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ABSTRACT 

 

TRANSPORT AND FIRST-PRINCIPLES STUDY  
OF NOVEL THERMOELECTRIC MATERIALS 

 
by 

 
Hang Chi 

 
Chair: Ctirad Uher 

 

Thermoelectric materials can recover waste industrial heat and convert it to 

electricity as well as provide efficient local cooling of electronic devices. The efficiency 

of such environmentally responsible and exceptionally reliable solid state energy 

conversion is determined by the dimensionless figure-of-merit ZT = α2σT/κ, where α is 

the Seebeck coefficient, σ is the electrical conductivity, κ is the thermal conductivity, and 

T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to 

achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental 

structure and transport properties in novel condensed matter systems, via an approach 

combining comprehensive experimental techniques and state-of-the-art first-principles 

simulation methods.  

Thermo-galvanomagnetic transport coefficients are derived from Onsager’s 

reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-

Dirac statistics, under the relaxation time approximation. Such understanding provides 

xvi 



xvii 

insights on enhancing ZT through two physically intuitive and very effective routes: (i) 

improving power factor PF = α2σ and (ii) reducing thermal conductivity κ, as 

demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted 

skutterudites CoSb3(1-x)Ge1.5xTe1.5x, respectively. Motivated by recent theoretical 

predictions of enhanced thermoelectric performance in highly mismatched alloys, 

ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are 

carefully examined, which leads to a surprising discovery of significant phonon-drag 

thermopower (reaching 1–2 mV K-1) at ~ 13 K. Further systematic study in Bi2Te3 MBE 

thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of 

phonon drag can be tuned by the choice of substrates with different Debye temperatures. 

Moreover, the detailed transport and structure studies of Bi2-xTlxTe3 single crystals 

demonstrate that thallium doping leads to a bulk insulating state for such a topological 

insulator, which opens an avenue for further investigations of transport phenomena 

related to surface states. Finally, using the combined theoretical and experimental 

approaches, a new layered transition metal dichalcogenide type of ground state of Cu2Se 

is proposed, which exhibits extraordinary weak anti-localization type of 

magnetoresistance at liquid helium temperatures.  

 

 

 



 

CHAPTER 1 

INTRODUCTION 

 

 

1.1 Irreversible thermodynamics 

Suppose a steady-state system can be considered as a collection of small volume 

elements, each of which is in “local equilibrium” described by its own thermodynamic 

variables. We apply to such an element the fundamental thermodynamic relation [1, 2] 

 ,dNpdVTdSdU μ+−= (1.1)

where all quantities are defined in the element, U is the internal energy, T is the absolute 

temperature, S is the entropy, p is the pressure, V is the volume, μ is the electrochemical 

potential energy per particle, and N is the number of particles. The μdN term can be 

replaced by  if multiple species (indexed by i) contribute to the internal energy. 

The electrochemical potential energy μ is the combination of a chemical potential energy 

μc, and an electric potential energy μe,  

∑
i

iidNμ

 ,ecec qϕμμμμ +=+= (1.2)

where μc, in general, depends weakly on temperature and strongly on the particle (carrier) 

concentration, q is the charge of the carrier [+e (−e) for hole (electron) and elementary 

charge e = 1.602×10-19 C], and φe is the ordinary electrostatic potential. Electrochemical 

potential energy μ is the driving force for particle (electric) current flow in the presence 

1 
 



 

of (i) gradient in chemical potential energy μc (resulting from gradient in temperature 

and/or carrier concentration) and/or (ii) gradient in electrostatic potential (i.e., electric 

field). In practice, when measuring voltage difference ΔV across a sample, one actually 

measures the electrochemical potential energy difference Δμ per unit carrier charge q 

between the two ends of the sample, ΔV = Δμ/q. If there is no gradient in  temperature or 

carrier concentration, the measured voltage equals Δφe, as one would normally expect.  

Assuming insignificant thermal expansion and other mechanical effects 

(neglecting the –pdV term) and normalizing Eq. (1.1) by the element volume V, we have 

 ,dnduTds μ−= (1.3)

where s is the entropy density, u is the internal energy density, and n is the particle 

number density in the element. The total internal energy U, entropy S, and particle 

number N of the whole system are 

 .,, ∫∫∫ === τττ ndNsdSudU  (1.4)

The increment rate of s is determined by the corresponding continuum equation  

 ,Θ
t
s

s +⋅−∇=
∂
∂ J  (1.5)

where Js is the entropy current density, and Θ is the rate of production of entropy per unit 

volume in the element. The increment rate of total entropy in the system is then  

 [ ] .∫∫∫ +⋅∇−=
∂
∂

== τττ dΘd
t
ssd

dt
d

dt
dS

sJ  (1.6)

Using Gauss’s theorem,  

 ,∫∫ +⋅−= τdΘd
dt
dS

s σJ  (1.7)
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where, on the right hand side of the equation, the first term denotes the amount of entropy 

that flows into the system per unit time through the system boundary from the external 

environment, and the second term characterizes the rate of production of entropy in the 

system due to internal causes.  

It is this internal Θ that helps to identify the proper “currents” and “forces” used 

in Onsager’s reciprocal relations [1]. Let αi be a set of measurable internal parameters 

describing the irreversible processes in the system. Assume the macroscopic empirical 

laws (e.g., Ohm’s law of electrical conduction, Fick’s law of diffusion) governing these 

processes can be expressed in linear kinetic equations  

 ,∑=∂
∂

j
jij

i L
t

γα  (1.8)

where  

 ,
j

j
s
α

γ
∂
∂

≡  (1.9)

are measures of the deviation from the equilibrium state, since in equilibrium s is a 

maximum and γj are zero. The kinetic coefficients Lij are measures of the interference of 

the jth “force” γj on the ith “current” ∂αi/∂t. They are functions of the state of the system 

that depend on temperature, composition, and applied magnetic fields. Furthermore, 

Onsager’s theorem states that 

 ( ) ( ).BB −= jiij LL  (1.10) 

Dropping the αj independent sJ⋅∇−  term in Eq. (1.5),  

 ,
internal

∑∑ ∂
∂

=
∂
∂

∂
∂

=
∂
∂

=
j

j
j

j

j

j tt
s

t
sΘ

α
γ

α
α

 (1.11)

through which the proper “forces” γj, and “currents” ∂αj/∂t can be conveniently identified.  

3 
 



 

We now introduce, in accordance with the thermodynamic relations, the particle 

number current density Jn, the electric current density  

 ,ne qJJ = (1.12)

the heat current density  

 ,sq TJJ =  (1.13)

and the internal energy current density  

 .nqu JJJ μ+=  (1.14)

Conservation laws similar to Eq. (1.5) hold for Jn (Je) and Ju, with no presence of sources, 

 .0,0 =⋅∇+
∂
∂

=⋅∇+
∂
∂

un t
u

t
n JJ  (1.15)

Combining Eq. (1.3) and Eq. (1.15), we have 

 ,111
nq

q

TTTt
n

Tt
u

Tt
s JJ

J
⋅∇−⋅∇+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅−∇=

∂
∂

−
∂
∂

=
∂
∂ μμ  (1.16)

where, by comparison with Eq. (1.5),  

 .11
nq TT

Θ JJ ⋅∇−⋅∇= μ  (1.17)

We have thus identified the “forces” μ∇−
T
1 and 

T
1

∇ with “currents” Jn and Jq.  

 

1.2 Thermoelectric phenomena 

We can consider the thermoelectric effects with one-dimensional (1D) primary 

currents. The phenomena of interest are the electrical conduction (Joule heating), the heat 

conduction (Fourier’s law), Seebeck effect, Peltier effect, and Thomson effect.  

The kinetic equations governing thermoelectrics are  
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.11

,11

2221

1211

⎟
⎠
⎞

⎜
⎝
⎛∇+⎟

⎠
⎞

⎜
⎝
⎛ ∇−=

⎟
⎠
⎞

⎜
⎝
⎛∇+⎟

⎠
⎞

⎜
⎝
⎛ ∇−=

T
L

T
L

T
L

T
L

q

n

μ

μ

J

J
 (1.18)

Noting that in the absence of applied magnetic fields, Onsager’s theorem states  

 ,1221 LL =  (1.19)

we have  

 
.11

,11

2212

1211

⎟
⎠
⎞

⎜
⎝
⎛∇+⎟

⎠
⎞

⎜
⎝
⎛ ∇−=

⎟
⎠
⎞

⎜
⎝
⎛∇+⎟

⎠
⎞

⎜
⎝
⎛ ∇−=

T
L

T
L

T
L

T
L

q

n

μ

μ

J

J
 (1.20)

In practice, however, electric current density Je and temperature gradient are more 

conveniently to control, thus the following sets of equations are often useful:  

T∇

 

.det

,

,

2212

12112
122211

11
2

11

12

11

12

11

⎥
⎦

⎤
⎢
⎣

⎡
=−≡

∇−=

∇−−=∇

LL
LL

LLLD

T
LT

D
qL
L

T
TL
L

qL
T

eq

e

JJ

Jμ

 (1.21)

1.2.1 Electrical conductivity 

The isothermal ( 0=∇T ) electrical conductivity σ is defined as the electric 

current density Je per unit electrochemical potential gradient q/μ−∇=E ,  

 .11
2

T
Lqe ==

E
Jσ  (1.22)

1.2.2 Thermal conductivity 

The thermal conductivity κ is defined as the heat current density Jq per unit 

temperature gradient , with no electric current flow (T∇− 0=eJ ),  

5 
 



 

 .
11

2LT
D

T
q =
∇−

=
J

κ  (1.23)

1.2.3 Seebeck effect 

 

Figure 1.1 The Seebeck effect in a thermocouple.  
 

The Seebeck effect originally refers to the production of an electromotive force 

(e.m.f.) in a thermocouple under the open circuit condition. Consider a thermocouple 

composed by materials A and B, with junctions at temperatures T1 and T2 (T2 > T1) , as 

schematically shown in Figure 1.1. Let an “ideal voltmeter” (which allows no passage of 

electricity, but offers no resistance to the heat flow) be inserted in B leg at a point at 

which the temperature is T'. From Eq. (1.21), for either conductor with Je = 0,  

 ,
11

12 TST
TL
L

J∇−≡∇−=∇μ  (1.24)

where 

 ,1112 TLLSJ ≡  (1.25)

is the entropy per particle, carried on the particle current density Jn when flowing in a 

given temperature distribution, as is evident in the expression of Js in terms of Jn and T∇ ,  

 ,111

11
3

11

12 T
T

ST
Tq

ST
LT

D
qTL

L
T nJe

J
eqs ∇−=∇−=∇−== κκ JJJJJ  (1.26)
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i.e.,  

 .TTS nJq ∇−= κJJ  (1.27)

Thus, 

 

.

,

,

1

2
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1
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12
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J
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dTS

dTS

μμ

μμ
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 (1.28)

Eliminating μ1 and μ2,  

 ( ) .2

1
∫ −=′−′

T

T

A
J

B
Jr dTSSμμ  (1.29)

The voltage is  

 ( ) ( ) .11 2

1
∫ −=′−′=

T

T

A
J

B
Jr dTSS

qq
V μμ  (1.30)

The relative Seebeck coefficient, or thermoelectric power, of the thermocouple, 

αAB, is defined as the change in voltage per unit change in temperature difference. The 

sign of αAB is chosen as positive if the voltage increment is such as to drive the (transient) 

current i from A to B at the hot junction. Then 

 ( ) ( )[ ] ,1
22

2
AB

A
J

B
JAB TSTS

qT
V ααα −≡−=

∂
∂

≡  (1.31)

where the quantities and are referred to as the absolute Seebeck 

coefficients, or thermoelectric powers, of materials A and B, respectively.  

qS A
JA /=α qS B

JB /=α

Consistent with the above mentioned definition, the absolute Seebeck coefficient α can 

also be introduced as the electrochemical potential gradient E (= q/μ∇− ) per unit 

temperature gradient  [T∇ 3], under the open circuit condition ( 0=eJ ), 
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Recall from Eq. (1.26),  

 ,11 T
TT eqs ∇−== καJJJ  (1.33)

suggests that the absolute Seebeck coefficient α is the entropy current density per unit 

electric current density.  

Using σ, κ, and α derived so far, the kinetic coefficients can be expressed as 
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223
22
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211
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TTL
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TL

q
TL

+=

=

=

 (1.34)

Hence the kinetic equations are,  
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 (1.35)

and  

 
.

,

TT

Tqq

eq

e

∇−=

∇−−=∇

κα

α
σ

μ

JJ

J
 (1.36)

Note that ( ) Tqe ∇−∇−= ασμσ /J suggests that both electric field ( q/μ∇− ) and 

thermal gradient ( ) can lead to an electric current flow.  T∇
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1.2.4 Peltier effect 

 

Figure 1.2 The Peltier effect.  
 

The Peltier effect refers to the evolution of heat accompanying the flow of an 

electric current Je across an isothermal junction of two materials A and B, as shown 

in Figure 1.2. The internal energy flow will be discontinuous across the junction, and the 

energy difference appears as “Peltier heat” at the junction. We have Ju = Jq + μJn, and 

since both μ and Jn are continuous across the junction it follows that the discontinuity in 

Ju is equal to the discontinuity in Jq.  

 .,,,, AqBqAuBu JJJJ −=−  (1.37)

Under the isothermal condition, in either conductor,  

 ,eq T JJ α=  (1.38)

whence 

 ( ) ,,, eABAqBq T JJJ αα −=−  (1.39)

The Peltier coefficient πAB is defined as the heat current density which must be 

supplied to the junction per unit electric current Je passed from A to B, 

 ( ) ,,,
ABAB

e

AqBq
AB TT αααπ =−=

−
=

J
JJ

 (1.40)

which is historically known as the Second Kelvin Relation of thermoelectrics.  

The “absolute” Peltier coefficient of a material can be obtained from Eq. (1.36),  
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 ,TT eq ∇−= καJJ  (1.41)

where, on the right hand side of the equation, the second term is the heat current density 

due to Fourier heat conduction, and the first term is the Peltier heat current density 

 .eq T JJ απ =  (1.42)

Thus,  

 .απ T=  (1.43)

1.2.5 Thomson effect 

The Thomson effect refers to the evolution of heat as a steady-state electric 

current Je traverses a temperature gradient T∇  in a material. The increment rate of 

internal energy density 

 ( ) ,nqnqut
u JJJJJ ⋅∇−⋅−∇=+⋅−∇=⋅−∇=
∂
∂ μμ  (1.44)

since  for a steady-state current. In terms of Je and 0=⋅∇ nJ T∇ , we have 

 ( ) ( ) ,11 2
eeeee TTTTT

t
u JJJJJ

σ
καα

σ
κα +∇⋅∇+∇⋅−=⋅⎟

⎠
⎞

⎜
⎝
⎛ ∇++∇−⋅−∇=

∂
∂

(1.45)

where, on the right hand side of the equation, the third term  represents the 

liberated Joule heat, the second term is due to heat conduction (turns out to be zero [

σ/2
eJ

1]), 

and the first term 

 ,T
dT
dTTq eeT ∇⋅−=∇⋅−≡ JJ αα  (1.46)

is the liberating rate of Thomson heat per unit volume. The Thomson coefficient τ is 

defined as the ratio of qT to the product Te ∇⋅− J ,  
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 .
dT
dT ατ =  (1.47)

Taking derivative with respect to T on the Second Kelvin Relation,  

 ( ) ,⎟
⎠
⎞

⎜
⎝
⎛ −+−=

dT
d

dT
dT

dT
d AB

AB
AB ααααπ  (1.48)

which leads to the First Kelvin Relation:   

 ( ) .ABBA
AB

dT
d ααττπ

−=−+  (1.49)

 

1.3 The figure of merit ZT  

Efficiency of a thermoelectric material is evaluated based on its dimensionless 

figure of merit defined as ZT = α2σT/κ, where α is the Seebeck coefficient, σ is the 

electrical conductivity, κ is the thermal conductivity, and T is the absolute temperature. 

Since transport parameters are interdependent, it is a challenging task to maximize the 

figure of merit. In the theoretical evaluation of transport properties, a variety of models 

are used, among them the most popular one is the single parabolic band (SPB) model. Its 

appeal stems from its mathematical simplicity and readily available relevant formulae, 

offering an excellent initial evaluation of electronic properties of thermoelectric materials. 

However, applying the SPB model in more quantitative studies often requires extra 

attention and care because the band structure of the existing materials is rarely strictly 

parabolic. 
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CHAPTER 2 

THERMO-GALVANOMAGNETIC TRANSPORT  

 

The interplay of temperature gradients and electromagnetic fields in solids has 

lead to a variety of thermo-galvanomagnetic effects [4-8], the spirit of which is still 

generating curiosities in contemporary condensed matter physics [9-12]. In this chapter, I 

will describe the transport effects using thermodynamic arguments [1, 2, 13] and obtain 

Onsager’s kinetic coefficients [14, 15] by solving the Boltzmann transport equation under 

the relaxation time approximation with Fermi-Dirac statistics. These formula are crucial 

in understanding the transport behavior of novel thermoelectric materials.  

 

2.1 Thermo-galvanomagnetic phenomena 

We now expand the analyses from CHAPTER 1 to describe simultaneous electric 

current and heat current with applied magnetic fields, when various new effects appear. If 

we consider a system in which a magnetic field zzeB ˆ=B is applied along the z axis and in 

which the currents and gradients are constrained in the isotropic x-y plane, we still have 

 .11
nq TT

Θ JJ ⋅∇−⋅∇= μ  (2.1)

In its component form, 

 .1111
,,,, ynyxnxyqyxqx J

T
J

T
J

T
J

T
Θ ⋅∇−⋅∇−⋅∇+⋅∇= μμ  (2.2)
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Thus the kinetic equations become 
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Basic symmetry considerations of Lij, due to the isotropy in the x-y plane, require that 

 ,,,,
,,,,

2244214324422341

1234113314321331
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 (2.4)

where L11, L12, L21, and L22 are even functions of the magnetic field, and L13, L14, L23, and 

L24 are odd functions of the magnetic field. According to Onsager’s theorem,  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ,, 14143223121221 BBBBBBB LLLLLLL = )−−=−==−=  (2.5)

we have 
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with only six independent coefficients: L11, L12, L22, L13, L14, and L24. More discussion of 

the kinetic coefficient matrix L (Table 2-1) and its sub-matrices Li;j [Eq. (2.7)] can be 

found in APPENDIX A.  

Considering that the electric current Je (≡ qJn) and temperature gradient T∇  are 

easier to control in practice, we express μ∇  and Jq in terms of Je and ,  T∇
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where the somewhat cumbersome notation of Li;j are sub-matrices constructed by 

keeping the i- rows and the j-columns of L.  

The thermo-galvanomagnetic transport effects can be defined under two types of 

boundary conditions, namely (i) the isothermal condition, where temperature gradient in 

the direction perpendicular to the primary current is zero, and (ii) the adiabatic condition, 

in contrast, where no transverse heat is allowed to flow. A recipe of how to specify the 

correct boundary condition is given in APPENDIX A.  

Let x axis be the direction of the primary electric current density Je,x and/or heat 

current density Jq,x, we introduce all the 14 thermo-galvanomagnetic effects: electrical 

conductivity (2), thermal conductivity (2), Seebeck coefficient (2), Peltier coefficient (2), 

Hall coefficient (2), Nernst coefficient (2), Ettingshausen coefficient (1), and Righi-

Leduc coefficient (1). The Ettingshausen effect and Righi-Leduc effect can only be 

observed adiabatically, while the other effects can be measured under both isothermal 

and adiabatic conditions. Since we only have 6 independent kinetic coefficients, 8 (= 14 – 

6) relations are expected among these transport coefficients.  

