space is proposed. The method

provides an alternative design approach to transformation electromagnetics, and it

exploits an anisotropic medium’s ability to support power flow and phase progres-

sion in different directions. The proposed method has proven useful in establishing

aperture field profiles with arbitrary phase and amplitude distributions. Illustrative

examples are introduced. Beam-formers, which can create arbitrary aperture field

distributions (phase and amplitude) are reported.
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CHAPTER I

Introduction

1.1 Background

Vacuum is the most elementary medium in electromagnetics. From a classical

perspective, it represents a space deprived of materials. In such a medium, electro-

magnetic waves can exist as first postulated by James Clerk Maxwell [1]. In other

words, electromagnetics waves do not require a material to propagate within. The

presence of a material and its interaction with electromagnetic waves, however, can

be used to harness electromagnetic fields. This fact has been exploited for centuries

to design optical lenses by appropriately crafting glasses to collimate or divert optical

waves. Such a basic interaction between electromagnetic waves and material has been

a source of technological advancements such as microscopes and cameras. This has

intrigued scientists and engineers over the years and enticed them to study the inter-

action between materials and electromagnetic waves: analyzing different phenomena

and finding ways to tailor waves for desired purposes.

The interaction between materials and electromagnetic waves originates from the

atomic/molecular structure of materials. According to the Bohr atomic model, atoms

consist of charged and neutral particles, where a negatively charged electron cloud

surrounds a positively charged nucleus, and can exhibit spin and rotational motion.

Maxwell’s equations dictate that an applied electromagnetic field exerts forces on
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these charged particles, subsequently effecting their position and motion. This inter-

action results in the polarization and magnetization of the atoms/molecules. Upon

interaction, the polarized and magnetized atoms/molecules also become sources of

electromagnetic fields. It is the combined electromagnetic field that results in ob-

served phenomena such as the collimated or diverted fields emitted from a glass lens.

Given that a material consists of a multitude of atoms/molecules, the overall response

of the material to electromagnetic fields can be accounted for material parameters,

known as permittivity (ϵ) and permeability (µ), as long as the wavelength of opera-

tion is much larger than the atomic or molecular scales. For such scales, the material

definitions are more tractable and useful than considering assemblies of atoms and

molecules. The permittivity and permeability define the electromagnetic response of

material to electric and magnetic fields, respectively.

If it were possible to arrange atoms and molecules individually, precise control

over the permittivity and permeability could be achieved. This sounds like a daunting

task, yet earlier antenna engineers were able to engineer material parameters [2, 3].

Inserting small (compared to wavelength of interest) inclusions into a host medium,

the overall response of the composite medium could be tailored. Such an approach was

used to design composite materials consisting of shaped metallic inclusions such as

spheres [2] and wires [3] to engineer the material parameters of the host medium. By

varying the permittivity values, this approach was used to design lenses for antenna

applications. The lenses collimated waves much like homogeneous glass lenses, but

at much lower frequencies.

In the early 2000s, interest in designing materials with various permittivity and

permeability values, including those not readily available in nature, reignited. Sep-

arate demonstrations of negative permittivity [4] and negative permeability [5] me-

dia using appropriately shaped subwavelength metallic inclusions paved the way to

designing a negative index medium [6] possessing simultaneously negative permit-
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tivity and permeability values. Demonstration of counter-intuitive electromagnetic

phenomena such as negative refraction [7], subwavelength resolution [8, 9], reversed

Cherenkov radiation [10, 11] followed. In 2001, the first negative refractive index

medium was implemented and tested at microwave frequencies [7]. This ground-

breaking work, along with introduction of the “perfect lens” [12], initiated great

interest in subwavelength-structured composite materials possessing tailored electro-

magnetic properties, known today simply as “metamaterials”. Metamaterials are

defined as artificial, subwavelength-structured materials designed to have tailored

electromagnetic properties. In these structures, subwavelength inclusions arranged

with subwavelength spacings play the role of atoms/molecules in a conventional ma-

terial. The overall properties of the metamaterial are determined by the structure

and arrangement of the inclusions. Carefully engineered metamaterials are able to

establish prescribed electric and magnetic properties defined by its effective permit-

tivity and permeability. Initial metamaterials were designed using metallic shapes

such as wires [4] and split ring resonators [5] for electric and magnetic responses,

respectively. A transmission-line approach to metamaterial synthesis [13, 14, 15, 16]

soon followed the initial volumetric negative index metamaterial consisting of wires

and split-ring resonators. In the transmission-line approach, a host transmission-

line is periodically loaded with reactive elements. Two dimensional isotropic and

anisotropic transmission-line metamaterials were introduced exhibiting both negative

and positive effective material parameters [17, 18, 19, 20, 21, 22, 23, 24].

Metamaterials have been utilized in a wide range of applications since their inven-

tion. Super-lenses [8, 9], antennas [10, 25, 26], novel microwave circuits [27], absorbers

[28, 29] are only a few examples. Although the first metamaterial design and applica-

tions started at microwave frequencies, interest in these artificial materials has spread

to all frequency range from DC to optical frequencies. The advent of the nanofabrica-

tion techniques and a deeper theoretical understanding has allowed this proliferation.
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More recently, the 2D equivalent of metamaterials, known as metasurfaces, has gained

significant attention. Metasurfaces have enabled the control of electromagnetic fields

across very thin surfaces, and expanded the use of metamaterials [30, 31, 32]. Apart

from the electromagnetic regime, metamaterials have also found application in the

control of acoustic, thermal, and seismic wave phenomena [33, 34, 35].

1.2 Motivation

Control over material parameters has brought with it enhanced control over the

electromagnetic fields. Specifically, control over anisotropy and inhomogeneity has

opened an enormous design space. In 2006, Pendry, Schurig and Smith proposed a

radically new electromagnetic design approach that takes advantage of the ability

to synthesize arbitrary material parameters using metamaterials [36]. This seminal

work outlined how a coordinate transformation could be used to control electromag-

netic waves and establish desired field distributions within a region of space. In this

method, referred to as transformation optics/electromagnetics, the change from an

initial electromagnetic field distribution (illumination) to a desired one is expressed

as a coordinate transformation. Then, the form invariance of Maxwell’s equations

under coordinate transformations is exploited to calculate the transformed medium

parameters that support the desired field distribution. The medium with transformed

medium parameters is inherently reflectionless and precisely establishes the desired

field transformation. This method was used to demonstrate a device which has been

the subject of numerous science-fiction novels: an invisibility cloak [37]. In the pro-

posed cloak, a medium made of spatially-varying, anisotropic material parameters

is designed with metamaterials. It guides electromagnetic waves around a hidden

object, preventing scattering from the object and rendering it invisible.

Subsequently, numerous other devices such as field concentrators [38], collimators

[39, 40], rotators [41], polarizers [42], bent waveguides [43, 44], antennas [45, 46, 47],
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lenses [48] and optical illusion devices [49] have been proposed using the transfor-

mation optics method [50, 51, 52, 53, 54, 55]. They have all demonstrated unprece-

dented control over electromagnetic fields using spatially varying material parameters

within a region of space. Unfortunately, the implementation of these structures has

not kept pace with the theoretical proposals. The reason is that electromagnetic

devices designed using transformational electromagnetics often consist of material

parameters (permittivity and permeability) with full tensors that spatially vary in

space. To ease the physical realization of transformation electromagnetics devices,

methods of simplifying material parameters have been proposed [37, 56, 57]. Trans-

formation electromagnetic devices with reduced and diagonal material parameters

which only preserve the index variation has been demonstrated [37]. On the other

hand, conformal and quasi-conformal coordinate transformations [56, 57] leading to

reduced/eliminated anisotropy and less spatial variation of the material parameters

have been utilized. However, material simplification procedures have been applied to

transformation electromagnetics devices whose operation only depends on the field

distribution at the periphery of the device, such as cloaks and lenses. In order to

obtain a full control over the electromagnetic fields, the fields are required to be con-

trolled within the device as well as at its periphery. In its most general form, this

requires the synthesize of the full material parameter tensors.

A need for control over the full material parameter tensors to implement transfor-

mation electromagnetics devices arose. Transmission-line based metamaterials are fa-

vorable type of metamaterials for this need, because they typically exhibit a lower loss

and wider bandwidths of operation than resonant metamaterials structures [17, 27].

Furthermore, transmission-line based metamaterials can be tailored for both planar

and volumetric applications. However, earlier transmission-line metamaterials were

limited to having diagonal tensors in the Cartesian basis, whereas the transformation

electromagnetics often requires materials with full tensor. Creating arbitrary material
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parameters was needed to implement various transformation electromagnetics devices

using transmission-line based metamaterials.

The objective of this work is to propose transmission-line metamaterials with arbi-

trary full material tensors, and show their utility in the design of transformation elec-

tromagnetic devices. Furthermore, this thesis presents a distinct method for designing

reflectionless, inhomogeneous, anisotropic media that can support prescribed spatial

distributions of phase progression and power flow direction. The proposed method

provides an intuitive approach to electromagnetic field control using anisotropic inho-

mogeneous medium, and can be utilized as an alternative design approach to transfor-

mation electromagnetics. Finally, the tensor transmission-line metamaterials and the

proposed method are combined to control electromagnetic waves, and design novel

electromagnetic devices.

1.3 Outline

This thesis presents tensor transmission-line metamaterials and their use in the

control of electromagnetics waves. Tensor transmission-line metamaterials are circuit-

based metamaterials which possess tensorial effective material parameters. This work

details the theory behind the proposed metamaterials and outlines a general method

for controlling electromagnetic waves.

The thesis is organized into six chapters. In Chapter 2, the idea of synthesizing

anisotropic media with transmission-line based metamaterials is introduced. The pro-

posed structures are referred to as tensor transmission-line metamaterials [58]. They

are 2D electrical circuit networks that behave as magnetically anisotropic media.

The propagation characteristics of a generalized 2D periodic tensor transmission-line

network is investigated. The anisotropic properties of the metamaterial are verified

through full-wave simulations [59]. Transformation electromagnetic devices simu-

lated using tensor transmission-line metamaterials are presented. Chapter 3 presents
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a homogenization method to compute the effective material parameters of tensor

transmission-line metamaterials [60]. The homogenization method, which employs

a local field averaging procedure, is described in detail. Both metamaterials with

dispersive and non-dispersive effective material parameters are considered. Simula-

tion results are provided to verify the proposed homogenization method. Chapter

4 experimentally verifies the theory presented in earlier chapters, and demonstrates

the utility of tensor transmission-line metamaterials in the design of transformation

electromagnetics devices. The design and implementation of a transformation electro-

magnetics device, a beam shifting-slab, using tensor transmission-line metamaterials

is presented [61]. The design procedure as well as simulated and measured results

are reported. In Chapter 5, an approach to arbitrarily controlling the phase progres-

sion and power flow of electromagnetic fields within a 2D region of space is proposed

[62]. Specifically, the design of a 2D inhomogeneous, anisotropic media that support

prescribed distributions of wave vector and Poynting vector directions is outlined.

Specific examples are reported which show how the proposed method can be used

to tailor the field radiated by a cylindrical source into desired amplitude and phase

profiles. Moreover, the relationship between the proposed method and transforma-

tion electromagnetics is drawn. The proposed method is used to find alternative

material parameters for 2D transformation electromagnetics devices. The alternative

material parameters support exactly the same field pattern as the original ones of

the transformation electromagnetics device for a give illumination. The method is

further extended to design dual functional transformation electromagnetics devices

that combine the characteristics of two separate transformation devices under differ-

ent illuminations into one [63]. Finally, Chapter 6 summarizes the research findings

and outlines the contributions of this work. It also suggests future directions.
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CHAPTER II

Tensor Transmission-Line Metamaterials

In this chapter, the idea of synthesizing anisotropic media with transmission-line

based metamaterials is introduced. The proposed structures are referred to as tensor

transmission-line metamaterials. They are 2D electrical circuit networks that behave

as magnetically anisotropic media represented by a 2×2 permeability tensor and

permittivity scalar. These metamaterials are crucial to the development of numerous

transformation electromagnetic devices, which often consists of materials with full

tensors that vary arbitrarily in space. Using a novel circuit approach, it is shown

that the material parameter distributions of transformation-designed electromagnetic

devices can be directly mapped to two-dimensional transmission-line networks. In

essence, the work draws a link between microwave network theory (circuits) and

transformation electromagnetics. As a result, tensor transmission-line metamaterials

can also be referred to as “transformation circuits” [64].

The chapter starts with a brief review of earlier transmission-line based meta-

materials. Then, an approximate tensor analysis to analyze transmission-line meta-

materials is developed. This analysis will provide key insight into the development

of tensor transmission-line metamaterials. The proposed analysis is first applied to

earlier transmission-line structures, and then used to analyze tensor transmission-

line topologies. A rigorous Bloch analysis is then performed to verify approximate
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tensor analysis. Exact dispersion equations for tensor transmission-line metamateri-

als are derived using Bloch analysis, and the impedances needed to terminate Bloch

waves in finite structures are found. Subsequently, the use of tensor transmission-

line metamaterials is investigated. A reflectionless interface and two transformation

electromagnetic devices (an electromagnetic cloak and electromagnetic field rotator)

are designed using circuit networks of tensor transmission-line metamaterials. Their

simulated performances are presented. In order to realize the proposed metamaterials

at microwave frequencies, a microstrip implementation is proposed. Towards the end

of the chapter, the anisotropic properties of the implemented tensor transmission-line

metamaterials are verified through full-wave simulation. The full-wave simulations are

used to compute the dispersion curves of the realized metamaterials. The computed

dispersion curves are compared to those predicted analytically. Circuit and full-wave

simulations presented in this chapter validate the analysis of tensor transmission-line

metamaterials and show the ability of the tensor transmission-line metamaterials to

manipulate electromagnetic waves in extreme and unprecedented ways.

2.1 Transmission-line Metamaterials

The transmission-line approach to metamaterial synthesis was extensively studied

in the early 2000s [13, 14, 15, 16, 17]. In this approach, a host transmission-line is

periodically loaded with reactive elements. The effective material parameters of the

synthesized medium are derived using the analogy between TEM wave propagation on

transmission-lines and plane-wave propagation in a homogeneous isotropic medium.

Fig. 2.1(a) shows the lumped element equivalent of a 1D transmission line of length

d. In this configuration, Lo and Co represent the per unit length inductance and

capacitance of the transmission-line segment, respectively. Fig. 2.1(b) depicts plane

wave propagation, with vertical electric field polarization, in an isotropic, homoge-

neous medium with permittivity (ϵ) and permeability (µ). The differential equations

9



Cod

L od/2 L od/2

d

(a)

E

H
S

μ ε,

(b)

Figure 2.1: (a) Lumped element equivalent of a 1D transmission line unit cell. (b)
Plane wave propagation in an isotropic, homogeneous medium.
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Figure 2.2: Lumped element equivalent of a 1D transmission-line unit cell in general
form.

governing wave propagation in the transmission line medium (Telegrapher’s equa-

tions) and in an isotropic, homogeneous medium (Maxwell’s equations) reveal the

relationship between the circuit components and the medium parameters. The per-

unit length inductance Lo and capacitance Co of the transmission line in Fig. 2.1(a)

is found to be equivalent to the permeability (µ) and permittivity (ϵ) of the homoge-

neous medium supporting plane-wave propagation, respectively.

A more general representation of the transmission-line model in Fig. 2.1(a) can

be obtained if the series inductance and shunt capacitance are replaced with a series

impedance Z and a shunt admittance Y . Using this general form, a relationship

between the circuit components and material parameters can be written as follows
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Figure 2.3: (a) Lumped element equivalent of a 2D transmission-line unit cell. (b)
Wave propagation with vertical electric field polarization in an anisotropic
homogeneous medium.

[17, 27]:

jωµ(ω)d = Z, jωϵ(ω)d = Y. (2.1)

Equation (2.1) provides additional insight into synthesizing material parameters by

selecting various combination of Z and Y . Well-known dual transmission-line or com-

posite right/left-handed (CRLH) topologies are obtained when Z and Y are chosen

to be negative reactance and negative susceptance, respectively [27, 65, 66].

A similar approach can be applied to the design of 2D transmission-line based

metamaterials. The circuit topology used in 2D is shown in Fig. 2.3(a). The anal-

ogous wave propagation in a homogenous medium is shown in Fig. 2.3(b). The

series impedances of the circuit relate to the permeability tensor (¯̄µ), and the shunt

admittance relates to the permittivity (ϵz) of the homogeneous medium. Two di-

mensional isotropic and anisotropic transmission-line metamaterials have been re-

ported in the past that both negative and positive effective material parameters

[17, 18, 19, 20, 21, 22, 23, 24]. These transmission-line metamaterials, however,

were limited to having diagonal tensors in the Cartesian basis. A transmission-line

metamaterial with a full permeability tensor and a scalar permittivity value can be

obtained using a more general unit cell that will be introduced in the next sections.
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2.2 The Z Tensor Approach to Transmission-line Metamate-

rial Analysis

In this section, an approximate tensor analysis is developed to analyze transmission-

line based metamaterials. The analysis provides a key insight into the development of

tensor transmission-line metamaterials. Using the tensor analysis, it is shown how the

transmission-line metamaterials reported earlier can be represented by diagonal ten-

sors. Then, new transmission-line metamaterial topologies that can realize full 2×2

material tensors are presented. Metamaterials based on the shunt node transmission-

line geometry [67] for S-polarization are considered throughout the chapter. The

results can be easily extended to the series node configuration [67] for P-polarization.

A transmission-line metamaterial with two series branches along x and y direction

is shown in Fig. 2.4. This configuration will be referred to as 2-branch structure. This

2-branch structure is in general anisotropic since Z1 and Z3 may be different. Two

different choices of unit cell for this metamaterial are shown in Fig. 2.5. Let us

consider the square unit cell of Fig. 2.5(b). Through the proposed analysis, it will

be shown that this unit can be represented by an impedance tensor ¯̄Z and a scalar

admittance Y . The impedance tensor represents the series branches of the network,

and the shunt admittance represents the shunt branch of the network. The impedance

tensor can be found by removing the shunt admittance Y and applying voltages ∆Vx

and ∆Vy across the unit cell, and then solving for the net currents, Ix and Iy, in the

x and y directions, as shown in Fig. 2.6. Following this procedure, the following set

of equations can be written for the net currents,

Ix = I3a+ I3b =
∆Vx

2Z3

,

Iy = I1a+ I1b =
∆Vy

2Z1

. (2.2)
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Figure 2.5: Top views of two different unit cell choices for the 2-branch transmission-
line metamaterial shown in Fig. 2.4.

These equations can be recast in terms of an admittance tensor ¯̄Y ,

I = ¯̄Y V =

 yxx yxy

yyx yyy


 ∆Vx

∆Vy

 =

 1
2Z3

0

0 1
2Z1


 ∆Vx

∆Vy

 . (2.3)

By taking the inverse of ¯̄Y , the matrix equation can be expressed in terms of an

impedance tensor ¯̄Z representing the series branches of the unit cell depicted in Fig.
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Figure 2.6: The configuration used to extract the impedance tensor of the 2-branch
transmission-line metamaterial unit cell.

2.5(b),

V̄ = ¯̄ZĪ =

 zxx zxy

zyx zyy


 Ix

Iy

 =

 2Z3 0

0 2Z1


 Ix

Iy

 . (2.4)

The tensor ¯̄Z and shunt admittance Y completely characterize the propagation char-

acteristics along the transmission-line metamaterial when the phase delay/advance

across the unit cell is small: kxd ≪ 1, kyd ≪ 1. Here, kx and ky are the wavenumbers

in the x and y directions, and d is the metamaterial’s unit cell dimension. By deriving

the two dimensional Telegrapher’s equations and corresponding wave equations, the

dispersion relation of the transmission-line metamaterial shown in Fig. 2.4 can be

found [18, 68],

(kxd)
2

−2Z3Y
+

(kyd)
2

−2Z1Y
= 1. (2.5)

It can be reexpressed in terms of the ¯̄Z tensor entries defined in (2.4),

(kxd)
2

−zxxY
+

(kyd)
2

−zyyY
= 1. (2.6)
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The propagation characteristics of this network are analogous to those for an S-

polarized wave (electric field polarized in the z direction) in a medium with the

permeability tensor

¯̄µ =

 µxx 0

0 µyy

 (2.7)

and permittivity ϵz in the z direction. Such a medium yields the following dispersion

equation,

(kx)
2

ω2µyyϵz
+

(ky)
2

ω2µxxϵz
= 1, (2.8)

which can be written as,

(kxd)
2

ω2µyydϵzd
+

(kyd)
2

ω2µxxdϵzd
= 1. (2.9)

Comparing (2.6) and (2.9), one notices that there is a one-to-one relationship between

a medium with material parameters (¯̄µ, ϵz) and the electrical network shown in Fig.

2.5(b) with parameters ( ¯̄Z, Y ). The following substitutions simply need to be made

to go from the material to the electrical network,

jωϵzd −→ Y,

jωµyyd −→ zxx,

jωµxxd −→ zyy. (2.10)

Both the anisotropic medium and it’s analogous electrical network possess di-

agonal tensors. They exhibit dispersion curves that are ellipses or hyperbolas, de-

pending on the signs of the permeabilities (impedances). The principal axes of the

ellipses/hyperbolas are aligned with those of the Cartesian coordinate system, since

the tensor ¯̄Z is diagonal. In order to move the principal axes of the dispersion curves

off the coordinate system’s axes, a full permeability (impedance) tensor is required.
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(b) The configuration used to extract
the impedance tensor of the 3-branch
transmission-line metamaterial unit cell.

Figure 2.7: The 3-branch tensor transmission-line metamaterial unit cell.

As will be shown in the next section, this goal can be achieved by using a more general

unit cell topology.

2.3 Tensor Transmission-line Metamaterials

To design a transmission-line metamaterial with a full 2x2 ¯̄Z tensor, let us consider

the circuit shown in Fig. 2.7(a). This configuration will be referred to as 3-branch

structure. In addition to having series impedances in the x and y directions, it

has impedances along the x − y diagonal. These diagonal impedances give rise to

off-diagonal terms in the impedance tensor. The developed tensor analysis can be

applied to this circuit to derive its impedance tensor.

Considering the Fig. 2.7(b), net currents in the x and y directions can be written

as,

Ix = I3a + I3b + I2,

Iy = I1a + I1b + I2. (2.11)

Applying the same procedure as before, the admittance tensor ¯̄Y can be derived using
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Fig. 2.7(b),

¯̄Y =

 yxx yxy

yyx yyy

 =

 1
2Z2

+ 1
2Z3

1
2Z2

1
2Z2

1
2Z1

+ 1
2Z2

 . (2.12)

The impedance tensor ¯̄Z = ¯̄Y −1, representing the series branches of the network

shown in Fig. 2.7(a), can then be found,

¯̄Z =

 zxx zxy

zyx zyy

 =

 2Z3(Z1+Z2)
Z1+Z2+Z3

−2Z1Z3

Z1+Z2+Z3

−2Z1Z3

Z1+Z2+Z3

2Z1(Z2+Z3)
Z1+Z2+Z3

 . (2.13)

The dispersion equation for the network becomes,

(kxd)
2

(
zyy

zxxzyy − zxyzyx

)
−(kxd)(kyd)

(
zxy + zyx

zxxzyy − zxyzyx

)
+(kyd)

2

(
zxx

zxxzyy − zxyzyx

)
= −Y.

(2.14)

Substituting (2.13) into (2.14) yields,

(kxd)
2

(
1

2Z3

+
1

2Z2

)
+ (kxd)(kyd)

(
1

Z2

)
+ (kyd)

2

(
1

2Z1

+
1

2Z2

)
= −Y. (2.15)

Propagation along the network depicted in Fig. 2.7(a) can be related to S-polarized

(z-directed electric field polarization) propagation within an anisotropic medium with

a full 2x2 permeability tensor,

¯̄µ =

 µxx µxy

µyx µyy

 (2.16)
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Figure 2.8: The 4-branch tensor transmission-line metamaterial unit cell.

and permittivity ϵz in the z direction. The dispersion equation of such a medium is,

(kx)
2

ω2

(
µxx

µxxµyy − µxyµyx

)
+

(kx)(ky)

ω2

(
µxy + µyx

µxxµyy − µxyµyx

)
+

(ky)
2

ω2

(
µyy

µxxµyy − µxyµyx

)
= ϵz. (2.17)

In order to go from the effective medium (2.17) to the electrical network (2.14), the

following substitutions are required,

jωµxyd −→ −zxy,

jωµyxd −→ −zyx, (2.18)

in addition to those given by (2.9).

