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CHAPTER I

Introduction

The word “network” has become pervasive in our society. The average person

understands that networks are found almost everywhere and will immediately pro-

duce such examples as the internet or social networks like Facebook. Pressed a little

harder, people can come up with other examples, like the power grid, food webs,

and cell phone networks. What most people do not realize however, is that while

these networks are different, there is a single set of mathematics that scientists use

to describe all of them that unifies them together as networks. This combined un-

derstanding is the result of discovering a common thread through years of work from

scientists in unrelated fields studying seemingly unrelated topics; each of the examples

above and in fact all networks stem from the same building blocks, a set of objects

(vertices) and connections between them (edges). The result of this perspective is a

powerful tool with far-ranging applications.

The first chapter of this dissertation begins by providing background into the

subject of networks. Section 1.1 discusses the many histories of networks and how

they came together. This leads to section 1.2, which talks about why physicists

are interested in networks, their main contributions to the field, and how they are

necessary for the continued success in the modern world of networks. Section 1.3

discusses all of the network basics relevant to the dissertation. This introductory
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chapter wraps up in section 1.4 with the novel contributions of this dissertation to

network science and a summary of the main chapters of the dissertation.

1.1 Historical interest

The first interest in networks developed from the mathematical study of graph

theory. One of the best known early problems that sparked interest in the field came

from Leonhard Euler’s 1735 study of bridges in the Prussian city of Königsberg. The

problem posed was this: how could a person cross each of the seven bridges in the city,

situated over the Pregel River, without crossing the same bridge twice? This problem

is demonstrated in figure 1.1a. Euler’s genius was to acknowledge that the shapes

of the landmasses were irrelevant – all that mattered was which landmasses were

connected by the bridges. The entire problem can be reduced to traversing edges on

a graph, shown in figure 1.1b (not surprisingly, this problem is now in general referred

to as finding an Eulerian path), and Euler showed that in the case of the Königsberg

bridges, there is no solution.

While graph theory has been around since Euler’s time, its primary focus has been

purely mathematical – there has been very little application to real-world networks.

Sociologists independently started gaining interest in networks in the early 20th cen-

tury. An important example is Jacob Moreno’s 1934 study of school children on the

playground [98]. He drew a picture of the children and their interactions, shown in

figure 1.2, which he termed a “sociogram”, where the students were represented as

triangles and circles for boys and girls respectively and a line was drawn between

two students if they were seen interacting on the playground. From this picture, it

was easy to see patterns in the interactions, specifically that the boys and girls pri-

marily interacted within their own groups. Sociologists quickly saw the use of such

pictures and modes of thinking and have been applying and studying social networks

ever since. Of particular note are two specific models, the blockmodel and a tiered
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(a)

(b)

Figure 1.1: (a) The Königsberg bridge problem. The goal is to cross each of the yellow
bridges exactly once. (b) The picture rewritten as a network where the
vertices are the land and the edges are the bridges. No Eulerian path
exists in this network.

3



Figure 1.2: Jacob Moreno’s sociogram [98]. The triangles are boys and the circles are
girls. There are many interactions between boys and between girls, but
only a single case where a boy interacted with a girl.

ranking model. In the blockmodel, the ideal situation is that everyone in a particular

social clique connects to everyone else within the clique and connects to no one else1.

Homans’ tiered directed model was based upon an idea of social status where a person

is allowed to connect to other people at their same level as well as make connections

up the tiers, but is prohibited from connecting to a lower level [35, 75].

The two disciplines listed above are the forerunners of networks as a field. Many

different scientific disciplines have contributed to the field, too numerous to discuss

here, except to mention the contributions from computer scientists and biologists.

One of the questions that attracted computer scientists’ interest in the field was a

problem mathematicians had studied for years, the traveling salesman. In this prob-

lem, a salesman attempts to travel between several cities. The roads between each

1In fact, the term “clique” is still used in networks to describe a set of fully connected vertices.
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city have an associated cost of time and effort, and the salesman’s goal is to mini-

mize the total cost. This and several other problems united computer scientists and

their computational complexity theory with networks [81]. The work done was espe-

cially relevant in a practical sense given the parallel development of local computer

networks and the much larger connecting network, now known as the internet. Vul-

nerabilities in this new physical network were a real issue – scientists needed to be

certain that any two computers could communicate with each other even as some

connections failed, and that making the connection would be efficient with respect

to the network. The main contributions of computer scientists to the early networks

literature were minimum cut/maximum flow algorithms and minimum spanning trees

(via path distance) in the form of local routing approximation algorithms [40, 53, 93].

A different topic that should also receive mention are computer scientists’ work in

classification with an emphasis on natural language and image processing that has

applications to networks [19, 68, 69, 70, 88, 121].

Biologists on the other hand became interested in food webs and more recently

metabolic and neural networks [31, 147]. Every ecosystem has a network where or-

ganisms with a higher so-called trophic level eat organisms with lower trophic levels,

creating a chain connecting the lowest trophic levels up to the highest ones. These

networks tell biologists about the stability of an ecosystem and thus are of central

interest to ecologists. Similarly metabolic and neural networks are central to un-

derstanding how a particular organism works, so they have also received a lot of

attention.

Since the early 1990s, the unification of all these different representations and

applications became the field of network theory, with the review by Wasserman and

Faust playing a significant part [143], and is largely due in part to the involvement

of physicists and computer scientists.
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1.2 Interest to physicists

Traditionally, networks were small systems of interacting agents [75, 85, 152]. Re-

searchers studying the systems were generally interested in small scale features, on

the order of individual node properties. For example, a scientist might ask how im-

portant a particular vertex is to the network, often answered in the form of centrality

or connectivity measures [143]. However, with the advent of large scale computing

and tools such as the internet, it became significantly easier to gather a large data

set. Up to that point, a “large” network would be one with one or a few hundred

agents. It was now possible to have data sets numbering in the millions and billions of

agents. Rather than having specialized knowledge about each actor and interaction

in the network, researchers could now only afford to have global knowledge about the

entire system. Questions that had been central to networks in the past became dif-

ficult to interpret because the amount of information about individual agents got to

be too large to handle. Even visual checks for interesting features are difficult, as can

be demonstrated by comparing Moreno’s sociogram and the internet2, in figures 1.2

and 1.3 respectively.

Physicists are already well-acquainted with the problems associated with large

datasets. On the experimental side, high energy physics experiments are, as of 2013,

able to gather terabytes of data each day even after throwing away a significant frac-

tion of the data. Dealing with large amounts of data can be a technical challenge,

and physicists are better acquainted than most with this problem. From a theo-

retical standpoint, large systems are the routine study of statistical physics, which

focuses on extremely large numbers of interacting particles. An early use of statistical

methods in physics was the application of statistical mechanics to thermodynamics,

which deals with physical properties of materials and fluids. One research topic in

2Technically this is not a full representation of the internet, but rather a subset of the edges
defined by a minimum distance spanning tree as measured by route tracing from a single source
computer [23].
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Figure 1.3: Visualization of the internet taken on June 29, 1999, colored by IP ad-
dress. Credit for the image goes to Hal Burch and Bill Cheswick of the
Internet Mapping Project [23].
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statistical physics of particular interest to this dissertation is the interaction of par-

ticle spin systems in crystals, famously receiving attention from Ernst Ising in the

1920s [78, 116]. This is an important physics topic since spins affect the electro-

magnetic properties of a material. Crystals are defined as having a regular, strongly

defined pattern of connections known as a lattice. In that regard, they can be viewed

as being well-behaved networks. Between the wide availability of data from an abun-

dance of sources (including but not limited to the examples given in section 1.1) and

already being interested in similar problems, the expansion of physicists’ interests to

include studying networks was a natural one.

1.3 Basics of network structure

In general, a network is a collection of objects, known as vertices, nodes, or actors,

and connections (typically pairwise) between them, called edges, as demonstrated in

figure 1.4a [106]. There are many different ways these can manifest. For example,

edges can be either directed or undirected (fig. 1.4b). There can also be multiple edges

between the same pair of vertices, known as a multi-edge, or they can potentially have

weights on them (fig. 1.4c). A network with no multi-edges or self-edges (an edge from

a vertex to itself) is called simple. It is also possible to have multiple kinds of vertices

and edges (fig. 1.4d). A special case of these multi-modal networks are bipartite

networks, where there are two kinds of vertices that are allowed to connect to each

other but not to vertices of their own type (fig. 1.4e). Every bit of understanding

that can be achieved with networks builds off these concepts, so this section will

cover the mathematics associated with these concepts and begin extending ideas

about connection patterns as a prelude to the rest of the dissertation. The work

presented here primarily uses unipartite networks (networks with only a single kind

of vertex), but bipartite networks will also be discussed when necessary, so that it is

not confusing when they come up in later chapters.
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vertex

edge

(a) (b) (c)

(d) (e)

Figure 1.4: (a) Demonstrating a simple network. (b) A network with both directed
edges (drawn with an arrow to indicate direction) and undirected edges.
(c) A network exhibiting both multi-edges and weighted edges (drawn as
thickness). (d) A network with multiple kinds of vertices. Connection
patterns will be specified by the network – here the blue squares form
a directed graph on their own, and the orange circles are only allowed
to connect to blue squares and in an undirected fashion. (e) Bipartite
network, a special case of the type of network shown in (d).
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1.3.1 Adjacency matrix

The most common (and arguably most useful from a theoretical standpoint) math-

ematical way of describing a network, denoted G (for graph), is with the adjacency

matrix [106]. For a network with n vertices, the adjacency matrix A is an n × n

matrix where each row and column correspond to a particular vertex, and the par-

ticular elements correspond to the edges between the vertices. In the bipartite case,

A is called the incidence matrix. The rows and columns correspond to the different

kinds of vertices, so A is only square if there are equal numbers of the two kinds of

vertices. Aij = 1 means that there is an edge from the jth vertex to the ith vertex,

and takes value 0 if no such edge exists. In the case of a weighted or multi-edge, Aij

takes value of the weight of the edge or number of edges respectively3. For undirected

edges, Aij = Aji, and if the network is directed and it is the case that Aij = Aji, the

edge is called reciprocated. By convention, an undirected self-edge takes the value 2

rather than 1, so that the number of ends of edges in the network is preserved when

counting the elements of the adjacency matrix. An example of a network and its

corresponding adjacency matrix is shown in figure 1.5a and b respectively.

It is common to have a bipartite network yet only be interested in one of the

vertex types. In this case, most scientists project the network into a unimodal form,

declaring an edge between two vertices if both connect to any of the same vertices

in the bipartite case. In terms of the incidence matrix, this means taking the new

adjacency matrix to be AAT or ATA, where T is the transpose operator, depending on

which set of vertices is desired in the projection. Additionally, the projected network

will often be forced to be simple by dropping all of the self-edges and setting all the

remaining positive elements of the adjacency matrix to 1 to eliminate multi-edges.

With the adjacency matrix in hand, other important quantities of the network

3Care must be taken here! While weighted and multi-edges are significantly different conceptually
and mathematically, they are represented the same way in the adjacency matrix.
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(a)

A =


0 0 0 1
0 2 1 0
1 1 0 0
1 0 0 0


(b)

Figure 1.5: A network (a) and its corresponding adjacency matrix (b) demonstrating
both directed and undirected edges as well as a self-edge.

can be defined. The degree ki of a vertex is the number of ends of edges connected

to vertex i. In terms of the adjacency matrix, ki =
∑

j Aij. Furthermore, since each

edge has 2 ends, the degrees relate to the number of edges m in the network by∑
i ki = 2m. In directed networks, it is sometimes important to distinguish the in-

and out-degrees: kini =
∑

j Aij and kouti =
∑

j Aji. In this case,
∑

i k
in
i =

∑
i k

out
i = m

since the start and end of each edge are distinguishable.

The importance of the degree sequence, defined by the set {ki}, cannot be un-

derstated. A large amount of information in the network is contained in this set.

A related yet different concept is the degree distribution, studied by Rapoport and

Horvath, which gives the probability that a vertex chosen uniformly at random from

the network has a certain degree [124]. In many real-world networks, the degree dis-

tribution follows a long-tailed distribution4 [102, 106]. In this case, it is common to

4One naturally wants to call this a power-law distribution. This dissertation will refrain from
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have a small fraction of the vertices connecting with a large fraction of the edges,

demonstrating the importance of the concept of degree in the network.

By definition of m and n, the average degree in the network 〈k〉 = 2m
n

. The

edge density is the fraction of possible edge pairs that are actually edges, i.e. the

probability that a randomly chosen vertex pair have an edge: 2m
n(n−1) . A network is

said to be dense if 〈k〉 = O(n) so that the edge density is a non-vanishing fraction

with n. In all other cases, the network is called sparse. It is common to deal with

an even more stringent limit, where 〈k〉 = O(1). Unless otherwise stated, the latter

behavior is assumed. When discussing real networks, the network is said to be sparse

if 〈k〉 is only a small fraction of the possible n, since it does not make sense to talk

about how the degree is changing with the size of the network given that it is a set

size.

1.3.2 Transitivity and clustering

A precursor concept to communities (soon to be described in detail) is the clique.

A clique in a network is a group of vertices in which every pair of vertices is connected

by an edge (self-edges excluded). In terms of the adjacency matrix, a set C is a clique

if for all i, j ∈ C where i 6= j, Aij 6= 0. A clique is considered to be maximal if no other

vertices can be added to the group and still preserve the group’s status as a clique.

A different yet relevant concept regarding local graph structure is the neighborhood

of a vertex, the set of vertices the vertex is connected to by edges. Many methods for

detecting communities are based on these two concepts [9, 112].

Cliques with 3 vertices in them, generally referred to as triangles due to the way

they are drawn in a network, hold a special interest for network scientists. A triangle

is a potential indicator of transitivity in the network, the concept that the friend of

using this substitution however, as it has been proven that distinguishing a power law distribution
from a log-normal distribution can be a difficult task [30]. Deviations at the upper end of the
distribution are also observed with regularity so that neither of these distributions are an accurate
description over the full range of degrees.
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my friend is also (or should be) my friend. The amount of transitivity in a network

is measured by computing the clustering coefficient, C [143, 146]. C is defined as

the probability that a randomly selected connected triple (three vertices connected

by two edges) is actually a closed triangle, and can be computed either on a vertex

by vertex basis or over the entire network. For sparse networks, the density of edges

is 〈k〉/n, which is small, so it would be reasonable to expect that the clustering

should also be small. However, since the 1940s, it has been repeatedly noted that the

clustering coefficient takes surprisingly high values in many types of networks, with

values as high as 0.3 not uncommon [106, 107, 123]. One idea to explain transitivity

in networks is triadic closure, the idea that a triangle became closed because two of

the three relevant vertex pairs were already connected [34, 74, 99].

Triangles can also be discussed in a directed graph, but it is much more common to

talk about motifs, sometimes referred to as triples in the sociology literature [72, 95,

134]. Historically, sociologists would compare sociograms by computing each of the

sixteen possible unique configurations of directed edges, called motifs, between three

vertices on the network. These calculations were spurred by a lack of computational

power, while still being relatively informative about the network structure5.

1.3.3 Paths and components

The extension of the concept of neighborhoods in a network is the path. A path

is said to exist from vertex i to vertex j if it is possible follow edges in the net-

work starting at i and end at j [106]. In terms of the adjacency matrix, a path of

length d from i to j is one where there exists some set {l1, l2, . . . , ld−1} such that

Ajl1Al1l2 · · ·Ald−2ld−1
Ald−1i 6= 0. A path from i to itself is called a cycle. While this

last concept is essentially useless in an undirected network without adding condi-

tions about backtracking along edges, it is always non-trivial in directed networks. A

5Ironically, this is a computationally expensive calculation to do, taking O(n3) time to complete.
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directed network in which there are no cycles is called a directed acyclic graph.

The distance between two vertices is the length of the shortest path between

them, which itself is referred to as a geodesic6. The average path length is the

average distance between vertices in the network. The diameter of the network is

the maximum distance taken over all pairs of vertices in the network. The diameter

is difficult to compute on large networks, so the average distance is often used as a

proxy even though the two can be quite different.

The concept of paths in networks has made it into popular culture. In the late

1960s, a psychologist by the name of Stanley Milgram ran a famous experiment where

he asked about 300 residents of Kansas and Nebraska to try to reach a particular friend

of his in Boston, with the condition that they were only allowed to forward the letter

and directions to a direct acquaintance, who would then continue the chain [94]. Of

the forty or so letters that completed the journey, on average they had been forwarded

6.2 times, motivating the popular phrase “six degrees of separation” [145]. Although

the methodology in his experiment was questionable (What happened to the letters

that did not make it? For the ones that did, did they take the shortest path? What

about selection bias in the sample?), many similar results quickly started appearing

with other networks [24]. This phenomenon has since been termed the small world

effect, which notes that the average path length in a network generally grows slowly

with the size of the network [146].

A connected component in a network is the maximal set of vertices where any two

vertices have a finite length path between them (in fact, in an undirected network,

a vertex that connects to any vertex in the connected component must itself be

in the connected component) [106]. Generally there is at most a single connected

component that takes up a significant fraction of the vertices in the network, called

the giant component, and a number of small components that take varying sizes but

6Note that there may be more than one geodesic between two vertices.
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all scale independently of n [102]. Calculations in this dissertation will typically be

restricted to the giant component since it is the most interesting part of the network

for the problems discussed.

In a directed network, there are four kinds of partially nested component types.

The weakly connected component of a vertex consists of the connected component

ignoring edge direction. This contains both the in- and out-components, which are

the set of vertices that can reach/be reached by the vertex in question respectively7.

The strongly connected component (SCC) is the closest analog of the connected

component from the undirected case, which is the set of vertices that can both reach

and be reached by other vertices in the SCC – the intersection of the in- and out-

components. In other words, for any two vertices in the SCC, there must exist a cycle

for one of the vertices that contains the other vertex. As with undirected networks,

it is commonly found that there is at most one giant component and many small

components, each represented in the form of a bow tie diagram that demonstrates

the different component types [22].

1.3.4 Community detection

Continuing the trend of expanding the scale of focus of connection patterns, the

scale within a network called the intermediate scale, referred to in Physics as the

mesoscopic scale, will be discussed. In real networks, connections between vertices

are not random. Vertices have internal characteristics that play into how they connect

with their neighbors. A common dynamic in many networks is assortative mixing,

sometimes called homophily: actors in the network with a particular property are

more likely to connect to others with the same property. For example, students are

more likely to be friends with other students of the same age, sex, or race [97, 124].

7However, it is incorrect to think of the weakly connected component as the union of the in-
and out-components, as this does not necessarily include all of the vertices in the weakly connected
component.
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When studying networks, the internal mechanisms that generate the network are

usually not known, but the effect is seen. Intuitively, the converse of the previous

paragraph should be true: the connection patterns should be informative about the

vertices in the network, and this is the goal of community detection. For a specific

subset of vertices, it is said to be a community if the vertices primarily connect to

other vertices within the subset [54, 58]. An example of such a structure is shown

in Figure 1.6. While researchers all agree that this structure must be true in a loose

sense, the precise definition of a community is subject to much debate [54]. Depend-

ing on the context, communities can even be disjoint or overlapping. Community

structure and the associated network mechanisms is an important topic for network

scientists and a lot of work has gone into studying the subject. For the reader inter-

ested in the subject who wants significant detail on the problem and the work done

to date, Fortunato gives an excellent review of the entire subject in [54].

Figure 1.6: Example of a network with communities. The vertices are colored accord-
ing to which of the three separate communities they belong.

There are several early methods for community detection worth mentioning. The

first is hierarchical clustering, which arose out of sociological interests. The idea

behind hierarchical clustering is that similar vertices (for however similar is defined in

the particular context) should slowly aggregate in a pairwise fashion until eventually
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the entire network has aggregated into one single group. Then the objective is to find

the right scale at which to stop the agglomeration. Similarly hierarchical clustering

can be run by dividing up the network until each vertex is in its own group, which is

known as a divisive algorithm. Whether agglomerative or divisive, the full algorithm

is represented as a picture in the form of a dendrogram, a form of tree where all

the vertices are lined up in a row and connections up the tree show the different

agglomeration/division steps. The final cut is a horizontal line where the connections

above the line are ignored and the connections below the line form the communities.

An example of this technique is the method by Newman and Girvan [108].

The second method is graph partitioning, a method which originated in computer

science. The goal of graph partitioning is to minimize the number of edges that run

between two groups of a given size, i.e. to find the groups of vertices that require the

fewest number of removed edges to create two separate connected components. This

is commonly done by computing the Laplacian matrix, a positive semi-definite matrix

closely related to the adjacency matrix [29]. The zero eigenvalues of the Laplacian

matrix have associated eigenvectors that correspond to the different connected com-

ponents of the network. Thus intuitively, two groups of vertices that only have a few

edges between them should have a fairly small corresponding eigenvalue, and many

graph partitioning methods are based around finding these small eigenvalues [52].

One of the more famous recent measures for community detection is modularity,

which grew out of the Girvan-Newman algorithm mentioned above [108]. The idea

behind modularity is that two vertices connected by an edge in the same community

should get a positive score, but receive a penalty if the two vertices are not connected

by an edge, so that a good set of communities gives a high modularity score. The exact

amount of penalty can be changed depending on the preferred community structure,

but is most commonly taken to be the expected number of edges between the two

vertices under the configuration model (to be described in section 1.3.5) so that the
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trivial grouping of the entire network being one community gives a modularity of 0.

In this case the expression for modularity can be written as Q = (Aij − kikj
2m

)δ(gi, gj),

where gi is the community of vertex i and δ is the Kronecker delta8.