We now summarize these transport coefficients in Table 2-1, while detailed 

derivations can be found in APPENDIX A.  
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2.2 Boltzmann transport equation 

In order to evaluate the kinetic coefficients Lij, we solve the Boltzmann transport 

equation (BTE) with the relaxation time approximation,  

 ( ) .0

τ
fff

m
qf

t
f

s

−
−=

∂
∂
⋅×++

∂
∂

⋅+
∂
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∗ v
BvE

r
v  (2.8)

In BTE, f is the distribution function of electron perturbed from its equilibrium f0 

( 00 fff <<− ) by small electric field, temperature and/or concentration (chemical 

potential) gradient. The equilibrium Fermi-Dirac distribution of electron f0 is given by 

 ( ) ,
1

1
0 +
= − TkBce

f με  (2.9)

where energy ε and μc are measured from the band edge [conduction (valence) band 

minimum (maximum) EC (EV) for electron (hole)]. This reference system essentially sets 

EC (EV) = 0 at different locations (although the absolute value measured from a global 

reference system varies at different location). The same quantum state k = (kx, ky, kz) has 

the same energy at different locations,  

 ( ) ( ) ( ),
2

~ 222
2

zyx
s

C kkk
m

E ++=−= ∗kk εε  (2.10)

where is the effective mass for a single carrier in a single band/valley. The relaxation 

time τ generally depends on energy, 

∗
sm

 .0
rεττ =  (2.11)

For steady state, ∂f/∂t ~ 0, an ad hoc solution of f is given by 

 ( ) .0
0 ε

ε
∂
∂

⋅−=
fff Cv  (2.12)

17 



 

Assuming all electric fields and temperature gradients are in the x, y plane and the applied 

magnetic field is in z axis zzeB ˆ=B , we have (Section A.4 of APPENDIX A), 

 ( ) ,0
0 ε∂

∂
+−=

fCvCvff yyxx  (2.13)
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The number of electron per unit volume with energy between ε and ε + dε is  

 ( ) ,εε dfDdn =  (2.15)

where the density of states per unit volume D(ε) for a three dimensional (3D) crystal is,  

 ( ) ( ) ,24 2/1
3

2/3

επε
h
mD d

∗

=  (2.16)

where h = 6.626×10-34 J s is the Planck constant, is the density-of-states 

effective mass with Nv fold degeneracy. Details of D(ε) are given in Section 

∗∗ = svd mNm 3/2

A.4 

of APPENDIX A. The electron number current density Jn,x is given by, noting 

,  3/2/2 ε=∗
xsvm
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the kinetic energy current density Jε,x is 
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the total energy current density Ju,x is 
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and the heat current density Jq,x (= Ju,x – μJn,x = Jε,x – μcJn,x) is given by 
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Combining similar expressions along y axis,  
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Using the C coefficients, we have  
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where 
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where the Fermi-Dirac integral Fn(η) is defined as  
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where the reduced energy ξ = ε/kBT, and the reduced chemical potential η = μc/kBT. In 

practice, η is often referred to as the reduced Fermi level η = EF/kBT. Useful relations 

regarding the Fermi-Dirac integral are provided in Section A.4 of APPENDIX A.  

We are now fully equipped to evaluate the thermo-galvanomagnetic transport 

coefficients (Table 2-1) for general degenerate semiconductors using Fermi-Dirac 

integrals. The results are summarized in Table 2-2. More details including expressions for 

two extreme cases, namely the non-degenerate limit and the highly degenerate (metallic) 

limit, are provided in Section A.4 of APPENDIX A.  



 

Ta
bl

e 
2-

2.
 T

ra
ns

po
rt 

co
ef

fic
ie

nt
s i

n 
de

ge
ne

ra
te

 se
m

ic
on

du
ct

or
s 

C
oe

ff
ic

ie
nt

 
 

D
ef

in
iti

on
 

 
G

en
er

al
 F

or
m

ul
a 

 
M

FP
IE

 (
)

2/1
,

2/
2/1

0
−

=
=

∗
r

m
τ

 

C
ar

rie
r d

en
si

ty
 

 
(

)
(
)

η
π

21
3

2
4

F
h

T
k

m
n

B
d∗

=
2/3

 
 

H
al

l 
co

ef
fic

ie
nt

 
 

(
)

(
)

(
)

(
)

(
)

η

η
η 2

2

2
23

23

21

21
21

2
1

23

+

+

++
=

r

r
H

F

F
F

rr
n

q
R

 
 

H
al

l d
en

si
ty

 
H

H
qR

n
1

≡
 

(
)

(
)

(
)

(
)

(
)n

F
F

F

rr
n

r

r
H

η
η

η

21
21

21

2
232

23

2
32

+

+

++
=

2

 
 

El
ec

tri
ca

l 
co

nd
uc

tiv
ity

 
 

(
)(

)
(
)

(
)

ηη
τ

σ
21

21

23
0

2

32
FF

T
k

r
mnq

r
r

B
s

+

∗
+

=
 

(
)

η
π

σ
0

32

3
16

TF
k

hq
m

N
B

s
v

M
FP

IE
∗

=
 

D
rif

t m
ob

ili
ty

 
nq

d
σ

μ
=

 
(

)(
)

(
)

(
)

ηη
τ

μ
21

21

23
0

32
FF

T
k

r
mq

r
r

B
s

d
+

∗
+

=
 

 

H
al

l m
ob

ili
ty

 
σ

μ
H

H
R

=
 

(
)

21 

(
)

(
)

(
)

(
)

ηη
τ

μ
21

21

23

2
2

0

2

+

+

∗
++

=
r

r
r

B
s

H
F

r

F
r

T
k

mq
3

 
 

H
al

l f
ac

to
r 

dH

H
H

nn
r

μμ
=

=
 

(
)

(
)

(
)

(
)

(
)

η

η
η 2

2

2
23

23

21

21
21

2
23

+

+

++
≡

r

r
H

F

F
F

rr
r

 
(
)

(
)

(
)

.
43

2 0

21
21

η

η
η F

F
F

rM
FP

IE
H

−
≡

 

Th
er

m
al

 
co

nd
uc

tiv
ity

 
 

(
)(

)
(

)
(
)

(
)

(
)

(
)

(
) ⎥⎥ ⎦⎤

⎢⎢ ⎣⎡

++
−

+
=

++

+
+

∗
ηη

η
η

τ
κ

2123

25

21
23

2
2

25

27
2

0

32

rr

r
r

B
s

e
F

r

F
r

F
r

T
k

TF
m

n
 

 

 
 

 
 

 



 

 

C
oe

ff
ic

ie
nt

 
(c

on
t’d

) 
D

ef
in

iti
on

 
 

G
en

er
al

 F
or

m
ul

a 
 

M
FP

IE
 (

)
2/1

,
2/

2/1
0

−
=

=
∗

r
m

τ
 

Lo
re

nz
 

N
um

be
r 

T
L

e

σκ
=

 
(

)
(
)

(
)

(
)

(
)

(
)

(
)

(
)⎥⎥ ⎦⎤

⎢⎢ ⎣⎡

++
−

++
⎟⎟ ⎠⎞

⎜⎜ ⎝⎛
=

++

++

ηη

ηη
2

2
23

2
2

25

2327
2

2123

2125

rr

rr
B

F
r

F
r

F
r

F
r

qk
L

 
 

Se
eb

ec
k 

 
(

)
(
)

(
)

(
) ⎥⎥ ⎦⎤

⎢⎢ ⎣⎡

++
−

−
=

++

ηη
η

α
2123

2325

rr
B

F
r

F
r

qk
 

 

N
er

ns
t 

 
(

)
(

)
(
)

(
)

(
)

(
)(

)
(
)

(
)

(
)

(
)

⎥⎥ ⎦⎤

⎢⎢ ⎣⎡

++
+

−
++

=
+

+
+

+

+

∗

+

η

η
η

ηη
τ

2
2

23

2
23

25

23

2
25

1
0

21

21
23

21

23
2

2

r

r
r

r

r

s

r
B

F
r

F
F

r
r

F
r

F
r

T
m

T
k

N
 

 

 
 

 
 

 
 

 
 

  

22 



 

CHAPTER 3 

EXPERIMENTAL AND AB-INITIO TECHNIQUES 

 

3.1 Sample preparation 

There are three types of samples that I have used: polycrystalline samples 

prepared using chemical reaction and spark plasma sintering (SPS), single crystals grown 

via a modified Bridgman method, and thin films prepared by molecular beam epitaxy 

(MBE) techniques.  

3.1.1 Polycrystalline samples 

Cu2Se samples (CHAPTER 8) were prepared by melting 5N Cu and Se in a 

carbon-coated quartz tube at 1423 K for 24 hours under vacuum. The melt was slowly 

cooled down to 923 K in 50 hours and was kept at 923 K for a week, and finally being 

slowly cooled down to room temperature in 50 hours. The resulting ingots were ground 

into fine powders in an agate mortar and pestle sets and then sintered by SPS at around 

850 K for about 10 min under a pressure of 40 MPa. 

Skutterudite compounds (CHAPTER 5) were synthesized using high purity Sb 

(6N), Co (4N), Te (6N), and Ge (4N). Stoichiometric amounts of constituents were 

weighed in a glovebox under high-purity Ar to prepare CoSb3(1-x)Ge1.5xTe1.5x with x = 0, 

0.17, 0.33, 0.50, and 1. The charge was sealed in a carbon-coated silica tube under the 

pressure of 10-3 Pa and then melted and kept at 1373 K for 30 hours. Subsequently, the 

ampoules with the melt were quenched in a supersaturated salt water bath, and ingots 
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were annealed at 873 K for 7 days. The obtained material was ground into fine powder in 

a glovebox and sintered by SPS at 923 K (for x = 0, 0.17, 1) and 903K (for x = 0.33, 0.50) 

for 5 min under the pressure of 40 MPa.  

Mg2(Si0.3Sn0.7)1-yBiy (0 ≤ y ≤ 0.04) solid solutions (CHAPTER 4) were prepared 

using high-purity elemental powders via a two-step solid state reaction (SSR) method 

(carried out at 873 K and 973 K for the first and second step, respectively), followed by 

an SPS process at 953 K under the pressure of 30 MPa. An 8% Mg excess over its 

stoichiometric amount in Mg2Si0.3Sn0.7 was chosen to compensate for the evaporation 

loss of Mg during the synthesis, as well as to offer an optimized carrier density and 

electrical performance.  

All ingots, after SPS, showed a very high density of 98+% of the theoretical value.  

3.1.2 Single crystals 

Single crystals of Bi2Te3 (CHAPTER 7) containing Tl, with the nominal 

concentration corresponding to Bi2-xTlxTe3 (0 ≤ x ≤ 0.30), were synthesized using a 

modified Bridgman method. First, we prepared Tl2Te3 from stoichiometric quantities of 

Tl and Te weighted under argon and then added appropriate amounts of Bi and Te. All 

elements were of 5N purity. The synthesis was done in well evacuated quartz ampoules 

with a tapered bottom. After annealing at 1090 K for 24 hours, single crystals were 

grown via lowering ampoules through a temperature gradient of 400 K/5 cm at a rate of 

4.5 mm/hour. The resulting single crystals were easily cleavable along the hexagonal 

(0001) planes, i.e., perpendicular to the trigonal c-axis.  
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3.1.3 MBE films 

Bi2Te3 thin films (CHAPTER 6) , with thickness spanning from 6 nm to 1000 nm, 

were deposited on insulating BaF2 (111) and sapphire (0001) substrates by MBE using 

solid source effusion cells for Bi and Te.  

ZnTe:N thin films (CHAPTER 6), with thickness of 1–2 μm, were grown on 

semi-insulating GaAs (100) substrate by MBE in Professor Jamie Phillips’ lab, using 

solid source effusion cells for Zn and Te, and an electron cyclotron resonance plasma 

source for nitrogen incorporation.  

 

3.2 Structure and chemical composition  

3.2.1 X-ray diffraction  

Powder X-ray diffraction (XRD) patterns (2θ 10° – 80°) of finely ground powders 

at room temperature were collected using a PANalytical X’Pert Pro type, a Rigaku 

Ultima IV, and/or a Scintag X1 X-Ray diffractometer with Cu Kα radiation.  

The temperature-dependent (100 K – 300 K) XRD were performed at the X17A 

beamline of the National Synchrotron Light Source at the Brookhaven National 

Laboratory in collaboration with Professor Qiang Li. Setup utilized cylindrical geometry 

with X-ray beam of 67.42 keV (λ = 0.1839 Å), Perkin-Elmer image plate detector placed 

perpendicular to the primary beam path d = 204.134 mm away from the Kapton capillary 

containing pulverized sample, and Oxford Cryosystem 700 for temperature control.  

3.2.2 Secondary ion mass spectrometry 

The amount of incorporated nitrogen atoms in selected ZnTe:N samples was 

characterized using secondary ion mass spectrometry (SIMS).  
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3.2.3 Electron microprobe analyzer  

The actual chemical composition of samples were typically characterized on well-

polished crystalline samples using a JXA-8230 SuperProbe Electron Probe 

Microanalyzer and/or a Cameca SX-100 Electron Microprobe Analyzer, equipped with 

wavelength dispersive x-ray spectrometers (WDS).  

3.2.4 X-ray photoelectron spectroscopy 

To verify the elements present in the samples and study their chemical states, X-

ray photoelectron spectroscopy (XPS) analysis was performed in a Kratos Axis Ultra 

XPS system using a monochromatic Al source (Kα = 1486.6 eV) with emission current 8 

mA and anode voltage 15 kV at a vacuum pressure of 10-8–10-9 Torr, where Cu was 

adopted as binding energy reference.  

3.2.5 Transmission electron microscopy 

A JEOL 3011 transmission electron microscope (TEM) operating at 300 kV and a 

JEOL 2010F TEM operating at 200 kV were used to analyze the detailed microstructure. 

Selected area electron diffraction (SAED) patterns were collected, with theoretical SAED 

patterns simulated by the CrystalKit software package. The chemical composition 

analyses were conducted using the energy dispersive spectrometry (EDS). The specimens 

were prepared by (1) conventional mechanical polishing and argon ion milling, and/or (2) 

in situ focused ion beam (FIB) lift-out method, performed in an FEI Helios 650 

workstation.  
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3.3 Physical properties 

3.3.1 Photoluminescence 

Photoluminescence (PL) spectra of the ZnTe based MBE films were collected at 

20 K using excitation from a He-Cd 325 nm laser, a grating spectrometer, lock-in 

amplification, and a photodiode detector. 

3.3.2 Low-temperature transport properties 

Low-temperature transport measurements were carried out over the temperature 

range of 2 K – 300 K. Electrical resistivity, Seebeck coefficient and thermal conductivity 

were determined using a longitudinal steady-state technique in a homemade cryostat 

equipped with a radiation shield.  

Rectangular-shaped specimens were cut from the as-prepared polycrystalline 

ingots, single crystals, and thin films using a diamond saw or a spark erosion machine. 

For bulk samples, typical dimensions are 10×3×2 mm3 (2 mm along the trigonal c-axis in 

the case of Bi2Te3-based single crystals). For films grown on ~0.5 mm thick substrates, 

typical lateral dimensions are 10×3 mm2 and the thickness of the film was determined by 

atomic force microscopy (AFM) and/or optical reflectance spectral measurements. Tiny 

indium contacts were soldered on to the sample. Silver epoxy contacts were also used on 

selected samples in order to double check the transport results and verify none of the 

observations were artifacts possibly induced by indium contacts becoming 

superconducting at low temperatures.  

The base temperature of the sample holder is controlled via a Lakeshore 340 

temperature controller. Thermal gradients were measured by fine Chromel-Au/Fe 

(0.07at%), with a small strain gauge serving as the heat source. Typical temperature 
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difference between the hot and cold ends of the sample is 0.3 K above the liquid nitrogen 

temperature and around 0.1 K at the liquid helium temperature range. Different heater 

powers were supplied at various temperatures yielding consistent Seebeck and thermal 

conductivity readings. As Seebeck probes we used fine copper wires (25 μm in diameter) 

carefully calibrated to correct for the absolute thermopower of Cu. For measurements of 

the electrical resistivity, a dc current was passed along the length of each sample and the 

corresponding voltage was collected via a standard four-probe-technique using Keithley 

2182A nanovoltmeters. Typical dc currents of ±10 mA (for bulk) and/or ±10 μA (for 

films) were used for the measurement, in order to avoid overheating the sample. Different 

currents at various temperatures were tried to confirm the ohmic nature of contacts and 

consistent electrical resistivity values.  

Galvanomagnetic measurements were carried out in a Quantum Design MPMS 

system (magnetic field up to 5.5 T), with typical sample dimensions of 6×2×1 mm3, using 

a Linear Research ac bridge with 16 Hz excitation. Hall data were taken for both positive 

and negative magnetic fields to eliminate effects due to probe misalignment. The 

resistivity was also checked using the ac technique, which agrees with the data from dc 

measurement. The carrier concentration and the Hall mobility were then estimated from 

the Hall coefficient and the electrical resistivity. The uncertainties of electrical resistivity, 

Seebeck coefficient, Hall coefficient and thermal conductivity were estimated to be ±3%, 

±2%, ±5%, and ±7%, respectively. 

3.3.3 High-temperature transport properties 

The electrical conductivity σ and the Seebeck coefficient α in the range of 300 K 

– 823 K were acquired in a home built apparatus under the protective atmosphere of 
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argon and/or in a commercial ZEM-1 apparatus (Ulvac Sinku-Riko) by a standard four-

probe dc configuration. The thermal conductivity κ of samples above room temperature 

was obtained through the formula of κ = D·Cp·ρd, where the thermal diffusivity D was 

measured by the laser flash technique using an Anter Flashline 5000 and/or a Netzsch 

LFA-457 instrument, the heat capacity at constant pressure Cp was obtained in a Netzsch, 

404 Pegasus apparatus and/or a Q20 differential scanning calorimeter (TA Instruments), 

and the sample density ρd at room temperature was determined by the Archimedes’ 

method. Differential scanning calorimetry (DSC) measurements were performed in the 

Q20 differential scanning calorimeter. The high temperature Hall coefficient was 

measured from 300 K to 823 K using a homemade Hall probe system in an oven inserted 

in a 9 T Oxford air-bore superconducting magnet. The data were recorded using a Linear 

Research AC Resistance Bridge (LR-700) operated with a 16 Hz excitation frequency at 

magnetic fields of ±1 T. The room temperature longitudinal sound velocity vl was 

measured by an ultrasonic pulse echo method (Panametrics 5072PR) with a fundamental 

frequency of 20 MHz. The overall uncertainty of the electrical conductivity, the Seebeck 

coefficient, the thermal conductivity and the Hall coefficient were estimated to be about 

±3%, ±2%, ±7%, and ±5% respectively.  

