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ABSTRACT

Essays on Collaboration, Innovation, and Network Change in Organizations

by

Russell James Funk

Chair: Jason D. Owen-Smith

This dissertation examines how internal communication and collaboration networks

influence organizations’ performance at innovation. Because some configurations may

be better than others, I also consider strategies for changing networks. I structure

my investigation around three studies.

The first study examines the effects of different networks in different geographic

settings. Using data on 454 firms active in nanotechnology, I find that sparse networks

of inventors help geographically isolated firms retain diverse knowledge and promote

innovation. By contrast, firms located close to industry peers benefit from highly

connected networks among their inventors that facilitate information processing.

In the second study, I examine the effects of network structure in an investigation

of brokers. A broker is a person connected to people who are not tied to each other.

Studies find that brokers have better performance on many metrics. However, little

is known about how brokers affect their contacts. Using data on the networks of

over 18,000 inventors at 37 pharmaceutical firms, I examine the effect of connection

to a broker. To disentangle causality, I focus on changes among inventor’s existing

contacts, where the decision to connect was made before the contact became a broker

xiii



and therefore is exogenous to performance. I find that although becoming a broker

positively affects performance, the opposite is true for having a connection to one.

After focusing on performance in the first two studies, the final study considers

reshaping networks. Using data on 23 million exchanges among 1.3 million mem-

bers of 25 technical communities, I examine how a common organizational feature—

knowledge categorization systems—influences bridging. Bridging ties create and

strengthen connections among otherwise distant people and therefore are powerful

tools for adapting networks. Categorization systems facilitate bridging by helping

people locate distant peers. However, they may also inhibit bridging. First, as a

categorization system grows large, it becomes harder to use and people are less able

to establish distant ties. Second, as a categorization system decouples from real ex-

pertise, its value for bridging diminishes. Finally, as norms of evaluation vary more

widely in an organization, people make fewer exchanges with unfamiliar peers. All

three ideas are supported.

xiv



CHAPTER I

Introduction

Innovation is a social activity. Although we sometimes imagine that breakthroughs

emerge from people working on their own—the scientist toiling away in her lab,

the budding entrepreneur tinkering in his garage—today, perhaps more than ever,

revolutionary new discoveries, products, and ideas are the result of collaborations.

It is easy to see why—social relationships help people achieve better outcomes.

Decades of research demonstrate that working with diverse collaborators helps en-

hance creativity by exposing people to different ideas and perspectives. Highly con-

nected individuals work more efficiently because they have knowledge about the capa-

bilities of others inside their organizations and know where to look for assistance. And

cohesive networks, with many dense interconnections, promote creative risk taking

by fostering supportive environments where people feel comfortable sharing uncon-

ventional ideas.

As evidence accumulates about the importance of relationships, many organiza-

tions are taking an active role in cultivating and managing internal communication

and collaboration networks. For example, in November 2013, Microsoft announced

the end of its infamous stack ranking system, whereby managers were required to

rank the relative performance of their employees on a fixed distribution, regardless

of whether everyone had met or even exceeded expectations. One reason for aban-
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doning the system was to promote a more connected company, which was limited

by employee’s fears of working with others who may outshine them at ratings time.

Illustrations may also be found outside the corporate sector. In May 2012, for in-

stance, the University of Michigan launched MCubed, a funding initiative designed to

stimulate projects involving researchers from different disciplines, who may otherwise

not have the opportunity to work together.

Although there is substantial research showing how and why communication and

collaboration ties help individuals perform better, surprisingly little is known about

the effects of larger internal network configurations—the aggregate of individual mem-

bers’ interconnections—on broader organizational effectiveness. Existing work, for ex-

ample, offers few theoretical tools to explain whether greater internal connectivity—

like that sought by Microsoft and the University of Michigan—is likely to result in

better outcomes. Will a connected Microsoft produce more breakthroughs? Schol-

ars also have yet to consider the conditions under which deliberate efforts at network

change are likely to succeed. Will the University of Michigan’s bottom-up, researcher-

driven approach to promoting integration lead to enduring ties across disciplines?

The purpose of this dissertation is to develop a conceptual framework and method-

ological approach and to present some preliminary evidence that help address these

kinds of questions.

1.1 Background

Intraorganizational networks, like all social networks, are defined by a set of ac-

tors and the relations among them. Relevant actors may include divisions, teams, or

people (Guler and Nerkar, 2012; Hansen, 1999; Hargadon and Sutton, 1997; Mizruchi

et al., 2011). Unlike other networks, the membership and activities of intraorganiza-

tional networks are circumscribed by the boundaries of an organization.

Researchers have long understood the importance of internal networks for organi-
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zational processes and outcomes. For example, pioneering work by March and Simon

(1958) argued that patterns of communication are related to an organization’s ability

to manage uncertainty and to the distribution of power and influence among its units.

Similarly, in an early study of organization–environment relations, Burns and Stalker

(1961) found that flexible channels of internal communication (as opposed to rigid

hierarchies) are beneficial for firms that operate in more dynamic industrial sectors.

More recently, scholars have begun to systematically examine the implications

of intraorganizational networks for innovation (Allen, 1977; Burt, 2004; Reagans and

McEvily, 2003). The general findings of this work reveal that the structure of relation-

ships among divisions, teams, and people may enhance creative performance through

two general mechanisms. First, intraorganizational networks facilitate information

sharing, which in turn helps to expose people to the diverse ideas and perspectives

needed for solving complex problems (Paruchuri, 2010; Reagans and McEvily, 2003).

Although context matters, many studies suggest that acquiring diverse information

is easier in networks that are less densely interconnected and have fewer redundant

ties (Burt, 2004). Second, networks inside organizations help people locate colleagues

that they can mobilize around ideas that require collaborative development (Hansen,

1999; Obstfeld, 2005; Uzzi, 1997). In contrast to acquiring information, networks

with many overlapping and highly cohesive ties tend to be better for mobilization

(Coleman, 1988; Obstfeld, 2005).