In an ideal world, it would be possible to find the best modularity score over all

combinations of communities, but this has been proven to be difficult [21]. Many

computational methods have been devised to approximately maximize modularity,

and in practice this measure and the numerous methods do a very good job of finding

community structure in networks [54]. Modularity does have a few known problems

however, for instance it cannot be used to find very small communities [55], may not

have a unique optimum [59], and is somewhat unsatisfactory from a formal view-

point [17, 155].

Sometimes it is desired to discuss variants of community structure. As mentioned

earlier in the section, there is a problem known as overlapping community detection

where vertices are allowed to belong to multiple groups. An early method created

for detecting overlapping communities is clique percolation [112]. This method looks

for cliques with c vertices in them (where c is an input to the method), and defines

two such cliques to be adjacent if they share c− 1 vertices. Then a community is the

set of vertices that can be reached by traversing adjacent cliques with c vertices as

though they were paths. Since a vertex can be in multiple cliques with c vertices that

are not necessarily adjacent, this method inherently gives overlapping communities.

Many methods like clique percolation are based on the local structure of the

network [9]. These methods are based around growing communities in the network

rather than splitting the network up into communities. This has the advantage of

finding communities that are compact, connected, and potentially overlapping, several

aspects of which are not guaranteed by global methods. The number of communities

8Modularity is often written with a normalizing factor of 1
2m so that it is restricted to run between

−1 and 1, although this does not affect the extracted community structure for a given network in
any way since it is just a multiplicative constant.
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that local methods find is also dependent on the graph structure rather than being

a set number, which could be seen as an advantage or disadvantage depending on

the application9. It may also be desirable to allow for disassortative structure in

the community (for example as found in a bipartite network), something which these

local methods cannot address. Many of these points will be discussed in further detail

throughout this dissertation.

1.3.5 Generative Models

A useful technique in the study of complex networks are generative models, mod-

els that can be used to generate synthetic networks [71, 73, 109]. The purpose of

using these models is to generate example networks that have particular desirable

properties [13, 96, 105, 117, 146]. These can then be used as benchmarks for testing

algorithms against or to compare synthetic and real networks.

Many generative models assume that all edges are placed independently10. While

realistically this may seem a very poor assumption to make since, as noted earlier in

the chapter, there is significant clustering in real networks, it is still possible to get

useful information out of the models11. Furthermore, this makes the math involved

more tractable. Throughout the body of this dissertation, this will always be assumed.

It is also common to assume the limit of large network size with respect to the vertices,

although this assumption will not be the case outside of this section unless stated

otherwise.

Historically, one of the simplest, earliest random network model is the Erdős-Rényi

random graph, which comes in two flavors [47, 48, 49, 133]. In the first version of

9Ideally there should be method that can handle either a fixed or an unknown number of com-
munities, but little work has been done on this difficult problem [121].

10There are a few especially notable exceptions to this. For example, the configuration model [16,
96, 111] has small correlations between edges. There is also a class of models designed specifically
to create networks with non-vanishing clustering. These models place triangles directly into the
network instead of edges [105].

11This is possibly the most surprising and interesting result to come out of modern statistics, that
unrealistic assumptions can still give useful results.
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this model, G(n, p), an edge is placed between each pair of vertices with probability

p, where p is the same for all vertex pairs. To borrow terminology from physics, this

model is a canonical ensemble on the edges, and the second version of the Erdős-Rényi

random graph, G(n,m), is the microcanonical ensemble equivalent. G(n,m) generates

m edges and places them uniformly at random over the unique vertex pairs without

replacement. In the limit of large network size, these two models are equivalent under

the substitution n2p = 2m.

Since edges are placed independently, it is trivial to see that in the Erdős-Rényi

model, the expected degree for each vertex is merely 〈ki〉 = 〈k〉 = np. As mentioned

in section 1.3.1, the degree sequence is very informative, so this model is not especially

realistic12.

A more realistic model is the well-known configuration model, invented by Malloy

and Reed, Bender and Canfield, and many other mathematicians [16, 96, 111]. In

this model, the vertices have a given number of edge stubs so as to preserve the

degree, and the edges are placed uniformly at random without replacement over the

stubs. Thus the probability of an edge between two vertices i and j is
kikj
2m

where

ki are the parameters of the model and 2m =
∑

i ki by definition, although this is

a misnomer since the graph is not actually generated in this fashion. A modified

version of the configuration model with this interpretation in mind was introduced

by Chung and Lu [28]. In this version of the model, edges are placed independently

between two vertices following a Poisson distribution with mean equal to
kikj
2m

so that

the degree is preserved only in expectation. In this regard, the degree sequence in

this model is analogous to a canonical ensemble from statistical physics compared to

the configuration model’s microcanonical ensemble. The advantage of the Chung-Lu

model over the configuration model is that it is occasionally easier to deal with it

mathematically.

12In fact this model is not realistic in a variety of ways. About the only property it does correctly
match to real networks (besides the total number of edges) is the small-world effect.
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For most probabilistic network models that place edges independently, each edge

follows a Bernoulli distribution with probability dictated by the model; simply put,

either there is an edge between a pair of vertices or there is not an edge. In some

cases, it is more convenient to use the Poisson distribution where the parameter of

the distribution, which doubles as the mean, is the same value as the Bernoulli case,

where it also doubles as the mean. Technically this creates a multigraph, but for

sparse networks the expected number of multi-edges is small, so it is only a minor

error. In return, the mathematics can become significantly easier due to the additive

property of the Poisson distribution: the sum of two Poisson distributed random

variables with means λ1 and λ2 respectively is Poisson distributed with mean λ1 +λ2.

This dissertation will repeatedly take advantage of this formulation.

A common way of generating networks, rather than placing edges probabilistically,

is to grow them: the network starts with a small number of vertices, and then more are

added and edges are placed between the vertices that exist at each step. A common

theory is that some networks follow a rich get richer scheme as they develop, where

vertices with a higher degree are more likely to have new edges connect to them [120].

This is commonly thought to be true for citation networks, where it is only possible

to cite papers that have already been written and scientists are more likely to cite the

famous papers than lesser-known ones in their field. This preferential attachment has

been realized in many network models, for example in the famous paper by Barabási

and Albert [13, 117]. In this model, at each time step, a single vertex gets added

to the network and has a set degree. The other ends of the new edges get placed

among the existing vertices in proportion to their degree. In particular, this model

reproduces a long-tailed degree distribution, a feature observed in real networks [120].

Another common synthetic modeling technique is to start with a network that

has a regular structure and move the edges around, called rewiring. One well-known

model of this type is the small-world model by Watts and Strogatz [146]. In this
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model, the n vertices each have degree 2k, where the vertices are arranged in a circle

and connect to k neighbors on each side. Then with probability p, each edge is

removed and placed again uniformly at random over the vertex pairs. Depending on

the value of p (and k, albeit in a minor role), the resulting network can have zero or

non-zero clustering and exhibits or does not exhibit the small world effect.

With these and many more models, it is possible to calculate all sorts of interesting

statistics. However, this dissertation will take a different turn; the main focus is in

fitting network models to real networks. Network models are perfect for learning

the structure of real networks since they are well-principled – the type of structure

the model is looking for can be understood exactly. In particular, since the models

presented in this dissertation are probabilistic in nature, the statistics literature can

be leveraged against all of these questions. Likelihood maximization methods are a

perfect place to start this discussion.

1.3.6 Maximum likelihood estimation

A commonly used method for extracting information from networks by using

probabilistic models is maximum likelihood estimation. The idea behind this method

is rather simple: maximize the probability (referred to in this sort of posterior case as

the likelihood) that the observed graph was generated with respect to the parameters

of the model. According to most models, the edges are generated independently, so

this will often take the form

P (G|Θ) =
∏
i<j

P (Aij|Θ)
∏
i

P (Aii|Θ) (1.1)

for an undirected network where Θ are the model parameters. The self-edge terms,

when allowed as in equation 1.1, are split into a separate term and will look slightly

different compared to the other edge terms because of the conventional factors of two
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in the adjacency matrix.

Since the likelihood is a product of a large number of terms, it is more convenient

to work with its logarithm, called the log-likelihood, which turns the product into

a sum without changing the position of the maximum because the logarithm func-

tion is strictly increasing. For simple models, the maximization can be done directly

by taking derivatives, setting the expression equal to 0, and solving it in the stan-

dard Calculus-based approach. For example, the Erdős-Rényi random graph G(n, p)

(ignoring self-edges for simplicity) has likelihood

P (G|Θ) =
∏
i<j

(
pAij(1− p)(1−Aij)

)
(1.2)

where the product only runs over i < j since the model generates undirected graphs.

Taking the log of equation 1.2 gives us the log-likelihood

L =
∑
i<j

(
Aijlog(p) + (1− Aij)log(1− p)

)
. (1.3)

Setting the derivative of the log-likelihood with respect to p equal to 0 and solving

for p gives the best fit solution:

∂L
∂p

= 0 =
∑
i<j

(
Aij
p
− (1− Aij)

1− p

)

0 =
m

p
−
(
n
2

)
−m

1− p

p = m/

(
n

2

)
. (1.4)

Fitting this model to an observed network matches the number of edges to the number

observed in the graph (or equivalently matches the average degree) but cannot do

anything more complex than that.

A maximum likelihood approach is used in many situations where a probabilistic
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model is fit to data. However, direct maximization alone will not be sufficient for the

models presented in this dissertation since, as will be seen in the next section, many

of the parameters are discrete, so other methods must be employed to estimate those

particular parameters.

1.3.7 Stochastic blockmodels

The natural extension of the previous sections is the family of models known as

stochastic blockmodels [131, 142]. In these models, each vertex is assigned to a group,

and connect with the other vertices based on these groups. As with other probabilistic

network models, the strength of the stochastic blockmodels stems from their rigorous

mathematical background. It is possible to prove exactly what kind of structure,

community or otherwise, the model is picking out, and when that structure can be

found [37, 38]. They also offer a flexibility unrivaled by other methods – since much

of the information is encoded by the vertices themselves, they can be used to describe

a wide variety of network structures with minimal modification.

An early and particularly simple model in this class is the standard stochastic

blockmodel, a community detection model where the probability of an edge between

two vertices is given by a mixing matrix, ωgi,gj whose element is determined by the

communities of the two vertices, denoted gi [131, 142]. The name of this model and

the class of models in general is a reference to the sociological model mentioned in

section 1.1, although it is clear that this model is significantly more flexible than

the earlier one. For example, it can account for both assortative and disassortative

structure depending on the elements of the mixing matrix, whether they are strongly

diagonal or strongly off-diagonal. However, like the Erdős-Rényi random graph, ver-

tices within a group all have the same expected degree. What this means in practice

is that if this model is used to find community structure in a real network, the best

set of “communities” it finds often correspond to a split between high and low-degree
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vertices [37].

A significantly more useful model is Karrer and Newman’s degree-corrected stochas-

tic blockmodel [83]. In this model, every vertex has an additional parameter θi that

controls the degree of the vertex, while retaining the mixing matrix ω from the earlier

model. The probability of an edge between two vertices is θiωgi,gjθj. The additional

flexibility in the form of controlling the degree makes this model much more useful in

practice than the standard stochastic blockmodel.

The models discussed in the body of this dissertation are all variants of stochastic

blockmodels. The discussion in this section has focused on traditional assortative and

disassortative community detection up to this point, but it should be clear that this

sort of model can be useful in discovering other structure as well. Such an example

will be discussed in depth in chapter V in the form of a mathematical realization of

Homans’ ranking model [75].

1.3.8 Expectation-maximization algorithm

As mentioned in section 1.3.6, maximization via derivatives is not sufficient for

many network models. To supplement that approach, this dissertation will make

extensive use of the maximization technique known as the expectation-maximization

(EM) algorithm [39]. The EM algorithm is a technique for maximizing the likelihood

of a parameterized latent, that is unobserved, variable model. For stochastic block-

models, the latent variables are the communities (or whatever vertex information the

model concerns itself with) and the parameters are the mixing matrix and any other

relevant parameters explicitly defined in the model. The algorithm is performed by

splitting the single maximization into two deterministic steps, which individually can

be much simpler to solve than the combined problem. The first (Expectation) step is

to find the distribution of the latent variables while holding all other observables and

parameters constant, and the second (Maximization) step is to maximize the explicit
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expression with the latent variables over the parameters, a step which is often done

directly with derivatives. These two steps are computed in an alternating fashion

until the parameters converge, at which point both steps are satisfied simultaneously.

The EM algorithm is proven to monotonically increase the likelihood at each step, and

converge to a critical point of the likelihood13. This critical point is not guaranteed

to be the absolute maximum, so the algorithm will typically be run multiple times

(at different starting locations, since it is deterministic) and the best result kept as

the desired answer.

There are many equivalent formulations of the EM algorithm, and two will be

presented here which will be useful later in the dissertation. Mathematically the

objective is to turn the log of a sum into a sum of logs, since these are much easier

to differentiate. A simple and direct way this can appear is via Jensen’s inequality in

the form

log
(∑

u xu
)
≥
∑
u

qu log
xu
qu
, (1.5)

where the xu are some set of positive numbers (which in our case will be related to

the probability of a specific edge) and the qu are any nonnegative numbers satisfying∑
u qu = 1. This statement is a valid application of Jensen’s inequality because the

logarithm function is concave. Notice in particular that the equality can be recovered

by making the particular choice

qu = xu/
∑
u

xu. (1.6)

It is not immediately clear how the qu correspond to the latent variables of our models,

so this is demonstrated by comparing this method with a second way of writing the

13Since each step individually maximizes the log-likelihood with respect to a particular set of
parameters, it is trivial that the likelihood must increase with each iteration. Furthermore, well-
defined likelihoods have an upper bound of 1, so this increase has to stop somewhere. It will soon
be shown that where this two-step process converges corresponds to a critical point of the original
likelihood.
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EM algorithm:

log(P (G|Θ)) ≥ log(P (G|Θ))−D
(
Q(Z)||P (Z|G,Θ)

)
, (1.7)

where P (G|Θ) is the probability of the data given the parameters (written in a format

suggestive to the application towards networks), Z refers to the latent variables, and

we’ve introduced Q(Z) as any probability distribution over Z. D(P1(X)||P2(X)) =∑
X P1(X)log

(
P1(X)
P2(X)

)
is the Kullback-Leibler divergence (also referred to as the rel-

ative entropy) of distributions P1(X) and P2(X) over some random variable X. In

particular, the Kullback-Leibler divergence is weakly greater than 0 and equals 0 if

and only if P1(X) = P2(X) almost everywhere14. Thus whereas Q(Z) can be any

probability distribution, the right hand side of equation (1.7) will be maximized (and

thus the two sides of the equation will be equal) when Q(Z) = P (Z|G,Θ), the dis-

tribution of the latent variables. Simplifying equation (1.7) gives

log(P (G|Θ)) ≥ log(P (G|Θ))−
∑
Z

Q(Z)log
( Q(Z)

P (Z|G,Θ)

)
=
∑
Z

Q(Z)
[
log(P (G|Θ))− log

( Q(Z)

P (Z|G,Θ)

)]
=
∑
Z

Q(Z)
[
log(P (G,Z|Θ))− log(Q(Z))

]
=
∑
Z

Q(Z)
[
log
(
P (G|Z,Θ)P (Z|Θ)

)
− log(Q(Z))

]
. (1.8)

P (G|Z,Θ) is the form of our model given the latent variables and is much easier to

write explicitly than P (G|Θ) since there’s no additional sum over the latent vari-

ables. The term P (Z|Θ) is the prior on the latent variables and is often independent

compared to the probability of the graph with respect to the parameters and thus

maximized separately from the rest of the equation. The two steps of the EM algo-

14For the network models, the fact that the Kullback-Leibler divergence is additive over indepen-
dent random multivariate variables will also be needed. This step is omitted here for simplicity.
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rithm are to compute Q(Z) = P (Z|G,Θ) holding Θ constant then to maximize equa-

tion (1.8) with respect to Θ while holding Q(Z) constant. Comparing equations (1.5)

and (1.8) with the appropriate substitutions (qu = Q(Z) and xu = P (G,Z|Θ)), it is

clear that the two are equivalent and thus both represent valid EM algorithms. This

dissertation will primarily use the Jensen formulation since it will be easier to follow

for the models presented.

In most applications of the EM algorithm, the M step becomes easy to compute

and a closed form solution is not uncommon. The E step can be another story

however. It is rare for this step to have a closed form solution, so a numerical method

like Markov Chain Monte Carlo (MCMC) is usually needed to obtain the distribution

of the latent variables [127].

1.4 Outline of the dissertation

In this chapter we have given a brief introduction to networks. The techniques

discussed will be instrumental in the following chapters. With this dissertation, we

expand upon previous work in several key areas of networks, focusing on the use of

stochastic modeling techniques. Specifically, we apply techniques previously unseen

to networks research and make progress on unanswered questions. We use principled

approaches and when possible make rigorous derivations of our methods. The results

are useful methods that are effective both in synthetic tests as well as real world

networks.

In chapter II, we introduce a stochastic blockmodel for overlapping community

detection that can be run in a memory and computationally efficient manner due

to both steps of the EM algorithm having closed form solutions. Part of our effort

is spent improving upon the efficiency of the implementation, making it useful for

detecting community structure even on modern networks numbering in the millions

of nodes and edges. We include appendices (A,B,C) tying this model with other
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models both in the networks and computer science literatures, and to demonstrate

our implementation’s efficiency. This chapter and associated appendices are based on

the work presented in the author’s publication [10].

In chapter III, we create a heuristic that attempts to solve the question of choosing

the correct number of communities for the overlapping community detection model

introduced in chapter II. This heuristic is based loosely on model selection techniques

from Statistics, specifically likelihood ratio tests. Using networks generated according

to this community detection model, we show that the heuristic correctly selects the

number of communities where other model selection methods fail, and it can also

accurately predict the mean of the change in log-likelihoods when comparing the fits

for K and K + 1 communities where no more than K communities are present in

the network. Furthermore, we demonstrate that this accuracy in selecting the correct

number of communities translates over to real networks. This chapter is based on

unpublished work.

Chapter IV explores a different topic of interest, multi-modal networks. We an-

alyze data from papers published in the American Physical Society journal series

Physical Review, taking into account both authors and paper citations. We give spe-

cial attention to how authors cite each others’ papers, an analysis that requires both

authorship and citation information. This is supplemented by publication date infor-

mation, so we also study how these citation patterns have changed over the history of

the journals. This temporal discrimination is especially important since the number

of publications in the journals is growing exponentially. We discover that a researcher

cites his or her own papers and his or her collaborators’ papers a large fraction of the

time, but the extent of this has not changed significantly over time. Furthermore,

the citations received from collaborators come sooner than researchers not personally

known. There is also a large amount of reciprocity; citations from one scientist to

another are often returned in the form of citations later on. Transitivity among au-
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thors is large. However, while still significant, triadic closure is only a small part of

transitivity on the whole. This chapter is based on the author’s publication [92].

Chapter V focuses on a blockmodel which, instead of use in community detection,

is used for rank ordering a network based on global flow of edges. The basic idea

is that the type of network we are interested in is structured almost in an acyclic

fashion, and we use our model to describe the generative processes involved. We

apply this model on a collection of high school friendship networks and show that the

networks demonstrate remarkably similar behavior, regardless of the characteristics

of the school. The rank of the vertices appear to have a striking resemblance to a

measure of popularity or social status within the school, and the pattern of connec-

tions qualitatively resembles Homans’ tiered model [75]. This chapter is based on the

author’s publication [11].
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CHAPTER II

Overlapping community detection model

2.1 Introduction

In chapter I, we introduced background on community detection methods. We

gave two examples of stochastic blockmodels that are used to detect communities

in the traditional sense. In this chapter, we attempt to extend these methods to

allow for overlapping communities. In a general sense, overlapping communities are

significantly more difficult to describe than nonoverlapping communities because of

a much larger number of parameters – the models can describe a wider variety of

structure. Furthermore, even if you’re able to write down a model, it is possible that

you won’t be able to extract any useful information in a reasonable amount of time.

One way researchers have worked around this problem is to create methods based

on local community structure [9]. Rather than splitting an entire network into com-

munities in one step, these methods instead look for local groups within the network,

based on analysis of local connection patterns. Methods of this kind give rise natu-

rally to overlapping communities when one generates a large number of independent

local communities throughout the network. Moreover, the communities tend to be

compact and connected subgraphs, a requirement not always met by other methods.

On the other hand, global detection methods can capture large-scale network struc-

ture better and are more appropriate when particular constraints, such as constraints
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on the number of communities, must be satisfied. Furthermore, local methods do

not have the nice property of blockmodels that they can be used and studied from a

generative standpoint.

There have been some advances for using network models for overlapping com-

munity detection, but most previous work on this subject use “mixed membership”

models [4], in which, typically, vertices can belong to multiple groups and two vertices

are more likely to be connected if they have more than one group in common. This,

however, implies that the area of overlap between two communities should have a

higher average density of edges than an area that falls in just a single community. It

is unclear whether this reflects the behavior of real-world networks accurately, but it

is certainly possible to construct networks that do not have this type of structure.

Ideally we would prefer a less restrictive model that makes fewer assumptions about

the structure of community overlaps.

In this chapter, we develop a global statistical method for detecting overlapping

communities based on the idea of link communities, which has been proposed inde-

pendently by a number of authors both in the physics literature [2, 50] and in machine

learning [64, 115]. The idea is that communities arise when there are different types

of edges in a network. In a social network, for instance, there are links representing

family ties, friendship, professional relationships, and so forth. If we can identify the

types of the edges, i.e., if we can group not the vertices in a network but the edges,

then we can deduce the communities of vertices after the fact from the types of edges

connected to them. This approach has the nice feature of matching our intuitive

idea of the origin and nature of community structure while giving rise to overlapping

communities in a natural way: a vertex belongs to more than one community if it

has more than one type of edge. Such an approach also requires a shift in thought

on the generative side of things: whereas the standard vertex communities can be

defined before the edges are placed, link communities must generate the edges and
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communities simultaneously.