 

3.4 Theoretical methodology 

We explored low-energy configurations among all possible ways of arranging 

atoms on sites of an underlying lattice using density functional theory (DFT) calculations, 

guided by the cluster expansion (CE) method [16] as implemented by Professor Anton 

Van der Ven’s team. DFT energies were obtained using the Vienna ab initio simulation 
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package (VASP) [17] within the Perdew-Burke-Ernzerhof (PBE) parameterization of the 

generalized gradient approximation (GGA) for exchange and correlation [18] and using 

the projector augmented-wave (PAW) method [19, 20]. Formation energies were 

calculated relative to the thermodynamically stable end compounds. The electronic band 

structure and density of states (De) were calculated using more advanced Heyd-Scuseria-

Ernzerhof (HSE06) hybrid functional [21, 22]. VASP and PHONON [23] codes were 

then used for the ab initio phonon calculations in collaboration with Professor Kaviany’s 

group. The total energy and Hellmann-Feynman (HF) forces were found starting from the 

fully relaxed configuration, such that initial ionic forces were less than 10−5 eV/Å. The 

ionic displacements of 0.03 Å of selected atoms were sampled along the x, y, and z 

directions. All phonon and thermodynamic properties were predicted using a fit of 

interatomic force constant tensors to the calculated HF forces. Diagonalization of the 

dynamical matrix yields the phonon dispersion, from which the density of states (Dp) and 

atomic displacement tensors were obtained. The trace of the diagonalized atomic 

displacement tensor is the atomic displacement parameter (ADP), a scalar measure of 

single-atom vibration amplitude based on finite-temperature phonon mode occupancy.  
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CHAPTER 4 

ADVANCED THERMOELECTRICS GOVERNED 

BY A SINGLE PARABOLIC BAND 

 

The well-known single parabolic band (SPB) model has been useful in providing 

insights into the understanding of transport properties of numerous thermoelectric 

materials. Especially, the coincidence of the band edges of two parabolic bands, a 

situation arising in Mg2Si1-xSnx solids solutions when x ~ 0.7, naturally makes applicable 

the SPB approximation to evaluate all transport parameters. We demonstrate this on the 

case of Bi-doped Mg2Si0.3Sn0.7 where the minima of the two conduction bands at the X-

point of the Brillouin zone coincide. The combination of a large density-of-states 

effective mass  arising from the enhanced valley degeneracy Nv, high 

mobility µd due to low deformation potential Ed (8.77 – 9.43 eV), and ultra-low alloy 

scattering parameter Ea (0.32 – 0.39 eV) leads to an outstanding power factor, 

, of up to 4.7 mW m-1 K-2 around 600 K. The specification and 

improved understanding of scattering parameters using the SPB model are important and 

instructive for further optimization of the thermoelectric performance of n-type 

Mg2Si0.3Sn0.7. 

ed mm 6.2~∗

dμ( )dmPF 2/3
max

∗∝
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4.1 Mg2Si1-xSnx solid solutions 

 

Figure 4.1 (a) First Brillouin zone showing the three-fold degenerated (Nv = 3) electron 
pockets at X. (b) Schematic representation of the band structure (electron energy ε vs. 
wave vector k). The valence band (VB) is at Γ while the convergence of the light and 
heavy conduction bands (LCB and HCB) located at X point results in the doubled valley 
degeneracy (Nv = 6) at all temperatures of interest. 

 

Among the most prospective novel thermoelectrics [24, 25] are Mg2Si1-xSnx solid 

solutions that are environmentally friendly, inexpensive, and do not contain harmful and 

scarce lead and tellurium. Figure 4.1 illustrates the coincidence of the two parabolic 

conduction band minima (CBM) [26-28] when x = 0.7 (Mg2Si0.3Sn0.7), a situation rarely 

encountered in other promising thermoelectric material systems such as Bi2Te3 [29-32], 

PbTe [33-35], skutterudite [36-39], half Heusler compounds [40, 41], and highly 

mismatched alloys [42, 43]. It offers a unique opportunity to evaluate transport 

phenomena using the SPB model that should be rigorously applicable in this case.  

In this chapter, Bi-doped Mg2Si0.3Sn0.7 solid solutions are adopted to evaluate the 

predictive power of the SPB model. In addition, the excellent electronic properties of 

Mg2(Si0.3Sn0.7)1-yBiy (0 ≤ y ≤ 0.04), having the origin in the conduction band convergence, 

are analyzed systematically.  
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4.2 The transport properties 

 

Figure 4.2 Temperature dependent electrical conductivity σ of Mg2(Si0.3Sn0.7)1-yBiy.  
 

 

Figure 4.3 Experimental data (symbols) and theoretical results (lines) based on the single 
parabolic band (SPB) model for the Seebeck coefficient α.  
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Figure 4.4 The Pisarenko plot (Seebeck coefficient α vs. Hall density nH) at 300 K with a 
fixed density-of-states effective mass  reflects a single parabolic nature of the band 
structure invariant of doping. 

∗
dm

 

 

Table 4-1 Transport parameters of Mg2(Si0.3Sn0.7)1-yBiy (0 ≤ y ≤ 0.04) at 300 K: Seebeck 
coefficient α (µV K-1), Hall density nH (1020 cm-3), Hall mobility µH (cm2 V-1 s-1), 
reduced Fermi level η (= EF/kBT), Hall factor rH, and the density-of-states effective mass 

 (in units of the electron rest mass me). ∗
dm

y α nH µH η rH ∗
dm  

0 -447 0.03 64 -3.17 1.18 2.25 
0.005 -211 0.66 59 -0.10 1.14 2.62 
0.010 -150 1.65 58 1.03 1.10 2.74 
0.015 -130 2.05 61 1.50 1.09 2.58 
0.020 -120 2.27 64 1.76 1.08 2.49 
0.025 -115 2.72 57 1.93 1.08 2.64 
0.030 -114 2.78 60 1.94 1.08 2.67 
0.040 -103 3.17 53 2.33 1.07 2.54 

 

The temperature dependent electrical conductivity σ of Mg2(Si0.3Sn0.7)1-yBiy is 

shown in Figure 4.2. While the y = 0 sample behaves as a typical intrinsic semiconductor, 
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Bi-doping drives the system into a highly degenerate semiconducting regime for y ≥ 

0.010, with the Hall density nH on the order of 1020 cm-3 (see Table 4-1 and Figure 4.5). 

As shown in Figure 4.3  and Table 4-1, the gradually decreasing magnitude of the 

Seebeck coefficient α with the increasing content of Bi maps well with the evolution of σ, 

reflecting the movement of the Fermi level EF well into the conduction band (CB).  

In the SPB model, all galvanomagnetic transport coefficients can be obtained 

assuming an energy dependent relaxation time . The calculated  at 300 K 

using a combination of the experimental α and nH have shown little variation among the 

samples (see 

rεττ 0= ∗
dm

Table 4-1). The y = 0 sample is understandably different as a result of its 

intrinsic transport nature. As illustrated in Figure 4.4 at 300 K, all Bi-doped samples (and 

also Sb-doped n-type Mg2Si0.3Sn0.7) have fallen on the same Pisarenko line calculated 

using a fixed , which confirms that the converged CBs can be viewed as a 

doubly degenerate SPB with Nv = 6 (see 

ed mm 6.2~∗

Figure 4.1).  

Furthermore, the temperature dependence of α (lines in Figure 4.3 ) predicted 

using the fixed room temperature value of the density-of-states effective mass 

 shows an excellent agreement with the experimental data at all temperatures. 

The deviations at the highest temperatures between the data and the SPB model are the 

consequence of the onset of intrinsic excitation of electrons through the band gap. The 

essentially constant value of  at all temperatures and carrier densities verifies that the 

SPB model truly captures the key features of the conduction bands and can be used to 

characterize and predict all transport properties of n-type Mg2Si0.3Sn0.7 solid solutions.  

ed mm 6.2=∗

∗
dm
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Figure 4.5 Temperature dependent Hall density nH of Mg2(Si0.3Sn0.7)1-yBiy.  
 

 

Figure 4.6 The relationship between nH and the actual Bi concentration, while the dashed 
line presents the theoretical prediction assuming that one Bi atom donates one electron to 
the structure. 
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The SPB nature of the n-type Mg2Si0.3Sn0.7 thus offers a canonical testing ground 

for the transport study, which has rarely been so neatly accessible elsewhere. The carrier 

density as a function of Bi doping is depicted in Figure 4.5. A rather weak temperature 

dependence of the carrier density attests to a highly degenerate semiconductor. At low 

doping levels, see Figure 4.6, Bi is a single electron donor, specifically when the actual 

Bi content y is lower than 0.020. However, the doping efficiency of Bi drops down 

rapidly with the further increase of Bi content which is associated with the limited 

solubility of Bi, indirectly confirmed by the indistinct lattice thermal conductivity κL for y 

≥ 0.020, seen in Figure 4.13. 

 

Figure 4.7 Temperature dependent Hall mobility µH of Mg2(Si0.3Sn0.7)1-yBiy. 

 

As shown in Figure 4.7, at high temperatures, acoustic phonons (AP) dominate 

the transport behavior, leading to a temperature dependence of , while 

around ambient temperatures, alloy scattering (AS, ) appears to contribute 

2/3−∝TAP
Hμ

2/1−∝TAS
Hμ
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relatively more significantly to the overall µH. Indeed, as illustrated in Figure 4.8, typical 

weight of acoustic phonon scattering defined as  has increased 

from ~ 60% at 295 K to ~ 80% at 673 K. The µH can be decomposed into its chief 

components (AP and AS) via the Matthiessen’s rule: 

)/1/()/1( H
AP
H

AP μμ=Ω

 .1
AS
H

11
AP
HH μμμ

+=  (4.1)

The mobility appropriate for acoustic phonon scattering is given by 
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where e is the elementary charge,  is the reduced Planck constant, kB is the Boltzmann 

constant, ρd is the density, vl (5.29×103 m s-1) is the longitudinal velocity of sound, and Ed 

is the deformation potential describing the strength of the electron-phonon interaction. 

The single valley effective mass  is related to via . Regarding alloy 

scattering, the relevant formula for the mobility is 

∗
sm
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∗
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where N0 is the number of atoms per unit volume, x (= 0.7) is the Sn fraction in the solid 

solution of Mg2Si0.3Sn0.7, and Ea is the parameter characterizing the alloy potential 

fluctuation. The common factor ( )ηrΨ  is a scattering-mechanism-specific term 

(Section A.4 of APPENDIX A) determined by the reduced Fermi level η (= EF/kBT) 

through a combination of the Hall factor rH and Fermi-Dirac integrals )(ηnF  and is taken 

to be identical for both AP and AS scattering processes (r = –1/2 as the mean-free path is 

assumed energy independent in both cases). 
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Figure 4.8 The theoretical fitting of µH for the y = 0.010 and 0.025 samples indicates that 
acoustic phonon (AP) scattering dominates at high temperatures over alloy scattering 
(AS).  

 

 

Figure 4.9 Plots of µH verse nH at 295 K, 473 K and 673 K, respectively. The µH data 
show no significant deterioration upon increasing nH, implying an excellent electronic 
performance. 
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According to Eq. (4.2) and Eq. (4.3),  and  have a similar dependence on 

 and the characteristic potentials Ed and Ea. Fitting of µH vs. T indicates (see 

AP
Hμ

AS
Hμ

∗
sm Figure 

4.8) that the model including  and  quantitatively characterizes the experimental 

μH and its temperature dependence. The values of Ed (8.77–9.43 eV) and Ea (0.32–0.39 

eV) were then obtained. Literature values for potentials Ed and Ea for a range of 

semiconductors including n-type Mg2Si1-xSnx [

AP
Hμ

AS
Hμ

∗
sm

44, 45], the III-V compounds [46-49], n-

type Si1-xGex [50], n-type PbS [51], PbSe1-xTex [52, 53], and n-type Cd1-xZnxTe [54] are in 

the range of 5–35 eV and 0.6–2.0 eV, respectively. While the parameter Ed of our n-type 

Mg2Si0.3Sn0.7 is comparable to the lowest reported values, the alloy fluctuation parameter 

Ea is apparently much smaller than the reported literature values. Although our n-type 

Mg2Si0.3Sn0.7 possesses a much larger  (≈ 0.79 me) compared to the effective mass 

(0.07-0.60 me) for most of the above mentioned semiconductors, its reasonably large 

room temperature mobility of ~ 60 cm2 V-1 s-1 is primarily due to the weak electron-

phonon interaction (low Ed) and the rather limited effect on the mobility from the alloy 

disorder (ultra-low Ea). According to Brooks [50, 55], the parameter Ea evaluates 

potential fluctuation in alloys caused by the alloy disorder, which is generally believed to 

be related to the band gap difference ΔEg or the band edge difference (or the electron 

affinity difference Δχ in n-type materials) between the two end members in the alloy 

series. However, there are semiconductors such as the III-V compounds, n-type Si1-xGex 

and n-type Cd1-xZnxTe where the discrepancy between Ea and ΔEg (Δχ) is large, probably 

due to the fact that the band edges of these semiconductors do not have strictly the SPB 

character. In our research, the values of Ea (0.32–0.39 eV) for n-type Mg2Si0.3Sn0.7 are 

quite comparable to ΔEg (~0.42 eV) [25-27] and/or Δχ (~0.19 eV) [56, 57] between 
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Mg2Si and Mg2Sn. We ascribe such good agreement between Ea and ΔEg (Δχ) to the fact 

that the electronic transport is very precisely described by the SPB model in the entire 

temperature range investigated. Roughly twice the value of Ea (~0.7 eV) reported for 

Mg2Si0.45Sn0.55 in the literature should be attributed to a non-uniform distribution of Si/Sn 

atoms (and thus extra scattering among different phases) as this composition falls in the 

range of the miscibility gap of the pseudo-binary phase diagram of Mg2Si-Mg2Sn 

[25, 58, 59]. Moreover, a contributing factor to the low value of Ea in our n-type 

Mg2Si0.3Sn0.7 is a zero band offset between the light and heavy conduction bands (band 

convergence) while Mg2Si0.45Sn0.55 has a finite offset (~ 0.1 eV) that may result in a 

certain amount of interband scattering [26, 27].  

 

Figure 4.10 Temperature dependent power factor (PF) of Mg2(Si0.3Sn0.7)1-yBiy.  
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Figure 4.11 The predicted PF based on the single parabolic band (SPB) model, in 
agreement with the experimental data. 

 

Thus, low values of Ed and Ea, as well as the high Seebeck coefficient due to the 

conduction band convergence, lead to an outstanding power factor in Mg2(Si0.3Sn0.7)1-yBiy 

above 400 K, where values as high as 4.7 mW m-1 K-2 have been recorded for carrier 

concentrations of 2.05×1020 ≤ nH ≤ 2.78×1020 cm-3, as shown in Figure 4.10. Figure 4.11 

displays plots of PF vs. nH calculated based on the SPB model at typical temperatures of 

300 K, 500 K and 700 K. The agreement with the experimental data is good and even 

improves at high nH above 1.65×1020 cm-3, where the bipolar contribution interferes less 

with the data.  
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Figure 4.12 Temperature dependent thermal conductivity κ. 
 

 

Figure 4.13 Temperature dependent lattice thermal conductivity κL. Note the significant 
bipolar effect at elevated temperatures, especially for samples with low doping levels. 
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The temperature dependent thermal conductivity κ and the lattice thermal 

conductivity κL (obtained via subtracting κe = LσT from κ using the Wiedemann-Franz 

law, where L is the Lorenz number) are shown in Figure 4.12 and Figure 4.13, 

respectively. The κL derived in this way inevitably includes a contribution from the 

bipolar thermal conductivity κb at high temperatures (sharp upturn on both κ and κL). The 

κe amounts for a large fraction of the total thermal conductivity as well as for its 

dependence upon doping by Bi. Bi-doping significantly decreases the κL via strengthened 

point defect phonon scattering. This trend continues for samples with Bi content up to 

0.020 at which point the lattice thermal conductivity of solid solutions becomes 

independent of the content of Bi. This reflects the limited ~2% solubility of Bi in the 

matrix. The lattice thermal conductivity κL exhibits a nearly T-0.5 temperature dependence 

for all samples before the bipolar contribution κb becomes significant. The deviation from 

the classical T-1 temperature dependence, expected from the usual phonon Umklapp 

interactions, indicates that point defects scattering still plays an important role in shaping 

the temperature profile of κL at high temperatures. The ultimate value of ZT (= α2σT/κ) of 

Mg2(Si0.3Sn0.7)1-yBiy ~1.3 is limited by the intrinsic excitation processes which make a 

notable contribution above 700 K, see Figure 4.14. The averaged ZT value in the range of 

300–800 K is ~0.9. As shown in Figure 4.15, the predicted ZT values (lines), calculated 

using the SPB model with κL being an experimental parameter, are in excellent agreement 

with experimental results, especially at 300 K and 500 K. Deviations observed at 700 K 

or in the low nH region between the theory and the experiment are due to the interference 

of the bipolar effect which was not considered in the SPB model.  
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Figure 4.14 Temperature dependent figure of merit ZT of Mg2(Si0.3Sn0.7)1-yBiy.  
 

 

Figure 4.15 The predicted ZT based on the SPB model (lines) are in accord with the 
experimentally determined ZT (symbols).  
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The effort in determining the scattering parameters Ed and Ea, as well as the clear 

physical interpretation of the scattering process at and above room temperature, is 

important and instructive for enhancing the carrier mobility of this material in the future. 

Moreover, the attempt to suppress the bipolar effect and further reduce the κL through 

various routes, such as increasing the effective mass of the valence band edge and 

introducing in-situ formed nanostructures in the matrix of the bulk material, will be 

critical for further optimization of the figure of merit of n-type Mg2Si0.3Sn0.7.  

 

4.3 Summary 

We have shown that Mg2Si0.3Sn0.7 with converged conduction bands is an 

excellent testing ground for the SPB model. It offers an opportunity to precisely 

characterize and account for all thermal and electronic transport properties of n-type 

Mg2Si0.3Sn0.7. The experimental study and theoretical modeling of Bi-doped Mg2Si0.3Sn0.7 

have revealed that the enhanced effective mass (due to doubled number of the carrier 

pockets Nv) together with the high µH (as a result of the low values of Ed and Ea) yield an 

outstanding power factor and ZT of ~1.3 at 700 K. Small values of Ed of 8.77–9.43 eV 

indicate that the electron-phonon coupling is weak in n-type Mg2Si0.3Sn0.7. In addition, a 

small Ea of 0.32–0.39 eV in n-type Mg2Si1-xSnx attests to its physical interpretation as 

being related to either the indirect band gap difference (~0.42 eV) or the electron affinity 

difference (~0.19 eV) between Mg2Si and Mg2Sn. Further improvements in ZTs of n-type 

Mg2Si0.3Sn0.7 are expected to be achieved by suppressing the bipolar effect and reducing 

the lattice thermal conductivity. 
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CHAPTER 5 

CONFIGURING PNICOGEN RINGS IN SKUTTERUDITES  

FOR LOW PHONON CONDUCTIVITY 

 

Dominant heat-carrying modes in skutterudites are associated with vibrations of 

the pnicogen rings. Apart from filling the structural cages with foreign species, disrupting 

the pnicogen ring structure by substitutional alloying should be an effective approach to 

reduce thermal conductivity. In this chapter we explore alloying configurations of 

pnicogen rings (Sb rings in the case of CoSb3) that yield particularly low values of the 

thermal conductivity. We find that IV-VI double-substitution (replacing two Sb atoms 

with one atom each from the column IV and column VI elements to achieve an average 

charge of two Sb atoms) is a very effective approach. Our ab initio calculations, in 

combination with a cluster expansion, have allowed us to identify stable alloy 

configurations on the Sb rings. Subsequent molecular and lattice dynamics simulations on 

low energy configurations establish the range of atomic displacement parameters and 

values of the thermal conductivity. Theoretical results are in good agreement with our 

experimental thermal conductivity values. Combining both approaches of compensated 

double-substitution and filling of structural cages should be an effective way of 

improving the thermoelectric figure of merit of skutterudites.  
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5.1 Introduction 

Filling structural cages in the CoSb3 skutterudite crystal has proved to be an 

effective way of lowering lattice thermal conductivity [60, 61], making filled 

skutterudites one of the best novel thermoelectric (TE) materials for mid-temperature 

power generation applications [38, 62, 63]. An alternative approach to lowering thermal 

conductivity is to distort the near-square pnicogen (Sb) atomic rings, which are a 

characteristic feature of the skutterudite structure, thereby reducing the 3Im  ( ) 

skutterudite space-group symmetry [

5
hT

64]. Since vibration modes involving Sb rings 

dominate the spectrum of heat-conducting phonons [65, 66], distortions of the rings 

should be particularly effective in disrupting heat transport. Ring deformation is easily 

accomplished via substitution of another species for Sb, with a historic focus on the n-

type dopant Te [67]. Unfortunately, Te has a rather low solubility in CoSb3 (≤ 5%), and 

only weakly affects thermal conductivity. A charge-compensated alloy can be obtained 

by substitution of IV-VI species (e.g., Sn-Te [68] or Ge-Te [69, 70]), which has recently 

been shown to enhance Te solubility and, in the case of Ge-Te, imbalanced Ge/Te 

induces formation of finely dispersed Ge-Te-rich skutterudite nanodots in the Sb-rich 

matrix. The enhanced point-defect scattering and presence of nanoinclusions in these 

double-substituted skutterudites enabled them to attain a thermoelectric figure of merit 

(ZT) of 1.1, competitive with the best values for single-filled skutterudites. These exciting 

empirical findings reveal a compelling theoretical puzzle surrounding the role of 

pnicogen ring configuration in skutterudite heat transport.  