For even greater design flexibility, let us consider the network shown in Fig. 2.8(a),

which has impedances along both diagonals of the unit cell. This configuration will

be referred to as 4-branch structure. To derive the ¯̄Y tensor, the following system

of equations can be written for the net currents in the x and y directions (see Fig.
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2.8(b)),

Ix = I3a + I3b + I2a + I4a

= I3a + I3b + I2b + I4b,

Iy = I1a + I1b + I2a − I4b

= I1a + I1b + I2b − I4a. (2.19)

From these equations, the following admittance tensor ¯̄Y can be written for the

transmission-line metamaterial shown in Fig. 2.8(a),

¯̄Y =

 1
2Z2

+ 1
2Z3

+ 1
2Z4

1
2Z2

− 1
2Z4

1
2Z2

− 1
2Z4

1
2Z1

+ 1
2Z2

+ 1
2Z4

 . (2.20)

The corresponding impedance tensor ¯̄Z = ¯̄Y −1 is,

¯̄Z =

 zxx zxy

zyx zyy

 =

 2Z3(Z1Z2+Z1Z4+Z2Z4)
ZD

2Z1Z3(Z2−Z4)
ZD

2Z1Z3(Z2−Z4)
ZD

2Z1(Z2Z3+Z2Z4+Z3Z4)
ZD

 (2.21)

where,

ZD = Z1Z2 + 4Z1Z3 + Z1Z4 + Z2Z3 + Z2Z4 + Z3Z4. (2.22)

The dispersion equation of the transmission-line metamaterial shown in Fig. 2.8(a)

can be found by substituting the ¯̄Z tensor entries from (2.21) into (2.14),

(kxd)
2

(
1

2Z3

+
1

2Z2

+
1

2Z4

)
+(kxd)(kyd)

(
1

Z2

− 1

Z4

)
+(kyd)

2

(
1

2Z1

+
1

2Z2

+
1

2Z4

)
= −Y.

(2.23)

It should be mentioned that impedances on the y = x diagonal appear as positive

entries in the Z tensor, while those on the y = −x diagonal appear as negative entries.

19



Therefore, depending on the desired frequency dependence of the parameters, one

may want to choose an impedance on one diagonal as opposed to the other. For

example, at a certain frequency of operation, an inductance on the y = x diagonal

can be chosen to give the same zxy entry as capacitance on the y = −x diagonal. The

resulting frequency variation of the two choices, however, would be quite different: ω

vs. 1
ω
.

In summary, the unit cell of Fig. 2.8(a) provides a general circuit topology that

can be related to a homogeneous, anisotropic medium with 2×2 permeability tensor

and a permittivity scalar. The relationship between the material properties of a

homogenous medium (¯̄µ, ϵz) and the circuit elements ( ¯̄Z, Y ) are provided by (2.10,

2.18):

 jωµyyd −jωµxyd

−jωµyxd jωµxxd

 =⇒

 Zxx Zxy

Zyx Zyy


jωϵzd =⇒ Y (2.24)

The diagonal impedances (Z2 and Z4) lead to off-diagonal tensor impedance elements

(Zxy and Zyx). These diagonal impedances allow a net current in one direction (for

example Ix, which is representative of magnetic field intensity component Hy) to give

rise to series voltage drops in both the x and y directions (Vx and Vy, which are

proportional to the magnetic flux density components By and Bx). Therefore, by

properly selecting the values of Z1, Z2, Z3 and Z4 one can design a metamaterial with

arbitrary magnetic anisotropy (¯̄µ) and permittivity constant (ϵz).

In addition to the tensor transmission-line metamaterial unit cell shown in Fig.

2.8(a), the unit cell topology shown in Fig. 2.9 can also be used to synthesize

anisotropic material parameters [69]. Through the proposed tensor analysis, it can be

shown that the impedance tensor ¯̄Z and admittance scalar Y of the unit cells in Fig.
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Figure 2.10: Variations of the unit cell in Fig. 2.9. Only one of the impedances
(Za, Zb, Zc, Zd) is open-circuited in each topology.

2.8(a) and Fig. 2.9 are of the same form. They can be designed to be the identical by

simply setting Z1 = Za, Z2 = Zb, Z3 = Zc and Z4 = Zd. Furthermore, variations of

the unit cell in Fig. 2.9 which utilize only three of four impedances (Za, Zb, Zc, Zd),

can also be shown to realize full material tensors. These topologies are shown in

Fig. 2.10, where only one of the impedances (Za, Zb, Zc, Zd) is open-circuited in each

topology.

The unit cell topologies in Fig. 2.8(a) and Fig. 2.9 provide an alternative to the

designer. One topology may have advantages over the other for a given application.

For example, when implementing an anisotropic, inhomogeneous medium using unit

cells in Fig. 2.8(a), one needs to combine the impedances of the adjacent unit cells.

This, however, is not the case for the unit cell in Fig. 2.9. In this topology, the series

impedances do not run along the sides of a unit cell, but are rather confined within

the cell itself.
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2.4 Bloch Analysis and Terminations

The approximate tensor analysis shown in the previous section did not consider

spatial dispersion. It inherently assumed that the phase delays across the unit cell

in the x and y directions were small. Here, we perform a Bloch analysis of the TL

metamaterial shown in Fig. 2.8(a), in order to derive accurate dispersion equations

that take into account spatial dispersion. Bloch analysis is only performed on the

TL metamaterial in Fig. 2.8(a), since those shown in Figs. 2.5(b) and 2.7(a) can be

derived from it.

An infinite structure consisting of unit cells depicted in Fig. 2.8(a) can be analyzed

by applying Bloch boundary conditions to the voltages at the edges of the unit cell.

As shown in Fig. 2.11, the voltages across the unit cell can be related to each other

by the Bloch wavenumbers kx and ky. Once the voltages are assigned in this manner,

the currents on the branches of the unit cell can be written in terms of Z1, Z2, Z3,

Z4, kxd and kyd:

I1a =
V (1− e−jkyd)

4Z1

, I1b =
V e−jkxd(1− e−jkyd)

4Z1

,

I3a =
V (1− e−jkxd)

4Z3

, I3b =
V e−jkyd(1− e−jkxd)

4Z3

,

I2a =
V (Z4 − Z2(e

−jkxd + e−jkyd) + 2Z2 − Z4e
−jγ)

2Z2(Z2 + Z4)
,

I2b =
V (Z4 + Z2(e

−jkxd + e−jkyd)− 2Z2e
−jγ − Z4e

−jγ)

2Z2(Z2 + Z4)
,

I4a =
V (−Z4 − Z2(e

−jkxd − e−jkyd) + 2Z4e
−jkyd − Z4e

−jγ)

2Z4(Z2 + Z4)
,

I4b =
V (Z4 − Z2(e

−jkxd − e−jkyd)− 2Z4e
−jkxd + Z4e

−jγ)

2Z4(Z2 + Z4)
, (2.25)

where

γ = kxd+ kyd.
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Figure 2.11: Top view of the 4-branch tensor transmission-line metamaterial unit cell
of Fig. 2.8(a) under a Bloch wave excitation.

Applying Kirchhoff’s Current Law (KCL) to a node where four neighboring unit

cells intersect yields the following equation,

I1ae
−jkxd + I1b + I3ae

−jkyd + I3b + I2b + I4be
−jkyd−

(I1be
−jkyd + I1ae

−jγ + I2ae
−jγ + I3ae

−jγ + I3be
−jkxd + I4ae

−jkxd + 4IY e
−jγ) = 0,

(2.26)

where

IY =
V Y

4
. (2.27)

By substituting the current expressions from (2.25) into the expression (2.26), the

exact dispersion equation is obtained,

(
4

Z2 + Z4

+
2

Z3

)
sin2(

kxd

2
) +

(
2Z4

Z2(Z2 + Z4)

)
sin2(

γ

2
)+(

2Z2

Z4(Z2 + Z4)

)
sin2(

ζ

2
) +

(
4

Z2 + Z4

+
2

Z1

)
sin2(

kyd

2
) = −Y (2.28)
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where,

γ = kxd+ kyd, ζ = kxd− kyd. (2.29)

For the frequency range where the per-unit-cell phase delays are small (kxd ≪ 1,

kyd ≪ 1), the periodic network can be considered as an effective medium. Under

these conditions, the dispersion equation above simplifies to (2.23) obtained using

the approximate tensor analysis.

The developed Bloch analysis of tensor transmission-line metamaterials can be

used to find the Bloch wave impedances. These impedances are needed to terminate

Bloch waves on finite transmission-line metamaterial devices and are used to eliminate

reflections (reflected Bloch waves) at the terminals of the unit cells. The terminations

are derived for a Bloch wave defined by a specific wavevector: (kx, ky). The four nodes

(corners) of the unit cell shown in Fig. 2.11 have been labeled A, B, C and D. The

currents out of the nodes are named IA, IB, IC , ID, respectively. The current out of

each node can be expressed in terms of the currents defined by (2.25) as follows,

IA = −(I1a + I2a + I3a + IY ), IB = −(I1b − I3a − I4b + IY e
−jkxd),

IC = −(−I1a + I3b + I4a + IY e
−jkyd), ID = −(−I1b − I2b − I3b + IY e

−jkxd−jkyd).

(2.30)

The Bloch impedances ZA, ZB, ZC , ZD seen out of these nodes can then be computed

by taking the ratio of the node voltage to the current out of the node,

ZA =
V

IA
, ZB =

V

IB
e−jkxd,

ZC =
V

IC
e−jkyd, ZD =

V

ID
e−jkxd−jkyd. (2.31)

Since the currents IA, IB, IC and ID are defined out of the nodes for a specific Bloch
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wave characterized by the wavevector (kx, ky), some of the Bloch impedances may

have negative real parts. This simply implies that the actual current flows in the

opposite direction. In the design and analysis of a finite structure consisting of tensor

transmission-line metamaterials, the nodes of the unit cells at the edge of the finite

device must be terminated to eliminate reflections. The positive Bloch impedance

can be realized using passive circuit components. To realize the negative impedance,

one may simply attach a voltage source with twice the voltage of the node itself and

a source impedance equal to the negative of the Bloch impedance found.

2.5 Examples

In this section, the utility of transmission-line metamaterials and the presented

analysis are demonstrated through three separate design examples. In these designs,

the required isotropic and anisotropic medium parameters are implemented using

tensor transmission-line metamaterials. The first example considers reflectionless

refraction from an isotropic medium to an anisotropic medium. The earlier analysis

and the equivalence between electrical networks and anisotropic materials will allow

the design of two media that are impedance matched to each other. The second

and third examples consider the design of well-known transformation electromagnetic

devices requiring an anisotropic and inhomogeneous medium: a cylindrical invisibility

cloak [37] and a field rotator [70] embedded within an isotropic medium. These three

examples will verify the dispersion equations and termination expressions presented

in the previous sections, as well as the equivalence between effective media theory

and network theory. Furthermore, these examples will demonstrate the ability of

tensor transmission-line metamaterials to model anisotropic media and manipulate

electromagnetic waves in unusual ways.
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2.5.1 Reflectionless Refraction

The first example considers reflectionless refraction from an isotropic to an anisotropic

medium. In this example, the material parameters of the isotropic and anisotropic

medium are selected to eliminate reflection for a specific angle of incidence. The

isotropic and anisotropic media will be referred as medium 1 and medium 2, respec-

tively.

Medium 1 is implemented using the unit cell shown in Fig. 2.5(b), whereas

medium 2 is realized using the cell depicted in Fig. 2.7(a). The operating frequency

is chosen to be 1.0 GHz. The unit cells of the media are assumed to have a cell

dimension of d = 8.4 mm (λ0/36 at the frequency of operation). In this example, we

will also assume that the wave in medium 1 is incident at an angle of θ = 30◦ with

respect to the normal.

Medium 1 is an isotropic medium with material parameters,

µ = 2µo, ϵ = ϵo. (2.32)

The second medium is chosen to be anisotropic with the following permeability tensor,

¯̄µ =

 µxx µxy

µyx µyy

 =

 1.500 −1.354

−1.354 3.000

µo (2.33)

and permittivity ϵ = ϵo. This particular anisotropic medium was chosen since it is

impedance matched to medium 1, for the particular angle of incidence considered.

It should be noted that this medium is only one of an infinite number of possibili-

ties. According to anisotropic media theory, the refracted angle in medium 2 should

be 22.27◦. Given the unit cell dimension d, frequency of operation and the net-

work equivalence stipulated by (2.10), medium 1 corresponds to the transmission-line
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Figure 2.12: Set up for simulating reflectionless refraction between isotropic and
anisotropic transmission-line metamaterials.

metamaterial shown in Fig. 2.5(b) with lumped element values,

L1 = 10.556 nH, L3 = 10.556 nH, C = 0.074 pF, (2.34)

where,

Z1 = jωL1, Z3 = jωL3, Y = jωC. (2.35)

Once again, applying the substitutions given by (2.10) and (2.18), medium 2 corre-

sponds to the transmission-line metamaterial shown in Fig. 2.7(a) with the following
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electrical parameters,

L1 = 3.233 nH, L2 = −10.395 nH, L3 = 4.931 nH, C = 0.074 pF, (2.36)

where

Z1 = jωL1, Z2 = jωL2, Z3 = jωL3, Y = jωC. (2.37)

The angle of incidence and the phase matching condition along the interface between

the two TL metamaterials stipulate per-unit-cell phase delays (in radians) in medium

1 and medium 2 to be kx1d = 0.216, ky1d = 0.124 and kx2d = 0.304, ky2d = 0.124,

respectively.

Refraction at the interface between these two transmission-line metamaterials was

simulated using Agilent’s Advanced Design System (ADS) circuit simulator. Each

metamaterial extended two unit cells in the x direction and four unit cells in the y

direction. Therefore, the overall simulated structure was four by four unit cells, as

shown in Fig. 2.12. The plane wave incident from medium 1 was generated using

an array of linearly phased voltage sources along boundaries B and C, as shown in

Fig. 2.12. A phased voltage source was also needed along boundary D, in order

to eliminate the shadow along boundary D due to the finite interface [18]. The

source impedances (boundaries B, C and D) and termination impedances (remaining

boundaries) were found using the procedure outlined in the previous section. In

other words, the edges of the overall structure were terminated to emulate refraction

between two semi-infinite media.

A contour plot of the simulated voltage phases at the corners of the unit cells in

both transmission-line metamaterials is shown in Fig. 2.13. The plot clearly shows

an incident wave and refracted wave at the predicted angles.

28



 

 

1 2 3

-10

-20

-30

-40

-50

-60

-70

-80

1

2

3

4

5

x

y

Interface

Boundary A

B
o
u

n
d
ar

y
 B

Boundary C

Boundary D

D
eg

re
es

Medium 1 Medium 2

4 5

22.27º

30º

Figure 2.13: Contour plot of the voltage phase of a Bloch wave obliquely incident
from an isotropic, homogenous transmission-line metamaterial onto a
tensor transmission-line metamaterial.

2.5.2 Cylindrical Invisibility Cloak

The second example considers the implementation of a cylindrical invisibility cloak

[37] using tensor transmission-line metamaterials. A cylindrical invisibility cloak is

a transformation electromagnetic device that guides incident electromagnetic waves

around a circle without perturbing the outside field distribution. An anisotropic,

inhomogeneous annulus around the inner circle eliminates scattering, thus rendering

the circle, together with any object hidden within, invisible.

The inner and outer radius of the cloak (annulus) are denoted by R1 and R2,

respectively. The material parameters of the cylindrical cloak are taken from [37] for

the specific case of S-polarized radiation (z-directed electric field),

µr =
r −R1

r
, µϕ =

r

r −R1

, ϵz = (
R2

R2 −R1

)2
r −R1

r
. (2.38)
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In the Cartesian system, this translates to,

µxx = µr cos
2 ϕ+ µϕ sin

2 ϕ,

µxy = µyx = (µr − µϕ) cosϕ sinϕ,

µyy = µr sin
2 ϕ+ µϕ cos

2 ϕ,

ϵz = (
R2

R2 −R1

)2
r −R1

r
. (2.39)

The medium surrounding the cloak is assumed to be isotropic and homogeneous: ϵ =

ϵ0 and µ = µ0. An operating frequency of 3.57 GHz is selected and radii of R1 = 0.7λ0

and R2 = 1.4λ0 are chosen. To implement the cloak using tensor transmission-line

metamaterials, the substitutions given by (2.10) and (2.18) are applied to the material

parameters of the cloak and surrounding medium. The unit cell depicted in Fig.

2.7(a) is used to implement the cloak, while the surrounding medium is implemented

using the unit cell of Fig. 2.5(b). The dimensions of each unit cell are assumed to

be 8.4 mm (λ0/10 at the operating frequency). The cloak and surrounding space are

discretized according to Fig. 2.14(a), and the material parameters are defined with

respect to the center of each unit cell. Each square in Fig. 2.14(a) represents a unit

cell. The 460 unit cells that constitute the cloak are identified with dots in order to

distinguish them from the surrounding medium.

In simulation, the left-most side of the structure was excited with in-phase voltage

sources, in order to generate a plane wave incident from left to right. The voltage

sources, as well as the right-most side of the structure, were terminated in accordance

with Section 2.4: to emulate an infinite medium. The top and bottom edges of

the simulated structure were open-circuited, as would be the case for a plane wave

incident from left to right. As in the previous example, the voltages at the corners

of each unit cell were computed using the ADS circuit simulator. A time snapshot of

the steady-state voltages is plotted in Fig. 2.14(b). Some reflections to the left of the
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Figure 2.14: (a) Simulation set up for a transmission-line based cylindrical invisi-
bility cloak embedded within isotropic, homogeneous transmission-line
medium.The discretization of the cloak and surrounding medium is
shown. (b) Time snapshot of the simulated, steady-state voltages
within and surrounding the invisibility cloak implemented using tensor
transmission-line metamaterials.

cloak and a slight shadow to the right of the cloak are observed, which result from

the cloak’s discretization. Nevertheless, the field patterns characteristic of a cloak are

quite prominent.

2.5.3 Cylindrical Field Rotator

The third and final example considers the field rotator device presented in [70].

The device rotates an incident electromagnetic field within a defined annulus by

a prescribed angle. In this example, a 90 degree rotation of the incident field is

considered. The material properties of the anisotropic and inhomogeneous annulus,

and full-wave simulation results of an idealized field rotator are depicted in Fig. 2.15.

The medium surrounding the field rotator is assumed to be isotropic and homogenous

with relative permittivity of ϵr=1 and relative permeability of µr=1. An operating

frequency of 2.0 GHz is selected for the simulation. The inner and outer radii of the
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Figure 2.15: Simulated phase of the electric field within and surrounding the ideal-
ized electromagnetic field rotator, computed using a commercial finite
element electromagnetic solver. Permeability values of the annulus are
shown in the insets. The permeability of the surrounding medium is
µr=1, and the permittivity of the entire structure is ϵr=1.

annulus are chosen to be 0.11 λ0 and 0.33λ0, respectively.

The circuit simulation set up for a field rotator device implemented using ten-

sor transmission-line metamaterials is shown in Fig. 2.16(a). Each unit cell within

the annulus is marked with a dot and represents an appropriately loaded tensor

transmission-line unit cell (see Fig. 2.7(a)). The unit cells in the region surrounding

the annulus model an isotropic medium. The unit cell depicted in Fig. 2.5(b) is

used to implement the isotropic medium. In the simulation, the left-most side of the

structure is excited with in-phase voltage sources which illuminate the field rotator

with a plane wave. The right-most side of the structure is terminated with the Bloch

impedance of the isotropic medium, in order to emulate an infinite medium. The top

and bottom edges of the simulated structure are left open circuited. Voltage phases

at the corners of each unit cell are computed using the ADS circuit simulator. The

simulated voltage phase within and surrounding the field rotator implemented using

tensor transmission-line metamaterials is shown in Fig. 2.16(b). As can be seen, the

circuit simulation results closely match those of the idealized field rotator shown in

Fig. 2.15.
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Figure 2.16: (a) Simulation set up for a transmission-line field rotator embedded
within isotropic, homogeneous transmission-line medium. The dis-
cretization of the field rotator and surrounding medium is shown. (b)
Simulated voltage phase within and surrounding the electromagnetic
field rotator, implemented using tensor transmission-line metamaterials.
The results were computed using Agilent’s ADS circuit simulator.

These three examples verify the theoretical analysis of tensor transmission-line

metamaterials presented in the previous sections. They also demonstrate the ability

of tensor transmission-line metamaterials to realize anisotropic media and manipulate

electromagnetic waves in unusual ways. The next section considers the implementa-

tion of tensor transmission-line circuit network at microwave frequencies.

2.6 Metamaterial Realization

Tensor transmission-line metamaterials directly relate material tensors to simple

circuit networks. These circuit networks can then be implemented using either dis-

tributed or lumped circuit elements. This new approach to the design of tensor meta-
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Figure 2.17: Microstrip implementation of the tensor transmission-line metamaterial
depicted in Fig 2.8(a).

materials can be readily applied at RF, microwave and millimeter-wave frequencies,

and possibly extended to higher frequencies by employing the concept of nano-circuit

elements [71].

In this section, the implementation of tensor transmission-line metamaterials at

microwave frequencies is considered. These metamaterials are first implemented as

loaded 2D transmission-line networks in microstrip technology. Then, an equivalent

circuit model of the implemented tensor transmission-line metamaterial is derived. It

will be used to relate the material parameters of the implemented metamaterials to

their homogeneous equivalent in the next section.

Fig. 2.17 depicts a practical realization of the tensor transmission-line metamate-

rial shown in Fig. 2.8(a). As shown in Fig. 2.17, printed microstrip lines are loaded

with both series and shunt elements. Throughout this and following sections, the

substrate is assumed to be lossless and have a relative permittivity of ϵr = 3, and

height h = 1.524 mm. The width, w, of the lossless metallic microstrip lines is 0.4

mm and the unit cell dimension is d = 8.4 mm.

A lumped element representation of the metamaterial depicted in Fig. 2.17 is

shown in Fig. 2.18. The representation takes into account the transmission-line

inductance and capacitance in addition to the loading elements. Such a representation

is possible as the tensor transmission-line metamaterial unit cell and interconnecting
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Figure 2.18: Lumped element representation of the tensor transmission-line meta-
material shown in Fig. 2.17. LTL=L0d/2, Ctot=CTL + Cℓ, and
CTL=2C0d(1+

√
2).

Figure 2.19: A unit cell of the unloaded microstrip transmission-line grid.

transmission-lines are assumed to be electrically small. In the figure, the series loading

elements are assumed to be inductors and the shunt loading element a capacitor. The

variables, Lℓ1, Lℓ2, Lℓ3 and Lℓ4, represent the series loading elements, whereas LTL

denotes the inductance of the interconnecting microstrip lines. The capacitance,

Ctot, represents the sum of the transmission-line capacitance, CTL, and the additional

loading capacitance, Cℓ. The caption of Fig. 2.18 provides expressions for CTL and

LTL in terms of L0 and C0: the per-unit-length inductance and capacitance of the

interconnecting transmission lines.

The values of L0 and C0 can be extracted from the unloaded microstrip grid’s Bloch

impedance and per-unit-cell phase delay. A unit cell of the unloaded transmission-line

grid is depicted in Fig. 2.19, while its lumped element circuit model is shown in Fig.

2.20. Expressions for the Bloch impedance, ZB, and Bloch wave number, kB, of

the unit cell shown in Fig. 2.20 can be easily derived for on-axis propagation. For
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Figure 2.20: Lumped element representation of the unloaded microstrip transmission-
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√
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frequencies of operation where the cell’s dimensions are electrically short, they can

be expressed as

kB = ω
√
2L0C0 ZB =

√
L0

C0

(
1

2 +
√
2
). (2.40)

The Bloch wavenumber and impedance for on-axis propagation can also be expressed

in terms of the unit cell’s Z parameters obtained from on-axis scattering simulations

on one unit cell [72]:

kBd = arccos(
Z11

Z12

) ZB =
√
Z11Z22 − Z12Z21. (2.41)

From full-wave simulation, the Z parameters of the unloaded transmission-line grid

shown in Fig. 2.19 were found to be,

 Z11 Z12

Z21 Z22

 = −j

 171.03 181.66

181.66 171.02

 . (2.42)

Using these Z parameters and (2.41), ZB and kBd for the unloaded grid were calcu-

lated to be

kBd = 0.344 rad ZB = 61.244 Ω. (2.43)

The Bloch wavenumber, Bloch impedance, and (2.40) were then used to extract the
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following circuit parameters:

L0d = 8.090 nH C0d = 0.185 pF. (2.44)

2.7 Full-wave Verification of Tensor TL Metamaterials

In this section, the analytical dispersion equation (2.23) for tensor transmission-

line metamaterials is verified through three separate full-wave simulations. The three

examples consider the proposed metamaterial unit cell (shown in Figure 2.17) with

different sets of loading elements.