We define a model in this chapter with these criteria in mind. This model has an

EM algorithm where both steps are closed-form, giving each iteration a linear compu-

tational complexity, and we discuss how the algorithm can be implemented to optimize

speed and memory requirements, allowing applications to large networks. We give

example applications to numerous real-world networks, as well as tests against syn-

thetic networks that demonstrate that the algorithm can discover known overlapping

community structure in such networks.

We also show how our method can be used also to detect nonoverlapping com-

munities by assigning each vertex solely to the community to which it most strongly

belongs in the overlapping division. We demonstrate that this intuitive heuristic

can be justified rigorously by regarding the link community model as a relaxation

of the degree-corrected stochastic blockmodel [83]. Algorithms have been proposed

previously for fitting this blockmodel, but their running time was typically at least

quadratic in the number of vertices, which limited their application to smaller net-

works. The algorithm proposed here is significantly faster and hence can be applied

to the detection of disjoint communities in very large networks.

2.2 A generative model for link communities

Our first step is to define the generative network model that we will use. The

model generates networks with a given number n of vertices and undirected edges

divided among a given number K of communities. It is convenient to think of the

edges as being colored with K different colors to represent the communities to which

they belong. Then the model is parameterized by a set of parameters θiu, which

represent the propensity of vertex i to have edges of color u. Specifically, θiuθju is the

expected number of edges of color u that lie between vertices i and j, the exact number

being Poisson distributed about this mean value. Note that this means the network is
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technically a multigraph—it can have more than one edge between a pair of vertices.

Some real-world networks contain such multiedges: in network representations of the

world wide web, for instance, a single web page can contain several hyperlinks to the

same other page. Most networks, however, have single edges only, and in this sense

the model is unrealistic. However, allowing multiedges makes the model enormously

simpler to treat and in practice the number of multiedges tends to be small, so the

error introduced is also small, typically vanishing as 1/n in the limit of large network

size. Multiedges are also allowed in most other random graph models of networks,

such as the widely studied configuration model [96, 111], and are neglected there for

the same reasons. Our model also allows self-edges—edges that connect to the same

vertex at both ends—with expected number 1
2
θiuθiu, the extra factor of a half being

convenient for consistency with later results. Again, the appearance of self-edges,

while unrealistic in some cases, greatly simplifies the mathematical developments and

introduces only a small error.

In the model defined here the link communities arise implicitly as the network is

generated, as discussed in the introduction, rather than being spelled out explicitly.

Two vertices i, j which have large values of θiu and θju for some value of u have a

high probability of being connected by an edge of color u, and hence groups of such

vertices will tend to be connected by relatively dense webs of color-u edges—precisely

the structure we expect to see in a network with link communities.

2.3 Detecting overlapping communities

Given the model defined above, it is now straightforward to write down the prob-

ability with which any particular network is generated. Recalling that a sum of

independent Poisson-distributed random variables is also a Poisson-distributed ran-

dom variable, the expected total number of edges of all colors between two vertices

i and j is simply
∑

u θiuθju (or 1
2

∑
u θiuθiu for self-edges), and the actual number is
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Poisson-distributed with this mean1. Thus the probability of generating a graph G

with adjacency matrix elements Aij given the set of parameters Θ is

P (G|Θ) =
∏
i<j

(∑
u θiuθju

)Aij

Aij!
exp
(
−
∑
u

θiuθju

)
×
∏
i

(
1
2

∑
u θiuθiu

)Aii/2

(Aii/2)!
exp
(
−1

2

∑
u

θiuθiu

)
. (2.1)

(Recall that the adjacency matrix element Aij, by convention, takes the value Aij = 1

if there is an edge between distinct vertices i and j, but Aii = 2 for a self-edge—hence

the additional factors of 1
2

in the second product.)

We fit the model to an observed network by maximizing this probability with

respect to the parameters θiu, or equivalently (and more conveniently) maximizing

its logarithm. Taking the log of Eq. (2.1), rearranging, and dropping additive and

multiplicative constants (which have no effect on the position of the maximum), we

derive the log-likelihood

logP (G|Θ) =
∑
ij

Aij log
(∑

u θiuθju
)
−
∑
iju

θiuθju. (2.2)

Direct maximization of this expression by differentiating leads to a set of nonlinear

implicit equations for θiu that are hard to solve, even numerically. An easier approach

is the following. We apply Jensen’s inequality in the form2:

log
(∑

u xu
)
≥
∑
u

qu log
xu
qu
, (2.3)

1Another way of viewing this model is that each vertex i has a community membership vector
θi, and the expected number of edges between two vertices is the inner product of their community
vectors. This interpretation illuminates a rotational symmetry for the parameters in the model,
so for consistency with later interpretations, the rotation that puts all of the vertices’ community
vectors in the first sectant will be taken. See Appendix D for why we can always make this choice.

2This is a special case of the general observation that the log of the average of any set of numbers
is never less than the average of the log, since the logarithm function is concave down. If the numbers
in question are xu/qu and the average is taken with weights qu this observation leads immediately
to the inequality given.
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where the xu are any set of positive numbers and the qu are any probabilities satisfying∑
u qu = 1. Note that the exact equality can always be achieved by making the

particular choice qu = xu/
∑

u xu. Applying Eq. (2.3) to Eq. (2.2) gives

logP (G|Θ) ≥
∑
iju

[
Aijqij(u) log

θiuθju
qij(u)

− θiuθju
]
, (2.4)

where the probabilities qij(u) can be chosen in any way we please provided they satisfy∑
u qij(u) = 1. Notice that the qij(u) are only defined for vertex pairs i, j that are

actually connected by an edge in the network (so that Aij = 1), and hence there are

only as many of them as there are observed edges.

Since, as noted, the exact equality in this expression can always be achieved by

a suitable choice of qij(u), it follows that the double maximization of the right-hand

side of (2.4) with respect to both the qij(u) and the θiu is equivalent to maximizing

the original log-likelihood, Eq. (2.2), with respect to the θiu alone. It may appear that

this does not make our optimization problem any simpler: we have succeeded only

in turning a single optimization into a double one, which one might well imagine was

a more difficult problem. Delightfully, however, it is not; the double optimization is

actually very simple. Given the true optimal values of θiu, the optimal values of qij(u)

are given by

qij(u) =
θiuθju∑
u θiuθju

, (2.5)

since these are the values that make our inequality an exact equality. But given the

optimal values of the qij(u), the optimal θiu can be found by differentiating (2.4),

which gives

θiu =

∑
j Aijqij(u)∑

i θiu
. (2.6)
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Summing this expression over i and rearranging gives us

(∑
i

θiu

)2
=
∑
ij

Aijqij(u), (2.7)

and combining with (2.6) again then gives

θiu =

∑
j Aijqij(u)√∑
ij Aijqij(u)

. (2.8)

Maximizing the log-likelihood is now simply a matter of simultaneously solving Eqs. (2.5)

and (2.8), which can be done iteratively by choosing a random set of initial values and

alternating back and forth between the two equations. This type of approach is known

as an expectation-maximization or EM algorithm and it can be proved that the log-

likelihood increases monotonically under the iteration, though it does not necessarily

converge to the global maximum. To guard against the possibility of getting stuck in

a local maximum, we repeat the entire calculation a number of times with random

initial conditions and choose the result that gives the highest final log-likelihood. In

the work presented here we found good results with numbers of repetitions in the

range from 10 to 100.

The value of qij(u) in Eq. (2.5) has a simple physical interpretation: it is the

probability that an edge between i and j has color u, which is precisely the quantity

we need in order to infer link communities in the network. Notice that qij(u) is

symmetric in i, j, as it should be for an undirected network.

The calculation presented here is mathematically closely related to methods devel-

oped in the machine learning community for the analysis of text documents. Specifi-

cally, the model we fit can be regarded as a variant of a model used in probabilistic

latent semantic analysis (PLSA)—a technique for automated detection of topics in a

corpus of text—adapted to the present context of link communities. Connections be-
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tween text analysis and community detection have been explored by several previous

authors. Of particular interest is the work of Psorakis et al. [121], which, though it

does not focus on link communities, uses another variant of the PLSA model, cou-

pling it with an iterative fitting algorithm called nonnegative matrix factorization,

to find overlapping communities in directed networks. Also of note is the work of

Parkkinen et al. [115], who consider link communities as we do, but take a contrast-

ing algorithmic approach based on a Bayesian generative model and Markov chain

Monte Carlo techniques. A detailed description of the interesting connections between

text processing and network analysis would take us some way from the primary pur-

pose of this chapter, but for the interested reader we give a discussion and references

in Appendix A.

2.4 Implementation

The method outlined above can be implemented directly as a computer algorithm

for finding overlapping communities, and works well for networks of moderate size,

up to tens of thousands of vertices. For larger networks both memory usage and

run-time become substantial and prevent the application of the method to the largest

systems, but both can be improved by using a more sophisticated implementation

which makes applications to networks of millions of vertices possible.

The algorithm’s memory use is determined by the space required to store the

parameters: the θiu require O(nK) space while the qij(u) require O(mK), where n

and m are the numbers of vertices and edges in the network. Since m is usually

substantially larger than n, this means that memory use is dominated by the qij(u).

We can reduce memory use by reorganizing the algorithm in such a way that the qij(u)

are never stored. Rather than focusing on the θiu, we work instead with the average
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number kiu of ends of edges of color u connected to vertex i:

kiu =
∑
j

Aijqij(u). (2.9)

Given the values of these quantities on a given iteration of the algorithm, the calcu-

lation of the values at the next iteration is then as follows. First we define a new set

of quantities k′iu that will store the new values of the kiu. Initially we set all of them

to zero. We also calculate the average number κu of edges of color u summed over all

vertices

κu =
∑
i

kiu, (2.10)

in terms of which the original θiu parameters are

θiu =
kiu√
κu
, (2.11)

where we have used Eq. (2.8). Next we go through each edge (i, j) in the network in

turn and calculate the denominator of Eq. (2.5) for that i and j from the values of

the kiu thus:

D =
∑
u

θiuθju =
∑
u

kiukju
κu

. (2.12)

Armed with this value we can calculate the value of qij(u) for this i, j and all u from

Eq. (2.5):

qij(u) =
θiuθju∑
u θiuθju

=
kiukju
Dκu

. (2.13)

Now we add this value onto the quantities k′iu and k′ju, discard the values of D

and qij(u), and repeat for the next edge in the network. When we have gone through

all edges in this manner, the quantities k′iu will be equal to the sum in Eq. (2.9), and

hence will be the correct new values of kiu.

This method requires us to store only the old and new values of kiu, for a total of
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2nK quantities, and not the values of qij(u). Depending on the values of m and n,

this can result in substantial memory savings.

As for the running time, the algorithm as we have described it has a computational

complexity of O(mK) operations per iteration of the equations, where m is again the

number of edges in the network, but this too can be improved. In a typical application

of the algorithm to a network, the end result is that each vertex belongs to only a

subset of the K possible communities. To put that another way, we expect that many

of the parameters kiu will tend to zero under the EM iteration. It is straightforward to

see from the equations above that if a particular kiu ever becomes zero, then it must

remain so for all future iterations, which means that it no longer need be updated

and we can save ourselves time by excluding it from our calculations. This leads to

two useful strategies for pruning our set of variables. In the first, we set to zero any

kiu that falls below a predetermined threshold δ. Once a kiu has been set to zero, the

corresponding values of the qij(u) on all the adjacent edges are also zero and therefore

need not be calculated. Thus, for each edge, we need only calculate the values of qij(u)

for those colors u for which both kiu and kju are nonzero, i.e., for the intersection of

the sets of colors at vertices i and j. This strategy leads to speed increases when

the number of communities K & 4. For smaller values of K the speed savings are

outweighed by the additional computational overhead and it is more efficient to simply

calculate all qij(u), but we nonetheless still set the values of the kiu to zero below the

threshold δ because it makes possible our second pruning strategy.

Our second strategy, which can be used in tandem with the first and gives signif-

icant speed improvements for all values of K, is motivated by the observation that

if all but one of the kiu for a particular vertex are set to zero, then the color of the

vertex, meaning the group or groups to which it belongs, is fixed at a single value and

will no longer change at all. If both vertices at the ends of an edge (i, j) have this

property, if both of them have converged to a single color and are no longer changing,
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then the edge connecting them no longer has any effect on the calculation and can

be deleted entirely from the network.

By the use of these two strategies the speed of our calculations is improved

markedly. We find in practice that the numbers of parameters kiu and edges both

shrink rapidly and substantially with the progress of the calculation, so that the

majority of the iterations involve only a subset, typically those associated with the

vertices whose community identification is most ambiguous. If the value of the thresh-

old δ is set to zero, then the pruned algorithm is exactly equivalent to the original

EM algorithm and the results are identical, yet even with this choice we find substan-

tial speed improvements. If δ is chosen small but nonzero—we use δ = 0.001 in our

calculations—then we introduce an approximation into the calculation which means

the results will be different in general from the original algorithm. In practice, how-

ever, the difference is small, and the nonzero δ gives us an additional and substantial

speed improvement. (In our experiments we find a variation of about 1% or less in

the final log-likelihood for values of δ anywhere from zero to 0.1. Note, however, that

if the value of δ is greater than 1/K, then it is possible inadvertently to prune all of

the colors from a vertex, leaving it in no community at all. To avoid this, one must

choose δ < 1/K.)

A detailed comparison of results and run-times for the original and pruned versions

of the algorithm is given in Appendix B for a range of networks. Unless stated

otherwise, all calculations presented in the remainder of the chapter are done with

the faster version of the algorithm.

2.5 Results

We have tested the performance of the algorithm described above using both

synthetic (computer-generated) networks and a range of real-world examples. The

synthetic networks allow us to test the algorithm’s ability to detect known, planted
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community structure under controlled conditions, while the real networks allow us to

observe performance under practical, real-world conditions.

2.5.1 Synthetic networks

Our synthetic network examples take the form of a classic consistency test. We

generate networks using the same stochastic model that the algorithm itself is based

on and measure the algorithm’s ability to recover the known community divisions for

various values of the parameters. One can vary the values to create networks with

stark community structure (which should make detection easy) or no community

structure at all (which makes it impossible), and everything in between, and we can

thereby vary the difficulty of the challenge we pose to the algorithm.

The networks we use for our tests have n = 10 000 vertices each, divided into two

overlapping communities. We place x vertices in the first community only, meaning

they have connections only to others in that community, y vertices in the second

community only, and the remaining z = n − x − y vertices in both communities,

with equal numbers of connections to vertices in either group on average. We fix the

expected degree of all vertices to take the same value k.

We perform three sets of tests. In the first we fix the size of the overlap between

the communities at z = 500, divide the remaining vertices evenly x = y = 4750, and

observe the behavior of the algorithm as we vary the value of k. When k → 0 there

are no edges in the network and hence no community structure, and we expect the

algorithm (or any algorithm) to fail. When k is large, on the other hand, it should

be straightforward to work out where the communities are.

For our second set of tests we again set the overlap at z = 500 but this time we

fix k = 10 and vary the balance of vertices between x and y. Finally, for our third

set of tests we set k = 10 and constrain x and y to be equal, but allow the size z of

the overlap to vary.

42



In Fig. 2.1 we show the measured fraction of vertices classified correctly (black

curve) in each of these three sets of tests (the three separate panels), averaged over 100

networks for each point. To be considered correctly classified a vertex’s membership

(or lack of membership) in both groups must be reported correctly by the algorithm,

and the algorithm considers any vertex to be a member of a group if, on average, it

has at least one edge of the appropriate color when the maximum-likelihood fitting

procedure is complete. In mathematical terms, a vertex belongs to community u if its

expected degree with respect to color u, given by
∑

j Aijqij(u), is greater than one.
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Figure 2.1: Results from the three sets of synthetic tests described in the text. Each
data point is averaged over 100 networks. Twenty random initializations
of the variables were used for each network and the run giving the highest
value of the log-likelihood was taken as the final result. In each panel
the black curve shows the fraction of vertices assigned to the correct
communities by the algorithm, while the lighter curve is the Jaccard index
for the vertices in the overlap. Error bars are smaller than the points in
all cases.
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As the figure shows, there are substantial parameter ranges for all three tests

for which the algorithm performs well, correctly classifying most of the vertices in

the network. As expected the accuracy in the first test increases with increasing k

and for values of k greater than about ten—a figure easily attained by many real-

world networks—the algorithm identifies the known community structure essentially

perfectly. In the other two tests accuracy declines as either the asymmetry of the two

groups or the size of the overlap increases, but approaches 100% when either is small.

To probe in more detail the algorithm’s ability to identify overlapping communi-

ties, we have also measured, for the same test networks, a Jaccard index: if Otrue is

the set of vertices in the true overlap and Ofound is the set the algorithm identifies as

being in the overlap, then the Jaccard index is J = |Otrue ∩Ofound|/|Otrue ∪Ofound|.

This index is a standard measure of similarity between sets that rewards accurate

identification of the overlap while penalizing both false positives and false negatives.

The values of the index are shown as the lighter curves in Fig. 2.1 and, as we can see,

the general shape of the curves is similar to the overall fraction of correctly identi-

fied vertices. In particular, we note that for networks with sufficiently high average

degree k the value of J tends to 1, implying that the overlap is identified essentially

perfectly.

2.5.2 Real networks

We have also tested our method on numerous real-world networks. In this section

we give detailed results for four specific examples. Summary results for a number of

additional examples are given in Appendix B.

Our first example is one that has become virtually obligatory in tests of community

detection, Zachary’s “karate club” network, which represents friendship patterns be-

tween members of a university sports club, deduced from an observational study [152].

The network is interesting because the club split in two during the study, as a result
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of an internal dispute, and it has been found repeatedly that one can deduce the lines

of the split from a knowledge of the network structure alone [54, 58].

Figure 2.2a shows the decomposition of the karate club network into two overlap-

ping groups as found by our algorithm. The colors in the figure show both the division

of the vertices and the division of the edges. The split between the two groups in

the club is clearly evident in the results and corresponds well with the acknowledged

“ground truth,” but in addition the algorithm assigns several vertices to both groups.

The individuals represented by these overlap vertices, being by definition those who

have friends in both camps, might be supposed to have had some difficulty deciding

which side of the dispute to come down on, and indeed Zachary’s original discussion

of the split includes some indications that this was the case [152]. Note also that, in

addition to identifying overlapping vertices, our method can assign to each a fraction

by which it belongs to one community or the other, represented in the figure by the

pie-chart coloring of the vertices in the overlap. The fraction is calculated as the

expected fraction of edges of each color incident on the vertex.

Our second example is another social network and again one whose community

structure has been studied previously. This network, compiled by Knuth [85], rep-

resents the patterns of interactions between the fictional characters in the novel Les

Misérables by Victor Hugo. In this network two characters are connected by an edge

if they appear in the same chapter of the book. Figure 2.2b shows our algorithm’s

partition of the network into six overlapping communities and the partition accords

roughly with social divisions and subplots in the plot-line of the novel. But what is

particularly interesting in this case is the role played by the hubs in the network—

the major characters who are represented by vertices of especially high degree. It is

common to find high-degree hubs in networks of many kinds, vertices with so many

connections that they have links to every part of the network, and their presence

causes problems for traditional, nonoverlapping community detection schemes be-
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cause they do not fit comfortably in any community: no matter where we place a hub

it is going to have many connections to vertices in other communities. Overlapping

communities provide an elegant solution to this problem because we can place the

hubs in the overlaps. As Fig. 2.2b shows, our algorithm does exactly this, placing

many of the hubs in the network in two or more communities. Such an assignment is

in this case also realistic in terms of the plot of the novel: the major characters rep-

resented by the hubs are precisely those that appear in more than one of the book’s

subplots.

A similar behavior can be seen in our third example, which is a transportation

network, the network of passenger airline flights between airports in the United States.

In this network, based on data for flights in 2004, the vertices represent airports and

an edge between airports indicates a regular scheduled direct flight. Spatial networks,

those in which, as here, the vertices have well-defined positions in geographic space,

are often found to have higher probability of connection for vertex pairs located closer

together [14, 56], which suggests that communities, if they exist, should be regional,

consisting principally of blocks of nearby vertices. The communities detected by

our algorithm in the airline network follow this pattern, as shown in Fig. 2.3. The

three-way split shown divides the network into east and west coast groups and a

group for Alaska. The overlaps are composed partly of vertices that lie along the

geographic boundaries between the groups, but again include hubs as well, which

tend to be placed in the overlaps even when they don’t lie on boundaries. As with

the previous example, this placement gives the algorithm a solution to the otherwise

difficult problem of assigning to any one group a hub that has connections to all

parts of the network. But it also makes intuitive sense. Hubs are the “brokers” of the

airline network, the vertices that connect different communities together, since they

are precisely the airports that passengers pass through in traveling between distant

locations. Thus it is appropriate that hubs be considered members of more than one
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(a)

(b)

Figure 2.2: Overlapping communities in (a) the karate club network of [152] and
(b) the network of characters from Les Misérables [85], as calculated using
the algorithm described in this chapter. The edge colors correspond to
the highest value of qij(u) for the given edge, while vertex colors indicate
the fraction of incident edges that fall in each community. For vertices in
more than one community the vertices are drawn larger for clarity and
divided into pie charts representing their division among communities.
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Figure 2.3: Overlapping communities in the network of US passenger air transporta-
tion. The three communities produced by the calculation correspond
roughly to the east and west coasts of the country and Alaska.

group. In most cases the hubs belong most strongly to the community in which they

are geographically located, and less strongly to other communities.

