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ABSTRACT 

	
  
	
  

AN OBJECT-BASED APPROACH FOR QUANTIFICATION OF GCM BIASES IN 
THE SIMULATION OF OROGRAPHIC PRECIPITATION 

 
by 
 

Muharrem Soner Yorgun 
 

Chair: Richard B. Rood  

 

An object-based evaluation method to identify and quantify biases of General 

Circulation Models (GCMs) is introduced. The focus is on how orographic precipitation 

is simulated by the Eulerian Spectral Transform and the finite volume (FV) dynamical 

cores within the National Center of Atmospheric Research (NCAR) Community Earth 

System Model (CESM) with its Community Atmosphere Model (CAM). The “local” 

biases introduced by dynamical cores and how they evolve with varying model resolution 

are quantified by looking at simulated precipitation over the Coast Range and the Sierra 

Nevada mountains on the West Coast of North America.  

 

The first step of the object-based method involves identification of orographic 

precipitation features (study features) simulated differently by the CAM Eulerian Spectral 

Transform and CAM FV dynamical cores. We examined Atmospheric Model 

Intercomparison Project (AMIP) model simulations together with Global Precipitation 

Climatology Center (GPCC) observations to select the study features. There are 

significant differences of orographic precipitation simulated over local, complex 

topography. CAM FV resembled the observed spatial pattern of precipitation better than 

the CAM Eulerian Spectral Transform scheme. As the second step of the method, 

idealized experiments of orographic precipitation were conducted running the 

Community Atmosphere Model (CAM) coupled with a simplified physics 

parameterization to understand the causes of this difference between the CAM FV and 
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the CAM Eulerian Spectral Transform dynamical cores.  Initially, zonal flow produced 

waves as the mountains perturbed the flow.  Three different mechanisms of precipitation 

were isolated due to (a) stable upslope ascent, (b) local surface fluxes and moisture 

transport, and (c) resolved downstream waves. The application of spectral filtering to 

topography is shown to have a large effect on spectral model simulation. The removal of 

filtering improved the results when the scales of the topography (thus the scales of 

precipitation features) were resolvable. However, it reduced the simulation capability of 

the spectral dynamical core (introducing Gibbs oscillations) when the scales were 

smaller, leading to unrealistic results. 

 

The idealized experiments reproduced the spatial characteristics of FV and 

spectral dynamical cores that were observed in the AMIP simulations. This led to better 

understanding of orographic precipitation features allowing better identification and 

isolation of features as “objects” using pattern recognition methods such as clustering and 

classification trees. The results of the object-based evaluation method revealed 

quantitative signatures of how the CAM Eulerian Spectral Transform model in AMIP 

simulations, unlike the CAM FV model, failed to reproduce the precipitation structure 

observed in the GPCC observations. It is shown that the CAM Eulerian Spectral 

Transform model simulations become more unrealistic as the resolvable scales of the 

simulated precipitation gets smaller, and the amount of simulated precipitation gets 

larger. The reasons of this problematic representation of orographic precipitation by the 

CAM Eulerian Spectral Transform dynamical core  (i.e. bias) can be summarized in three 

categories: (a) bias due to spectral filtering of the topography, (b) bias in small-scale 

phenomena due to spectral transform method, (c) grid scale variability (noise) due to 

spectral transform method. The results also indicated stronger sensitivity of the CAM 

Eulerian Spectral Transform dynamical core to model resolution. 
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CHAPTER 1: INTRODUCTION 
	
  
 

All of the state-of-the-art general circulation models (GCMs) have systematic errors 

in their simulation of the present climate. These systematic errors, i.e. biases, are 

sometimes quite resilient to putative improvements in model formulation. It has proved 

difficult to isolate cause and effect; that is, linking model formulation or model 

components to the presence or absence of a particular bias. For example, a common 

experimental approach is to change some model component, for instance the convective 

parameterization or dynamical core, and evaluate the impact of the change on the global 

climate. Improvements are sometimes realized and other times they are not. Often there is 

an ambiguous mix of results.  

 

This study is motivated by the hypothesis that there is a subset of the biases in climate 

simulations that are at the mechanistic level; that is, the bias is the manifestation of a poor 

representation of quasi-local mechanisms rather that the residue of global inadequacies 

of, for instance, model parameterizations. There are two main objectives of this study: 

 

• Identification and quantification of local biases in GCM simulations. 

Determination of structural GCM components that lead to these biases and 

examining the evolution of these biases with changing resolution 

• Development of an object-based verification framework to be used in bias 

quantification that is applicable to a broad range of problems involving 

climate and numerical weather prediction (NWP) models. 

  

The second objective involves development of a quantitative method to validate the 

“meteorological realism” of climate models. Deterministic weather predictions are often 

validated with feature-by-feature comparison.  Probabilistic weather forecasts and climate 

simulations are evaluated with statistical methods. Model evaluation strategies that 
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identify similar “objects” – coherent systems with an associated set of measurable 

parameters (Douglass 2000) – are developed within the scope of the study.  This makes it 

possible to evaluate processes in models without needing to reproduce the time and 

location of, for example, a particular observed cloud system. Process- and object-based 

evaluation preserves information in the observations by avoiding the need for extensive 

spatial and temporal averaging. Of particular interest in this research is the interaction of 

the dynamical core and the physical parameterizations, and how this interaction is 

affected as resolution is increased. In this context, the focus is on the representation of the 

orographic precipitation by spectral and finite volume dynamical cores. (Detailed 

discussion of dynamical cores is given in section 1.1). Candidate phenomena to be 

analyzed would be expected to have identifiable underlying fluid-dynamical features, 

which organize their spatial structure and correlated behavior between different 

parameters. The chosen phenomenon is the wintertime western United States orographic 

precipitation since it is relatively easy to isolate and there exists sufficient observational 

data for that area. The bias quantification of GCMs in their simulation of orographic 

precipitation is a complex problem. Therefore, this problem is broken down into simpler 

parts that will allow efficient scientific examination. The findings from each part of the 

problem are then linked back to the broader definitions of GCMs and their simulation of 

local processes to reconstruct scientific evidence of model biases and their origins.   

 

 The next section (1.1) gives information about the structure of GCMs with a specific 

focus on dynamical cores. Section 1.2 discusses the theory of orographic precipitation 

and the previous studies about its diagnostic and prognostic modeling. The notion of 

meteorological realism for model evaluation purposes is introduced in section 1.3. The 

general details of object-based analysis and the approach of this study using such analysis 

are also explained in section 1.3. Sections 2, 3, and 4 contain the discussion of the results 

of the approach and the conclusions are given in section 5.      
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1.1. General Circulation Models (GCMs) 

 

 

GCMs are composed of multiple components that are connected together yielding a 

complex system. A climate model is composed of components such as a sea ice model, a 

land surface model, an ice sheet model, an ocean model and an atmospheric model, to 

simulate processes that affect the climate (e.g., cloud macro and microphysics, tracer 

transport etc.). The clouds component can be composed of other subcomponents that 

represent the different phases of water, aerosols, black carbon etc. Components at all 

levels need to communicate with each other through a coupler (Rood 2011). Figure 1 

shows the Earth System Modeling Framework (ESMF) component architecture of the 

Goddard Earth Observing System, version 5 (GEOS-5) atmospheric model (Rienecker et 

al. 2008). From the top down, the structure shows the coupling of the atmospheric 

general circulation model (‘agcm’), with the stored, digital ‘history’ files used in model 

initialization, diagnostics and application. The ‘agcm’ is composed of ‘dynamics’ and 

‘physics’ combined with a coupler. 

 

 
Figure 1: Component architecture of the GEOS-5 atmosphere model.  
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The advection and part of the sub-scale mixing algorithms are often identified as 

‘dynamics’ (‘fvcore’ in Figure 1) and all of the other algorithms are identified as 

‘physics’. There is no standard definition of the term ‘dynamical core’ (in short ’dycore’) 

(Rood 2011). Williamson (2007) defines the dynamical core to be ‘the resolved fluid 

flow component of the model’. Thuburn (2008) used: ‘the formulation of a numerical 

model of the atmosphere is usually considered to be made up of a dynamical core, and 

some parameterizations. Roughly speaking, the dynamical core solves the governing fluid 

and thermodynamic equations on resolved scales, while the parameterizations represent 

subgrid scale processes and other processes not included in the dynamical core such as 

radiative transfer’. In their simplest expressions, dynamical cores are generally include 

the following (Rood 2011): 

 

• The resolved advection in the horizontal plane 

• The resolved vertical advection 

• Unresolved subscale transport 

• A portfolio of filters and fixers that accommodate errors related to both the 

numerical technique and the characteristics of the underlying grid. 

 

GCMs employ various dynamical cores for numerical modeling of advection. These 

dynamical cores include schemes such as quasi-Lagrangian, semi-Lagrangian, spectral, 

finite element, finite volume etc.  This study focuses on the Eulerian spectral transform 

(EUL) and finite volume dynamical core components of the National Center for 

Atmospheric Research (NCAR) Community Atmosphere Model (CAM) version 3.0 

(Collins et al. 2006), and version 5.0 (Neale et al. 2010). 
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1.1.1. CAM Eulerian Spectral Transform (EUL) 

 

 

Spectral transform model schemes have been widely used in general circulation 

models since they can simulate the waveform behavior – the form which most of the 

large-scale features in the atmosphere is like – less expensively by using transformations 

between the gridded data and the waveform.  Many wave-like features of the atmosphere 

are best simulated with a wave formulation. In spectral transform models, global basis 

functions are used to describe the horizontal spatial structure of the variables and hence 

information from both upstream and downstream influences a particular point in space. 

The vertical discretization in the CAM Eulerian Spectral Transform model is achieved 

via finite differences in a hybrid coordinate system (Neale et al. 2010). 

  

The computational flow of a spectral GCM proceeds as the data fields are 

transformed to grid space at every time step via fast Fourier transforms and Gaussian 

quadrature (a form of numerical integration) and back to spectral space via Legendre 

transforms and Fourier transforms (McGuffie and Henderson-Sellers 2005). However, as 

these spectral harmonics are susceptible to Gibbs oscillations (erroneous simulations that 

arise when the spectral projection is used to represent fields with sharp spatial gradients 

or “discontinuities (Navarra et al. 1994)), spectral models are prone to produce unrealistic 

rippling, especially when dealing with sharp gradients, i.e. orographic precipitation, 

which is the subject of this study. Models employ different forms of dissipation/diffusion 

to mitigate rippling as well as other numerical noise generated by dispersion errors or 

computational modes. Explicit diffusion of varying degrees (such as second, fourth or 

higher order) is widely used to remove Gibbs oscillations in spectral models 

(Jablonowski and Williamson 2011). Relevant to our study, models also apply a terrain 

filter, which is an adoption of a monotonic filter (Bala et al. 2008b) to get a smoother 

topography, thus damping the gradients to reduce Gibbs oscillations. These filters, being 
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useful in removing noise, create a tradeoff between numerical artifacts, accuracy and 

physical realism.  

 

1.1.2. CAM Finite Volume (FV) 

 

 

Lin (2004) presented a multidimensional flux-form semi-Lagrangian transport 

scheme called the finite volume (FV) method, which is a generalization of 1D FV 

schemes to multi-dimensions combined with an efficient algorithm to reduce the stringent 

time-step stability requirements. The algorithm aimed to conserve mass without a 

posteriori restoration, compute fluxes based on the subgrid distribution in the upwind 

direction, generate no new maxima or minima, preserve tracer correlations, and be 

computationally efficient in spherical geometry (Lin and Rood 1996; Lin and Rood 

1997). This algorithm eliminated the need for directional splitting which produce 

unacceptably large errors near the poles where the splitting errors are greatly amplified 

by the convergence of the meridians (Lin and Rood 1996). This scheme also solved the 

Pole-Courant problem, which arises from the close spacing of grid points towards the 

poles requiring extremely small time steps to maintain bounded Courant numbers for 

typical finite difference techniques. This problem was solved via the physical 

consideration of the contribution to fluxes from upstream volumes as far away as the 

Courant number indicated. The resulting multidimensional scheme was free of the Gibbs 

oscillations (with the optional monotonicity constraint), mass conserving, and stable for 

Courant number greater than one in the longitudinal direction. In addition to this 

progression, Lin and Rood (1997) adapted this scheme to the shallow water dynamical 

framework, which provided the consistent transport of the mass, the absolute vorticity, 

and the potential vorticity. The vertical discretization is Lagrangian with a conservative 

re-mapping, which essentially makes it quasi-Lagrangian (Lin 2004). Rasch et al. (2006) 

compared the tracer transport properties of the Eulerian spectral transform , semi-

Lagrangian spectral transform, and FV numerical methods in CAM 3.0. They found that 
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the FV core is, unlike the Eulerian and semi-Lagrangian spectral transform cores, 

conservative and less diffusive. It also accurately maintains the nonlinear relationships 

(required by thermodynamic and mass conservation constraint) among conserved and 

non-conserved variables that are influenced by adiabatic and non-adiabatic processes. 

 

The simulation of orographic precipitation by the Eulerian spectral transform and FV 

dynamical cores involves differences due to the numerical schemes discussed above. The 

next section discusses the physics of orographic precipitation and its modeling by 

diagnostic and prognostic (e.g., GCMs) models. Previous studies about the simulation of 

orographic precipitation by the spectral transform and the FV dynamical cores are also 

discussed.   

 

1.2. Orographic Precipitation 

 

 

Precipitation is a crucial element of the climate system since it has a paramount 

importance for fields such as agriculture, natural hazard assessment, water resource 

management, etc. The spatial and temporal changes in distribution of global precipitation 

are important thus the accurate simulation of precipitation is a high priority. However; 

due to the discontinuous and highly complex nature of precipitation in time and space 

precipitation is a challenging parameter for climate models to simulate. This challenge 

mostly arises due to the fact that the majority of precipitation occurs at scales less than 

the grid resolution GCMs. Validating climate models’ performance using precipitation is 

an exacting test of a model’s fidelity to the real world (i.e. meteorological realism) (Airey 

and Hulme 1995).  

 

Orographic precipitation is a complex phenomenon due to the physical mechanisms 

involved, encompassing fluid dynamics, thermodynamics, and micro-scale cloud 

processes, as well as being dependent on the larger-scale patterns of the atmospheric 
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general circulation (Roe 2005). In addition to the problematic representation of the cloud 

microphysics by GCM’s due to the fine scale of occurrence of these processes, orography 

introduces complexity regarding the dynamics of the flow. Figure 2 shows the schematic 

illustrations of different mechanisms of orographic precipitation. 

 

 
Figure 2: Schematic illustrations of different mechanisms of orographic precipitation. 

(a) Stable upslope ascent, (b) partial blocking of the impinging air mass, (c) down valley 
flow induced by evaporative cooling, (d) lee-side convergence, (e) convection triggered 

by solar heating, (f) convection owing to mechanical lifting above level of free 
convection, and (g) seeder-feeder mechanism (Roe 2005).  

 

The stable upslope ascend shown in Figure 2a is the most general and straightforward 

mechanism of orographic precipitation. This mechanism is the result of air impinging 

onto the windward face of the mountain and lifting and cooling of the air column leading 

to condensation and precipitation. The air mass undergoes warming and drying due to 

descent on the leeward side of the mountain, which suppresses the precipitation and 

causes the “mountain shadow” over the leeward area. This mechanism is a good first-

order description (e.g., Smith 2003) of the precipitation process at the scale of large mid-
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latitude mountain ranges. Another mechanism is due to blockage of the flow (Figure 2b), 

which can be observed when the atmosphere is stable, or the flow is weak thus leading to 

stagnation or diversion of the flow along the windward flank of the mountain. This 

blocked air can cause ascent further windward of the range and can also enhance lifting 

(and hence precipitation) that does occur. The structure of the mountains can also affect 

the flow (Figure 2c) characteristics, which in turn raises the questions: how do GCMs 

represent the orography? What is the effect of the structural for of the orography on the 

representation of precipitation and how does it change with increasing resolution? The 

flow also can be diverted around the mountain in the case of narrow ranges, and create 

precipitation where a mountain shadow could be expected (Figure 2d). Triggering of 

unstable convection (Banta 1990) is another possible response of the atmosphere to 

orography. The air mass that undergoes mechanical lifting may rise above the level at 

which it becomes less dense than its surrounding (i.e. the free convection level). This will 

lead to a sustained rise of the air mass and lead to precipitation (Figure 2e). Heating can 

occur on mountain slopes facing the sun, which can cause convection and precipitation 

(Figure 2f). A final mechanism that is commonly involved is the “seeder-feeder” 

mechanism (Bergeron 1968) (Figure 2g). The seeder-feeder mechanism generally 

involves a large-scale precipitating cloud (seeder) at higher levels that is undisturbed by 

the orography which precipitates and feeds another low-level cloud over topography 

(feeder).  

 

The diagnostic models that aim to describe orographic precipitation rely on the fact 

that the amount of precipitation tends to increase with the steeper windward slopes as a 

result of enhanced lifting and tends to decrease with elevation owing to the Clausius-

Clapeyron effect (Alpert 1986; Barros and Lettenmaier 1994; Sanberg and Oerlemans 

1983; Smith 1979). A highly adaptable orographic precipitation model was developed by 

Smith and Barstad (2004) in which they incorporated a linear atmospheric response. One 

of the advantages of this model is its efficiency of the calculation over complex terrain. 

Also, cloud microphysics are represented by characteristic delay timescales for 
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hydrometeor growth and fallout. Vertically integrated steady-state governing equations 

for condensed water were solved using Fourier transform techniques. However the model 

also has its caveats – the model includes crude representations of the physical processes 

that provide the proper weights to different scales and there are strong assumptions in the 

model formulation (such as linear steady wave dynamics and near saturation conditions). 

The model also treated only the vertically integrated condensed water and is unsuitable 

for unstable atmospheres. Roe and Baker (2006) developed an extension of the classic 

upslope model, which incorporates an explicit representation in the vertical dimension, 

represents the finite growth of hydrometeors, their downwind advection by the prevailing 

wind, and also allows for evaporation. The caveats of this model are – the analytical 

solution was obtainable only for a simplified mountain geometry and many other 

processes that have been shown to be important in orographic precipitation (such as 

blocking, modification of the atmospheric flow by latent heating, convective instability, 

evaporative cooling, valley circulations, and multiphase clouds) are omitted. However the 

results are especially informative for parameter values which are broadly consistent with 

case studies of orographic precipitation (e.g., Sinclair 1994; Smith and Barstad 2004). 

Figure 3 shows the precipitation pattern for standard choices of parameters i.e. mountain 

height = 2.5 km, mountain width = 60 km, wind speed = 10 m/s, terminal fall speed = 4 

m/s evaporation time scale = 2000 sec, growth time = 1000 sec, moisture height scale = 3 

km. The pattern shown in Figure 3 is consistent with the typical pattern for orographic 

precipitation on large mountain ranges. 
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Figure 3: Precipitation pattern for a standard choice of parameters represented by the 

analytical model of Roe and Baker (2006). 
 