Existing research on intraorganizational networks has led to many valuable in-

sights about the important role of intraorganizational networks for promoting innova-

tion. However, work in this area is also hampered by several empirical and theoretical

limitations. Empirically, prior investigations of networks in organizations have been

carried out in the context of large, established enterprises, often multinational corpo-

rations (Burt, 2004; Hansen, 1999; Hargadon and Sutton, 1997; Nerkar and Paruchuri,

2005; Obstfeld, 2005; Singh et al., 2010; Tsai, 2001). Moreover, given the expense
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of collecting detailed network data across multiple settings, existing studies gener-

ally examine only one or two organizations and adopt divisions, teams, or people as

their primary units of analysis, and therefore are unable to consider organizational

outcomes.

Networks are clearly important in larger, established organizations, where the

scale of operations can make communication among relevant parties particularly chal-

lenging. However, internal networks also have fundamental consequences for newer

organizations. For example, in a seminal essay, Stinchcombe (1965) argues that pat-

terns of communication are important for understanding why recently established

organizations tend to have high failure rates—what he terms the “liability of new-

ness.” “For some time until roles are defined,” Stinchcombe writes, “people who need

to know things are left to one side of communication channels. John thinks George is

doing what George thinks John is doing” (1965, 148-9). Furthermore, because their

members are often strangers to one another, young organizations lack the trusting

and reliable bonds that are found among colleagues at more established entities. Put

differently, the potential benefits of networks for innovation, including information

sharing and supportive relationships, may be difficult for entrepreneurs to attain.

Changes in the U.S. economy also suggest the need for greater attention to net-

works in organizations of all sizes and the consequences of these social structures for

innovation. Although large firms (i.e., those with more than 25,000 employees) remain

dominant when it comes to research and development (R&D) spending (accounting

for 33% of U.S. industrial R&D in 2008 relative to 22% for companies employing 5-499

people) the locus of commercial innovation has shifted in many sectors from sizable

corporate facilities like Bell Labs to more flexible startups (Drucker, 1985; Piore and

Sabel, 1984; Powell et al., 1996; Saxenian, 1994; Stuart et al., 2007).1 Because of

differences in resources and strategy, the R&D operations of small and large firms are

1Figures on R&D expenditures are drawn from the National Science Foundation and U.S. Census
Bureau’s Business R&D and Innovation Survey (Wolfe, 2010).
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often very different from one another. And as result, the applicability of findings from

existing intraorganizational network research to this emerging sector of the economy

are not always clear (Katila and Shane, 2005).

In addition to these empirical matters, theoretical considerations also call for a

fresh approach to the study of intraorganizational networks. Existing work focuses

on ego networks, which are the portfolios of ties held by individual actors like peo-

ple or divisions. Investigations into the effects of global intraorganizational network

structures on innovation, by contrast, are rare (Granovetter, 1992; Ibarra et al., 2005;

Phelps et al., 2012). However, the evidence that does exist suggests that global net-

work functioning does not always align with what may be anticipated from years

of research on ego networks. For example, using a computational model, Lazer and

Friedman (2007) found that when networks are less globally connected—and there-

fore slower at diffusing information—people (or agents, in their model) generate more

diverse solutions to complex problems. Put differently, global network inefficiencies

may sometimes lead to better performance (Fang et al., 2010). Similarly, in a rare

empirical study, Guler and Nerkar (2012) show that although the effect of cohesion

on innovation is sometimes ambiguous at the ego network level (because it enhances

mobilization but also decreases diversity) cohesion at the intraorganizational network

level should have a uniformly negative influence. The authors reason that global co-

hesion is detrimental to innovation because it is costly to maintain and the benefits of

cohesion are generally local. Finally, studies outside the innovation literature demon-

strate that what may appear to be relatively marginal nodes from an ego network

perspective (e.g., those with few connections) can, depending on their global position,

have a major influence over the flow of information through a larger network (Dodds

et al., 2003; Liu et al., 2011).

To summarize, existing research focuses on the relationships of individual actors

within established organizations. Variation in global network structure across orga-
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nizations has been overlooked. It is important to correct this oversight not only to

develop more complete theories of networks and organizations, but also to improve

the ability of those theories to inform practice. Managers oversee collections of divi-

sions, teams, or people, and therefore the ties of these actors individually may not be

as relevant to managers as the broader patterns of exchange among them.

1.2 Summary of Chapters

Over the course of three studies, this dissertation examines how internal communi-

cation and collaboration networks influence organizations’ performance at innovation,

along with possibilities for reshaping those networks. Below, I provide a brief overview

of each study.

1.2.1 Geography, Networks, and Innovation

The first study (Chapter II) explores the contingent effects of different intraorga-

nizational collaboration and communication network configurations by examining a

two complementary questions of economic geography. First, given the importance of

spatial proximity for enhancing knowledge flows across organizations and the related

benefits of access to diverse knowledge for innovation, how do geographically isolated

firms develop novel products? And second, how do firms located in close proximity

to industry peers generate distinctive ideas relative to nearby competitors, who have

access to similar local knowledge?

I propose that intraorganizational network structure offers one answer. Using

novel data on 454 U.S. firms active in nanotechnology, I find that sparse networks

of inventors help geographically isolated firms retain diverse knowledge and promote

innovation. By contrast, firms located in close proximity to many industry peers

benefit from highly connected, cohesive networks among their inventors that facili-

tate information processing. These findings establish the importance but contingent
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benefits of intraorganizational network structure for innovation.

1.2.2 Brokerage and Innovation

Building on the findings of Study 1, the next study (Chapter III) explores the

effects of internal communication and collaboration networks in an investigation of

brokers. A broker is a person who has disconnected contacts. Many studies find

that brokers tend to have better performance, at least in part because of the benefits

they gain from their unique network positions. Far less is known, however, about the

implications of brokerage for those other than the person in the broker role.

The absence of research in this area is surprising because by definition, brokerage

involves the broker and at least two other people. Do these other individuals benefit

from their mediated connection? And if they do, then how do their returns compare

to the broker’s?

I address these questions with data on the intraorganizational networks of over

18,000 inventors at 37 pharmaceutical firms. To help disentangle causality, I use a

novel estimation technique based on propensity score weighting that is unbiased if the

specification is correct for either the exposure or outcome equations. Furthermore, in

my tests of the effects of having a connection to a broker, I focus on changes among

existing contacts, where the decision to connect is exogenous to performance because

it was was made prior to when the contact came to occupy a brokerage position.