For our fourth example we examine a network of coauthorships between researchers

publishing on network science. In this network, which was previously published

in [103], vertices represent scientists and unweighted edges connect pairs of scientists

who have coauthored at least one paper together. Figure 2.4a shows the division of

the network’s largest component as found by our algorithm for K = 12 communities.

The figure reveals a new phenomenon not present in our previous examples: some

of the communities found by the algorithm are not contiguous—they are divided

into two or more separate parts with no edges connecting the parts. This seems

unsatisfactory. Intuitively, one expects communities to be connected.

The explanation for this behavior is that in this case the algorithm has found a

local optimum of the likelihood, rather than a global one, and the local optimum

48



contains disconnected communities. To address this issue, we adopt the following

procedure. After the communities are calculated with the EM algorithm we find all

their connected clusters, then work through them in order from smallest to largest.

Each cluster is added to the neighboring cluster (of any community) with which it has

the most connections, unless it is the only cluster in its community, in which case we

reverse the process and add the neighboring cluster to it. The only exception is when

all neighboring clusters are the only cluster in their community, in which case we do

nothing. Then we move on to the next largest cluster, bearing in mind that cluster

sizes may have changed in the process. When we have gone through all clusters in

this manner we are left with K communities, each of which is connected, consisting

of a single cluster, and any connected pair of vertices that were originally assigned to

the same cluster by the EM algorithm will still be in the same cluster.

This procedure requires very little additional effort to perform and in our exper-

iments we find that it always increases the likelihood of the community assignment,

indicating that indeed the original EM algorithm found a local likelihood maximum.

Figure 2.4b shows the result of applying the procedure to our coauthorship network

and, as the figure shows, the communities found are now connected3.

2.6 Nonoverlapping communities

As we have described it, our algorithm is an algorithm for finding overlapping

communities in networks, but it can be used to find nonoverlapping communities as

well. As pointed out by a number of previous authors [121, 141, 153], any algorithm

that calculates proportional membership of vertices in communities can be adapted to

the nonoverlapping case by assigning each vertex to the single community to which it

belongs most strongly. In our case, this means assigning vertices to the community for

3We have also applied the same procedure to the previous example networks, including the
synthetically generated ones, but it produced in no significant changes to the results in those cases.
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(a)

(b)

Figure 2.4: Overlapping communities in the collaboration network of network scien-
tists as calculated by the algorithm of Section 2.4 (a) without the post-
processing step that ensures connected communities and (b) with the
post-processing. Each community is represented as a shape/color combi-
nation, except for overlapping vertices, which are always drawn as circles.
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which the value of kiu/κu is largest. It turns out that this procedure can be justified

rigorously in our case by regarding the link community model as a relaxation of

a nonoverlapping degree-corrected stochastic blockmodel. The details are given in

Appendix C. Here we give some example applications to show how the approach

works in practice.

As with the overlapping case, we test the method on both synthetic and real-

world networks. For the synthetic case we use a standard test, the LFR benchmark

for unweighted undirected networks with planted community structure [86, 87]. To

make possible comparisons with the previous study of Ref. [86] we use the same

parameters, with networks of 1000 and 5000 vertices, average degree 20, maximum

degree 50, degree exponent −2, and community exponent −1. We also use the same

two ranges of community sizes, with communities of 10 to 50 vertices for one set of

tests (labeled S for “small” in our figures) and 20 to 100 vertices for the other set

(labeled B for “big”). The value of K for the detection algorithm was set equal to

the number of communities in the benchmark network (which, because of the nature

of the benchmark, is not a constant but varies from one network to another).

To quantify our algorithm’s success at detecting the known communities in the

benchmark networks we use the variant normalized mutual information measure pro-

posed in [86]. We note that this measure is different, and in general returns different

results, from the normalized mutual information measure most often used to evaluate

community structure [33], but using it allows us to make direct comparisons with the

results for other algorithms given in [86].

In our benchmark tests we find that the method described above for finding

nonoverlapping communities—just choosing the community with the highest value

of kiu/κu—returns only average performance when compared with the other algo-

rithms tested in Ref. [86]. However, a simple modification of the algorithm produces

significantly better results: after generating a candidate division into communities
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using the rounding method, we then apply a further optimization step in which we

move from one community to another the single vertex that most increases the log-

likelihood of the division under the stochastic blockmodel, and repeat this exercise

until no further such moves exist. This process, which is reminiscent of the well-known

Kernighan–Lin algorithm for graph partitioning [84], is easy to implement and carries

little computational cost when compared to the calculation of the initial division, but

it improves our results dramatically.

The results of our tests are shown in Figure 2.5. The top panel shows the perfor-

mance of the algorithm without the additional optimization step and the results fall

in the middle of the pack when compared to previous algorithms, better than some

methods but not as good as others. The bottom panel shows the results with the

additional optimization step added, and now the algorithm performs about as well as,

or better than, the algorithms analyzed in Ref. [86]. The general shape of the mutual

information curve is similar to that of the best competing methods, falling off around

the same place, although the mutual information values are somewhat lower for low

values of the mixing parameter, indicating that the method is not getting the com-

munity structure exactly correct in this regime. Examining the communities in detail

reveals that the method occasionally splits or merges communities. It is possible

that performance could be improved further by a less simple-minded post-processing

step for optimizing the likelihood. In particular, by contrast with the overlapping

groups of the previous section, we made no effort to ensure that the communities in

the present tests consisted of only a single cluster, and doing so might potentially

improve the results.

We also give, in Fig. 2.6, an example of a test of the method against a real-world

network, in this case the much studied college football network of Ref. [58]. In this

network the vertices represent university teams in American football and the edges

represent the schedule of games for the year 2000 football season, two teams being
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Figure 2.5: Performance of the nonoverlapping community algorithm described in
the text when applied to synthetic networks generated using the LFR
benchmark model of Lancichinetti et al. [86]. Parameters used are the
same as in Ref. [86] and (S) and (B) denote networks with the “small”
and “big” community sizes used by the same authors. The top and bottom
panels respectively show the results without and with post-processing to
optimize the value of the log-likelihood. Ten random initializations of the
variables were used for each network and each point is an average over
100 networks.
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Figure 2.6: Non-overlapping communities found in the US college football network
of Ref. [58]. The clusters of vertices represent the communities found by
the algorithm, while the vertex shape and color combination represents
the “conferences” into which the colleges are formally divided. As we can
see, the algorithm in this case extracts the known conference structure
perfectly. (The square black vertices represent independent colleges that
belong to no conference.)

connected if they played a game. It has been found in repeated analyses that a

clustering of this network into communities can retrieve the organizational units of

US college sports, called “conferences,” into which universities are divided for the

purposes of competition. In 2000 there were 11 conferences among the Division I-A

teams that make up the network, as well as 8 teams independent of any conference.

As Fig. 2.6 shows, every single team that belongs in a conference is placed correctly

by our algorithm.
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2.7 Discussion

In this chapter we have described a method for detecting communities, either

overlapping or not, in undirected networks. The method has a rigorous mathematical

foundation, being based on a probabilistic model of link communities; is easy to im-

plement, fast enough for networks of millions of vertices; and gives results competitive

with other algorithms.

Nonetheless, the method is not perfect. Its main current drawback is that it of-

fers no criterion for determining the value of the parameter we call K, the number

of communities in a network. This is a perennial problem for community detection

methods of all kinds. Some methods, such as modularity maximization, do offer a

solution to the problem, but that solution is known to give biased answers or be

inconsistent under at least some circumstances [17, 55]. More rigorous approaches

such as the Bayesian information criterion [129] and the Akaike information crite-

rion [5] are unfortunately not applicable here because many of the model parameters

are zero, putting them on the boundary of the parameter space, which invalidates the

assumptions made in deriving these criteria.

Another approach to choosing the value of K is to perform the calculations with

a large value and regularize the parameters in a manner such that some communi-

ties disappear, meaning that zero edges are associated with those communities. For

example, Psorakis et al. [121], in studies using their matrix factorization algorithm,

used priors that penalized their model for including too many nonzero parameter

values and hence created a balance between numbers of communities and goodness of

fit to the network data. Unfortunately, the priors themselves contain undetermined

parameters whose values can influence the number of communities and hence the

problem is not completely solved by this approach.

We believe that statistical model selection methods applied to generative models

should in principle be able to find the number of communities in a consistent and
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satisfactory manner. In the next chapter, we create a heuristic based on likelihood

ratio tests as a first attempt at this problem that does not rely on slow numerical

methods like bootstrapping.
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CHAPTER III

Number of communities in an overlapping

communities model

3.1 Introduction

Many networks, regardless of origin, exhibit some sort of grouping phenomenon.

Subsets of vertices have many connections within the subset, and fewer connections

between the subsets [54, 58]. Finding these groups, a process known as community

detection, is a fundamental problem in the study of networks. There are a wide

variety of methods used to detect communities in networks, from local aggregation

methods that only take a vertex’s immediate connections into account to global qual-

ity functions and statistical network models that use the entire network structure to

fit the communities [108, 112, 131].

As mentioned in chapter II, one very important question regarding community de-

tection that has not received very much attention is deciding how many communities

are in the network. Most global methods require a fixed number of communities as an

input, and no principled way to directly compare the fits between different numbers

of communities. The statistics literature has several methods to decide which model

taken from a set of given models gives the best fit for a dataset [5, 129, 149]. These

methods could potentially be adapted and applied to the statistical network models,
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and in a few cases have been used [18, 151]. However, there has been little effort to

use these methods to find the correct number of communities [18], and much of the

work that has been done did not study the methods in a rigorous manner [121].

In this chapter, we provide a heuristic method for choosing the number of com-

munities in the overlapping community detection blockmodel defined in chapter II,

originally presented in [10]. This heuristic is based on likelihood ratio tests [149].

This provides us with an effective, quick way of determining if a new community is

significant or not. By iterating the test for incrementing numbers of communities, we

find the best number of communities for the network.

The chapter is organized as follows. First we restate the definition of the commu-

nity detection model that we will be focusing on, how it is used to extract communities

from a network, and an interpretation for the types of structure the model finds. Then

we give our heuristic test for selecting the number of communities for the model and

discuss its relation to likelihood ratio tests from the statistics literature. Finally we

give both synthetic and real-world examples demonstrating the application of this

test and show that it outperforms standard statistical methods.

3.2 Overlapping community detection model recap

Since the overlapping community detection blockmodel is central to this chapter,

it’s worth discussing its formulation for K communities [10]. The basic premise is

that each vertex has a K-dimensional group vector θi that controls its community

membership as well as its degree distribution in each of those communities. This

model generates link communities, with the expected number of edges associated with

community u between vertices i and j is θiuθju. When extracting communities using

this model however, we don’t know the communities for each edge, observing only the

presence or lack of edges, so we have to treat the link communities as latent variables

and sum over them. Thus the expected number of edges between each pair of vertices
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can be thought of as the inner product of the community vectors, 〈Aij〉 =
∑

u θiuθju.

We use a Poisson formulation for the edges in each community so that Aij is also

Poisson distributed, so technically we can have multi-edges, although generally the

number of these is small since we’re primarily interested in sparse networks. The full

likelihood for this undirected network model is

P (G|Θ;K) =
∏
i<j

(∑
u θiuθju

)Aij

Aij!
exp
(
−
∑
u

θiuθju

)
×
∏
i

(
1
2

∑
u θiuθiu

)Aii/2

(Aii/2)!
exp
(
−1

2

∑
u

θiuθiu

)
. (3.1)

Thus the log-likelihood is

logP (G|Θ;K) = 1
2

(∑
ij

Aij log
(∑

u θiuθju
)
−
∑
iju

θiuθju

)
−
∑
i<j

log(Aij!)−
∑
i

log
(
(Aii/2)!

)
−
∑
i

Aii log(2)/2. (3.2)

Although many of these terms are constants with respect to the network and thus

unnecessary for finding the best fit, we include them for completeness. Furthermore,

the multiplicative constants are necessary for computing our heuristic.

To extract communities from a network using this model, we apply an expectation-

maximization (EM) algorithm and obtain a closed form iterative solution, the details

of which are shown in section 2.3. Computing equations (3.3) and (3.4) alternately

until they converge will give the desired best fit. The qij(u) correspond to the latent

communities affiliated with each edge.

qij(u) =
θiuθju∑
u θiuθju

(3.3)
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θiu =

∑
j Aijqij(u)√∑
ij Aijqij(u)

(3.4)

This overlapping community detection blockmodel attempts to find communities

that are connected to each other through vertices rather than edges. In other words,

vertices only connect to other vertices in the same community (or in the overlap

with that community), and the vertices in multiple communities are located on the

boundary between their associated communities, acting as a bridge between the com-

munities. This is a consequence of the fact that this blockmodel does not have a

mixing matrix – connections between vertices with no shared communities are explic-

itly forbidden. Looking at the blockmodel from a different perspective, when given

the community parameters, it is a superposition of Chung-Lu random graphs [28].

The generation of an edge between two vertices that share only one community is

completely independent of the other communities. At some level (although in a rig-

orous sense this isn’t what is going on), the best fit of a network to the model is one

that makes the individual community subgraphs as independent as possible – that is,

minimizes the size of the overlap with respect to edges and communities.

3.3 Counting heuristic

With the previous section in mind, suppose we have a network where there are

K communities and we wish to extract K + 1 communities from it, intentionally

overfitting the network. Based on empirical evidence, you really have two options

for the best community structure: either you can take one of the K communities

and break it into two new communities, or you can take one of the overlaps between

two communities in the K sense and force it to become its own new community,

and in either situation leave the remaining K − 1 communities as they are. The

latter is a special circumstance and only occurs when a fairly dense community that
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doesn’t have any additional community structure was somehow previously split into

two groups, which forces a large fraction of the vertices to be in the overlap1. However,

the latter case is in contradiction with the initial assumption that there really were

K communities, so we disregard this case.

Define the set Cy(K) to be the yth community out of K communities in the net-

work, as fit by our overlapping community detection blockmodel. This set should

include overlapping vertices that are in different communities in addition to y (math-

ematically, the set of Cy(K) for fixed K forms a cover of the network). Suppose we

have the situation from the previous paragraph: we take a network with K commu-

nities in it and extract K + 1 communities. Following the logic from the previous

paragraph, let’s say without loss of generality that the community C1(K) is split into

the communities C1(K + 1) and CK+1(K + 1). Call the set of communities vertex i

is in when fitting K communities Vi(K). Then we count the number of the vertices

c that satisfy either of the following conditions:

List 1.

1. Vi(K) = {1}

2. |Vi(K + 1)| ≥ |Vi(K)| > 1 and {1, K + 1} ∩ Vi(K + 1) 6= ∅.

In other words, a vertex that is entirely in the split community gets counted, as

do overlapping vertices in the K community case that are in at least as many groups

in the K+1 case, where one of those groups is either of the groups that were split off.

Notice in particular that this doesn’t require such a vertex to share communities with

the original group C1(K) – ideally this condition would also be required, but since

the assumption of communities splitting is at best an approximation, it is actually

1In the case where a community with no additional community structure is split into two sub-
communities, as the degree of a vertex increases, the probability that it will have an edge to a vertex
in the other community grows exponentially. Make the entire community dense enough and the
majority of vertices will have edges to both communities. This is mitigated by combinatorics for the
possible sets of communities, but only to a certain extent [63].
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better to count the additional vertices. An example of how to count the vertices in

a network with two communities is shown in figure 3.1. Then we approximate that

the distribution of twice the change in log-likelihood between K communities and

K + 1 communities to be χ2 distributed with parameter defined by twice this count:

2∆L ∼ χ2(2c).

The final use for the heuristic with regards to the overlapping community detection

blockmodel involves extracting communities in an incremental fashion using the EM

algorithm as described in section 3.2, comparing consecutive K by computing p-values

using the method above until the p-value falls below a given threshold. Each iteration,

we decide which group is split into two by counting the number of edges that were in

each of the K communities that are now in each of the K + 1 communities, assuming

no a priori choice when the edges are in multiple groups. The group from the K

community extraction that split is the one where 2 of the K+1 communities primarily

mapped to it with respect to the edges. The rest is straightforward counting and

then a direct computation of the p-value and running the EM algorithm for varying

K. The final output is both the number of communities as well as the community

memberships themselves.

Note that the heuristic method assumes that the absolute maximum is found at

each value of K, since the community structure found is assumed to be the true

structure for the K + 1 test case. Thankfully, it was demonstrated in [10] that the

EM algorithm does a good job of finding planted community structure. While this

dependence on the previously fit community structure may seem like a weakness of

the method, we will demonstrate in section 3.5 that it is actually a necessary feature

of the method since the expected change in likelihood does depend on the actual (and

hence extracted) community structure.
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(a)

(b)

(c)

Figure 3.1: Communities in a network demonstrated in the form of a Venn diagram.
The test is to assume 2 communities are in the network and extract 3
communities. (a) The community structure. From left to right, the blue
community was split into blue and green communities. Colors are additive
for overlaps – for example, a vertex in the red and blue communities falls in
the purple segment. (b) The first case from list 1. Any vertices belonging
to the community set highlighted in blue count for the heuristic. (c) The
second case from list 1. Any vertices in the community set highlighted in
blue that are extracted as belonging to any of the red sets are counted.
More complicated situations can arise when 3 or more communities are
present in the network.
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3.4 Relation to Likelihood Ratio Tests

Our heuristic method bears resemblance to likelihood ratio tests. In particular,

the well-known Wilks’ Theorem has a relation to our method, combined with intu-

ition where the theorem itself breaks down [149]. It is well-known that simple model

selection methods break down for models with large numbers of parameters (in par-

ticular when the number of parameters is a function of the size of the dataset), but

much work has been done to extend the methods to this case [51, 79, 137]. Much

of the work was done by introducing a penalty term to reduce the effective number

of parameters, which allows us to more easily select the correct model due to the

reduced variance in the resulting distributions. As we shall see, fits to our model

naturally reduce the effective number of parameters, so we can gain insight from the

literature.

Wilks’ Theorem states that twice the difference in the maximum log-likelihood

between two nested models is χ2 distributed with mean equal to the difference in

the number of parameters between the two models. For the overlapping community

detection blockmodel, the difference in the number of parameters between K and

K + 1 communities is exactly n since each vertex has a single new θ parameter.

The general Wilks’ Theorem is reliant upon the model being smooth with respect

to the parameters and that the maximum can be attained2. These both seem fairly

straightforward in the case of our blockmodel (and in fact we prove the latter in Ap-

pendix D – the former is trivial on the interior of the space, where θiz > 0). However,

as shown by Chen et al., the theorem can also have problems when degenerate or

redundant parameters exist, for example at the boundaries of the parameter space,

when multiple parameters can describe the same effects in the model, or when a pa-

2While this is not necessary for the mean, the shape of the distribution (χ2) also relies on the
common assumption that the data set is large so that the central limit theorem applies. This does
not apply for networks, where we have one observation of the network, but the distribution is often
still χ2 because of the fact Poisson distributions converge quickly to Gaussian distributions as the
parameter increases.
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rameter is unidentifiable due to another parameter effectively removing it from the

model [25, 26]. The overlapping community detection blockmodel fits these criteria –

it is very common for parameters to go to 0, indicating that the corresponding vertex

is not at all in that particular community. Between this effective parameter reduction

and the extensive number of parameters we can’t directly apply Wilks’ Theorem to

our problem of finding the number of communities in a network with this model.

It seems logical that any degenerate parameters should not contribute to the

change in log-likelihood. It is with this in mind that we created our heuristic. When

we split a community into two communities, the only vertices that we count are

the ones that need the additional parameter to fit the new solution – vertices that

aren’t in the community that split certainly didn’t need the additional parameter.

The additional multiplicative factor of two compared to Wilks’ Theorem is based on

observation of the difference between the logical prediction and observation.

It is not clear where this additional factor of two comes from. One possibility is

that it comes from the undirected nature of the network. However, since we have

properly computed the full log-likelihood as in equation (3.2), it would have to be a

non-trivial dependence. Another possibility is that it could have to do with biased

versus unbiased estimators, similar to the difference between Wilks’ Theorem and the

Akaike Information Criterion [5].

3.5 Results

In this section we show results of our counting method on both synthetic networks

as well as real networks. We show that as we should expect, the generic methods

do a poor job predicting the distributions for the change in log-likelihood even in

networks that were generated using the overlapping community detection blockmodel.

However, the new heuristic does a good job of predicting the distributions associated

with the change in log-likelihood and thus can be used to accurately identify the
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number of communities in the network.

To demonstrate that our heuristic works well on synthetic networks where other

model selection methods fail, we generated networks with 999 vertices and an expected

degree of 20 for each vertex. There are 3 communities of equal sizes, and each vertex

has on average 80% of its connections to other vertices in the same group, with

the remaining 20% being split evenly between vertices in the other two communities.

The parameters were chosen so that the EM algorithm could easily detect the planted

community structure, and we ran 1000 individual networks with this parameter set

to get an accurate estimation of the change in log-likelihood distributions. In each

network, we computed our heuristic’s prediction for the change in log-likelihood, but

the final stopping criterion was Wilks’ Theorem to demonstrate each method’s success

and failure, since that was the least stringent test.