In the dispersion simulations (see Fig. 2.21), periodic (Bloch) boundary conditions

were defined on the unit cell faces with normal unit vectors x̂ and ŷ. A perfectly

matched layer was placed at a distance seven times the substrate height above the

microstrip lines, in order to represent the unbounded free space above. The full-

wave eigenmode solver (Ansys HFSS) was then used to compute the isofrequency

contours of the structure. First, let us consider the simulation of the unloaded unit

cell shown in Fig. 2.19. At low frequencies, the infinite medium consisting of these

unit cells is expected to be isotropic and homogeneous with isofrequency contours that

are concentric circles. The analogous isotropic medium has the following material

parameters: ϵz = 2.18ϵ0 and

 µyy µxy

µyx µxx

 =

 1.70 0

0 1.70

µ0.

Fig. 2.22(a) shows the isofrequency contours computed using the full-wave eigen-

mode solver, and Fig. 2.22(b) compares them with those obtained analytically using

2.23. The analytical isofrequency contours are calculated by substituting the following
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Figure 2.21: Eigenmode simulation set up. Periodic (Bloch) boundary conditions
were defined on the unit cell faces with normal unit vectors x̂ and ŷ. A
perfectly matched layer was placed above microstrip lines to represent
unbounded free space above.

values

Z1 = jωLTL, Z2 = jωLTL

√
2, Z3 = jωLTL, Z4 = jωLTL

√
2,

Y = jωCtot = jωCTL. (2.45)

into (2.23).

In the second example, the microstrip transmission-line grid is loaded with the

following series inductive elements (see Fig. 2.18):

Lℓ1 = 4nH, Lℓ2 = 2nH, Lℓ3 = 16nH, Lℓ4 = 12nH. (2.46)

38



 

 

0.  2

0.  4

0.  6

0.  8

1.0

1.  2

1.   4

1.  6

1.  8

2.0

F
re

q
u

en
cy

 (
G

H
z)

   

   

−0.   25

   

0

0.  25

0.    5 

−0.   5

k
y
d

(r
a

d
)

−0.    25 0 0.  25 0.    5 
kxd(rad)

   −0.   5

(a) Full-wave simulation results

0.5 GHz

0.75 GHz

1.0 GHz

   

   

−0.   25

   

0

0.  25

0.    5 

−0.   5

−0.    25 0 0.  25 0.    5 
kxd(rad)

k
y
d

(r
a

d
)

   −0.   5

(b) Analytical vs. full-wave simulation re-
sults

Figure 2.22: (a) Isofrequency dispersion contours of the unloaded microstrip grid de-
picted in Fig. 2.21. (b) The solid lines and dots show the simulated and
analytical isofrequency contours, respectively.

The impedances and admittance of this metamaterial are

Z1 = jω(LTL + Lℓ1), Z2 = jω(LTL

√
2 + Lℓ2), Z3 = jω(LTL + Lℓ3), Z4 = jω(LTL

√
2 + Lℓ4),

Y = jωCtot = jωCTL. (2.47)

The analogous magnetically anisotropic medium has the following material parame-

ters: ϵz = 2.18ϵ0 and

 µyy µxy

µyx µxx

 =

 3.64 1.16

1.16 4.80

µ0.

The metamaterial and its analogous medium are anisotropic and have elliptical isofre-

quency contours with a negative tilt angle of approximately −32o from the x axis.

The isofrequency contours obtained through full-wave simulations and those derived

analytically using (2.23) are compared in Fig. 2.23.

The final example considers adding shunt, capacitive loading elements in addition
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sults

Figure 2.23: (a) Isofrequency dispersion contours of the tensor transmission-line
metamaterial depicted in Fig. 2.18 with loading elements given by (2.46).
(b) The solid lines and dots show the simulated and analytical isofre-
quency contours, respectively.

to series, inductive elements. By loading the structure with a shunt capacitance, the

effective permittivity of the medium is increased over that of the unloaded grid. A

shunt capacitance, Cℓ = 0.4 pF is added to the intrinsic capacitance of the microstrip

transmission lines, CTL, to yield

Y = jωCtot = jω(CTL + Cℓ). (2.48)

The series inductive elements are chosen to be:

Lℓ1 = 4nH, Lℓ2 = 12nH, Lℓ3 = 16nH, Lℓ4 = 2nH. (2.49)

This set of series inductive elements is slightly different from that given by (2.46). The

values of Lℓ2 and Lℓ4 have been swapped in order to produce a positive tilt angle in

the isofrequency contours. This sign change in tilt angle can be easily predicted from

(2.23). The analogous magnetically anisotropic medium has the following material
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sults

Figure 2.24: (a) Isofrequency dispersion contours of the tensor transmission-line
metamaterial depicted in Fig. 2.18 with loading elements given by (2.49)
and (2.48). (b) the solid lines and dots show the simulated and analytical
isofrequency contours, respectively.

parameters: ϵz = 3.15ϵ0 and

 µyy µxy

µyx µxx

 =

 3.64 −1.16

−1.16 4.80

µ0.

The simulated and analytical isofrequency contours are compared in Fig. 2.22. Once

again, close agreement is observed between the simulated and analytically derived

isofrequency contours. It should be noted that elliptical isofrequency contours are

wider in Fig. 2.24(b) than in Fig. 2.23(b) due to the increase in effective permittivity

of the medium. This final example shows that not only can the magnetic 2×2 tensor

of the metamaterial be manipulated with series loading elements, but its effective

permittivity can also be tailored using shunt loading elements.
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2.8 Conclusion

In this chapter, a new class of transmission-line based metamaterials referred to

as “tensor transmission-line metamaterials” was introduced. These new metamate-

rials can possess effective material parameters with arbitrary full tensors. This is

in contrast to earlier transmission-line metamaterials which could only implement

effective material parameters with diagonal tensors in the Cartesian basis. An ap-

proximate tensor approach to transmission-line metamaterial analysis was developed

to characterize the proposed metamaterials. Such an analysis provided insight into

their development. This approximate analysis was subsequently validated through

rigorous Bloch analysis, and accurate dispersion equations and Bloch impedance ex-

pressions were derived. Simulation results of a reflectionless interface between an

isotropic and anisotropic metamaterial, an invisibility cloak and a field rotator vali-

dated the analytical findings, and demonstrated the ability of tensor transmission-line

metamaterials to manipulate electromagnetic waves in extreme ways. It was shown

that these metamaterials could be realized by loading a microstrip grid with reac-

tive elements. Finally, the propagation characteristics of tensor transmission-line

metamaterials realized in microstrip technology have been verified through full-wave

simulations.

Tensor transmission-line metamaterials allow arbitrary control of electromagnetic

fields along a surface, and therefore will find application in antenna design. These

metamaterials will allow designers to synthesize arbitrary surface current distribu-

tions, and as a result arbitrary antenna aperture illuminations. This technology will

also find use in the design of antenna feeds, beam-forming networks, multiplexers,

power dividers and couplers. A tensor transmission-line metamaterial inspired beam-

former application has already been realized by Gandini et al. [73]. A variation of

the tensor transmission-line unit cell was redesigned as a planar directional coupler

with arbitrary output phase and power distributions. These couplers were then used
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to design a compact butler matrix for beam-forming applications. Furthermore, ten-

sor transmission-line metamaterials were used by Liu et al. experimental design of

a field rotator and field concentrator [74, 75]. The idea of synthesizing anisotropic

medium with transmission-line metamaterials was also pursued by other research

groups [76, 77, 78]. These works created the anisotropy with transmission-line struc-

tures possessing skewed/non-orthogonal transmission-line grids [76, 77] and induc-

tively coupled transmission-lines [78]. An issue with utilizing skewed transmission-

lines unit cells to achieve an inhomogeneous, anisotropic medium that can arise is

the crystal misalignment at the interface between two transmission-line metamate-

rials with different skewed angles. With tensor transmission-line metamaterials, we

introduced a uniform, rectangular unit cell that can be used to implement arbitrary

tensor materials. Such a scheme allows metamaterial discretization over a uniform

grid, while permitting arbitrary material tensors with spatial gradients. The mis-

alignment of unit cells can also be remedied by using non-uniform transmission-line

discretization as proposed in [79].

The analytical derivations and the understanding of tensor transmission-line meta-

materials developed in this chapter will be used in the subsequent chapters to further

develop and design devices for guided and radiated fields.
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CHAPTER III

Homogenization of Tensor TL Metamaterials

In the previous chapter, tensor transmission-line metamaterials have been pro-

posed and shown to exhibit the properties of magnetically anisotropic media. The

equivalence between tensor transmission-line metamaterials and magnetically anisotropic

media was established by comparing the analytic dispersion equation of the metama-

terial with that of a homogenous, anisotropic medium. Subsequently, this analytical

equivalence was backed up by full-wave simulations that compared the dispersion

data of a realized metamaterial with those of a anisotropic homogeneous medium.

In this chapter, the magnetic anisotropy of tensor metamaterials are further

verified by retrieving their effective material parameters through a homogenization

method. The proposed homogenization method employs a local field averaging pro-

cedure over a realized metamaterial unit cell to compute its effective material pa-

rameters. It is shown that the effective material parameters can be dispersive or

non-dispersive. For the tensor metamaterials possessing dispersive effective material

parameters, the homogenization method also takes advantage of the circuit topol-

ogy of tensor transmission-line metamaterials to predict material parameters over a

frequency range.

Although the material parameters of a tensor transmission-line metamaterials can

be computed from its equivalent circuit model as shown in previous chapter, the pro-
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posed homogenization method directly relates the realized metamaterial structure

to its effective material parameters. In addition, the homogenization method can ac-

count for couplings inside the realized tensor transmission-line unit cell, which cannot

be captured by the proposed circuit model. The method also provides an accurate

and rapid characterization of tensor transmission-line metamaterials, promoting their

use in the design of larger metamaterial structures.

The following section presents a brief background on metamaterial homogeniza-

tion methods. Subsequently, the proposed homogenization method is detailed and

applied to the microstrip implementation of tensor transmission-line metamaterials.

Tensor transmission-line metamaterial configurations possessing dispersive and non-

dispersive material parameters are considered. Finally, homogenization method is

verified through full-wave simulation results.

3.1 Homogenization of Metamaterials

Metamaterials are artificially structured materials providing tailored electromag-

netic properties. These materials are made up of subwavelength unit cells arranged

with subwavelength spacings. Despite a metamaterial’s discretized structure, they

can be modelled as homogeneous materials as long as the unit cell dimension and the

spacing between scatterers remain much smaller than the wavelength of operation.

Under this condition, the metamaterials’ electromagnetic properties can be expressed

in terms of material parameters such as permittivity and permeability, as is done

for conventional materials. The process of relating a metamaterial’s electromagnetic

characteristics to homogeneous material properties is known as homogenization. The

computed parameters of metamaterials are referred to as “homogenized” or “effective”

material parameters. They describe the “averaged” response of the metamaterials’

unit cells to the electromagnetic fields. Since the material parameters of metamate-

rials are fundamental to their design and analysis, several homogenization methods

45



have been proposed to date. In general, an equivalence is drawn between a meta-

material structure and a homogeneous structure using the measured, simulated or

calculated quantities. In the simplest homogenization method, scattering (reflec-

tion/transmission) coefficients of a finite length metamaterial slab are compared with

to those of a homogeneous dielectric slab with the same thickness [80, 81, 82]. Further

improvements to this homogenization method have been reported in [83, 84, 85, 86].

Another well-known homogenization method involves field averaging to convert micro-

scopic fields within the metamaterial unit cells to averaged macroscopic fields [5, 87].

As compared to the scattering parameters method, where only the reflection and

transmitted fields are considered, this method considers the field distribution on the

unit cell boundaries. The field averaging method has proven effective in calculating

the material parameters from eigenmode simulations of a single unit cell. Additional

numerical algorithms incorporating external field sources with field averaging [88, 89]

have also been put forth. Homogenization methods have been applied to well-known

volumetric metamaterials such as wire media [4], split-ring resonator media [5], their

combination [7], and numerous others ranging from DC to optical frequencies. Var-

ious material properties such as isotropy, anisotropy and bi-anisotropy have been

extracted using homogenization methods.

Analytical homogenization methods for 1D [90] and 2D transmission-line meta-

materials [18, 65] as well as related 2D mushroom structures [91] have also been

studied in the past. However, field-averaging homogenization methods have not been

applied to full-wave simulation data of transmission-line metamaterials. In this chap-

ter, we present a method for calculating the effective medium parameters of tensor

transmission-line metamaterials. The proposed homogenization method draws a one-

to-one equivalence between a tensor transmission-line metamaterial and a parallel-

plate waveguide filled with an anisotropic, homogeneous medium, as shown in Fig.

3.1. The method employs a local field averaging over the faces of the realized metama-
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terial’s unit cell to compute its effective material parameters. These effective material

parameters can be dispersive or non-dispersive. To predict the frequency dispersion of

the effective material parameters, circuit representations of tensor transmission-line

metamaterial unit cells are used. Dispersive and non-dispersive material parameter

extraction are considered and verified through full-wave simulation. The method al-

lows an accurate and rapid calculation of the effective material parameters of a tensor

transmission-line metamaterial unit cell. The described homogenization technique is

applicable to isotropic and anisotropic transmission-line metamaterials that possess

both diagonal material parameters [17, 18, 20, 21, 23, 22] and off diagonal material

parameters [76, 77] in the Cartesian basis.

3.2 Homogenization Method for Tensor Transmission-line Meta-

materials

The proposed homogenization method computes the effective material parame-

ters of tensor transmission-line metamaterials by drawing a one-to-one equivalence

between wave propagation on a tensor transmission-line metamaterial and parallel-

plate waveguide medium shown in Fig. 3.1. Fig. 3.1(a) shows a microstrip implemen-

tation of a tensor transmission-line metamaterial unit cell considered in this chapter.

The unit cell length and height are shown with d and h, respectively. The equivalent

a parallel-plate waveguide medium consists of a magneto-dielectric medium sand-

wiched between two perfect electric conductors from top and bottom. The parallel

plate waveguide is shown in Fig. 3.1(b). The unit cell shown has the same physical

dimensions as the tensor transmission-line unit cell shown in Fig. 3.1(a). It is filled

with a homogeneous magneto-dielectric with a relative permeability tensor ¯̄µ and a
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εz,

d
d

(b)

Figure 3.1: (a) Microstrip implementation of a tensor transmission-line metamate-
rial unit cell with series and shunt loading elements. (b) A parallel-plate
waveguide equivalent to the tensor transmission-line metamaterial de-
picted in Fig. 3.1(a).

relative scalar permittivity ϵ

¯̄µ =

 µxx µxy

µyx µyy

 , ϵ = ϵz. (3.1)

The homogenization method describes how to compute the permeability tensor

and permittivity scalar of the equivalent parallel-plate waveguide (Eq. (3.1)) repre-

senting the tensor TL metamaterial. It draws an equivalence between the structures

shown in Fig. 3.1(a) and Fig. 3.1(b) in terms of their (i) dispersion curves and (ii)

effective impedances for all angles of wave propagation at a given frequency.

A full-wave solver is used to solve for the electromagnetic field distribution within

a transmission-line metamaterial. The homogenization procedure then employs a

field averaging technique over the faces of the metamaterial’s unit cell, in addition

to well-known analytical expressions for plane wave propagation in a homogeneous,

anisotropic medium to compute the effective material parameters. The following

subsections present a detailed analysis of tensor transmission-line and parallel plate

waveguide media, and subsequently draw equivalence between them.
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Figure 3.2: The eigenmode simulation setup. The integration paths used in the ho-
mogenization procedure are shown.

3.2.1 The Tensor TL Metamaterial as a Homogeneous Medium

The proposed homogenization procedure will be applied to a microstrip imple-

mentation of a tensor transmission-line metamaterial with the unit cell shown in Fig.

3.1(a). Fig. 3.2 depicts the set up that will be used to perform full-wave (eigen-

value/periodic) simulations of the tensor transmission-line metamaterial shown, from

which material parameters will be extracted. The set up includes periodic bound-

aries on the sidewalls of the unit cell, and a perfectly matched layer (PML) on top to

emulate unbounded free space. The integration paths shown on the faces of the unit

cell will be used in the homogenization procedure. The eigenvalue problem is solved

numerically using a commercial full-wave electromagnetic solver, Ansys HFSS. The

local Ē and H̄ field distributions within the unit cell are computed numerically for a

given set of phase delays (periodic conditions) in the x and y directions. These phase

delays across the unit cells must be chosen to be small for proper homogenization
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of the metamaterial. By integrating the local fields on the faces of the unit cell, the

following voltages Vx, Vy and currents Ix, Iy can be defined

Vx = −
∫
ℓ1

E · dℓ, Vy = −
∫
ℓ2

E · dℓ,

Ix =

∮
C1

H · dℓ, Iy =

∮
C2

H · dℓ, (3.2)

where paths C1 and C2 represent the closed contours consisting of the lines 1− 2− 3− 4

and 6− 7− 8− 9, respectively. Although the integration paths C1 and C2 extend to

the perfectly matched layer (PML) in the z direction (see Fig. 3.2), this is not nec-

essary. One may simply ensure that the closed path integrals enclose the net current

flowing along the microstrip lines in the respective directions. The lines along which

the Ē field is integrated, ℓ1 and ℓ2, are shown as line 5 and line 10 in Fig. 3.2, re-

spectively. Using the voltage and current expressions of (3.2), impedances Zx, Zy in

x and y directions can be defined

Zx =
Vx

Ix
, Zy =

Vy

Iy
. (3.3)

3.2.2 Parallel Plate Waveguide

The circuit parameters defined by (3.2) and (3.3) have a one-to-one correspondence

to the field quantities of a TEM wave propagating in the parallel-plate waveguide of

Fig. 3.1(b) that is filled by a dielectric with material parameters in (3.1). For the

polarization of interest, the non-zero field quantities within the parallel-plate region

are the z component of electric field Ez and the x and y components of magnetic

field: Hx and Hy. Using these field components, wave impedances along the x and y

directions can be written for the parallel-plate waveguide

ηx = −Ez

Hy

ηy =
Ez

Hx

. (3.4)
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Using the electric and magnetic field components, voltages and currents for the

TEM mode of the parallel-plate waveguide shown in Fig. 3.1(b) can be defined

Vx = −Ezh Vy = −Ezh

Ix = Hyd Iy = −Hxd. (3.5)

3.2.3 Drawing an Equivalence

Using (3.4) and (3.5), the wave impedances of the parallel-plate waveguide can be

related to the x and y directed circuit impedances by the following relation

 Zx

Zy

 = gη0

 ηx

ηy

 , (3.6)

where g = h
d
, ηx and ηy are the wave impedances normalized with respect to their

free space value, η0 =
√

µ0

ϵ0
.

In order for the tensor transmission-line metamaterial shown in Fig. 3.1(a) to be

equivalent to the parallel-plate waveguide shown in Fig. 3.1(b), the dispersion curve

and circuit impedances (Zx, Zy) for both structures must be the same. It is in fact

this process of equating the circuit parameters of both structures that will allow us to

compute the effective material parameters of tensor transmission-line metamaterials.

To understand the homogenization procedure, the plane-wave relations in the par-

allel plate waveguide filled with an anisotropic, homogeneous dielectric medium (3.1)

are reviewed. For the polarization of interest, Maxwell’s time-harmonic equations for

plane waves are:

−jk⃗ × E⃗ = −jω ¯̄µµoH⃗, (3.7)

−jk⃗ × H⃗ = jωϵzϵoE⃗. (3.8)
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Considering only the non-zero field quantities, these two vector equations can be

rewritten as:  ky

kx

 =

 µxx −µxy

−µyx µyy


 ηy

−1

ηx
−1

 , (3.9)

ϵz =

[
kx ky

] ηx
−1

ηy
−1

 . (3.10)

where ηx = − 1
ηo

Ez

Hy
, ηy =

1
ηo

Ez

Hx
are the wave impedances and kx = kx

ko
, ky =

ky
ko

are the

wave numbers in the x and y directions, normalized with respect to their free space

values. Note that the frequency of operation (f) can be deduced from the expression

for the free space wave number, ko = ω
√
µoϵo where ω = 2πf .

Substituting equation (3.6) into (3.9) and (3.10) yields

 ky

kx

 = g

 µxx −µxy

−µyx µyy


 Zy

−1

Zx
−1

 ηo, (3.11)

ϵz
g

=

[
kx ky

] Zx
−1

Zy
−1

 ηo. (3.12)

Using (3.11) and (3.12), the effective material parameters (ϵ, ¯̄µ) can be determined

using the tensor transmission-line metamaterial’s Zx and Zy impedances computed

using two independent solution sets of (kx, ky, f). Two independent solutions are

needed since there are four unknowns (µxx, µxy, µyy, ϵz) and (3.9) and (3.10) provide

only three equations. In other words, all that is required to find the material param-

eters are two full-wave eigenmode simulations of the tensor transmission-line meta-

material, and the field integrations given by (3.2) that allow Zx, Zy to be computed.

Note, the metamaterial is assumed to be reciprocal: µxy = µyx.

The described homogenization procedure can be easily applied to tensor transmission-
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line metamaterials that have frequency independent effective material parameters.

For example, commercial electromagnetic eigenmode solvers allow users to stipulate

phase delays (kxd and kyd) across the unit cell and solve for frequency. Therefore, two

such simulations with different eigenfrequencies can be used in the homogenization

procedure, given that the material parameters are frequency independent.

When the effective material parameters of the tensor transmission-line metamate-

rial are frequency dispersive, the proposed homogenization method can still be used

with certain caveats. For instance, two eigenmode simulations at the same frequency

can be used to extract the effective material parameters at that frequency of op-

eration. Unfortunately, commercial electromagnetic solvers do not allow users to

stipulate frequency in an eigenmode simulation. Therefore, parametric sweeps may

be required to find two eigenmode simulations at the same frequency. Alternatively,

the frequency dependence of effective material parameters can be assumed, and the

material parameters extracted from eigenmode simulations at different frequencies.

As will be shown in the following section, the frequency dependence of the effective

material parameters can be predicted from a tensor transmission-line metamaterial’s

circuit topology.

3.3 Frequency Dependence of Effective Material Parameters

In the described homogenization process, the effective material parameters of ten-

sor transmission-line metamaterials were computed through a field averaging proce-

dure. These material parameters can also be related to the circuit representation of
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Figure 3.3: Circuit model of the tensor transmission-line metamaterial shown in Fig.
3.1(a).
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Figure 3.4: (a) A unit cell of the unloaded microstrip grid. (b) A circuit model of the
unloaded microstrip grid depicted in Fig. 3.4(a).

the unit cell (see Fig. 3.3) by the following equations derived in Chapter 2:

 jωµyyd −jωµxyd

−jωµyxd jωµxxd

 =
1

g

 Zxx Zxy

Zyx Zyy



jωϵzd = gY, (3.13)

where  Zxx Zxy

Zyx Zyy

 =

 2Z3(Z1+Z2)
Z1+Z2+Z3

−2Z1Z3

Z1+Z2+Z3

−2Z1Z3

Z1+Z2+Z3

2Z1(Z3+Z2)
Z1+Z2+Z3

 .
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According to (3.13), the frequency dependence of the effective material parameters

is determined by the series impedances, Z1, Z2, Z3 and shunt admittance, Y .

3.3.1 Non-dispersive Material Parameters

Let’s consider the unloaded microstrip unit cell shown in Fig. 3.4(a), with its

circuit representation shown in Fig. 3.4(b). In the circuit model, the transmission

lines are represented by series inductances L1TL, L2TL, L3TL and the shunt capaci-

tance CTL. It is assumed that interconnecting microstrip lines are electrically short.

Therefore, the series impedances and shunt admittance (see Fig. 3.3) of the unit cell

can be written as

Z1 = jω(L1TL) Z2 = jω(L2TL) Z3 = jω(L3TL)

Y = jω(CTL).
(3.14)

Substituting (3.14) into (3.13) yields the effective material parameters in terms of

circuit quantities

 µxx µxy

µyx µyy

 =
1

dg

 2L3TL(L1TL+L2TL)
L1TL+L2TL+L3TL

2L1TLL3TL

L1TL+L2TL+L3TL

2L1TLL3TL

L1TL+L2TL+L3TL

2L1TL(L3TL+L2TL)
L1TL+L2TL+L3TL

 ,

ϵz =
CTL

d
g. (3.15)

The equation above (3.15) also reveals the frequency dependence of the effective

material parameters. In fact, it shows that the effective material parameters of the

unloaded tensor TL metamaterial have no frequency dependence. This is due to

the fact that the series impedances are inductive and the shunt admittances are

capacitive (see Fig. 3.4). Realistically, however, the effective material parameters of

the microstrip tensor TL metamaterial have a weak frequency dependence, due to the

inherent frequency dispersion of microstrip lines.
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Figure 3.5: A circuit model of the tensor TL metamaterial unit cell depicted in Fig.
3.4(a) when all series loading elements are inductances.