Consistent with the idea that there are negative spillovers to brokerage, I find that

becoming a broker has a positive effect on performance, but the opposite is true for

having a connection to one.

1.2.3 Network Change

Finally, Study 3 (Chapter IV) examines network change. As the examples of

Microsoft and the University of Michigan illustrate, organizations often attempt to
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adapt internal communication and collaboration networks to changing external en-

vironments and evolving strategies. Yet surprisingly little research addresses how

leaders might reshape internal networks.

Bridging ties create and strengthen connections among otherwise distant groups

of people in an organization and therefore are powerful tools for adapting networks.

In general, the systems that organizations use for categorizing and mapping their

knowledge—what I call “knowledge categorization systems”—should facilitate bridg-

ing by making it easier for people to connect with peers in their organization who have

relevant expertise. However, using data on millions of exchanges among members of

25 online technical communities, I find that in some cases, knowledge categorization

systems may inhibit bridging. First, when a categorization system grows large, cogni-

tive limitations make it difficult to use and therefore people are less able to establish

ties with distant partners. Second, when a categorization system decouples from the

actual distribution of expertise within an organization, its value for promoting bridg-

ing diminishes. Finally, when the norms used to evaluate the quality of contributions

vary widely across an organization’s categorization system, people are less likely to

risk sharing knowledge outside their comfort zones and will make fewer exchanges

with unfamiliar peers in distant parts of their organizations. These findings suggest

that organizations’ formal structures may serve as levers for guiding network change.
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CHAPTER II

Making the Most of Where You Are: Geography,

Networks, and Innovation in Organizations

2.1 Introduction

Social scientists have long recognized the importance of geography for innovation

(Allen, 1977; Florida, 2002; Marshall, 1890; Pouder and St. John, 1996; Whittington

et al., 2009). Regions like Silicon Valley and Boston’s Route 128, home to concentra-

tions of technology companies, catalyze innovation by facilitating face-to-face inter-

action, increasing the likelihood of chance encounters, and allowing firms to monitor

competitors, all of which promote the local diffusion of ideas (Audretsch and Feldman,

1996; Bell and Zaheer, 2007; Fleming et al., 2007). In dynamic, innovation-intensive

industries, access to these local knowledge sources helps firms develop competitive

advantages (Porter and Stern, 2001; Saxenian, 1994).

More recently, researchers have extended theories of geography and innovation by

showing that firms differ in their ability to reap the benefits of their locations. Knowl-

edge spillovers from proximate organizations help firms develop ideas that are novel

relative to those of distant rivals but do little to differentiate them from local competi-

tors (Hervas-Oliver and Albors-Garrigos, 2009; McEvily and Zaheer, 1999; Tallman

et al., 2004). Consequently, studies emphasize that firms benefit most from proximity
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to other organizations if such firms can also access more exclusive sources of knowl-

edge (Bathelt et al., 2004; Bell, 2005; Malmberg and Maskell, 2006). For instance,

alliances with local collaborators let firms access complex or proprietary knowledge

while limiting its diffusion among neighbors (Laursen et al., 2012; Owen-Smith and

Powell, 2004). Ties to distant collaborators let firms acquire knowledge that is un-

available locally (Bell and Zaheer, 2007; Whittington et al., 2009). Embeddedness in

scientific communities (Gittelman, 2007; Owen-Smith and Powell, 2004) and recruit-

ing skilled employees (Almeida and Kogut, 1999; Zucker et al., 1998) also provide

resources that, when leveraged with locally and informally acquired knowledge, help

firms innovate.

Despite these advances, theoretical explanations of geography and innovation in

organizations remain limited. Notably, although researchers have made progress in

identifying how firms acquire information from external sources, little is known about

how organizations internalize, adapt, and use the knowledge that diffuses to them

geographically. Accounting for how firms process information from nearby sources,

however, is essential for specifying the conceptual link between geography and inno-

vation. Proximity is helpful because it offers access to diverse knowledge that firms

can recombine in novel ways to make discoveries (Schumpeter, 1934). But as this

access increases, so too do the number of potential recombinations and the possibility

of cognitive overload. How, then, do firms that are proximate to many other organi-

zations filter and process the potentially vast amounts of knowledge available to them

locally?

Firms in geographically isolated locales face a very different set of challenges

that have received only limited attention in existing theory. As proximity to other

organizations decreases, so too does access to local, informal knowledge spillovers.

Given the importance of exposure to diversity for innovation, current approaches

suggest that isolated firms are severely disadvantaged. Although on average these
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firms might fall short of those with greater proximity to peer organizations, many

companies located far from peers do produce important innovations.1 Forging ties to

geographically distant partners can help isolated firms supply their employees with

fresh knowledge (Alnuaimi et al., 2012; Rosenkopf and Almeida, 2003). However,

long distance collaborations are also challenging to manage and often not conducive

to complex knowledge transfer (Alnuaimi et al., 2012; Bathelt et al., 2004; Sorenson

and Stuart, 2001). Recruiting skilled employees from distant areas offers another

possibility, but research shows that among such workers, mobility is often localized

(Almeida and Kogut, 1999; Breschi and Lissoni, 2009; Zucker et al., 1998). Even

when isolated firms are able to recruit over long distances, knowledge transfer can be

limited by legal and coordination barriers (Agarwal et al., 2009; Singh and Agrawal,

2011). Accounting for how geographically remote firms produce innovations despite

these barriers is important for building a more complete theory of geography and

innovation.