The results from our experiment are shown in figure 3.2. For K = 2, 3, the ob-

served change in log-likelihood (normalized by n) is significantly larger than what any

of our tests predicted. This should be the case, since there’s additional community

structure in the network whereas our tests assume none. As is expected and can be

seen, Wilks’ Theorem overestimates the number of communities present in the net-

work, most commonly selecting 5 communities but occasionally choosing 4 or 6. On

the other hand, our counting heuristic matches up well with 2∆L starting at K = 4

as you would expect (since K = 4 should be the first value to fail the test given

that there are only 3 communities in the network) and continues to make accurate

predictions beyond that point, and thus would also predict the number of communi-

ties. The Akaike Information Criterion (AIC) [5], another common statistical model

selection method (that like Wilks’ Theorem is intentionally erroneously used here)

correctly identifies the number of communities in the network. AIC introduces a

penalty to the log-likelihood equal to the number of parameters, and the resulting

expression is maximized over the parameters and the number of parameters. This
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Figure 3.2: Twice the change in log-likelihood normalized by the number of vertices
between K communities and K − 1 communities plotted against K. The
stopping point for each network is when it falls below the green line
(Wilks’ Theorem prediction). Black circles are the average and standard
deviation of the actual data, and red squares are our prediction based on
the heuristic described in the text. AIC’s stopping criterion is not drawn,
but would be a horizontal line at 2.0.

can be interpreted like Wilks’ Theorem, comparing the log-likelihoods of consecutive

K against the number of parameters until the maximum is found. According to AIC,

in the lack of additional structure, twice the change in log-likelihood should be 2n for

our overlapping community detection model (and in general twice the mean of what

Wilks’ Theorem predicts, albeit with no variance), but this estimation of the change

in log-likelihood is very inaccurate, so we expect that it should fail on networks with

more complicated structure, and we will demonstrate this later in this section.

We can examine the change in log-likelihood at each K in further detail to compare

the distributions our heuristic expects versus the observed distribution for the change

in log-likelihood. In all cases, the mean of the distribution is within 10%, but the

variance of the log-likelihood is quite different from what we would expect for a χ2

distribution (twice the mean). For example, figure 3.3a shows the case when K = 4
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in the previous test. In fact, the variance also seems to depend on the community

structure of the network, something we haven’t taken into account. However, the

shape of the distribution does appear to be very similar to that of a squished χ2

distribution (which is approximately Gaussian for the large parameters we’re dealing

with) as tested by Q-Q plots, for example as shown in figure 3.3b.

The change in log-likelihood is clearly dependent on the network structure. For

example, we compare the difference in log-likelihoods of the previous network with a

comparable test on a set of networks with slightly different parameters. In this case,

we keep the same number of vertices and average degree, but change the relative

group sizes so that 1 of the 3 communities is twice as big as the other two. We also

make the communities more assortative: 95% of a vertex’s connections on average

are now within the same community, and 2.5% of the connections go to each of the

remaining two groups. Figure 3.4 compares the two tests. Notice that the change

in log-likelihoods is different between the two tests at the same K values. Since

the correct communities are easily found in both cases and the networks are mostly

comparable, this difference must be due to the different community structure.

As mentioned earlier, AIC can be used to correctly predict the number of com-

munities in the synthetic networks. However, the change in log-likelihood for the first

value of K that should not be accepted as correct is significantly different from the

amount required for AIC to reject it (in other words it is not the case that 2∆L ≈ 2n).

We demonstrate on a real network that this inaccuracy causes AIC to underrepresent

the number of communities, whereas our counting heuristic correctly predicts the

number of groups.

The network we study is the well-known college football network studied by Girvan

and Newman [58]. Vertices in this network are NCAA Division I-A college football

teams and an edge is placed between two teams if they played each other during the

2000 football season. Teams in college football are placed into conferences for purposes
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Figure 3.3: (a) Histogram of the computed change in log-likelihood when K = 4 for
the test described in the text. The red curve is the best fit to a χ2 dis-
tribution normalized to match the histogram, and is obviously too wide.
(b) Corresponding Q-Q plot. The green line is a fit to the quantiles, and
the blue line is the line y = x. The fit is good, meaning the shape of the
distribution is approximately correct, but the blue and green lines don’t
match up, which means that the width of the distribution is incorrect.
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Figure 3.4: Comparison of the two tests mentioned in the text. As in figure 3.2, black
squares are the results of the first test, with equal-sized communities, and
the green line is the stopping point. Blue diamonds are the results of
the test with differently-sized communities. The two tests do not have
a strong overlap, showing that a network’s community structure impacts
the change in log-likelihood. K = 1, 2 are not shown since they actually
exhibit community structure – we have no reason to believe that the two
tests should give the same change in log-likelihood there anyways.
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of competition, and it has been repeatedly found that community detection methods

can detect these conferences. In 2000 there were eleven conferences. The exception to

this structure are the so-called independent teams, teams with no conference affiliation

that typically compete against teams from multiple conferences. That year there were

eight independent teams.

In Fig. 3.5 we show what happens when you use either AIC (a) or our heuristic

with a p-value of 0.5 (b) to extract communities from the college football network.

The value of 0.5 is chosen so that it is not affected by inaccuracies in the variance,

since the χ2 distribution is approximately symmetric about its mean, and we will

soon discuss this particular choice of p-value and its impact on the fitted structure in

further detail. The communities found are plotted as colored vertices (pie charts for

vertices in multiple groups, where the fraction of each color is the fraction of edges in

that community), and an underlayed shape and color combination is used to display

the actual conferences. In particular, black squares are independent teams.

AIC picks off a very wrong solution, fitting only three groups. However that does

not mean that the community structure the overlapping community detection block-

model found isn’t especially interesting. The groups correspond to the geographic

region of each college, and the conferences are subgroups of the three communities

since they are also geographic in nature. The green vertices are teams associated with

colleges located in the Midwest and Northeast regions in the U.S., the red vertices

are in the South and on the Atlantic coast, and the blue vertices comprise of the col-

leges on the Pacific coast and Plains states. Student members of the teams must be

enrolled in classes to participate with the team, so the distance a team can travel for

a game is somewhat limited, so it makes sense that the network should be somewhat

geographically clustered. In particular, someone with a knowledge of college football

could make the argument that there are three geographic regions that teams play in,

and in that regard AIC has found the correct solution.
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(a)

(b)

Figure 3.5: Community structure as extracted using the overlapping community de-
tection blockmodel with AIC (a) and our counting heuristic with a p-value
of 0.5 (b). Colored circles correspond to the groups, and the actual con-
ferences are shown by the underlayed grayscale shapes. Extracted com-
munities are correlated with the conference structure in both cases, but
AIC doesn’t find the correct number of conferences whereas our heuris-
tic does. See figure 2.6 for a clear version of the actual conferences. Of
special interest are the independent teams, drawn as black squares.
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On the other hand, our heuristic finds the correct number of communities as

well as the correct communities themselves – depending on your p-value threshold.

The last group to be added are the light blue vertices, splitting off from the yellow

vertex group with a p-value of 0.1 ∼ 0.2 depending on the exact groupings in the

EM algorithm3. If the p-value is too relaxed, a 12th group is discovered at about

p = 0.6 ∼ 0.7. Had our heuristic predicted the variance of the distribution of the

change in log-likelihood, these two groups would be spread further from 0.5, and we

would have better distinguished the number of groups and we would be able to choose

p-values more liberally – ideally with a value of 0.05 ∼ 0.1 as is commonly chosen.

Additionally, the overlapping community detection model finds interesting behavior

in the community structure beyond the well-defined conferences. Several vertices in

figure 3.5b appear to belong to the wrong group and/or a large number of groups.

Each of these vertices is underlayed with a black square, meaning that they are the

independent teams.

3.6 Discussion

In this chapter, we have described a heuristic method for choosing the number

of communities in a statistical network model for overlapping community detection.

The method works very well, correctly identifying the number of communities in both

synthetic and real networks. Since the overlapping community detection model can

be applied efficiently to extract communities in a network, this makes it possible to do

community detection with an unknown number of communities on large networks. It

is possible to make this process even more efficient by applying a community bisection

technique or other similar method that takes advantage of the already discovered

community structure rather than running the full EM algorithm each time a new

3Since this network is relatively small, a change of a single vertex’s communities is enough to
give it this difference.
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community needs to be added.

The heuristic has several drawbacks however. It is not theoretically proven to

be the correct answer for this model, and has an unexplained multiplicative factor of

two to match our intuition on statistical model techniques to observations of synthetic

networks. Furthermore, the variance of the change in log-likelihood distribution isn’t

accounted for by our heuristic.

There is also the issue that the heuristic relies on the EM algorithm to have found

the absolute maximum of the likelihood in both the K−1 and K cases. Most of time

the p-values are incredibly low so this doesn’t cause much concern, but when you’re

within a couple of communities of the correct answer, you have to start worrying

about the total accuracy of not only the communities themselves but also the exact

number of communities. This is a general problem with statistical model selection

though and does not have an easy solution.
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CHAPTER IV

APS multi-modal network

4.1 Introduction

In this chapter, we temporarily step away from the question of blockmodels and

instead explore a large multi-modal network like the one shown in Figure 1.4d. It

is common to project networks like this into single mode networks where there is

only one kind of vertex and edge, and here we demonstrate that you can learn a lot

about network dynamics specifically by analyzing across the different types of vertices

and edges in addition to looking at them individually. Multi-modal networks are not

commonly studied from any perspective, and we hope to garner interest in studying

their structure in more depth [140].

Citation networks [120] and coauthorship networks [60, 61, 101] are distinct net-

work representations of bodies of academic literature that have both been the subject

of quantitative analysis in recent years. In a citation network the network nodes are

papers and a directed edge runs from paper A to paper B if A cites B in its bibli-

ography. In a coauthorship network the nodes are authors and an undirected edge

connects two authors if they have written a paper together. Both kinds of network

can shed light on habits and patterns of academic research. Citation networks, for

instance, can give a picture of the topical connections between papers, while coau-

thorship networks can shed light on patterns of collaboration such as the size of
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collaborative groups or the frequency of repeated collaboration.

In this chapter we analyze networks of citation and coauthorship derived from a

large data set made available by the American Physical Society (APS), which consists

of bibliographic and citation data for the Physical Review family of physics journals

and spans the entire history of those journals, more than a hundred years, from their

inception in 1893 to 2009 1. The data set is unusual both because of the length of time

it spans and also because it contains information on both citation and coauthorship

for the same body of literature. A number of previous analyses of the data have been

published [27, 62, 125] but our work adopts a somewhat different viewpoint from

other studies in focusing on the interactions between authorship and citation, as well

as on long time-scale patterns in the data. In particular, the simultaneous availability

of citation and coauthorship data allow us to associate citations not only with papers

but with individual authors, so that we can tell whether or not a particular author

cites another. Combining this insight with the temporal aspects of the data we find,

for example, that researchers cite their own or coauthors’ papers more quickly after

publication than they do the work of others; that authors show a strong tendency

to return the favor of a citation from another author, especially a previous coauthor;

that, contrary to some recent conjectures, having a common coauthor does not make

two authors likely to collaborate in future [34, 74, 99]; and that there has not (at

least within the journals we study) been any increase over time in self-citations, the

number holding roughly constant at about 20% of all citations for over a century.

4.2 The data set

In its raw form the data set we study contains records for 462 090 papers published

in the various Physical Review journals, each identified with a unique numerical label.

Data for each paper include paper title, date of publication, the published names and

1More details about the data set can be found on the web at https://publish.aps.org/datasets
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affiliations of each of the authors, and a list of the numerical labels of previous Physical

Review papers cited. The data set is unusual in two respects: the long period of time

it covers, which spans 116 years from 1893 to 2009, and the fact that it includes

citation data and hence allows us to compare coauthorship patterns with citations, at

least for that portion of the citation network that appears in the Physical Review—

citations to and from non-Physical-Review journals, of which there are many, are not

included.

Before performing any analysis, however, there are some hurdles to overcome.

Foremost among them is the fact that the name of an author alone does not neces-

sarily identify him or her uniquely. Two authors may have the same name, or the

same author may be identified differently in different publications (with or without

a middle initial, for example). Unlike some journals, such as those of the American

Mathematical Society2, the Physical Review does not maintain unique author iden-

tifiers that can be used to attribute authorship unambiguously. As a first step in

analyzing the data, therefore, we have processed it using a number of disambiguation

techniques in order to infer actual author identity from author names as accurately

as possible. Details of the disambiguation process are given in Appendix E.

In addition, we have performed a modest culling of the data to remove outliers,

the most substantial action being the removal of all papers with fifty or more authors,

which are primarily recent papers in experimental high-energy physics. (Almost all

of them, about 91%, were published either in Physical Review D, which covers high-

energy physics, or Physical Review Letters; the remainder were in Physical Review

C, which covers nuclear physics.) As we show shortly, though papers with more than

fifty authors are only a small fraction of the whole (about 0.7%), their inclusion skews

results for the last thirty years substantially by comparison with the rest of the time

period. For results whose outcome depends strongly on the presence or not of these

2A description of the unique author identifier system used by the American Mathematical Society
can be found at http://www.ams.org/publications/math-reviews/mr-authors.
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Papers with 50
All papers authors or fewer

Total papers 460889 457516
Total authors 235533 226641
Authors per paper 5.35 3.34
Citations per paper 10.16 10.16
Number of collaborators 59.44 17.24
Papers per author 10.47 6.74

Table 4.1: Mean values of some statistics for our data set, with and without papers
having over 50 authors.

papers, we quote results both with and without, for comparison.

Table 4.1 gives some basic parameters of the resulting data set.

4.3 Analysis

In the next few sections we present a variety of analyses of the Physical Review

data set. We begin by looking at some basic parameters of authorship and coauthor-

ship.

4.3.1 Authorship patterns

Figure 4.1 shows a cumulative distribution function for the number of papers an

author publishes, aggregated over the entire data set. That is, the figure shows the

fraction of authors who published n papers or more as a function of n, which is a

crude measure of scientific productivity. The axes in the figure are logarithmic, and

the approximate straight-line form of the distribution function implies that scientific

productivity follows, roughly speaking, a power law, a result known as Lotka’s law,

first observed by Alfred Lotka in 1926 [91] and confirmed by numerous others since.

(It has also been suggested that the distribution is log-normal rather than power-

law [130]. It is known to be hard to distinguish empirically between log-normal and

power-law distributions [30].) In Figure 4.1 we give separate curves with and without
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Figure 4.1: Probability that an author wrote more than a given number of papers.
Red circles indicate values calculated from the full data set; black squares
are values from the data set after papers with fifty or more authors have
been removed. The plot is cut off around 500 papers because there is very
little data beyond this point.

the papers that have fifty or more coauthors. As the figure shows, the difference

between the two is primarily in the tail of the distribution, among the authors who

have published the largest number of papers, indicating that a significant fraction

of the most productive authors are those in large collaborations. In fact, if one

compiles a list of the fifty authors publishing the largest numbers of papers, only one

of them remains on that list after papers with fifty or more authors are excluded. This

probably results from a combination of two effects: first, larger groups can publish

more papers simply because they have more people available to write them; and

second, a large and productive group of collaborators contributes many apparently

prolific authors to the statistics—each of the many coauthors separately gets credit

for being highly productive. It is precisely because of biases of this kind that we

exclude papers with many authors from some of our calculations.

We can remedy this problem to some extent by measuring productivity in a more
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sophisticated fashion. Rather than just counting up all the papers an author was

listed on, we can instead divide up the authorship credit for a paper among the

contributing authors so that, for example, each author on a two-author paper is

credited with half an authorship for that paper. This reduces significantly the impact

of large collaborations on the statistics, though the distribution of number of papers

authored is still highly skewed, with certain authors producing much more science

than others. A common way to visualize such skewed distributions is to use a Lorenz

curve, a plot of the fraction of papers produced by the most prolific authors against

the fraction of authors that produced them. Such a curve is shown for our data

set in Figure 4.2, and the sharp rise in the curve at the left-hand side indicates the

concentration of scientific productivity among the most productive scientists. Note

for instance that productivity appears roughly to follow the so-called 80–20 rule,

such that about 80% of the output is produced by the 20% most productive authors.

Notice also that there is almost no difference in the Lorenz curves with and without

the 50-plus-author papers, precisely because we have divided up the authorship credit

so that the effect of many-author papers is diminished.

The distribution can be further quantified by measuring a Gini coefficient, which

is defined as the excess area under the Lorenz curve compared to the case where

everyone has the exact same productivity. In our data set, the Gini coefficient is 0.70,

a relatively large figure as such coefficients go, indicating high skew. (Gini coefficients

for wealth inequality, for example, which is the context in which such coefficients are

perhaps best known, rarely rise above 0.6, even in the most inequitable countries.)

The data set also allows us to measure the productivity of the entire field of physics

over time, something that cannot be done with many other data sets. Figure 4.3 shows

the total number of papers published in the Physical Review in five year time blocks

since 1893. With the important caveat that these results are for a single collection

of journals only, and one moreover whose role within the field has evolved during
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Figure 4.2: Fraction of papers written by the most prolific authors (with credit for
multi-author papers divided among coauthors, as described in the text).
The red (grey) curve represents values calculated from the full data set;
the black curve represents values after papers with fifty or more authors
have been removed. Note that the two curves are almost indistinguish-
able. The dashed line indicates the form the curve would take if all
authors published the same number of papers.
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Figure 4.3: Number of papers published in each five-year block. Red circles indi-
cate numbers calculated from the full data set; black squares are calcu-
lated from the data set after papers with fifty or more authors have been
removed. Note that the two values are almost indistinguishable. The
straight line is the best-fit exponential.

its history from provincial up-start to one of the leading physics publications on the

planet, we see that there is a steady increase in the volume of published work, which

appears roughly to follow an exponential law (a straight line on the semi-logarithmic

scales of the figure). An interesting feature is the dip in the curve in the 1940s, which

coincides with the second World War, followed by a recovery in the 1950s, perhaps

attributable in part to increased science funding in the postwar period. The combined

result of these deviations, however, is only to put the curve back on the same path of

exponential growth after the war that it was already on before it. In his early studies

of secular trends in scientific output, Derek de Solla Price [118, 119] noted a similar

exponential growth interrupted by the war, and measured the doubling time of the

growth process to be in the range from 10 to 15 years. The best exponential fit to

our data gives a compatible figure of 11.8 years.

Figure 4.4 shows the corresponding plot of the number of unique authors in the
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Figure 4.4: Number of unique authors who published a paper in each five-year block.
Red circles indicate numbers calculated from the full data set, while black
squares are calculated from the data set after papers with fifty or more
authors have been removed. Note that the two values are almost indis-
tinguishable. The straight line is the best-fit exponential.

data set in each five-year block as a function of time. Like the number of papers

published, the number of authors appears to be increasing exponentially, and with

a roughly similar (but slightly smaller) doubling time of 10.4 years. Thus, despite

the marked increase in productivity of the field as a whole, it appears that each

individual scientist has produced a roughly constant, or even slightly decreasing,

number of papers per year over time.

The natural complement to measurement of the number of papers per author is

measurement of the number of authors per paper, i.e., the size of collaborative groups.

Figure 4.5 shows the mean number of authors per paper in our data set as a function

of time, and there is a clear increasing trend throughout most of the time period

covered, with the average size of a collaborative group rising from a little over one

a century ago to about four today. A similar effect has been noted previously by,

for example, Grossman and Ion [60], for the case of mathematics collaborations. In
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Figure 4.5: Number of authors per paper averaged over five-year blocks. Red circles
indicate the full data set; black squares are the data set after papers with
fifty or more authors have been removed.

our calculations we have again calculated separate curves with and without papers

having fifty or more authors and a comparison between the two reveals a startling

effect: while there is almost no difference at all between the curves prior to about 1975,

there is a large and rapidly growing gap between them in the years since. Without

these papers the growth in group sizes has been slow and steady for decades; with

them it departs dramatically from historical trends after the 1970s, indicating a large

and growing role in physics (or at least in physics publication) for big collaborations.

An alternative view of the same trend is given in Figure 4.6, which shows the

number of unique coauthors an author has, on average, during each five year time

block. Every coauthor in a time block is counted, even if he or she was also counted

in a previous time block (but previous coauthors are not counted unless they are also

coauthors in the new time block). As the figure shows, this number has also risen

significantly over the last century, from a little over one to more than ten today (and

more than sixty if one includes collaborations with fifty or more members). Since we
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Figure 4.6: Average number of unique coauthors of an author, averaged in five-year
blocks. Red circles indicate the full data set; black squares are the data
set after papers with fifty or more authors have been removed.

only have data from the Physical Review, it is likely that we miss some collaborators,

so these numbers are in practice only lower bounds on the actual numbers.

4.3.2 Citation patterns

Let us now add the citation portion of the data set to our analyses and examine

citation patterns over time in the Physical Review, as well as interactions between

citation and coauthorship.

Figure 4.7 shows the average number of citations by a paper and to a paper,

over the time period covered by the Physical Review data set. The black curve, the

number of citations that a paper makes, shows a steady increase over time—authors

used to cite fewer papers and have been citing steadily more in recent decades. One

possible explanation for this phenomenon is the increase in the volume of literature

available to be cited, although it has also been conjectured that authors have been

under greater pressure in recent decades, for example from journal editors or referees,
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Figure 4.7: Average numbers of citations made (black squares) and received (red cir-
cles) per paper, in five-year blocks.

to add more copious citations to papers [148].

The red curve in Figure 4.7 is the average number of citations received by a

paper, which shows more irregular behavior, rising to a peak twice before dropping

off in recent times. A number of effects are at work here. First, if (as we will

shortly see) most citations are to papers in the recent past, then a steady increase

in citations by papers should lead to an increase in citations to papers published

slightly earlier. Behavior of this kind has been observed in previous studies, such as

the comprehensive study by Wallace et al. using data from the Web of Science [139].