Now, let us consider the case where the unloaded microstrip grid shown in Fig.

3.4(a) is loaded with series inductances. The circuit model for this particular example

is depicted in Fig. 3.5. The series loading elements are denoted Lℓ1, Lℓ2 and Lℓ3. As

a result, the impedances of the unit cell (see Fig. 3.3) become

Z1 = jω(L1TL + Lℓ1) Z2 = jω(L2TL + Lℓ2) Z3 = jω(L3TL + Lℓ3)

Y = jω(CTL).
(3.16)

Substituting (3.16) into (3.13) leads to the effective material parameters for a

tensor TL metamaterial unit cell with inductive series loading elements

 µxx µxy

µyx µyy

 =
1

dg

 2(L3TL+Lℓ3)(L1TL+Lℓ1+L2TL+Lℓ2)
L1TL+Lℓ1+L2TL+Lℓ2+L3TL+Lℓ3

2(L1TL+Lℓ1)(L3TL+Lℓ3)
L1TL+L2TL+L3TL

2(L1TL+Lℓ1)(L3TL+Lℓ3)
L1TL+L2TL+L3TL

2(L1TL+Lℓ1)(L3TL+Lℓ3+L2TL+Lℓ2)
L1TL+Lℓ1+L2TL+Lℓ2+L3TL+Lℓ3


ϵz =

CTL

d
g. (3.17)

The material parameters once again are non-dispersive.

3.3.2 Dispersive Material Parameters

Now, let us consider a tensor transmission-line metamaterial unit cell possessing

dispersive effective material parameters. The material parameters become dispersive
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when some or all of the series loading impedances and shunt loading susceptances are

negative. In this example, the diagonal branch of the unloaded tensor transmission-

line unit cell shown in Fig. 3.4(a) is loaded with a capacitance of value Cℓ. This

series capacitance can simply be added to the diagonal branch of the circuit model

for the unloaded unit cell depicted in Fig. 3.4(b). This results in the circuit model

of the dispersive tensor TL metamaterial shown in Fig. 3.6. From the model, the

impedance expressions of Fig. 3.3 become

Z1 = jω(L1TL) Z2 = jω(L2TL − 1
ω2(2Cℓ)

) Z3 = jω(L3TL)

Y = jω(CTL).
(3.18)

Substituting (3.18) into (3.13) reveals the frequency dependence of the effective

material parameters of the unit cell shown in Fig. 3.6.

 µxx µxy

µyx µyy

 =
1

dg


2L3TL(L1TL+L2TL− 1

ω22Cℓ
)

L1TL+L2TL− 1
ω22Cℓ

+L3TL

2L1TLL3TL

L1TL+L2TL− 1
ω22Cℓ

+L3TL

2L1TLL3TL

L1TL+L2TL− 1
ω22Cℓ

+L3TL

2L1TL(L3TL+L2TL− 1
ω22Cℓ

)

L1TL+L2TL− 1
ω22Cℓ

+L3TL


ϵz =

CTL

d
g. (3.19)

From (3.19), it is clear that the material parameters (permeability) are dispersive.

The form of the frequency dispersion is explicitly given by the expressions in (3.19).

However, to be able to calculate the effective material parameters over a frequency

range, the coefficients (L1TL, L2TL, L3TL, Cℓ) must be found. As will be shown in the

following section, these coefficients can be found from eigenmode simulations.

3.4 Verification of the Homogenization Method

In this section, two examples are considered that validate the proposed homog-

enization procedure for both dispersive and non-dispersive tensor transmission-line
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Figure 3.6: A circuit model of the capacitively loaded microstrip grid on diagonal
branch.

metamaterial designs. In all the simulations that follow, the substrate is assumed to

be lossless and to have a relative permittivity of ϵr = 3, and height h = 0.762 mm.

In addition, the unit cell dimension is assumed to be d = 8.4 mm, and the width of

the lossless microstrip lines w = 0.6 mm.

3.4.1 Non-dispersive Material Parameters

First, let us consider the non-dispersive tensor transmission-line metamaterial

from Fig. 3.1(a) with series loading elements

Zℓ1 = jωLℓ1 Zℓ2 = jωLℓ2 Zℓ3 = jωLℓ3 (3.20)

where

Lℓ1 = 2 nH Lℓ2 = 6 nH Lℓ3 = 3 nH (3.21)

The metamaterial’s circuit representation is shown in Fig. 3.5, and its non-

dispersive material parameters are given by (3.17). Table 3.1 summarizes the results

of eigenvalue simulations performed on such a unit cell using the commercial finite

element electromagnetic solver, Ansys HFSS. The expressions kxd and kyd represent

the phase delays across the unit cell in the x and y directions, and f denotes the

eigenfrequencies.
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kxd(deg) kyd(deg) f(GHz) Zx(Ω) Zy(Ω)

15 10 0.632 85.161 96.174

15 -10 0.481 97.308 -165.107

10 10 0.506 94.406 84.317

10 -10 0.379 131.682 -107.214

5 10 0.398 120.921 73.496

5 -10 0.320 387.885 -76.880

0 10 0.328 266.266 68.442

0 -10 0.328 -266.202 -68.435

Table 3.1: Eigenvalue simulation results of tensor TL metamaterial in Fig. 3.1(a)
with loadings in (3.20).

The effective material parameters of the tensor transmission-line metamaterial are

calculated using two independent simulation results (rows) from Table 3.1. Specifi-

cally, the material parameters are found using (3.11) and (3.12). The impedances Zx

and Zy are calculated from the numerically computed E and H fields using (3.2) and

(3.3). Using such a procedure, the effective material parameters are found to be

¯̄µ =

 6.591 1.980

1.980 7.650

µo, ϵz = 1.510ϵo. (3.22)

For comparison purposes, a parallel-plate waveguide (see Fig. 3.1(b)) filled with a

homogeneous medium with material parameters given by (3.22) was also simulated.

The eigenvalue simulation results for the parallel-plate waveguide are summarized in

Table 3.2.

The results of Table 3.1 and Table 3.2 show close agreement. Therefore, we

can conclude that the effective material parameters accurately model the tensor

transmission-line metamaterial. The dispersion curves for both the tensor transmission-

line medium and its equivalent parallel-plate waveguide are compared in Fig. 3.7 at

three different frequencies: 0.45, 0.65, and 0.85 GHz.
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kxd(deg) kyd(deg) f(GHz) Zx(Ω) Zy(Ω)

15 10 0.631 85.205 95.211

15 -10 0.481 97.556 -164.827

10 10 0.505 94.405 84.027

10 -10 0.379 131.883 -107.260

5 10 0.397 120.733 73.721

5 -10 0.320 389.972 -77.039

0 10 0.327 264.944 68.575

0 -10 0.327 -264.944 -68.575

Table 3.2: Eigenvalue simulation results of parallel plate medium in Fig. 3.1(b) filled
with homogenous medium with material parameters given by (3.22).

3.4.2 Dispersive Material Parameters

We will now find the effective material parameters of a frequency dispersive tensor

TL metamaterial using the proposed homogenization method. Consider the tensor

TL metamaterial depicted in Fig. 3.1(a) with series loading elements

Zℓ1 = 0 Zℓ2 =
1

jω2Cℓ

Zℓ3 = 0 (3.23)

where

L1TL = L3TL Cℓ = 20 pF. (3.24)

The circuit model of the metamaterial unit cell is depicted in Fig. 3.6. In the

previous section, the effective material parameters of this metamaterial were shown

to be frequency dispersive, and explicitly given by (3.19).

To find the effective material parameters at various frequencies in the homoge-

neous limit, we must determine the coefficients L1TL, L2TL, CTL and Cℓ in (3.19) using

the proposed homogenization procedure. Eigenmode simulations of the unit cell in

Fig. 3.1(a) with loadings given by (3.23) were performed using Ansys HFSS and are

summarized in Table 3.3. It should be noted that each eigenmode simulation results
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Figure 3.7: Dispersion curves for the tensor TL metamaterial shown in Fig. 3.1(a)
with loadings given by (3.20) (solid lines), and the parallel-plate waveg-
uide shown in Fig. 3.1(b) filled with a homogenous medium with material
parameters given by (3.22) (dots). Comparison is made at three different
frequencies: 0.45, 0.65, and 0.85 GHz.

in two eigenfrequency solutions for a given set of (kxd, kyd). This was an expected

result as the order of metamaterial’s dispersion equation with respect to frequency is

four due to the capacitive loading.

Using the results of the two eigenmode simulations along with (3.11), (3.12) and

(3.19), the coefficients (electrical parameters) L1TL = L3TL, L2TL, CTL and Cℓ were

computed from the effective material parameter expressions using (3.19).

L1TL = L3TL = 1.845nH L2TL = 4.325nH Cℓ = 12.225pF CTL = 1.240pF

(3.25)

Once again, a parallel-plate waveguide filled with a homogeneous medium with

material parameters given by (3.19) and (3.25) was simulated. The eigenvalue simu-

lation results for the parallel-plate waveguide are given in Table 3.4 and show close

agreement with those in Table 3.3 for the tensor transmission-line metamaterial, con-

firming the accuracy of the frequency-dependent effective material parameters.
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kxd(deg) kyd(deg) f(GHz) Zx(Ω) Zy(Ω)

15 0 0.378 89.218 -53.617

15 0 0.796 42.336 105.073

20 0 0.394 114.061 -33.879

20 0 1.017 44.323 126.645

20 5 0.368 79.050 -55.561

20 5 1.117 45.929 84.534

20 10 0.355 81.217 -113.492

20 10 1.253 48.940 68.830

20 15 0.351 110.708 -592.978

20 15 1.416 52.804 61.268

Table 3.3: Eigenvalue simulation results of capacitively loaded unit cell in Fig. 3.1(a)
with loadings (3.23).

kxd(deg) kyd(deg) f(GHz) Zx(Ω) Zy(Ω)

15 0 0.376 89.422 -53.138

15 0 0.800 42.049 103.368

20 0 0.380 118.016 -32.132

20 0 1.025 43.778 122.627

20 5 0.366 78.769 -55.139

20 5 1.129 45.185 82.430

20 10 0.357 81.082 -114.140

20 10 1.269 48.016 67.145

20 15 0.348 110.294 -573.180

20 15 1.435 51.565 59.633

Table 3.4: Eigenvalue simulation results of parallel plate medium in Fig. 3.1(b) filled
with homogenous medium with material parameters given by (3.19) and
(3.25).

The effective material parameters computed using (3.19) and (3.25) are plotted in

Fig. 3.8 (solid lines) with respect to frequency. Plotted on the same graph, are the

effective material parameters (dots) found directly using (3.11) and (3.12) at individ-

ual frequencies. The material parameters for this particular tensor transmission-line

metamaterial could be extracted at a single eigenfrequency since there are only three

unknowns (µxx = µyy, µxy = µyx, ϵz) and three equations are provided by (3.11) and

(3.12). This close agreement demonstrates that the frequency dependent homoge-

nization procedure can be used to predict effective material parameters of dispersive
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Figure 3.8: Effective material parameter variation with respect to frequency. The
figure compares the predicted values (solid line) to the full wave simulation
results (dots).

tensor transmission-line metamaterials at various frequencies within the homogeneous

limit.

Finally, the analytical dispersion contours for the tensor transmission-line medium

and its equivalent parallel-plate waveguide are compared in Fig. 3.9. Specifically, the

figure compares the dispersion contours for the parallel-plate waveguide filled with

material parameters given by the solid lines in Fig. 3.8 and a tensor transmission-

line medium possessing material parameters given by the dots in Fig. 3.8 at three

different frequencies: 0.35, 0.37, and 1.25 GHz.

3.5 Conclusions

This chapter presented a rigorous homogenization method for finding the effec-

tive material parameters (tensorial permeability and a scalar permittivity) of tensor

transmission-line metamaterials. The method utilized a local field averaging pro-

cedure over the faces of the realized metamaterial’s unit cell to compute its effec-
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Figure 3.9: Dispersion curves for the tensor TL metamaterial shown in Fig. 3.1(a)
with loadings given by (3.23) (solid lines), and the parallel-plate waveg-
uide shown in Fig. 3.1(b) filled with a homogenous medium with material
parameters given by (3.19) and (3.25) (dots). Comparison is made at
three different frequencies: 0.35, 0.37, and 1.25 GHz.

tive material parameters. In addition, the effective material parameters of tensor

transmission-line metamaterials were expressed in terms of their circuit parameters.

This allowed the material parameters of frequency dispersive tensor transmission-line

metamaterials to be predicted over a range of frequencies within the homogeneous

limit. The proposed homogenization method was applied to microstrip implementa-

tions of tensor transmission-line metamaterials. Tensor transmission-line metamate-

rials possessing dispersive and non-dispersive material parameters were considered.

The homogenization method was verified through full-wave simulations and shown to

successfully compute effective material parameters.

The proposed homogenization method provides an accurate and rapid characteri-

zation of tensor transmission-line metamaterials in terms of effective material param-

eters. The method can account for couplings within the realized tensor transmission-

line unit cell, which cannot be captured by the proposed circuit model in the previous

chapter. Furthermore, the method takes advantage of the commercial full-wave simu-
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lator, Ansys HFSS, which allows to use scripts for automating of the homogenization

process. Using scripts, the field integrations and arithmetic operations on the integra-

tion results can be computed for sets of prescribed phase delays, and the results can

be exported to a computing software, such as MATLAB, for further processing. The

incorporation of automation process in the homogenization procedure is prominent

when designing practical devices consisting of numerous unit cells.
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CHAPTER IV

Experimental Verification of Tensor TL

Metamaterials

Up to this point, analytical and simulation results for tensor transmission-line

metamaterials have been presented in this thesis. In Chapter 2, tensor transmission-

line metamaterials were modeled analytically, and their propagation characteristics

were verified through full wave simulations. It was shown that tensor transmission-line

metamaterials are circuit networks that are equivalent to magnetically anisotropic,

homogeneous media. Apart from the initial circuit model, various other circuit topolo-

gies that possess anisotropic electromagnetic properties have also been proposed. The

variety of circuit models provides designers with added flexibility when tailoring the

effective material parameters for specific applications. Subsequently, two transforma-

tion electromagnetics devices, a cylindrical cloak and a field rotator, were designed

using tensor transmission-line metamaterials and studied in simulation. In Chapter

3, a homogenization technique to accurately calculate the effective material param-

eters of tensor transmission-line metamaterials was proposed and verified through

simulations. With the homogenization method, it is now possible to characterize

the effective material parameters of a realized tensor transmission-line metamaterials

using full wave simulations in a rapid and accurate manner.

This chapter confirms the theory of tensor transmission-line metamaterials through
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experiment. To this end, tensor transmission-line metamaterials are utilized in the

design and implementation of a beam-shifting slab: a transformation electromagnet-

ics device consisting of isotropic and anisotropic media. The design process combines

the tools developed for designing tensor transmission-line metamaterials: analytical

methods, full-wave simulations, and homogenization method for effective material

parameter extraction.

The next section reviews the design and operation of the beam-shifting slab.

The coordinate transformations and isotropic and anisotropic material parameters

required for the implementation are shown. Subsequent sections detail the design

of tensor transmission-line metamaterial unit cells realizing the required material

parameters. The electromagnetic behavior of the designed beam-shifting slab is cor-

roborated through circuit simulation, full-wave simulation of an equivalent slab with

homogenized material parameters corresponding to the metamaterials employed, and

experiment. Toward the end of the chapter, the wide-band frequency response of the

slab is analyzed in simulation and experiment.

4.1 The Beam Shifting Slab

Beam-shifting slabs are reflectionless devices that laterally displace the electro-

magnetic field transmitted through them [92, 93, 94]. The slab presented in this

chapter is used to laterally displace a cylindrical wave incident upon it. In others

words, to an observer on the far side of the slab (opposite the source), it appears

as though the source of the cylindrical wave is shifted along the slab interface. This

electromagnetic phenomenon is illustrated in Fig. 4.1 and Fig. 4.2. In Fig. 4.1, the

phase of the vertical electric field radiating from a cylindrical source is shown in the

presence of a beam-shifting slab. The interfaces of the slab are denoted by thick ver-

tical lines. On the far side of the slab, phase fronts of the cylindrical source appear as

if they originate from a hypothetical source located above the actual one. This same
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Beam-shifting slab

Figure 4.1: Vertical electric field phase distribution for a cylindrical source in the
presence of a beam-shifting slab. On the far side of the slab, the radiating
point source appears as if laterally displaced. The boundaries of the slab
are shown with a solid line.

phenomenon is depicted in Fig. 4.2, where the concentric circles (solid and dashed)

represent the phase fronts of two displaced cylindrical sources. On the far side of the

structure, the dashed circles are the observed wave, while the actual source radiates

from the center of the solid circles.

The beam-shifting slab is a transformation electromagnetics device, so its oper-

ation can be represented by a coordinate transformation. The coordinate transfor-

mation between the primed transformed coordinates (x′, y′, z′) and unprimed original

coordinates (x, y, z) representing the lateral displacement of the field within the slab

can be written as:

x′ = x, y′ =


y, y < 0

y + bx, 0 ≤ y ≤ d

y + bd, d < y

, z′ = z, (4.1)

where the slab exists between x = 0 and x = d.

A two dimensional visualization of the coordinate transformation, given by (4.1),

can be obtained by plotting the coordinates of the transformed points (x
′
, y

′
) on
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Figure 4.2: Phase fronts of original point source (solid circles) and shifted point source
(dashed circles). The center of the dashed circles is laterally 5.28 unit cells
above the center of solid circles.

the x − y plane. A set of specific points belonging to coordinate lines (curves) in

the x − y plane were selected for the visualization. For example, Fig. 4.3(a) shows

lines of constant x and lines of constant y plotted on the x − y plane in red and

blue, respectively. The red and blue lines were transformed through the coordinate

transformation (4.1) and resulted in the lines shown in Fig. 4.3(b). In a similar

manner, Fig. 4.4(a) and Fig. 4.4(b) show the transformation of a different set of

points such as curves of constant r (red) and lines of constant θ (blue) originating

from the cylindrical source position. These plots allow one to visualize the behaviour

of the designed device under different excitations. In fact, Fig. 4.3(b) and Fig. 4.4(b)

show the effect of the beam-shifting region under a plane wave excitation propagating

along x direction and a cylindrical source excitation located at the center of red circles,

respectively. Lateral displacement is obvious for both excitations.

To realize the beam-shifting effect, the material parameters (permittivity and

permeability) of the slab are calculated using the coordinate transformation given by
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0 dx

y

(a) Original

0 dx

y

(b) Transformed

Figure 4.3: The visualization of the coordinate transformations in (4.1). (a) The
lines of constant x and constant y are shown in red an blue color, respec-
tively. (b) The transformation of the red and blue lines under the given
transformation in (4.1).

(4.1) and are of the following form [92, 93, 94]:

ϵz = ϵo, µ =

1 b

b 1 + b2

µo, (4.2)

where b is a real number related to the amount of lateral displacement. Specifically,

the lateral displacement amount is equal to b times the slab thickness [94]. The

positive and negative values correspond to upward and downward shifts of the elec-

tromagnetic field, respectively. The material parameters given by (4.2) assume that

the medium outside the slab is free space with material parameters

ϵz = ϵo, µ = µo. (4.3)

The form of the medium parameters comprising the beam-shifting slab (see Eq. 4.2) is

common to other transformation electromagnetics devices such as beam dividers [93],

embedded-recessed line source [95], field rotators [70, 96], and invisible slab cloaks [97].

This widespread use of anisotropic material parameters of the form given by Eq. (4.2)

motivated the implementation of a beam-shifting slab using tensor transmission-line
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0 dx

y

(a) Original

0 dx

y

(b) Transformed

Figure 4.4: The visualization of the coordinate transformations in (4.1). (a) The lines
of constant θ and the curves of constant r are shown in red and blue,
respectively. (b) The transformation of the red lines and blue curves
under the given transformation in (4.1).

metamaterials.

4.2 Design of Beam-Shifting Slab and Surrounding Medium

As shown in previous section, the realization of a beam-shifting slab requires the

design of two homogenous media: the slab with effective material parameters of the

form given by (4.2), and the surrounding medium with isotropic material parameters

given by (4.3). This section describes the design of these two media using tensor

transmission-line metamaterials implemented in microstrip technology. The designs

were implemented on a low loss (tanδ = 0.0013), grounded microwave substrate

(Rogers RO3003) of thickness 0.762 mm (30 mil), dielectric constant ϵr = 3.00 and

metallization thickness of 17µm. The design frequency was chosen to be 1.0 GHz for

a practical size and implementation of a beam-shifting device.

Fig. 4.5 and Fig. 4.6 show unit cell topologies for the transmission-line metama-

terials as well as their dimensions. The unit cell depicted in Fig. 4.5 was used to

design the surrounding isotropic medium. The anisotropic unit cell of Fig. 4.6 was

used for the beam-shifting slab.
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Figure 4.5: (a) Circuit schematic and (b) printed-circuit layout of the isotropic unit
cell. The effective material parameters of the isotropic, homogeneous
periodic medium consisting of such unit cells are ϵz = 2.205ϵo and µ =
5.00µo.

kxd(deg) kyd(deg) f(GHz) Zx(Ω) Zy(Ω)

10 0 0.299 51.896 ∞
20 10 0.421 72.658 72.658

Table 4.1: Eigenvalue simulation results of tensor transmission-line metamaterial in
Fig. 4.5.

The effective material parameters of the metamaterial unit cells were found using

the homogenization method outlined in Chapter 3. The eigenmode simulation results

for the isotropic unit cell shown in Fig. 4.5 are given in Table 4.2. By applying the

homogenization procedure to these quantities, the effective material parameters were

calculated to be

ϵz = 2.205ϵo, µ = 5.00

1.00 0.00

0.00 1.00

µo. (4.4)

The electrical size of the isotropic unit cell is one sixth of a guided wavelength at

the design frequency. This is adequately small for the metamaterial to behave as a

homogenous medium with the effective material parameters given by (4.4).

Given that material parameters of the isotropic medium given by (4.4), the slab’s
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Figure 4.6: (a) Circuit schematic and (b) printed-circuit layout of the anisotropic unit
cell. The effective material parameters of the anisotropic, homogeneous
periodic medium consisting of such unit cells are ϵz = 2.215ϵo and µxx =
4.90× 1µo, µxy = µyx = 4.90× 0.66µo, µyy = 4.90× 1.45µo.

anisotropic effective material parameters must be of the following form

ϵz = 2.205ϵo, µ = 5.00

1.00 b

b 1 + b2

µo, (4.5)

where b is a real number representing the amount of lateral displacement provided

by the slab. For this design, b = 0.66, which corresponds to a lateral shift of 5.28

unit cell lengths in an upward direction for a beam-shifting slab that is eight unit

cells-thick.

The topology of the anisotropic unit cell is depicted in Fig. 4.6. To calculate its

homogenized material parameters, the eigenmode simulation results shown in Table

4.2 were used.

kxd(deg) kyd(deg) f(GHz) Zx(Ω) Zy(Ω)

-20 12.5 0.521 -74.678 183.271

10 20 0.920 68.325 43.953

Table 4.2: Eigenvalue simulation results of tensor transmission-line metamaterial in
Fig. 4.6.
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From the tabulated data, its effective material parameters were calculated to be

ϵz = 2.215ϵo, µ = 4.90

1.00 0.66

0.66 1.45

µo. (4.6)

These effective material parameters are very close to the desired parameters given

by (4.5). Note that the effective permittivity (ϵz) values of the slab and surrounding

isotropic medium were designed to be identical, as required by (4.2) and (4.3). This

resulted in an impedance match between the surrounding isotropic medium and the

anisotropic slab for all angles of incidence, rendering the slab reflectionless.

4.3 Simulation and Experiment at the Design Frequency

This section presents the simulated and experimental performance of the designed

beam-shifting slab. Fig. 4.7 shows the simulation and experimental set-up. In the

schematic, each square represents a transmission-line metamaterial unit cell. To high-

light the operation of the beam-shifting slab, two separate structures were studied.