There are other similar models which focus on the seeder-feeder mechanism and 

parameterize the wash-out of droplets (or ice) from the orographic cloud given an 

imposed large-scale precipitation rate (e.g., Bader and Roach 1977; Carruthers and 

Choularton 1983; Choularton and Perry 1986) and numerical models that, to varying 

degrees of complexity, solve for the topographically modified atmospheric flow from the 

large-scale circulation and include formulations of precipitation formation (e.g, Barros 

and Lettenmaier 1993; Sinclair 1994).  

 

Diagnostic models are inherently unable to reflect the complexity of the observed 

transient interactions (mainly due to crude representations of topography), which can 

involve processes like convection, blocking, and valley circulations. Consequently, we 

need prognostic models (e.g., GCMs) that will operate in high resolution to include such 

physical phenomena for better representation of orographic precipitation. There have also 

been numerous studies about prognostic (numerical) modeling of orographic 
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precipitation, which includes solving equations of momentum, continuity and energy to 

simulate moisture advection and precipitation with connection to physical 

parameterizations. One example is Jiang and Smith (2003), who studied orographic 

precipitation by analyzing the sensitivity of numerical simulations to variations in 

mountain height, width and wind speed with emphasis on upslope lifting over isolated 

mountains in cold climates. They used a mesoscale model which is a 3D non-hydrostatic 

model solving the full non-linear momentum, continuity, and thermodynamic equations 

at discrete grid points. Colle (2007) performed 2D numerical simulations with the fifth 

generation Pennsylvania State University-National Center for Atmospheric research 

(PSU-NCAR) Mesoscale Model (MM5) to study the impact of multiple mountain ridges 

on the distribution of precipitation and the simulated microphysics. Miglietta and 

Rotunno (2009) performed numerical simulations of conditionally unstable flows on 

mesoscale mountains using a 3D numerical model described in Bryan and Fritsch (2002). 

The model is designed with particular emphasis on cloud-scale motions and processes, 

and it was run on high resolution (250 m). They performed the simulations using 

different values for parameters such as wind speed, mountain height, and mountain half 

widths. They found that the maximum rainfall rate mainly depends on the ratio of 

mountain height to the level of free convection, the ridge aspect ratio, and a parameter 

that measures the ratio of advective to convective time scales.  

 

As indicated in the previous section, this study focuses on the representation of 

orographic precipitation by CAM Eulerian Spectral Transform and CAM FV dynamical 

cores. Rasch et al. (2006) compared the tracer transport properties of the Eulerian spectral 

transform semi-Lagrangian, and FV numerical methods in CAM3 within the Community 

Climate System Model (CCSM) environment. They found that the FV core is, unlike the 

Eulerian spectral transform and semi-Lagrangian, conservative and less diffusive, and 

more accurately maintains the nonlinear relationships (required by thermodynamic and 

mass conservation constraint) among conserved and non-conserved variables that are 

influenced by adiabatic and diabatic processes. The relationship between potential 
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temperature to temperature and pressure is an example of such nonlinear relationship. 

Bala et al. (2008b) investigated the sensitivity of long climate simulations to the CAM 

Eulerian Spectral Transform and CAM FV dycores and they also analyzed the 

representation of orographic precipitation by these two dycores. They revealed the 

positive impact of the CAM FV dynamical core on local processes, especially, the pattern 

of continental precipitation. Although they found that CAM FV reduced the wet biases in 

the central Pacific and in the South Pacific convergence zone, the regional land 

precipitation deficits over the southeast United States, Amazonia, and Southeast Asia, 

and the excess over central Africa, northern India, Australia, and the western United 

States (Collins et al. 2006) persisted. Bala et al. (2008a) investigated the realism of both 

the CAM Eulerian Spectral Transform and the CAM FV precipitation and showed that 

there are significant differences between two simulations for the western United States in 

January, where precipitation is dominated by synoptic-scale orographic effects. They 

concluded that the wet-dry contrast important for regional water resources is better 

represented with the CAM FV method since they showed that the smaller precipitation 

features, associated with the Cascades and the Rocky Mountains in the northwest US, 

were simulated in CAM FV at 1 degree resolution. These features were non-existent for 

the CAM Eulerian Spectral Transform model, even if the resolution was increased to as 

high as T239 spectral truncation (Iorio et al. 2004).  
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Figure 4: July mean precipitation rate difference between the CAM Eulerian Spectral 
Transform and CAM FV simulations. The ellipse indicates the Andes mountain regions 

where a clear difference between CAM EUL and CAM FV orographic precipitation 
exists.  

 

Figure 4 shows the 1991 July mean precipitation rate difference between the CAM 

EUL T85 and CAM FV 1 degree simulations over the South American Andes. Over the 

mountain ranges the difference is negative meaning that the CAM FV model predicts 

higher values in that region, while EUL spreads precipitation over a wider range in the 

east-west direction, thus over-representing the precipitation amount where it should be 

less. This difference over the mountain is due to the high peak precipitation simulated by 

CAM FV as a result of orographic lifting. This upslope mechanism has been confirmed 

as the most typical cause of orographic precipitation by previous studies (Jiang and Smith 

2003; Roe 2005; Roe and Baker 2006) as shown in Figure 3. Williamson and Rasch 

(1994) proposed the following mechanism for the over-representation of precipitation in 

spectral transform models:  (1) one fundamental disadvantage of the spectral models is 

that they create negative values for tracers (such as water vapor), thus a negative filler is 

required to obtain realistic results. The negative values in a region are filled to zero, 
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which can result in an increase in the local area average; (2) the spectral advection 

(truncation) then re-introduces oscillations with positive values overshooting local 

saturation, and zero values again becoming negative; (3) the supersaturated areas are then 

returned to saturation through stable condensation. The process is then repeated. This 

mechanism provides a path for computational transport into regions of small water vapor 

and then condensation.  

 

The results of the previous studies suggest that the formulation of the dynamical core 

can have a direct effect on the representation of processes that are normally viewed as 

controlled by the physical parameterizations, and it is the local details of the interaction 

of the synoptic waves and topography which are important to the morphology of 

precipitation. We aim to investigate the representations of such features of large-scale, 

topographically enhanced precipitation and thus the realism of different models. We 

introduce the concept of “meteorological realism” that is, do local representations of 

large-scale phenomena by GCMs look like the observations? The next section discusses 

the essence of such concept and previous studies about the validation of GCMs in order 

to check their realism. 

 

 

1.3. Meteorological Realism: Connecting Theory, Observations and Simulations 

 

 

Many aspects of climatology and meteorology involve the need to assess the 

differences between model-generated spatial fields and/or to compare model and 

observed fields. Gates (1992) states that a comprehensive atmospheric model validation 

program includes examination of not only the mean and variance, but of the complete 

frequency distribution. Moreover, in addition to the primary dynamical and physical 

variables, the derived quantities associated with fluxes and processes and the occurrence 

of specific events should also be evaluated. These assessments are essential to validations 
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of GCMs, because to improve such models, the reasons of biases should be discovered. 

Airey and Hulme (1995) state two ways to achieve this goal. First is to evaluate versions 

of the same GCM where just one change to the model has been made between versions. 

However this approach is problematic since more than one change is made from one 

generation of a model to another, thus it is hard to isolate the real source of the difference 

between two versions. Therefore, it is often more practical to use a second method where 

observed and modeled fields are compared. This second approach is what we base our 

notion of meteorological realism on. 

 

Meteorological realism combines our theory-based mechanistic understanding of a 

meteorological feature, with weather-scale observations describing the feature, and the 

morphology of how models represent the feature. To introduce this notion, we look at the 

21-year (1979-2000) January mean precipitation of two configurations of the Community 

Atmosphere Model (Bala et al. 2008b) over our study domain (Figure 6). Our study 

domain (Figure 5) is the North American West Coast (20-65 N, 200-260 W) and we 

specifically focus on the topography of the Coast Range and the Sierra Nevada (red 

rectangle in Figure 5). The highest point in the area is Mount Whitney in the Sierra 

Nevada with an elevation of 4,421 m and the average width of the mountains is 105 km 

(including the valley between the mountains).  
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Figure 5: The study domain (North American West Coast 20-65 N, 200-260 W, left) and 
California showing the Coast Range, the Central Valley and Sierra Nevada Mountains 

(right). 
 

The configurations of the model differ by the dynamical core with one configuration 

using a CAM FV dynamical core and the other using a CAM Eulerian Spectral 

Transform dynamical core.  
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Figure 6: 1979-2000 long-term mean precipitation (mm/day) plots of Global Precipitation 
Climatology Centre (GPCC-observations) (left), FV 0.5 degrees model (middle) and Eulerian 

Spectral T170 model (right) run with CAM3 (Bala et. al., 2008). 
 

The CAM FV model and GPCC observations in Figure 6 have ~0.5-degrees 

horizontal resolution and CAM Eulerian Spectral Transform	
  model has T170 (~0.7-

degrees) triangular truncation. The AMIP runs for the CAM Eulerian Spectral Transform 

model produced relatively less precipitation on the North American West Coast when 

compared to the CAM FV and the GPCC observations. Therefore, the color scale of the 

CAM Eulerian Spectral Transform model plot is reduced in order to show the structure 

and the spatial orientation of the precipitation features better. The observations in Figure 

6 are limited to land. The observed precipitation is concentrated on the coastline, and 

closely linked to the mountain ranges on the western edge of the continent. Examination 

of the observations shows similarities with the simple description of orographic 

precipitation in Figure 3. The rain is on the windward side of the mountains, associated 

with the moisture flux from the west. To the eastward (leeward) side of the mountains 

there is a rain shadow. The rain shadow is observed in both the Central Valley of 

California and to the east of the Sierra Nevada.  In much of the western US, the land to 

the east of the mountains is semi-arid or desert. 

 

Comparing the model simulations in Figure 6, there are qualitative differences. Both 

simulations show precipitation near the coast. The CAM Eulerian Spectral Transform 

simulation is spread out spatially (similar to what is observed in Figure 4), notably in the 

east-west direction. Focusing on the area inside of the white circle the observations show 

a distinct line of precipitation, which aligns with the westward side of the Sierra Nevada. 

This is reproduced in the CAM FV simulation, but is less distinct in the CAM Eulerian 

Spectral Transform dynamical core. To the east of the Sierra Nevada, the observations 

and CAM FV simulation are drier than the CAM Eulerian Spectral Transform 

simulation. 
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If we examine orographic precipitation at smaller scales (Barros et al. 2004) we find 

organized structure on a finer scale. There are sensitivities due to the structure of the 

mountains, for example, moisture flux convergence/divergence, small-scale wind 

circulation, and different convection characteristics at different locations. These features 

aggregate to form the features that we observe in the larger scale. Consequently, in order 

to verify meteorological realism, we need to recognize these processes at different scales 

and examine how models represent these scales as spatial resolution increases. The 

presence of small-scale structure in weather observations provides powerful information 

on model performance that is both quantitative and qualitative. For example, in Figure 6 

the structure of the precipitation in the FV model aligns with the underlying topography 

in a way similar to the observations and appears “more realistic.” We strive to bring 

quantitative descriptions to this realism, and how it changes as a function of resolution. 

 

There are a number of phenomena that numerical schemes represent with distinct 

visual differences. Fronts and rain bands in hurricanes are examples, where numerical 

schemes designed to preserve strong gradients, like the FV scheme, make an obvious 

difference. Measures of fit, such as comparisons with observations of mean and variance, 

may not distinguish these qualitative measures of realism with robustness. We recognize 

some attributes that describe meteorological realism. First, there is consistency with 

heuristics, e.g. Figures 2 and 3, which are often at the foundation of the intuition 

developed by weather forecasters. Second, there is the notion that rather than the 

simulation simply comparing well with, for example, the mean cell value of the 

observations, the simulation is a composite of smaller scale processes as is the case in 

nature. 

 

With a focus on features, which we will define as objects, such as the precipitation 

field in Figure 6, fronts, rain bands, clouds in deep convection etc. (Xu et al. 2005), and 

the recognition that these are composed of clusters of small-scale processes, we assert 

that we can develop strategies to bridge the evaluation of weather and climate models. 
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These features are “weather,” and weather features are represented in climate models.  

The dynamics of the weather features organize the flow and, hence, precipitation. A focus 

of these as objects and how the objects relate to simulated and observed underlying 

structure allows us to look at like features in models and observations and supplements 

the grid-level comparisons (Gates et al. 1999; Notaro et al. 2007; Preisendorfer and 

Barnett 1983; Santer and Wigley 1990; Santer et al. 2009) that are exemplified by many 

forecast evaluation techniques. The next section gives general information about object-

based analysis, the previous studies about its application on weather and climate 

modeling (Section 1.3.1). Our object-based approach to the problem of bias 

quantification for GCMs is detailed in section 1.3.2. 

 

1.3.1. Object-based Analysis 

 

 

Douglass (2000) defines an object as a cohesive entity that has attributes, behavior, 

and (optionally) state. Objects may represent real world entities (sensors, engines etc.), 

purely conceptual entities (bank accounts, marriages etc.), or they can be visuals 

(histograms, circles etc.). For example, a real world entity might be a sensor that can 

detect and report both a linear value and its rate of change, so the sensor contains two 

attributes: the monitored sensor value and its computed rate of change. The object state 

consists of the last acquired/computed values and the object behavior includes actions 

such as acquisition, reporting, enabling, disabling. In our study, an object can be viewed 

as a visual entity i.e., the precipitation features. In an object-based analysis, the various 

concepts inherent in the various domains of concerns are identified, along with their 

relations to each other. There are two primary aspects of object-based analysis: structural 

and behavioral. 
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• Object structural analysis identifies the key abstractions of the application 

that are required for correctness, as well as the relation that links them 

together. 

• Object behavioral analysis identifies how the key abstractions behave in 

response to environmental and internal stimuli. 

As explained in the meteorological realism section, the effect of internal and 

environmental stimuli (i.e. the underlying physics of precipitation and the effect of 

topography) should be incorporated as some sort of an object behavioral analysis in 

model verification. 

 

Object-based techniques are relatively scarce in the climate model verification studies 

(Posselt et al. 2012; Skok et al. 2013); however they have been used in the field of 

weather prediction. These techniques aim to fit the predictions to the observations, and 

the measure of this fit indicates how well the forecasts represent the observations 

(Gilleland 2013; Gilleland et al. 2009).  Next we review the important studies among the 

object-based studies of weather forecast verification as they can be easily linked to an 

object-based approach regarding GCM verification. 

 

Distortion representation of forecast errors (Hoffman et al. 1995) is accepted as a 

landmark study since it is an important step towards an object-based verification 

approach. In its simplest form, the approach of Hoffman et al. (1995) decomposes the 

forecast error into a part attributable to displacement errors and a residual. They define 

displacement as a smooth transformation of a meteorological field without any 

amplification (a smooth translation being any combination of translation, stretching, and 

rotation without tearing). Errors due to amplification can also be included as large-scale 

errors like displacement. The idea of the study is that the removal of these large-scale 

errors from the total forecast error will lead to the remaining residual errors being much 

closer to the “ideal”. In mathematical terms, if 𝑋 is a meteorological variable, then for a 

simple displacement: 
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𝑋! 𝑟 =   𝑋!(𝑟!)          (1) 

 

where 𝑋! is the distorted variable due to displacement and amplification, 𝑋! is the same 

forecast variable, 𝑟 is the original location of the variable (as a meteorological field) and 

𝑟! is the location of the displaced field, which can be obtained by a displacement function 

𝐷 i.e.: 

 

𝑟! = 𝐷(𝑟)            (2) 

 

The essence of the method is to choose 𝐷(𝑟) to optimize some goodness of fit 

criterion using, for example, standard minimization algorithms. If the displacement and 

amplification are assumed to be constant over the entire domain, they can be determined 

by minimizing the root mean squared (RMS) error or maximizing the correlation 

coefficient between the corrected forecast and the verifying analysis. 

 

Ebert and McBride (2000) used this approach to determine the systematic errors of 

numerical weather prediction models in terms of their representations of precipitation. 

They applied an object-based method in which they defined a contiguous rain area 

(CRA), which is the area of contiguous observed and/or forecasted rainfall enclosed 

within a specified contour. A CRA can be regarded as the union of the forecasted and 

observed rain entities. An example of such CRA is given in Figure 7: 
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Figure 7: Rain system in eastern Australia for June 8, 1999 represented by Australian 

Bureau of Meteorology’s Limited Area Prediction System (LAPS) (left), and daily gauge 
analysis (right). The heavy line shows the boundary of the original CRA. The dashed line 

shows the verification domain, in which the original CRA is extended to include the 
shifted forecast rain entity (Ebert and McBride 2000). 

 

The heavy line in Figure 7 indicates the boundary of the CRA using a threshold of 5 

mm/day to isolate the storm of interest. The displacement error is determined by 

incrementally moving the forecast field over the observed field until a best fit criterion is 

optimized (which can be minimization of the RMS error or maximization of the 

correlation coefficient as indicated in Hoffman et al. (1995). The verification domain is 

shown by the dashed line, which was obtained when the forecast field was moved two 

grid points in both southward and eastward directions. This shift is analogous to the 𝐷(𝑟) 

in equation 2.  

 

Following the identification of the CRA as an object, the verification is done 

according to the Hoffman et al.’s (1995) approach, i.e. the total mean squared error 

(MSE) is partitioned as: 

 

MSEtotal = MSEdisplacement + MSEvolume +MSEpattern      (3) 
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After calculation of the displacement, the forecast rain is shifted to a position of zero 

displacement and MSEshift is calculated. Then: 

 

MSEdisplacement = MSEtotal  - MSEshift       (4) 

 

and 

 

MSEpattern = MSEshift  - MSEvolume       (5) 

 

Although this verification approach explicitly identifies the pattern error in an 

objective sense, it still crunches the pattern difference between the forecast and the 

observation to a single number. The other caveat of this approach is the statistical 

significance. In their study, Ebert and McBride (2000) conducted a Monte Carlo 

simulation to test the robustness of the method and found out that the number of 

observations within a CRA (i.e., the number of grid points) should be at least 20 in order 

for results to be significant. This is problematic for orographic precipitation as some of 

the objects we aim to identify in this study are small-scale features that include fewer 

than 20 grid points.    

 

Baldwin et al. (2002) developed an “events-oriented” approach assigning a set of 

attributes to an event. For this purpose they defined an attribute vector (𝑓!  for a forecast 

event and 𝑜! for an observed event): 

 

𝑓! = ∝! ,𝛽! ,… , 𝑥! ,𝑦! !        (6) 

 

where 𝑥!  and 𝑦!  are the attributes associated with the spatial location of this event, and 

∝! ,𝛽! are attributes that are related to the characteristics of the event such as location, 

shape, scale, amplitude, orientation, continuity etc. Once the vectors are constructed, 
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similarity measures can be calculated, such as correlation coefficient, for verification 

purposes. As an application of such approach, Baldwin and Lakshmivarahan (2003) 

combined objective attribution of forecast events with a subjective classification where 

they first visually defined different modes of convection as stratiform, linear and cellular 

from 1 hour accumulated rainfall analyses obtained from the NCEP “ Stage IV” (Lin and 

Mitchell 2005) analysis system. Then objective methods for such classification were 

conducted and were compared to initially classified events. They first employed 

hierarchical cluster analysis, which proved efficient in differentiating between stratiform 

and linear/cellular events. However, it couldn’t effectively classify the convective events 

into linear and cellular events separately. This was due to the fact that the attributes were 

only able to describe the overall distribution of rainfall across the region but not able to 

more specifically describe how rainfall were organized spatially. As the second step, 

geostatistical methods were used to identify such spatial attributes. For this purpose they 

plotted 2D semi-variograms, correlograms and covariance plots to obtain a measure of 

spatial continuity from which the extracted the spatial attributes. Then, using these new 

attributes hierarchical clustering was applied again as a result of which they obtained 

75% correct classification. More local information is needed to improve the classification 

efficiency. 