In this chapter, I present a comprehensive theoretical analysis of the physical 

importance of pnicogen ring configuration on the thermal conductivity of the double-
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substituted skutterudite CoSb3-m-nGemTen. We use ab initio calculations to determine 

phase stability within CoSb3-m-nGemTen and predict a strong energetic preference for 

short-range order of Ge and Te on pnicogen rings. While phase separation is predicted for 

charge-balanced CoSb3(1-x)Ge1.5xTe1.5x, we find that it is sufficiently suppressed in the 

presence of coherency strains to make a solid solution experimentally accessible. New 

single-phase skutterudite samples of CoSb3(1-x)Ge1.5xTe1.5x have been successfully 

synthesized using the traditional melt-quench-anneal technique followed by spark plasma 

sintering (SPS). We explore the effect of the predicted short-range order of Ge and Te on 

lattice thermal conductivity and phonon dispersion of CoSb3(1-x)Ge1.5xTe1.5x solid 

solutions from first principles. Our thermal transport measurements support the idea that 

configurational disorder of pnicogen rings is an effective mechanism to reduce thermal 

conductivity in skutterudites. 

 

5.2 Ground States, Phase Stability and Synthesis 

Calculated formation energies of 340 ternary configurations of Ge, Te and Sb 

over the Sb sublattice are plotted in Figure 5.1, predicting that ternary solid solutions are 

thermodynamically unstable, with only two skutterudite phases globally stable: CoSb3 

and CoGe1.5Te1.5 ( 3R ) [71]. Furthermore, the driving force for phase separation is 

minimized along the charge-compensated CoSb3(1-x)Ge1.5xTe1.5x tie-line connecting CoSb3 

and CoGe1.5Te1.5 [x = 0 and 1 in Figure 5.2]. The lowest energy configurations along the 

charge-compensated tie-line all contain counter-diagonal (CD) Ge2Te2 rings, as shown 

in Figure 5.3. As exemplified by the structures in Figure 5.2, all other ring configurations 
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were found to result in substantially higher formation energies. Figure 5.3 shows a typical 

crystal structure with an energetically favorable ring configuration at x = 0.5.  

 

Figure 5.1 DFT formation energies of 340 calculated configurations of CoSb3-m-nGemTen. 
Configurations featured with CD Ge2Te2 rings (solid points) have considerably lower 
energy than those without CD Ge2Te2 rings (open circles).  

 

Figure 5.2 Formation energies of CoSb3(1-x)Ge1.5xTe1.5x. Two typical structures are 
illustrated at x = 0.5. The solid red line is the 5th-order Redlich-Kister polynomial fit to 
the lower bound of formation energies. 
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Figure 5.3 A typical crystal structure (left) of CoSb3(1-x)Ge1.5xTe1.5x at x = 0.5 which mixes 
variety of rings (right) of Sb4 and CD Ge2Te2 (or Te2Ge2). The cubic unit cell contains 32 
atoms. The tilting of rings gives rise to the formation of corner-shared octahedra, which 
create large cages centering at (0, 0, 0) and (1/2, 1/2, 1/2). 

 

Calculated equilibrium lattice parameters of CoSb3(1-x)Ge1.5xTe1.5x exhibit a strong 

dependence on composition, with an ~11% decrease in volume from x = 0 to x = 1. The 

large strain energy penalties accompanying coherent phase coexistence therefore allow 

charge-compensated solid solutions to form as long as incoherent precipitation is 

suppressed. Such considerations have proved essential to the understanding of phase 

stability and high performance in other thermoelectric materials, including the well-

known LAST alloy (i.e., AgPbmSbTem+2) [72, 73].  

Our DFT energy calculations for CoSb3(1-x)Ge1.5xTe1.5x indicate that it can be 

approximated as the pseudo-binary substitutional alloy Co4/3[Sb4](1-x)[Ge2Te2]x, where x 

measures the fraction of Sb4 pnicogen rings that have been substituted with CD Ge2Te2 

rings. Under this constraint, we constructed a free-energy model 

 ( ) ( ) ( )xTsxhxg −=  (5.1)
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per pnicogen ring site, where h(x) is the enthalpy and s(x) is the entropy. The enthalpy 

was modeled by fitting a 5th order Redlich-Kister polynomial to the lower bound of DFT 

formation energies at 0K, resulting in an expression of the form 

 ( ) ( ) ( ) ,211
5

0
∑
=

−−=
n

n
n xLxxxh  (5.2)

where the Ln are fitting parameters.  The resulting enthalpy model is depicted alongside 

the first-principles formation energies in Figure 5.2. The entropy was calculated for an 

ideal solution of non-interacting Sb4 and CD Ge2Te2 rings, accounting for the two 

degenerate orientations of a CD Ge2Te2 ring, depicted in Figure 5.3. The entropy term per 

ring-site is then 
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where the final expression is obtained for large N from Stirling’s approximation. The 

resulting total free energy model is 
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Minimization of Eq. (5.4) allowing for the possibility of two-phase coexistence 

yields the temperature composition phase diagram of Figure 5.4 (black solid lines). The 

calculated phase diagram shows a miscibility gap below 600 K between CoSb3 and 

CoGe1.5Te1.5 (which we respectively denote phase α and phase β). Any intermediate 

composition should result in a coexistence of the α phase and the β phase in 

thermodynamic equilibrium. 
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Figure 5.4 The phase diagram of CoSb3(1-x)Ge1.5xTe1.5x. The miscibility gap without 
coherency strain (solid, black) becomes significantly suppressed by the presence of 
coherency strain (dashed, red).  

 

 

Figure 5.5 XRD pattern of various CoSb3(1-x)Ge1.5xTe1.5x samples.  
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The calculated phase diagram of Figure 5.4 (black solid lines) describes 

incoherent two-phase equilibrium. However, two-phase coexistence can also occur 

coherently whereby the continuity of crystal planes across the interface between the 

coexisting phases requires the phase with the larger lattice parameter to be compressed 

and the phase with the smaller lattice parameter to be stretched. An analysis of phase 

stability then requires an explicit treatment of the strain energy arising from coherent 

two-phase coexistence. In general, the strain energy due to coherent two-phase 

coexistence depends on the microstructure. One possible microstructure is as alternating 

layers of phase α and phase β along a single crystallographic direction. Under additional 

simplifying assumptions (i.e. concentration independent elastic moduli and a lattice 

parameter variation with concentration that satisfies Vegard’s law), the analysis of 

coherent two-phase equilibrium becomes straightforward and reduces to the application 

of a common tangent construction of strain modified homogeneous free energy [74-76].  

Figure 5.4 also shows a phase diagram for coherent two-phase coexistence in 

CoSb3(1-x)Ge1.5xTe1.5x, calculated using the free energy expression Eq. (5.4) and assuming 

(i) that the elastic constants are independent of the CD Ge2Te2 ring concentration (they 

were taken to be the average of each cij for CoSb3 and CoGe1.5Te1.5, as listed in Table 

5-1), and (ii) that the lattice parameters obey Vegard’s law. We found that the coherent 

phase diagram had a negligible dependence on the direction of two-phase separation and 

on whether plane strain or plane stress constraints in the plane perpendicular to two phase 

coexistence was used in the energy expression for the elastic strain energy. 

As is clear in Figure 5.4, the miscibility gap is substantially suppressed by the 

strain energy penalty that emerges if phase separation occurs coherently. In the 
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temperature range relevant to thermoelectric applications, this leads to a potentially large 

solid solution domain for Sb-rich and intermediate compositions (if incoherent 

precipitation can be suppressed). Coherent phase separation at Ge-Te-rich composition is 

still predicted to occur, however, in the temperature range of interest.  

Following the predicted phase diagram, CoSb3(1-x)Ge1.5xTe1.5x with x = 0, 0.17, 

0.33, 0.50, and 1, were synthesized. The experimental XRD patterns, as shown in Figure 

5.5, confirm the existence of a solid solution. A transmission electron microscopy study 

showed no Ge-Te-rich nanodots, whose formation we ascribe to the rather more 

complicated thermodynamics of the imbalanced Ge/Te alloy. 

 

5.3 Lattice Dynamics and Phonon Conductivity 

Because our calculations predict pronounced short-range order of Ge and Te 

substituted on the pnicogen sublattice and the calculated phase diagram of our model 

system indicates that a range of compositions exhibiting such short-range order is 

accessible, we have focused our investigation of heat transport mechanisms on the 

charge-balanced CoSb3(1-x)Ge1.5xTe1.5x alloy.  

Atomic displacement parameter (ADP) values of various low-energy 

configurations of CoSb3(1-x)Ge1.5xTe1.5x containing CD Ge2Te2 rings (x = 0.25, 0.5 and 1) 

are shown in Figure 5.6(a). Due to the strong covalent bonds of the rings, the ADPs of 

substitutional atoms are not expected to be large. Surprisingly, the calculated ADP of Ge 

is significantly larger than that of Sb for all three low-energy configurations considered at 

x = 0.25 and 0.5. For comparison, Figure 5.6(a) shows values for the Ba-filled 

skutterudite BayCo4Sb12 at several values of y. The large ADP of the Ba filler atom, 
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relative to most atoms on the pnicogen rings, indicates the rattling behavior of Ba. The 

rattling behavior of the Ba filler species is believed to cause a reduction in the lattice 

thermal conductivity of partially-filled skutterudites [37, 77, 78].  

 

Table 5-1 Calculated properties of CoSb3 and CoGe1.5Te1.5. The literature results for 
CoSb3 are also listed. TD, γG, B, cij, and cv are the Debye temperature, the Grüneisen 
parameter, bulk modulus, elastic constant, and specific heat capacity. 

 TD  
(K) 

γG 
 

B 
(GPa) 

c11  
(GPa) 

c12  
(GPa) 

c44  
(GPa) 

cv  
(J/mol-K) 

CoSb3 305.9 1.11 91.89 174.6 50.52 66.34 22.9 
CoGe1.5Te1.5 283.5 1.28 55.87 125.6 20.40 29.35 22.9 

CoSb3 307a, b 0.95a 82c 158c - 57c - 
afrom reference [[79]] 
bfrom reference [[80]] 
cfrom reference [[81]] 
 

 

Figure 5.6 (a) Composition dependence of the mean square displacement for individual 
atoms (ADP) in atomic-substituted CoSb3(1-x)Ge1.5xTe1.5x and filled BayCo4Sb12. (b) 
Projected phonon dispersion curves for x = 0.5 and y = 0.5 using DFT. Atomistic 
configurations of each vibration mode for filler and double substitution are also given. 
Blue sphere represents the Co atom. Green sphere represents the Ba filler atom. (c) 
Atomistic configurations showing a pnicogen ring and octahedron consisting of 
substituted atoms (x = 0.5). Red arrows show the large displacement of each Ge atom.  
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Figure 5.7 Calculated phonon dispersion curves and density-of-states: (a) x = 0, (b) 0.5, (c) 
y = 0.5, and (d) a hybrid filled-substituted structure (x = 0.5 and y = 0.5). The site-
projected density-of-states are also shown. 

 

While the Ge ADP is large for all compositions, it is maximized at x = 0.5 where 

it becomes comparable to that of a Ba filler atom. This suggests that Ge atoms on the CD 

Ge2Te2 ring could play a similar role as a rattler. As reported in Refs [37, 82, 83]. rattler 

species inhibit heat transport by both (i) reducing average vibrational frequencies via 

local bond-softening, and (ii) giving rise to low-frequency “guest” vibrational modes 

decoupled from the host crystal. In addition to having a large ADP, Ge exhibits similar 

projected phonon dispersion curves to those of Ba, as shown in Figure 5.6(b). Phonon 

modes arising predominantly from either Ba or Ge displacements show negligible 

dispersion, characteristic of local deformational modes with low group velocity. Note that 

full band structures and phonon density-of-states (Dp) of various CoSb3(1-x)Ge1.5xTe1.5x 

compounds are shown in Figure 5.7. In spite of this similarity to Ba filler, the collective 
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modes of substituted Ge deform different segments of the skutterudite crystal structure 

and have different modal frequencies [i.e., Figure 5.6(b) for Ge and Ba show 2.27 and 

1.52 THz at Γ; 1.24 and 1.45 THz at X]. Additionally, the dominant vibrational 

distortions of Ge responsible for its large ADP are along the diagonal of the CD Ge2Te2 

rings, as illustrated in Figure 5.6(c). Collectively, this corresponds to a breathing mode 

(i.e., expansion/shrinkage) of the cage [Figure 5.6(b)]. We consider whether the distinct 

highly-displaced Ge modes and rattler modes of Ba can influence the phonon transport by 

simultaneously affecting different portions of the phonon spectrum. Our preliminary ab-

initio calculations, as shown in Figure 5.7(d), show this hybrid skutterudite structure (x = 

0.5 and y = 0.5, which is close to the filling limit [84]), will retain these distinct features. 

In particular, our results indicate mode flattening in specific direction (Ge at X; Ba at Γ), 

overall phonon downshift (Ba), and distinct softening induced in the guest vibrational 

mode frequencies.  

Experimental measurements [85] on charge-balanced CoSb3(1-x)Ge1.5xTe1.5x solid 

solutions show a dramatic decrease in the thermal conductivity with increasing x, as 

shown in Figure 5.8(a). In fact, the minimum in the measured κL near x = 0.5 coincides 

with the maximum of the calculated Ge ADP. The total measured thermal conductivity 

can be decomposed as κ = κL + κe, where κL and κe are the lattice and electronic thermal 

conductivity, respectively. An experimental value of κL is calculated by approximating 

and subtracting κe which, in turn, is determined from the Wiedemann-Franz law. Here κe 

= LσeT, where σe is the measured electrical conductivity and L is the Lorenz number, 

determined from the experimental Seebeck coefficient by assuming a single parabolic 

band [8]. The experimental value of κL obtained in this way, which Figure 5.8(a) shows 
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for several compositions at 500 K, quickly decreases with initial substitution before 

reaching a plateau at intermediate composition. The temperature dependence of κL, 

shown in Figure 5.8(b), exhibits a decreasing trend at all compositions.  

 

 

Figure 5.8 Variations of the predicted lattice thermal conductivity of CoSb3(1-x)Ge1.5xTe1.5x, 
(a) concentration dependence at T = 500 K, and (b) temperature dependence for several 
compositions. Our experimental results (using the Wiedemann-Franz law) and the results 
of the point-defect model and NEAIMD are shown. The minimum conductivity κmin (~ 
0.37 W/m-K) for the amorphous CoSb3 phase [86] is also shown.  

 

In order to analyze the effect of pnicogen ring substitution on κL, we use 

experimentally- and DFT-parameterized analytical models for phonon-phonon and point-
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defect scattering [80, 86-90], as well as non-equilibrium ab initio molecular dynamics 

(NEAIMD) simulation [91].  

Starting with κL of CoSb3 and CoGe1.5Te1.5, which are dominated by phonon-

phonon scattering, we add an analytical factor for point-defect scattering at intermediate 

alloy compositions [86, 88-90, 92]. Using the Matthiessen rule [92], the overall κL with 

the inclusion of the point-defect scattering is 1/κL(x, T) = x/κL(0, T) + (1 - x)/κL(1, T) + 

1/κL,d [86, 93]. Here κL(0, T) and κL(1, T) are obtained from the Slack relation [92].  
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where <M> is the mean atomic weight in the primitive cell, Nc is the number of atoms in a 

primitive cell, δ3 is the average volume per atom, TD,∞ is the Debye temperature and γG is 

the Grüneisen parameter. For the κL,d, the point-defect scattering parameter Γs including 

mass fluctuation and atomic displacement [89, 94-96] is  
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where M is the average atomic mass of the CoSb3(1-x)Ge1.5xTe1.5x alloy, R is the average 

atomic radius, and γG is the Grüneisen parameter. The lattice thermal conductivity limited 

by the point defect scattering κL,d is  

 ( )
,

4 2/1
1,,

, CTau
k
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B
dL π

κ =  (5.7)

where CT is the relaxation time for phonon-phonon scattering including normal processes 

and Umklapp processes. Here CT can be estimated from the experimentally-determined 

κL(0, RT) of 8.3 W/m-K for CoSb3. Using  
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where n is the atomic number density, yields CT = 4.758 × 10-16 s.[86] The parameter a1 

is the coefficient for the Rayleigh point-defect scattering rate, given by  

 ,
4 3

,,
1

Agp

sc

u
Va
π
Γ

=  (5.9)

where Vc is the unit cell volume. To clarify this effect with a rattler, the analytical results 

for the partially-filled (y = 0.5) and for the hybrid structure (various x with y = 0.5) are 

also shown in Figure 5.8(a). Here the overall κL is given as 1/κL,y=0.5(x, T) = x/κL,y=0.5(0, T) 

+ (1 - x)/κL,y=0.5(1, T) + 1/κL,d [86, 93], assuming κL,y=0.5(0, T) is equal to κL,y=0.5(1, T). Here, 

κL,y=0.5(0, T) is obtained from the classical MD results in Ref. [86]. Using this combined 

strategy we predict a further 33% reduction in κL (much closer to the theoretical 

minimum, κmin, of an amorphous phase). 

The lattice thermal conductivity using NEAIMD is computed as the ratio of an 

applied heat flux to the resulting temperature gradient,  

 
( )

,
/ dzdT
tq

L −=κ  (5.10)

where the brackets indicate time averages and q(t) is the heat flux. The heat flux is 

imposed by dividing the simulation cell into sections of equal width, and exchanging 

kinetic energy between hot and cold sections. The temperature gradient along the z axis is 

computed from the mean temperature of adjacent sections. For simulations we use the 

VASP code modified to perform NEAIMD -energy exchange [97, 98] as reported in Ref. 

[91]. The simulations are performed on supercells of 192 atoms (3×1×2) and 384 atoms 

(6×1×2), constructed as a solid-solution of pnicogen rings, based on the phase diagram 
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of Figure 5.4. We equilibrate each simulation using equilibrium AIMD for 1 ps with a 

0.5-fs time step. Equilibration is followed by 22 ps of NEAIMD using a 1-fs time step. 

This duration proved sufficiently long to obtain converged lattice thermal conductivity. 

Because the exchange of kinetic energy results in non-Newtonian dynamics in the hot 

and cold sections, only the linear portion of the temperature gradient is considered in 

calculating the lattice thermal conductivity.  

The juxtaposition of the point-defect scattering model and our experimental 

measurements in Figure 5.8(a) and Figure 5.8(b) indicates favorable agreement between 

the two, suggesting that the reduction in κL at intermediate substitution composition can 

largely be attributed to scattering from point-defects, which take the form of mass 

disorder and local atomic relaxations. Our analytical model does not account for the 

effect of bipolar carrier transport in our calculation of κe, likely resulting in 

overestimation of experimental κL values at high temperature. As shown in Figure 5.8(a) 

and Figure 5.8(b) the NEAIMD prediction agrees with experimental and analytical results.  

 

5.4 Summary 

We have demonstrated that Ge/Te double substitution on pnicogen rings is an 

effective means of lowering the lattice thermal conductivity of skutterudites. Although 

comparable in magnitude to the effect of Ba filling, Ge/Te substitution targets vibrational 

modes that are qualitatively different from those of Ba fillers.  We therefore expect that a 

combination of filling and substitutional double-doping is likely to act in a 

complementary manner in suppressing thermal conductivity. This combined strategy 
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should therefore lead to even lower total skutterudite thermal conductivity and higher ZT 

values than have been realized using either strategy in isolation.  
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CHAPTER 6 

OBSERVATION OF PHONON DRAG AND TUNING ITS TEMPERATURE 

DOMAIN IN THIN FILMS 

 

Highly mismatched alloys have been predicted to exhibit enhanced thermoelectric 

properties. In this chapter, I first present the electronic transport properties (Hall effect, 

electrical resistivity, and Seebeck coefficient) of one such system, nitrogen-doped ZnTe 

epitaxial layers on GaAs (100). Fermi-Dirac statistics was used to analyze the transport 

parameters of ZnTe:N films assuming a single parabolic band. The power factor 

demonstrates a measurable improvement with increasing nitrogen concentration.  