In the first structure, all the squares in the setup (both light and dark in color) were

isotropic unit cells. Therefore, the test structure was homogenous and isotropic, and

supported a cylindrical field emanating from the source. The second structure incor-

porated the beam-shifting slab. The slab consisted of 8 × 25 anisotropic unit cells

(shown darker in color in Fig. 4.7). It was sandwiched between two isotropic media,

consisting of 10× 25 and 16× 25 isotropic unit cells (lighter in color). This structure

was used to experimentally demonstrate how a reflectionless beam-shifting slab can

laterally displace the field of a cylindrical source.

The cylindrical source, common to both structures, was centered with respect to

the transverse direction, and located 6 unit cells away from the leftmost edge of the

test set-up. The outer boundaries of the test set-up were terminated with matched

74



Isotropic Unit Cell Anisotropic Unit Cell

Point Source Termination

34 Unit Cells

2
5
 U

n
it

 C
el

ls

Figure 4.7: Simulation and experimental set-up for the transmission-line based beam-
shifting slab. The anisotropic slab, consisting of 8× 25 unit cells (shown
darker in color), is sandwiched between two isotropic media, consisting
of (10 × 25 and 16 × 25) unit cells (shown lighter in color). The point
source excitation is denoted with a black dot. The outer boundaries of
the set-up are terminated with matched impedances.

impedances in order to eliminate reflections. These impedances were calculated using

full-wave simulation results of the homogenized structure. First, the simulation was

used to calculate field values at the boundary of simulation domain. Then, the wave

impedances normal to the boundaries were calculated. This was accomplished by

calculating the ratio of tangential electric field, Ez, to tangential magnetic field, Hx

orHy, at the boundary. Finally, the circuit impedances (terminations) were calculated

by multiplying the wave impedances by the height to width ratio of the unit cells.

Commercially available 0603 package resistors were used for the resistive part of the

terminations. The reactive parts of the terminations were neglected, since they were
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Figure 4.8: Interconnecting nodes. Data points for simulation and measurement re-
sults are collected from the dotted positions.

generally much lower than the real parts.

Simulation and measurement results are presented as contour plots of the node

voltages between unit cells. The node positions are identified with dots in Fig. 4.8.

4.3.1 Simulations

Simulations were performed using a combination of full-wave electromagnetic com-

putation and circuit analysis. In the circuit simulations of the overall structures, the

unit cells of Fig. 4.7 were replaced with the respective four-port S-parameter files of

the designed unit cells depicted in Fig. 4.5 and Fig. 4.6. Agilent’s Advanced Design

System (ADS) was used for the circuit simulations. The S parameters of the unit

cells were computed using Agilent’s Momentum full-wave electromagnetic simulator.

For the first case, where the structure consists of only isotropic unit cells, a contour
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Figure 4.9: A contour plot of the simulated voltage phase at the interconnecting nodes
(see Fig. 4.8) of the simulated isotropic medium. The simulation fre-
quency is 1.0 GHz.

plot of simulated voltage phases at the nodes is plotted in Fig. 4.9. A cylindrical

wave emanating from the source can be clearly observed at the design frequency of

1.0 GHz.

For the second case, where the beam-shifting slab is sandwiched between two

isotropic structures, a contour plot of the simulated voltage phases at the nodes is

plotted in Fig. 4.10. The simulated operation of the slab is as expected. The field is

shifted laterally by the slab.

4.3.2 Experiments

The experimental structure is shown in Fig. 4.11. Both experimental structures

were excited by a coaxial (SMA) connector through the microstrip ground plane.

The center conductor of the SMA connector was attached to the microstrip grid of

an isotropic unit cell, while the outer conductor of the connector was attached to the

ground plane just below. The vertical electric field was probed 1.5 mm above the

entire surface of the structure, using a short coaxial probe with an extended center
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Figure 4.10: A contour plot of the simulated voltage phase at the interconnecting
nodes (see Fig. 4.8) of the simulated beam-shifting slab. The simulation
frequency is 1.0 GHz.

conductor. Port 1 of a network analyzer was connected to the coaxial connector

and port 2 was connected to the probe, which was scanned above the surface of

the structure using a two dimensional translation stage. The measured transmission

coefficient, S21, is proportional to the voltage of the nodes with respect to the ground

plane. Fig. 4.12 shows the experimental structure for the first case, which entirely

consists of the isotropic unit cells shown in Fig. 4.5. Fig. 4.13 shows a contour plot

of the phase of the measured vertical electric field above the nodes of the unit cells

(see Fig. 4.8) at 1.0 GHz. It is clear that the measurement results for the isotropic

structure (Fig. 4.13) closely agree with simulation (Fig. 4.9).

Fig. 4.14 shows the experimental structure for the second case, where the beam-

shifting slab is present. A contour plot of the phase of the measured vertical electric

field above each node is shown in Fig. 4.15 at 1.0 GHz. Once again, excellent

agreement is observed with the simulated node voltages shown in Fig. 4.10. In

addition to the phase response of the experimental slab, a time snapshot of the vertical

electric field is shown in Fig. 4.16. It confirms that the slab is in fact reflectionless.
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Figure 4.11: The experimental setup. An experimental structure, source position and
coaxial probe with an extended center conductor are shown.

4.4 Bandwidth

The successful operation of the beam-shifting slab was demonstrated at a design

frequency of 1 GHz. However, the designed device promises a wide bandwidth of

operation due to the traveling-wave nature of tensor transmission-line metamaterials

and non-dispersive unit cells utilized in this specific design. As discussed in Chapter

4, the unit cell is non-dispersive (as long as electrically small) when all the series

loadings in the tensor transmission-line unit cell are inductive. This is clearly the

case for the unit cells used in the beam shifting slab, as shown in Fig. 4.5(b) and

Fig. 4.6(b). To verify the wide bandwidth of operation, the frequency response of

the designed beam-shifting slab was studied in simulation and experiment.

4.4.1 Bandwidth Prediction from Simulations

The bandwidth of operation of the beam-shifting slab can be predicted by studying

the dispersion characteristics of the anisotropic transmission-line metamaterial used

in its design. The dispersion surface of the designed anisotropic unit cell (see Fig. 4.6)

79



Figure 4.12: The experimental structure consisting of only isotropic unit cells fab-
ricated using standard PCB technology. Two connected isotropic unit
cells are shown in the inset.

comprising the beam-shifting slab is plotted in Fig. 4.17. The solid curves plotted

on the horizontal plane show the isofrequency dispersion contours at four different

frequencies: 1, 2, 3 and 3.5 GHz. In the same figure, the isofrequency dispersion

contours of the homogenous medium with material parameters in (4.6) are plotted

with circles. As observed in Fig. 4.17, the isofrequency dispersion contours of the

transmission-line metamaterial and the homogenous medium essentially overlap up to

3.0 GHz. Above this frequency, they differ significantly due to the spatial dispersion

of the transmission-line metamaterial.

In conclusion, the designed beam former is expected to perform reasonably well

up around to 3.0 GHz. In the following part, this prediction is verified by through

measurements.
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Figure 4.13: A contour plot of the measured vertical electric field phase at the in-
terconnecting nodes (see Fig. 4.8) of the experimental structure in Fig.
4.12. The measurement frequency is 1.0 GHz.

4.4.2 Experimental Verification of Predicted Bandwidth

Fig. 4.18 and Fig. 4.19 show the phase of the measured vertical electric field

above each unit cell in the experimental structure (see Fig. 4.14) at two disparate

frequencies: 0.8 GHz and 1.2 GHz, respectively. As can be seen, the slab maintains

its beam-shifting and reflectionless properties at both frequencies. As for frequencies

far from the design frequency, Fig. 4.20 and Fig. 4.21 show the phase and time snap-

shot of the vertical electric field above each unit cell in the experimental structure at

2.0 GHz and 3.0 GHz, respectively. The beam-shifting properties are still apparent

despite the degraded performance at 3.0 GHz due to spatial dispersion within the

transmission-line metamaterials. Such a performance verifies the bandwidth predic-

tions of the previous section based on full-wave simulation.
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Figure 4.14: The experimental structure with a beam-shifting slab fabricated using
standard PCB technology. Two connected isotropic and anisotropic unit
cells are shown in the inset.

4.5 Conclusion

In this chapter, a transformation electromagnetic device, a beam-shifting slab,

was implemented using tensor transmission-line metamaterials. It was studied in

simulation and experiment. Simulation and experimental results demonstrated that

radiation from a cylindrical source is shifted upward by 5.28 unit cells due to the pres-

ence of the beam-shifting slab. The design of the unit cells forming the anisotropic

slab and surrounding isotropic medium was reviewed. The experimental performance

of the designed slab was compared to its simulated performance, and excellent agree-

ment was observed. Moreover, the frequency dependence of the device was studied

in both simulation and experiment. A reasonable performance from the design fre-

quency of 1 GHz up to 3 GHz has been demonstrated, and a wide bandwidth of
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Figure 4.15: A contour plot of the measured vertical electric field phase at the in-
terconnecting nodes (see Fig. 4.8) of the experimental structure in Fig.
4.14. The measurement frequency is 1.0 GHz.

operation confirmed.

Most importantly, this work experimentally verified the anisotropic behavior of

tensor transmission-line metamaterials as well as the homogenization procedure used

to extract their material parameters. Further, it experimentally demonstrated the

suitability of using tensor metamaterials to design transformation electromagnetics

devices. Now that the theory behind tensor transmission-line metamaterials has been

verified through simulation and experiment, these metamaterials can be used to im-

plement larger and more complex devices that are both anisotropic, inhomogeneous.
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Figure 4.16: Time snapshot of the measured, steady state vertical electric field at the
interconnecting nodes (see Fig. 4.8) of the experimental structure in Fig.
4.14. The measurement frequency is 1.0 GHz. The plot is normalized
with respect to the maximum value of the plotted data.
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Figure 4.17: The dispersion surface of the anisotropic unit cell shown in Fig. 4.6.
The solid curves plotted on the horizontal plane show the isofrequency
dispersion contours for the anisotropic transmission-line metamaterial
at four different frequencies: 1, 2, 3 and 3.5 GHz. The isofrequency
dispersion contours of the equivalent homogenous medium with material
parameters given by (4.6) are plotted with circles.
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Figure 4.18: A contour plot of the measured vertical electric field phase at the in-
terconnecting nodes (see Fig. 4.8) of the experimental structure in Fig.
4.12. The measurement frequency is 0.8 GHz.
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Figure 4.19: A contour plot of the measured vertical electric field phase at the in-
terconnecting nodes (see Fig. 4.8) of the experimental structure in Fig.
4.12. The measurement frequency is 1.2 GHz.
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(a) Phase contours at 2.0 GHz
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(b) Time snapshot at 2.0 GHz

Figure 4.20: (a) A phase contour plot and (b) time snapshot of the measured, steady
state vertical electric field at the interconnecting nodes (see Fig. 4.8) of
the experimental structure in Fig. 4.14. The measurement frequency is
2.0 GHz.
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(a) Phase contours at 3.0 GHz
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(b) Time snapshot at 3.0 GHz

Figure 4.21: (a) A phase contour plot and (b) time snapshot of the measured, steady
state vertical electric field at the interconnecting nodes (see Fig. 4.8) of
the experimental structure in Fig. 4.14. The measurement frequency is
3.0 GHz.
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CHAPTER V

Tailoring the Phase and Power Flow of

Electromagnetic Fields

Greater control over material parameters provides greater control over electromag-

netic fields. So far, this thesis has focused on establishing control over the material

parameters. This was achieved by designing tensor transmission-line metamaterials.

A tensor transmission-line metamaterials’ ability to realize arbitrary, anisotropic ma-

terial parameters has been demonstrated through theory, simulation and experiment.

This chapter focuses on translation of this control over material parameters to control

of electromagnetic fields. Specifically, the chapter introduces a novel, intuitive and

effective method of controlling electromagnetic fields through material anisotropy and

inhomogeneity.

5.1 Introduction

It is well known that an anisotropic material can support electromagnetic propa-

gation with phase progression and power flow in different directions [98]. This simple

fact suggests that a carefully designed medium, which is anisotropic and spatially

inhomogeneous, can tailor phase and power flow as a function of position. In such a

medium, anisotropy controls the local phase and power flow, while the inhomogeneity
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allows spatial variation. Such spatial control of electromagnetic fields can be used to

independently tailor the phase and amplitude of a field profile.

Transformation electromagnetics [36, 50], has provided a prescription for finding

the material parameters needed for such field manipulation [51, 52, 53, 54]. In trans-

formation electromagnetics, a desired field distribution is derived from an initial one

through a coordinate transformation. The form invariance of Maxwell’s equations

under coordinate transformations is then exploited to calculate the required spatial

distribution of material parameters. In short, transformation electromagnetics de-

signs begin with a coordinate transformation, from which material parameters are

computed. However, finding the coordinate transformation that yields the field of in-

terest is not always intuitive, straightforward, or necessarily possible. For example, a

designer may know what field is needed but may not necessarily know the coordinate

transformation that yields the field of interest.

In this chapter, an entirely new method for arbitrarily controlling the phase pro-

gression and power flow of electromagnetic fields within a region of interest is pro-

posed. Specifically, the proposed method describes how to design an inhomogeneous,

anisotropic medium that supports prescribed spatial distributions of the wave vector

(k⃗) and the direction of Poynting vector (S⃗). Material parameters are defined in

terms of phase progression and power flow within a region of space (the transforma-

tion region), that is embedded within a surrounding medium. First, spatial distribu-

tions of the wave vector (k⃗) and Poynting vector (S⃗) direction are stipulated within

the transformation region. From these two distributions, the required anisotropic,

inhomogeneous material parameters needed to support such propagation are found.

Plane-wave relations in anisotropic media are used along with an impedance matching

process to find the material parameters required to establish desired electromagnetic

field profiles.

The developed formulation could have a broad technological impact, since it allows
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one to independently tailor the phase and amplitude profile of an electromagnetic

field. Principally, the work can find application in the design of electromagnetic and

optical guiding structures as well as radiating apertures.

Furthermore, proposed method can be related to transformation electromagnetics

if the prescribed spatial distributions of k⃗ and direction of S⃗ are given in terms of

coordinate transformation. In this case, the proposed method can be used to find

alternative material parameters for transformation electromagnetic devices. These

alternative material parameters can support exactly the same field pattern as the

original ones of the transformation electromagnetic device for a particular polariza-

tion. The same approach used in finding the alternative material parameters can be

extended further to design dual functional devices that combine the characteristics of

two separate transformation electromagnetics devices into one.

The rest of the chapter is organized into six sections. The next section out-

lines the proposed deign method. It starts with a review of plane-wave relations

in an anisotropic, homogeneous medium. These relations are then used to develop

a systematic design procedure for finding the material parameters needed to sup-

port arbitrary spatial distributions of phase and power flow. The following section

presents examples that demonstrate the potential of the described approach. In these

examples, the field of a cylindrical source is tailored to realize field profiles with

various phase and amplitude distributions. The examples were carefully chosen to

demonstrate the method’s arbitrary (independent) control over the phase and power

flow of electromagnetic fields. Next, the relationship between the proposed method

and transformation electromagnetics is drawn. The method is used to find alterna-

tive material parameters for transformation electromagnetic devices and to design

dual functional transformation electromagnetic devices. The simulated performance

of these devices is presented for verification purposes. Toward the end of chapter,

specific applications of the proposed method for the design of guiding and radiating
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electromagnetic structures are discussed. The last section summarizes the findings of

this chapter.

5.2 The Design Method

The proposed design method can be explained in simple, qualitative terms. The

medium to be designed can be viewed as a canvas onto which we paint the desired

arrows of phase progression and power flow direction. From these two plots, we

then derive the material parameters needed to support such propagation. A few

simplifying assumptions are made in finding the material parameters of the anisotropic

inhomogeneous transformation region. In the design approach, it is assumed that

(a) the region is discretized into unit cells that are much smaller than the guided

wavelength and (b) the discretized cells are displaced (not in the extreme near field)

from a localized source. This allows the electromagnetic field within each cell to be

treated locally as a plane wave.

5.2.1 Plane-Wave Relations in Anisotropic Homogeneous Medium

For simplicity, the proposed design approach is applied to a 2D medium. In

particular, a TMz polarization is considered (a TEz formulation can be derived using

Duality [99]). Therefore, the non-zero field quantities are the magnetic field in x and

y directions (Hx and Hy) and the electric field in z direction (Ez). At each point in

space, the relevant material parameters are a 2×2 relative permeability tensor in the

x− y plane and a scalar relative permittivity in the z direction:

¯̄µ =

 µxx µxy

µyx µyy

 , ϵ = ϵz. (5.1)

We will first review plane-wave relations in an anisotropic homogeneous medium,
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and then use them to define material parameters in terms of the local wave vector k⃗,

direction of Poynting vector S⃗ and the permittivity constant ϵz. For the polarization

of interest, Maxwell’s time-harmonic equations for plane waves are:

−jk⃗ × E⃗ = −jω ¯̄µµoH⃗, (5.2)

−jk⃗ × H⃗ = jωϵzϵoE⃗. (5.3)

Considering only the non-zero field quantities, these two vector equations can be

rewritten as:  ky

kx

 =

 µxx −µxy

−µyx µyy


 ηy

−1

ηx
−1

 (5.4)

ϵz =

[
kx ky

] ηx
−1

ηy
−1

 (5.5)

where ηx = − 1
ηo

Ez

Hy
, ηy = 1

ηo
Ez

Hx
are the wave impedances and kx = kx

ko
, ky = ky

ko
are

the wave numbers in the x and y directions, normalized with respect to their free

space values. Using (5.5), the wave impedances can be written in terms of the wave

numbers, the ratio κ = ηx
ηy
, and the permittivity constant:

ηx =
kx + κky

ϵz
, ηy =

kx + κky

κϵz
. (5.6)

The ratio κ defines the direction (θs) of S⃗ with respect to the x axis: κ=tan(θs).

Therefore, if k⃗ = kxx̂ + kyŷ and the ratio κ are given at a point in space, the wave

impedances are defined by the local permittivity. Expressions for the permeability
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tensor can also be written using (5.4) and (5.5) as:

¯̄µ =

 ky
ϵz
(kx
κ
+ ky) +

µxy

κ
µxy

µyx
kx
ϵz
(kx + κky) + µyxκ

 , (5.7)

where µxy and µyx can be chosen arbitrarily, while still ensuring the specified phase

and power flow. If it is further assumed that the permeability tensor ¯̄µ is symmetric

and its determinant is equal to that of the surrounding medium’s (assumed to be free

space) permeability ¯̄µs

| ¯̄µ| = | ¯̄µs| = 1, (5.8)

the expressions for the permeability tensor simplify to:

¯̄µ =

 ϵz
(kx+κky)2

+
k
2
y

ϵz
κϵz

(kx+κky)2
− kxky

ϵz

κϵz
(kx+κky)2

− kxky
ϵz

κ2ϵz
(kx+κky)2

+ k
2
x

ϵz

 . (5.9)

This condition on the determinant of the permeability tensor is an inherent prop-

erty of transformation electromagnetics designs. It ensures that the transformed

region (device) remains impedance matched to its surrounding medium under all

plane-wave excitations. Therefore, if k⃗ and κ are stipulated, (5.9) shows that the

local permittivity constant defines the local permeability tensor.

5.2.2 A Systematic Design Procedure To Find Material Parameters

Using the expressions for the wave impedances (5.6) and permeability entries

(5.9), a systematic design procedure is introduced for finding the material parame-

ters needed to support arbitrary spatial distributions of phase and power flow. The

design procedure allows the material parameters of the anisotropic, inhomogeneous

transformation region to be found.

To find the material parameters, the two dimensional transformation region is
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Figure 5.1: (a) The transformation region embedded within a surrounding medium.
The transformation region is discretized into unit cells, with the wave
vector k⃗ and direction of S⃗ stipulated at the center of each cell. (b) A
unit cell of the transformation region. The wavenumbers along the edges
of the cell are shown. The equality ∆kx = ∆ky must hold for a unit cell
where ∆kx = k+

x −k−
x and ∆ky = k+

y −k−
y . The wave vector at the center

of unit cell is k⃗ = k+x +k−x
2

x̂+
k+y +k−y

2
ŷ.

discretized into a grid of unit cells, as shown in Fig 5.1(a). Here, a simple square grid

is considered. Next, k⃗ and direction of S⃗ are stipulated at the center of each unit

cell, defining the phase and power flow within the discretized space (see Fig. 5.1(a)).

From these two spatial distributions, the permeability of the unit cells can be written

in terms of each cell’s permittivity using (5.9). Therefore, the unknowns to be solved

for become the unit cell permittivities. They can be found through an impedance

matching process in which the wave impedances, given by (5.6), of adjacent unit cells

are matched. Once the permittivities are found through this process, the permeability

entries can be computed using (5.9).

A rigorous optimization method for finding the optimal permittivity distribution

that impedance matches adjacent cells is described in the Appendix B. The op-

timization process adjusts the permittivities of all unit cells to minimize inter-cell

reflections. For designs where there are input and desired output field distributions,

a linear transition in wave impedances between the input and output can be used
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Figure 5.2: A time snapshot of the vertical electric field (Ez) radiated from a cylin-
drical (vertical electric current) source in an isotropic medium (µ = 1,
ϵ = 1). The transformation region, consisting of 10× 60 square unit cells
(1.4λ◦ × 8.4λ◦ at 10 GHz), is denoted by dashed lines. In the examples,
the source’s field is reshaped over the transformation region.

to find the permittivity distribution instead of an optimization process. Accord-

ing to (5.6), the permittivity of a unit cell can be calculated from one of its wave

impedances, ηx or ηy, if k⃗ and κ are specified. This simple technique will be used to

find the permittivity distributions for the design examples presented in Section 5.3.

As noted earlier, once the permittivity values of the unit cells are found, the perme-

ability tensor is calculated using (5.9). Due to (5.8), the inhomogeneous, anisotropic

transformation region remains impedance matched to its surrounding medium under

different excitations.

5.3 Examples: Tailoring the Field of a Cylindrical Source

To demonstrate the potential of the described approach for controlling electromag-

netic fields, six illustrative examples are presented. These examples were carefully

chosen to highlight the proposed method’s ability to control the phase and power flow

of electromagnetic fields.

Let us consider a vertical electric current source radiating in an isotropic medium
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with relative material parameters: µs = 1, ϵs = 1. A time snapshot of the vertical

electric field emanating from the cylindrical source is shown in Fig. 5.2. In the

examples, the source’s field is reshaped over the transformation region, denoted by

the dashed lines. The transformation region is discretized into 10 × 60 square unit

cells. The unit cell dimension is assumed to be d = λ◦
7.2

(4.2 mm) at an operating

frequency of 10 GHz. This results in a transformation region that is 1.4λ◦ × 8.4λ◦.

The cylindrical source is located 10 unit cells from the input boundary (boundary 1

shown in Fig. 5.2). Through these examples, we will demonstrate arbitrary spatial

control of the wave vector and Poynting vector direction within the transformation

region. Such control over electromagnetic fields will be used to transform the incident

field at input boundary 1 to a desired field (amplitude and phase) distribution at

output boundary 2 (see Fig. 5.2). All electromagnetic simulations are performed

using COMSOL Multiphysics: a commercial finite element electromagnetic solver.

A few things need to be said about defining the phase progression and power flow

within the transformation region. In general, the phase progression must be physical.

The difference in wavenumbers between a unit cell’s y-directed edges (∆ky = k+
y −k−

y )

must be equal to the difference in wavenumbers between its x directed edges (∆kx =

k+
x − k−

x ), as shown in Fig. 5.1(b). In other words, the phase delay around the cell

edges must sum to zero: k−
y +k+

x −k+
y −k−

x = 0. The wave vector at the center of each

unit cell can be found by averaging the wavenumbers along the x- and y- directed

edges separately: k⃗ = k+x +k−x
2

x̂ +
k+y +k−y

2
ŷ. In contrast, the Poynting vector direction

at the center of each unit cell can be set arbitrarily.

In all the examples that follow, phase progression within the transformation region

is systematically defined. The wavenumbers ky along the input boundary (boundary

1 in Fig. 5.2) are dictated by the cylindrical excitation, given that the transformation

region is reflectionless. The wavenumbers ky along all other y-directed unit cell edges

are assigned, assuming the input phase distribution (ky variation) at boundary 1
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transitions linearly through the transformation region to the output phase distribution

at boundary 2. The wavenumbers kx along boundary 3 are assigned arbitrarily. The

wavenumbers kx along all other x-directed cell edges are then found using the relation:

∆kx = ∆ky.