 

In another study, Marzban and Sandgathe (2006) used cluster analysis to identify 

features of precipitation in forecast and observation fields. They used the iterative 

clustering as a means of scale analysis, in other words every iteration agglomerates grids 

into bigger clusters thus at the initial iteration it addresses individual grid points and the 

whole field is treated as a single event at the final iteration. This allows different number 

of clusters to be treated as different scales, however, smaller or larger clusters don’t 

necessarily mean different scales in precipitation events as the method can agglomerate 

smaller scale events into bigger ones as the iteration number increases. One strength of 

this method is the possibility of application over varying number of parameters. 

Clustering can be applied to spatial coordinates only (latitude and longitude) which will 
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assess the agreement between the two fields in terms of the size, shape and displacement, 

or it can be applied to latitude, longitude and precipitation, which will assess the sum of 

all errors including the precipitation amount. The verification measure Marzban et al. 

(2006) used was the distance between the clusters either when they are matched between 

forecast and observation after every iteration, or the average of the distances between 

matched clusters, which again suffers from the loss of information inherent to different 

precipitation events (local bias).  

 

Micheas et al. (2007) combined the idea of an attribute vector for an event, with  

decomposition of forecast errors (Hoffman et al. 1995). They introduced a verification 

scheme that uses shape analysis by identifying precipitation objects and assigning 

attributes through a number of angular components that specify the shape of the object. 

Each forecast model (say there are M number of models under analysis) is described as a 

collection of Ni cells, which correspond to objects. Each cell is described by an attribute 

vector such as: 

 

𝑆!" = (𝑐!
!" , 𝑐!

!" , 𝑐!"#
!" , 𝑐!"#

!" , 𝑐!"#
!" , 𝑟!!

!" ,… . . , 𝑟!!!!
!" )      (7) 

 

where 𝑐!
!" , 𝑐!

!"defines the centroid of the cell (location), 𝑐!"#
!" , 𝑐!"#

!" , 𝑐!"#
!" defines the 

minimum, maximum and average value attained by the cell respectively, and 𝑟!
!"which 

gives the radial distance from the centroid to the edge for various angles for j=1,2,..,N 

number of cells and i = 1,2,..,M number of models. A similar vector is constructed for 

observations too and each cell was forced to match between models and observations 

based on either their location (centriod based), or their shape differences (Procrustes 

matching). Procrustes approach (Dryden and Mardia 1998) was used in order to capture 

shape variation (translation, dilation and rotation). As a result, they obtain sum of squares 

(SS) measures such as SSshape, SSavg, SSmin, SSmax, SSlocation, SSrotation, SSscale. 

Consequently, the decomposition of errors is even extended to other parameters such as 
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scale and rotation, however the averaging inherent to the sum of squares measure still 

persists.   

 

Davis et al. (2006) developed a different method for identification of precipitation 

events as objects, with emphasis on how to match the objects correctly between models 

and observations. Their method starts with convolution of the original field (Figure 8a) 

with an appropriate shape, such as a cylinder. The convolution replaces the precipitation 

value at a point with its average over the area within a disk whose centroid is located at 

that point (Figure 8b). The convolution step is for smoothing purposes, which allows the 

precipitation to be thresholded and masked in order to obtain the rain areas. Thresholds 

can be tuned to distinguish rain areas of greater size and intensity from those that are 

weaker and more isolated. The result of thresholding is a mask that has only rain areas, 

and 0’s otherwise (Figure 8c). Then the precipitation values over the rain areas are 

replaced by the values of the original field to retain precipitation features as objects. 

 

 

 
Figure 8: Example of application of approach to a particular Weather Research and 

Forecasting (WRF) model precipitation forecast grid: (a) original precipitation field; (b) 
convolved field; (c) masked field; and (d) filtered grid, showing the precipitation 

intensities over the rain areas. The grid covers the entire United States. (Davis et al., 
2006) 
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Each identified object is assigned various properties (analogous to the attribute vector 

of Baldwin et al. (2002)) such as intensity, area (object size), centroid, axis angle (object 

alignment), aspect ratio, curvature (obtained by fitting a circular arc to the object). The 

objects are then matched (between observations and models) based on the distance 

between their centroids, namely the separation between the centroids of the two objects 

should be less than their sizes. This study touches the climatology analysis by examining 

the objects without matching them, which is claimed to indicate systematic model errors. 

One approach is to plot the histograms of sizes of the unmatched objects within each 

model, for every model time.  This approach can give an overall behavior of the modeled 

precipitation however; as described earlier, there are important local biases in the models 

information about which would be lost in such approach. In the same histogram analysis, 

it was also observed that there were peaks in histograms (i.e. the points corresponding to 

object size of about 200 km), which was attributed to be an exaggeration to the 

smoothing inherent in the convolution process. It was also stated that when examined on 

a finer grid, no peak was evident. This is a weakness in terms of object identification, as 

we need a robust method that would be resilient to model resolution so that the effect of 

resolution can be quantitatively documented.  

 

Wernli et al. (2008) adopted a different approach to computation of object statistics in 

which they included three components namely structure (S), amplitude (A), and location 

(L) of the precipitation domain. The method does not require one-to-one matching 

between the identified objects. The amplitude measure does not deal with individual 

objects but corresponds to the normalized difference of the domain-averaged 

precipitation values. The location component consists of two parts, first one being related 

to the normalized distance between centers of mass of the modeled and observed 

precipitation fields, second one considering the averaged distance between the center of 

mass of the total precipitation fields and individual precipitation objects. The basic idea 

of the structure component is to compare the volume of the normalized precipitation 

objects. This approach takes the decomposition of forecast errors one step further, 
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however, it still suffers from extensive averaging of precipitation fields and especially 

structure comparison since volume does not necessarily give information about the shape 

of the objects, especially when dealing with small-scale events such as orographic 

precipitation.  

 

For climate model validation, Xu et al. (2005) used such objective classification 

technique that uses satellite data to classify distinct “cloud objects” defined by cloud-

system types, sizes geographic locations, and matched large-scale environments. They 

identified a cloud object as a contiguous region of the earth with a single dominant cloud-

system type by using a region growing method dependent on selection criteria. The 

statistical properties of the identified cloud objects were analyzed in terms of their 

probability density functions based upon the satellite data. This method enhanced the 

ability to study the cloud feedback processes directly for a single cloud-system type, as 

opposed to the multiple cloud-system types that are often simultaneously present in a 

fixed region of the earth using monthly, seasonally, or yearly averaged satellite/surface 

data. 

 

As a summary of the previous model verification studies, it can be concluded that the 

efforts can be considered in two groups: 

-­‐ Identification/Isolation of the features of a meteorological field (hereafter referred 

to as identification) 

-­‐ Subsequent verification of the identified features by comparison between model 

and observations (or between two models). 

The previous studies focus intensively on the identification part of the problem either 

by using known statistical methods (such as cluster analysis used by Marzban et al. 

(2006)) or developing new techniques as Davis et al. (2006) did with convolution of 

precipitation fields. Studies show that the identification task is well accomplished using 

different methods, however the scales of the identified features is still problematic and 

still needs subjective input according to the nature of the problem (i.e., how to define 
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features). Thus our aim is to apply suitable methods to better identify the precipitation 

features that will especially work well on the smaller scale events. The verification part 

of the problem, as indicated numerous times in our review of previous studies, has not 

been a focus as much as identification and is still problematic in terms of an object based 

comparison. Still the most popular verification methods use RMS or correlation 

coefficient. Although Hoffman et al.’s (1995) approach of error decomposition is 

somewhat expanded by some following studies (i.e., Ebert and McBride (2000), and 

Micheas et al. (2007)) they still suffer either domain averaging or averaging between 

matched objects like. Our aim is to move to a different direction in the verification task 

by looking at the errors arose from pre-specified objects that carry important local 

information. This can require subjective input since the problem under investigation 

(orographic precipitation) has characteristic behavior in terms of its features, however 

once they are defined; the method can be evolved into a more objective approach. In most 

of the previous studies, the methods used in both the identification and the verification 

parts do not include multivariability with other parameters (in our case moisture flux and 

topography). Since we aim to link the local biases to underlying physics, we aim to 

develop quantitative methods that will investigate the effects of the physics on the 

orographic precipitation both in an objective and subjective way. The next section details 

how we approach to address these issues in the context of an object-based approach. 

 

1.3.2. An Object-based Approach for Bias Quantification of GCMs 

 

 

As indicated previously one of the objectives of this study is to develop an object-

based framework to be applicable to a variety of scales of orographic precipitation 

simulation by GCMs. Our object-based approach can be detailed in three main steps: 

 

1. Characterization of the representation of orographic precipitation by 

GCMs 
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2. Linking the representation of orographic precipitation to GCM structure  

3. Identification and evaluation of the orographic precipitation features 

Characterization of the representation of orographic precipitation by GCMs is the 

initial step to quantify the biases of GCMs to understand how weather phenomena are 

represented. This step involves finding features of similar origin and location, but 

simulated differently by different models (which we label as study features). The reasons 

for such difference are challenging underlying conditions (e.g. topography). These 

features should be reproduced over progressive simulation steps in order to be considered 

“study features” and they give valuable information about the artifacts of the models. 

This identification task consists of both subjective (theory of orographic precipitation) 

and objective input. The 21-year (1979-2000) January mean precipitation of two 

configurations of the Community Atmosphere Model exhibits such features (Figure 6).  

 

The area in Figure 6 (white circle) is the California Coast Range and the Sierra 

Nevada Mountains with the Central Valley in between (Figure 5). In this region, the rain 

shadow is observed in both the Central Valley and to the east of the Sierra Nevada. The 

Coast Range provides the orographic lift to the impinging moist air leading to 

precipitation. As a result of the smaller scale dynamical and physical mechanisms taking 

place in between two mountain ranges, the remaining moisture (if any) undergoes a 

second lift over the Sierra Nevada, which is on average higher than the Coast Range. The 

CAM Eulerian Spectral Transform dynamical core in Figure 6 created a big blob of 

precipitation with the precipitation over the mountain ranges combined into a single large 

precipitation feature. On the other hand, the CAM FV model produced a narrow band of 

precipitation over the mountain range with a higher peak value (10 mm/day) than that of 

the CAM Eulerian Spectral model (8.5 mm/day). This “spread out” effect in the CAM 

EUL model is also observed in Figure 4. The precipitation feature produced by the CAM 

FV model visually represents the observations better than the CAM EUL model. The 

monthly mean plots (not shown) illustrate that this type of behavior for CAM FV and 

CAM Eulerian Spectral Transform models is typical throughout the 21-year period. As a 
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result, relating back to our definition of a study feature, the precipitation over the Coast 

Range and Sierra Nevada is a good candidate for further analysis.  

 

Linking the representation of orographic precipitation to GCM structure is the 

second step after characterization of the features of interest. This is achieved by setting 

up idealized GCM runs to provide analogues to the features to be investigated. For this 

purpose, we implement a modification to the mountain Rossby wave test case 

(Jablonowski et al. 2008)  to create suitable conditions of wind, moisture flux and 

topography. The simpler -and controlled- experiments reveal relationships between the 

simulation of orographic precipitation and the components of GCMs: 

 

• Which model part shapes the appearance of orographic features of interest? 

• What causes the difference of these features of interest between FV and 

Spectral dynamical cores? 

• How do these features of interest evolve with increasing resolution and why? 

Identification and evaluation of the orographic precipitation features is the last step 

to quantify the simulation differences of these study features. Each feature is defined as 

an object based on their inherent characteristics such as size, magnitude, alignment etc. 

Pattern recognition techniques are employed to classify and isolate the objects. Once the 

objects are isolated, they are subjected to comparison as a statistical verification process 

(simple statistics as well as geostatistical measures) in order to quantify differences.  

 

Section 2 involves the discussion of the results of the application of this three-step 

approach. The first step (Characterization of the representation of orographic 

precipitation by GCMs) is already concluded as we selected our study features over the 

Coast Range and Sierra Nevada (Figure 6).  The second step of the approach is explained 

and its results are discussed in chapter 2, where we link the representation of the selected 

study features to GCM structure by creating simplified test cases that resemble the 

conditions over Coast Range and Sierra Nevada. In chapter 3 the first part of the 
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identification and verification task (3rd step of our approach) is discussed. We start this 

task by application of k-means clustering (for object identification) and geostatistics (for 

object comparison and evaluation) to the monthly mean precipitation results from the 

idealized test cases. In chapter 4 we add the time dimension to our analysis and quantify 

the daily precipitation results using a pattern recognition method (classification trees). 

We also examine the grid scale variability of both CAM Eulerian Spectral and CAM FV 

models in their simulation of orographic precipitation in the idealized test cases. Finally, 

chapter 5 summarizes the findings from our object-based approach and gives the 

conclusions of this study. 
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CHAPTER 2: IDEALIZED SIMULATIONS: Linking the Representation of 

Orographic Precipitation to GCM Structure. 

 

The idealized simulations are the second step of our object-based approach and link 

the representation of orographic precipitation in the Atmospheric Model Intercomparison 

Project (AMIP) runs given in Figure 6 to GCM infrastructure. The two dynamical cores 

under analysis, namely CAM FV and CAM Eulerian Spectral, were run in two different 

resolutions for each dynamical core i.e. 1 degree and 0.5 degrees for CAM FV, T85 and 

T170 for CAM Eulerian Spectral.  The two dynamical cores were coupled with a reduced 

moist parameterization suite (hereafter “simple physics”) that was used to test the 

simulation of tropical cyclones by GCMs and the effect of the dynamical core (Reed and 

Jablonowski 2012). CAM allows us to couple a simpler version of physics 

parameterization with a dynamical core in order to assess the capabilities of each 

dynamical core and compare them to each other in terms of simulation of orographic 

precipitation. The simple-physics suite allows physical processes that are important for 

orographic precipitation such as large-scale condensation defined to occur when the 

atmosphere becomes saturated, surface fluxes of horizontal momentum, evaporation, and 

sensible heat, boundary layer turbulence of horizontal momentum, temperature, and 

specific humidity. The surface flux of evaporation especially is an effective process in 

creating precipitation over the mountains. Because our test cases are on an aquaplanet 

setting (Neale and Hoskins 2000), the mountains are covered with water and this leads to 

the reinforcement of the moisture in the lower atmosphere via surface fluxes. This is 

analogous to a well-known phenomenon called precipitation recycling which is the 

contribution of evaporation within a region to precipitation in that same region 

(Bosilovich et al. 2003; Eltahir and Bras 1996). This is observed in all cases in this study 

and gives valuable insight as to how it is simulated by different dynamical cores with 

varying resolution. All experiments were conducted using 26 hybrid vertical model 

levels. The physics and dynamics time steps for the CAM Eulerian Spectral model are 
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identical, and are 1800 and 300 seconds for T85 and T170 respectively. For the CAM FV 

model, the physics time steps are 1800 and 600, and the dynamics time steps are 180 and 

60 seconds for 1 and 0.5 degrees respectively. The total model run is for 30 days. 

 

2.1. Test Case Setup 

 

 

The initial conditions are similar to the mountain-induced Rossby wave train test case 

(Jablonowski et al. 2008), which are similar to initial conditions by Tomita and Satoh 

(2004). The main difference is the derivation of the surface pressure for hydrostatic 

conditions. The simulation starts from smooth isothermal initial conditions that are a 

balanced analytic solution to the primitive equations.  

 

The horizontal wind components are prescribed as: 

 

𝑢 𝜆,𝜙, 𝜂 = 𝑢! cos𝜙                                                                                                    (8) 

 

𝑣 𝜆,𝜙, 𝜂 = 0  𝑚  𝑠!!                                                                                          (9) 

 

where 𝜆,𝜙, 𝜂 are longitude, latitude, and hybrid model level respectively, and 𝑢! is 

constant 20 m/s for all experiments. The meridional wind is set to zero initially. The 

experiments were run on an aquaplanet setting where the isothermal surface temperature 

was taken as 288K. This yields the constant Brunt-Väisälä frequency (N) of 0.0182 s-1. 

The vertical temperature profile is also isothermal thus the atmosphere has zero lapse 

rate. The waves are triggered by idealized Gaussian-bell shaped mountains. The 

mountains induce the disturbance to the initial conditions to create baroclinic waves in 

the leeward side. The idealized Gaussian-bell mountain is introduced via surface 

geopotential (Φs): 
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Φ! 𝜆,𝜙 =   𝑔𝑧! = 𝑔ℎ!𝑒𝑥𝑝 − 𝑟 𝑑 !                                                                        (10)   

            

where g is the gravitational acceleration, zs is the surface height, ℎ! is the peak height of 

the mountain and 𝑑 is the half width of the Gaussian mountain profile. 𝑟 is defined as the 

great circle distance: 

 

𝑟 = 𝑎  𝑎𝑟𝑐𝑐𝑜𝑠 𝑠𝑖𝑛𝜙!   𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜙!𝑐𝑜𝑠𝜙cos  (𝜆 − 𝜆!)                                                (11) 

 

where a is Earth’s radius, 𝜙! and 𝜆! are center points in latitude and longitude 

respectively. The mountain specifications for each setup are given in Table 1. 

 

Table 1: The mountain specifications for 3 experimental setup cases. 

Case 

# 

Center Point in 

Longitude (𝜆!) 

Center Point in 

Latitude (𝜙!) 

Peak Height (ℎ!) 

(m) 

Half Width (𝑑) 

(km) 

 1st Peak 2nd Peak 1st 

Peak 

2nd 

Peak 

1st Peak 2nd Peak 1st Peak 2nd Peak 

1 97o E - 30o N - 1500 - 1500 - 

2 90o E 97o E 30o N 30o N 1500 1500 1500 1500 

3 90o E 93o E 30o N 30o N 500 3000 500 500 

 

The test cases are set up to progress from simple towards more complex to observe 

the evolution of complexity in the simulation of orographic precipitation by different 

models. The first case with a single mountain represents stable upslope ascent 

precipitation on the windward side of the mountain as well as the rain shadow on the 

leeward side. The baroclinic waves induced by the mountain also create precipitation 

after some distance. The second case has a second mountain peak in front of the first one 

to observe the smaller scale dynamics and the distribution of precipitation between the 

two peaks. The third (“realistic”) case contains two mountains resembling those of the 

Coast Range and the Sierra Nevada. As can be seen in Table 1, cases 2 and 3 have two 
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mountains in their setups and case 2 is labeled as “double mountain”, however case 3 is 

labeled as “realistic” for clarity due to its resemblance to the Coast Range and Sierra 

Nevada. 