More importantly/surprisingly, significant phonon-drag thermopower reaching 

1.5–2.5 mV K-1 was observed. At low temperatures, in reasonably pure conductors 

subjected to a thermal gradient, charge carriers are swept (dragged) by out of equilibrium 

phonons, giving rise to a large contribution to the Seebeck coefficient called phonon drag. 

We further demonstrate a spectacular influence of substrate phonons on charge carriers in 

thin films of Bi2Te3.We show that one can control and tune the position and magnitude of 

the phonon-drag peak over a wide range of temperatures by depositing thin films on 

substrates with vastly different Debye temperatures. Our experiments also provide a way 

to study the nature of the phonon spectrum in thin films, which is rarely probed but 

clearly important for a complete understanding of thin film properties and the interplay of 

the substrate and films. 
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6.1 The electronic properties of ZnTe:N films 

ZnTe is a direct wide band gap (2.27 eV at 300 K [99]) II-VI semiconductor with 

zincblende crystal structure, utilized in optoelectronic applications including green light 

emitting diodes [100] and solar cells [101]. Recently, highly mismatched alloys (HMAs) 

of II-VI compounds, formed by alloying isovalent constituents with vastly different 

electronegativities (e.g., ZnSe1-xOx) have been proposed as candidate materials for 

promising thermoelectric performance [42]. The optimistic prediction is based on an 

assumption that such materials would possess an enhanced power factor defined as PF = 

α2σ, where α is the Seebeck coefficient or thermopower, and σ is the electrical 

conductivity. Practically, however, co-doping of additional species is required in order 

for such isoelectronic HMAs to function with the desired carrier concentration. An 

alternative approach of forming nonisoelectronic HMAs may provide a solution. 

Historically, nitrogen has proven to be a controllable p-type dopant in ZnTe [102-104] 

with hole concentrations of up to 1020 cm-3. Nevertheless, systematic studies of the 

thermoelectric properties of such nitrogen doped p-type ZnTe (ZnTe:N) thin films remain 

largely unknown in the literature. In this letter, a series of ZnTe:N epitaxial layers with 

varying N content is studied to examine their temperature dependent thermoelectric 

properties.  

Typical transport properties of five as-grown ZnTe:N films at 300 K are 

summarized in Table 6-1. These ZnTe:N films with similar thickness (1 – 2 μm) 

demonstrate hole concentrations that range over approximately an order of magnitude 

(0.34 – 2.16 × 1019 cm-3 at 300 K). While even larger ranges of carrier concentration 

would be desirable to study, difficulties in controlling nitrogen concentration at lower 
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levels, as well as measuring parameters for lower nitrogen concentration (particularly at 

low temperature where resistivity is high) prohibited inclusion in this study. Samples are 

labeled in the order of increasing hole concentration at 300 K to facilitate the following 

discussion.  

 

Table 6-1 Typical transport coefficients of various ZnTe:N thin films at 300 K, including 
nitrogen concentration [N] from SIMS measurement, Hall coefficient RH, hole 
concentration p, electrical resistivity ρ, Seebeck coefficient α, thermoelectric power factor 
PF, Hall mobility μH, and effective mass m*.   

ID [N]  RH  p  ρ  α  PF μH  m*  
 1019 cm-3 cm3 C-1 1019 cm-3 μΩ m μV K-1 μW m-1 K-2  cm2 V-1 s-1 me  
1 - 1.836 0.34 297 380 486 61.8 1.31 
2 1.41 1.019 0.61 280 338 408 36.4 1.39 
3 - 0.470 1.33 233 297 379 20.2 1.68 
4 - 0.398 1.57 157 259 427 25.4 1.38 
5 4.14 0.289 2.16 107 232 503 27.0 1.37 

 

Temperature dependent Hall measurements of all samples show unanimously 

positive Hall coefficient RH at all temperatures, implying the p-type conduction of 

ZnTe:N. The estimated hole concentration p [= 1/(e•RH), where e is the elementary 

charge] for all samples from 5 K to 300 K is plotted in Figure 6.1. The increasing hole 

concentration from sample 1 to sample 5 is a direct result of increasing nitrogen 

incorporation, as suggested by the SIMS measurements of nitrogen concentration [N] in 

the films (SIMS tests were limited to only two samples due to the experimental cost and 

schedule). Approximately a factor of two larger nitrogen concentration is measured by 

SIMS in comparison to the hole concentration measured by the Hall effect. The apparent 

doping efficiency of nitrogen in these ZnTe:N samples is therefore estimated to be 

approximately 50%. The Hall mobility μH [= RH/ρ, see Figure 6.2, with ρ shown in Figure 
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6.3] of these samples are found to be 20 – 60 cm2 V-1 s-1 at room temperature, in 

agreement with literature values [104, 105] for samples with a similar doping level.  

 

Figure 6.1 Temperature dependent hole concentration p of ZnTe:N MBE thin films with 
various doping levels. 

 

Figure 6.2 Temperature dependent Hall mobility μH of ZnTe:N MBE thin films with 
various doping levels. 
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Figure 6.3 Temperature dependent electrical resistivity ρ of ZnTe:N MBE thin films with 
various doping levels.  

 

As shown in Figure 6.3, the increasing amount of nitrogen incorporation (from 

sample 1 to 5) improves the overall electrical conductivity due to higher carrier 

concentration, and also exhibits a surprising qualitative change in the temperature 

dependence of electrical resistivity. At the highest doping levels (samples 4 and 5, p > 1.5 

×1019 cm-3), the electrical resistivity has a positive temperature coefficient over most of 

the temperature range, i.e., electrical resistivity increases as temperature increases. This is 

a typical behavior of the heavily-doped degenerate semiconductor. Note that acceptor 

formation via nitrogen incorporation in ZnTe is typically attributed to the substitution of 

N on the lattice sites of Te, resulting in an acceptor activation energy of 46 meV [105]. 

At such high doping levels, acceptor states originated from nitrogen impurity likely form 

an impurity band, as implied by the nearly temperature independent hole concentration 

in Figure 6.1. As the nitrogen incorporation is gradually reduced from this highly-doped 
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regime (samples 3, 2, and 1), the electrical resistivity profile deviates from a simple 

metallic behavior, with a peak observed in the temperature range between 50 K and 100 

K. This could be related to the more subtle details of the nitrogen induced impurity 

level/band in ZnTe, which requires further investigation. To shed more light on the effect 

of N-doping, Photoluminescence (PL) spectra of various ZnTe:N samples, together with 

a pure ZnTe sample as reference, were collected at 20 K. They reveal a red shift of the 

band edge peak upon N-doping, as shown in Figure 6.4. This effect may correspond to 

the formation and broadening of the nitrogen induced impurity band, as more nitrogen 

atoms are incorporated into the system. 

 

 

Figure 6.4 PL spectra at 20 K of pure ZnTe and ZnTe:N MBE thin films with various 
doping levels. 
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Figure 6.5 Seebeck coefficient of ZnTe:N from 150 K to 300 K.  
 

 

Figure 6.6 The effective mass m* of ZnTe:N from 150 K to 300 K.  
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Figure 6.7 Pisarenko plot at 300 K indicating α vs. p relation follows the single parabolic 
band model. 

 

Figure 6.5 shows a plot of the temperature dependent Seebeck coefficient α of the 

ZnTe:N films in the temperature range of 150 K to 300 K. α is positive for all samples 

suggesting p-type conduction, in agreement with the Hall effect measurements. The 

Seebeck coefficient at 300 K decreases as the concentration of holes increases, which 

agrees with the typical behavior of a degenerate semiconductor. In addition, α increases 

linearly with T due to carrier diffusion driven by the temperature gradient. For a p-type 

degenerate semiconductor, α can be expressed as follows:  
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where kB is the Boltzmann constant, e the elementary charge, r the index of energy 

dependent relaxation time (taken to be -1/2 for acoustic phonon scattering), rεττ 0=
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TkE BF /=η the reduced Fermi level measured from the top the valence band, and )(ηnF  

the n-th Fermi integral given by: 
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The carrier concentration is described by Fermi-Dirac statistics according to  
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where h is the Planck constant and m* is the effective mass of holes in the valence band. 

Combining Eq. (6.1) and Eq. (6.3), the effective mass can be estimated from the 

measured α and p data. The temperature dependent m* is plotted in Figure 6.6. The 

observed effective mass (1.3 – 1.7 me at 300 K) is significantly larger than the effective 

mass for intrinsic ZnTe (mh
* = 0.2 me). This observation is consistent with a modified 

band structure due to the formation of an impurity band via heavy nitrogen doping. The 

Pisarenko plot of the Seebeck coefficient versus hole concentration at 300 K is illustrated 

in Figure 6.7, where dashed lines are analytical results from Eq. (6.1) and Eq. (6.3) with 

the effective mass as a parameter. It verifies the suitability of the single parabolic band 

model for the N-doped ZnTe:N system. In addition, with the N-doping level increased, 

the power factor (PF) improves to 503 μW m-1 K-2 (see Table 6-1) for the highest doping 

level explored in this study. 
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6.2 Observation of significant phonon-drag effect in ZnTe 

 

Figure 6.8 Temperature dependent Seebeck coefficient α of ZnTe:N MBE thin films with 
various doping levels.  

 

 

Figure 6.9 The correlation between the Seebeck coefficient peak (~ 13 K) and an 
electrical resistivity plateau, suggesting that phonon-drag leaves an imprint on the 
temperature profile of the electrical resistivity. 
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Figure 6.8 shows a plot of the temperature dependent Seebeck coefficient α of the 

ZnTe:N films in the full 2– 300 K temperature range. At the lowest temperatures, α 

increases rapidly to a maximum at ~13 K, and then decreases until ~ 100 K.  

The greatly enhanced Seebeck coefficient at low temperatures (as high as 1.5 – 

2.5 mV K-1) is a manifestation of strong electron-phonon interaction otherwise known as 

the phonon-drag effect [106]. The peak position of the phonon-drag Seebeck coefficient 

(~ 13 K) in ZnTe:N coincides with the peak position of the phonon thermal conductivity 

in bulk crystals of ZnTe [107, 108]. This is in accord with the concept of the phonon-drag 

effect. In the presence of a thermal gradient, non-equilibrium phonons impart their 

momentum to electrons, resulting in a momentary electric current just as an applied 

electric field would do. However, under an open circuit condition (the condition under 

which the Seebeck coefficient is measured), an electric field is set up that counters such 

impulsively generated flow of electrons. By the phonon-drag Seebeck coefficient one 

understands the ratio of this induced electric field to the applied thermal gradient. Unlike 

the diffusion component of the Seebeck coefficient that is present at all temperatures, the 

phonon-drag contribution is manifested only at temperatures where phonon-electron 

processes dominate over all other modes of phonon scattering. Practically, this implies 

low enough temperatures where phonon-phonon Umklapp processes are infrequent, but 

temperatures not so low that the population of phonons would be very small. Since these 

same phonons are responsible for heat conduction, the positions of the phonon-drag peak 

and the peak in the lattice thermal conductivity essentially coincide. It is worthwhile to 

note that the thermal conductivity of GaAs substrate peaks at a similar temperature of ~ 

10 K [109-111]. Thus, any phonons leaking [112] from the substrate into the film might 
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in principle also contribute to phonon-drag in ZnTe:N grown on GaAs. However, as we 

shall see later in this chapter, for such leaking phonons to make an appreciable 

contribution to the phonon drag, the film must be very thin (a few tens of nm) and having 

a near perfect lattice match with the substrate, a situation difficult to realize in II-VI 

compounds under current growth conditions.  

While examples of significant phonon-drag Seebeck effect are often seen in both 

metals and semiconductors, it is exceptionally rare to see any signature of phonons 

dragging charge carriers in the electrical resistivity. The reason why phonon-drag effects 

are easily detected in the Seebeck coefficient and not in the electrical resistivity lies in the 

fact that the phonon-drag Seebeck effect is a first-order effect in the interaction between 

non-equilibrium phonons and electrons while it is a second-order effect as far as the 

electrical resistivity is concerned. Electrons, accelerated by the applied electric field, lose 

some of their momentum by being scattered by phonons and thus causing a flow of 

phonons which then acts back on the electrons.  

It is worth to point out that in Figure 6.9, at the lowest temperatures ~ 13 K, there 

is a local plateau in the electrical resistivity profile which coincides with the position of 

the phonon-drag Seebeck effect peak. Upon cooling down, instead of decreasing 

monotonically, the electrical resistivity tends to (quasi-)saturate in the regime where 

significant phonon-drag Seebeck effect is manifested. This result actually might be one of 

very rare examples where phonon-drag exerts an influence in the electrical resistivity. 

Further experimental and theoretical work is needed to ascertain this point. 
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6.3 The phonon-drag effect in thin films  

Phonons leaking from a substrate to a thin film have long been recognized as a 

mechanism contributing to large anomalies in measurements of the Seebeck coefficient at 

low temperatures. Motivated by the discovery of the quantum Hall effect, numerous 

studies of the Seebeck coefficient in GaAs/AlxGa1-xAs heterostructures [113, 114] and Si-

metal-oxide-semiconductor field-effect transistors (MOSFET’s) [115-117], have been 

carried out since the mid-1980s and they often resulted in exceptionally large phonon-

drag Seebeck coefficients with values exceeding millivolt/K at liquid helium 

temperatures. In the case of thin films, it is the nonequilibrium phonons generated in the 

substrate material (as a result of an imposed thermal gradient) that are leaking into the 2D 

layer of the heterostructure, interact with the 2D electron system and lead to the enhanced 

phonon-drag component of Seebeck coefficient (similarly as described in the case of bulk 

materials in Section 6.2). 

Expressions for the phonon-drag thermopower of both bulk [106] and lower-

dimensional semiconducting structures, including the temperature dependence of the 

effect [118, 119], have been worked out and applied to experimental data. Specifically, 

for 2D heterostructures, the induced phonon-drag electric field can be written in a 

physically intuitive form [120]:  
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where m* is the effective mass, vs is the velocity of the acoustic phonon mode s, Λs is the 

phonon mean-free path, is the electron-phonon relaxation time for scattering by the 

mode s and the summation is taken over the appropriate acoustic modes. 
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In all studies of the low temperature Seebeck effect in lower-dimensional 

structures [113-117], and even in the recently discovered spin Seebeck effect in Mn-

doped GaAs films [11, 121], the active 2D layer had similar composition and structure to 

the substrate. While this is a desirable feature from the perspective of growing high 

quality epitaxial layers, the fact that the substrate and the film have essentially the same 

phonon characteristics curtails a spectrum of information one can gain regarding 

interactions of substrate phonons with charge carriers of the film. Specifically, issues 

such as the influence of the Debye temperature and the possibility of tuning the position 

of the phonon-drag peak are inaccessible in such studies. 

It is thus of fundamental interest to study the influence substrate phonons exert on 

the Seebeck coefficient of films where the substrate and the film are different materials. 

As a film structure, we have chosen epitaxial films of Bi2Te3. Beyond the fact that Bi2Te3 

is the best room temperature thermoelectric [8] and the most promising material for 

studies of topological insulators [122, 123], its distinctly layered structure typified by 

quintuple layer (QL) of –Te1–Bi–Te2–Bi–Te1– and weak, van der Waals bonds between 

the neighboring stacks [see Figure 7.1(a)] makes Bi2Te3 an excellent candidate for the 

van der Waals-type epitaxy [124]. This ensures that c-axis oriented thin films can be 

grown on many different substrates [125-127]. Specifically, we have chosen BaF2 (111) 

and sapphire (0001), substrates with vastly different Debye temperatures of 287 and 980 

K, respectively. Films with thickness spanning from 6 to 1000 nm were deposited using 

molecular beam epitaxy [128]. For comparison, data of single crystal Bi2Te3 (see 

also CHAPTER 7) have been included.  
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6.4 Tuning the temperature domain of phonon drag in thin films  

 

Figure 6.10 Temperature dependent Seebeck coefficient for Bi2Te3 single crystal, 9 nm 
Bi2Te3 films on BaF2 (111), and sapphire (0001) substrates. 

 

Figure 6.11 The lattice thermal conductivity of bare BaF2 substrate, bare sapphire 
substrate, and the Bi2Te3 single crystal, which is obtained by subtracting the electron 
contribution from the total thermal conductivity via the Wiedemann-Franz law. 
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The absolute value of temperature dependent Seebeck coefficients for 9 nm films 

deposited on BaF2 and sapphire, as well as the Seebeck coefficient of a bulk single crystal 

Bi2Te3, are shown in Figure 6.10. A small but clearly distinguished phonon-drag 

contribution observed on the single crystal at 7 K is to be contrasted with an order of 

magnitude larger phonon-drag in the two film structures with peak positions at 14 K 

(BaF2 substrate) and 31 K (sapphire substrate). Apart from the same thickness, the two 

films have also similar carrier densities and mobilities. Consequently, the very different 

positions of the phonon-drag peak observed in films on BaF2 and on sapphire have 

nothing to do with the films’ electronic properties. One may also consider strain as a 

potential driving force for the shift of the phonon-drag peak temperature. However, it is 

well established that the strain in Bi2Te3 films grown on sapphire substrates is released 

very fast due to the weak interaction between QLs, and the in-plane lattice parameter 

attains its normal value of Bi2Te3 after the growth of only 2 QLs. Therefore, a rebound of 

the phonon-drag peak position to 7 K would be expected when the film thickness is 

greater than 10 nm. This does not happen even in films with the thickness of 190 nm. 

Moreover, the lattice mismatch between BaF2 and Bi2Te3 is only 0.1% and the difference 

in the thermal expansion coefficients leads to no more than about 0.1% lattice difference 

over the range of 300 K; yet a sizable shift in the phonon-drag peak temperature is 

observed. The above two points effectively rule out the possibility that strain plays a 

major role in the shifted phonon-drag peak position. Rather, as Figure 6.11 clearly reveals, 

the position of the phonon-drag peaks closely follows the position of the peak in the 

lattice thermal conductivity of the respective substrates. This also holds for the bulk 

Bi2Te3 single crystal sample. Such agreement between the position of peaks in the 
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Seebeck coefficient and the thermal conductivity indicates a significant contribution of 

“leaking” substrate acoustic phonons interacting with charge carriers of the films. The 

process is most effective at temperatures where there is the largest concentration of heat-

carrying phonons that can interact with carriers which is near the peak in the thermal 

conductivity. At temperatures above the peak in the thermal conductivity, Umklapp 

processes dissipate phonon momenta. At temperatures much below the peak, the density 

of available phonons decreases and their favored scattering targets are sample boundaries 

rather than charge carriers. This general trend is controlled by the Debye temperature of 

the substrate that specifies temperature regimes where the respective phonon scattering 

processes dominate. Clearly, the presence of a substrate, through its phonon spectrum, 

influences the electron-phonon interaction in a deposited semiconducting film which, in 

turn, governs the strength and the temperature domain of the phonon-drag effect.  

 

Figure 6.12 Temperature dependence of the Seebeck coefficients (left axis) for two 9 nm 
films grown on sapphire substrates with thickness of 0.5 mm and 0.1 mm, respectively. 
The lattice thermal conductivities (right axis) of two substrates are also shown. 
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Since it is substrate phonons which dominate the phonon-drag process in Bi2Te3 

thin films, any factor that affects substrate phonons should also influence the film’s 

phonon-drag peak. To check this point, we grew 9 nm Bi2Te3 films simultaneously on 

two sapphire substrates with thicknesses of 0.5 mm and 0.1 mm, i.e., subject to the exact 

same growth conditions and component fluxes. Figure 6.12 shows the Seebeck 

coefficient of the films as well as the lattice thermal conductivity of the two bare 

substrates with differing thickness as a function of temperature. Note that the thermal 

conductivity curves overlap at higher temperatures; however, at low temperatures, the 

boundary scattering of phonons in the thinner substrate is stronger relative to the thicker 

substrate, and this attenuates the low temperature portion of the lattice thermal 

conductivity curve in the former. Since boundary scattering of phonons is strong at low 

temperatures but weak at high temperatures, logically this leads to an effective increase 

of the peak temperature in lattice thermal conductivity, in our case from 36 K to 39 K. 