In this chapter, in an effort to overcome some of these limitations of existing theory,

I develop a new approach to explaining how firms’ innovative performance relates

to the makeup of their local environments. I build on prior studies of proximity

and innovation, but differ in that I shift attention to a lower level of analysis by

focusing on patterns of collaborations within firms. I connect insights from macro

research that emphasizes the external determinants of innovation (Whittington et al.,

2009; Zucker et al., 1998) with micro studies that point to the influence of more

internal social network structures (Guler and Nerkar, 2012; Obstfeld, 2005). Informal

1Mayer (2011) details numerous cases of innovative firms that are geographically isolated from
industry peers. For instance, Micron Technology, an electronics manufacturer, has been located in
Boise, Idaho, since its 1978 founding—far outside established semiconductor manufacturing hubs
in California, Oregon, Texas, and Arizona. Micron has introduced major innovations in electron-
ics production and memory chips. Burleigh Instruments offers another illustrative example. This
company—an early developer of the scanning tunneling microscope, atomic force microscope, and
other instruments used in nanotechnology R&D—was located in the small community of Fishers,
New York, until its 2000 acquisition (Mody, 2011, 140ff). For examples of companies that have
struggled because of their geographic isolation, see Saxenian (1994, Chap. 3).
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employee networks are important because they facilitate knowledge sharing—which in

turn helps with information processing, project coordination, and ensuring efficient

resource use (Hansen, 1999). Communication across units also leads to knowledge

creation as members of one division adapt others’ expertise to novel uses (Hargadon

and Sutton, 1997).

I argue that firms’ innovative performance can be enhanced by their local environ-

ments, but these geographic benefits are contingent on the structure of collaboration

networks among their employees. The logic of the argument is as follows: Proximity

allows firms to capture large volumes of knowledge through spillovers from nearby or-

ganizations, but as the volume of local knowledge increases, so too does the difficulty

of internalizing, adapting, and using that knowledge. In these environments, cohesive

networks that promote flexibility, communication, and collaboration are beneficial

(Burns and Stalker, 1961). Firms in more remote areas, by contrast, should have less

difficulty sifting through the smaller volumes of information they encounter locally.

However, because these firms also have diminished access to spillovers, their employ-

ees are less likely to acquire knowledge outside their workplace. Here, less connected

networks help to alleviate the challenges of isolation. Because such networks are

slower at diffusing information, they preserve diverse ideas internally (Granovetter,

1992; Lazer and Friedman, 2007) and increase possibilities for recombination. In sum,

external, geographically defined environments present opportunities and constraints,

but internal factors moderate the degree to which a firm can make use of or is held

back by them.

Examining the interdependencies between firms’ local environments and the pat-

tern of collaborations among their employees leads to new insights. Most significantly,

the results of this study demonstrate that although firms in places like Silicon Valley

and Route 128 derive benefits from proximity, performance gains are moderated by

the structure of collaboration networks that connect their employees. Moreover, de-
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pending on the degree of fit between a local environment and an inventor network,

firms in isolated locales can in some cases have better performance than similar or-

ganizations that are proximate to industry peers. These results hold even in analyses

that control for firms’ access to alternative sources of local and distant knowledge,

including collaborative ties, labor mobility, and embeddedness in scientific communi-

ties.

Beyond geography and innovation, this chapter also contributes to network theory.

Studies have shown that the functioning of social network structures is contingent on

a variety of actor (Fleming et al., 2007; Mehra et al., 2001), relationship (Reagans and

McEvily, 2003; Tortoriello and Krackhardt, 2010), and task characteristics (Hansen,

1999). However, this work focuses on the structure of individual-level (or ego) net-

works. Little is known about the importance of such contingencies in the overall

structure of relations at the global network level (Granovetter, 1992; Ibarra et al.,

2005; Phelps et al., 2012). My results suggest that context matters tremendously for

explaining how global network structure affects innovation. However, the findings also

offer evidence that some well-documented ego network contingencies do not translate

clearly to the global level. For instance, theories developed at the ego level emphasize

the importance of increasing connectivity—either through bridging structural holes

or building dense ties among collaborators—for actors who seek to transfer knowledge

and produce innovations. By contrast, I show that at the global level, sometimes less

connectivity is advantageous, particularly for groups that seek to generate diverse

ideas but have limited exposure to external knowledge. This finding also runs con-

trary to much research on community social capital, which heavily emphasizes the

benefits of dense ties and cohesive relationships (Coleman, 1988; Putnam, 2000).2

Moreover, this study contributes to ecological and institutional research that ex-

amines the effect of local community characteristics on organizational behavior (Mar-

2Lin (1999, 33ff) documents this tendency to emphasize cohesion in the community social capital
literature.
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quis, 2003; Romanelli and Schoonhoven, 2001). Research in this tradition emphasizes

that organizations are heavily influenced by their neighbors. In an influential review,

Freeman and Audia (2006, 156) pointed to the need for more attention to the po-

tentially heterogeneous effects of geographically defined environments, noting, “it is

possible. . . that some organizational forms are strongly affected by the local context,

whereas others are largely insulated from it.” The present study moves toward this

goal by showing how the extent to which firms garner benefits or incur costs from their

local environments depends in part on the collaboration patterns of their inventors.

Below, I develop hypotheses to explore the argument that geography and intraor-

ganizational network structure have interdependent effects on innovative performance.

I test these hypotheses using data on U.S. firms involved with nanotechnology R&D.

2.2 Theory and Hypotheses

2.2.1 Geographic Proximity and Knowledge Spillovers

Geographic concentration is an important feature of many industries (Florida,

2002; Saxenian, 1994; Sorenson and Audia, 2000). Proximity offers benefits such as

lower transportation costs and convenient access to skilled labor (Porter and Stern,

2001). When it comes to innovation, however, often the greatest advantages of be-

ing located near other organizations are those resulting from the increased access to

knowledge via spillovers. Geographically localized knowledge spillovers are a type of

positive externality characterized by the transfer of knowledge between parties as a re-

sult of their proximity (Audretsch and Feldman, 1996). Such spillovers are invaluable

for firms operating in dynamic industries because they help ensure that employees

are frequently exposed to new knowledge and ideas. To the extent that innovation

emerges through arranging existing ideas and materials into novel recombinations,

inventors should benefit from having a diverse and frequently changing knowledge

14



base at their disposal (Schumpeter, 1934).