 

The surface pressure field balances the initial conditions. For hydrostatic primitive 

equation models it is defined as: 

 

𝑝! 𝜆,𝜙 =   𝑝!"  𝑒𝑥𝑝 − !  !!!!
!  !!  !

!!
!
+ 2Ω 𝑠𝑖𝑛!𝜙 − 1 − !!

!!  !
Φ!(𝜆,𝜙)                 (12)      

 

where 𝜅  is the ideal gas constant for dry air (Rd) divided by specific heat at constant 

pressure (cp) and is 2/7, Ω = 7.29212 x 10-5 s-1 (Earth’s angular velocity), 𝑝!" denotes the 

surface pressure at the South Pole which is set to 930 hPa. The moisture, which triggers 

the orographic precipitation, is initialized via specific humidity calculated as: 

 

𝑞 = !!×!
!!,!

                                                                                                                   (13)     

 

where 𝑞 is the specific humidity, 𝑝 is pressure, 𝑝!,! is a reference surface pressure (1000 

hPa) and 𝑞! is the specific humidity at the surface when the relative humidity equals 

80%.  

 

2.2. Discussion of Idealized Test Case Results 

 

2.2.1. Case 1 “Single Mountain” 

 

 

Figure 9 shows the surface geopotential overlaid by 30-day mean precipitation for 

CAM Eulerian Spectral T85 and T170, and CAM FV 1 and 0.5 degrees resolutions.  
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Figure 9: 30 day mean total precipitation rate (mm/day), surface geopotential for case 1 

of experimental test cases, simulated by (a) CAM Eulerian Spectral T85, (b) CAM 
Eulerian Spectral T170, (c) CAM FV 1 degree, and (d) CAM FV 0.5 degrees. 

 

Surface geopotential contours (topography) are 500, 2.000, 5.000 and 11.000 m2 s -2 

throughout all plots. Stable upslope ascent precipitation features are observed in all 

simulations on the northward and windward side of the mountains. The large-scale 

precipitation is initiated at the start of the simulation, moves northward, and loses 

intensity as the simulation continues. The intensity of the precipitation feature simulated 

by CAM Eulerian Spectral T85 is significantly lower than that of other models. This is 

mostly due to the spectral filtering applied to the topography, the effect of which will be 

discussed in the next section (case 2). The intensity for CAM Eulerian Spectral T170 is 

lower than that of both CAM FV models. The simulation is almost identical for CAM FV 

1 and 0.5 degrees resolutions in terms of both the shape and the intensity of the features. 

This difference in intensity between CAM Eulerian Spectral and CAM FV models was 
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observed in AMIP runs (Figure 3).  This idealized simulation also indicates the high 

sensitivity to resolution for spectral models.  

 

Examining the daily precipitation plot (Figure 10) reveals information about the types 

of simulated features, some of which are not apparent in the monthly mean plot. 

 

 
Figure 10: Day 23 total precipitation rate (mm/day), surface geopotential for case 1 

simulated by (a) CAM Eulerian Spectral T85, (b) CAM Eulerian Spectral T170, (c) CAM 
FV 1 degree, and (d) CAM FV 0.5 degrees. Day 23 is selected due to the explicit 

appearance of the features of interest. 
 

 These features (as indicated by their corresponding numbers in Figure 10d) are: 

 

1. Large-scale features due to stable upslope ascent 

2. Small-scale features due to local evaporation and lee-side convergence 

3. Feature due to leeward baroclinic waves  
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The picture in Figure 10 is different than Figure 9, where the stable upslope ascent 

precipitation features (1) lost intensity and moved northward, the small-scale features (2) 

started to emerge (around day 18) and the features due to baroclinic waves (3) started to 

appear periodically as the simulation went on. These three features are all different in 

their origin, thus present valuable insight in terms of their difference between each 

dynamical core as they point towards a different aspect of models. Coarser resolution 

models (CAM Eulerian Spectral T85 and CAM FV 1 degree) do not simulate the small-

scale features, although some very low intensity precipitation can be observed for CAM 

FV 1 degree model on the mountain peak. The finer resolution models simulate these 

features, but with the difference of CAM Eulerian Spectral T170 simulating them with 

larger spatial extent and higher intensity when compared to that of CAM FV 0.5 degrees.  

This sensitivity to intensity is contrary to what is observed with the large-scale stable 

upslope ascent features. All models produced the features due to baroclinic waves (CAM 

FV 1 degree seem to have missed it in Figure 10; however it appears in other days due to 

periodic nature of this phenomenon).  

 

To understand these differences, it is essential to understand the genesis and evolution 

of these features. Vertical pressure velocity (OMEGA), moisture flux convergence 

(MFC) and zonal winds were plotted for the lowest model level and are given in Figure 

11. 
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Figure 11: (a) Day 23 total precipitation rate, (b) vertical pressure velocity (ω), (c) 

moisture flux convergence (MFC), and (d) zonal velocity (U) overlaid by surface 
geopotential for case 1 simulated by CAM FV 0.5 degrees. 

 

Diagnostics for CAM FV 0.5 degrees are chosen to explain the evolution of features 

as it has all the features simulated. There is negative pressure velocity, upward motion, 

(Figure 7b) on the windward side of the mountain where the large-scale precipitation 

feature is observed. This is consistent with the stable upslope ascent process and the 

subsequent condensation/precipitation explained in section 1.2 (Figure 3). 

 

MFC is a prognostic quantity for forecasting convective initiation, with an emphasis 

on determining the favorable spatial location(s) for such development (Banacos and 

Schultz 2005). In our study we use this quantity as a diagnostic to understand the 

behavior of the small-scale features appearing on the peak of our mountains. MFC can be 

derived from the conservation equation for water vapor in pressure coordinates: 

 
!"
!"
= 𝑆                                                                                                     (14) 
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where q is the specific humidity and S represents the sources and sinks of water vapor. 

We calculated the surface MFC on the lowest hybrid model level. The material derivative 

for water vapor on hybrid vertical coordinate (Collins et al. 2006) can be written as: 

!"
!"
= !"

!"
+ 𝑽! ⋅ 𝛁𝑞 +   𝜂 !"

!"
                                                                            (15)      

where 𝜂  represents the model level, 𝜂 is 𝑑𝜂/𝑑𝑡, 𝑽! is the horizontal velocity vector, and 

𝛁 is the two-dimensional gradient on constant 𝜂 surfaces. The continuity equation in the 

hybrid vertical coordinate: 

!
!"

!"
!"

+   𝛁 ⋅ !"
!"
𝑽! + !

!"
𝜂 !"
!"
𝑞 = 0                                                                 (16) 

where 𝜕𝑝 /  𝜕𝜂 is the hybrid vertical coordinate pseudo density. Writing the flux form 

using these two equations and rearranging in spherical coordinates yields: 

!
!"

𝑞 !"
!"

= − !
!  !"#$

!
!"

𝑢𝑞 !"
!"

+ !
!"

𝑣𝑞 !"
!"
𝑐𝑜𝑠𝜙 − !

!"
(𝑞 !"

!"
𝜂) + (𝐸 − 𝑃) !"

!"
              (17) 

 

where E is evaporation and P is precipitation. This equation is an expression of the 

moisture budget of an air parcel. All terms in this equation are divided by g (gravitational 

acceleration) thus the MFC unit is kg m-2 s-1. The first, bracketed term in the right hand 

side of the above equation is the MFC and is plotted in Figure 11c. The second term is 

the vertical MFC. MFC has traditionally been calculated as a vertically integrated 

quantity (Frankhauser 1965; Hudson 1970); however, Newman (1971) calculated the 

surface MFC to be able to make use of high-resolution temporal and spatial observations 

of the lower level atmosphere. The majority of the studies computed surface, not 

vertically integrated, MFC since then. Given the variable of interest being total 

precipitation on the surface in our study, we also calculated surface MFC to be able to 

have a sensible diagnosis. 
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The small-scale precipitation features (2) in Figure 10 have complex and multiple 

underlying causes. The location of peak convergence of moisture flux and in Figure 11c 

(on the mountain peak) is where the small-scale precipitation is observed. Previous 

studies also showed a strong relationship between surface MFC and the precipitation 

(Becker et al. 2011; Bhushan and Barros 2007; Holman and Vavrus 2012). This 

convergence can have multiple reasons such as moisture transport from the moist air 

impinging on the mountain and local evaporation over the mountain peak where 

precipitation is observed. These small-scale features, unlike the large-scale stable upslope 

ascent features, remain stationary after their inception. However, there is a convergence 

of  zonal wind (Figure 11d) where the precipitation is observed. This convergence of the 

zonal winds transport moisture to this area representing another mechanism of orographic 

precipitation given in Figure 2d, i.e. lee-side convergence. Also, additional model runs 

were made with varying the SST of the aquaplanet setting, which showed increased 

intensity of these small-scale precipitation features with increasing SST, whereas 

decreased SST ultimately led to the disappearance of these features. This phenomenon is 

due to the increase in local evaporation triggered by the surface flux parameterization in 

the simple physics suite, with increased SST. Therefore these small-scale features are 

labeled as features due to local evaporation and lee-side convergence.  

 

As summary for this initial case, we were able to observe and identify causes and 

evolution of orographic precipitation features observed in AMIP runs in Figure 6. The 

small-scale precipitation features (2) were lost via averaging in Figure 3, however the 

large-scale upslope features (1) were apparent. The features due to the baroclinic waves 

(3) were inherent to the setup we created, and do not have easy analogues in the AMIP 

runs we examined.  
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2.2.2. Case 2 “Double Mountain” 

 

Figure 12 shows the surface geopotential and 30 day mean total precipitation (as 

in Figure 5) for case 2, two mountains of the same size. 

 

 
Figure 12: 30 day mean total precipitation rate (mm/day), surface geopotential for case 

2 simulated by (a) CAM Eulerian Spectral T85, (b) CAM Eulerian Spectral T170, (c) 
CAM FV 1 degree, and (d) CAM FV 0.5 degrees. 

 

The large-scale stable upslope ascent precipitation features appear in this case as 

separate features in the windward side of each mountain. The features in front of the 

eastward, downstream peak are lower in intensity and smaller in extent as the moist air 

precipitates at the first peak. Daily precipitation plots (not shown) exhibit these features 

appearing in front of the peaks on day 1 with high intensity. They then move northward 

and lose intensity every day. The large-scale features simulated by CAM Eulerian 

Spectral T170 are similar to CAM FV, however there is a higher amount of merging 
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between the two features simulated by CAM Eulerian Spectral T170. There is almost a 

total merge in CAM Eulerian Spectral T85 with relatively low peak intensity (1 mm/day), 

whereas features of the other three simulations have peak intensities at around 1.7 

mm/day.  

 

The main reason for the difference at the spectral resolutions is the spectral filtering 

applied to the topography for the CAM Eulerian Spectral model. To understand the effect 

of topographic filtering, additional model runs were made with CAM Eulerian Spectral 

T85 and T170 without the topographic filtering (Figure 13). 

 

 
Figure 13: 30 day mean total precipitation rate (mm/day), surface geopotential for case 
2 simulated by (a) CAM Eulerian Spectral T85, (b) CAM Eulerian Spectral T170 without 

the spectral filtering applied to topography. 
 

The filtering reduces the peak height of CAM Eulerian Spectral T85 by 243 meters, 

which is 16% of the total height of the mountain (The reduction is 42 meters for CAM 

Eulerian Spectral T170). The effect of removing the spectral filtering is especially 

apparent in the CAM Eulerian Spectral T85 precipitation plot (Figure 13a, compare with 

12a) where the mountains are more structured and the two large-scale features in front of 

each mountain are more distinct in the case of unfiltered topography. However these 

features still have relatively low intensity when compared to the other three simulations. 

The peak precipitation rates of the two large-scale features for CAM Eulerian Spectral 
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T170 (Figure 8b) increased with the steeper topography. The change in the topography of 

CAM Eulerian Spectral T85 as a result of filtering can also be observed via the surface 

geopotential plot (Figure 14). 

 
Figure 14: The surface geopotential vs. longitude plot of CAM Eulerian Spectral T85 for 

filtered (blue) and unfiltered (red) topography. The latitude is 30o N, where the 
mountains have peak height. 

 

The orographic precipitation simulated by CAM Eulerian Spectral T170 strongly 

resembles CAM FV models due to the setup of case 2, which is not observed in the 

AMIP runs given in Figure 3. The mountains in case 2 are large and the related 

precipitation due to impinging airflow is easily resolvable for the fine resolution CAM 

Eulerian Spectral model. The separation distance between the two mountains is another 

parameter affecting the distribution of precipitation. The first mountain is located at 90o 

East and the second is located at 97o East, which allows 10 grid increments between them 

for CAM Eulerian Spectral 170 and 5 grid increments for CAM Eulerian Spectral T85. 

10 grid points were enough for CAM Eulerian Spectral T170 to resolve the dynamics and 

precipitation behavior between the mountains so it was able to simulate the dryer region. 

As the simulation proceeds, smaller precipitation features start to form after day 10 

for all models except CAM Eulerian Spectral T85 (they are not as apparent for CAM FV 

1 degree due to their relatively lower values thus being lost in the 30 day mean plots). 
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These features start to form at the peak points of the mountains as apparent in Figure 12b 

and Figure 12d. The second mountain leads to small-scale dynamics especially in 

between the two mountains (Figure 15d). 

 
Figure 15: (a) Day 23 total precipitation rate, (b) vertical pressure velocity (ω), (c) 

moisture flux convergence (MFC), and (d) zonal velocity (U) overlaid by surface 
geopotential for case 2 simulated by CAM FV 0.5 degrees. 

Figure 15 shows diagnostic measures as in Figure 11. The more structured 

manifestation of smaller scale features compared to case 1 (Figure 10), over both 

mountain peaks is apparent in Figure 15a.  A similar manifestation can also be observed 

in MFC in Figure 15c, due to the smaller scale local dynamics. In addition to the surface 

flux parameterization of the simple physics suite feeding moisture back to the 

atmosphere, turbulence can also play a role in making the smaller scale features more 

structured. Houze and Medina (2005) showed that even if a stable flow impinges on the 

mountains, it can organize itself to produce a layer of smaller scale cellular overturning 

due to either shear-induced turbulence or buoyancy oscillations in the shear layer that are 

forced by the lower terrain.  
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Case 2 revealed that the size and the grid spacing between the two mountains 

significantly affect the simulation of orographic precipitation as well as the treatment of 

topography (i.e., the spectral filtering). We have yet to see the merging of the large 

features due to stable upslope ascent in front of each mountain peak for CAM Eulerian 

Spectral T170. However, as we move towards less resolvable scales (case 3) that are 

more resembling of Coast Ranges and the Sierra Nevada region, the differences between 

CAM FV and CAM Eulerian Spectral models become more apparent. 

 

2.2.3. Case 3 “Realistic” 

 

 

 
Figure 16: 30 day mean total precipitation rate (mm/day) and surface geopotential for 
case 3 simulated by (a) CAM Eulerian Spectral T85, (b) CAM Eulerian Spectral T170, 

(c) CAM FV 1 degree, and (d) CAM FV 0.5 degrees. 
 

In this case the differences between CAM FV and CAM Eulerian Spectral models are 

much more apparent (Figure 16). Both CAM FV model resolutions were able to simulate 
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the dry region between the mountains whereas there is a merge between two precipitation 

features in the cases of CAM Eulerian Spectral T85 and T170. Both CAM FV models 

were able to create distinct mountains separated from each other. The CAM Eulerian 

Spectral T170 has connected the two mountains, leaving 5 grid points between peaks and 

CAM Eulerian Spectral T85 merged the mountains into one (Figures 16a and 16b). This 

shows that, as the topography gets smaller and structured, the ability of all models to 

simulate orographic precipitation is reduced. The CAM FV dynamical core represents the 

spatial structure and relationship with underlying topography more realistically than the 

CAM Eulerian Spectral dynamical core (Figure 6).  

 

 In case 2 there was the suggestion that topographical filtering adversely affects the 

simulation of orographic precipitation.  In case 3 the CAM Eulerian Spectral core run 

without the filter, introduced significant amounts of noise due to Gibbs oscillations thus 

producing smaller scale precipitation features that dominate the entire field in a short 

period of simulation time.  Therefore, without the topography filter the simulation is not 

realistic. 

 

In case 3 there are significant differences between two resolutions of CAM FV 

model. In both CAM FV simulations, a precipitation feature occurs at the peak of the 

first, westward, mountain, which is lower than the second mountain. On the second 

mountain, two separate precipitation features are observed over both the north and south 

ends of the Gaussian-bell shape. The features simulated by CAM FV 1 degree are 

significantly lower in intensity when compared to CAM FV 0.5 degrees. This separation 

of large-scale stable upslope ascent features into two is not observed in either CAM 

Eulerian Spectral simulation; there is one big feature related to each mountain peak as in 

the previous cases. These big features are connected to the ones simulated over the first 

mountain peaks, creating a wet region between the mountains as opposed to the dry 

region in CAM FV models. To understand these differences, total precipitation, vertical 
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velocity and MFC are plotted for both CAM FV 0.5 degrees and CAM Eulerian Spectral 

T170, for day 3. 

 

 
Figure 17: Day 3 total precipitation rate, vertical pressure velocity (ω), moisture flux 
convergence (MFC) overlaid by surface geopotential, for case 3 simulated by (a,c,e) 

CAM FV 0.5 degrees, and (b,d,f) CAM Eulerian Spectral T170. 
 

The negative vertical pressure velocity (upward motion) at the windward side of the 

first mountain of CAM FV 0.5 degrees simulation leads to the large-scale stable upslope 

ascent precipitation (Figure 17c). This is not the case for CAM Eulerian Spectral T170 

(Figure 17d), thus no precipitation over the first mountain, however it is apparent over the 

second mountain creating the single large precipitation peak observed in Figure 17b. The 

reason we don’t observe such single precipitation feature for CAM FV simulation (Figure 

17a) is the structured manifestation of both vertical velocity and the MFC (Figure 17e) 

over the second mountain. Both stable upslope ascent and surface fluxes contribute to the 
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organization of the precipitation for the CAM FV model, and both 

convergence/divergence boundaries and the negative vertical velocities occur at both tails 

of the second mountain, producing precipitation features over that area. 

 

2.3. Summary of the Idealized Test Case Results 

 

 

We were able to reproduce the precipitation features inherent to an orographic 

disturbance perceived in observations and simulated in AMIP runs (Figure 6). We were 

able to identify the origins of these features via orographic precipitation theory and 

diagnostic measures and classify them as (1) large-scale features due to stable upslope 

ascent, (2) smaller scale features due to local surface fluxes, (3) leeward side features due 

to baroclinic waves. 