The high temperature Seebeck coefficients (shown) and the electrical resistivity (not 

shown) also overlap. Additionally, at low temperatures, the stronger phonon boundary 

scattering in the thinner substrate decreases the momentum that can be transferred from 

phonons to electrons, and leads to a lower phonon-drag Seebeck effect. For the same 

reasons mentioned above, the peak temperature of the phonon-drag coefficient also 

increases with decreasing substrate thickness, in our case from 31 K to 39 K.  

In general, one would expect the leaking phonons to be particularly effective in 

very thin films with the thickness significantly less than the penetration depth of such 

phonons. As film thickness increases, a smaller fraction of the film volume would be 

accessible to the leaking phonons before they are scattered and the strength of the 
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phonon-drag should weaken. To test this premise, we deposited Bi2Te3 films with the 

thickness in the range of 6–1000 nm on sapphire and measured their transport properties. 

To minimize the effect of different carrier densities of different films, we normalize the 

Seebeck coefficient to its value at 200 K, as shown in Figure 6.13. The most striking 

feature of the data is a strong dependence of the magnitude of the phonon-drag peak on 

the film thickness while the temperature where the peak occurs is thickness independent. 

The thinnest Bi2Te3 sample (6 nm) possesses the peak value an order of magnitude larger 

than samples with the thickness of 45 mm and 190 nm.  

 

Figure 6.13 Temperature dependent Seebeck coefficient (normalized to the value at 200 
K) for Bi2Te3 single crystal and films with different thickness on sapphire (0001) 
substrate. The dashed vertical line and arrow indicate the phonon-drag peak position for 
films and the single crystal, respectively.  
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6.5 Summary 

Low temperature thermoelectric characterization on a series of nitrogen doped 

ZnTe thin films grown by MBE has been performed. Upon tuning the N-doping level, 

qualitative changes in the temperature dependent electrical resistivity profile develop 

leading to a marginal improvement of the power factor at the highest doping level. A 

single parabolic band model proves to be a valid description for the ZnTe:N system at the 

doping levels we have explored. A significant phonon-drag Seebeck peak (a few mV per 

K) at ~ 13 K has been observed in all ZnTe:N samples.  

Furthermore, in the case of Bi2Te3 thin films, we have demonstrated that phonons 

leaking from the substrate strongly affect the carrier dynamics of the film and cause a 

large phonon-drag peak on the Seebeck curve. The position of this peak correlates with 

the maximum on the lattice thermal conductivity of the substrate and is governed by the 

nature of the substrate, namely, by the Debye temperature θD. The peak height of this 

substrate-related phonon drag can be very large for very thin films, but decreases very 

fast with increasing film thickness. Our research demonstrates that one can manipulate 

the temperature where the phonon-drag effect dominates by selecting a suitable substrate 

material. This result provides a way to probe the electron-phonon coupling in thin film 

structures and demonstrates the influence of substrates on phonon and electronic 

properties of thin films. 
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CHAPTER 7 

FINE TUNING THE FERMI LEVEL IN BISMUTH TELLURIDE VIA 

THALLIUM DOPING 

 

While the bulk Bi2Te3 single crystals often exhibit p-type metallic conduction due 

to the BiTe-type antisite defects, doping by thallium (Bi2-xTlxTe3, x = 0 − 0.30) 

progressively changes the electrical conduction of Bi2-xTlxTe3 from p-type (0 ≤ x ≤ 0.08) 

to n-type (0.12 ≤ x ≤ 0.30). This is observed via measurements of both the Seebeck 

coefficient and the Hall effect performed in the crystallographic (0001) plane in the 

temperature range of 2 − 300 K. At low levels of Tl, 0 ≤ x ≤ 0.05, the temperature 

dependent in-plane ( ) electrical resistivity maintains its metallic character as the 

hole concentration decreases. Heavier Tl content with 0.08 ≤ x ≤ 0.12 drives the electrical 

resistivity into a prominent non-metallic regime displaying characteristic metal-insulator 

transitions upon cooling to below ~100 K. At the highest doping of Tl, 0.20 ≤ x ≤ 0.30, 

the samples revert back into the metallic state with low resistivity. Thermal conductivity 

measurements of Bi2-xTlxTe3, as examined by the Debye-Callaway phonon conductivity 

model, reveal a generally stronger point defect scattering of phonons with the increasing 

Tl content. The systematic evolution of transport properties suggests that the Fermi level 

of Bi2Te3, which initially lies in the valence band (x = 0), gradually shifts toward the top 

of the valence band (0.01 ≤ x ≤ 0.05), then moves into the band gap (0.08 ≤ x ≤ 0.12), and 

eventually intersects the conduction band (0.20 ≤ x ≤ 0.30).  

cI ⊥
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7.1 Introduction 

 

 

Figure 7.1 Crystal structure of (a) Bi2Te3 and (b) TlBiTe2 with repeating (Te1–Bi–Te2–Bi–
Te1) and (Te–Bi–Te–Tl) layers, respectively. Defected form of TlBiTe2 represented by 
(Te–Bi–Te–Tl– ) + 2e includes an atomic plane of Te vacancies, has nearly identical 
in-plane lattice parameters as Bi2Te3, shares the same space group, and donates electrons 
necessary to explain transport properties.  

••
TeV
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Single crystals of Bi2Te3, which have a layered rhombohedral structure 

[see Figure 7.1(a)] with the space group )166# G. S.(3 5
3 ,DmR d , are narrow band gap (Eg 

~ 0.13 eV at 300 K) semiconductors, renowned for excellent thermoelectric properties 

and efficient cooling applications at and below room temperature [8]. Bi2Te3, together 

with its isostructural sister compounds Bi2Se3 and Sb2Te3 have recently been also 

identified as the most promising materials systems with which to realize a three-

dimensional (3D) topological insulator (TI) [123]. Such an exotic state of matter 

possesses a bulk insulator state together with Dirac-like metallic surface states arising 

from the unique band structure and strong spin-orbit coupling. While angle resolved 

photoelectron spectroscopy (ARPES) measurements have proved without any doubt the 

presence of topologically protected surface states [122, 129-131], the spectacular 

transport properties predicted to be associated with surface states have not yet been fully 

demonstrated. The primary cause hampering transport measurements is a high 

conductivity of the bulk state that overshadows the contribution of surface states. This is 

due to high density of charged antisite defects of the type  (an atom of Bi occupying 

a site on the Te sublattice and carrying charge -1 that is compensated by a hole in the 

valence band) that drive the system p-type and are responsible for high density of holes 

on the order of 1019 cm-3 at room temperature in Bi2Te3 crystals grown from 

stoichiometric melts [

1
TeBi−

132]. Although experimental techniques, such as post-annealing 

Bi2Te3 crystals in Te vapors [133, 134], have been developed to compensate such 

naturally formed acceptor defects in order to achieve a bulk insulator, better and more 

efficient ways of controlling the carrier density are still highly desirable. In this chapter, 

our recent attempt of fine tuning p-type Bi2Te3 into the non-metallic regime through 
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elemental Tl-doping is presented. The systematic transport property measurements from 

2 K to 300 K have revealed interesting physical phenomena in Tl-doped Bi2Te3 single 

crystals as the position of the Fermi level is being altered.  

 

7.2 Crystal structure and chemical analyses 

 

Figure 7.2 XRD patterns of powders made from Tl-doped Bi2Te3 single crystals, 
matching the Bi2Te3 standard (JCPDS 82-0358), with arrows indicating additional peaks 
of the TlBiTe2 phase. 

 

As shown in Figure 7.1(a), Bi2Te3 has a layered structure formed by (Te1–Bi–

Te2–Bi–Te1) type of quintuple layers (QLs), often referred to as the tetradymite-type 

lattice. The XRD patterns in Figure 7.2 suggest all samples can be readily indexed to the 

Bi2Te3 phase (JCPDS 82-0358) [135], with additional peaks (indicated by arrows) in the 

x = 0.30 sample that can be ascribed to the formation of rhombohedral TlBiTe2 phase 
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(JCPDS 85-0421) [136]. Figure 7.3(a) and Figure 7.3(b) show the high resolution 

transmission electron microscopy (HRTEM) image and selected area electron diffraction 

(SAED) pattern taken from a TEM specimen prepared from the x = 0.30 crystal. The 

measured distance of the neighboring lattice fringes in Figure 7.3(a) is 0.323 nm, in 

agreement with the )141(  lattice spacing for TlBiTe2. The energy dispersive 

spectrometry (EDS) analysis on the specimen indicates it contains 23.7 at.% Tl, 22.3 at.% 

Bi, and 54.0 at.% Te, which verifies the chemical composition. The crystal structure of 

TlBiTe2, as shown in Figure 7.1(b), is typified by (Te–Bi–Te–Tl) type of layers and 

recently noted as a new family of TI [137].  

 

 
Figure 7.3 (a) HRTEM image and (b) SAED pattern taken from the x = 0.30 sample. The 
distance of the neighboring lattice fringes in (a) is 0.323 nm, in agreement with the 

)141( lattice spacing for TlBiTe2. 
 

Incorporation of Tl into the tetradymite-type lattice of Bi2Te3 deserves a comment. 

One might naively expect the atoms of Tl to substitute for Bi. This to be the case, such 

doping would enhance the density of holes. As we shall see later, this is contrary to the 

experimental results that clearly show a crossover from p-type to n-type dominated 

transport as the content of Tl increases. A simple scenario in which Tl occupies 

interstitial sites or is in the van der Waals gap of the Bi2Te3 structure is also unlikely as 
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this contradicts no changes being observed in the lattice parameters. Finally, arguing that 

the presence of Tl increases the bond polarity and thus decreases the probability of 

formation of antisite defects BiTe that give bulk Bi2Te3 its p-type character, is also 

unlikely as the content of Tl is very low in these studies. In fact, as the above structural 

and compositional analysis using XRD, HRTEM and SAED indicates, it is via the 

formation of TlBiTe2 how Tl enters the Bi2Te3 lattice. This mechanism was originally 

suggested in Ref. [138] and we now have an experimental proof of its existence. Since 

Bi2Te3 and TlBiTe2 are closely related (the same  space group and nearly identical 

parameters of the TeBi6 octahedra forming both Bi2Te3 and TlBiTe2), there is only small 

energy penalty to be paid by replacing a quintuple layer of (Te1–Bi–Te2–Bi–Te1) by a 

defected stack of (Te–Bi–Te–Tl–  ) + 2e, where represents an atomic plane of Te 

vacancies. Patches of such empty Te planes will be randomly distributed among the 

neighboring Te1 sites without forming a continuous layer of unoccupied sites. The most 

important, the symbiosis of the two structures provides means for supplying electrons in 

Bi2Te3 which then compensate holes and, with the increasing content of Tl, eventually 

take over and dominate the transport, as shown below.  

5
3dD

••
TeV••

TeV

Figure 7.4 presents the X-ray photoelectron spectroscopy (XPS) signals for Bi 4f 

[(a), (d)], Te 3d [(b), (e)], and Tl 4f [(c), (f)] core levels of various Tl-doped Bi2Te3 

samples, collected from freshly prepared surfaces either perpendicular to the c-axis ( c⊥ , 

i.e. the basal plane) or parallel to the c-axis ( ), where carbon and oxygen 

contamination was removed via Ar ion sputtering. The XPS signal was picked up from an 

analyzed area of approximately ~1.5 mm in diameter. The layered nature of Bi2Te3 

matters in XPS to the extent that the signal from the  surface (where incident X-rays 

c//

c//
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encounter a cross section of multiple QLs and everything in between) should be more 

informative than that from the c⊥  surface (where incident X-rays see a plane of QLs), in 

studying the chemical environment between QLs.  

 

 

Figure 7.4 XPS analysis performed on various Tl-doped Bi2Te3 surfaces either 
perpendicular to the c-axis ( c⊥ , i.e. the basal plane) or parallel to the c-axis ( ) 
showing core levels for (a) Bi 4f, 

c//
c⊥ ; (b) Te 3d, c⊥ ; (c) Tl 4f, c⊥ ; (d) Bi 4f, ; (e) 

Te 3d, ; (f) Tl 4f, .  
c//

c// c//
 

Table 7-1 Binding energies EB in eV observed by XPS.  

 Bi Te Tl 
 4f5/2 4f7/2 3d3/2 3d5/2 4f5/2 4f7/2 

Bi2Te3
a 162.5 157.2  582.3 572.0 - - 

Tlb - - - - 122.17  117.73  
x = 0 162.4 157.1 582.5 572.1 - - 

x = 0.30  163.3  158.0  583.1  572.7  122.5, 
121.7  

118.0, 
117.2  

aFrom Ref. [139]. 
bFrom Ref. [140].  
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For sample x = 0, the binding energies EB of Bi and Te determined from both c⊥  

[Bi, Figure 7.4(a); Te, Figure 7.4(b)] and  [Bi, c// Figure 7.4(d); Te, Figure 7.4(e)] 

surfaces are identical and agree with the literature values for Bi2Te3 [139], as summarized 

in Table 7-1. As shown in Figure 7.4(a) and Figure 7.4(b), when x increases from 0 to 

0.30, the Bi and Te peaks obtained from the c⊥  surface systematically shift toward 

higher energy, which we interpret as a change of the valence state in Bi and Te due to Tl 

presence in the lattice. The existence of Tl in the crystal is confirmed by the emergence 

of peaks corresponding to the Tl 4f levels in sample x = 0.30 as illustrated in Figure 

7.4(c), which are listed in Table 7-1 and compared with literature values for pure Tl [140]. 

The atomic concentration for Tl is estimated to be 3.83±1.95%, somewhat lower than the 

nominal value 6% for x = 0.30. However, the XPS spectra of sample x = 0.30 in the c⊥  

surface differ from that in the  surface. Since the Bi and Te  peaks of the sample x 

= 0.30 do not deviate from that of the sample x = 0, as shown in 

c// c//

Figure 7.4(d) and Figure 

7.4(e), we ascribe the Tl  peaks of sample x = 0.30 in c// Figure 7.4(f) to some loosely 

bonded Tl atoms which leave the binding energies of Bi and Te essentially unchanged. 

Even though Tl peaks were indeed observed in the XPS survey scan of sample x = 0.20, 

no discernible Tl signal in the XPS core scan was picked up for samples with x ≤ 0.20 

(even after several attempts), probably due to the very low concentration of Tl actually 

incorporated in the crystals (amounts much lower than one would expect based on the 

nominal x), together with the uneven distribution of Tl in the crystal (we have observed a 

large standard deviation of Tl concentration in the sample of x = 0.30). There is no doubt 

that Tl reveals its presence in Bi2Te3 on transport properties of the crystals but it is 

difficult to establish its presence quantitatively by whatever analytical measurement.  
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7.3 Electronic transport properties 

 

Figure 7.5 Temperature dependent electrical resistivity ρ for Tl-doped Bi2Te3 single 
crystals. The inset is a sketch of the band structure (binding energy EB v.s. wave vector k) 
along the Γ-K direction, where Fermi level EF for various x are indicated by horizontal 
dashed lines. With increasing amount of Tl, the EF is shifted continuously from the 
valence band (VB) into the conduction band (CB).  

 

Figure 7.6 Temperature dependent Seebeck coefficient α for Tl-doped Bi2Te3 single 
crystals.  
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The temperature dependent electrical resistivity ρ and Seebeck coefficient α 

measured in the (0001) plane are shown in Figure 7.5 and Figure 7.6, respectively. The 

pure Bi2Te3 (x = 0) exhibits a metallic electrical resistivity behavior (ρ300K = 14.0 μΩ m) 

and shows a positive Seebeck coefficient (S300K = +245 μV K-1) in the entire temperature 

range covered. This p-type stoichiometric Bi2Te3 thus behaves as a highly degenerate 

semiconductor with the hole concentration n300K = +1.12×1019 cm-3 [see Figure 7.8, 

where positive (negative) n indicates hole (electron)]. The Fermi level EF, in this case, 

lies in the valence band (VB). With the increasing content of Tl, as shown below, EF 

continuously shifts out of VB into the band gap and towards the edge of the conduction 

band (CB). A sketch of the band model along the Γ-K direction [134, 141, 142], together 

with the position of EF (dashed lines) corresponding to various x values, is presented as 

the inset of Figure 7.5. By properly choosing the content of Tl (0.08 ≤ x ≤ 0.12), one can 

pin EF in the band gap, a situation that is potentially favorable for the studies of TIs.  

Upon increasing the content of Tl up to x = 0.05, the system maintains its metallic 

conduction characteristics. However, a gradually decreasing density of holes, as shown 

in Figure 7.8, leads to an increase in the electrical resistivity. This corresponds to a shift 

of EF toward the VB maximum. Since the density of extrinsic carriers in these lightly Tl-

doped samples is decreased, the presence of thermal excitations across the band gap 

becomes evident on ρ vs. T curves before room temperature is reached. Even clearer 

evidence of intrinsic excitations is seen in the behavior of the Seebeck coefficient where 

down-turns set in at progressively lower temperatures and are more dramatic as electrons 

start to compensate extrinsic holes.  
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Heavier Tl content with x between 0.08 and 0.12 drives the system into a 

prominent non-metallic regime of conduction. During this transition, the density of 

extrinsic holes is greatly diminished, the carrier type changes from that of a hole-

dominated to an electron-dominated transport [see the behavior of the Seebeck 

coefficient in Figure 7.6, and the Hall coefficient in Figure 7.7] and EF shifts from a 

position close to the top of VB (x = 0.08) to a location deep into the band gap (x = 0.10), 

and then approaches the bottom of CB (x = 0.12). Very low background carrier 

concentrations of samples with 0.08 ≤ x ≤ 0.12 make thermal excitations across the band 

gap much more prominent in both the resistivity and Seebeck coefficient data and bi-

polar contributions are manifested at even lower temperature ~200 K. Interestingly, when 

the Tl-doped Bi2Te3 crystals (x = 0.08 – 0.12) are cooled down from ~200 K, a metal-

insulator type of transition at ~100 K is always observed in ρ. Below ~100 K, the system 

displays a distinctly insulating behavior (rather than metallic) corresponding to the Fermi 

level being buried in the band gap. Surprisingly, the insulating behavior peaks near 50 K 

and is followed by a decreasing resistivity (samples x = 0.08 and 0.12) or a tendency to 

quasi-saturate (x = 0.10) that persists down to the lowest temperatures of the experiment. 

Such unique metallic conduction below ~50 K in the case of 0.08 ≤ x ≤ 0.12 could be a 

manifestation of the dominance of the surface metallic state. However, why the metallic 

state abruptly ceases to exist near 50 K, the gap opens, and the insulating state takes over 

is an open question. It is worth noting that a similar transport response was also observed 

in Tl-doped PbTe [33], where the resonant states introduced by Tl are believed to play an 

important role in understanding such effect.  
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The behavior described above regarding ρ maps well onto the trend observed in α. 

In the regime dominated by extrinsic holes (0 ≤ x ≤ 0.08), as ρ increases, the positive α 

increases. Likewise, in the regime where ρ is governed by electrons (x = 0.12 – 0.30), a 

decreasing ρ leads to a decreasing magnitude of the negative α. We also note that a local 

maximum is seen in the magnitude of α near ~7 K for all samples regardless of Tl-doping 

level. This is a manifestation of the phonon-drag effect [106] reflecting a strong electron-

phonon interaction at low temperatures and high crystalline quality samples.  