The growth in number of citations received cannot continue to the very end of the

data set, however, since the most recent papers are too recent to have accrued a

significant number of citations and hence we expect a drop at the rightmost end of

the curve, as seen in the figure.

There is, however, also a notable dip in the red curve around 1970, whose origin

is less clear. (It is not seen, for instance, in the work of Wallace et al.) In examining

the data for this period in detail, we find that the dip in citations per paper is due
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primarily to an increase in the number of papers published in the Physical Review

(which expanded considerably during this period), while the number of citations

received by those papers, in aggregate, remains roughly constant. The increase in

papers published may have been in part a response to the general expansion of US

physics research during the 1960s, following the establishment of the National Science

Foundation, but the data indicate that the greater volume of research did not, at least

initially, result in a greater number of citations received, and hence the ratio of the

two displays the dip visible in Figure 4.7. However, the upward trend in the curve

reestablishes itself from about 1970 onward, suggesting that in the long run there was

an increase not only in the number of papers published, but also in the number that

are influential enough to be later cited.

It is interesting to compare the data for citations received with the predictions

of theoretical models for the citation process. Perhaps the best known class of mod-

els are the preferential attachment models [13], and particularly the 1976 model of

Price [117], a simple model in which the rate at which a paper receives citations is

assumed to vary linearly with the number it already has. In its most naive applica-

tion, this model makes predictions that differ strongly from the observations plotted

in Figure 4.7. The model predicts that the largest number of citations should go to

the oldest papers and the smallest to the youngest, so that the red curve in the figure

should be monotonically decreasing. There are a number of possible explanations for

the disagreement. A popular theory is that papers “age” over time, becoming less

well cited as they become older [128, 156], perhaps because their field has moved on to

other things, because they have been superseded by more advanced or accurate work,

or because their results are so well known that authors no longer feel the need to cite

them. Were this the case, most citations would be to recent papers, and the curve

of citations received would mostly mirror the curve of citations given, albeit with a

time lag whose length would be set by the rate at which papers age. An alternative
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theory, for which there is some empirical evidence, is that preferential attachment

models do represent citation patterns quite well within individual subfields [104], but

not when applied to the literature as a whole. A central parameter in the preferential

attachment models is the date of the start of a subfield, and since different subfields

have different start dates, the model might be expected to work within subfields but

not for the overall data set.

Figure 4.8 tests the aging of papers within the Physical Review data set by plotting

the fraction of citations that are to papers a certain time in the past. Let us focus

for the moment on the black curve, which includes all citations in the entire data

set. The figure shows that there does indeed appear to be a strong aging effect,

with the citation rate dropping off approximately exponentially over time (which

would be a straight line on the semi-logarithmic scales of the plot). This finding is in

agreement with previous studies of aging [156], which also found exponential decay.

An alternative interpretation of the data, however, is that there is no aging occurring

at all, and that the drop in citations is a purely mechanical effect that results from

dilution of the literature—in a small, young field there are only a few papers to cite

and hence each receives a lot of citations; in an older field there are more papers and

so individual citation rates fall off. To the extent that it has been tested, the latter

theory appears to agree well with available citation data and also with the prediction

of the preferential attachment models [82], so at present the evidence for (or against)

aging in our data set is inconclusive.

4.3.3 Interactions between citation and coauthorship

Perhaps the most interesting aspect of the Physical Review data, however, is the

window it gives us on the interplay between citation and coauthorship. One way to

probe this interplay is to divide citations according to the collaborative roles assumed

by the authors of the citing and cited papers and then compare the resulting cita-
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Figure 4.8: Fraction of citations made more than a given number of years after
publication. Black diamonds include all citations, blue squares are self-
citations, red circles are co-author citations, and green triangles are dis-
tant citations.

tion patterns. In the present work, we divide citations into three classes, following

Wallace et al. [140]: self-citations, where the citing and cited papers shared at least

one coauthor; coauthor citations, where at least one author of the citing paper has

previously collaborated with at least one author of the cited paper (but there are

no common authors between papers, so that self-citations and coauthor citations are

disjoint); and distant citations, which includes all citations other than self-citations

and coauthor citations. (Other authors who have examined citation and collaboration

have gone further and considered also citations between coauthors of coauthors [140],

but this proves computationally unfeasible in the present case because of the size of

the Physical Review data set.) We emphasize that we only consider individuals to

be coauthors if they have previously coauthored when the citation occurs. Coauthor-

ship that comes after the citation is not counted. Also our data are limited to the

Physical Review, so the number of coauthor citations will in reality be higher than

presented here, both because some citations are missing from our data and because

89



some coauthorships are.

Figure 4.9 shows the fraction of citations that fall into each of the three classes

as a function of the year of publication of the citing paper. Roughly speaking, the

three curves appear flat over time. There is a modest increase in the fraction of

coauthor citations (the lowest, red curve in the figure), but this can be explained by

the increase in the number of coauthors available for citation, shown in Figure 4.6,

which is of a similar magnitude. In other respects, the rule of thumb seems to be that

a constant 20% or so are self-citations, 75 or 80% are distant citations, and the small

remaining fraction are to coauthors.
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Figure 4.9: Fraction of citations made, by type, in five-year blocks. There were
no citations made in the 1890–1894 block. Blue squares represent self-
citations, red circles are co-author citations, and green triangles are dis-
tant citations.

The distribution of time between the publication dates of a new paper and the

papers it cites is shown for the three classes of citation in Figure 4.8, as the blue,

red, and green curves. Here we do notice a significant difference between the classes.

In particular, the self-citations (in blue) fall off faster than coauthor and distant
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citations. This implies that a larger fraction of self-citations occur rapidly after

publication, compared with citations in the other classes. This is not unexpected,

given that a researcher presumably knows about their own research sooner, and in

more detail, than they know about others’. We note also that coauthor citations are

slightly earlier than distant citations, which again seems reasonable. One must be

careful in the interpretation of these results, however. An alternative explanation for

the same observations is that a paper can be cited by others long after the author

retires or leaves the field, which could make the average delay for citations by others

longer than that for self-citation. There is no way to tell, purely from the delay

statistics themselves, which explanation is the better one.

Table 4.2 summarizes the mean delay to citation for the three citations classes.

We explore the differences between citation classes further in the next section.

Citation type Mean delay (years)
Self-citations 4.12

Coauthor citations 6.92
Distant citations 9.02

All citations 7.89

Table 4.2: Mean time delay between a paper’s publication date and the dates of the
papers it cites.

4.3.4 Self-citation and coauthor citation

Consider Table 4.3, which gives the percentages of papers that make or receive at

least one self-citation or coauthor citation, provided that such a citation is possible.

Nearly 70% of papers cite at least one paper by the same author (or one of the same

authors, if there are several), and 60% of them receive such a citation. These numbers

may at first appear large, and raise concerns, given the use of citation counts as a

measure of impact, that authors might be inflating their counts by self-citing [15, 67].

But taken with the fact that the number of citations per paper and the fraction which
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are self-citations are both sizable, these large numbers are not unexpected. Figure 4.9

shows that overall self-citation has remained constant and moderate, around 20%, and

that there has been no sizable recent excess in self-citation.

Citation type Made (%) Received (%)
Self-citation 68.9 60.3

Coauthor citation 42.0 31.3
Both 35.6 26.3

Either 75.0 64.2
Either given both possible 76.4 66.4

Table 4.3: Percentage of papers that make or receive at least one citation of a given
type.

A more interesting question is whether researchers have a tendency to reciprocate

citations by others. If author A cites a paper of author B, does B return the favor

by later citing A? To address this question we measure the fraction of citations of

one author by another (excluding citations of one’s own papers) that are reciprocated

in one or more later publications. We calculate separate figures for pairs of authors

who have previously co-authored a paper and those who have not and find that

13.5% of citations between non-coauthors are reciprocated when possible, while an

impressive 43.8% of citations between coauthors are reciprocated. (Keep in mind

that no authors can overlap between a citing and a cited paper for the citation to

be considered a coauthor citation and not a self-citation.) Both these numbers are

very high compared to the expected reciprocity if citations were made uniformly at

random, but this doesn’t necessarily imply a tit-for-tat return of citations. A citation

is presumptively an indication that two papers fall in similar subject areas, and thus

the presence of a citation greatly increases the chances that the authors are working

in the same area, which in turn increases the likelihood of citation in general and

therefore the chances of reciprocated citation. In the case of previous coauthors

the chances of working in the same field are likely even higher. Unfortunately, we

currently do not have any model of the citation process detailed enough to make a
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quantitative prediction of the size of this effect against which we could compare our

measurements to test for significance.

4.3.5 Transitivity

Transitivity, in the context of networks, refers to the observation that “the friend

of my friend is also my friend” [143]. In the context of coauthorship, for example, it

is observed that if A has coauthored a paper with B and B with C, then A and C are

more likely also to have coauthored a paper. One can define a so-called clustering

coefficient that quantifies this effect, measuring the average probability that the friend

of your friend is also your friend [146], and such coefficients have been measured in

many networks [12, 34, 80, 110]. Typically one finds that the values are significantly

higher than one would expect if network connections were made purely at random,

and our coauthorship network is no exception. For the data set studied here we find

a clustering coefficient of 0.212, which is comparable with other figures reported for

coauthorship networks [101].

In this case, however, the nature of the data set allows us to go further. The

conventional explanation for high transitivity in networks relies on a triadic closure

mechanism, under which two authors who share a common coauthor are more likely

to collaborate in future, perhaps because they revolve in the same circles, attend the

same conferences, work at the same institution, or are introduced to one another by

their common acquaintance [34, 74, 99]. The present data set’s time-resolved na-

ture allows us to test this hypothesis directly. We can calculate what fraction of the

time individuals who share a common coauthor but have not previously collaborated

themselves later write a paper together. When we make this measurement for the

Physical Review data we find the fraction of such author pairs to be only 0.0345—a

much smaller fraction than the clustering coefficient of the whole network reported

above. One reason for this small figure is that a large fraction of the transitivity seen
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in coauthorship networks comes from papers with three or more authors, which auto-

matically contribute closed triads of nodes to the coauthorship network. Such triads

however are excluded from our calculation of the probability of later collaboration.

The large difference between the two probabilities we calculate implies that only a

small fraction of the network transitivity comes from true triadic closure processes.

Nonetheless, the triadic closure process does appear to be present in our data set.

Figure 4.10 shows the probability of future coauthorship between two individuals as

a function of their number of common coauthors, and we see that the probability

increases sharply, a finding that is consistent with previous results [20, 99].
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Figure 4.10: Probability of future coauthorship with another author as a function of
the number of shared coauthors. The number of shared coauthors is
counted at the time of first coauthorship or the date of either coauthor’s
last published paper, whichever comes first.

4.4 Discussion

In this chapter we have analyzed a large data set from the Physical Review fam-

ily of journals, taking a network perspective. Rather than focus solely on either

citation or coauthorship networks, as most previous studies have done, we have in-
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stead combined the two, which allows us to study questions about the ways in which

people—and not just papers—cite one another, and the extent to which scientists

collaborate with those they cite or cite those with whom they collaborate. The time-

span of the data set is unusually large, covering more than a century of publication,

which allows us to study long-term changes in collaboration and citation patterns

that are not accessible with smaller data sets.

Our main findings are that the Physical Review appears to be growing exponen-

tially, with a doubling rate slightly less than 12 years, and the number of citations per

paper within the journals also appears to be growing. The fraction of self-citations

and citations among coauthors is more or less constant over time, and authors tend

to cite their own papers sooner after publication than do their coauthors, who in

turn cite sooner than non-coauthors. We observe a strong tendency towards recipro-

cal citations, researchers who cite another author often receiving a citation in return

later on, with especially high rates for citations between coauthors. Contrary to some

previous claims [34, 74, 99], however, there is only a small triadic closure effect in

the coauthorship patterns; two researchers who share a common coauthor but have

never collaborated themselves have only a rather small probability of collaborating

in future—about 3.5%. This number is nonetheless much higher than the probability

for two randomly chosen researchers, and moreover increases sharply as the number

of common coauthors increases.

A limitation of our analysis is that the data we use come from a single family of

journals in a single field. There are, however, some results for other journals and fields

that suggest that the patterns we observe extend beyond physics and the Physical

Review. In one recent study, for example, Huang et al. [77] examined a collection

of papers in computer science drawn from the CiteSeer database of online preprints.

They find, as we also do, that the number of papers and number of authors both

increase roughly exponentially over time, while the number of authors per paper
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and number of coauthors per author increase roughly linearly. Wuchty et al. [150]

examined a large set of papers drawn broadly from the sciences and engineering, using

data from the commercial Web of Science database (formerly the Science Citation

Index). They observe in particular that the average number of authors on a paper

has increased steadily over time, at least for papers with more than one author,

which again agrees qualitatively with our observations. Döbler [138] studied a data

set representing the fields of mathematics, logic, and physics from 1800 to 1998 and

found again that collaboration has increased over time, albeit intermittently, and at

a rate that depends on the field.

There are many other questions that could be addressed with the data we have

analyzed, the unusually long time-span and combination of publication and citation

data opening up a variety of possibilities. For instance, we know which papers are

published in which of the various Physical Review journals, and hence we have a

crude measure of paper topic, which would allow us to answer questions about how

the patterns of coauthorship and citation vary between fields within physics. We could

also study geographical variations by making use of the data on authors’ institutional

affiliations [113]. Our analysis of long-term historical trends could also be extended;

for the researcher interested in the history of US physics, there are, no doubt, many

interesting signatures of historical events hidden within the data. The data set also

offers the possibility of tracking the careers of individual scientists, possibly over long

periods of time, or of tracking research on a particular topic. And finally, any of our

analyses could be extended to data sets that cover other journals or fields other than

physics, if and when such data become available. All of these would make excellent

subjects for future investigation.
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CHAPTER V

Social ranking model

5.1 Introduction

A social network, in the most general sense of the term, consists of a group of

people, variously referred to as nodes or actors, connected by social interactions or ties

of some kind [143]. In this chapter we consider networks in which the ties represent

friendship. Friendship networks have been the subject of scientific study since at

least the 1930s. A classic example can be found in the studies by Rapoport and

Horvath [124] of friendship among schoolchildren in the city of Ann Arbor, Michigan

in the 1950s and 60s, in which the investigators circulated questionnaires among the

students in a school asking them to name their friends. Many similar studies have

been done since then, with varying degrees of sophistication, but most employ a

similar questionnaire-based methodology. A counterintuitive aspect of the resulting

networks is that they are directed. Person A states that person B is their friend

and hence there is a direction to the ties between individuals. It may also be that

person B states that person A is their friend, but it does not have to be the case, and

in practice it turns out that a remarkably high fraction of claimed friendships are not

reciprocated. In the networks we study in this chapter the fraction of reciprocated

ties rarely exceeds 50% and can be as low as 30%.

This could be seen as a problem for the experimenter. One thinks of friendship as
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a two-way street—a friendship that goes in only one direction is no friendship at all.

How then are we to interpret the many unreciprocated connections in these networks?

Are the individuals in question friends or are they not? One common approach is

simply to disregard the directions altogether and consider two individuals to be friends

if they are connected in either direction (or both) [3]. In this chapter, however, we take

a different view and consider what we can learn from the unreciprocated connections.

It has been conjectured that, rather than being an error or an annoyance, the pattern

of connections might reflect underlying features in the structure or dynamics of the

community under study [35, 45, 75].

Working with a large collection of friendship networks from US schools, we find

that in every network there is a clear ranking of individuals from low to high such

that almost all friendships that run in only one direction consist of a lower-ranked

individual claiming friendship with a higher-ranked one. We conjecture that these

rankings reflect a measure of social status and present a number of results in support

of this idea. For instance, we find that a large majority of reciprocated friendships

are between individuals of closely similar rank, while a significant fraction of un-

reciprocated friendships are between very different ranks, an observation consistent

with qualitative results in the sociological literature going back several decades [35].

We also investigate correlations between rank and other individual characteristics,

finding, for example, that there is a strong positive correlation between rank and

age, older students having higher rank on average, and between rank and overall

popularity, as measured by total number of friends.

The outline of the chapter is as follows. First, we describe our method of analysis,

which uses a maximum-likelihood technique in combination with an EM algorithm to

extract rankings from directed network data. Then we apply this method to school

friendship networks, revealing a surprisingly universal pattern of connections between

individuals in different schools. We also present results showing how rank correlates

98



with other measures. Finally we give our conclusions and discuss possible avenues for

future research.

5.2 Inference of rank from network structure

Consider a directed network of friendships between n individuals in which a con-

nection running from person A to person B indicates that A claims B as a friend.

Suppose that, while some of the friendships in the network may be reciprocated or

bidirectional, a significant fraction are unreciprocated, running in one direction only,

and suppose we believe there to be a ranking of the individuals implied by the pat-

tern of the unreciprocated friendships so that most such friendships run from lower

to higher rank. One possible way to infer that ranking would be simply to ignore

any reciprocated friendships and then construct a minimum violations ranking of

the remaining network [6, 126]. That is, we find the ranking of the network nodes

that minimizes the number of connections running from higher ranked nodes to lower

ranked ones. In practice this approach works quite well: for the networks studied in

this chapter the minimum violations rankings have an average of 98% of their un-

reciprocated friendships running from lower to higher ranks and only 2% running the

other way. By contrast, versions of the same networks in which edge directions have

been randomized have about 10% of edges running the wrong way on average. (Sta-

tistical errors in either case are 1% or less, so these observations are highly unlikely

to be the results of chance.)

The minimum violations ranking, however, misses important network features

because it focuses only on unreciprocated friendships. In most cases there are a

substantial number of reciprocated friendships as well, as many as a half of the total,

and they contain significant information about network structure and ranking. For

example, as we will see, pairs of individuals who report a reciprocated friendship are

almost always of closely similar rank. To make use of this information we need a
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more flexible and general method for associating rankings with network structure. In

this chapter we use a maximum likelihood approach defined as follows.

Mathematically we represent the distinction between reciprocated and unrecipro-

cated friendships in the network using two separate matrices. The symmetric ma-

trix S will represent the reciprocated connections—undirected edges in graph theory

terms—such that Sij = Sji = 1 if there are connections both ways between nodes i

and j, and zero otherwise. The asymmetric matrix T will represent the unrecipro-

cated (directed) edges with Tij = 1 if there is a connection to node i from node j

(but not vice versa), and zero otherwise. The matrices S and T are related to the

conventional adjacency matrix A of the network by A = S + T.

Now suppose that there exists some ranking of the individuals, from low to high,

which we will represent by giving each individual a unique integer rank in the range 1

to n. We will denote the rank of node i by ri and the complete set of ranks by R. We

have found it to be a good approximation to assume that the probability of friendship

between two individuals is a function only of the difference between their ranks. We

specifically allow the probability to be different for reciprocated and unreciprocated

friendships, which acknowledges the possibility that the two may represent different

types of relationships, as conjectured for instance in Davis and Leinhardt [35] and

Dijkstra [41]. We define a function α(ri − rj) to represent the probability of an

undirected edge between i and j and another β(ri − rj) for a directed edge to i

from j. Since α(r) describes undirected edges it must be symmetric α(−r) = α(r),

but β(r) need not be symmetric.

If we were not given a network but we were given the probability functions α

and β and a complete set of rankings on n vertices, then we could use this model to

generate—for instance on a computer—a hypothetical but plausible network in which

edges appeared with the appropriate probabilities. In effect, we have a random graph

model that incorporates rankings. In this chapter, however, we want to perform the
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reverse operation: given a network we want to deduce the rankings of the nodes and

the values of the functions α and β. To put that another way, if we are given a network

and we assume that it is generated by our model, what values of the rankings and

probability functions are most likely to have generated the network we observe?

This question leads us to a maximum likelihood formulation of our problem, which

we treat using an expectation–maximization (EM) approach in which the ranks R

are considered hidden variables to be determined and the functions α and β are

parameters of the model.

This approach for estimating hidden variables, applying maximum likelihood

methods to a simplified generative model, is common within statistics and machine

learning, but perhaps less common in other areas, so it may be worthwhile to briefly

place our work in context. The model presented here is, clearly, not an accurate

representation of the true process of friendship formation. Unquestionably there are

other factors besides rank that play into people’s decisions to become friends. A real-

istic model of the process would certainly be more complicated and have many more

parameters. Nonetheless, simplified models such as this one are not only common in

data analysis, but they also appear to work well in practice. If one is interested in

estimating a set of hidden or latent variables, unobserved in the data but nonetheless

affecting the observations, then a model incorporating only the effects of those latent

variables plus a minimal set of other basic assumptions often turns out to produce

useful estimates, and this perhaps surprising observation forms the foundation for a

large part of modern statistics. Certainly it is possible to simplify models too far—the

standard stochastic block model of community structure in networks is an example

of a model that in many cases does not incorporate enough basic features to produce

good fits to real-world data for any parameter values and hence fails to extract latent

structure even in simple and well-understood examples [83]. In many other cases,

however, and particularly in the case of the present chapter, a simplified model that
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identifies the crucial features and leaves out the rest, can impart substantial insight

while avoiding unnecessary elaboration.

The particular model described in this chapter is only one of many that have

been proposed to explain patterns of reciprocation in social network data. One of the

best known previous models is the so-called p1 model of Holland and Leinhardt [73],

an early example of what would now be called an exponential random graph that

incorporates parameters governing vertex degrees and a single parameter controlling

the probability of reciprocated friendships. A variety of extensions of this model, in-

cluding some quite elaborate ones, have been subsequently proposed, such as those of

Wang and Wong [142] and Strauss and Ikeda [136]. See Wasserman and Pattison [144]

for a useful introduction to this area along with a wide range of examples, and Sni-

jders [132] for a recent review. None of these models, however, employs ranking

directly as a latent variable, and many of them lean in the opposite direction to our

current goal of simplicity in model design, incorporating a range of elaborations that

can increase the precision of the fit but also make interpretation more challenging.