 

Examination of the differences in simulation of these features by CAM FV and CAM 

Eulerian Spectral dynamical cores with varying resolutions led to deeper understanding 

about the sources of biases related to GCM structure, and how the biases evolve with 

varying resolution. CAM FV model simulations resembled observations, producing 

precipitation consistent with underlying topography as well as the dry regions. The fine 

resolution CAM Eulerian Spectral model exhibited similar behavior, when the mountains 

were well separated and the same height (cases 1 and 2).  The CAM Eulerian Spectral 

simulation developed biases similar to the AMIP simulations when the mountains were of 

different height and closer together (case 3). It was also noted that the effect of resolution 

is much more pronounced for CAM Eulerian Spectral models compared to CAM FV 

models, as the improvement of results from T85 to T170 was significant while CAM FV 

1 degree and 0.5 degrees consistently produced similar results. 

 

The merger of two large-scale stable upslope ascent features observed in AMIP runs 

for CAM Eulerian Spectral T170, were not observed in case 2 where mountains were 
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well separated. Furthermore in case 2, the removal of the spectral filtering applied to 

topography improved the results (especially for CAM Eulerian Spectral T85). However, 

the merger was apparent in the realistic case 3 and the removal of spectral filtering gave 

unacceptable results for both CAM Eulerian Spectral T170 and T85. We conclude that 

the performance of CAM Eulerian Spectral dynamical core and the improvement 

capability of spectral filtering depend on both the scales of the topography and the scales 

of the features to be simulated. These scales are in a dynamic relationship with each 

other, thus it is challenging to produce a specific solution of when and/or how to apply 

any limitation (e.g. filtering) to spectral models. 

 

The characterization of features observed in AMIP runs and our test cases is a crucial 

step towards application of our object-based bias, as identification and isolation of these 

features will depend on the underlying conditions that create them as well as their size, 

shape, and location etc.    
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CHAPTER 3: QUANTITATIVE ANALYSIS PART I: Monthly Mean Analysis 

with Clustering and Geostatistics. 

 
 

The quantitative analysis involves the identification and the evaluation of the 

orographic precipitation features (3rd step of the object-based approach) simulated by the 

idealized test cases.  After analyzing the simulated features and identifying the 

underlying causes of their manifestation (previous section), the features are isolated from 

the whole precipitation field and matched by their analogues across all simulations (i.e., 

CAM Eulerian Spectral T85 and T170, CAM FV 1 and 0.5 degrees resolution). This 

chapter focuses on monthly mean results for all simulations. The small-scale features due 

to local evaporation and lee-side convergence do not explicitly show up on monthly mean 

results due to averaging. Therefore, the focus of this chapter is on the large-scale features 

using k-means clustering and geostatistics (variography) for their identification and 

evaluation. The time dimension is added to the analysis in chapter 4 by analyzing the 

daily results using classification trees for the identification of the features (which also 

involves small-scale features) and simple statistical measures (e.g., mean and variance) 

for their comparison. 

 

An object-based method involves the classification of the field of interest into parts to 

be treated and evaluated as objects. This is a crucial step since the accuracy in defining 

and isolating the objects determines the overall reliability of the final results of the 

method. To decide which class of object the grid point belongs to, object classification is 

traditionally done by setting a threshold for a variable and evaluating the grids in the field 

relative to that threshold (i.e., is the grid value above or below the threshold?) (Davis et 

al. 2006; Ebert and McBride 2000; Micheas et al. 2007; Wernli et al. 2008). This has 

been a limiting step in object-based methods since user defined threshold values can be 

insufficient in treating different types of objects that can be manifested in different times 



	
   54 

of simulations (e.g., a big threshold might lead to missing the small features). This 

problem was addressed by (Skok et al. 2013) where they employed more than one value 

as a threshold to increase the capability of the method. We adopt an approach to increase 

the flexibility of the object identification by making dynamic threshold decisions 

according to the characteristics of the field of interest. In this study, we used k-means 

clustering (Everitt et al. 2011) for the purpose of object identification, which eliminates 

the user defined threshold by setting a pre-specified number of object classes. We also 

investigate the applicability of variography (Isaaks and Srivastava 1989) for comparison 

and verification of isolated objects. The next section gives information about both k-

means cluster analysis and variography. Both methods have been used for evaluation of 

weather prediction and climate models (Alhamed et al. 2002; Johnson et al. 2011; Liu 

and George 2005; Marzban and Sandgathe 2006, 2009). They are applied to the idealized 

test case results with an object-based point of view. Initially, variography is applied to 

synthetic data that resemble orographic precipitation features to observe how variography 

quantifies important characteristics of objects (e.g., magnitude, location, size). Results of 

this analysis are also given in the next section. Application of these methods to the 

idealized test cases and the discussion of the results are given in sections 3.2 and 3.3, and 

the summary of the results are given in section 3.4.  

 

3.1. Methods 

 

3.1.1. K-means Cluster Analysis 

 

Cluster analysis is a technique that uses a measure of similarity (or dissimilarity) to 

classify data into groups called clusters. Each cluster is formed in a way that its members 

have higher similarity to each other than to members of other clusters. Clustering has 

been extensively used in meteorology and climatology (Huth et al. 1993; Littmann 2000; 

Liu and George 2005). It has also been applied for object-based purposes including storm 



	
   55 

and cloud identification (Lakshmanan et al. 2003; Peak and Tag 1994), verification of 

precipitation fields produced by weather prediction models (Marzban and Sandgathe 

2006), and classification of multi-model ensemble data (Alhamed et al. 2002). These 

studies employed hierarchical cluster analysis methods. Hierarchical clustering makes a 

series of partitions, which may run from a single cluster containing all individuals, to n 

clusters each containing a single individual. In this study we use k-means clustering, 

which does not form hierarchical classifications but partitions the data into a pre-

specified number of groups. The partitioning algorithm involves calculating the centroid 

of each cluster via a measure of distance, where each centroid is the mean value of the 

points in that cluster. We use the squared Euclidian distance as the measure of distance. It 

should be noted that this distance is not the spatial distance between the grid points, but 

rather it is the difference between the grid point values. In general, given an n x p matrix 

X where n is the number of observations and p is the number of variables, the squared 

Euclidian distance (d) is defined as: 

 

𝑑!" = 𝑥!" − 𝑥!"
!

!

!!!

!/!

 
                                                (18) 

 

The Euclidian distance (d) can be defined as the distance between two p-dimensional 

points xi = (xi1, ….., xip) and xj = (xj1, ….., xjp) in Euclidian space. In our analysis we 

reduce a latitude-longitude grid matrix of a given precipitation field into a single one-

dimensional vector (n x 1, where n = latitude x longitude) to apply the k-means 

algorithm. In this case the Euclidian distance (d) reduces to: 

 

𝑑!" = 𝑥! − 𝑥!                                                    (19) 
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The sum of distances, over all clusters, from each point to its cluster centroid is then 

minimized iteratively. The points are moved between clusters until the sum cannot be 

decreased further, resulting in clusters as well-separated as possible. The mathematical 

details of this method can be found in Spath (1985) and Everitt et al. (2011). 

 

Once the clusters are formed, the reduced vector is then expanded to the latitude-

longitude grid to visualize the cluster boundaries. We used 2 (k=2) and 3 (k=3) clusters in 

our calculations. The k=2 clustering is assumed to classify the whole field into non-rain 

and rain parts whereas the k=3 clustering classifies for non-rain, light rain, and heavy rain 

parts. This analysis serves as the identification of the orographic precipitation features by 

determining the boundaries of the rain areas to be analyzed as objects. These rain areas 

are analogous to the ones defined in Davis et al. (2006), where they are determined by 

convolving the precipitation field with a given shape as a smoothing process. The 

smoothed field is then thresholded to get the object boundaries.  

 

3.1.2. Variography 

 

The objects determined by the spatial boundaries of the rain areas from cluster 

analysis are evaluated by applying variography. Variography is a geostatistical method, 

which is used to measure the spatial continuity of a variable Z. Marzban and Sandgathe 

(2009) applied variography as a verification method to numerical weather prediction 

models. In that study variography was used to compare two fields, however; in this study 

we apply the method to acquire information about isolated objects rather than the whole 

field. 

The semivariogram (𝛾) (hereafter SV) is defined as the variance of the difference 

between two points separated by a distance ℎ. Assuming stationarity, which states that all 

pairs of random variables separated by a particular distance ℎ have the same joint 
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probability distribution regardless of their locations (Isaaks and Srivastava 1989), the SV 

can be defined as: 

 

𝛾 ℎ = 1
2𝑉𝑎𝑟 𝑍 𝑠 + ℎ − 𝑍(𝑠)                                                    (20) 

 

where Var is the variance function, 𝑍 𝑠  is the variable of interest (in our case 

precipitation), which is a function of location 𝑠 (Matheron 1963). Assuming the spatial 

variable 𝑍 is free of systematic surface trends yields: 

 

𝛾 ℎ = 1
2𝐸 𝑍 𝑠 + ℎ − 𝑍(𝑠) !  

 

                                                  (21) 

where E is the expected value (mean) function. The above equation computationally 

yields: 

 

𝛾 ℎ =
1

2 𝑁(ℎ) 𝑍 𝑠! − 𝑍(𝑠!)
!

!(!)

 

 

                                                  (22) 

where 𝑁(ℎ) is the set containing all the neighboring pairs at distance ℎ, i.e., 𝑁 ℎ =

𝑖, 𝑗:  𝑠! − 𝑠! = ℎ , and  𝑁(ℎ)  is the total number of pairs. The SV function is then 

plotted against varying ℎ to observe the spatial continuity of the variable. The selection 

and the classification of data pairs are crucial in the SV computation. Pairs might not be 

separated exactly by the selected distance ℎ, so distance classes are formed in order not to 

exclude them from the computation. The distance class L for two arbitrary points P1 and 

P2 is calculated as: 
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𝐿 𝑃!𝑃! = 𝑃!𝑃! ∆+ 0.5                                                      (23) 

 

where 𝑃!𝑃!  is the distance between P1 and P2, 𝑥  denotes the largest integer ≤ 𝑥 for any 

arbitrary 𝑥, and ∆ is the user defined parameter determined depending on the case. If the 

points are paired in every possible direction (i.e. if a pair is determined only depending 

on the scalar separation distance but not a vector with an angle), the resulting SV is called 

an omni-directional SV. However points can be paired specifying an angle. If, say, we 

pair the points only in 90o direction, the resulting SV is called a 90o directional SV and 

gives information about the spatial continuity in that particular direction. As in the case 

of distance specification, an angle tolerance value is defined to have enough number of 

pairs in the calculation. So as an example, if we are looking at 90o direction and define an 

angle tolerance of 10o, we look for a pair of a point within a 90o ± 10o arc, rather than 

only looking at a line on 90o direction. The parameter ∆ and the angle tolerance are taken 

as 300 km and 10o respectively for all SV calculations presented in section 3.1.2. 

 

Prior to application of this method to the idealized test case results, we tested the 

utility of variography using synthetically created data. Two Gaussian-hill shaped objects 

were created to represent the mountain range precipitation features. The objects were 

trimmed in two sides to create an elongated feature similar to a precipitation feature 

aligned with a mountain range. Figures 18a and 18b show the 3D plots of these two 

objects, Figures 18c and 18d show their corresponding contour plots, and Figure 18e 

shows the omni-directional SV of the two objects. 
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Figure 18: 3D plots of synthetic objects 1 (a) and 2 (b), their corresponding 

contour plots (c, d), and their SVs (e). The size, length and the magnitude of the objects 
as well as the SV values are in arbitrary units. 

 

The x and y distances (the horizontal domain) that the objects are created on are both 

101 arbitrary units respectively. Each object is 71 x 21 units in horizontal plane and they 

are created at the same orientation in y direction, i.e. 30 units away from both ends of y 

axis. However the objects do not have this symmetry in x direction. Object 1 starts 9 units 

away from the x-axis and object 2 ends 20 units away from the end of the x axis. The 

maximum value (magnitude) attained by both objects is 1. 

  

There are striking differences between the two SVs due to the dissymmetry of two 

objects in x direction. When two objects are symmetric (e.g., the same unit distances 

from the center of the object and the end of the domain in x direction), the resulting SVs 

would be identical due to the stationarity assumption. Advantageous from an object-

based point of view, SVs carry information about the location of objects; however, one 

should be careful interpreting the results due to the sensitivity of SVs to shifts in location. 

The solid line SV in Figure 18e exhibits characteristics of object 1 in a way that is quite 

similar to the synthetic data analysis done by Marzban and Sandgathe (2009). The SV has 
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a bend at separation distance 22, which is about the size (length) of the object in x 

direction. After that point the SV steadily increases to the peak point at separation 

distance 42. This peak is related to the distance of the center of the object from the origin 

in Marzban and Sandgathe (2009), which in our case is around 53. This difference 

between the two synthetic data analyses is due to the difference in shapes of the objects. 

In our case we have a Gaussian-hill with trimmed tails in the x direction, however 

Marzban and Sandgathe (2009) had a bivariate Gaussian with same mean (30) and 

standard deviation (7.5) in both x and y. As equation 5 implies, the SV value for a 

particular separation distance is calculated by adding the squared difference of the pairs 

divided by the total number of pairs separated by that distance. If we pick a separation 

distance longer than the size of the object on the direction parallel to the y axis (i.e. 0 

degrees) for object 1, we can pair points on the same direction both of which will remain 

outside the object. This means subtracting zero from zero, which doesn’t add to the 

cumulative SV value. However if we focus on separation distance approximately 42 

(which is the distance where we observe our maximum SV peak in Figure 18e) on the 

same direction; it can be seen that we always pair one point inside the object and one 

point outside thus the squared difference always gives a positive value. This leads to the 

maximum valued peak in the SV in Figure 18e. The next peak in the SV is at separation 

distance 77, which is about the distance from the center of the object to the end of the 

domain in x-axis, and this agrees with the discussion in Marzban and Sandgathe (2009) 

about their analogous peak. 

 

Object 2 is in the same location as object 1 in y direction, but is pushed to the other 

end of the domain in x direction. The corresponding SV exhibits one single peak at 

separation distance 38 and a slight bend in separation distance at around 70. The change 

in location of the object changed the behavior of the corresponding SV; however we 

cannot observe signatures of that particular location except the distance 70 which is the 

distance of the center of the object to the beginning of the domain in x direction.  
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Figure 19: Directional SVs of object 1 (a), and object 2 (b) for four different directions. 

 

To extract detailed information about objects, SVs of particular directions should be 

employed. Figure 19 shows SVs of the two objects in 4 directions: 0o, 90o, 120o and 135o. 

0o direction is the direction along the y-axis, 90o direction is the direction along the x 

axis. The angle tolerance is 10o. In the directional SVs, we observe signatures of size and 

location of the objects as peaks at particular separation distances in Figure 19. For the 90o 

SV two peaks are observed for both objects, the initial peak being at separation distance 

20 and 22, the latter peak being at separation distance 74 and 62 for objects 1 and 2 

respectively. The first peak in both SVs is related to the size of the objects in x direction 

and second peak is related to the distance of the center of the object to the far end of the 

domain in x direction. So the 90o SV gives information about the attributes of both 

objects in x direction. The 120o SV gives similar results, but there is a shift in peaks to 

longer separation distances. On the other hand the 0o SV for both objects give 

information about the attributes in y direction. As can be seen on both red curves, there is 

a single peak at separation distance 40 which is both the size of the object in y direction 

and the distance of the center of the object from both sides of x axis. 

 

The synthetic data analysis proves the capability of SVs on exhibiting information 

about characteristics of an object on a single curve. However, the ambiguity of SVs is 
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also apparent in the case of overlapping distances, e.g. if an objects size is similar to its 

distance from a particular end of the domain, both will be represented by the same peak 

or bend on an SV. To overcome this issue, directional SVs will be employed to identify 

the significance of each peak or bend on an omni-directional SV.  The directional SVs 

will not be presented in the discussion of results of idealized test cases, however the 

information obtained from them will be indicated when necessary. 

 

3.2. Identification of Objects by K-means Clustering 

 
 

K-means clustering was applied to monthly mean simulations of single mountain, 

double mountain, and realistic setups of idealized test cases. The object classification 

results for the double mountain setup (topographical setup #2) are presented in this 

section as a representation of the utility of clustering. The comparison and evaluation 

results for all three topographical setups (Table 1) will be presented in the next section. 

The object boundaries for k=2 and k=3 cluster analyses for simulations of the double 

mountain setup of two dynamical cores with two resolutions are given in Figure 20.      
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Figure 20: K-means clustering results of the double mountain setup for k=2 and k=3 of 
(a,e) CAM Eulerian Spectral Transform T85, (b,f) CAM Eulerian Spectral Transform 

T170, (c,g) CAM FV 1 degree, and (d,h) CAM FV 0.5 degrees dynamical cores.  
 

The dark blue areas in Figure 20 indicate the boundaries of the objects to be isolated 

and evaluated by variography. These areas are predominantly stable upslope precipitation 

(Figure 12).  For the k=2 clustering (Figures 20a-d) the clusters are labeled as rain areas 

(dark blue) and non-rain areas (light blue). The similarity of both large-scale upslope 

ascent features (labeled as objects 1 and 2 in Figure 20d) between CAM FV 0.5 degree 

and CAM Eulerian Spectral T170, which has been observed visually is apparent in Figure 

20 in terms of their spatial boundaries. The clustering reveals the level of merger between 

the two features simulated by CAM Eulerian Spectral T170 (black arrow in Figure 20b). 

This merger was observed in the AMIP simulations of spectral T170, which motivated us 

to select these features as study features for further analysis. However, this merger was 

not visually apparent in the CAM Eulerian Spectral T170 simulation for the double 

mountain setup (Figure 12). Unlike T170, the merger was apparent for CAM Eulerian 

Spectral T85 and this is affirmed by cluster analysis, which produced a single rain area 

with an eastward extension (Figure 20a).  
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The large-scale stable upslope features for CAM FV 1 degree and 0.5 degrees show 

similarity in their spatial boundaries (Figures 20c and 20d). The dryer region between the 

two mountains for both CAM FV models is included in the non-rain area cluster as an 

indication of the separation of two features.  The cluster analysis suggests a stronger wet-

dry contrast in the CAM FV core than in the spectral core.  There is a stronger sensitivity 

to resolution in the CAM Eulerian Spectral core, as well as a suggestion that at the higher 

resolution the two cores are more similar. 

 

For the k=3 clustering (Figures 20e-h) the clusters are labeled as heavy rain areas 

(dark blue), light rain areas (red), and non-rain areas (light blue). With the inclusion of a 

light-rain category the spatial pattern of the precipitation fields are more similar. The 

contrast between the CAM Eulerian Spectral and CAM FV dynamical cores is less 

distinct with the k=3 clusters. 

 

The results of k=3 clustering exhibits the flexible nature of cluster analysis on object 

boundary identification. The total area occupied by both heavy and light rain in k=3 

clustering is bigger than the area occupied by the rain areas in k=2 clustering. As the 

number of clusters change, the proximity of points between the clusters change. As the 

number of pre-defined clusters increase the total area of rain represented by clusters 

increase. This characteristic of the method is beneficial in terms of an object-based point 

of view, not only because it defines objects relative to values of the field of interest, but 

also because it can divide an object into sub-parts, the analysis of which can give 

valuable information.  