The Poynting vector directions for cells along boundary 1 are dictated by the

cylindrical excitation. In the first four examples, linear power flow through the trans-

formation region is assumed when mapping the input power density at boundary 1

to the output power density at boundary 2. A detailed discussion of the linear power

density mapping is provided in Appendix C. The mapping allows the Poynting vector

direction to be determined at the center of each unit cell within the transformation

region. Further, the power through the input and output boundaries is assumed to

be equal, in order to eliminate power leakage through the sides (boundaries 3 and

4) of the transformation region. The permittivity distribution in the transformation

region is calculated using (5.6) from the wave vector and power flow distributions and

ηx, which is linearly varied from boundary 1 to boundary 2. It should be pointed

out that linear power flow and a linear phase transition from the input to the output

field profiles are assumed for simplicity. These are only one set of an infinite number

of possibilities. In fact, the last two examples demonstrate cases where linear power

flow from input boundary 1 to output boundary 2 is not assumed.

5.3.1 Output Profile with a Trapezoidal Power Density and Linear Phase

First, let us consider an example where the transformation region produces a

trapezoidal power density with a linear phase progression at boundary 2. Specifically,

a wavenumber of ky = 0.20ko is chosen along the boundary 2, and a wave number of

kx = 0 along boundary 3. Fig. 5.3(a) shows the assigned k⃗ and direction of S⃗ vectors

with red and black arrows, respectively. The calculated permittivity distribution is

shown in Fig. 5.3(b). The permeability tensor of each unit cell is found by substituting
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Figure 5.3: (a) Spatial distributions of k⃗ and direction of S⃗ that establish a trape-
zoidal power density and linear phase profile along boundary 2. (b)
Calculated permittivity distribution assuming a linearly tapered wave
impedance, ηx, from boundary 1 to boundary 2.

the vector distributions of Fig. 5.3(a) and the permittivity values of Fig. 5.3(b) into

(5.9). A time snapshot of the simulated, vertical electric field (Ez) is shown in Fig.

5.4(a). A beam emerging from boundary 2 at an angle of 12◦ with respect to x axis is

observed, verifying that the phase progression along boundary 2 is ky = 0.20ko. Fig.

5.4(b) and Fig. 5.4(c) plot the ideal (stipulated) and simulated power density and

phase profiles at boundaries 1 and 2. Close agreement is shown.

5.3.2 Output Profile with a Trapezoidal Power Density and Uniform

Phase

The first example considered a transformation region that produces a trape-

zoidal power density with a linear phase progression along boundary 2. Here, we

present a variation of this example, where the transformation region produces a trape-

zoidal power density with a uniform phase progression at boundary 2. Specifically, a
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Figure 5.4: (a) Time snapshot of the simulated, vertical electric field (Ez) within the
transformation region of the design shown in Fig. 5.3. (b) Simulated and
ideal power densities along boundary 1 and boundary 2 (c) Phase profiles
along boundary 1 and boundary 2. y = 0 corresponds to the center of the
transformation region.

wavenumber of ky = 0 is chosen along boundary 2, and a wave number of kx = 0 along

boundary 3. By keeping the power density profile the same as in the previous example

and only reshaping the output phase profile, we demonstrate the independent control

over the phase flow. Fig. 5.5(a) shows the assigned k⃗ and direction of S⃗ vectors with

red and black arrows, respectively. The permittivity distribution calculated using the

tapered wave impedance approach is shown in Fig. 5.5(b). The permeability tensor

of each unit cell is found by substituting the vector distributions of Fig. 5.5(a) and

the permittivity values of Fig. 5.5(b) into (5.9). A time snapshot of the simulated,

vertical electric field (Ez) is shown in Fig. 5.6(a). A beam emerging from bound-
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Figure 5.5: (a) Spatial distributions of k⃗ and direction of S⃗ that establish a trape-
zoidal power density and uniform phase profile along boundary 2. (b)
Calculated permittivity distribution assuming a linearly tapered wave
impedance ηx from boundary 1 to boundary 2.

ary 2 in the normal direction is observed, verifying that the phase progression along

boundary 2 is ky = 0. Fig. 5.6(b) and Fig. 5.6(c) plot the simulated and ideal power

density and phase profiles at boundaries 1 and 2. Close agreement is shown.

5.3.3 Output Profile with Triangular Power Density with Uniform Phase

This time, the phase profile is kept the same as in the previous example, but a

different output power profile is stipulated. This is done to demonstrate independent

control over the power flow. In this example, a transformation region is designed

to produce a triangular power density distribution with a uniform output phase at

boundary 2. Zero phase progression (ky = 0) is assumed along boundary 2, and a

wavenumber of kx = 0 along boundary 3. Fig. 5.7(a) shows the assigned k⃗ and direc-
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Figure 5.6: (a) Time snapshot of the simulated, vertical electric field (Ez) within the
transformation region of the design shown in Fig. 5.5(a). (b) Simulated
and ideal power density (c) Phase profiles along boundary 1 and boundary
2. y = 0 corresponds to the center of the transformation region.

tion of S⃗ vectors with red and black arrows, respectively. The required permittivity

distribution is plotted in Fig. 5.7(b). The permeability tensor of each unit cell is

found as in the previous examples. A time snapshot of the simulated, vertical elec-

tric field is shown in Fig. 5.8(a). A beam emerging from boundary 2 in the normal

direction verifies the desired phase progression along boundary 2: ky = 0. In Fig.

5.8(b) and Fig. 5.8(c), the ideal and simulated power density and phase profiles at

boundaries 1 and 2 are plotted, and show close agreement.
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Figure 5.7: (a) Spatial distributions of k⃗ and direction of S⃗ that establish a triangular
power density and uniform phase profile along boundary 2. (b) Calculated
permittivity distribution assuming a linearly tapered wave impedance, ηx,
from boundary 1 to boundary 2.

5.3.4 Output Profile with a Trapezoidal Power Density and Arbitrary

Phase

The objective of the next example is to show that the proposed method can be

used to establish more irregular field profiles. In this example, we consider a transfor-

mation region which produces a trapezoidal power density with the arbitrary phase

distribution shown in Fig. 5.9(a). Specifically, a varying wavenumber ky is assigned

along boundary 2, and a wave number of kx = 0 along boundary 3. Fig. 5.9(b)

shows the assigned k⃗ and direction of S⃗ with red and black arrows, respectively. The

permittivity distribution calculated using the tapered wave impedance approach is

shown in Fig. 5.9(c). The permeability tensor of each unit cell is found by substitut-

ing the vector distributions of Fig. 5.9(b) and the permittivity values of Fig. 5.9(c)

into (5.9). A time snapshot of the simulated, vertical electric field (Ez) and simulated

Poynting vector direction at the center of unit cells are shown in Fig. 5.10(a). A top
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Figure 5.8: (a) Time snapshot of the simulated, vertical electric field (Ez) within the
transformation region of the design shown in Fig. 5.7. (b) Simulated and
ideal power densities along boundary 1 and boundary 2. (c) Phase profiles
along boundary 1 and boundary 2. y = 0 corresponds to the center of the
transformation region.

view of the field is shown in Fig. 5.10(a) for a better visualization of the simulated

Poynting vector directions. Fig. 5.10(b) and Fig. 5.10(c) plot the simulated and ideal

power density and phase profiles at boundaries 1 and 2. The close agreement verifies

that the method can support irregular output field profiles.

5.3.5 Output Profile with a Trapezoidal Power Density and Uniform

Phase Achieved Using Different Power Flow Distributions

Here, we revisit the case where the transformation region produces a trapezoidal

power density with a uniform phase progression along boundary 2. However, the
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Figure 5.9: (a) Desired output phase profile. Tangential wave numbers, ky, along

boundary 2 are assigned accordingly. (b) Spatial distributions of k⃗ and

direction of S⃗ that establish a trapezoidal power density and uniform
phase profile along boundary 2. (c) Calculated permittivity distribu-
tion assuming a linearly tapered wave impedance ηx from boundary 1 to
boundary 2.
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Figure 5.10: (a) Time snapshot of the simulated, vertical electric field (Ez) within the
transformation region of the design shown in Fig. 5.9(a). Black arrows
show the simulated Poynting vector directions at the center of unit cells.
(b) Simulated and ideal power density (c) Phase profiles along boundary
1 and boundary 2. y = 0 corresponds to the center of the transformation
region.

Poynting vector directions are chosen to be different from the the linear power flow

distribution used earlier. This example shows that even abrupt changes in power

flow are possible within the transformation region, and that different power flow

assignments can result in the same power density profile at the output. It should

be pointed out that the phase is still linearly varied from input to output in this

example. A wavenumber of ky = 0 is chosen along boundary 2, and a wave number of

kx = 0 along boundary 3. Fig. 5.11(a) shows the assigned k⃗ and direction of S⃗ with

red and black arrows, respectively. The permittivity distribution calculated using the
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Figure 5.11: (a) Spatial distributions of k⃗ and direction of S⃗ that establish a trape-
zoidal power density and uniform phase profile along boundary 2. (b)
Calculated permittivity distribution assuming a linearly tapered wave
impedance ηx from boundary 1 to boundary 2.

tapered wave impedance approach is shown in Fig. 5.11(b). The permeability tensor

of each unit cell is found by substituting the vector distributions of Fig. 5.11(a) and

the permittivity values of Fig. 5.11(b) into (5.9). A time snapshot of the simulated,

vertical electric field (Ez) and simulated Poynting vector direction at the center of

unit cells are shown in Fig. 5.12(a). A top view of the field is shown Fig. 5.12(a) for a

better visualization of the simulated Poynting vector directions. Fig. 5.12(b) and Fig.

5.12(c) plot the simulated and ideal power density and phase profiles at boundaries 1

and 2. The close agreement verifies that the method can support abrupt changes in

the vectorial distributions. It also highlights the fact that there are infinite number

of vectorial distributions that can yield the same output field profile.
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Figure 5.12: (a) Time snapshot of the simulated, vertical electric field (Ez) within the
transformation region of the design shown in Fig. 5.11(a). Black arrows
show the simulated Poynting vector directions at the center of unit cells.
(b) Simulated and ideal power density (c) Phase profiles along boundary
1 and boundary 2. y = 0 corresponds to the center of the transformation
region.

5.3.6 Arbitrary Control of Phase and Power Control Within the Trans-

formation Region

The examples presented so far have shown that the field of a source can be molded

into desired phase and amplitude profiles. However, the proposed design approach is

not limited to designing devices based solely on input-output relations. The design

approach provides full control of the phase progression and power flow of electromag-

netic fields within a region of space (the transformation region) without aiming for a
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specific output profile. This last example considers the case where power flow within

the transformation region is assigned arbitrarily, while the phase of the source field

is collimated.

In this example, the Poynting vector directions are changed linearly from boundary

1 to boundary 2 along a fixed value of y (a row). For the first 15 rows (closest to

boundary 4), the angle of the Poynting vector with respect to the x axis decreases

from its initial value at boundary 1 to an angle of zero degrees at boundary 2. For

the next 30 rows (central section of the transformation region), the Poynting vector

angle decreases from its value at boundary 1 to the negative of that angle at boundary

2. For the last 15 rows (closest to boundary 3), the Poynting vector angle decreases

from its value at boundary 1 to an angle of -30 degrees at boundary 2. The wave

vectors within the transformation region are chosen to be the same as those in the

second example of the main text (see Fig. 5a), which produce a collimated beam at

boundary 2. Fig. 5.13(a) shows the assigned k⃗ and direction of S⃗ vectors with red and

black arrows, respectively. The permittivity distribution calculated using the tapered

wave impedance approach is shown in Fig. 5.13(b). The permeability tensor of each

unit cell is found as in the previous examples. Fig. 5.14(a) compares the initially

assigned (black) and simulated (blue) Poynting vector directions. Close agreement

is once again observed. Moreover, Fig. 5.14(b) plots the phase of the electric field

within the transformation region, showing that the field is collimated at boundary 2.

5.4 Beam Former

The condition imposed on the determinant of the permeability tensor (equation

5.8) allows the designed structures to act as a beam former. Laterally displacing the

cylindrical source results in the scans the beam emerging from boundary 2. The beam

former is in fact reflectionless for all beam scanning angles due to the determinant

condition. In this section, the design presented in Section 5.3.2 is revisited. This
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Figure 5.13: (a) Spatial distributions of k⃗ and direction of S⃗ that establish a trape-
zoidal power density and uniform phase profile along boundary 2. (b)
Calculated permittivity distribution assuming a linearly tapered wave
impedance, ηx, from boundary 1 to boundary 2.

design produced a trapezoidal power density at the output with a uniform phase.

The source is laterally displaced in upward and downward directions to demonstrate

the reflectionless beam scanning property of the designed device. Fig. 5.15 shows time

snapshots of the simulated, vertical electric fields for various source positions. In Fig.

5.15(a), the source is positioned at the center of the device. A beam emerging from

boundary 2 in the normal direction is observed. In Fig. 5.15(b) and Fig. 5.15(c), the

source is displaced by 4 and 8 unit cells, respectively, in the upward direction. Beams

emerging from boundary 2 at an angles of -13◦ and -26◦ are shown, respectively.

Similarly, in Fig. 5.15(b) and Fig. 5.15(c), the source is displaced by 4 and 8 unit

cells in the downward direction. Beams emerging from boundary 2 at angles of 13◦
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Figure 5.14: (a) Comparison of the ideal (assigned) and simulated Poynting vector
directions. (b) Simulated phase of the vertical electric field (Ez) within
the transformation region.

and 26◦ are observed, respectively.

In all cases, the cylindrical wave is impedance matched to the transformation

region since the material parameters satisfy the condition given by (5.8).

5.5 Relationship with Transformation Electromagnetics

The proposed method defines the material parameters in terms of the spatial

distributions of the wave vector (k⃗) and direction of Poynting vector (S⃗) within a

region of space. This method can be related to transformation electromagnetics if the

spatial distribution of these vectors are obtained via coordinate transformation. Such

a relation will provide an alternative perspective on transformation electromagnetic
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Figure 5.15: A time snapshot of the vertical electric field (Ez) radiated from a cylin-
drical (vertical electric current) source at laterally displaced positions:
(a) center position, (b) 4 unit cells above, (c) 8 unit cells above, (c) 4
unit cells below, (d) 8 unit cells below center position.

device design.

In this section, the proposed method is used to find alternative material param-

eters for 2D transformation electromagnetics devices. The alternative material pa-

rameters support exactly the same field pattern as those of the original transforma-

tion electromagnetics device for a given excitation. Furthermore, the same method

is extended to design dual functional transformation electromagnetics devices that

combine the characteristics of two separate transformation devices into one. Analyti-

cal calculations are shown and the results verified through the full-wave simulation of

well-known transformation electromagnetics devices: an electromagnetic field rotator
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and a cylindrical electromagnetic field concentrator. Although the transformation

electromagnetics devices possessing alternative material parameters only work for a

particular illumination direction, the method presented will find application in the

design of antennas and beam-forming networks with a fixed feed position. Further-

more, the alternative material parameters reported may be used to simplify designs

and reduce anisotropy in transformation electromagnetics devices. They can be used

to reduce the eigenvalues of material tensors (diagonalized material parameters) since

large material parameters can be challenging to realize. They can also lead to designs

with attainable circuit components, completely printed implementations and devices

with desirable frequency responses when tensor transmission-line metamaterials are

considered for their implementation. The dual functional devices requiring nonre-

ciprocal material parameters can also be implemented using tensor transmission-line

metamaterial with nonlinear components: transistors, diodes, magnetic materials.

5.5.1 Alternative Material Parameters for Transformation Electromag-

netics Designs

First, the concept of alternative material parameters is discussed. Let us consider

equation (5.4). If the wavenumbers and wave impedances values, (kx, ky, ηx, ηy),

are known in (5.4) for all points in space, the permeability and permittivity can be

expressed in terms of these quantities. Assuming that both wave impedances are

finite, the permeability tensor and permittivity can be written as follows:

µ =

 kyηy +
ηy
ηx
µxy µxy

µyx kxηx +
ηx
ηy
µyx

 , ϵz =
kx

ηx
+

ky

ηy
, (5.10a)

where µxy and µyx can be chosen arbitrarily. The material parameters for the limiting

cases where one of the wave impedances becomes infinity can also be written. If the
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impedance in x direction becomes infinite, (ηx → ∞):

µ =

 kyηy µxy

−kxηy µyy

 , ϵz =
ky

ηy
, (5.10b)

where µxy and µyy can be chosen arbitrarily. If the impedance in y direction becomes

infinite, (ηy → ∞):

µ =

 µxx −kyηx

µyx kxηx

 , ϵz =
kx

ηx
, (5.10c)

where µxx and µyx can be chosen arbitrarily. As shown by (5.10), an infinite number of

solutions (permeability tensors) can be found to satisfy the given set of wave numbers

and wave impedances, given that two of the permeability tensor entries µxy, µyx can be

freely chosen. This fact can be utilized to define alternative material parameters for

a transformation electromagnetics design. The spatial distributions of wavenumbers

and wave impedances, (kx, ky, ηx, ηy) within a transformation electromagnetics de-

vice, can be computed for a specific plane-wave illumination. Using (5.10), numerous

alternative material parameters can be found that support the same (kx, ky, ηx, ηy)

distribution for the given plane-wave illumination. The transformation-derived ma-

terial parameters can be replaced by the alternative ones within any part or over

the entire transformed space. The alternative material parameters retain the same

(kx, ky, ηx, ηy) within the device under the particular plane-wave illumination they

were calculated for.

The anisotropy of the transformation electromagnetics device can be reduced using

alternative material parameters through a judicious choice of the free parameter µxy

for each unit cell. The free parameters should be chosen such that the dispersion

curve of the alternative material parameters most closely approaches a circle. This
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specific value of the free parameter can be computed by minimizing the function

f(λ1, λ2) =
λ1

λ2

+
λ2

λ1

, (5.11)

where λ1, λ2 are the positive eigenvalues of the alternative permeability tensor given

by (5.10a), when the material parameters are reciprocal: µxy = µyx. The function

(5.11) is minimized when

µxy = µyx =
ηxηy(kxηx − kyηy)(kxηy − kyηx)

(kxηy + kyηx)(η
2
x + η2y)

. (5.12)

For this particular µxy value, the dispersion curve of the alternative material parame-

ters approaches a circle, while supporting the same wavenumber and wave impedance,

(kx, ky, ηx, ηy) as the transformed material parameters.

The alternative material parameters (5.10a) become equal to the transformation-

derived material parameters for specific values of µxy and µyx. If the permeability

matrix is symmetric and its determinant is set to unity (assuming that the initial

medium is free space), the following off-diagonal permeability entries result

µxy = µyx =
1− kxηxkyηy

kxηy + kyηx
, (5.13)

and the transformation-derived material parameters are recovered. Note that this

condition corresponds to the condition stipulated by (5.8), which ensures that the

transformation device remains impedance matched to its surrounding medium under

all plane-wave excitations.

5.5.2 Dual Functional Transformation Electromagnetics Designs

Using an argument similar to the one used to find alternative materials, we can

show that a single device can also be designed to behave as two separate transfor-
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mation electromagnetics devices for two different plane-wave illuminations. That is,

material parameter distributions can be found that support two different electro-

magnetic field distributions belonging to separate transformation electromagnetics

devices.

For a given spatial distribution of wavenumbers and wave impedances, (kx, ky, ηx, ηy),

matrix equation (5.4) is an under-determined system. Generally, there are two equa-

tions and four unknowns (µxx, µxy, µyx, µyy). Therefore, two more independent equa-

tions can be written for a second set of (kx, ky, ηx, ηy) corresponding to a different

transformation electromagnetics device. In this way, a system with four equations

and four unknowns can be obtained.

Let (kx1, ky1, ηx1, ηy1) and (kx2, ky2, ηx2, ηy2) represent the first and second set of

wavenumbers and wave impedances, respectively. These are the wavenumber and

wave impedance distributions observed in the two different transformation electro-

magnetics devices under the two different plane-wave illuminations. From them, we

can calculate the material parameters needed to support the functionality of both

devices under different plane-wave illuminations. Both of these sets must satisfy

equations (5.4) and (5.5). The first set is substituted into (5.4) and (5.5), and the

equations can be written as follows:

 ky1

kx1

 =

 µxx − µxy

−µyx µyy


 ηy1

−1

ηx1
−1

 , (5.14a)

ϵz =
kx1

ηx1
+

ky1

ηy1
. (5.14b)
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Similarly, the second set is substituted into (5.4) and (5.5):

 ky2

kx2

 =

 µxx − µxy

−µyx µyy


 ηy2

−1

ηx2
−1

 , (5.15a)

ϵz =
kx2

ηx2
+

ky2

ηy2
. (5.15b)

Equations (5.14a) and (5.15a) can then be combined to yield

 ky1 ky2

kx1 kx2

 =

 µxx − µxy

−µyx µyy


 ηy1

−1 ηy2
−1

ηx1
−1 ηx2

−1

 (5.16)

and the permeability matrix solved for

 µxx − µxy

−µyx µyy

 =

 ky1 ky2

kx1 kx2


 ηy1

−1 ηy2
−1

ηx1
−1 ηx2

−1


−1

. (5.17)

It is assumed that the 2×2 matrix consisting of the wave impedances is invertible.

The permittivity can be calculated using either (5.14b) or (5.15b):

ϵz =
kx1

ηx1
+

ky1

ηy1
=

kx2

ηx2
+

ky2

ηy2
. (5.18)

Strictly speaking, both sets of wavenumbers and wave impedances must have the

same permittivity to be seamlessly combined.

Two transformation devices with different permittivity distributions can still be

combined into a single device by trading off the inherent reflectionless properties of

the individual transformation electromagnetics devices. In this case, the wavenum-

bers (kx, ky) and the ratio of wave impedances (ηx
ηy

= κ) are maintained in the dual

functional device as in the two separate transformation electromagnetics devices. As

noted earlier, the ratio of wave impedances at any point in space is representative of
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the Poynting vector direction at that point. In order to express the material param-

eters in terms of this new data set (kx, ky, κ), we start by writing (5.4) and (5.5) as

follows:  ky

kx

 = ηx
−1

 µxx − µxy

−µyx µyy


 κ

1

 (5.19a)

ϵz = ηx
−1(kx + κky), (5.19b)

assuming that ηx is finite. To obtain a system of equations solely consisting of wave

numbers and the wave impedance ratios, we rearrange the expression (5.19b) as fol-

lows:

ηx
−1 =

ϵz

(kx + κky)
. (5.20)

Substituting (5.20) into (5.19a) results in

 ky

kx

 =
ϵz

(kx + κky)

 µxx − µxy

−µyx µyy


 κ

1

 . (5.21)

To simplify the notation, let’s define the product of the scalar permittivity and per-

meability tensor as the index tensor

 nxx nxy

nyx nyy

 = µϵz =

 µxxϵz µxyϵz

µyxϵz µyyϵz

 . (5.22)

Using (5.21), (5.22) can be written as

 ky(kx + κky)

kx(kx + κky)

 =

 nxx − nxy

−nyx nyy


 κ

1

 . (5.23)
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The equation above consists of solely wavenumbers and the wave impedance ratios.

We can now calculate the medium parameters needed to support two different sets:

(kx1, ky1, κ1) and (kx2, ky2, κ2). Equation (5.23) can be written in terms of the two

sets as ky1(kx1 + κ1ky1) ky2(kx2 + κ2ky2)

kx1(kx1 + κ1ky1) kx2(kx2 + κ2ky2)

 =

 nxx − nxy

−nyx nyy


 κ1 κ2

1 1

 . (5.24)

Solving for the index tensor yields

 nxx − nxy

−nyx nyy

 =

 ky1(kx1 + κ1ky1) ky2(kx2 + κ2ky2)

kx1(kx1 + κ1ky1) kx2(kx2 + κ2ky2)


 κ1 κ2

1 1


−1

, (5.25)

where again it has been assumed that the 2×2 matrix of wave impedance ratios is

invertible. In summary, (5.25) defines the material parameters (the index tensor)

that support two different sets of wavenumbers and wave impedance ratios (Poynting

vector directions) under two separate plane-wave illuminations. When these two sets

belong to two transformation electromagnetics devices, the resultant dual functional

device performs as two separate transformation electromagnetics devices under the

different excitations. In order to define the permittivity and permeability individually,

a permittivity distribution must be selected first and the permeability distribution

found using (5.22). Since the reflectionless property of the transformation electro-

magnetics is waived for such designs, the overall performance of the dual functional

transformation electromagnetics device depends on the amount of impedance mis-

match. One can optimize the permittivity distribution ϵz in order to minimize these

mismatches.

The method described here is a generalization of the methods utilized to simplify

the material parameters of the cylindrical cloak in [37] and [100]. One can obtain the

same simplified material sets reported in these references using (5.25). To do so, two
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sets of wavenumbers and wave impedance ratios (kx, ky, κ) of the cylindrical cloak

under two different plane-wave illuminations are required.