Several factors help to account for why proximity is likely to increase knowledge

spillovers. Most broadly, geographic concentrations of firms operating in the same

industry are often characterized by what Bathelt et al. (2004, 38) call “buzz”: “the

idea that a certain milieu can be vibrant in the sense that there are lots of piquant and

useful things going on simultaneously and therefore lots of inspiration and information

to receive for the perceptive local actors.” Others highlight four more specific mecha-

nisms that promote knowledge flows among proximate organizations. First, proximity

enables firms to stay informed of technological frontiers by allowing them to monitor

competitors’ activities (Porter and Stern, 2001; Sorenson and Stuart, 2001). This

information lets firms quickly meet the needs of customers and prioritize their R&D

on promising areas. Knowledge of technological developments also helps firms create

novel products by integrating competitors’ discoveries into their own offerings (Chris-

tensen, 1997). Second, geographic concentration increases the likelihood of chance

encounters. For instance, participation in community clubs, children’s activities, and

other local events increases opportunities for employees of different firms to interact

(Marquis, 2003; Putnam, 2000); the probability of spillovers rises as work-related top-

ics enter their conversations. Third, proximity helps to create and sustain informal

social and professional networks that are not beholden to any particular organization

(Saxenian, 1994). Such networks help channel diverse knowledge among local actors

(Owen-Smith and Powell, 2004). Finally, over time, interaction among employees of

neighboring organizations can result in common conventions, interpretive schemata,

and other local institutions that improve the ease and efficiency of absorbing knowl-

edge from proximate sources (Malmberg and Maskell, 2006). This discussion leads to

a baseline hypothesis:

Hypothesis 1. Increases in proximity to other companies that perform related R&D

are positively associated with a firm’s innovative performance.
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2.2.2 Networks and Innovation in Organizations

The prior section theorizes the importance of geographic proximity for innova-

tion. However, arguments about proximity and innovation lead to puzzling obser-

vations that are not well accounted for by existing theory. For instance, how are

firms in more remote places able to maintain diverse knowledge bases? As proximity

increases, how do companies sift through the volumes of information available locally

to find what is valuable? If, as emphasized by prior research, a firm’s ability to access

exclusive sources of external knowledge is important, then theories of geography and

innovation should also be able to account for how firms that are proximate to many

other organizations filter, process, and make sense of such knowledge—in addition

to the knowledge these firms acquire informally from neighbors. Among organiza-

tions that are more geographically isolated, the ability to process high volumes of

information from local sources should be less necessary. However, knowledge transfer

over long distances—through collaborative ties, labor mobility, or other sources—is

often difficult (Bathelt et al., 2004; Singh and Agrawal, 2011); thus it remains to be

explained how such firms can keep their employees supplied with the diverse infor-

mation necessary for stimulating innovation. Insights into these questions about the

relationship between geography and innovation can be found by recognizing that the

benefits firms obtain from their local environments are moderated by the structure

of collaborations among their employees. Different degrees of proximity may be more

or less advantageous, depending on structure of these networks.

Consider the importance of intraorganizational networks—defined as the set of

relationships among members of a firm created by their common participation on

projects—for firm-level innovation. First, intraorganizational networks are helpful

for stimulating ideas and ultimately creating new knowledge. Interacting with col-

leagues aids inventors in their search for novel combinations by allowing them to

access their organization’s existing knowledge base and by exposing them to diverse
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problem-solving perspectives (Hansen, 1999; Hargadon and Sutton, 1997). Second,

these networks serve broadly as tools for information processing and idea develop-

ment. Frequent interaction builds trust and fosters environments in which inventors

feel comfortable seeking help when they encounter roadblocks and turning to oth-

ers for assistance in identifying resources (Borgatti and Cross, 2003; Obstfeld, 2005;

Tushman and Nadler, 1978).

Different network structures are better at providing some of these benefits than

others. At the individual (or ego) level, one prominent position emphasizes the value

of networks for innovation as deriving from the ability of actors to serve as brokers

who combine the knowledge of diverse groups in new ways (Burt, 2004; Hargadon

and Sutton, 1997). By sitting in the interstices between communities, brokers attain

broader understandings of problems facing different groups and untried solutions. A

second perspective emphasizes the benefits of cohesive networks for innovation (Ob-

stfeld, 2005; Reagans and McEvily, 2003). Cohesive networks are highly connected

with many redundant ties. Analysts who emphasize cohesion cite trust, coordina-

tion, and improved complex knowledge transfer as the main benefits of such network

structures.

Researchers also stress that both network structures have limitations. Though

brokerage is useful for obtaining diverse information, it is less valuable for trans-

mitting complex or confidential knowledge, which requires frequent interaction and

willingness of a sender to share knowledge with a receiver (Hansen, 1999; Tortoriello

and Krackhardt, 2010; Uzzi, 1997). Further, brokers often have trouble mobilizing

support for their ideas because the communities they bridge may have little interest

in working together (Obstfeld, 2005). But cohesion too has drawbacks. Dense ties

create the risk that individuals will rely too heavily on the knowledge of their imme-

diate peers, with whom they feel most comfortable (Perry-Smith and Shalley, 2003).

As group knowledge ages, it becomes harder to find untried combinations.
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My approach extends theories of geography and innovation by building on these

insights from ego-level research on the contingent benefits of different network struc-

tures. I depart from this work by focusing on the global structure of collaborative ties

within firms—i.e., intraorganizational networks—rather than the portfolios of ties of

individuals—i.e., ego networks. I differentiate between two structures to characterize

intraorganizational collaboration patterns.

Inefficient networks have low connectivity and diffuse information slowly (Fang

et al., 2010; Lazer and Friedman, 2007). They foster innovation by creating oppor-

tunities for brokers to join disconnected network areas. Moreover, when viewed from

the firm level, inefficient networks also facilitate parallel problem solving, in which

different individuals or groups work independently on the same task (O’Reilly and

Tushman, 2004). Because “fragmentation of network structure. . . [reduces] homo-

geneity of behavior” (Granovetter, 1992, 36), disconnected parties are more likely to

produce novel solutions, one of which might be superior to the others. Note that low

connectivity and slow diffusion are distinct features of inefficient networks, as I use

the term. Some networks, such as “small-world” structures, have sparsely connected

regions, with dense pockets of highly cohesive ties. Such networks are good at rapidly

diffusing information, but as a result, they are less likely to preserve diversity (Lazer

and Friedman, 2007).