 

Returning to the meteorological description of the rain in Figure 12, the additional 

light-rain category allows more distinct identification of the stable up-slope precipitation 

with the dark blue clusters of Figure 20e-h.  Our analysis proceeds by using the object 

boundaries in Figure 20 along with the precipitation values over the defined object areas. 
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The points outside the object boundaries were assigned the value 0 and the original sizes 

of the field were kept the same, since SVs are sensitive to location.  Then, variography is 

used for all simulations for comparison and evaluation. The comparison of objects with 

variography is given in the next section.  

 

3.3. Comparison of Objects with Semivariograms 

 

 

In this section the objects are extracted from the three idealized topographies 

described in Table 1.  For the double mountain case, the stable upslope precipitation 

features are labeled as objects 1 and 2 (Figure 20d). In the single mountain case, not 

shown, there is only one stable upslope feature, and it is labeled as object 1.  Object 1 in 

both the single and double mountain cases are characterized by being on the windward, 

westward side of the domain.  They are the features simulated where the moist air first 

impinges on a mountain slope.  

 

The omni-directional SVs of object 1 for the single mountain and double mountain 

cases are given in Figure 21. These are for k=2 clustering given in Figures 20a-d.  The 

merger for the spectral model simulations in k=2 clustering (Figures 20a and 20b) means, 

formally, that 2 objects are not identified for the spectral model simulations.  To allow 

comparison of the precipitation on the westward peak, a line is drawn between two 

mountains at 93o W, and the westward part of the divided rain area is included in the SV 

calculation as object 1.  
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Figure 21: Omni-directional SVs (mm/day)2 of the large scale upslope ascent features 
(object 1) for (a) single mountain, and (b) double mountain setups simulated by CAM 
Eulerian Spectral T85 and T170, CAM FV 1 degree and 0.5 degrees dynamical cores. 

The object boundaries were determined by k-means clustering where k=2.  
 

In Figure 21, the magnitude difference of CAM Eulerian Spectral T85 from other 

simulations is apparent in the SVs of both single and double mountain cases. This shows 

a quantitative measure of how CAM Eulerian Spectral T85 simulates the large-scale 

upslope ascent feature in relatively lower intensity. There is close agreement in CAM FV 

1 degree and 0.5 degrees SVs for the single mountain setup; however, they depart in the 

double mountain setup. The SVs of CAM FV 0.5 degrees and CAM Eulerian Spectral 

T170 shows close agreement for the double mountain setup. Figure 21 shows that the 

effect of resolution is much more pronounced in the case of the CAM Eulerian Spectral 

dynamical core. In the simpler setup (single mountain), the CAM FV dynamical core 

does not seem to have been affected by resolution as the SVs of both CAM FV 

resolutions are in agreement. In the more complex setup (double mountain) the 

agreement is between the higher resolution simulations of both dynamical cores 

suggesting the advantage of higher resolution over the more complex terrain. 

 

The shapes of the SVs of all simulations for single and double mountain setups are 

similar. As indicated in the discussion of the synthetic data analysis, directional SVs are 
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important to interpret the peaks and bends of the omni-directional SVs in Figure 21 

(which are numbered on the SV of CAM Eulerian Spectral T85 in Figure 5a). The initial 

bend at separation distance around 600 km (#1, Figure 21a) observed in all four 

simulations of both cases is related to the width of the objects in the zonal direction, 

therefore it shows up as a separate peak in the 90o directional SVs (not shown). The 

difference between the single and double mountain setups in Figure 21 is where the peak 

SVs occur (#2, Figure 21a). It is at around 1200 km for the single mountain, and 1500 km 

for the double mountain setups for all simulations. This shift is due to the change in the 

location of the object. After the peak SV there is another distinct bend in all four 

simulations at around 1700 km for single mountain, and 2000 km for double mountain 

setups (#3, Figure 21a). The 0o directional SVs show peaks at these distances for their 

corresponding setups, therefore this bend is indicative of the size of object 1 in the 

meridional direction. The large-scale stable upslope precipitation object extends to a 

longer distance in the case of double mountain setup, which shows that the circulation in 

the leeward side (due to the second peak and in between) affects the precipitation in the 

windward side. Another effect of addition of the second peak is the reduced rain amount 

of the windward (westward) large-scale stable upslope feature in the double mountain 

case. This is shown in Figure 21 as the reduced SV values of the double mountain setup, 

where the total amount of precipitation is distributed to both mountains. A simple 

calculation of the total amount of rain shows that there is an increase in precipitation for 

all simulations in double mountain setup compared to the single mountain setup. This 

increase is 15% for CAM Eulerian Spectral T85, 20% for CAM Eulerian Spectral T170, 

15% for CAM FV 1 degree and 18% for CAM FV 0.5 degrees. An analysis of the total 

amount of precipitation in double mountain setup shows that 30% of the rain is simulated 

over the leeward mountain for CAM Eulerian Spectral T170, FV 1 and 0.5 degrees, 

whereas this percentage is 22% for CAM Eulerian Spectral T85. 
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Figure 22: Omni-directional SVs (mm/day)2 of the large scale upslope ascent features, 
eastward mountain (object 2) for double mountain setup simulated by CAM Eulerian 
Spectral T85 and T170, CAM FV 1 degree 0.5 degrees dynamical cores. The object 

boundaries were determined by k-means clustering where k=2.  
 

In the double mountain case, object 2 is associated with the eastward mountain.  The 

SVs of object 2 defined by k=2 clustering for all simulations is given in Figure 22. The 

close agreement between CAM FV 1 and 0.5 degrees and CAM Eulerian Spectral T170 

for object 1 is not observed in the SVs for object 2 of the double mountain setup. FV 1 

degree simulates the highest amount of rain in this object followed by FV 0.5 degrees and 

spectral T170. Although object 2 is the manifestation of the same phenomenon as object 

1 (stable upslope ascent), it is smaller in size and affected by the small-scale circulation 

in between the two mountain peaks. Therefore this feature has more complex internal 

(unforced) dynamics and the reduction in spatial scales. The disagreement between 

simulations increases as the resolvable scales get smaller.  
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Figure 23: Omni-directional SVs (mm/day)2 of the precipitation features for the realistic 
setup simulated by CAM Eulerian Spectral T85 and T170, CAM FV 1 degree and 0.5 

degrees dynamical cores. The object boundaries were determined by k-means clustering 
where k=2.  

 

For the more realistic setup that resembles the Coast Range and the Sierra-Nevada 

(Table 1) it is not possible to define obvious similar objects across all of the simulations, 

therefore the isolated objects are not labeled. Figure 23 shows the SVs of the objects 

defined by k=2 clustering, simulated by CAM FV 1 and 0.5 degrees, CAM Eulerian 

Spectral T85 and T170 for the realistic setup. This is simple separation into rain and non-

rain. In this case the sensitivity to resolution is apparent, with CAM FV 0.5 degrees 

simulating higher amounts of rain followed by CAM Eulerian Spectral T170 and CAM 

FV 1 degree. The difference between each simulation is much more pronounced 

compared to the previous cases where the scales of the features were bigger. CAM 

Eulerian Spectral T85 produced very light rain and spectral model with both T85 and 

T170 resolutions produced a single feature over the mountains, whereas CAM FV model 

with both 1 degree and 0.5 degrees resolutions were able to simulate the dry region 

between two peaks (which was observed in the AMIP simulations discussed in Figure 6). 

This qualitative difference between the simulations, the merging of the precipitation 
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associated with the two mountains, is not obvious in the SVs in Figure 23, as the shapes 

of the SVs are again similar for all simulations. That is because the area between the two 

mountains is small in scale and in this case SV favors longer distances such as the 

distance of objects from the sides of the domain (The first peak in Figure 23 at around 

1300 km is the distance of the objects to the westward end of the domain). 

 

As noted in Figures 20e-h, the additional light-rain category for the k=3 cluster 

analysis allows more distinct identification of the stable up-slope precipitation.  This 

supports more investigation of the sensitivity to resolvable scales.  The top four frames of 

Figure 24 show object 2, for the eastward, down wind peak of the double mountain case.  

The objects are for both k=2 and k=3 cluster analysis results. These objects are isolated 

with the precipitation outside of the objects set equal to zero. 
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Figure 24: 3D plot of object 2 of the double mountain setup simulated by CAM FV 0.5 
degrees with (a, b) k=2 and k=3 cluster analyses, CAM Eulerian Spectral T170 with (c,d) 

k=2 and k=3 cluster analyses. The omni-directional SVs (mm/day)2 of CAM FV 0.5 
degrees and CAM Eulerian Spectral T170 with k=2 and k=3 for object 1 (e, westward 

peak), and object 2 (f, eastward peak).  
 

The two frames on the top left (Figures 24a and 24c) are for the k=2 cluster analysis. 

The change of the boundary from k=2 to k=3 clustering (Figure 24b and 24d) can be 

viewed as how the “light rain” decided objectively by the cluster analysis is removed 

from the object. The remaining precipitation is the “heavy rain” as labeled in the 

selection process of the number of clusters (Figure 20). As can be seen in Figure 24a, 

CAM FV 0.5 degrees simulates object 2 with peak intensity without much spread, which 

is not the case for CAM Eulerian Spectral T170 (Figure 24c). CAM Eulerian Spectral 

T170 simulates the same object with lower intensity but higher spread. Referring back to 
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our definitions of the different types of observed features, this light rain category is 

primarily the rain associated with small-scale dynamics and local evaporation. This 

“spread out” effect of spectral dynamical core on precipitation was documented by Bala 

et al. (2008b).  

 

On the bottom right of Figure 24 are the SVs for object 2, the rain on the eastward 

peak.  These are for the higher resolution simulations of the two dynamical cores for the 

k=2 and k=3 cluster analysis.  By using k-means clustering together with variography, we 

are able to quantify how the distribution of rain in the heavy and light clusters differs in 

the two dynamical cores. As can be seen in Figure 24f, the difference between k=2 and 

k=3 clustering for object 2 is represented by the difference in SVs with a much higher 

difference in the case of CAM Eulerian Spectral T170 (indicated by a vertical line 

between the SV peaks of the spectral T170 k=2 and k=3). For comparison, we present the 

SVs for the precipitation on the westward, windward peak (Object 1, Figure 24e). For 

this object the SVs for CAM FV 0.5 degrees and CAM Eulerian Spectral T170 are 

similar for both k=2 and k=3 cluster analysis. We see that for the westward, windward 

peak (object 1) the precipitation from the two dynamical cores agree closely. The 

precipitation on the westward peak is largely defined by the design of the simulation 

experiment and is well resolved.  The precipitation on the eastward, downwind peak is 

organized by dynamical features that develop after the interaction with the first peak.  

These dynamical features are of smaller scale than the flow that impinges on the 

westward peak.  Though the dynamical characteristics of smaller scale features are 

similar in all simulations, the characteristics of the precipitation are qualitatively and 

quantitatively different.    
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3.4. Summary of the Monthly Mean Analysis 

 

 

We applied k-means clustering to the idealized simulations for identification and 

isolation of orographic precipitation features as objects. Once the objects were defined, 

we applied variography to isolated objects and plotted their semivariograms (SVs) to 

compare and evaluate the features simulated by CAM FV and CAM Eulerian Spectral 

models in two resolutions to quantify their differences. Such quantitative analysis 

revealed the differences between CAM FV and CAM Eulerian Spectral dynamical cores 

better than a visual analysis. The level of merger of two precipitation features over the 

Coast Range and the Sierra Nevada mountains that was observed in AMIP simulations of 

CAM Eulerian Spectral T170 was not visually apparent in the double mountain setup 

(Figure 12). However the k=2 clustering quantified the relatively high level of merger for 

CAM Eulerian Spectral T170 by identifying the area between the two mountains as “rain-

area”, whereas both CAM FV 1 degree and 0.5 degrees resolutions produced a dryer 

region between the mountains (Figure 20). 

 

We were able to quantify the tendency of spectral models to spread out precipitation 

by examining the difference between k=2 and k=3 clustering results. As shown in Figure 

8, the “light rain” area for CAM Eulerian Spectral T170 for the smaller large-scale stable 

upslope feature (object 2) is bigger than that of CAM FV 0.5 degrees. This difference 

reflected to the difference between k=2 and k=3 clustering SVs (Figure 24f), which is 

larger than that of FV’s. 

 

We also evaluated the utility of SVs applied to isolated objects rather than to a whole 

precipitation field. Our synthetic data analysis showed that SV plots carry information 

about an objects magnitude, size, and location. This characteristic of SVs led us reveal 

the effect of the downwind mountain on the simulation of the precipitation due to the 

upwind mountain. The shift in the 3rd SV peak (Figure 21) between the single mountain 
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and double mountain setups is a quantitative indication of the change of size of the object 

1. We were also able to show how the double mountain setup simulated object 1 in lower 

intensity relative to the single mountain setup from the difference of the scales of the SVs 

for both setups (Figure 21). This shows the utility of SVs in quantifying the differences, 

which are not visually apparent. However, there is also an inherent ambiguity in SVs in 

terms of object-based analysis. One shortcoming is that the SVs tend to aggregate the 

objects in calculations when the objects are small and close to each other (as in the case 

of the realistic setup SVs shown in Figure 23. Another potential ambiguity is that if two 

or more characteristics of an object (e.g., size and location) are close to each other, SVs 

tend to show them on a single peak or bend, which makes the evaluation difficult 

especially for simulations with coarse resolution. Therefore a more efficient evaluation 

measure may be required to quantify the differences between objects that are similar to 

each other, and simulated by coarse resolution models.  
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CHAPTER 4: QUANTITATIVE ANALYSIS PART II: Daily Simulation 

Analysis with Classification Trees 

 

 

The quantitative analysis with k-means clustering and semivariograms (SVs) revealed 

important characteristics of the large-scale stable upslope precipitation features simulated 

by the CAM Eulerian Spectral and CAM FV models, and the differences between the 

simulations. However, a complete analysis requires evaluation and comparison of the 

small-scale features due to local evaporation and lee-side convergence as well as the grid 

scale variability. Examining the daily simulations of CAM Eulerian Spectral T85, T170 

and CAM FV 1 degree, and 0.5 degrees allows quantification of the daily evolution of the 

small-scale features. These small-scale features introduce difficulty in terms of their 

identification and isolation from the whole field due to their size and proximity to other 

large and/or small-scale features (Figure 10). K-means clustering tends to merge these 

small-scale features to the large-scale features, or aggregate the precipitation in the 

vicinity of the small-scale feature to form a larger cluster, which is not desirable from an 

object-based point of view. Therefore an ad hoc pattern recognition technique using 

classification trees is developed to have more control on the object identification step in 

order to separate each feature sensibly. The developed method also allows flexible 

thresholding depending on the characteristics of the features to be isolated. The details of 

the classification tree algorithm are given in the next section (4.1). Due to the ambiguity 

of semivariograms (SVs) in quantifying object characteristics discussed in the previous 

section, simple statistical measures (i.e., mean, variance, peak value) were used to 

compare the isolated features across all simulations. Once the features are isolated as 

objects, they are removed from the whole precipitation field and the remaining 

“background” precipitation is analyzed with SVs to compare the grid-scale variability of 

the CAM Eulerian Spectral and CAM FV simulations.  
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4.1. Method 

 

 

A classification tree (Breiman et al. 1984) algorithm was implemented for 

identification and isolation of precipitation features simulated in idealized test cases. 

Classification trees is a machine learning method for constructing prediction models from 

data by recursively partitioning the data space and fitting a simple model into each 

partition.  Given a class variable (Y) with values 1, 2, …, k, and p predictor variables (X1, 

X2, …, Xp), a classification strategy aims to construct a model to predict the class value of 

Y from values of X. The solution is a partition of the X space into k disjoint sets S1, S2, 

…, Sk, such that the predicted value of Y is j if X belongs to Sj for j = 1, 2, …, k. 

Classification trees yield rectangular sets Sj by recursively partitioning the data field on X 

(Loh 2011). 

 

The data field (in our case the precipitation rate) is partitioned into rectangular boxes 

that are called nodes. The initial field (the root node) is split into a series of parent and 

leaf nodes, where each parent node is split into two leaf nodes. The splitting is done until 

a stopping criterion is met for a leaf node in which case the leaf node is called a terminal 

node.  Both the split and the stopping decisions are made via an impurity measure. The 

measure of node impurity is based on the distribution of the observed Y values in the 

node. Our algorithm finds a subset over all X values for the split that minimizes the 

difference between the impurity of the node and the impurity of its two leaf nodes.  An 

example classification tree of a precipitation field simulated by CAM FV 0.5 degrees is 

given in Figure 25. 
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Figure 25: An example classification tree with 2 rectangular splits at day 15 total 

precipitation rate for the double mountain case, simulated by CAM FV 0.5 degrees. TH is 
threshold. 

 

Only 2 splits are shown in Figure 25 for presentation purposes. The root node is the 

initial precipitation field for the double mountain case simulated by CAM FV 0.5 

degrees. The first split is done over a longitude line, which partitions the initial field such 

that the large-scale upslope ascent and the small-scale local evaporation and lee-side 

convergence features remain in one node (westward of the split boundary), and the 

feature due to the leeward waves remain in the other (eastward of the split boundary). 

The resulting two nodes of split 1 are both leaf nodes of the root node (i.e., the 

combination of the two leaf nodes gives the root node). In this example it is assumed that 

the impurity measure (explained below) of the node containing the feature due to the 

leeward baroclinic wave meets the stopping criterion, therefore it can also be labeled as 

the terminal node. A further split is done over the node containing the large and small-

scale features; therefore it can also be labeled as the parent node. The second split is done 

over a latitude line on the parent node resulting from split 1, which separates the small-

scale features in one node, and the large-scale features on the other. Both nodes are the 
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leaf nodes of their parent node, however there are no more splits in this example so they 

can also be labeled as terminal nodes. As can be seen in Figure 25, there are two 

threshold values employed for each split (TH1 and TH2). The decision of these threshold 

values, the decision of the longitude (or latitude) line as the split boundary due to an 

impurity measure, and the decision of stopping criteria after each split are the key factors 

in the formation of such a classification tree. These factors are explained in detail by 

looking at the first split given in Figure 25. 

 

 
Figure 26: Day 15 total precipitation rate, surface geopotential (topography) for double 
mountain case, simulated by FV 0.5 degrees. The longitudinal split boundary is shown 

with the red line. 
 