5.5.3 Relating the Alternative Material Parameters to Coordinate Trans-

formations

In the previous section, alternative material parameters were found assuming the

wavenumber and the wave impedance distributions (or their ratios) for plane-wave

illuminations. In this section, the wavenumber and wave impedance distributions

within the transformation electromagnetics device will be found from the coordinate

transformation defining the transformation device and the illuminating field. The

alternative material parameters given by (5.10, 5.17, 5.25) will also be rewritten in

terms of the coordinate transformation and the illuminating field.

Transformation electromagnetics devices are characterized by coordinate trans-

formations. A point in the original space can be represented by (x, y, z). Under the

coordinate transformation, it is transformed to a coordinate (x′, y′, z′) in the trans-

formed space. To be consistent with the previous sections, we will only consider

2D transformations. 2D coordinate transformations from the original space to the

transformed space can be written as:

x′ = x
′
(x, y), y′ = y

′
(x, y), z′ = z. (5.26)

The Jacobian matrix of the transformation defined by (5.26) can be expressed as:

J =


∂x′

∂x
∂x′

∂y
∂x′

∂z

∂y′

∂x
∂y′

∂y
∂y′

∂z

∂z′

∂x
∂z′

∂y
∂z′

∂z

 =


J11 J12 0

J21 J22 0

0 0 1

 . (5.27)

According to transformation electromagnetics, the material parameters of the trans-
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formed space are given by:

¯̄µ′ = ¯̄ϵ′ =
JJT

|J |
, (5.28)

assuming that the original space is free space: µ = 1 and ϵ = 1. For the polarization

of interest, the relevant material parameters can be rewritten in terms of the Jacobian

matrix entries as,

¯̄µ′ =
1

|J |

 J2
11 + J2

12 J11J21 + J12J22

J11J21 + J12J22 J2
21 + J2

22

 , (5.29a)

ϵz =
1

|J |
, (5.29b)

where

|J | = J11J22 − J12J21.

is the determinant of the Jacobian matrix (5.27). To remain consistent with the

convention used in the previous section, we will remove the prime signs from the

quantities belonging to the transformed space hereafter.

The wavenumber distribution k at every point in the transformed space can be

related to the illuminating plane-wave’s wavenumber distribution in the original space

ki through the Jacobian matrix:

k = (JT )−1ki. (5.30)

This equation can be written explicitly in terms of the Jacobian matrix entries:

 kx

ky

 =
1

|J |

 J22 − J21

−J12 J11


 kix

kiy

 . (5.31)

The same can be done for the wave impedance within the original and transformed

spaces. To derive this relationship, we start by noting that the Jacobian matrix
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relates the electric and magnetic field distributions (E, H) in the transformed space

to the plane-wave illumination (Ei, H i) in the original space through the following

relations:

E = (JT )−1Ei, H = (JT )−1H i. (5.32)

These relations can be explicitly written in terms of Jacobian matrix entries as follows:

Ez = Eiz,

H =

 Hx

Hy

 =
1

|J |

 J22 − J21

−J12 J11


 H ix

H iy

 . (5.33)

By using (5.32) and (5.33), the relation between the wave impedances within the

transformed space η and wave impedances of the illuminating field in the original

space ηi can be written as:

η−1 =
J

|J |
ηi

−1. (5.34)

Recasting (5.34) in terms of Jacobian matrix entries results in

 ηx
−1

ηy
−1

 =
1

|J |

 J11 J12

J21 J22


 ηxi

−1

ηyi
−1

 . (5.35)

Equations (5.31) and (5.35) show how to calculate the wavenumbers and wave impedances,

(kx, ky, ηx, ηy), for a given coordinate transformation (5.27) and plane-wave illumina-

tion denoted by wavenumbers and wave impedances, (kix, kiy, ηix, ηiy).

Now, we can write the alternative material parameters (5.10) in terms of the coor-

dinate transformation (5.27), and a plane-wave illumination with a propagation angle

θ with respect to x axis. The plane wave is represented by normalized wavenumbers,
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(kix, kiy) = (cos θ, sin θ) and wave impedances, (ηix, ηiy) = ( 1
cos θ

, 1
sin θ

), in the origi-

nal space. Using (5.31), the wavenumbers (kx, ky) in the transformed space can be

written as  kx

ky

 =
1

|J |

 J22 − J21

−J12 J11


 cos θ

sin θ

 . (5.36)

Using (5.35), the wave impedances (ηx, ηy) in the transformed space can be written

as  ηx
−1

ηy
−1

 =
1

|J |

 J11 J12

J21 J22


 cos θ

sin θ

 . (5.37)

Substituting (5.36) and (5.37) into (5.10a), yields the alternative material parameters

in terms of the coordinate transformation and illuminating field:

µxx =
J11 sin θ − J12 cos θ

J21 cos θ + J22 sin θ
+

J11 cos θ + J12 sin θ

J21 cos θ + J22 sin θ
µxy,

µyy =
J22 cos θ − J21 sin θ

J11 cos θ + J12 sin θ
+

J21 cos θ + J22 sin θ

J11 cos θ + J12 sin θ
µyx,

ϵz =
1

|J |
, (5.38)

where again µxy and µyx are free parameters. In addition, (5.10b) and (5.10c) can be

written in similar way. In summary, (5.38) presents alternative material parameters

to those given by (5.29). The transformation electromagnetics device with alterna-

tive material parameters, however, only works for a plane-wave illumination with a

propagation angle θ with respect to the x axis.

The material parameters derived for dual functional devices, (5.17) and (5.25),

can also be related to the coordinate transformation and illuminating field. Let’s

assume that the two transformation electromagnetics devices to be combined into a
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single device are represented by the following coordinate transformations:

(a) x1
′ = x1

′(x, y), y1
′ = y1

′(x, y), z1
′ = z1.

(b) x2
′ = x2

′(x, y), y2
′ = y2

′(x, y), z2
′ = z2. (5.39)

Let their respective Jacobian matrices be represented by

(a) J =


J11 J12 0

J21 J22 0

0 0 1

 , (b) J̃ =


J̃11 J̃12 0

J̃21 J̃22 0

0 0 1

 . (5.40)

Using (5.36) and (5.37), we can write wavenumbers and wave impedances in the

transformed space in terms of the illuminating fields and the Jacobian matrices of

the transformations (5.40). Let’s further assume that the dual functional device be-

haves as the first transformation electromagnetics device (5.40a), under a plane-wave

illumination with a propagation angle θ1. The illuminating plane wave is represented

by wavenumbers (kix, kiy) = (cos θ1, sin θ1) and (ηix, ηiy) = ( 1
cos θ1

, 1
sin θ1

). For this

illumination, (5.36) and (5.37) become:

 k1x

k1y

 =
1

|J |

 J22 −J21

−J12 J11


 cos θ1

sin θ1

 ,

 η−1
1x

η−1
1y

 =
1

|J |

 J11 J12

J21 J22


 cos θ1

sin θ1

 . (5.41)

The dual functional device behaves as a different transformation electromagnetics de-

vice (5.40b) under a plane-wave illumination with a propagation angle θ2. The illumi-

nating field is represented by wavenumbers (kix, kiy) = (cos θ2, sin θ2) and (ηix, ηiy) =
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( 1
cos θ2

, 1
sin θ2

). For this illumination, (5.36) and (5.37) simplify to:

 k2x

k2y

 =
1

|J̃ |

 J̃22 −J̃21

−J̃12 J̃11


 cos θ2

sin θ2

 ,

 η−1
2x

η−1
2y

 =
1

|J̃ |

 J̃11 J̃12

J̃21 J̃22


 cos θ2

sin θ2

 . (5.42)

Substituting (kx1, ky1, ηx1, ηy1) from (5.41) and (kx2, ky2, ηx2, ηy2) from (5.42) into

(5.17) and (5.18) results in the material parameters for dual functional device in

terms of coordinate transformation and plane-wave illumination:

 µxx − µxy

−µyx µyy

 =

 J11 sin θ1−J12 cos θ1
|J |

J̃11 sin θ2−J̃12 cos θ2
|J̃ |

J22 cos θ1−J21 sin θ1
|J |

J̃22 cos θ2−J̃21 sin θ2
|J̃ |

 (5.43)

 J21 cos θ1+J22 sin θ1
|J |

J̃21 cos θ2+J̃22 sin θ2
|J̃ |

J11 cos θ1+J12 sin θ1
|J |

J̃11 cos θ2+J̃12 sin θ2
|J̃ |


−1

ϵz =
1

|J |
=

1

|J̃ |
. (5.44)

In a similar way, the index tensor (5.25) can be written in terms of the coordinate

transformation and the plane-wave illumination given by (5.36) and (5.37):

 nxx − nxy

−nyx nyy

 =

 J11 sin θ1−J12 cos θ1
|J |(J11 cos θ1+J12 sin θ1)

J̃11 sin θ2−J̃12 cos θ2
|J̃ |(J̃11 cos θ2+J̃12 sin θ2)

J22 cos θ1−J21 sin θ1
|J |(J11 cos θ1+J12 sin θ1)

J̃22 cos θ2−J̃21 sin θ2
|J̃ |(J̃11 cos θ2+J̃12 sin θ2)

 (5.45)

 J21 cos θ1+J22 sin θ1
J11 cos θ1+J12 sin θ1

J̃21 cos θ2+J̃22 sin θ2
J̃11 cos θ2+J̃12 sin θ2

1 1


−1
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5.6 Full-wave Verification

In this section, we demonstrate the performance of transformation devices de-

signed using alternative material parameters as well as dual functional transforma-

tion electromagnetic devices. The reported simulations were performed using the

commercial finite element solver, Comsol Multiphysics.

Three cases are considered. First, a transformation electromagnetics device with

alternative material parameters is shown to operate the same as the transformation

electromagnetics device with transformed material parameters for a particular plane-

wave illumination. Second, a dual functional device combining two transformation

electromagnetics devices with the same permittivity profile is designed and simulated.

Finally, a dual functional device combining two transformation electromagnetics de-

vices with different permittivity profiles is demonstrated.

This section begins with a short review of the two transformation devices consid-

ered in this section: an electromagnetic field rotator and a cylindrical electromagnetic

field concentrator.

5.6.1 Electromagnetic Field Rotator

An electromagnetic field rotator is a transformation electromagnetics region that

rotates an incident electromagnetic field by a prescribed angle within a defined annu-

lus [41]. The transformation domain for such a device is circular and its coordinate

transformation in cylindrical coordinates is:

r′ = r,

ϕ′ =


ϕ+ ϕo

R2−r
R2−R1

R1 < r < R2,

ϕ+ ϕo r < R1,

z
′
= z, (5.46)
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Figure 5.16: A steady state snapshot in time of vertical electric field within and sur-
rounding an electromagnetic field rotator. (a) The field distribution for a
plane-wave illumination along the x direction. (b) The field distribution
for a plane-wave illumination along the y direction. (c) The permeability
distribution. The permittivity value is equal to that of free space.

where R1 and R2 are the radii of the inner and outer concentric circles, respectively.

The constant ϕo is the angle of field rotation observed within the inner circle. The

transformed material parameters derived using the transformation electromagnetics

method (5.29) are:

µ = R(ϕ′)

 1 − t

−t 1 + t2

R(ϕ′)T , ϵz = 1 (R1 < r′ < R2), (5.47)

µ = 1, ϵz = 1 (r′ < R1). (5.48)
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where

R(ϕ′) =

 cosϕ′ − sinϕ′

sinϕ′ cosϕ′

 , t =
r′ϕ′

o

R2 −R1

.

The radii of the inner and outer circles of the field rotators considered are assumed

to be 0.17λo and 0.51λo respectively, where λo is the free-space wavelength at 3 GHz.

Fig. 5.16 shows the performance of an electromagnetic field rotator. Fig. 5.16(a) and

Fig. 5.16(b) depict the vertical (out of plane) electric field within and surrounding

the field rotator when illuminated by a plane wave propagating in the x (horizontal)

and y (vertical) directions, respectively. The field rotator, implemented with the

transformed material parameters (5.47) shown in Fig. 5.16(c), performs a 90 degree

field rotation independent of illumination direction.

5.6.2 Cylindrical Electromagnetic Field Concentrator

A cylindrical electromagnetic field concentrator concentrates the field of an incom-

ing plane wave into a prescribed circular region [101]. The coordinate transformation

for such a device is also defined over a circular region:

r′ =


R1

R2
r 0 ≤ r ≤ R2

R3−R1

R3−R2
r − R2−R1

R3−R2
R3 R2 ≤ r ≤ R3,

ϕ′ = ϕ, (5.49)

z′ = z, (5.50)

where R1 and R3 are the inner and outer radii of two concentric circles. The variable

R2 is the radius of an intermediate circle that is used as a design parameter. The

material parameters resulting from the transformation above are:
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Figure 5.17: A steady state snapshot in time of vertical electric field within and sur-
rounding the cylindrical field concentrator. (a) The field distribution for
a plane-wave illumination along the x direction (b) The field distribution
for a plane-wave illumination along the y direction. (c) The permeability
distribution. (d) The permittivity distribution.

µ = R(ϕ′)

 η 0

0 1
η

R(ϕ′)T , ϵz =
η

β
, (R1 < r′ < R3),

µ = 1, ϵz = (
R2

R1

)2, (r′ < R1). (5.51)
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where

η = (1 +
e

f

R3

r′
), β =

h

f
,

e = R2 −R1, f = R3 −R2, h = R3 −R1.

The geometric dimensions of the field concentrator considered were chosen to be the

same as for the field rotator. The radii of the inner, intermediate and outer circles

were selected to be 0.17λo, 0.26λo and 0.51λo, where λo is the free-space wavelength

at 3 GHz. Fig. 5.17 shows the performance of an electromagnetic field concentrator.

Fig. 5.17(a) and Fig. 5.17(b) depict the vertical (out of plane) electric field within and

surrounding the electromagnetic field concentrator when illuminated by a plane wave

propagating in the x (horizontal) and y (vertical) directions. The permeability and

permittivity distributions for the device are shown in Fig. 5.17(c) and Fig. 5.17(d),

respectively.

5.6.3 Field Rotator with Alternative Material Parameters

Here, we compare the simulated performance of a field rotator implemented with

the transformed material parameters (see Fig. 5.16) to that of the field rotator with

alternative material parameters. We consider two examples. The goal of the first

example is to demonstrate that alternative material parameters can replace the trans-

formed material parameters at arbitrary locations within the device. The patches in

Fig. 5.18(a) are replaced with materials possessing alternative material parameters.

The alternative material parameters within the square patches are calculated using

(5.38) for a plane-wave incident at θ = 0 degree (along the x axis) and assuming

µxy = µyx = 0. Fig. 5.18(c) shows the alternative material parameter distributions.

Fig. 5.18(a) shows the simulated performance of the field rotator with alternative

parameters for a plane-wave illumination in the x-direction. For a plane wave in-
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Figure 5.18: A steady state snapshot in time of vertical electric field within and sur-
rounding the field rotator employing alternative material parameters.
The patches are replaced with alternative material parameters. (a) The
field distribution for a plane-wave illumination along the x direction. (b)
The field distribution for a plane-wave illumination along the y direction.
(c) The alternative material parameter (permeability) distribution. The
permittivity is equal to that of free space.

cidence along the x direction, the field rotator performs exactly as it should (see

Fig. 5.16(a)). However, since the alternative material parameters are found for a

plane-wave illumination along the x direction, the device does not work for other

plane-wave illuminations. Fig. 5.18(b) shows the field distribution for a plane-wave

incidence along the y direction. It is clear that the device does not function as a field

rotator as for such a plane-wave illumination.

The second example shows that alternative material parameters can be used to

reduce anisotropy, while producing the exactly same field pattern. Fig. 5.19(a) shows
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the alternative material parameters over the annulus of the field rotator. These al-

ternative material parameters were calculated using (5.12) for a plane wave incident

along the x axis. They are used to replace the transformed material parameters over

the entire annulus. Fig. 5.19(b) compares the dispersion curves for the transformed

(black ellipses) and alternative material parameters (red ellipses) at a number of

points within the annulus. Fig. 5.19(c) and Fig. 5.19(d) show the simulated perfor-

mance of the field rotator with the alternative parameters given in Fig. 5.19(a). Once

again, for a plane wave incidence along the x direction, the field rotator performs as

it should (see Fig. 5.16(a)). However, since the alternative material parameters are

found for a plane-wave illumination along the x direction, the device does not work

for other plane-wave illuminations. Fig. 5.19(d) shows the field distribution for a

plane-wave incidence along the y direction. Clearly, the device does not function as

a field rotator for such a plane-wave illumination.

5.6.4 Dual Functional Device: Combining Field Rotators with Different

Rotation Angles

In this section, we verify that two transformation electromagnetics devices with the

same permittivity profile can be combined. We designed a field rotator that rotates

the incident field by 90 degrees when illuminated along x direction and rotates it by

45 degrees when the illuminated along y direction.

For such a design, the required material parameters are given by (5.43) and (5.44).

In these equations, the angles were set to θ1 = 0 degree and θ2 = 90 degrees rep-

resenting the plane wave illuminations along x and y directions, respectively. The

coordinate transformations for the field rotators are given by (5.46) with ϕo = 90

degrees and ϕo = 45 degrees, representing two field rotators with distinct rotational

angles.

The permeability values calculated using (5.43) are plotted in Fig. 5.20(c). The
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Figure 5.19: A steady-state snapshot in time of the vertical electric field within and
surrounding the field rotator employing alternative material parameters
that exhibit minimal anisotropy. (a) The alternative material parame-
ter (permeability) distribution. The permittivity is equal to that of free
space. (b) Dispersion curves of the transformed (black) and alternative
material parameters (red) within the annulus. (c) The field distribu-
tion for a plane-wave illumination along the x direction. (d) The field
distribution for a plane-wave illumination along the y direction.

permittivity value of the dual functional device is equal to that of free space and

is the same for both field rotators. The simulated performance of the designed dual

functional transformation electromagnetics device is depicted in Fig. 5.20(a) and Fig.

5.20(b). For a plane wave illumination along the x direction, the field rotator exhibits

exactly 90 degrees of rotation and for a plane wave illumination along the y direction,

the field rotator exhibits 45 degrees of rotation.

Fig. 5.21(a) and Fig. 5.21(b) show the response of the designed dual functional

transformation electromagnetics device for a plane wave illumination between the
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Figure 5.20: A steady-state snapshot in time of the vertical electric field and sur-
rounding the dual functional device combining two field rotators with
distinct rotational angles. (a) The field distribution for a plane wave
illumination along the x direction. A field rotation of 90 degrees is ob-
served. (b) The field distribution for a plane wave illumination along
the y direction. A field rotation of 45 degrees is observed. (c) The per-
meability distribution. The permittivity value is equal to that of free
space.

horizontal and vertical directions. In both figures, the arrows show the power flow

directions within and surrounding the device. For directions in between, the designed

device is not perfectly impedance-matched. To quantify the amount of mismatch, the

radar cross section (RCS) of the device was simulated as a function of incidence angle,

and is shown in Fig. 5.21(c). Despite the mismatches, it still performs an angular

rotation of the incoming field as a function of incidence angle. In Fig. 5.21(a), the

incidence angle is 30 degrees and the field undergoes a rotation of 75 degrees at the

center of the device. In Fig. 5.21(b), the incidence angle is 60 degrees and the field
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Figure 5.21: A steady-state snapshot in time of the vertical electric field and sur-
rounding the dual functional device combining two field rotators with
distinct rotational angles. Power flow directions are shown with vectors.
(a) The field distribution for a plane wave illumination at 30 degree. A
rotation of 75 degrees is observed at the center of the device. (b) The
field distribution for a plane wave illumination at 60 degrees. A rotation
of 30 degrees is observed at the center of the device. (c) RCS (dB) as
a function of incidence angle. RCS is minimum for design angles, i.e. 0
(180) and 90 (270) degrees.

undergoes a rotation of 30 degrees at the center of the device. Based on the device’s

performance depicted in Fig. 5.20 and Fig. 5.21, the angle of rotation decreases

linearly with incident angle:

θrot =
180− θinc

2
(5.52)

where θrot and θinc are the rotational and the incidence angle in degrees, respectively.

5.6.5 Dual Functional Device: Combining a Field Rotator and a Field

Concentrator

In this section, we verify that two transformation electromagnetics devices with

different permittivity profiles can be combined. We design a dual functional device

that behaves as a field rotator (with 30 degrees of rotation) when illuminated along

the x (horizontal) direction, and a field concentrator when illuminated at an angle
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of -60 degrees. The inner and outer radii of two concentric circles are the same as

before, 0.17λo and 0.51λo, respectively.

The coordinate transformation of the field rotator is given by (5.46) with a rotation

angle of ϕo = 30 degrees. The transformation of the field concentrator is given by

(5.49). The material parameters for such a device are calculated using (5.45). In

(5.45), the angles are chosen to be θ1 = 0 degree and θ2 = −60 degrees, representing

plane wave illuminations along the x axis and -60 degrees directions, respectively.

Once the index tensor was calculated, an average value for the permittivity was

assumed. Over the annulus, we assumed permittivity values equal to the square root

of the sum of both device’s original permittivity values. Inside the inner circle, the

original permittivity values of the concentrator were used (see Fig. 5.17(d)). The

permittivity distribution of the dual functional device is depicted in Fig. 5.22(a).

From this this permittivity profile, the permeability distribution of the dual functional

device was found, and is shown in Fig. 5.22(b).

The performance of the combined dual functional device is depicted in Fig. 5.23.

Fig. 5.23(a) shows the vertical (out of plane) electric field within and surrounding

the dual functional device, when illuminated by a plane wave propagating in the

x (horizontal) direction. Fig. 5.23(b) depicts the vertical (out of plane) electric

field within and surrounding the dual functional device when illuminated by a plane

wave propagating at -60 degrees. The vectors show the power flow direction. In

summary, the combined device operates as a field rotator in Fig. 5.23(a) and as a field

concentrator in Fig. 5.23(b) for two different directions of illumination. The dual

functional device, whose performance is shown in Fig. 5.23, is not impedance-matched

to the outer medium for either incident angle. To show the mismatch amount, RCS

of the device was simulated as a function of incidence angle and it is shown in Fig.

5.23(c). This is the trade-off that must be made when two devices with different

permittivity profiles are combined. Given that the impedance mismatch depends on
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Figure 5.22: Material parameters of the dual functional device combing a field rotator
and a field concentrator. (a) Permittivity distribution. Over the annulus,
it is the square root of the sum of both device’s original permittivity
values. Inside the inner circle, transformed permittivity values of the
field concentrator are used. (b) The permeability distribution.

the permittivity distribution, one can optimize it to minimize reflections.

5.7 Applications

Since the proposed design approach provides independent spatial control of phase

progression and power flow, it will enable scattered or impressed currents on arbitrar-

ily contoured surfaces, such as those of buildings, aircraft, vehicles, optical circuits

and other platforms, to be arbitrarily directed and controlled. Ultimately, the de-

sign approach will enable the arbitrary (within the constraints imposed by Maxwell’s

equations) control of fields on arbitrary surfaces.

The proposed method’s ability to control power and phase flow as well as to

establish arbitrary aperture distributions, immediately reveals its use in the design of

beam-former and antenna designs. For example, in antenna design, one may wish to

control power flow across an aperture in order to realize a given amplitude distribution

(beam shape), while at the same time control phase progression to establish a certain

beam-pointing direction. In the case of a beam-former, one may wish to stipulate
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Figure 5.23: A steady-state snapshot in time of the vertical electric field within and
surrounding the dual functional device combining a field rotator and a
field concentrator. The device acts as either a field rotator and field
concentrator. Power flow directions are shown with vectors. (a) The
field distribution for a plane wave illumination along the x direction. A
field rotation of 30 degrees is observed. (b) The field distribution for a
plane wave illumination at -60 degree. Field concentration is observed.
(c) RCS (dB) as a function of incidence angle.

an input field distribution (excitation) and an output field distribution (amplitude

and phase distribution of the antenna elements), with a transition from one to the

other. Therefore, spatial control of phase and power flow allows one to independently

sculpt the phase and amplitude of a field profile, leading to antenna and beam former

designs with desired characteristics. Furthermore, the proposed method can find

application in holography [102, 103] and scattering control [104, 105] for controlling

radar signature and electromagnetically concealing objects. In addition, the method

could provide a novel approach to signal routing such as controlling electromagnetic

field flow on optical circuits, the design of mode conversion devices [106] for converting

a field profile from one form to another. Using the method, the generation of extreme

antenna apertures can be realized. These extreme aperture fields can be used for

super-directive radiation [107] with the purpose of high-resolution far field focusing

and detection. The excitation of Airy [108, 109, 110, 111] and Bessel beams [112,

113, 114, 115] are also possible, and these beams can resist diffractive spreading for

non-destructive evaluation, covert communication and microscopy.
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5.8 Conclusion

This chapter presented a method for controlling the power flow and phase progres-

sion of electromagnetic fields in two dimensions. The method enables the design of

reflectionless, inhomogeneous, anisotropic media that can support prescribed spatial

distributions of the wave vector and Poynting vector direction. This spatial control of

phase and power flow allows the amplitude and phase of a field profile to be tailored

arbitrarily. Specific examples were reported which show how the proposed method

can be used to tailor the field radiated by a cylindrical source into desired amplitude

and phase profiles. The relationship between the proposed method and transforma-

tion electromagnetics was also drawn. It was shown that the proposed method can

be used to find alternative material parameters for transformation electromagnetic

devices, and to design dual functional transformation electromagnetic devices. Po-

tential uses of the proposed method in the design of guiding and radiating structures

were also discussed.