With these considerations in mind, let us return to the model proposed in this

chapter. We use a Poisson formulation of the model (which gives significantly simpler

formulas while being asymptotically identical to a Bernoulli formulation for large

networks) in which the likelihood of generating a network G with rankings R, given

the functions α and β, is

P (G,R|α, β) =
∏
i>j

[α(ri − rj)]Sij

Sij!
e−α(ri−rj)

∏
i 6=j

[β(ri − rj)]Tij
Tij!

e−β(ri−rj). (5.1)

Note that we have excluded self-edges, since individuals cannot name themselves as

friends. (We have also assumed that the prior probability on R is uniform over all

sets of rankings, which is correct in the absence of any other rank information.)

The most likely values of the parameter functions α and β are now given by
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maximizing the marginal likelihood P (G|α, β) =
∑

R P (G,R|α, β), or equivalently

maximizing its logarithm, which is more convenient. The logarithm satisfies the

Jensen inequality

log
∑
R

P (G,R|α, β) ≥
∑
R

q(R) log
P (G,R|α, β)

q(R)
, (5.2)

for any set of probabilities q(R) such that
∑

R q(R) = 1, with the equality being

recovered when

q(R) =
P (G,R|α, β)∑
R P (G,R|α, β)

. (5.3)

This implies that the maximization of the log-likelihood on the left side of (5.2) is

equivalent to the double maximization of the right side, first with respect to q(R),

which makes the right side equal to the left, and then with respect to α and β, which

gives us the answer we are looking for. It may appear that expressing the problem

as a double maximization in this way, rather than as the original single one, makes

it harder, but in fact that’s not the case.

The right-hand side of (5.2) can be written as
∑

R q(R) logP (G,R|α, β)−∑
R q(R) log q(R), but the second term does not depend on α or β, so as far as α and β

are concerned we need consider only the first term, which is simply the average L of

the log-likelihood over the distribution q(R):

L =
∑
R

q(R) logP (G,R|α, β). (5.4)

Making use of Eq. (5.1) and neglecting an unimportant overall constant, we then have

L =
∑
R

q(R)
∑
i 6=j

[
1
2
Sij logα(ri−rj)+Tij log β(ri−rj)− 1

2
α(ri−rj)−β(ri−rj)

]
, (5.5)

where we have used the fact that α(r) is a symmetric function.
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This expression can be simplified further. The first term in the sum is

1
2

∑
R

q(R)
∑
i 6=j

Sij logα(ri − rj) = 1
2

∑
z

∑
i 6=j

Sijq(ri − rj = z) logα(z), (5.6)

where q(ri−rj = z) means the probability within the distribution q(R) that ri−rj = z.

We can define

a(z) =
1

n− |z|
∑
i 6=j

Sijq(ri − rj = z), (5.7)

which is the expected number of undirected edges in the observed network between

pairs of nodes with rank difference z. It is the direct equivalent in the observed

network of the quantity α(z), which is the expected number of edges in the model.

The quantity a(z), like α(z), is necessarily symmetric, a(z) = a(−z), and hence (5.6)

can be written as

1
2

∑
R

q(R)
∑
i 6=j

Sij logα(ri − rj) =
n−1∑
z=1

(n− z)a(z) logα(z). (5.8)

Similarly, we can define

b(z) =
1

n− |z|
∑
i 6=j

Tijq(ri − rj = z) (5.9)

and

∑
R

q(R)
∑
i 6=j

Tij log β(ri − rj) =
n−1∑
z=1

(n− z)
[
b(z) log β(z) + b(−z) log β(−z)

]
, (5.10)

where b(z) is the expected number of directed edges between a pair of nodes with
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rank difference z. Our final expression for L is

L =
n−1∑
z=1

(n− z)
[
a(z) logα(z)− α(z)

+ b(z) log β(z)− β(z) + b(−z) log β(−z)− β(−z)
]
. (5.11)

Our approach involves maximizing this expression with respect to α(z) and β(z) for

given a(z) and b(z), which can be done using standard numerical methods. (Note that

the expression separates into terms for the directed and undirected edges, so the two

can be maximized independently.) The values of a(z) and b(z) in turn are calculated

from Eqs. (5.3), (5.7), and (5.9), leading to an iterative method in which we first

guess values for α(z) and β(z), use them to calculate q(R) and hence a(z) and b(z),

then maximize L to derive new values of α and β, and repeat to convergence. This

is the classic expectation–maximization approach to model fitting.

To put this scheme into practice we need to specify a parameterization for the

functions α and β, so that we can represent them on the computer. Since there are

only a fixed number of values that the rank difference z can take in Eq. (5.11) [2(n−1)

of them, to be precise] we could in principle represent the functions completely by

specifying their value separately for each z. This would, however, probably overfit

the data because in reality the functions must be quite smooth—we do not expect

small differences in rank to make a big difference to the probability of friendship.

For a smooth function, a simple and natural parameterization is to use a Fourier

series, which is the choice we make in this chapter. (We have experimented with

other smooth parameterizations and find that our main conclusions are robust to the

choice made.) The Fourier series on its own, however, turns out to be inadequate to

completely represent the probability functions. As discussed in the following section,

we find that a substantial fraction of friendships in the networks analyzed in this

chapter run between individuals with closely similar rank, and we have found it
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necessary, in order to get a good fit to the model, to incorporate this observation

into the parameterization by adding an additional term to both α and β consisting

of a Gaussian peak of variable width, centered at the origin. With this addition we

achieve robust fits to the model that are consistent across networks.

For the parameterization of the function α, which describes the probability of

reciprocated friendship, we find good fits with only the central Gaussian peak plus a

small uniform constant, which one can think of as the zeroth term in the Fourier ex-

pansion. For β, which represents the unreciprocated friendships, a more complicated

form is needed—we use a five-term Fourier cosine series plus the central Gaussian

peak. To some extent the choice of five terms is dictated by what’s computationally

feasible—our current numerical framework limits us to the five used here, but with

improved computational resources it is possible that one could include more terms

and achieve better fits. Nonetheless the fits achieved appear robust—as mentioned

above, other parameterizations find similar functional forms.

Finally, we note that the sum in the denominator of Eq. (5.3) is too large to be

tractable numerically. In the calculations presented here, therefore, we approximate

it using a Markov chain Monte Carlo method—we generate complete rankings R

in proportion to the probability q(R) given by Eq. (5.3) and average over them to

calculate a(z) and b(z).

5.3 Results

We have applied the method of the previous section to the analysis of data from

the US National Longitudinal Study of Adolescent Health (the “AddHealth” study), a

large-scale multi-year study of social conditions for school students and young adults

in the United States. Using results from surveys conducted in 1994 and 1995, the

study compiled friendship networks for over 90 000 students in schools covering US

school grades 7 to 12 (ages 12 to 18 years). Schools were chosen to represent a broad
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range of socioeconomic conditions. High schools (grades 9 to 12) were paired with

“feeder” middle schools (grades 7 and 8) so that networks spanning schools could be

constructed.

To create the networks, each student was asked to select, from a list of students

attending the same middle/high school combination, up to ten people with whom

they were friends, with a maximum of five being male and five female. (Students

were also asked to list their best friends first, but we ignore this in our analysis, treat-

ing all claimed friendships as equal.) From these selections, 84 friendship networks

were constructed ranging in size from tens to thousands of students, one for each

middle/high school pair, along with accompanying data on the participants, includ-

ing school grade, sex, and ethnicity. Some of the networks divide into more than one

strongly connected component, in which case we restrict our analysis to the largest

component only. We perform the EM analysis of the previous section on each network

separately, repeating the iterative procedure until the rankings no longer change.

Figure 5.1 shows results for a typical network. In panel (a), the histogram shows

the measured value of the quantity a(z), Eq. (5.7), the empirical probability of a re-

ciprocated friendship (technically the expected number of undirected edges) between

a vertex pair with rank difference z, with the horizontal axis rescaled to run from

−1 to 1 (rather than −n to n). As the figure shows the probability is significantly

different from zero only for small values of z, with a strong peak centered on the

origin. The solid curve shows the fit of this peak by the Gaussian function α(z),

which appears good. The fit is similarly good for most networks. The form of a(z)

tells us that most reciprocated friendships fall between individuals of closely simi-

lar rank: there is a good chance that two people with roughly equal rank will both

claim the other as a friend, but very little chance that two people with very different

ranks will do so. This result seems at first surprising, implying as it does that people

must be able to determine their own and others’ rank with high accuracy in order to
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Figure 5.1: (a) Probability of reciprocated friendships as a function of rank difference
(normalized to run from −1 to 1). The histogram shows empirical results
for a single example network; the solid curve is the fitted function α(z).
(b) The equivalent plot for unreciprocated friendships.

form friendships, but a number of previous studies have suggested that indeed this is

true [7].

Panel (b) of Fig. 5.1 shows b(z), Eq. (5.9), for the same network, which is the

probability of a directed edge between nodes with rank difference z. Again there is

a strong central peak to the distribution, of width similar to that for the undirected

edges, indicating that many unreciprocated friendships are between individuals of

closely similar rank. However, the distribution also has a substantial asymmetric tail

for positive values of the rank difference, indicating that in a significant fraction of

cases individuals claim friendship with those ranked higher than themselves, but that

those claims are not reciprocated. The black curve in the panel shows the best fit to

the function β(z) in the maximum-likelihood calculation.

The general forms of these distributions are similar across networks from different

schools. They also show interesting scaling behavior. The widths of the central peaks
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for both undirected and directed edges, when measured in terms of raw (unrescaled)

rank difference are, to a good approximation, simply proportional to the average

degree of a vertex in the network. Figure 5.2 shows these peaks for 78 of the 84

networks on two plots, for undirected edges (panel (a)) and directed edges (panel (b)),

rescaled by average degree, and the approximately constant width is clear. (The six

networks not shown are all small enough that the central peaks for the directed edges

can be fit by the other parameters of the model and thus a direct comparison is not

appropriate.) This result indicates that individuals have, roughly speaking, a fixed

probability of being friends with others close to them in rank, regardless of the size

of the community as a whole—as the average number of friends increases, individuals

look proportionately further afield in terms of rank to find their friends, but are no

more likely to be friends with any particular individual of nearby rank.
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Figure 5.2: The fitted central peak of the friendship probability distributions for
(a) reciprocated and (b) unreciprocated friendships. The horizontal axes
are measured in units of absolute (unrescaled) rank difference divided by
average network degree. Each blue curve is a network. The bold black
curves represent the mean.

109



Outside of the central peak, i.e., for friendships between individuals with markedly

different ranks, there are, to a good approximation, only unreciprocated friendships,

and for these the shape of the probability distribution appears by contrast to be

roughly constant when measured in terms of the rescaled rank of Fig. 5.1, which runs

from −1 to 1. This probability, which is equal to the function β(z) with the central

Gaussian peak subtracted, is shown in Fig. 5.3 for the same 78 networks, rescaled

vertically by the average probability of an edge to account for differing network sizes,

and again the similarity of the functional form across networks is apparent, with low

probability in the left half of the plot, indicating few claimed friendships with lower-

ranked individuals, and higher probability on the right. The roughly constant shape

suggests that, among the unreciprocated friendships, there is, for example, a roughly

constant probability of the lowest-ranked student in the school claiming friendship

with the highest-ranked, relative to other students, no matter how large the school

may be.

The emerging picture of friendship patterns in these networks is one in which

reciprocated friendships appear to fall almost entirely between individuals of closely

similar rank. A significant fraction of the unreciprocated ones do the same, and

moreover show similar scaling to their reciprocated counterparts, but the remainder

seem to show a quite different behavior characterized by different scaling and by claims

of friendship by lower-ranked individuals with substantially higher-ranked ones.

5.4 Analysis and Application

Taking the results of the previous section as a whole, we conjecture that the rank-

ings discovered by the analysis correlate, at least approximately, with social status.

If we assume that reciprocated friendships—almost all of which fall in the central

peak—correspond to friendships in the conventional sense of mutual interaction, then

a further conjecture, on the basis of similar statistics, is that the unreciprocated

110



-1 -0.5 0 0.5 1

Rank difference

0

0.5

1

1.5

N
o
rm

al
iz

ed
 f

ri
en

d
sh

ip
 p

ro
b
ab

il
it

y

Figure 5.3: The fitted probability function for unreciprocated friendships, minus its
central peak. The horizontal axis measures rank difference rescaled to
run from −1 to 1. Each blue curve is a network. The bold black curve is
the mean.

friendships in the central peak are also mutual but, for one reason or another, only

one side of the relationship is represented in the data. One explanation why one

side might be missing is that respondents in the surveys were limited to listing only

five male and five female friends, and so might not have been able to list all of their

friendships.

On the other hand, one might conjecture that the unreciprocated claims of friend-

ship with higher-ranked individuals, those in the tail of the distribution in Fig. 5.1b,

correspond to “aspirational” friendships, hopes of friendship with higher-ranked in-

dividuals that are, at present at least, not returned. Note also how the tail falls off

with increasing rank difference: individuals are more likely to claim friendship with

others of only modestly higher rank, not vastly higher.

One way to test these conjectures is to look for correlations between the rankings

and other characteristics of individuals in the networks. For instance, it is generally

thought that social status is positively correlated with the number of people who
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claim you as a friend [41, 65]. Figure 5.4a tests this by plotting average rank over

all individuals in all networks (averaged in the posterior distribution of Eq. (5.1))

as a function of network in-degree (the number of others who claim an individual

as a friend). As the figure shows, there is a strong positive slope to the curve,

with the most popular individuals being nearly twice as highly ranked on average

as the least popular. Figure 5.4b shows the corresponding plot for out-degree, the

number of individuals one claims as a friend, and here the connection is weaker, as one

might expect—claiming many others as friends does not automatically confer high

status upon an individual—although the correlation is still statistically significant.

Figure 5.4c shows rank as a function of total degree, in-degree plus out-degree, which

could be taken as a measure of total social activity, and here again the correlation is

strong. For all three panels the correlations are significant, with p-values less than

0.001.

In addition to the network structure itself, we have additional data about each

of the participants, including their age (school grade), sex, and ethnicity. The dis-

tributions of rank for each sex and for individual ethnicities turn out to be close to

uniform—a member of either sex or any ethnic group is, to a good approximation,

equally likely to receive any rank from 1 to n, indicating that there is essentially no

effect of sex or ethnicity on rank. (A Kolmogorov–Smirnov test does reveal devia-

tions from uniformity in some cases, but the deviations are small, with KS statistics

D < 0.08 in all instances.) Age, however, is a different story. Figure 5.5 shows the

rescaled rank of individuals in each grade from 7 to 12, averaged over all individuals

in all networks, and here there is a clear correlation. Average rank increases by more

than a factor of two from the youngest students to the oldest (a one-way ANOVA

gives p < 0.001). Since older students are generally acknowledged to have higher so-

cial status [32], this result lends support to the identification of rank with status. A

further interesting wrinkle can be seen in the results for the 8th and 9th grades. Un-
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Figure 5.4: Plots of rescaled rank versus degree, averaged over all individuals in all
networks for (a) in-degree, (b) out-degree, and (c) the sum of degrees.
Measurement errors are comparable with or smaller than the sizes of the
data points and are not shown.
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Figure 5.5: Rescaled rank as a function of school grade, averaged over all individuals
in all schools.

like other pairs of consecutive grades, these two do not have a statistically significant

difference in average rank (a t-test gives p > 0.95). This may reflect the fact that the

8th grade is the most senior grade in the feeder junior-high schools, before students

move up to high school. When they are in the 8th grade, students are temporarily

the oldest (and therefore highest status) students in school and hence may have a

higher rank than would be expected were all students in a single school together.

Finally, in Fig. 5.6 we show an actual example of one of the networks, with nodes

arranged vertically on a scale of inferred rank and colored according to grade. The

increase of rank with grade is clearly visible, as is the fact that most undirected edges

run between individuals of similar rank (and hence run horizontally in the figure).

5.5 Discussion

In this chapter, we have analyzed a large set of networks of friendships between

students in American high and junior-high schools, focusing particularly on the dis-

tinction between friendships claimed by both participating individuals and friendships

claimed by only one individual. We find that students can be ranked from low to high
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Figure 5.6: A sample network with (rescaled) rank on the vertical axis, vertices col-
ored according to grade, and undirected edges colored differently from
directed edges. Rank is calculated as an average within the Monte Carlo
calculation (i.e., an average over the posterior distribution of the model),
rather than merely the maximum-likelihood ranking. Note the clear cor-
relation between rank and grade in the network.
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such that most unreciprocated friendships consist of a lower-ranked individual claim-

ing friendship with a higher-ranked one. We have developed a maximum-likelihood

method for inferring such ranks from complete networks, taking both reciprocated

and unreciprocated friendships into account, and we find that the rankings so derived

correlate significantly with traditional measures of social status such as age and over-

all popularity, suggesting that the rankings may correspond to status. On the other

hand, rankings seem to be essentially independent on average of other characteristics

of the individuals involved such as sex or ethnicity.

There are a number of questions unanswered by our analysis. We have only lim-

ited data on the personal characteristics of participants. It would be interesting to

test for correlation with other characteristics. Are rankings correlated, for instance,

with academic achievement, number of siblings or birth order, number of Facebook

friends, after-school activities, personality type, body mass index, wealth, or future

career success? There is also the question of why a significant number of apparently

close friendships are unreciprocated. One idea that has appeared in the literature is

that some directed edges may correspond to new, temporary, or unstable friendships,

which are either in the process of forming and will become reciprocated in the future,

or will disappear over time [65, 134]. Evidence suggests that in practice about a

half of the unreciprocated friendships do the former and a half the latter, and it is

possible that the two behaviors correspond to the two classes of directed edges we

identify in our analysis. A test of this hypothesis, however, would require longitudi-

nal data—successive measurements of friendship patterns among the same group of

individuals—data which at present we do not possess. Finally, there are potential

applications of the statistical methods developed here to other directed networks in

which direction might be correlated with ranking, such as networks of team or individ-

ual competition [114, 135] or dominance hierarchies in animal communities [36, 46].
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CHAPTER VI

Conclusion

One of the techniques quickly achieving prominence in the study of networks is

stochastic modeling. These network models are well-principled, based on probability

and statistics rather than heuristics. This allows for a basic and detailed theoretical

analysis that helps us to understand networks in general. Stochastic models are also

flexible, allowing for a wide variety of structures. This dissertation has expanded

our understanding of stochastic network models in several key areas, which also con-

tributes to our general understanding of networks.

Chapter II introduces a stochastic blockmodel that focuses on undirected, un-

weighted overlapping community detection. This model does an excellent job finding

communities in a network, competitive in accuracy with other modern algorithms. It

also boasts a closed form expectation-maximization algorithm that allows for quick

and efficient fitting. Several improvements are made to the algorithm, enabling it to

run on even large modern networks in a reasonable amount of time. This model can

also be used to find nonoverlapping communities in a principled fashion, as it relates

to another stochastic blockmodel. With some simple tweaking of the resulting com-

munities, it is possible to accurately detect nonoverlapping communities faster than

previous methods for that particular model. In the future, it would be interesting to

extend this model to allow for directed or weighted edges.
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Chapter III extends the analysis of the BKN model presented in chapter II with

a heuristic for determining the number of communities present in a network. The

heuristic is based on likelihood ratio tests of the statistics literature. Applying the

heuristic to networks works well at determining the number of communities, and this

is demonstrated on both synthetic and real networks. In contrast, out-of-the-box

methods fail in even simple tests. Additionally, the heuristic can do a decent job

predicting the amount of overfitting when too many communities are being fit to

a network generated according to the BKN model. Additional avenues for research

include an explanation for the variance of the distributions, which the current heuristic

does not account for. A stronger theoretical understanding of likelihood ratio tests

for the model would also be ideal.

Chapter IV discusses a large multi-modal network taken from the Physical Re-

view journals. Authors and papers are the two vertex types, and who authored which

paper and which paper cited which other papers form the links in the network. When

each paper was published is supplemental data that is used to study how scientific

collaboration patterns have changed over time. It is discovered that scientists com-

monly cite themselves and their coauthors, and although there are concerns that this

is becoming more prevalent recently to bolster citation indices, there does not appear

to be any time dependence for the citation patterns in this dataset. Additionally,

scientists cite themselves and their coauthors sooner than scientists they may be less

familiar with. It is also common for researchers to return the favor of a citation to

another researcher at a later time. Furthermore, transitivity is high among coauthors,

so it is easy to see that there are strong social dynamics in with regard to publications.

Surprisingly however, triadic closure only has a small (yet still significant) effect on

the overall transitivity. Physical Review is the premier publication for Physics, but

it would be nice to have additional journals to add to the dataset for a more thor-

ough analysis. Another deficiency in the studies is taking subfields or even individual
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topics of Physics into account when comparing the numerical results to theoretical

calculations. For example, two researchers studying networks are much more likely

to collaborate or cite each other than they would with a high energy theorist.