For developing new knowledge, inefficient networks are particularly strong because

they stimulate and preserve diverse ideas, perspectives, and approaches. By contrast,

global network structures that are more cohesive are advantageous for processing

information and refining ideas. As Tushman and Nadler (1978, 618) explain, “because

highly connected networks are relatively independent of any one individual, they are

less sensitive to information overload or saturation than more limited networks.” In

these networks, information diffuses quickly (Aral and Van Alstyne, 2011). Parallel

problem solving is less likely to take place than are joint approaches, but as a result,
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individuals are also less prone to wasting time hunting down bad leads that have been

pursued by others in their organization and can quickly move to other investigations.

2.2.3 Geographic Proximity and Intraorganizational Collaboration Net-

works

Intraorganizational network structures are likely to moderate the effects of prox-

imity on innovation. Areas with dense concentrations of organizations provide their

member firms with frequent opportunities to access new knowledge from spillovers.

However, firms in these locations are not without challenges. Instead of having to

manage problems resulting from a lack of access to external knowledge from local

sources, firms in highly concentrated areas like Silicon Valley may find it challenging

to process all potentially relevant spillovers. In those settings, inefficient networks are

likely to be harmful while networks consisting of more cohesive relationships should

offer the biggest payoffs.

Prior work suggests that because they promote frequent communication, joint

problem solving, and heightened group focus, cohesive networks are useful for pro-

cessing large amounts of complex information from external sources such as spillovers

(Hansen, 1999; Reagans and McEvily, 2003; Tushman and Nadler, 1978). Although

these features may offer advantages to firms in any region, they are likely to be par-

ticularly valuable in heavily concentrated areas, where employees have opportunities

to interact with diverse parties not affiliated with their firm—and thus problems of

knowledge stagnation from cohesion are less problematic. Through local interactions,

employees acquire new knowledge. Cohesive networks make it easier for individuals

to identify and share that knowledge with their most relevant colleagues. Moreover,

through their encounters outside their firm, individuals might acquire valuable knowl-

edge, but because they lack the relevant expertise, do not recognize its importance.

Because cohesive ties entail frequent, high-volume information exchange (Aral and
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Van Alstyne, 2011), this knowledge is more likely to be discovered in conversations

with colleagues who have the necessary background and training. Together, these

observations suggest a second hypothesis:

Hypothesis 2. As proximity to companies that perform related R&D increases, a

firm has greater innovative performance if the cohesiveness of its intraorganizational

collaboration network also increases.

The arguments of the previous sections suggest that unlike firms in concentrated

locales, those in a more isolated environment with few neighboring industry peers will

be at a disadvantage in terms of their ability to capture local spillovers, and conse-

quently their employees will likely be less successful innovators. Though it may be

impossible for these firms to match the innovative capability of those located closer to

industry peers, they may attenuate some of the problems that stem from the absence

of local sources of new knowledge, depending on the configuration of their intraor-

ganizational networks. Recall that inefficient networks are ideal for generating and

sustaining diversity. Because they are less connected and are slow at diffusing infor-

mation, these networks promote parallel problem solving and create opportunities for

brokerage, both of which are likely—at the firm level—to lead to novel discoveries

(Lazer and Friedman, 2007).

Firms in more isolated areas may perform poorly if their intraorganizational net-

works are characterized by overly cohesive relationships. Such companies already

have few sources of new knowledge to draw from in their immediate external envi-

ronment to stimulate innovation. Because they enhance information diffusion, dense

ties among inventors within these firms should also lead to more homogeneous ideas

(Granovetter, 1992), which makes generating the kind of novel recombinations that

underpin new discoveries challenging. This discussion leads to a final hypothesis:

Hypothesis 3. As proximity to companies that perform related R&D decreases, a
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NanoScale Materials, Inc.
Manhattan, Kansas

NeoPhotonics Corp.
San Jose, California

Figure 2.1: Map of sample nanotechnology firms, 2003. The plotting characters are weighted according to the
cumulative number of nanotechnology patents held by a firm. Patent counts were log-transformed for display purposes.

firm has greater innovative performance if the inefficiency of its intraorganizational

collaboration network increases.

Hypotheses 2 and 3 make predictions about the influence of intraorganizational

network structure on innovation for firms with varying proximity to industry peers.

They suggest that performance will be greatest when the characteristics of the net-

work and geographic milieu fit in ways that play to their respective strengths and

overcome their weaknesses. Although the hypotheses do not address the relative

magnitude of the predicted effects in different regions, the theoretical considerations

above suggest that firms operating in close proximity to industry peers may derive

the greatest benefits from “fit.” To the extent that firms in more isolated locales rely

on inefficient networks, their employees should have access to more diverse knowledge

from their colleagues. However, these firms also forego the benefits of cohesive social

structures such as information processing and joint problem solving. (Though some

of these benefits may be less critical, because external spillovers are less extensive as
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Inventors: 22
Patents: 9

Inventors: 21
Patents: 7

Figure 2.—Networks of nanotechnology inventors at NanoScale Materials, Inc. (left panel) and NeoPhotonics Corporation (right panel)
as of 2003. NanoScale Materials is located in the low-proximity environment of Manhattan, Kansas, while NeoPhotonics is situated in San
Jose, California, a high-proximity environment. In the NanoScale panel (left), nodes circumscribed by solid black are brokers, while the node
surrounded by the dashed line occupies a more peripheral brokerage positions. The network is relatively open with low connectivity. The
NeoPhotonics network (right) provides a stark contrast. Here, brokers are absent. The densely dotted boxes delineate communities within
which collaboration may be more frequent, however the pattern of ties in this network suggests that all inventors tend to work with one another.
Note that the di↵erences in structure do not result from di↵erences in the underlying number of inventors or patents, which are comparable
for the two networks. For display purposes, only the main component is shown.

Figure 2.2: Networks of nanotechnology inventors at two firms, 2003. Nodes circumscribed by solid black lines are
brokers, while those surrounded by dashed lines occupy more peripheral brokerage positions. The densely dotted
boxes delineate communities within which collaboration may be more frequent. Note that the differences in structure
do not result from differences in the number of inventors or patents, which are comparable for the two networks. Only
main components are shown.

proximity decreases.) Firms in more concentrated locales, by contrast, should benefit

from cohesion while also exposing their employees to diverse knowledge from external

spillovers.