Metamaterials can be employed to realize the anisotropic, inhomogeneous mate-

rials required in the proposed design approach. At microwave and millimeter-wave

frequencies, tensor transmission-line metamaterials are particularly well-suited for the

implementation of TMz polarized devices. At optical frequencies, plasmonic/dielectric

metamaterials [116, 117, 118, 119] and the concept of nanocircuit elements [71] could

be employed.
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CHAPTER VI

Summary and Future Work

6.1 Summary

The aims of this thesis have been to develop electromagnetically anisotropic, in-

homogeneous materials using circuit networks and devise methods to control elec-

tromagnetic fields using these materials. These anisotropic, inhomogeneous materials

and synthesis methods are crucial to the development of novel electromagnetic devices

for radiated and guided wave applications.

In Chapter 2, the theory of transmission-line based metamaterials was generalized

to develop tensor transmission-line metamaterials. These metamaterials are 2D cir-

cuit equivalents of homogeneous, anisotropic media with a 2×2 permeability tensor

and a permittivity scalar. In contrast to earlier transmission-line based metamate-

rials, tensor transmission-line metamaterials can synthesize full material tensors in

the Cartesian bases, and thus can be used to design transformation electromagnetic

devices. To aid in design, analytical methods for design and analysis of the tensor

transmission-line metamaterials were proposed. Subsequently, tensor transmission-

line metamaterials were used in the design of two transformation electromagnetic

devices, an invisibility cloak and a field rotator, to demonstrate their ability to tailor

electromagnetic waves in extreme and unprecedented ways. In order to realize the

proposed metamaterials at microwave frequencies, a microstrip implementation was
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proposed. The anisotropic properties of the implemented tensor transmission-line

metamaterials were verified through full-wave simulation. Circuit and full-wave sim-

ulations validated the analysis of tensor transmission-line metamaterials, and showed

their ability to manipulate electromagnetic waves in extreme and unprecedented ways.

In Chapter 3, a rigorous homogenization method for finding the effective material

parameters (tensorial permeability and a scalar permittivity) of implemented tensor

transmission-line metamaterials was presented. The method utilized a local field av-

eraging procedure on the metamaterial’s unit cell to compute its effective material

parameters. The proposed homogenization method provided accurate and rapid char-

acterization of tensor transmission-line metamaterials in terms of effective material

parameters.

In Chapter 4, tensor transmission-line metamaterials were used in the design of a

transformation electromagnetics device for guided waves: a beam-shifting slab. The

device was fabricated and tested at microwave frequencies. This work experimentally

verified the anisotropic behavior of tensor transmission-line metamaterials as well

as the homogenization procedure used to extract material parameters. Further, it

experimentally demonstrated the suitability of using tensor metamaterials to design

transformation electromagnetics devices. The development of tensor transmission-line

metamaterials has encouraged the use of these metamaterials to implement larger and

more complex devices that are both anisotropic and inhomogeneous.

In Chapter 5, a distinct method for arbitrarily controlling the phase progres-

sion and power flow of electromagnetic fields within a region of space was proposed.

This method involved prescribing phase and power distributions within a discretized

medium. It exploited an anisotropic medium’s ability to support power flow and

phase progression in different directions. The proposed method has proven useful in

establishing aperture field profiles with arbitrary phase and amplitude distributions,

which could revolutionize beam-former and antenna design. In the considered design
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examples, the field of a cylindrical source was tailored to generate apertures with ar-

bitrary phase and amplitude distributions. Beam-formers, which can create arbitrary

aperture field distributions (phase and amplitude) were reported. This method was

also related to the transformation electromagnetics design strategy in order to define

alternative material parameters for transformation devices, and design dual-function

transformation devices.

6.2 Future Work

This research work has developed the necessary tools for designing anisotropic, in-

homogeneous media for controlling electromagnetic fields. However, there are several

aspects of the research that deserve further attention.

6.2.1 Realization of the Antenna Beam-former

The simulated beam-former in Chapter 5 can be developed into a practical antenna

beam-former. The results in Chapter 5 demonstrate that by laterally displacing the

cylindrical source of the collimator allows the emerging beam can be scanned. Due to

the condition imposed on the permeability tensors (Eq. 5.8), the beam-former is in

fact reflectionless for all beam scanning angles: a truly remarkable result. The beam-

former can be implemented in much the same manner as the beam-shifting slab design

described in Chapter 4. However, since the beam-former is not only anisotropic, but

also inhomogeneous, each cell will have to be individually designed. Furthermore, the

beam-former antenna will have multiple feeds (coaxial connectors) that are laterally

displaced to demonstrate the devices scanning ability. The output boundary of the

beam-former could be flared (as in a horn antenna) in order to launch the wave

into free space. The flare will transition the guided wave supported by the tensor

transmission-line unit cells to an unbounded wave in free space. This experimental

beam-former would demonstrate the design approachs true technological value. The

141



device could be instrumental in the development of flat lenses for focal plane arrays.

Further attention can also be given to the improvement of device performance.

A beam-former design can be optimized to use a minimum number of unit cells.

Furthermore, an optimization process can be performed using the design parame-

ters explained in Chapter 5 to enable its realization using only non-dispersive ten-

sor transmission-line metamaterials presented in Chapter 3. This way, a wide-band

beam-formers with scanning capabilities would be possible.

6.2.2 Controlling the Phase and Power Flow in 3D

In Chapter 5, a novel approach to controlling the phase progression and power

flow of electromagnetic fields was proposed for 2D medium and TM polarized waves.

Truly arbitrary control of electromagnetic fields would require a 3D formulation of

the method for both TE and TM polarization. To allow this, the method could

be extended to the general case of 3D propagation. This generalization will involve

selecting a wave vector (k⃗) and Poynting (S⃗) in two arbitrary directions, and solving

for the material parameters needed. The derivation will be more involved than the 2D

case, since it will include both TM and TE polarizations. Both the constituent TE

and TM wave will possess the same wave vector, but the Poynting vector and wave

impedances will be a function of both polarizations. A reflectionless condition on

material parameters for 2D TM waves, such as that presented in Appendix A, should

also be studied for 3D, TE and TM waves. Such a formulation would allow control

of electromagnetic fields in a 3D medium. The approach could then compete with or

offer an alternative to the transformation electromagnetics design approach even in

3D. In order to realize practical devices using the 3D extension of the method, further

attention should be devoted to the design, analysis and homogenization of 3D tensor

metamaterials for both TE and TM polarizations. The 2D tensor transmission-line

metamaterials presented in Chapter 2, and previous work on volumetric transmission-
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line metamaterials [120, 121, 122] could serve as starting point for this.

6.3 Publications

This thesis work has resulted in 6 journal papers, 13 conference papers, 3 confer-

ence summaries and one patent. They are listed below:

Refereed Journal Publications

G. Gok and A. Grbic, “Tailoring the Phase and Power Flow of Electromagnetic

Fields”, Physical Review Letters, vol. 111, 233904, December 2013.

G. Gok and A. Grbic, “Alternative Material Parameters for Transformation Elec-

tromagnetics Designs”, IEEE Transactions on Microwave Theory and Techniques,

vol. 61, pp. 1414-1424, April 2013.

G. Gok and A. Grbic, “Printed Beam Shifting Slab Design with Tensor Transmission-

line Metamaterials”, IEEE Transactions on Antennas and Propagation, vol. 61, pp.

728-734, February 2013.

G. Gok and A. Grbic, “Homogenization of Tensor TL Metamaterials”, Metama-

terials, vol. 5, no 2-3, pp. 81-89, 2011.

G. Gok and A. Grbic, “Full-Wave Verification of Tensor Transmission-line Meta-

materials”, IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 48-51,

February 2010.

G. Gok and A. Grbic, “Tensor Transmission-Line Metamaterials”, IEEE Trans-

actions on Antennas and Propagation, vol. 58, pp. 1559-1566, May 2010.

Refereed Conference Publications

G. Gok and A. Grbic, “A printed Antenna Beam Former Implemented Using

Tensor Transmission-line Metamaterials”, accepted for presentation at IEEE Inter-

national Symposium on Antennas and Propagation, Memphis, TN, July 6-12, 2014.

A. Grbic and G. Gok, “Creating Field Profiles with Arbitrary Phase and Power

Distributions”, Antennas and Propagation (EuCAP), 2014 Proceedings of the Eight
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European Conference, Hague, Netherlands, April 6-11, 2014 (invited).

G. Gok and A. Grbic, “Controlling Phase and Power Flow with Electromagnetic

Metamaterials”, Fifth International Conference on Metamaterials, Photonics Crystals

and Plasmonics (META 14), Singapore, May 20-23, 2014 (invited).

A. Grbic and G. Gok, “Transformation Electromagnetics Designs Without a Coor-

dinate Transformation”, 21st International Conference on Applied Electromagnetics

and Communications, Dubrovnik, Croatia, October 14-16, 2013.

G. Gok and A. Grbic, “Controlling the Phase and Power Flow of Electromagnetic

Fields”, IEEE International Symposium on Antennas and Propagation, Orlando, FL,

July 7-13, 2013.

A. Grbic, G. Gok, M. F. Imani, A. M. Patel, C. Pfeiffer and M. Ettorre, “Meta-

material Surfaces for Near and Far-Field Applications”, Antennas and Propagation

(EuCAP), 2013 Proceedings of the Seventh European Conference, Gothenburg, Swe-

den, April 8-12 2013 (invited).

G. Gok and A. Grbic, “Alternative Material Parameters for Transformation Optics

Designs”, 6th International Conference on Advanced Electromagnetic Materials in

Microwaves and Optics (Metamaterials 2012), St. Petersburg, Russia, Sept. 1722

2012 (invited).

G. Gok and A. Grbic, “A beam Shifting Slab Implemented with Printed, Tensor

TL Metamaterials”, IEEE MTT-S International Microwave Symposium, Montreal,

Canada, June 17-22 2012.

G. Gok and A. Grbic, “Tensor Circuit Networks for Transformation Optics, 5th

International Conference on Advanced Electromagnetic Materials in Microwaves and

Optics (Metamaterials 2011), Barcelona Spain, Oct. 10-14 2011 (invited).

G. Gok and A. Grbic, “Tensor Transmission-Line Metamaterials and Their Ap-

plications,” Antennas and Propagation (EuCAP), 2011 Proceedings of the Fifth Eu-

ropean Conference, Rome, Italy, April 11-15 2011 (invited).
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A. Grbic and G. Gok, “Transformation Circuits,” Antennas and Propagation (Eu-

CAP), 2010 Proceedings of the Fourth European Conference, Barcelona, Spain, April,

12-16 2010 (invited).

A. Grbic, G. Gok, S. M. Rudolph, “Advances in Planar and Volumetric Metama-

terials”, 2010 ICECom Conference Proceedings, 20-23 Sept. 2010 (invited).

A. Grbic, G. Gok, “Tensor Metamaterials Based On Transmission-Line Networks”,

4th International Conference on Advanced Electromagnetic Materials in Microwaves

and Optics (Metamaterials 2010), Karlsruhe, Germany, Sept. 13-16 2010 (invited).

Conference Summaries

G. Gok and A. Grbic, “Tensor Transmission-Line Metamaterials”, USNC/URSI

National Radio Science Meeting, Toronto, ON, CA, July 11-17, 2010.

G. Gok and A. Grbic, “Tensor TLMetamaterials: Analysis and Design”, USNC/URSI

National Radio Science Meeting, Spokane, WA, July 3–8, 2011.
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Meeting, Chicago, IL, July 8-13, 2012.

Patent

A. Grbic and G. Gok, “Tensor Transmission - Line Metamaterials”, U.S. Patent
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APPENDIX A

Matched Medium Condition

Based on the observation of transformation electromagnetics designs, a condi-

tion on the determinant of the permeability tensor was assumed in Eq. (5.8). This

condition ensured that the transformed region remains impedance matched to its

surrounding medium under all plane-wave illuminations [63]. Here, this condition is

elaborated on. First, the condition on the permeability tensor of a transformation

electromagnetic device is analyzed. Then, the same condition is derived by consider-

ing the reflectionless transmission between two homogenous, magnetically anisotropic

media with a planar boundary (see Fig. A.1). In accordance with Chapter 5, a TMz

polarization is considered. So the relevant material parameters become a 2 × 2 per-

meability tensor and a permittivity scalar:

¯̄µ =

 µxx µxy

µyx µyy

 ϵ = ϵz. (A.1)

First, let us analyze the condition on the permeability tensor of a transformation elec-

tromagnetics device. The transformed material parameters (permittivity and perme-

ability) of a transformation electromagnetics design are given by well known formulae
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[36]

¯̄µ′ =
J ¯̄µoJ

T

|J |
, ¯̄ϵ′ =

J ¯̄ϵoJ
T

|J |
,

where J is the Jacobian matrix of the coordinate transformation equation, and (¯̄ϵo,

¯̄µo) are the permittivity and permeability of the background medium. Assuming

the background medium is free space, the relevant material parameters (A.1) can be

written explicitly in terms of the Jacobian matrix entries as

¯̄µ′ =
1

|J |

 J2
xx + J2

xy JxxJyx + JxyJyy

JxxJyx + JxyJyy J2
yx + J2

yy

 (A.2a)

ϵz =
1

|J |
(A.2b)

where

|J | = JxxJyy − JxyJyx

is the determinant of the Jacobian matrix.

The determinant of ¯̄µ in (A.2a) can be shown to be equal to the determinant of

the background medium, | ¯̄µo| = 1, independent of the Jacobian matrix entries, i.e.

coordinate transformation used. This condition is strictly related to the reflectionless

(impedance matched) property of the transformation electromagnetic devices under

all plane wave illumination as shown in [63].

To derive a similar condition, we analyze wave propagation at the interface of two

magnetically anisotropic media. Fig. A.1 shows two magnetically anisotropic media

that are seperated with a planar boundary normal to the x axis. The wave impedance

normal to the interface, ηx, and the wave number tangent to the interface, ky, must

be common to both media in order to satisfy the impedance matching (reflectionless

property) and Snell’s Law.
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Figure A.1: Two magnetically anisotropic media are separated by a planar interface
(dashed line) normal to the x axis. The plane wave propagation is re-
stricted to x− y plane and no variation of fields is assumed along the z
direction.

The two quantities, ηx and ky, are related through the medium’s material pa-

rameters. To find the relationship, we start by writing the dispersion equation of a

medium with material parameters in (A.1):

k
2

x

µxx

| ¯̄µ |
+ 2kxky

µxy

| ¯̄µ |
+ k

2

y

µyy

| ¯̄µ |
= ϵz. (A.3)

Then, using equation (5.4), the normalized wave impedance, ηx, can be written in

terms of normalized wave numbers (kx, ky) and permeability values:

1

ηx
= kx

µxx

| ¯̄µ |
+ ky

µxy

| ¯̄µ |
. (A.4)

Squaring both sides of equation (A.4) yields

1

η2x
= k

2

x

µ2
xx

| ¯̄µ |2
+ 2kxky

µxxµxy

| ¯̄µ |2
+ k

2

y

µ2
xy

| ¯̄µ |2
. (A.5)

Multiplying both sides of the dispersion equation (A.3) by µxx

| ¯̄µ| yields

k
2

x

µ2
xx

| ¯̄µ |2
+ 2kxky

µxyµxx

| ¯̄µ |2
+ k

2

y

µyyµxx

| ¯̄µ |2
=

ϵzµxx

| ¯̄µ |
. (A.6)
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Equation (A.6) can be rearranged as

k
2

x

µ2
xx

| ¯̄µ |2
+ 2kxky

µxyµxx

| ¯̄µ |2
=

ϵzµxx

| ¯̄µ |
− k

2

y

µyyµxx

| ¯̄µ |2
. (A.7)

The left hand side of equation (A.7) can be substituted into (A.5) to obtain

1

η2x
=

ϵzµxx

| ¯̄µ |
− k

2

y

µyyµxx

| ¯̄µ |2
+

µ2
xyk

2

y

| ¯̄µ |2

=
ϵzµxx

| ¯̄µ |
−

k
2

y

| ¯̄µ |
. (A.8)

Equation (A.8) can be rearranged to yield

( 1
ηx
)2

(
√

µxxϵz
| ¯̄µ| )2

+
(ky)

2

(
√
µxxϵz)2

= 1. (A.9)

Equation (A.9) defines a curve for a magnetically anisotropic medium with material

parameters given by (A.1). This curve can be used to find the necessary condition on

medium 1 to be perfectly matched to medium 2 (see Fig. A.1). If perfect impedance

matching between two media is desired, for all angle of incidence, the ky vs.
1
ηx

curves

for both medium must overlap. This ensures that for a given tangential wave number,

ky, both media have the same wave impedance normal to the interface: ηx. In short,

the following relations must hold between the material parameters of media on either

sides of the interface:

| ¯̄µ |1 = | ¯̄µ |2, (A.10)

(µxxϵz)1 = (µxxϵz)2. (A.11)

Equation (A.10) shows that the determinant of permeabilities must be same on both

sides of the interface. Equation (A.11) is satisfied if the media are matched for a
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single angle of incidence, while equation (A.10) ensures an impedance match for all

angles.
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APPENDIX B

Permittivity Optimization

The permittivity distribution in the transformation region was calculated assum-

ing a linearly tapered wave impedance ηx from boundary 1 to boundary 2. The

tapered impedance approach was used to impedance match the transformation re-

gion to the surrounding medium and reduce inter-cell reflections. Tapering the wave

impedance ηx to find the permittivity profile was a suitable approach, since power

flow was predominantly in the x direction for the examples considered. For cases

where the direction of power flow varies substantially within the transformation re-

gion, the permittivity profile can be found by minimizing inter-cell reflections using a

rigorous optimization method. In the optimization method, the wave impedances of

each unit cell are written in terms of ϵz using Eq. (5.6). From these wave impedances,

reflection coefficients Γx and Γy are defined between each unit cell and its neighbors

in the x and y directions of power flow:

Γx =
η′x − ηx
η′x + ηx

Γy =
η′y − ηy
η′y + ηy

. (B.1)

In (B.1), ηx and ηy are the normalized wave impedances of the unit cell under consid-

eration, while η′x and η′y are those of the neighboring cells along the x and y directions

152



εz0.1 2.9

1

2

34

(a)

0

0.25

0.50

0.75

1.00

0 30-10-20 10 20
y/d

-30

a
v

g
m

 2
S

x^
W (
)

TaperedIdeal Optimizationηx

(b)

0

0.25

0.50

0.75

1.00

0 30-10-20 10 20
y/d

-30

TaperedIdeal Optimization

º
E

z
( 

 )

ηx

(c)

Figure B.1: (a) Optimized permittivity distribution. (b) Power density and (c)
phase profiles along boundary 2 with permittivity distributions calculated
through tapered wave impedance assumption and optimization method.
Dashed lines denotes the ideal profiles.

of power flow. The optimum permittivity distribution is found by minimizing reflec-

tions between unit cells through an optimization process.

In the optimization, the wave impedances for each cell are calculated using Eq.

(5.6) for an initial permittivity distribution. The reflection coefficients between neigh-

boring unit cells are then found using (B.1). The reflection coefficients, Γx and Γy, are

weighted by the cos θs and sin θs functions, respectively, to account for the direction

of power flow. The squared magnitudes of all weighted reflection coefficients are then

summed. Using an optimization algorithm such as a genetic algorithm (GA), the

permittivity profile that minimizes this sum is found. It should be emphasized that

only one parameter ϵz is optimized per unit cell. Therefore, the problem scales only

linearly with the number of unit cells. Once the optimum permittivity of the unit
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cells is found, the permeability tensor is calculated using equation (5.9).

The performance of transformation regions with permittivity profiles calculated

using the tapered wave impedance approach and a GA optimization are compared.

The example of the Section 5.3.2 (see Fig. 5.6) is considered. Fig. 5.5(b) and Fig.

B1(a) show the permittivity profiles calculated using the tapered wave impedance

approach and a GA optimization, respectively. Fig. B1(b) and Fig. B1(c) plot the

power density and phase profiles at boundary 2 for the two cases. The output profiles

show close agreement, verifying that the tapered wave impedance approach provides

near optimal performance for the designs considered in Chapter 5.
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APPENDIX C

Linear Power Density Mapping

In the first four examples of Chapter 5, linear power flow is assumed through

the transformation region when mapping an input power density at boundary 1 to

a desired output power density at boundary 2. The mapping allows the Poynting

vector direction to be determined for each unit cell within the transformation region.

Here, this mapping technique is described in detail.

First, the incident power density along boundary 1 is computed. From it, the time-

averaged power (Pave) through boundary 1 is found. The power Pave is represented

by N points/dots along boundary 1. Each point represents an amount of power equal

to Ppoint = Pave/N . These points are distributed amongst unit cells along boundary

1 according to the time-averaged power flow (Pcell) through the edge of each unit cell

along boundary 1. Each Pcell is represented by Ncell = Pcell/Ppoint points, where Ncell

is rounded to closest integer value. The points corresponding to each unit cell are

uniformly distributed along each cell edge. In this way, the N points are positioned

along boundary 1 to represent the input power density profile. To ensure that the

power through boundary 1 and 2 is the same, N points are also positioned along

boundary 2. They are distributed according to the desired output power density

profile. The points on boundary 1 are then paired with those on boundary 2 using
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straight lines, starting with points closest to one of the side boundaries (boundaries

3 or 4). The lines connecting the paired points represent the direction of power flow

within the transformation region. The direction of the Poynting vector S⃗ within each

unit cell is given by the line closest to the center of each cell.

Now, the power flow for the example of Section 5.3.3 is revisited. In this example,

a transformation region is designed that produces a triangular power density and

uniform phase distribution along boundary 2 (see Fig. 5.8). The time-averaged

power through boundary 1 is calculated to be Pave = 103.2 mW/m for a 0.260 mW/m

cylindrical source. The power through boundary 1 is represented by N = 7200 points.

Therefore, each point represents an amount of power equal to Ppoint = 0.014 mW/m.

Fig. C1(a) shows the time-averaged power through individual unit cells (Pcell) along

boundary 1, and the representative number of points per cell (Ncell). 7200 points are

also distributed along boundary 2 to represent the triangular output power density.

Fig. C1(b) shows the time-averaged power through individual unit cells (Pcell) along

boundary 2, and the representative number of points per cell (Ncell). Fig. C1(c)

shows the distribution of points for a few unit cells along boundaries 1 and 2. The

straight lines pairing the points on the two boundaries are also shown. The direction

of the Poynting vector S⃗ within each unit cell is given by the line closest to the center

of each cell.

156



0

1.03

2.06

3.09

4.12 288

216

144

72

0
0-10-20 10 20

(m
W
/m

)

y/d
-30 30

P c
e
ll

N
ce
ll

(a)

0

1.68

2.52

3.36

0-10-20 10 20

(m
W
/m

)

y/d

236

177

118

0

0.84 59

4.12

-30 30

P c
e
ll

N
ce
ll

(b)

30

29

28

27
y/d

Boundary 4

26

..
.

0 1 2 3 4 5 6 7 8 9 10

Boundary 3

x/d

34Ncell =

32Ncell =

30Ncell = 4Ncell =

12Ncell =

20Ncell =

28Ncell =

..
.

(c)

Figure C.1: (a) Time-averaged power through the unit cell edges along boundary 1,
and the corresponding number of points per unit cell. (b) Time-averaged
power through the unit cell edges along boundary 2 for a triangular power
density, and the corresponding number of points per unit cell. (c) The
distribution of points for a few cells along boundaries 1 and 2. The
straight lines pairing the points on the two boundaries are also shown.
The direction of the Poynting vector S⃗ within each unit cell is given by
the line closest to the center of each cell..
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