In Figure 26, the whole precipitation field is the root node and is split into two leaf 

nodes at longitude 104o W. For each partition, the algorithm calculates the impurity of 

each node via a measure called Gini index: 

 

𝐺𝑖𝑛𝑖 𝑛𝑜𝑑𝑒 = 𝑝!(1− 𝑝!)!
!!!                                                                                (24)      

 

where 𝑝! is the frequency of occurrence of grid-points belonging to class y. We defined 2 

classes (Y=2) in our calculations, one being the rain (i.e., the grid-point that belongs to 

the object of interest) the other being the non-rain (i.e., any grid-point outside objects). 
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The classes and the corresponding node impurities are defined via thresholds. The 

decision of the split is done via maximizing the Qsplit parameter: 

 

𝑄𝑠𝑝𝑙𝑖𝑡 =

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑝𝑎𝑟𝑒𝑛𝑡 − !!"#$!
!!"#$%&

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑛𝑜𝑑𝑒1 + !!"#$!
!!"#$%&

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑛𝑜𝑑𝑒2    (25) 

 

where 𝑁!"#$%&, 𝑁!"#$!, 𝑁!"#$! are the total number of grid-points included in the parent 

node and subsets of leaf nodes (nodes 1 and 2) respectively. Each impurity value (i.e., the 

impurity values for parent, node1, and node2) in equation 25 is calculated by the Gini 

index given in equation 24. The split in Figure 26 is achieved via maximizing the Qsplit 

with the threshold value of 0.5 mm/day (i.e., if a grid-point value is above 0.5 mm/day it 

is considered rain class, if it is below this threshold it is considered non-rain class). After 

this first split, the algorithm continues to split each leaf node until all the resulting nodes 

become terminal, which is decided when the impurity of nodes drops below a certain 

value (i.e., until they become pure). The spilt is done sequentially in latitudes and 

longitudes (if the first split is in longitudes, then the second is in latitudes, third is in 

longitudes etc.), however this sequence can be changed depending on the user’s choice.  

 

This nature of classification trees that allow step-by-step splitting of the root node 

into terminal leaf nodes allows the resetting of the threshold value according to the 

characteristics of each parent node. In Figure 26, node 1 includes two types of features 

discussed in chapter 2, namely the large-scale upslope ascent feature and the small-scale 

feature due to local evaporation and lee-side convergence, whereas node 2 includes the 

feature due to the leeward waves. These features are different in their manifestations, 

characteristics and evolutions in time, therefore they should not be attempted to be 

classified with the same threshold.  The algorithm objectively calculates the threshold 

before each split by looking at the statistics of the parent node to be split. In this study the 

threshold is defined by adding half of the standard deviation of the node to the mean 
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value of the node. This measure can be changed according to the nature of the problem, 

however in our case this calculation gave a sensible identification of classes.  

 

As indicated previously, the decision tree algorithm partitions the initial field into 

rectangular boxes. This introduces a limitation to our problem since the precipitation 

features are not rectangular. Depending on the threshold value, the algorithm may split a 

precipitation feature into more than one rectangle by chopping off the edges of the curved 

feature. A post processing was conducted to overcome the issue where we reconstructed 

the split features -if any- into the original form. We used information from the 

topography field for that purpose. The qualitative analysis (Chapter 2) gave information 

about the locations of each type of feature, therefore the terminal nodes, which are 

exactly over the peak of mountains are aggregated to form the small-scale features due to 

local evaporation and lee-side convergence. The other two types of features are formed in 

the same manner by measuring the node distances to mountain peaks. This flexibility of 

the algorithm also allows the usage of other information (e.g. moisture flux convergence, 

winds) if needed.    

 

The identification and extraction of the features with the classification tree algorithm 

was applied to daily precipitation results for a total model run time of 30 days. Once the 

features were extracted, some simple statistical analyses (e.g. mean values, peak values, 

variances) were conducted and the results were compared for all four simulations which 

are discussed in the next section.  

 

4.2. Statistical Comparison of Isolated Features (Objects) 

 

 

The classification tree algorithm is applied to the daily simulations of the double 

mountain and the realistic setups of the idealized simulations. Our comparison focuses on 

the large-scale upslope ascent features and the small-scale features due to local 
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evaporation and lee-side convergence simulated by CAM FV 1 and 0.5 degrees, and 

CAM Eulerian Spectral T85 and T170 triangular truncation resolutions.  

 

 

 
Figure 27: Day 24 total precipitation rate, surface geopotential (topography) for the 

double mountain case, simulated by (a) CAM FV 0.5 degrees. The isolated large-scale 
stable upslope ascent feature on the windward mountain and the small-scale feature on 

the leeward mountain are shown in b and c respectively. 
 

An example of how the algorithm partitions the precipitation field simulated by CAM 

FV 0.5 degrees for the double mountain setup is given in Figure 27. The algorithm was 

able to identify and isolate the large-scale upslope ascent feature (Figure 27b) and the 

small-scale local evaporation and lee-side convergence feature (Figure 27c). The large-

scale feature in front of the windward mountain and the small-scale feature on the 

leeward mountain are selected to be included in our evaluation. The analysis on the large-

scale feature in front of the leeward mountain and the small-scale feature on the 

windward mountain (not shown) produced similar results to those included in this study; 

therefore they are excluded to avoid repetitive results. The algorithm was also applied to 

CAM FV 1 degree and the CAM Eulerian Spectral T85 and T170 simulations of the 

double mountain case and the precipitation features were successfully isolated (not 

shown).  Then the peak value, the mean value and the variance for the isolated features 

were calculated within the enclosed object boundaries for each day over 30 days of 

simulation time.  
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Figure 28: The peak value, mean value and the variance for the large-scale stable 
upslope ascent feature on the windward mountain (a,c,e), and the small-scale local 

evaporation and lee-side convergence feature on the leeward mountain (b,d,f) for the 
double mountain setup, simulated by all four models.    

  

The results for the large-scale stable upslope ascent feature (Figures 28a, 28c, and 

28e) show close agreement between CAM FV 1 and 0.5 degrees, and the CAM Eulerian 

Spectral T170 models, however there is a disagreement for CAM Eulerian Spectral T85 

results (the dotted line). CAM Eulerian Spectral T85 simulated this large-scale feature 

with lower intensity, which is in agreement with our qualitative analysis. Figure 28e 

shows that CAM Eulerian Spectral T85 also produced lower values of variance whereas 

the other simulations exhibit a peak variance in the beginning and between day 5 and day 
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10. Note that the variance is calculated over the values within the boundaries of the 

objects determined by the classification tree algorithm; therefore low values of variance 

indicate a smoother feature without a distinct peak of precipitation. This peak 

precipitation (therefore higher values of variance) is expected for a stable upslope 

precipitation feature given the nature of such features (Roe 2005), where there is a peak 

precipitation value together with lower values (Figure 3). The variance results also show 

how both CAM FV resolutions (dashed lines) agree closely with each other yielding 

slightly higher values than that of CAM Eulerian Spectral T170. The results start to 

converge for all models after day 15 for the large-scale stable upslope feature as it loses 

intensity and the amount of rain produced is reduced.   

 

The agreement of model simulations for the large-scale upslope ascent feature is not 

observed for the small-scale local evaporation and lee-side convergence feature (Figures 

28b, 28d, and 28f). The onset time of this small-scale feature is different for all four 

simulations (i.e., day 13 for CAM Eulerian Spectral T170, day 15 for CAM FV 0.5 

degrees, day 24 for CAM FV 1 degree). CAM Eulerian Spectral T85 did not simulate this 

feature within the 30-day simulation time, however a 45-day run was made and it was 

observed that spectral T85 simulated this feature starting at day 37. Except from the 

CAM Eulerian Spectral T170, the onset time of this type of feature shows a correlation 

with model resolution (i.e., the higher the resolution, the earlier the onset). CAM Eulerian 

Spectral T170, however, starts simulating this object the earliest, but with an erratic 

behavior. It starts with low peak and variance values (Figures 28b and 28f), with an 

abrupt increase afterwards and an oscillatory behavior until the end of the simulation with 

significantly higher values compared to both CAM FV resolutions. This result agrees 

with the over-representation of precipitation by spectral models shown by Williamson 

and Rasch (1994) given in section 1.2. On the other hand, CAM FV 1 and 0.5 degrees 

resolution simulations exhibit relatively stable behavior, keeping similar peak, mean and 

variance values throughout the simulations. The mean values (Figure 28d) for CAM 

Eulerian Spectral T170 are stable throughout the simulation time. The mean values are 
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calculated such that the precipitation rate is summed over all grid points and divided by 

the number of grid points within the boundaries of the object. A qualitative examination 

of the isolated small-scale local evaporation and lee-side convergence features shows that 

CAM Eulerian Spectral T170 simulates these features over a larger spatial extent, 

therefore the mean values of CAM Eulerian Spectral T170 are comparable to CAM FV 

0.5 degrees even though CAM Eulerian Spectral T170 produces higher peak precipitation 

rates. High variance values (i.e., high and low values enclosed within the object) for 

CAM Eulerian Spectral T170 also support the agreement in the mean values between 

CAM Eulerian Spectral and CAM FV.  

 

The results shown in Figure 28 give a quantitative picture of how resolvable scales of 

precipitation features affect the simulation performance of the CAM FV and CAM 

Eulerian Spectral dynamical cores. The results for the more realistic idealized setup with 

smaller scales in the horizontal give a better picture of how these dynamical cores 

simulate both large-scale and small-scale objects. 

 



	
   85 

 

Figure 29: Day 20 total precipitation rate (mm/day), surface geopotential (topography) 
for the realistic case, simulated by (a) CAM Eulerian Spectral T85, (b) CAM Eulerian 

Spectral T170, (c) CAM FV 1 degree, and (d) CAM FV 0.5 degrees. Surface geopotential 
contours are 500, 2.000, 5.000 and 11.000 m2s-2, with the peak contour at the interior of 

the mountain. 
 

Figure 29 shows the day 20 total precipitation rate simulated by the CAM Eulerian 

Spectral T85 and T170, CAM FV 1 degree and FV 0.5 degrees for the realistic idealized 

setup. As discussed in chapter 2, there are significant differences in the simulated 

precipitation between CAM Eulerian Spectral and CAM FV models due to the 

topography filter in CAM Eulerian Spectral models and the smaller horizontal scales of 

mountains in the realistic case. We focus on the large-scale upslope ascent and the small-

scale local evaporation and lee-side convergence features simulated on the leeward 

mountain by finer resolution simulations (CAM Eulerian Spectral T170 and CAM FV 0.5 

degrees). As seen in Figures 29b and 29d, the precipitation features simulated on the 

leeward mountain creates a complex structure unlike the single and double mountain 

setups where these features are not merged due to the large size and separation of 
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mountains. The large-scale and the small-scale features almost merge into each other 

over the leeward mountain in the realistic case, which makes it harder to distinguish and 

isolate these different features separately. However, the classification tree algorithm was 

able to isolate each feature successfully by the precipitation value patterns, without the 

need of additional information from other fields such as winds or moisture flux 

convergence. 

 

 

Figure 30: Day 20 moisture flux convergence (10-4 kg m-2s-1) by (a) CAM FV 0.5 
degrees, (b) CAM Eulerian Spectral T170 and their related precipitation (mm/day) 

objects (c, d) isolated by the classification tree algorithm. Surface geopotential contours 
are 500, 2.000, 5.000 and 11.000 m2s-2, with the peak contour at the interior of the 

mountain. 
 

Figure 30 shows the precipitation features objectively isolated by the classification 

tree algorithm for CAM FV 0.5 degrees and CAM Eulerian Spectral T170 (Figures 30c 

and 30d). The corresponding moisture flux convergence (MFC) plots (Figures 30a and 

30b) shows the overlap of the isolated features with the positive MFC areas. The vertical 
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pressure velocities (OMEGA) for the domain given in Figure 30 (not shown) indicate no 

overlap of updrafts with the isolated precipitation features. Therefore, these features are 

not related to stable upslope ascent but rather the local evaporation and lee-side 

convergence features the classification tree algorithm isolated from the whole 

precipitation field. The peak and the mean values as well as the variances are calculated 

for these isolated features (Figure 31). 

 

 

Figure 31: (a) The peak value, (b) mean value, and (c) the variance for the small-scale 
local evaporation and lee-side convergence features for the realistic setup shown in 

Figure 30, simulated by CAM FV 0.5 degrees and CAM Eulerian Spectral T170.     
 

In this case there is better agreement between the CAM FV 0.5 degrees and CAM 

Eulerian Spectral T170 simulated small-scale local evaporation and lee-side convergence 

features compared to their analogues in the double mountain setup (Figures 28b, 28d, and 

28f). In the realistic case, the onset of the small-scale feature is earlier for CAM FV 0.5 

degrees, which was not the case for double mountain setup. This strengthens the 

argument about the correlation between the resolution and the time of the onset 

mentioned previously. The mean values for CAM FV 0.5 degrees are higher than that of 

CAM Eulerian Spectral T170 (Figure 31b), which is also not the case for the double 

mountain setup (Figure 28d). However, in the realistic case the peak, mean values and the 

variance for CAM Eulerian Spectral T170 exhibit an abrupt increase right after the onset 

of the small-scale feature suggesting an initial instability. The quantitative analysis given 
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in Figure 31 shows that, unlike in the double mountain case, both CAM Eulerian Spectral 

T170 and CAM FV 0.5 degrees simulated similar small-scale local evaporation and lee-

side convergence features. The biggest difference is at the spatial extent where CAM 

Eulerian Spectral T170 bulged the feature due to the shape of topography (Figure 30d). 

These results suggest that it is not only the horizontal spatial scales that contribute to the 

performance of a model, because even though the realistic case has relatively smaller 

horizontal scales, the simulations of the fine resolution CAM FV and CAM Eulerian 

Spectral models for this case are more similar (Figure 31). However in the realistic case, 

the height of the leeward mountain is doubled (1500 m for the double mountain case, 

3000 m for the realistic case) and this increase in the vertical scales have affected the 

CAM Eulerian Spectral T170 simulation of the small-scale features.  

 

Better agreement between the results of CAM Eulerian Spectral T170 and CAM FV 

0.5 simulations for the realistic setup small-scale features shows that there is a higher 

amount of numerical noise introduced by CAM Eulerian Spectral T170 for the double 

mountain setup small-scale features given the erratic behavior of that schemes results 

(Figures 28b, 28d, and 28f). A relatively lower MFC is observed at the peak of the 

leeward mountain of the realistic case (Figure 31b) than that of the double mountain case 

(not shown) for CAM Eulerian Spectral T170. Therefore the amount of moisture is also 

effective in the simulation of precipitation for spectral models where a higher amount of 

moisture within a smaller area forced CAM Eulerian Spectral T170 to produce unrealistic 

simulations.  In chapter 2, we showed that these small-scale features are influenced by the 

constant sea surface temperature (SST) set in the initial conditions of the idealized setups. 

Therefore we conducted an additional model run with reduced SST value of 287 K 

(instead of 288 K which is set for all the experiments presented so far) for the double 

mountain setup to investigate its effect on the simulation of the small-scale local 

evaporation and lee-side convergence features by CAM FV 0.5 degrees and CAM 

Eulerian Spectral T170.     
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Figure 32: The peak value, and the variance difference (288 K – 287 K SST runs) for 
(a,c) the large-scale stable upslope ascent feature on the windward mountain, and (b,d) 

the small-scale local evaporation and lee-side convergence feature on the leeward 
mountain for the double mountain setup, simulated by CAM Eulerian Spectral T170 and 

CAM FV 0.5 degrees.        
 

Figure 32 shows the daily difference between the 288 K SST minus the 287 K SST 

run peak values and differences for large-scale stable upslope ascent feature (Figures 32a 

and 32c) and the small-scale local evaporation and lee-side convergence feature (Figures 

32b and 32d) simulated by CAM Eulerian Spectral T170 and CAM FV 0.5 degrees for 

the double mountain setup. The large-scale feature is minimally affected by the change in 

SST for both CAM Eulerian Spectral and CAM FV models since this feature is 

manifested through airflow over (and around) the mountains rather than surface 

temperature. However, the affect of the SST change is apparent for CAM Eulerian 

Spectral T170 for the small-scale feature (Figures 32b and 32d). The positive difference 

in both peak and variance for CAM Eulerian Spectral T170 is significant especially after 

the onset of the small-scale feature, with continued oscillations throughout the end of the 

simulation. The difference for CAM FV 0.5 degrees is relatively lower and more stable.  
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In order to investigate the grid-scale behavior in the double mountain case, we 

subtracted the isolated features from the whole field of precipitation (i.e., 0-70o North, 

10-120o East) simulated by the CAM FV and CAM Eulerian Spectral models. 

Semivariograms (SVs) are employed for this comparison to analyze the spatial continuity 

for the remaining irregularly spaced grid points. Grid values below 0.01 mm/day were 

excluded from the analysis. Examples of the fields for CAM FV 0.5 degrees and CAM 

Eulerian Spectral T170 for 6th day of the simulation with 288K SST, and their 

corresponding omni-directional SVs are given in Figure 33. 

 

 

Figure 33: The remaining precipitation rate (mm/day) fields after subtracting the 
isolated features and grid points with values below 0.01 mm/day for (a) CAM Eulerian 

Spectral T170, and (b) CAM FV 0.5 degrees. Both plots are from the 6th day simulation of 
the double mountain setup with SST = 288 K. The omni-directional SVs (mm/day)2 for 
both simulations are given in (c). Surface geopotential contours are 500, 2.000, 5.000 

and 11.000 m2s-2, with the peak contour at the interior of the mountain. 
 

The separation distance intervals (i.e., the lag classes explained in section 3.1.2) over 

which the SVs (Figure 33c) are calculated such that they are increments of 55 km for 

CAM FV 0.5 degrees and 70 km for CAM Eulerian Spectral T170, which are the 

respective grid sizes for each dynamical core. There is a close agreement between hhe 

SVs of CAM FV 0.5 degrees and CAM Eulerian Spectral T170 in Figure 33. This 

agreement is due to the similarity of the remaining precipitation fields (Figures 33a and 
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33b).  The SVs of the two dynamical cores start to depart from each other as the 

simulation proceeds after day 15. However, the grid scale oscillatory behavior of the 

CAM Eulerian Spectral T170 observed in Figure 33c is consistent throughout the 30-day 

simulation, whereas the SVs of CAM FV 0.5 degrees is smooth indicating higher spatial 

continuity. This contrast between the two dynamical cores indicates the systematic grid-

scale noise introduced by CAM Eulerian Spectral models. In particular, The SV values at 

~70 km for CAM Eulerian Spectral T170 are consistently higher than the SV values at 

~55 km for CAM FV 0.5 degrees (12.0 x 10-6 and 28.4 x 10-6 mm/day-2 for CAM FV and 

CAM Eulerian Spectral models respectively. This means higher variability of 

precipitation values for spectral model on the grid-scale.  

 

4.3. Summary of the Daily Simulation Analysis 

 

 

Daily simulations of CAM Eulerian Spectral T170 and T85, CAM FV 1 degree and 

0.5 degrees resolutions for the double mountain and the realistic setups were analyzed in 

this section. A classification tree algorithm that allows flexible thresholding was 

implemented to identify and isolate the small-scale precipitation features (as well as the 

large-scale features). The isolated features were compared by simple statistics across all 

simulations. 

 

The classification tree algorithm proved successful in sensible isolation of 

precipitation features even within a complex precipitation field as observed in the 

realistic case results. The relatively small spatial scales of the mountains in the realistic 

case led to the manifestation of different types of precipitation features over a smaller 

area. These features merged to form a complex and highly structured field, which makes 

it difficult to observe each type of feature visually. However, the classification tree 



	
   92 

algorithm was able to extract different types of features from this complex field by 

detecting the patterns of the precipitation values. 