To put the hypotheses in perspective, in Figure 2.1 I show the geographic distribu-

tion of U.S. nanotechnology firms alongside the plots of collaborations (on patents)

among inventors at NeoPhotonics Corp. and NanoScale Materials, Inc. displayed

in Figure 2.2. NeoPhotonics is located in San Jose, California, the heart of Silicon

Valley. Hypothesis 2 predicts that in this environment, a firm will perform better

if it has more cohesive intraorganizational networks. As shown in the right panel

of Figure 2.2, NeoPhotonics fits this profile. A total of 21 inventors produced seven

patents. Collaboration is common. NanoScale Materials, in Manhattan, Kansas, pro-

vides a useful example of Hypothesis 3, which predicts that in more isolated regions

firms will perform better if their networks are less connected. Comparable in size to
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NeoPhotonics, the left panel of Figure 2.2 shows 22 inventors who collaborated on

nine patents.

2.3 Research Setting

I tested my hypotheses in the context of commercial nanotechnology R&D. Nan-

otechnology is a scientific and technological field focused on the manipulation of mat-

ter at the atomic scale. The development of nanotechnology began in the early 1980s

with the invention of the scanning tunneling microscope (STM). The STM, and later

the atomic force microscope (AFM), gave researchers the remarkable ability to image

and move individual atoms on material surfaces. As a result, the technology allows

materials, drugs, electronics, and a virtually limitless array of other structures to be

designed and built atom-by-atom. Much interest in nanoscale research stems from

the belief that the technology represents the “invention of a method of inventing”

(Darby and Zucker, 2003, 2) or an “enabling technology” (Rothaermel and Thursby,

2007, 834). Many argue that just as biotechnology revolutionized drug discovery,

nanotechnology will reshape material design.

Nanotechnology is a strategic area in which to examine the hypotheses laid out

above. Substantively, nanotechnology is a scientific and technologically diverse area

that requires expert knowledge of domains spanning physics, molecular biology, and

electrical engineering, among others (Porter and Youtie, 2009). This interdisciplinary

character is notable for two reasons. First, because few individuals can assemble

the expertise in all necessary fields, collaboration is important. Second, spillovers

from proximate sources are relevant in nanotechnology because they enable access to

expertise that firms lack internally.

Nanotechnology is also a valuable research setting because, unlike in fields that

rely on other forms of intellectual property protection, in nanotechnology patenting

is commonplace (Bawa, 2007; Lemley, 2005; Zucker et al., 2007). In reviewing evi-
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dence showing the strong propensity among firms to seek patent protection for their

discoveries, Bawa (2007, 719) explains, “Because development of nanotech-related

technologies is extremely research intensive, without the market exclusivity offered

by a patent, development of these products and their commercial viability in the mar-

ketplace would be significantly hampered.” Even small start-ups “are willing to risk

a larger part of their budgets to acquire, exercise, and defend patents” (Bawa et al.,

2006, 29-5). This widespread use of patenting suggests that firms’ patent portfolios

should offer reliable insights into their innovative activities. Nanotechnology is also

attractive because participants in the field are located in diverse geographic contexts,

a condition that is necessary for testing the hypotheses.

2.4 Data and Methods

I collected longitudinal data on 454 firms that were engaged in nanotechnology

R&D between 1990 and 2004. Data on collaboration networks come from the co-

inventorship ties that are formed when two or more of a firm’s employees work on

a patent together. These data have a bipartite structure, in that they contain two

types of nodes: actors (inventors) and events (patents). For the purposes of analysis, I

created a unipartite projection of the bipartite network so that inventors were directly

connected.

Patents have been widely used as an indicator of innovation and reflection of

interpersonal ties (Fleming et al., 2007; Guler and Nerkar, 2012; Lahiri, 2010; Nerkar

and Paruchuri, 2005; Wuchty et al., 2007). By law, a patent can only be granted if

it describes an invention that (a) is useful, meaning that it could be commercially

valuable, (b) is novel, in that it was unknown before its invention by the applicant

for the patent, and (c) would be nonobvious to an individual with relevant expertise.

Patent applications are evaluated by examiners who ensure these criteria are met.

Unlike scientific publications, for which individuals can be listed (or excluded)
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as authors relatively independently of their contributions (Katz and Martin, 1997),

patents that inaccurately list inventors may be rendered unenforceable (Sheiness and

Canady, 2006). Moreover, patents are valuable because they provide longitudinal

data on collaboration patterns and allow for the construction of firm-level structural

measures of these networks, which are necessary for testing the hypotheses. Collecting

similar data using survey methods would be extremely challenging. Of course, archival

data like patents do have limitations. Importantly, they do not capture collaborations

that leave no paper trail, nor do they account for informal contributions like feedback

from colleagues. Despite these drawbacks, interviews with inventors suggest that

patents provide a good reflection of their technological collaborations (Fleming et al.,

2007).

I utilized a variety of directories and news sources to identify firms involved with

nanotechnology. Major sources include company directories found in the Lux Nan-

otech Report (2001, 2004, 2006, 2008), the Nanotechnology Opportunity Report (2002),

the NanoVIP Database (2005), Understanding Nano, and BioScan. I relied on trade

publications to identify firms active early in the study period. U.S. subsidiaries of for-

eign firms were excluded because much of the knowledge used by these organizations

comes from their parents (Gomes-Casseres et al., 2006). I also excluded wholesale

suppliers and firms that did not perform R&D. Following prior work, I treated parents

and subsidiaries as single units (Lahiri, 2010).