Results of the Hall coefficient (RH) measurements are shown in Figure 7.7, 

together with the carrier density n [defined as n = 1/(e RH) and applicable for a single 

parabolic band approximation, where e is the elementary charge, and positive (negative) 

n stands for holes (electrons)] and Hall mobility (defined as μH = RH/ρ) in Figure 7.8 

and Figure 7.9, respectively. Note that, above ~200 K, where intrinsic excitations start to 

take place, such simplified experimental determination of the carrier density and mobility 

is no longer appropriate (see the unphysical sharp turns in n at high temperature for x > 

0.08). This is also the reason why the x = 0.10 sample shows “falsely” large carrier 

concentration which becomes even more significant at high temperatures, since electrons 

and holes are compensating each other. We observe systematically varying carrier 

concentration for x = 0 – 0.08, where extrinsic holes dominate the transport process, 

resulting in positive RH with density of holes suppressed as x increases. For x = 0.20 – 

0.30, the negative RH validates the electron-dominated conduction, where larger x tends 

to increase the density of electrons as the Fermi level moves deeper into the conduction 

band. Such tuning of carrier density is in accordance with the increasing content of 
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TlBiTe2 and therefore progressively higher density of electrons as the nominal amount x 

of Tl increases.  

 

Figure 7.7 Temperature dependent Hall coefficients RH from 2 K to 300 K. 
 

 

Figure 7.8 Temperature dependent carrier density defined as n = 1/(e RH), where e is the 
elementary charge and positive (negative) n stands for hole (electron). 
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Figure 7.9 Temperature dependent Hall mobility defined as μH = RH/ρ. The inset is μH vs. 
T plotted on a log-log scale indicating the T-3/2 acoustic phonon temperature dependence 
at temperatures near the ambient. 

 

As shown in Figure 7.9, carriers are clearly classified into three different 

categories: for x = 0 – 0.05, the mobility is high (μ10K ~ 9000 cm2 V-1 s-1), while it 

becomes significantly suppressed (by a factor of ~16) to a low value (μ10K ~ 560 cm2 V-1 

s-1) for x = 0.08; with a further increase in Tl content (x = 0.20 – 0.30), the crystal 

becomes an n-type conductor with μH restored to intermediate values (μ10K ~ 3000 – 4000 

cm2 V-1 s-1). The inset of Figure 7.9 displays a log-log plot of μH vs. T, indicating a 

temperature dependence of μH ~ T-3/2 that suggests the acoustic phonon scattering is 

playing an important role at temperatures near the ambient.  

 

7.4 Thermal transport properties 

The temperature dependent thermal conductivity κ of these Tl-doped Bi2Te3 

samples is shown in Figure 7.10. The resulting dimensionless thermoelectric figure of 

merit ZT = S2σT/κ is plotted in Figure 7.11, indicating that a trace amount (x ∼ 0.01) of Tl 
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may actually help to improve the thermoelectric performance of Bi2Te3. Higher 

concentrations of Tl have a clearly negative impact on the thermoelectric performance. 

 

Figure 7.10 The temperature dependence thermal conductivity κ for Tl-doped Bi2Te3 
single crystals.  

 

Figure 7.11 The temperature dependence of thermoelectric figure of merit ZT for Tl-
doped Bi2Te3 single crystals.  
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The total thermal conductivity can be decomposed as κ = κL + κe, where κL and κe 

are the lattice and electronic thermal conductivities, respectively. The κL is calculated by 

subtracting κe obtained from the Wiedemann-Franz law. Here κe = LσT, where σ (=1/ρ) is 

the electrical conductivity and L is the Lorenz number. Note that under the single 

parabolic band approximation with one dominant carrier type, the Seebeck coefficient is 

given by:  

 
( ) ( )
( ) ( ) ,

23
25

21

23

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

−−=
+

+

η
η

ηα
r

rB

Fr
Fr

q
k  (7.1)

where kB is the Boltzmann constant, q is the charge of carrier [+e (-e) for hole (electron)], 

r is the scattering index in the energy dependent relaxation tim rε  (taken to be -

1/2 for acoustic phonon scattering TB

e 

),

ττ 0=

 kEF /=η  is the reduced Fermi level, and ( )ηnF  

is the n-th Fermi-Dirac integral defined as: 
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Using η determined from the experimental values of Seebeck coefficient, the Lorenz 

number L can be estimated via: 
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The resulting temperature dependent phonon conductivity κL is examined using the 

Debye-Callaway model [143, 144]:  
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where Tkx Bω= , ω is the phonon frequency, ħ is the reduced Planck constant, kB is the 

Boltzmann constant, v is the averaged velocity of sound, θD is the Debye temperature, 

and τc is the relaxation time. The overall relaxation rate is given by:   1−
cτ

 ,3exp 3241 TCTTBAv D
c ωθωωτ +⎟

⎠
⎞⎜

⎝
⎛−++=−  (7.5)

where terms on the right hand side correspond to the boundary scattering ( is the mean 

grain size), defect scattering, Umklapp processes[145], and normal phonon scattering 

[146], respectively. Here , A, B, and C are fitting parameters.  

 

 

Figure 7.12 The lattice thermal conductivity κL of Tl-doped Bi2Te3 single crystals, with 
the dashed line indicating the numerical fitting result of the Debye-Callaway model for (a) 
x = 0, (b) x = 0.01, (c) x = 0.05, (d) x = 0.10, (e) x = 0.20, and (f) x = 0.30, which 
documents a generally enhanced point defect scattering of phonons upon increasing the 
content of Tl. 
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Table 7-2 Lattice thermal conductivity fitting parameters for Bi2-xTlxTe3 single crystals. 

x  
(mm) 

A 
(10-42 s3) 

B 
(10-17 s K-1) 

C 
(10-8 K-3) 

0 0.488 1.036 0.944 1.358 
0.01 0.593 1.765 1.018 1.078 
0.05 0.215 0.851 1.209 1.738 
0.10 0.321 0.530 0.952 3.275 
0.20 0.382 1.703 0.746 0.968 
0.30 0.441 2.251 0.870 1.009 

 

Figure 7.12 presents the lattice thermal conductivity for various Tl-doped Bi2Te3 

single crystals. The dashed lines are the numerical fitting result of Eq. (7.4) and Eq. (7.5), 

with v = 2.0 km/s [147], and θD = 165 K [148]. Fitting parameters are listed in Table 7-2. 

Such model depicts the temperature dependence of κL very well at low temperatures, but 

starts to underestimate κL for T > 100 K, where effects of radiation loss, temperature 

dependence of Lorenz number, and bi-polar thermal conductivity all contribute. An 

attempt to include electron-phonon scattering (e.g. ) in the calculations did not 

improve the overall fit. Note that the increasing content of Tl generally leads to a lower 

dielectric maximum in κL, a broader peak and its slight shift to higher temperatures, with 

an enhanced strength of point defect scattering of phonons.  

21 ~ ωτ −
− pe

 

7.5 Summary 

While it is difficult to establish quantitatively (and even qualitatively at low Tl 

concentrations) the presence of Tl in the crystal lattice of Bi2Te3, its systematic effect on 

the transport behavior leaves no doubt that Tl plays an important role in shifting the 

Fermi level and thus transport properties of Bi2Te3. The incorporation of Tl in Bi2Te3 

proceeds via the formation of defected layers of TlBiTe2 that contain charged vacant 
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planes of Te. Such structure is crystallographically akin to Bi2Te3 and seems randomly 

distributed. Moreover, it is the source of electrons responsible for an effective way of 

tuning p-type metallic Bi2Te3 gradually into an n-type conductor with the increasing 

content of Tl, and therefore TlBiTe2, as confirmed by measurements of the Seebeck 

coefficient and the Hall effect. During the p-n transition, interesting non-metallic states 

are present with unique electrical resistivity profile. Samples having the Fermi level in 

the band gap display a metallic or quasi-saturated conduction below ~50 K. This might 

be a transport signature of the presence and dominance of the topologically protected 

surface state. Introducing Tl into the crystal lattice of Bi2Te3 thus might be of interest in 

achieving bulk insulating states that then allow detection of surface states. Thermal 

conductivity of Tl-doped Bi2Te3 is suppressed on account of enhanced point defect 

scattering. Very low concentrations of Tl seem to marginally improve the thermoelectric 

performance of Bi2Te3. 
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CHAPTER 8 

LOW-TEMPERATURE STRUCTURAL AND TRANSPORT ANOMALIES IN 

DICOPPER SELENIDE  

 

Through systematic examination of symmetrically nonequivalent configurations, 

first-principles calculations have identified a new ground state of Cu2Se, which is 

constructed by repeating sextuple layers of Se-Cu-Cu-Cu-Cu-Se. The layered nature is in 

accord with transport properties, electron and X-ray diffraction studies at and below room 

temperature. Magnetoresistance measurements at liquid helium temperatures exhibit 

cusp-shaped field dependence at low fields and evolve into quasi-linear field dependence 

at intermediate and high fields. These results reveal the existence of weak antilocalization 

effect, which has been analyzed using a modified Hikami, Larkin, and Nagaoka (HLN) 

model including a quantum interference term and a classical quadratic contribution. 

Fitting parameters suggest a quantum coherence length L of 175 nm at 1.8 K. With 

increasing temperature, the classical parabolic behavior becomes more dominant and L 

decreases as a power law of T-0.83. These surprisingly novel discoveries have improved 

understanding of Cu2Se-based material systems implying further interesting applications.  
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8.1 Introduction  

Transition metal chalcogenides (TMCs) form a fruitful research in contemporary 

condensed matter physics leading to intriguing discoveries and promising applications 

[149]. For example, the silver chalcogenides (e.g., Ag2Te) are renowned for their 

extraordinary large magnetoresistance [150] and have been recently identified as a new 

class of binary topological insulators (TI) with a highly anisotropic Dirac cone [151]. 

Additionally, transition metal dichalcogenides (TMDCs) MX2, where M is a transition 

metal element and X is a chalcogen atom (S, Se, or Te), are well known for their two-

dimensional (2D) structures formed by X-M-X layers with strong in-plane bonding and 

weak out-of-plane interactions. The unique intrinsic 2D nature of TMDCs has facilitated 

the search for novel states of matter, for instance, by offering a coexistence of 

superconductivity and the Mott commensurate charge density wave (CCDW) phase in 

1T-TaS2 [152]. Furthermore, the electronic band structures of TMDCs are believed to 

host exotic spin-orbit phenomena exemplified by the systematic crossover from weak 

localization (WL) to weak anti-localization (WAL) in WSe2 [153, 154].  

As an important member of the TMC family, the superionic Cu2Se has also 

received heightened attention in the recent developments of thermoelectrics [155] and 

optoelectronics [156], due to the unique transport properties associated with its structural 

phase transition occurring at ~ 400 K. The exact transition temperature of this well-

known reversible second-order transition from the ordered room temperature (RT) 

monoclinic α-phase to the disordered high temperature (HT) cubic β-phase depends on 

the Cu deficiency in the metal sub-lattice [157] and is found to be tunable upon iodine 

doping on the selenium sites [158]. It is generally accepted that the disordered HT β-
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phase of Cu2Se, space group )252# G. S.(3 5,OmFm h is constructed by statistically 

distributing Cu atoms over the 8c tetrahedral sites in a face centered cubic (fcc) matrix 

formed by Se atoms. However the structural determination of the ordered phase(s) still 

remains controversial [159]. Furthermore, despite some rare reports on samples with 

quite high Cu deficiency (e.g., Cu2-xSe, 0.20 ≤ x ≤ 0.25) [160], detailed study of the 

transport properties of stoichiometric Cu2Se at low temperatures is still desirable. In this 

Letter, we report first-principles determination of the ground state along with several 

unexpected experimental findings regarding the low-temperature transport properties of 

Cu2Se, which may indicate an intrinsic 2D quantum behavior.  

 

8.2 Ground state of Cu2Se 

 

Figure 8.1 Projected (along the monoclinic b-axis) ab inito ground state structure of 
Cu2Se formed by repeating sextuple layers of Se-Cu-Cu-Cu-Cu-Se. 
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The ground state of Cu2Se was obtained via structural relaxation of the cubic HT 

β-phase. In order to determine the most stable structure, Cu atoms were randomly 

distributed onto the 32f trigonal sites in the fcc Se matrix, which form tetrahedrons 

around the 8c tetrahedral sites. Note that for stoichiometric Cu2Se, only 1/4 of the 32f 

sites are occupied by Cu atoms. Symmetrically distinct configurations with up to 8 Cu 

atoms have been studied based on the Cu occupancy on the sub-lattice [39]. Subsequent 

density functional theory (DFT) calculations of the formation energy have allowed us to 

identify stable configurations of Cu2Se.  

The proposed ground state of Cu2Se crystallizes in space group 

)14# G. S.(2 5
21 ,CcP h , with optimized lattice parameters: a = 7.453 Å, b = 4.322 Å, c = 

6.880 Å, α = 90.00°, β = 70.62°, γ = 90.00° and atomic occupation: Cu1 (0.06111, 

0.58259, 0.15164), Cu2 (0.80599, 0.92292, 0.05310), and Se (0.28070, 0.93855, 

0.25485). As shown in Figure 8.1, the ground state of Cu2Se has quasi-2D characteristics 

typified by the Se-Cu-Cu-Cu-Cu-Se type of sextuple layers (thickness t = 3.95 Å), which 

are interconnected via weak Se-Se bonds (gap δ = 3.08 Å). Comparing with recent 

literature results using rather different approaches, the monoclinic structure of Cu2Se 

obtained here has lower formation energy per unit formula [158, 161]. The proposed 

structure is also dynamically stable due to the absence of the soft modes in the phonon 

spectrum, as is evident in Figure 8.2. As shown in Figure 8.3, the monoclinic Cu2Se is 

confirmed to be semiconducting and the electronic band gap Eg (using HSE) is found to 

be 1.03 eV, which agrees very well with the experimental value of 1.20 eV [162] and has 

been known as the best first-principles result in the literature [163].  
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Figure 8.2 The calculated phonon band structure and density of states (Dp) indicate the 
proposed structure is dynamically stable. 

 

Figure 8.3 The electronic band structure and density of states (De) calculated using HSE 
hybrid functional suggests that Cu2Se is a semiconductor with band gap Eg = 1.03 eV.  

 

Figure 8.4 (a) Simulated SAED pattern along the zone axis [011] of the monoclinic phase 
and the [101]fcc with the diffractions from the fcc structure labeled as squares. (b) The 
experimental SAED pattern along the [011] zone axis of the monoclinic phase. 
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The EDS analysis on the TEM specimen indicates it contains 66.3 at% Cu and 

33.7 at% Se, which verifies the Cu2Se chemical composition. The simulated SAED 

pattern along the monoclinic [011] zone axis is presented in Figure 8.4(a), where the 

monoclinic [011] axis of the proposed ground state is equivalent to an fcc [101] axis. 

Spots labeled by the square symbols are indexed according to the fcc diffraction pattern, 

which correspond to the SAED pattern of the HT cubic β-phase [158]. Figure 8.4(b) 

displays the experimental SAED pattern along the monoclinic [011] axis. The agreement 

between the experimental and theoretical pattern has verified the predicted layered 

structure of the ground state. Additional superstructural diffraction spots/stripes have 

been also observed along other zone axes. This may result from the different packing 

order of the sextuple layers and/or Cu-vacancy ordering at finite temperature when 

thermal energy starts to affect the structure [164].  

 

8.3 Another phase transition of Cu2Se 

To further understand the structure, low temperature XRD measurements have 

been performed. In line with earlier reports [160, 164-167], a reversible α to α� 

superstructure transition is also evident in the sample studied here via an intensity 

rearrangement of the multiplet of superlattice peaks located in the Q-region close to the 

(400) reflection in cubic notation (Figure 8.5). This is found from assessment of the 

systematic temperature dependent XRD data, collected in the 100-300 K range upon 

warming. The transfer of intensity occurs at around 175 K (the upper right inset in Figure 

8.5).  
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Figure 8.5 Reduced total scattering XRD structure function, F(Q) = Q[S(Q)-1], where 
S(Q) is the total scattering structure function and Q is the momentum transfer, in 100-300 
K range (main panel). Temperature evolution of the normalized intensity around (400) 
reflection in cubic notation, marked with an arrow in the upper left inset (Q ~ 4.3 Å-1). 
This region is sensitive to subtle structural changes, and evidences the α� to α 
superstructure transition at around 175 K, as denoted by a vertical dashed line (upper 
right inset). Red symbols denote the evolution with temperature of the intensity peaked at 
Q ~ 4.362 Å-1, while the blue symbols show the evolution of the intensity peaked at Q ~ 
4.436 Å-1. 

 

Figure 8.6 Low-temperature electrical resistivity ρ and Hall coefficient RH of 
stoichiometric Cu2Se, showing an anomalies at 100–150 K, where ρ measurements 
overlap upon either warm up or cool down in the temperature. 
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Figure 8.7 Low-temperature Hall density p and Hall mobility µH of stoichiometric Cu2Se.  
 

We were interested to find out what is the impact of such structural changes on 

the transport properties. As shown in Figure 8.6 and Figure 8.7, the above mentioned α to 

α�-type of transition has a strong imprint on the temperature dependence of the electrical 

resistivity (20% effect) and the Hall effect. The electrical resistivity of Cu2Se exhibits a 

highly anomalous behavior in the 100–150 K temperature range which is also 

accompanied by a large peak in the Hall effect. We speculate that such features might 

represent a possible charge density wave (CDW) transition [168], as a result of the 

distortion/redistribution of the sextuple layers upon temperature change, however, further 

theoretical and experimental efforts are needed to clarify the issue. We note that, in spite 

of looking for accompanying anomalies in the Seebeck effect, thermal conductivity and 

the specific heat, we found none. The anomalous behavior seems to be limited to 

galvanomagnetic transport only. 
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8.4 The magnetoresistance of Cu2Se 

 

Figure 8.8 Magnetoresistance profile (as a function of magnetic field intensity) of Cu2Se 
at various temperatures (1.8–30 K) indicating evolution of weak antilocalization behavior 
as the temperature is lowered to 1.8 K. 

 

At even lower temperatures (1.8–30 K), the magnetoresistance (MR) of Cu2Se is 

extraordinary, as shown in Figure 8.8. The semi-classical transport theory predicts a 

quadratic field-dependent MR in the low-field range which saturates in high fields. In 

distinct contrast to the traditional theory, the MR of Cu2Se at low temperatures exhibits a 

weak anti-localization (WAL)-like cusp which is suppressed when the temperature 

increases. In addition, at high fields, the MR increases with the increasing field in a linear 

fashion with no sign of saturation up to B = 5 T.  

We account for the field dependence of differential magnetoconductance (MC) 

over the entire range of fields and temperatures with a modified Hikami, Larkin, and 

Nagaoka (HLN) quantum interference model [169, 170]:  
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where ψ is the digamma function.  

 

 

Figure 8.9 Theoretical fitting to differential magnetoconductance using a modified HLN 
model at 1.8 K.  

 

Figure 8.10 Theoretical fitting to differential magnetoconductance using a modified HLN 
model at 9 K. 
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Figure 8.11 the fitting parameters showing a power law behavior (~ T-0.83) of the quantum 
interference length. 

 

The original formalism of the simple HLN model was developed to characterize 

the transport properties of a 2D system where the conductance quantum (2e2/h) naturally 

come into play. In order to compensate for the bulk effects of this newly discovered 

quasi-2D layered structure of Cu2Se, we have normalized the conductance using the zero 

field value and introduced a dimensionless fitting parameter α. Here L is the phase 

coherence length and β is the quadratic coefficient arising from additional scattering 

terms. The HLN model has been successfully used in explaining the magneto-transport 

phenomena in various 2D material system, like Bi2Se3 [171, 172], Bi2Se2Te [173], and 

Bi2Te2Se thin films [170]. It is worth to emphasize that such a modified model 

simultaneously accounts for the quantum phase interference cusp at low fields as well as 

the linear-like MR at high fields. It is shown that the additional quadratic term 

compensates the logarithmic dependence of the quantum interference at high fields, 

leading to an intermediate linear field dependence of MR.  
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The overall fitting result, along with the corresponding quantum interference term 

and quadratic term, is shown in Figure 8.9 and Figure 8.10 for T = 1.8 K and 9 K, 

respectively. In the present sample, the phase coherence length L is 175 nm at 1.8 K and 

decreases following a power law of T-0.83 temperature dependence (Figure 8.11). The 

successful application of the HLN model in Cu2Se has advocated the 2D quantum nature 

of the new phase and likely provided another candidate of bulk materials with monolayer 

behavior, apart from the newly discovered ReS2 [174]. 