 

The quantitative results showed different behavior between CAM FV and CAM 

Eulerian Spectral models for different precipitation features. The close agreement 

between CAM Eulerian Spectral T170 and the CAM FV models at the two resolutions in 

the case of large-scale stable upslope ascent features was not observed for the small-scale 

features for the double mountain setup. The disagreement of the coarse resolution CAM 

Eulerian Spectral model (T85) was already discussed in chapter 2 where it is found out 

that the spectral filtering of the topography is the primary cause of this disagreement. 

However, the disagreement of the fine resolution models (i.e., CAM Eulerian Spectral 

T170 and CAM FV 0.5 degrees) shown in Figures 28b and 28f is due to the amount of 

moisture introduced by surface fluxes of the simple-physics parameterization. This is 

supported by the results of the realistic case where there is less local evaporation on the 

relatively high leeward mountain leading to better agreement in simulation of the small-

scale features by CAM Eulerian Spectral T170 and CAM FV 0.5 degrees (Figure 31). 

The experiments with decreased SST (Figure 32) also show how the increased moisture 

input from the surface affect the simulation of the small-scale features by CAM Eulerian 

Spectral T170 significantly more than CAM FV 0.5 degrees. The simulation of the large-

scale features was less affected by the change in SST since the mechanism responsible 

for their manifestation (stable upslope ascent) is related to the upward movement of air 

rather than local surface fluxes. Therefore it can be concluded that there is numerical 

noise introduced by the spectral transform scheme in the case of the small-scale features 

for the double mountain setup. When the simulations are physical with less numerical 

noise (as in the case of the realistic setup in this study), it is observed that there is a 

correlation between the resolution and the onset time of the small-scale features, i.e., the 

higher the resolution, the earlier the onset. 
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Finally, the isolated objects were removed from the field and semivariograms were 

calculated to the remaining irregularly spaced grids to quantify the grid-scale variability 

of both CAM Eulerian Spectral T170 and CAM FV 0.5 degrees. It is observed (Figure 

33c) that there is systematic numerical noise introduced by the spectral transform method 

at the grid-scale, which adds to the disagreement of CAM FV and CAM Eulerian 

Spectral models in the case of both large and small-scale precipitation features.   
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CHAPTER 5: CONCLUSIONS 

 

 

The primary objective of this dissertation is to help improve the simulation of future 

climate by GCMs with better understanding and quantification of the particular biases 

these models introduce. Due to the highly complex nature of the earth’s climate system, 

its simulation with mathematical models is equally complicated with many different 

subcomponents responsible for different natural phenomena. The output of such a system 

is produced by the combination of these subcomponents, therefore any bias in the output, 

systematic or not, have contributions from such combination. This nature of the state-of-

the-art climate models makes it difficult to pinpoint the origins of any particular bias and 

renders the problem of understanding their causes and effects a complicated task. This 

study undertakes that task by breaking down the problem into simpler parts to identify, 

isolate and analyze the particular bias. Precipitation rate is chosen as the variable of 

interest since it is problematic to simulate by GCMs due to its highly discontinuous 

nature and complex underlying physics, as well as its importance in the climate system. 

To further narrow the focus on the bias in simulation of precipitation, local scales were 

selected to analyze with a focus on precipitation over mountains. In summary, the 

approach of this study involves analyzing and quantifying the behavior of simulated 

orographic precipitation and with the aid of the knowledge about the GCM 

subcomponent(s) that are responsible for its simulation, understand the nature of the 

associated bias. Idealized topographical setups using the simple-physics parameterization 

suite (Reed and Jablonowski 2012) were created to analyze the different types of bias in a 

simplified environment. Two different dynamical cores (FV and spectral) within the 

NCAR CAM 5.0 were compared in terms of their simulation of orographic precipitation.  
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An object-based approach was developed and implemented to identify the bias 

introduced by the dynamical core with a focus on its interaction with physical 

parameterizations, and the evolution of bias with changing resolution. As the first step of 

the object-based approach, a local precipitation feature (study feature) that is consistently 

simulated differently by CAM Eulerian Spectral and CAM FV models within AMIP 

simulations was selected (Figure 6). As the second step of the object-based approach, the 

selected feature was reproduced in a simplified environment resembling the topographic 

characteristics of the study domain (i.e., Coast Range and Sierra-Nevada) coupling 

spectral and FV dynamical cores in CAM 5.0 (Neale et al. 2010) with the simple-physics 

parameterization. The experimental model runs revealed that the models also produce 

small-scale features as well as the large-scale features, which are the selected study 

features in the first. Both type of features are products of different physical and 

dynamical phenomena, therefore different model components are responsible for their 

simulation and the bias associated with them. The third step of the object-based approach 

is implemented to quantify and understand these biases. Both large and small-scale 

features are identified and isolated using two different methods: a conventional method 

(k-means clustering) on monthly mean results, and a non-conventional algorithm using 

classification trees on daily results. After the identification and isolation of the features, 

they were matched with their analogues between models and quantitatively compared 

using a geostatistical method (variography), and simple statistics (e.g., peak, mean and 

variance values). In the remainder of this section, the utility of these methods in terms of 

GCM bias identification is discussed and then the findings of the particular biases 

identified are presented.   

 

As explained in the introduction chapter, one of the objectives of this study is to 

develop an object-based quantitative method to identify biases in GCMs, which can be 

generically applicable to GCM output. The previously developed object-based methods 

suffered from the disadvantage of user-defined threshold limitation for the object 

‘identification’ step, and the loss of information due to averaging with statistical 
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comparison using measures such as root mean squared error (RMSE) and correlation 

coefficient in the subsequent object ‘evaluation’ step. To address and remedy the user-

defined threshold limitation, two different methods, namely k-means clustering and 

classification trees were implemented for object identification. Both methods allow 

objective and flexible thresholding to identify and isolate features using the statistical 

characteristics of the field of interest. However, k-means clustering has three main 

disadvantages when compared to classification trees in identification of features 

simulated by GCMs. One of the disadvantages is the non-uniqueness of the k-means 

clustering solutions. This limitation has not been a significant problem in the scope of 

this study since the features of the idealized test cases to be isolated were distinct and 

mostly separated from each other. However, in the case of a smoother field (e.g., winds) 

the lack of unique solutions will result in different feature (object) boundaries (This has 

been observed when k-means clustering was applied to a potential vorticity field as a side 

study). One remedy to this problem in clustering is to make a number of calculations to 

form the clusters and choose the most common solution. However this will introduce 

significant amount of computational expense that will make the quantification effort 

unfeasible especially in the case of large amounts of data produced by GCMs. Another 

disadvantage of k-means clustering is its tendency to agglomerate the grids of similar 

values close to each other to form a single cluster. This is an inherent characteristic of the 

clustering procedure, however there are situations where it is undesirable in the case of 

simulated climate variables such as the small-scale feature shown in Figure 30. The 

small-scale feature due to local evaporation and lee-side convergence in Figure 30 is not 

completely separated from the precipitation surrounding it, so k-means clustering 

produced a larger object boundary, which included the surrounding grid-points (not 

shown). However, the classification tree algorithm was able to isolate the values related 

to the positive moisture flux values and extract the corresponding feature from the 

surrounding precipitation by using the impurity measure of precipitation values. The final 

limitation that k-means clustering has is the lack of flexibility to use information from 

other fields (e.g., topography, winds etc.) when identifying object boundaries. It is hard to 
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identify such boundaries especially when dealing with smoother fields like temperature 

and winds, therefore using information from other variables that are responsible for the 

spatial organization of the variable of interest is required. One disadvantage of 

classification trees, which is the ability of partitioning the field only in rectangles, was 

compensated by the introduction of information from the topography. Precipitation 

features of the idealized test cases (and in general) are circular in their spatial orientation, 

thus the classification trees usually isolate the interior rectangular area and remove the 

edges. The removed edges were then added to the rectangles to reconstruct the feature 

using their distance to mountain peaks.     

    

Semivariograms, geostatistical measures for spatial continuity of a regionalized 

variable, were employed when comparing identified objects between CAM Eulerian 

Spectral and CAM FV dynamical cores. The application on synthetically created data 

showed that semivariograms carry information about an objects magnitude, size and 

location, which makes it a superior measure of evaluation to the traditional grid-point-by-

grid-point comparison methods. Semivariograms simplifies the analysis needed to 

evaluate objects by indicating information on a single plot, thereby eliminating the need 

for separate analysis on size, shape, location, magnitude etc. Application of 

semivariograms on large-scale upslope ascent precipitation features revealed important 

information about the behavior of these features (e.g., the effect of the circulation 

between two mountains on the feature in front of the windward mountain, the shift in the 

location of features etc.). However, semivariograms have limitations due to inherent 

averaging in their calculation. The method tends to show signature of similar spatial 

characteristics of an object (such as similar distances of an objects size an location) with 

the same peak or bend on a semivariogram plot. This method is also ineffective on 

showing characteristics of small-scale features close to each other, since it tends to treat 

them as one single-large scale object. Therefore, the usage of this method is 

recommended preferably on large-scale features with apparent characteristics to eliminate 

any possible ambiguity in results. 
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The results of this study suggest that an efficient and informative study about the 

biases produced by GCMs should involve daily (or even hourly) output (rather than 

monthly mean) analysis over local scales. Small-scale features such as the ones identified 

due to local-evaporation carry significant information about the biases originating by 

their corresponding physical parameterizations and numerical schemes. These features 

are lost in monthly mean plots due to averaging (Figure 9). This is also important for 

analyzing “local” scales where significant bias can manifest in GCM simulations as 

explained in the introduction part. Our study showed that analyzing local features rather 

than a whole precipitation field gives more accurate insight about the nature of bias. A 

good example of this is shown in Figure 32, where two different types of features over 

the mountains of the same model run (double mountain case) show significant difference 

in their evolution over time due to the bias introduced for the small-scale feature. The 

small-scale feature has a completely different mechanism of manifestation (i.e., local 

evaporation and lee-side convergence), and isolating these features separately gives 

insight about the bias related to that mechanism, how it is parameterized, and how the 

parameterization is coupled with dynamics. 

 

In summary, the object-based approach with focus on local phenomena let us quantify 

the differences between CAM Eulerian Spectral and CAM FV models in simulation of 

orographic precipitation and evaluate how this difference evolves with increased 

resolution. We were able to understand the causes of the difference of CAM FV and 

CAM Eulerian Spectral models in simulation of the study features (Figure 6). One 

prominent conclusion of this study is that the resolvable spatial scales of precipitation 

features to be simulated play a crucial role in how they will be simulated by GCMs. This 

is naturally related to the scales of the mountains involved in the simulation. Throughout 

the discussion of the results, it has been clear that the simulation of large-scale features 

due to stable upslope ascent was in agreement between CAM Eulerian Spectral and CAM 

FV model with the exception of CAM Eulerian Spectral T85. However the quantitative 
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characteristics of the simulated small-scale features by CAM FV and CAM Eulerian 

Spectral models did not converge. The reasons for this difference, or in other words, the 

reasons why the CAM Eulerian Spectral models failed to simulate precipitation features 

in agreement with CAM FV models and observations as seen in the AMIP runs (Figure 

6) can be summarized under 3 categories: 

 

1. Bias due to spectral filtering of the topography 

2. Bias in small-scale phenomena due to spectral transform method 

3. Grid scale variability (noise) due to spectral transform method       

 

Bias due to spectral filtering of the topography in the CAM Eulerian Spectral 

Transform dynamical core is a global source of bias, i.e., it has an effect on any type of 

simulated feature especially if the feature is over a topographic structure. In spectral 

models, filtering is applied to topography to reduce the Gibbs oscillations, which are 

artificial waves inherent to Fourier transforms over steep gradients (such as high 

mountains). To eliminate (or reduce) these numerical artifacts, the topography is 

smoothed via filters. A convolution kernel is applied to the harmonic coefficients for the 

spectral representation of orography and the high-wavenumber part of the spectrum is 

damped. The convolution kernel for the triangular truncation in the CAM Eulerian 

Spectral model is: 

 

𝜎!! = 1− !
!.!!

!
          (26)    

 

where 𝜎 is the kernel function which is multiplied by harmonic coefficients and is only a 

function of 𝑛 which is the total wavenumber of the spherical harmonics. 𝑁 is the 

truncation parameter (i.e., for the case of T85 spectral truncation, 𝑁 = 85) and 𝑚 is the 

zonal wavenumber. This is a two dimensional filter where the above kernel is applied to 

the zonal (Fourier) and the meridional (Legendre) coefficients equally. It is an effective 
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filter that leads to a strong smoothing, which does not guarantee shape preservation of the 

horizontal features (Navarra et al. 1994). The effect of the strong smoothing is observed 

in this study especially in coarse resolution (T85) as shown in Figure 14. Our study 

confirms this effect as the primary reason for the merger of two large-scale upslope 

ascent precipitation features simulated over the Coast Range and Sierra Nevada by the 

spectral dynamical core (Figure 6). The merger was also quantified by k-means clustering 

(Figure 20). One remedy to this situation is the application of a less aggressive filter 

using a kernel that will produce less severe dampening with more “tunable” parameters. 

One candidate for such filter is an exponential filter, which is designed empirically 

(therefore known also as pseudo-differential operators) in the form: 

 

𝜎!! = 𝑒𝑥𝑝 −𝛼 𝑛 𝑁 !!        (27) 

 

where 𝛼 = 32 and 𝛽 = 2, 4, 8 are usually used (Navarra et al. 1994). A non-uniform 

smoothing spline combined with a zonal filter is also shown to improve the simulation of 

orographic precipitation by spectral models (Lindberg and Broccoli 1996). 

 

The right choice of the spectral filtering method of topography is not straightforward 

due to the dependence of the simulations on the spatial scales of topography. We were 

able to show that dependence by running the CAM 5.0 spectral dynamical core without 

the filtering with the idealized topographies. The removal of the filtering improved the 

simulation of precipitation in the double mountain case (Figure 13), and reduced the level 

of merger of the two large-scale stable upslope ascent features over the mountains. 

However the removal of filtering exacerbated the results in the realistic case where the 

leeward mountain height is doubled, thus introducing a much bigger gradient. Therefore 

the most efficient method to smooth the topography should be variable depending on the 

local gradient. 
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Bias in small-scale phenomena due to spectral transform method is a local source 

of bias that affects relatively small scales, and in the case of precipitation, when there are 

high amounts of rain introduced by physical parameterizations. The procedure for the 

coupling of dynamics and physics in CAM 5.0 plays an important role in the 

manifestation of this type of bias in spectral dynamical core. In CAM 5.0, there are two 

types of coupling strategies, namely time split and process split. In the time split 

coupling, dynamics and physics are calculated sequentially, each based on the state 

produced by other. Whereas in the process split coupling the calculations of dynamics 

and physics are both based on the same past state (Neale et al. 2010). Between the two 

coupling strategies, process split is more suitable for spectral transform models (and it is 

the default in CAM 5.0) since the time split requires extra spectral transforms to convert 

the momentum variables provided by the physical parameterizations. The formulation of 

the CAM spectral model is such that every physical process is calculated and updated on 

the Gaussian grid, and then their contribution to the dynamics is transformed to spectral 

space. This procedure creates problems when dealing with discontinuous physical 

processes that occur in small-scale such as the ones highlighted in this study (small-scale 

features in Figure 10). 

 

As indicated throughout this dissertation and quantified in Figure 32, the 

manifestation of the small-scale features due to local evaporation and lee-side 

convergence have significant contribution from the surface flux parameterization of the 

simple physics suite and a key component of this evaporation is the SST value of the 

aquaplanet setting. Once the Gaussian grid precipitation value is updated by surface flux 

parameterizations, it introduces a relatively high value of precipitation on the grid level 

and causes a “jump” between the previous and current time states. This jump is not 

handled accurately with the spectral transform method and numerical noise is introduced. 

This noise is clearly observed in Figure 28b and Figure 28f where we quantified the 

initial oscillatory behavior of double mountain test case small-scale feature simulated by 

the CAM Eulerian Spectral model immediately after its genesis. As the simulation 
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proceeds, the oscillations become less severe since the grid values become similar 

between the previous and current time states and consequently the spectral transform 

method produces lesser numerical noise. 

 

However, we also showed that such noise is not as prominent for the same type of 

feature in the realistic test case (Figure 31). This is also related to the interaction between 

physical parameterizations and dynamics. The planetary boundary layer (PBL) diffusion 

in simple-physics suite is parameterized such that the physical processes below 850 hPa 

are affected by it (Reed and Jablonowski 2012). In the double mountain case for the 

spectral model, the peak mountain height is below 850 hPa (the smoothing of the 

topography by filtering also contributes to that) therefore the small-scale scale features 

simulated over the mountain are affected by PBL parameterization. Whereas the leeward 

mountain in the realistic case (where the small-scale features occur) is sufficiently higher 

so that the PBL parameterization doesn’t have any effect. Therefore, there is more 

contribution from physics in Gaussian grid level in the double mountain case, which 

results in considerable amount of bias when the values are transformed to the spectral 

space.    

 

Grid scale variability (noise) due to spectral transform method is a global source of 

bias associated with spectral transform methods. As shown over the background 

precipitation field (Figure 33) there is inherent variability over grid-scale values of 

precipitation resulting from the spectral harmonics. The semivariogram of CAM FV 0.5 

degrees resolution in Figure 33 is smooth, which indicates higher spatial continuity in the 

grid-scale as opposed to the discontinuity apparent in CAM Eulerian Spectral T170 

simulation (i.e., wiggles in the semivariogram of CAM Eulerian Spectral T170). This 

type of bias is not as significant as the ones introduced by filtering of the topography and 

the coupling of physics and dynamics. However, it affects any type of variable, whether 

highly discontinuous (e.g., precipitation) or smooth (e.g., temperature) and it has to be 
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taken into account when evaluating models that make use of spectral transformations 

such as the spectral element dynamical core.   

    

Finally, we place this work in context with some of the previous work on effective 

resolution of dynamical cores. Williamson (2008) examined the two dynamical cores 

used here to establish equivalent resolutions.  Williamson used an aquaplanet 

configuration and examined zonal and global means of diagnostics relevant to 

momentum, energy, moist physics and the transport of those parameters.  Williamson 

(2008) concludes that CAM FV 1 degree (0.5 degree) and CAM Eulerian Spectral T85 

(T170) are equivalent.  With the introduction of simple topography in our study, we see 

significant quantitative and qualitative differences in the spatial patterns of precipitation 

at resolutions that Williamson (2008) determined to be equivalent.  This suggests that 

topographic precipitation amplifies differences in the schemes that were not discernable 

in Williamson’s (2008) analysis. 

 

Kent et al. (2014) explored the effective resolution of numerical algorithms used in 

dynamical cores of general circulation models.  In most models the dynamics interact 

with the physics at the scale of the grid.  However, at the scale of the grid, dynamical 

variables are far below the resolved scales of the numerical schemes.  There is a range of 

scales between the grid size and a number of grid boxes where the dynamical features are 

not fully resolved.  The suggestion from these results is that as the dynamical variables 

span the scales from fully resolved to partially resolved and to the grid scale, that the 

physics, which are acting at the grid scale, are not treated in the same way by the 

dynamical cores.  Hence the end result of the coupling between the dynamics and 

physics, e.g. the precipitation, takes on different characteristics for different dynamical 

cores.  This will be explored more fully in future studies. 
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