Chapter V proposes a model for networks where the vertices have an inherent

ranking. Vertices connect with other vertices in a semi-directed fashion based on the

difference between their ranks and a connection function for directed and undirected

edges. This model is applied to a set of high school friendship networks, and it appears

that the ranks correspond with a measure of social status. Another observation is

that students tend to reciprocate friendship with other students who have nearly the

same social status, although many of the potential close friendships are not actually

reciprocated. The remainder of the directed connections are reserved for students

higher up the social ladder, and the result is a nearly acyclic network. These results

hold across all networks in the dataset, which were taken from a wide variety of

schools in the United States, showing that the dynamics observed are universal at

least across this country. This model could also be applied to other types of networks

with potentially different connection patterns, for example food webs or networks of

competitive sports.
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APPENDIX A

Community detection and statistical text analysis

As mentioned in the main text, the generative model we use is the network equiva-

lent of a model used in the text analysis technique called probabilistic latent semantic

analysis (PLSA) [68, 69, 70], modified somewhat for the particular problem we are

addressing. In this appendix, we describe PLSA and related methods and models

and their relationship to the community detection problem.

A classic problem in text analysis, which is addressed by the PLSA method,

is that of analyzing a “corpus” of text documents to find sets of words that all

(or mostly) occur in the same documents. The assumption is that these sets of

words correspond to topics or themes that can be used to group documents according

to content. The PLSA approach regards documents as a so-called “bag of words,”

meaning one considers only the number of times each word occurs in a document and

not the order in which words occur. (Also, one often considers only a subset of words

of interest, rather than all words that appear in the corpus.)

Mathematically a corpus of D documents and W words of interest is represented

by a matrix A having elements Awd equal to the number of times word w appears

in document d. To make the connection to networks, this matrix can be thought of

as the incidence matrix of a weighted bipartite network having one set of vertices for
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the documents, one for the words, and edges connecting words to the documents in

which they appear with weight equal to their frequency of occurrence.

In PLSA each word-document pair—an edge in the corresponding network picture—

is associated with an unobserved variable u which denotes one of K topical groups.

Each edge is assumed to be placed independently at random in the bipartite graph,

with the probability that an edge falls between word w and document d being broken

down in the form
∑

u P (w|u)P (d|u)P (u), where P (u) is the probability that the edge

belongs to topic u, P (w|u) is the probability that an edge with topic u connects to

word w, and P (d|u) is the probability that an edge with topic u connects to docu-

ment d. Note that, given the topic, the document and word ends of each edge are

placed independently. (Hofmann [68] calls this parameterization a “symmetric” one,

meaning that the word and the document play equivalent roles mathematically, but

in the networks jargon this would not be considered a symmetric formulation—the

network is bipartite and the incidence matrix is not symmetric, nor even, in general,

square.)

An alternative description of the model, which is useful for actually generating the

incidence matrix and which corresponds with our formulation of the equivalent net-

work problem, is that each matrix element Awd takes a random value drawn indepen-

dently from a Poisson distribution with mean
∑

u P (w|u)P (d|u)ωu. In the language

of networks, each edge is placed with independent probability
∑

u P (w|u)P (d|u)P (u),

where P (u) = ωu/
∑

u′ ωu′ . In our work, where we focus on one-mode networks and

a symmetric adjacency matrix instead of an incidence matrix, the parameter ωu is

redundant and we omit it.

PLSA involves using the edge probability above to calculate a likelihood for the

entire word-document distribution, then maximizing with respect to the unknown

probabilities P (w|u), P (d|u), and P (u). The resulting probabilities give one a mea-

sure of how strongly each word or document is associated with a particular topic u,
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but since the topics are arbitrary, this is effectively the same as simply grouping the

words and documents into “communities.” Alternatively, one can use the probabili-

ties to divide the edges of the bipartite graph among the topical groups, giving the

text equivalent of the “link communities” that are the focus of our calculations.

A number of methods have been explored for maximizing the likelihood. Mathe-

matically the one most closely related to our approach is the expectation-maximization

(EM) algorithm of Hoffman [68, 69, 70], though the correspondence is not exact. Hof-

mann’s work focuses solely on text processing—the connection to networks was not

made until later—and because of its inherently asymmetric form the method cannot

be translated directly for applications to standard one-mode networks. Instead we

must reformulate the problem using a symmetric model, which leads to the approach

described in chapter II. The symmetric formulation and the corresponding EM algo-

rithm have not, to our knowledge, been used previously for community detection in

networks, but several other related approaches have, including ones based on the tech-

niques known as nonnegative matrix factorization (NMF) [44, 88] and latent Dirichlet

allocation (LDA) [19, 57]. These formulations have similar goals to ours, but are typ-

ically asymmetric (and hence unsuitable for undirected networks) and use different

algorithmic approaches for maximizing the likelihood. The NMF formulation is sim-

ilar in style to an EM algorithm, using an iterative maximization scheme, but the

specific iteration equations are different. Several papers have recently proposed using

NMF to find overlapping communities [121, 141, 153], and in particular the work of

Psorakis et al. [121] mentioned in the main text uses NMF with the PLSA model,

although again in an asymmetric formulation, and not applied to link communities.

Recent work by Parkkinen et al. [115] and Gyenge et al. [64] does consider link

communities, in an asymmetric formulation, but uses algorithmic approaches that

are different again. For instance, Parkkinen et al. [115] use a model that attaches

conjugate priors to the parameters and then samples the posterior distribution of
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link communities with a collapsed Gibbs sampler.

LDA [19, 57] offers an alternative but related approach that also attaches priors

to the parameters, but in a specific way that relies on the asymmetric formulation

of the model. In [66] and [154], LDA is adapted to networks by treating vertex-edge

pairs as analogous to word-document pairs and then associating communities with

the vertex-edge pairs. This is an interesting approach but differs substantially from

the others discussed here, including our own, in which vertex-vertex pairs (i.e., edges)

are the quantity analogous to word-document pairs.

Finally, in Appendix C we show that our model can be used to find nonoverlapping

communities by viewing it as a relaxation of a nonoverlapping stochastic blockmodel.

A corresponding relaxation has been noted previously for a version of NMF and was

shown to be related to spectral clustering [42, 43].
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APPENDIX B

Results for running time

As discussed in Section 2.4, a naive implementation of the EM equations gives

an algorithm that is only moderately fast—not fast enough for very large networks.

We described a more sophisticated implementation that prunes unneeded variables

from the iteration and achieves significantly greater speed. In this appendix we give

a comparison of the performance of the two versions of the algorithm on a set of test

networks.

The results are summarized in Table B.1, which gives the CPU time in seconds

taken to complete the overlapping community detection calculation on a standard

desktop computer for each of the test networks. In these tests we use 100 random

initializations of the variables and take as our final result the run that gives the

highest value of the log-likelihood. For each network we give the results of three

different calculations: (1) the calculation performed using the naive EM algorithm;

(2) the calculation using the pruned algorithm with the threshold parameter δ set

to zero, meaning the algorithm gives results identical to the naive algorithm except

for numerical rounding, but runs faster; and (3) the calculation performed using

the pruned algorithm with δ = 0.001, which introduces an additional approximation

that typically results in a slightly poorer final value of the log-likelihood, but gives a

125



significant additional boost in speed.

The largest network studied, which is a network of links in the online community

LiveJournal, is an exception to the pattern: for this network, which contains over 40

million edges, we performed runs with only ten random initializations each, using the

pruned algorithm with δ = 0.001 and with δ = 0. Each randomly initialized run took

about 50 minutes to complete for δ = 0.001 and about 9 hours for δ = 0.

While the algorithm described is fast by comparison with most other community

detection methods, it is possible that its speed could be improved further (or that

the quality of the results could be improved while keeping the speed the same). Two

potential improvements are suggested by the text processing literature discussed in

Appendix A. The first, from Hofmann [70], is to use the so-called tempered EM

algorithm. The second, from Ding et al. [44], is to alternate between the EM algo-

rithm and a nonnegative matrix factorization algorithm, exploiting the fact that both

maximize the same objective function but in different ways.
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Running conditions Time (s) Iterations Log-likelihood
US air transportation, n = 709, m = 3327, K = 3

naive, δ = 0 15.71 55719 −8924.58
fast, δ = 0 14.67 55719 −8924.58
fast, δ = 0.001 2.17 26063 −9074.21
Network science collaborations [103], n = 379, m = 914, K = 3
naive, δ = 0 0.93 13165 −3564.74
fast, δ = 0 0.82 13165 −3564.74
fast, δ = 0.001 0.13 10747 −3577.85

Network science collaborations, n = 379, m = 914, K = 10
naive, δ = 0 3.19 18246 −2602.15
fast, δ = 0 3.15 18246 −2602.15
fast, δ = 0.001 0.49 12933 −2611.96

Network science collaborations, n = 379, m = 914, K = 20
naive, δ = 0 6.16 19821 −2046.95
fast, δ = 0 6.09 19821 −2046.95
fast, δ = 0.001 0.94 14010 −2094.85

Political blogs [1], n = 1490, m = 16 778, K = 2
naive, δ = 0 11.42 13773 −48761.1
fast, δ = 0 11.46 13773 −48761.1
fast, δ = 0.001 4.14 13861 −48765.6
Physics collaborations [101], n = 40 421, m = 175 693, K = 2

naive, δ = 0 4339.57 424077 −1.367× 106

fast, δ = 0 2557.91 424077 −1.367× 106

fast, δ = 0.001 253.41 61665 −1.378× 106

Amazon copurchasing [89], n = 403 394, m = 2 443 408, K = 2
naive, δ = 0 170646.9 1222937 −2.521× 107

fast, δ = 0 105042.3 1222937 −2.521× 107

fast, δ = 0.001 11635.0 120612 −2.538× 107

LiveJournal [8, 90], n = 4 847 571, m = 42 851 237, K = 2
fast, δ = 0 333230 278707 −4.611× 108

fast, δ = 0.001 33924 19257 −4.642× 108

Table B.1: Example networks and running times for each of the three versions of the
overlapping communities algorithm described in the text. The designa-
tions “fast” and “naive” refer to the algorithm with and without pruning
respectively. “Iterations” refers to the total number of iterations for the
entire run, not the average number for one random initialization. “Time”
is similarly the total running time for all initializations. Directed net-
works were symmetrized for these tests. All networks were run with 100
random initializations, except for the LiveJournal network, which was run
with 10 random initializations. Calculations were run on one core of a
4-core 3.2 GHz Intel Core i5 CPU with 4 GB memory under the Red Hat
Enterprise Linux operating system. Running times do not include the
additional cluster aggregation process described in Section 2.5.2, but in
practice the extra time for this process is negligible.
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APPENDIX C

Nonoverlapping communities

In Section 2.6 we described a procedure for extracting nonoverlapping community

assignments from network data by first finding overlapping ones and then assigning

each vertex to the community to which it belongs most strongly. This procedure was

presented as a heuristic strategy for the nonoverlapping problem, but in this appendix

we show that it can be derived in a principled manner as an approximation method

for fitting the data to a degree-corrected stochastic blockmodel.

Methods have been proposed for discovering nonoverlapping communities in net-

works by fitting to the class of models known as stochastic blockmodels. As discussed

in Ref. [83], it turns out to be crucial that the blockmodel used incorporate knowledge

of the degree sequence of the network if it is to produce useful results, and this leads

us to consider the so-called degree-corrected blockmodel, which can be formulated as

follows. We consider a network of n vertices, with each vertex belonging to exactly one

community. The community assignments are represented by an indicator variable siu

which takes the value 1 if vertex i belongs to community u and zero otherwise. To

generate the network, we place a Poisson distributed number of edges between each

pair of vertices i, j, such that the expected value of the adjacency matrix element Aij

is θiωuvθj if vertex i belongs to group u and vertex j belongs to group v, where θi and
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ωuv are parameters of the model. To put this another way, the expected value of the

adjacency matrix element is θi
(∑

uv siuωuvsjv
)
θj for every vertex pair. The normal-

ization of the parameters is arbitrary, since we can rescale all θi by the same constant

if we simultaneously rescale all ωuv. In our calculations we fix the normalization so

that the θi sum to unity within each community:
∑

i θisiu = 1 for all u.

Now one can fit this model to an observed network by writing the probability of

generation of the network as a product of Poisson probabilities for each (multi-)edge,

then maximizing with respect to the parameters θi and ωuv and the community as-

signments siu. Unfortunately, while the maximization with respect to the continuous

parameters θi and ωuv is a simple matter of differentiation, the maximization with

respect to the discrete variables siu is much harder. A common way around such

problems is to “relax” the discrete variables, allowing them to take on continuous

real values, so that the optimization can be performed by differentiation. In the

present case, we allow the siu to take on arbitrary non-negative values, subject to the

constraint that
∑

u siu = 1. In effect, siu now represents the fraction by which vertex i

belongs to group u, with the constraint ensuring that the fractions add correctly to 1.

With this relaxation, we can now absorb the parameters θi into the siu, defining

θiu = θisiu with
∑

i θiu = 1, and the mean number of edges between vertices i and j

becomes
∑

uv θiuωuvθjv. This is an extended form of the overlapping communities

model studied in chapter II, generalized to include the extra K ×K matrix ωuv. In

the language of link communities, this generalization gives us a model in which the

two ends of an edge can belong to different communities. One can think of each end

of the edge as being colored with its own color, instead of the whole edge taking only

a single color. If ωuv is constrained to be diagonal, then we recover the single-color

version of the model again.

We can fit the general (nondiagonal) model to an observed network using an

expectation-maximization algorithm, just as before. Defining a probability qij(u, v)
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that an edge between i and j has colors u and v, the EM equations are now

qij(u, v) =
θiuωuvθjv∑
uv θiuωuvθjv

, (C.1)

and

θiu =

∑
jv Aijqij(u, v)∑
ijv Aijqij(u, v)

, ωuv =
∑
ij

Aijqij(u, v). (C.2)

By iterating these equations we can find a solution for the parameters θiu. But

θiu = θisiu and, summing both sides over u, we get
∑

u θiu = θi, since
∑

u siu = 1.

Hence

siu =
θiu
θi

=
θiu∑
u θiu

. (C.3)

Thus we can calculate the values of siu and once we have these we can then reverse

the relaxation of the model by rounding the values to zero or one, which is equivalent

to assigning each vertex i to the community u for which siu is largest, or equivalently

the community for which θiu is largest.

Thus the final algorithm for dividing the network is simply to iterate the EM

equations to convergence and then assign each vertex to the community for which θiu is

largest. In the language of Section 2.6, this is equivalent to looking for the largest value

of kiu/κu, and hence this algorithm is the same as the algorithm that we described in

that section, except that the model is generalized to include the matrix ωuv, where in

our original calculations this matrix was absent, which is equivalent to assuming it to

be diagonal. In our experiments, however, we have found that even when we allow ωuv

to be nondiagonal, the algorithm usually chooses a diagonal value anyway, which

implies that the output of our original algorithm and the generalized algorithm should

be the same. (We note that in practice the diagonal version of the algorithm runs

faster, while both are substantially faster than the vertex moving heuristic proposed

for the stochastic blockmodel in Ref. [83].)

130



Diagonal values are expected for networks with traditional community structure,

where connections are more dense within communities than between them. It is

entirely possible, however, that there could be networks with interesting nondiagonal

group structure that could be detected using the more general model. The model

including the matrix ωuv can in principle find disassortative community structure—

structure in which connections are less common within communities than between

them—as well as the better studied assortative structure. For example, it can detect

bipartite structure in networks, whereas the unadjusted model cannot.
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APPENDIX D

Attainability of the maximal solution

In this appendix, we’ll prove that the global maximum of a network must be

attainable for the overlapping community detection blockmodel of the text. Strictly

speaking, for our formulation to be a properly defined likelihood function, Aij must

be an integer, but we can easily define an extension function

f(A′|Θ;K) =
∑
ij

A′ij log
(∑

u θiuθju
)
−
∑
iju

θiuθju, (D.1)

where A′ij is allowed to be any nonnegative number. Set A′ij = Aij + ε where ε is some

small perturbation. Trivially, f(A|Θ;K) = logP (A|Θ;K).

Now we make two choices. First, choose ε small enough that as we deform it down

to 0, the position of the maximum of the function doesn’t change discontinuously.

This is a valid choice since the function is smooth with respect to all the parameters.

Next, notice that
∑

u θiuθju > 0 for each pair of i, j for every valid parameter set – in

particular the set that absolutely maximizes f – since A′ij ≥ ε > 0. In fact, this is the

only constraint on the Θ, although it should also be noted that there is a rotational

symmetry to the system: given a rotation R, f(A′|Θ;K) = f(A′|Θ′;K) where Θ′ is

defined by setting θ′i = Rθi. Due to this rotational symmetry, we can always choose
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the maximum of f where each vector θi lies in the first sectant (i.e. θiz ≥ 0 for all i

and z).

Using the two facts from the previous paragraph together, limit ε down to 0. The

first sectant is a closed set, so the limit solution θi must also be contained in the first

sectant. This parameter set maximizes f(A|Θ;K), which we chose specifically to be

logP (A|Θ;K). Thus the absolute maximum of logP (A|Θ;K) is always attainable.

The importance of this argument to the application of Wilks’ Theorem to the

overlapping community detection model is rather subtle. If the maximum weren’t

always attainable, then we would be completely sunk and would have no hope of

solving for the change in log-likelihood with the general approach of likelihood ratio

tests. However, since we know the best attainable solution has to be a valid global

maximum too, the worst that can happen is that some parameters will degenerate

and not count towards the distribution.
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APPENDIX E

Data processing

As mentioned in the main text, we performed some pre-processing on the raw

Physical Review data to disambiguate author names and remove extreme outliers.

This appendix describes the steps taken.

The data were supplied in two blocks: (1) a list of papers with associated infor-

mation, such as authors, author affiliation, journal, and year of publication; (2) a

list of citations, using unique paper identifiers that correspond to entries in the first

block. There are, however, no unique identifiers for authors that are consistent be-

tween papers, making unambiguous author identification difficult. Not all authors

use the same form for their name on every publication, and there are many examples

of distinct researchers with the same name. Before using the data set, therefore, we

made an effort to associate names of authors with unique people. As in previous work

on author disambiguation, our process starts by assuming every name on every pa-

per to represent a different individual [122], then computes a number of measures of

author similarity and assumes authors who are sufficiently similar by these measures

to be the same person. After completing this disambiguation process we checked a

subset of the results by hand to estimate error rates for the process and found that

it performs well. Details are as follows.
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Our approach relies not only on the author names themselves to establish simi-

larity, but also on collaboration patterns and institutional affiliation, since authors

with similar names who have many of the same collaborators or who are at the same

institution are more likely to be the same person. Affiliation information, however,

like the author names themselves, tends to be ambiguous and inconsistent, so our first

step is to combine affiliations that are deemed similar enough. We measure similarity

using a variant of edit distance applied to the affiliation text strings, implemented

using the Python difflib library.

Once the affiliations are processed in this way, we process the author names as

follows:

1. We combine all authors with identical names who share an institutional affilia-

tion. It appears to be uncommon for two physicists at the same university to

publish under identical names, so this seems to be a safe step.

2. We find author pairs with similar but not identical names. Our criterion for

similarity at this stage is that authors should have identical last names and

compatible first/middle names (i.e., identical if fully written out, or compatible

initials where initials are used). Also authors should not have published together

on the same paper (which rules out, for example, family members with similar

names who publish together). For all pairs with similar names we then calculate

a further similarity measure based on how many affiliations they share, how

many coauthors they share, whether their full names are identical, and whether

they have published in the same journal. Authors with a high enough similarity

are combined, most similar pairs first.

We have tested the accuracy of this process by drawing two lists at random from

its output, the first containing 79 instances in which authors with similar names have

been combined into a single author, and the second containing 111 instances in which
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they have not. We then performed, by hand, a blind search—without knowing the

choice the algorithm has made—for publicly available on-line information about the

names in question, to determine whether they do indeed represent the same or distinct

researchers. We find the false positive rate to be 3% (i.e., 3% of pairs are incorrectly

judged to be the same person when in reality they are distinct) and the false negative

rate to be 12%.

We also tested the effect on our results of the disambiguation process by calculating

a number of the statistics reported in this paper both for the disambiguated data and

for the raw data set before disambiguation, in which we naively assume that every

unique author string represents a unique author and every pair of authors with the

same string are the same person. We found substantial differences between the two

in some of the most basic statistics, such as total number of distinct authors: the

number was 328 938 in the raw data set, but fell to 235 533 after disambiguation. On

the other hand some other statistics changed very little, indicating that these are not

particularly sensitive to details of author identification. For example, the clustering

coefficient changes from 0.222 in the raw data set to 0.212 in the disambiguated data

set.

In addition to author disambiguation we cull the data according to a few simple

rules. There are a number of papers in the data set that have no authors listed,

primarily editorials and other logistical articles without scientific content. These we

remove entirely. As mentioned in the text, we also identify all papers with fifty or

more coauthors, and many of our calculations are performed in two versions, with

and without these papers. The choice of fifty authors as the cutoff point was made

by inspection of the distribution of author numbers shown in Fig. E.1. As the figure

shows, the number of papers with a specific number of coauthors appears, roughly

speaking, to follow a power law (in agreement with some previous studies [100], but

not others [76]), but there is a marked deviation from the power-law form for the high-
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Figure E.1: Histogram of the number of papers with a given number of authors. The
vertical line falls at fifty authors and corresponds roughly to the point at
which the distribution deviates from the power-law form indicated by the
fit. The data for ten authors and more have been binned logarithmically
to minimize statistical fluctuations.

est numbers of coauthors, above about fifty, indicating potentially different statistical

laws in this regime, and possibly different underlying collaborative processes.

We also removed from the data a small number of citations. In a few cases a paper

is listed as citing itself, which we assume to be an error. In a number of other cases

papers cite others that were published at a later time, which violates causality. These

too are assumed to be erroneous and are removed. Finally, the data indicate that

some papers cited the same other paper several times within the one bibliography;

such multiple citations we count as a single citation.
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from fluctuations in random graphs and complex networks. Phys. Rev. E, 70,
2004.
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