 

8.5 Summary 

The new ground state of Cu2Se, typified by Se-Cu-Cu-Cu-Cu-Se sextuple layers, 

has been newly identified using ab initio calculations. Upon cool down to liquid nitrogen 

temperatures, the transport property measurements along with the structural analyses 

have confirmed the existence of yet another phase transition of possible CDW character. 

The unusual manifestation of the WAL-type of MR profile at liquid helium temperatures 

indicates the quantum nature of such newly discovered phase of Cu2Se, which may 

promote further interest in this surprising member system of transition metal 

chalcogenides.  
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CHAPTER 9  

CONCLUDING REMARKS AND OUTLOOK 

 

Combining advanced thermo-galvanomagnetic transport measurement techniques 

and state-of-the-art ab initio theoretical simulation approaches, I have explored 

fundamental structure-property relations in various condensed matter systems, including 

Mg2Si1-xSnx solid solutions, Ge/Te double substituted skutterudites, Group III element 

doped Bi2Te3 single crystals, ZnTe:N and Bi2Te3 molecular beam epitaxy (MBE) films, 

and Cu2Se based polycrystalline structures. Additional studies concerning the 

thermoelectric performance of FeSb2Te, GeTe, half Heusler alloys, natural tetrahedrite 

materials, as well as GaAs based thin films are included in my publication list 

in APPENDIX B.  

I have provided strategies for improving the performance of novel thermoelectric 

materials. The unique applicability of the single parabolic band (SPB) model in 

describing the transport properties of Mg2Si0.3Sn0.7 solid solutions has led to a better 

understanding of the scattering mechanisms governing their excellent power factors. The 

modeling effort has also resulted in a deeper insight toward further optimization of the 

thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. The Ge/Te double 

substitution strategy in CoSb3 has been confirmed, both theoretically and experimentally, 

to be a very effective route of reducing the lattice thermal conductivity of skutterudites 
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which may further enhance their ZT values, particularly if successfully combined with the 

existing paradigm of filling the intrinsic voids in skutterudite structure.  

I have investigated the thermoelectric transport properties of various MBE-grown 

films. The study of electronic properties in ZnTe based MBE films have shown improved 

power factor upon proper nitrogen doping. Thermopower measurements at liquid helium 

temperatures have discovered extraordinary large phonon-drag Seebeck peak, leaving 

also a clear imprint on the electrical resistivity profile, which has rarely been observed 

before. Furthermore, the understanding of phonon drag phenomena has been deepened 

via our experimental efforts with Bi2Te3 MBE thin films grown on sapphire (0001) and 

BaF2 (111) substrates. For the first time, tunable phonon-drag peak positions have been 

established via the choice of substrates with different Debye temperatures.  

I have proposed the studies of Bi2-xAxTe3 single crystals using Group III element 

A (= Tl or In) as a dopant, in line with worldwide efforts of achieving bulk insulating 

states in such a topological insulator. Low temperature transport measurements have 

shown that Group III doping can indeed gradually shift the Fermi level. Moreover, proper 

doping of x = 0.10 (x = 0.20) for Tl (In) can pin down the Fermi level in the band gap, 

resulting a predominant non-metallic electrical resistivity profile. These efforts offered 

means of detection of transport properties associated with the surface states.  

I have applied the combined theoretical and experimental tools in the study of low 

temperature structure and properties of Cu2Se. I predicted a new layered ground state 

structure which shows unexpected weak anti-localization features in its 

magnetoresistance.  
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In summary, I trust the unique approach combining experimental and theoretical 

techniques will keep providing insights into properties of promising thermoelectric 

materials. The significant improvement of the crystalline quality of II-VI films should 

lead to more exciting studies in the future. While the development of novel 

thermoelectric materials is still very challenging, it is full of surprises, exciting 

discoveries, and hope that thermoelectric energy conversion will make a meaningful 

contribution to sustainable utilization of energy. 
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APPENDIX A 

ADDITIONAL NOTES ON TRANSPORT COEFFICIENT 

 

A.1 Kinetic coefficient matrix L 

The block kinetic coefficient matrix L in Eq. (2.6) can be partitioned,  
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are symmetric. The indexes i (j) in the Li;j specify the rows (columns) of the L matrix that 

are kept in the submatrix. Such matrix notation may become useful in the further 

investigation the isotropic assumption is relaxed. Typical matrices are given by 
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and  
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A.2 Isothermal and adiabatic boundary conditions 

The distinction between the isothermal and adiabatic effects arises because charge 

carriers do not have exactly the same energy and the applied magnetic field will deflect 

the faster moving carriers to a lesser extent than the slower moving carriers (recall mv2/r 

= qvB leads to r = mv/qB). This gives rise to a transverse thermal gradient which is 

measurable when the sample is thermally isolated, i.e., under adiabatic conditions. On the 

other hand, if the sample is in contact with a heat reservoir, the heat exchange with the 

reservoir will compensate for the non-uniformity of heat flow in the sample and the 

transverse thermal gradient disappears, i.e., isothermal conditions set in.  

Let x axis be the direction of the primary electric current density Je,x and/or heat 

current density Jq,x. There exist three equations: (1) regardless the definition or the 

boundary condition, no particle current flow is allowed in the perpendicular direction 

along the y axis, Je,y = 0; (2) since there is only one of the controllable parameters (Je,x 

and ) involved in the definition of a particular effect, set the irrelevant one to zero, i.e. 

or Je,x = 0; and (3) based on the type of boundary condition, select

Tx∇

0=T∇x 0=∇ Ty

(isothermal) or Jq,y = 0 (adiabatic). 
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A.3 Thermo-galvanomagnetic coefficients 

1. Electrical conductivity 

The electrical conductivity σ is defined as the electric current density Je,x per unit 

electrochemical potential gradient qE xx /μ−∇= ,  

 ., xxe EJ σ=  (A.5)

In an isothermal system,  

 ,0,0,0, =∇=∇= TTJ yxye  (A.6)

we have 
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Under adiabatic boundary condition,  

 ,0,0,0 ,, ==∇= yqxye JTJ  (A.9)

we have 
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 (A.10)

and 
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2. Thermal conductivity 

The thermal conductivity κ is defined as the heat current density Jq,x per unit 

temperature gradient , Tx∇−

 ., TJ xxq ∇−= κ  (A.12)

In an isothermal system,  

 ,0,0,0 ,, =∇== TJJ yxeye  (A.13)

we have 
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Under adiabatic boundary condition,  

 ,0,0,0 ,,, === yqxeye JJJ  (A.16)

we have 
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3. Seebeck effect 

The Seebeck coefficient α is defined as the electrochemical potential gradient

qE xx /μ−∇= per unit temperature gradient Tx∇ ,  

 .TE xx ∇= α (A.19)

In an isothermal system,  

 ,0,0,0 ,, =∇== TJJ yxeye  (A.20)

we have 
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Under adiabatic boundary condition,  

 ,0,0,0 ,,, === yqxeye JJJ  (A.23)

we have 
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and 
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4. Peltier effect  

The Peltier coefficient π is defined as the heat current density Jq,x per unit electric 

current density Je,x,  

 .,, xexq JJ π=  (A.26)

In an isothermal system,  

 ,0,0,0, =∇=∇= TTJ yxye  (A.27)

we have 
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Under adiabatic boundary condition,  

 ,0,0,0 ,, ==∇= yqxye JTJ  (A.30)

we have 
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and 
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The relation π = Tα naturally holds for both isothermal and adiabatic cases.  

The magnetic field dependence in the above mentioned effects come in from that 

of Lij, and in the effects described below, zzeB ˆ=B  goes directly into the definition.  

5. Hall effect 

The Hall coefficient RH is defined as the transverse electrochemical potential 

gradient qE yy /μ−∇= per unit electric current density Je,x in the presence of a 

perpendicular magnetic field Bz,  

 ., zxeHy BJRE =  (A.33)

In an isothermal system,  

 ,0,0,0, =∇=∇= TTJ yxye  (A.34)

we have 
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Under adiabatic boundary condition,  

 ,0,0,0 ,, ==∇= yqxye JTJ  (A.37)

we have 
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6. Nernst effect 

The Nernst coefficient N is defined as the transverse electrochemical potential 

gradient qE yy /μ−∇= per unit temperature gradient Tx∇− in the presence of a 

perpendicular magnetic field Bz,  

 .zxy TBNE ∇−=  (A.40)

In an isothermal system,  

 ,0,0,0 ,, =∇== TJJ yxeye  (A.41)

we have 
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Under adiabatic boundary condition,  

 ,0,0,0 ,,, === yqxeye JJJ  (A.44)

we have 
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The next two effects can only be observed under adiabatic conditions.  

7. Ettingshausen effect 

The Ettingshausen coefficient P is defined as the transverse temperature gradient 

per unit electric current density Je,x in the presence of a perpendicular magnetic 

field Bz,  

Ty∇−

 ,, zxey BPJT −=∇  (A.47)

under adiabatic boundary condition,  

 ,0,0,0 ,, ==∇= yqxye JTJ  (A.48)

where 
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 (A.49)

and 

126 



 

 .
det
det

det
det

134;134

13;12
2

134;134

13;34
2

, L
L

L
L

zzzxe

y

qB
T

qB
T

BJ
T

P ==
∇−

=  (A.50)

8. Righi-Leduc effect 

The Righi-Leduc coefficient L is defined as the transverse temperature gradient 

per unit temperature gradient Ty∇− Tx∇− in the presence of a perpendicular magnetic 

field Bz,  

 ( ) ,zxy BTLT ∇−=∇−  (A.51)

under adiabatic boundary condition,  

 ,0,0,0 ,,, === yqxeye JJJ  (A.52)

where 
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 (A.53)

and 
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By examining the above 14 coefficients, we have the 8 relations, with the first two 

being the Kelvin relation connecting Peltier effect and Seebeck effect, 
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the third one is known as the Bridgman relation, 
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 ,PTN ii κ= (A.56)

and the other five relations first shown by Putley,[6]  
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All the thermo-galvanomagnetic coefficients are summarized in Table 2-1. This 

concludes the discussion regarding thermo-galvanomagnetic transport coefficients using 

the Onsager’s kinetic relations.  

 

A.4 Solution to the Boltzmann transport equation 

In order to evaluate the kinetic coefficients Lij, we now solve the Boltzmann 

transport equation under the relaxation time approximation. The equilibrium Fermi-Dirac 

distribution of electron is given by, 

 ( ) ( ) .,
1

1
1

1
0 Tkx

ee
f BcxTk Bc

μεμε −=
+

=
+

= −  (A.58)

Energy ε and μc are measured from the band edge [conduction (valence) band minimum 

(maximum) EC (EV) for electron (hole)]. This reference system essentially sets EC (EV) = 

0 at different locations (although the absolute value measured from a global reference 

system varies at different location). The same quantum state k = (kx, ky, kz) has the same 

energy at different locations,  
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where is the effective mass for a single carrier in a single band/valley.  ∗
sm
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Hence in such a reference system, 
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Various derivatives of f0 are thus given by,  

 

,

1

,,1

0

2
00

0
0

00000

⎥⎦
⎤

⎢⎣
⎡ ∇

−
+∇

∂
∂

−=

⎥
⎦

⎤
⎢
⎣

⎡
∇

−
−∇−

∂
∂

=∇=∇=
∂
∂

∂
∂

==
∂
∂

=
∂
∂

T
T

f

T
TkTk

fTkx
dx
dfff

fTk
dx
dfor

Tkdx
dfx

dx
dff

c
c

B

c
c

B
B

B
B

μεμ
ε

μεμ
ε

εεε

r
 (A.62)

and 
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There are some additional very useful relations of the Fermi-Dirac distribution 

function  
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The Fermi-Dirac integral Fn(η) is defined as  
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which, for n = 0, is simplified to  
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Note that,  
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The Boltzmann transport equation with relaxation time approximation under 

small electric field, temperature gradient, and concentration gradient (chemical potential 

gradient), i.e., 00 fff <<− , is given by 
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where the scattering mean-free time τ generally depends on energy, 
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In cases where the mean-free path is independent of energy (MFPIE),  
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For steady state, ∂f/∂t ~ 0, an ad hoc solution of f is given by 
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Hence 
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Considering the arbitrary choice of v,  
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If all electric fields and temperature gradients are in the x, y plane and the applied 

magnetic field is in z-direction zzeB ˆ=B , we have 
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which is, noting electrochemical potential μ = μc + qφe,  
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Thus,  
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where 
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Overall, the distribution function of electron f,  

 ( ) .0
0 ε∂

∂
+−=

fCvCvff yyxx  (A.80)

and the number of electron per unit volume with energy between ε and ε + dε is  

 ( ) .εε dfDdn =  (A.81)

The electron density of states per unit volume D(ε) for a three dimensional (3D) crystal 

with Nv fold degenerated parabolic band (thus the density-of-states effective mass 

) is given by, in various equivalent forms,  ∗∗ = svd mNm 3/2
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where (= h/2π) is the Planck constant. It is derived from the following relation, for a 

single band designated as s,   
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noting 
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The density-of-states effective mass , since ∗∗ = svd mNm 3/2
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Thus, the electron number current density Jn,x is given by, noting ,  3/2/2 ε=∗
xsvm
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the kinetic energy current density Jε,x is 
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the total energy current density Ju,x is 
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and the heat current density Jq,x (= Ju,x – μJn,x = Jε,x – μcJn,x)is given by 
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Combining similar expressions along y axis,  
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Using the C coefficients, we have  
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where 
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Now, using Fermi-Dirac statistics and all the thermo-galvanomagnetic transport 

coefficients defined from Onsager’s relations, we can explicitly express them in terms of 

Fermi-Dirac integrals.  

Carrier density  

The carrier density n is given by 
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Hall efffect 

The isothermal Hall coefficient RH is given by 
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and the Hall (carrier) density nH is defined as  
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Since the Hall coefficient RH (and thus the Hall density nH) is an experimentally 

measurable quantity, we can practically estimate the “real” carrier density n via Hall 

factor rH,  

 ,HH nrn =  (A.98)

with  
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If the mean-free path is independent of energy, recall that ( ) 2/1,2/ 2/1
0 −== ∗ rmτ ,  

 
( ) ( )
( ) .

4
3

2
0

2
1

2
1

η

ηη

F

FF
rMFPIE

H
−≡  (A.100)

Electrical conductivity 

The isothermal electrical conductivity σ (reversely proportional to the electrical 

resistivity ρ, ρ = 1/σ) is given by 
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If the mean-free path is independent of energy, recall that ( ) 2/1,2/ 2/1
0 −== ∗ rmsτ ,  
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Mobility 
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The drift mobility μd is defined in accordance with electrical conductivity,  
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Another formalism of mobility one can get from typical galvanomagnetic transport 

measurement is the Hall mobility μH, 
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It can be shown that  

 ,dHH r μμ =  (A.105)

where the Hall factor rH is the link between various formalism of densities and mobilities 
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Thermal conductivity 

The isothermal electronic thermal conductivity κe is given by 
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whence the Lorenz Number in the Wiedemann–Franz law is,  
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Seebeck effect 
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The Seebeck coefficient α is given by 
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For a mixed conduction, both electron and hole contribute to the Seebeck coefficient, 
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where n (p) is the carrier density, μe (μh) is the mobility for electron (hole).  

Nernst effect 

The isothermal Nernst coefficient N is given by, 
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The transport coefficients derived so far hold for general degenerate 

semiconductors. Useful results can often be obtained for two extreme cases, namely the 

non-degenerate limit and the highly degenerate (metallic) limit, by taking proper limit of 

Fn(η) in the formula.  

 

The highly-degenerate (metallic) limit 

In the highly degenerate, or metallic, limit, η = μc/kBT  0,  
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where 
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For example,  
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The highly-degenerate carrier density n∞ (the subscript “∞” designates the highly-

degenerate limit) is given by,  
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The highly-degenerate electrical conductivity σ∞ is given by, for mean free path 

independent of energy, 
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The highly-degenerate Seebeck coefficient α∞ is given by, 
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hence for mean free path independent of energy, where r = –1/2,  
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Since η = μc/kBT, we have (simplifying the notation by dropping all the sub/superscription) 
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which is often cited as the Mott formula.  

 

The non-degenerate limit 

In the non-degenerate limit (the Fermi-Dirac distribution would essentially 

become the Maxwell-Boltzmann distribution, see below for f0), μc is located in the 

bandgap with a distance from the conduction or valence band edges larger than ~3kBT, so 

that  
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Thus the Fermi-Dirac integral becomes, in the non-degenerate limit,  
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where the Γ-function is defined as follows 
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The non-degenerate carrier density n0 (the subscript “0” designates the non-

degenerate limit) is given by, 
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Thus, the integrals Hi and Ki can be further simplified to Hi,0 and Ki,0,  
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The non-degenerate Hall coefficient RH,0 is given by, 
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For mean-free path that is independent of energy, r = –1/2,  
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The non-degenerate electrical conductivity σ0 is given by, 
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For mean-free path that is independent of energy, i.e., ( ) 2/1,2/ 2/1
0 −== ∗ rmsτ ,  
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The non-degenerate drift mobility μd,0 and Hall mobility μH,0 are given by 
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respectively. For mean-free path that is independent of energy, i.e.,

,  ( ) 2/1,2/ 2/1
0 −== ∗ rmsτ
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and 
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The non-degenerate Hall factor rH,0 is given by, 
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and for mean-free path that is independent of energy, r = –1/2,  
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Since the non-degenerate drift mobility μd,0 for various scattering mechanisms 

(different τ0 and r) can usually be derived with proper analysis, it is often advantageous to 

revise the degenerate mobility formulae to utilize the existing literature results, so that the 

degenerate drift mobility μd and Hall mobility μH are given by, 
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with ( )ηrΨ defined as a combination of Hall factor rH and Fermi-Dirac integrals, 
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For scattering mechanisms with a mean-free path independent of energy,  r = –1/2, 

 
( )
( ) .

8
3

0
0,

2
1

η

ηπμμ
F

F
MFPIE
d

MFPIE
H

−
=  (A.141)

With these formulas, the overall µH can be given, by the Matthiessen’s rule,  
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where s stands for various scattering mechanisms whose mean-free path in the non-

degenerate drift mobility μd, 0 can be properly acquired.  

The acoustic phonon (AP) scattering is one of such mechanism with mean-free 

path independent of energy, as first calculated by Bardeen and Shockley [6, 175, 176],  
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where cii (= ρ vi
2, ρ is the mass density, vi is the sound velocity) is the elastic constant for 

longitudinal strain in the direction of propagation of the wave and Edef is the deformation 

potential.  

The alloy scattering (AS) is another such example described by a widely accepted 

Brooks’ formula. Although the original derivation was embed in some private 

communications, more recent derivations have been provided in the 

literature,[55, 177, 178]  
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where N0 is the number of atoms per unit volume, x is the fractional concentration of one 

of the species, and Ealloy is an energy parameter characterizing the alloy potential 

fluctuations.  

The non-degenerate electronic thermal conductivity κe,0 is given by 
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For mean-free path that is independent of energy, i.e., ( ) 2/1,2/ 2/1
0 −== ∗ rmsτ ,  

 .2
0,0

2
MFPIE
d

BMFPIE
e n

q
Tk μκ =  (A.147)

where 

 ( ) .
23

4
2/10, ∗∗
≡=

sBs

MFPIE
d m

e
Tkm

q τ
π

μ  (A.148)

The non-degenerate Lorenz Number in the Wiedemann-Franz law is 
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The non-degenerate Seebeck coefficient S0 is given by, 
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where μc is measured from the conduction band minimum EC for electron and valence 

band maximum EV for hole. Located within the bandgap, μc is negative for both electron 

and hole. In a global energy reference system 
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The non-degenerate Nernst coefficient N0 is given by, 
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For mean-free path that is independent of energy, i.e., ( ) 2/1,2/ 2/1
0 −== ∗ rmsτ ,  
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