The hypotheses predict that innovation is in part a function of the interdependent

relationship between the structure of collaborations among a firm’s inventors and

the geographic context in which those collaborations take place. Firms that perform

R&D in multiple locations complicate this framework. For example, suppose a firm

does most of its R&D in San Jose but also has a small satellite facility in a more

remote setting like Boise. How should the geographic context of collaborations be

measured for this firm? One possibility is to use an establishment level of analysis,
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wherein satellites of multilocal firms are treated as distinct analytic units. Although

this approach simplifies the measurement of geographic context, it is problematic for

theoretical reasons. R&D subsidiaries serve diverse functions. In some cases they

act as full-fledged research facilities, but often they are designed be listening posts

that monitor developments in distant locales (Gassmann and von Zedtwitz, 1999).

Either way, their performance may be driven by factors that differ from those driving

a firm’s core R&D facility.

Given these considerations, I excluded satellite R&D facilities and selected a “main

research facility” for use in the analysis if a firm performed R&D in multiple locations.

Note that the distinction between main research facilities and satellite locations is not

artificial and is used by many firms in descriptions of their operations. For example,

MEMC Electronic Materials’ website explains that the company’s “St. Peters [MO]

plant serves as the corporate world headquarters for MEMC. In addition, it serves

as the research and development headquarters because of its skilled workforce.”3

Similarly, in a 2005 10-K filing from Cabot Microelectronics states “our principal U.S.

facilities that we own consist of: a global headquarters and research and development

facility in Aurora, Illinois, comprising approximately 200,000 square feet.”4

For most firms, a main nanotechnology research location could be identified using

narrative descriptions of their operations in publicly available data.5 The main sources

included annual Securities and Exchange Commission (SEC) filings for publicly traded

corporations (particularly Item 2, “Properties,” found in 10-Ks and lease agreements

in filing appendixes), archives of company websites, historical press releases, articles

from trade journals and local newspapers, and in some cases, direct contact.6 This

3 http://www.memc.com/index.php?view=st-peters, accessed April 18, 2012
4 http://www.sec.gov/Archives/edgar/data/1102934/000110293405000054/body.htm
5In a small number of instances, a firm’s main research and main nanotechnology research facility

did not coincide, in which case I took the main nanotechnology research facility to be the unit of
analysis.

6I was able to access webpages for 93 percent of sample companies—even many that long ago
ceased operations—using the Internet Archive Wayback Machine ( http://www.archive.org/web/
web.php), which has records back to 1996.
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data collection effort was an exhaustive, yearlong process involving a team consisting

of the author and two experienced undergraduate research assistants. The team met

regularly to discuss coding. I corroborated the final data using author addresses

from scientific publications and government grants awarded to individuals associated

with each firm. When descriptions were not available, I labeled the location with the

greatest quantity of nanotechnology R&D outputs—measured in terms of patents and

scientific publications—as the primary facility. To account for relocations, I updated

the location of each main research facility annually.

After identifying a main research facility for each firm, I followed prior research

and used inventor addresses to exclude patents that were not associated with the

main research facility (Fleming et al., 2007; Jaffe and Trajtenberg, 2002). Patents

that do not list at least one inventor with an address in the same region as a firm’s

main research facility are excluded from the calculation of the core network variables.7

Unless noted, for purposes of assigning inventors to establishments and constructing

measures, I operationalized regions as U.S. Core Based Statistical Areas (CBSAs).

Defined by the U.S. Office of Management and Budget, CBSAs are “area[s] containing

a recognized population nucleus and adjacent communities that have a high degree

of [social and economic] integration with that nucleus” (Spotila, 2000, 82228).

To account for the possibility that geographic context influences multilocal firms in

ways that differ from how it influences single-establishment organizations, I collected

annually updated data on the U.S. locations of active satellite R&D facilities for

each firm using an approach similar to that employed for the main research facilities

described above. Note that these data differ from data in much of the prior work

on geography and innovation in that they are not dependent on the availability of

7This approach to assigning inventors to intrafirm networks is directly analogous to that used
in an array of prior research on inventor networks at the regional level (Fleming et al., 2007; Graf,
2011). Using this procedure, 75 percent of sample firm nanotechnology patents could be associated
with a main research facility. Following prior work, the inferential models introduced below include
controls for the possibility of nonlocal collaborators.
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inventor addresses listed on patents for location information.

I selected the time period for the study, 1990 to 2004, for several reasons. First,

although the advances that made nanotechnology possible occurred in the early and

mid 1980s, instruments like the STM and AFM were expensive, and nanotechnology

was not commercially viable for most businesses. This changed in the late 1980s

and early 1990s as equipment prices fell and more firms entered the sector (Darby

and Zucker, 2003). Second, though some nanotechnology patents were granted before

the late 1980s, these can be hard to identify using keyword-based methods (discussed

below) since in earlier years terminology was being developed. I chose 2004 to end the

analysis since the version of the Patent Network Dataverse database (Lai et al., 2011)

from which I draw my data on patents is current through 2008, and a three-year lag

between patent application and issue dates is common (Jaffe and Trajtenberg, 2002,

409–410).

The following subsections present the variables. The dependent, independent,

and most control variables were calculated using only data from the main research

facility, according to the logic outlined above; however a handful of controls are firm-

level constructs. For clarity, I note explicitly the level at which each is measured.

2.4.1 Dependent Variables

I modeled two dependent variables to assess a firm’s innovation performance.

First, I measured impact as the citation-weighted sum of nanotechnology patents

applied for by firm i at times t + 1 and t + 2 (Kotha et al., 2011). To ensure that

the outcome accurately matches the hypotheses, I counted only patents that were

produced by an inventor associated with a firm’s main research facility. As discussed

above, patents are in general a good proxy for innovative activity; however, they can

vary widely in their quality, and consequently raw patent counts may be a misleading

indicator of performance. To account for heterogeneity in quality, I weighted each
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patent by the number of citations it received from future patents in the first five years

after issue—the window during which annual citations to most patents reach their

peak (Jaffe and Trajtenberg, 2002).8 Concretely, I define the citation-weighted patent

count for firm i at time t as

CWPit =
∑
j∈nt+1

(
1 +

t+5∑
τ=t+1

cjτ

)
+
∑
j∈nt+2

(
1 +

t+6∑
τ=t+2

cjτ

)
, (2.1)

where nt+1 and nt+2 are the sets of patents applied for by firm i at times t + 1 and

t+ 2, respectively, and cjτ is a count of citations to patent j at time τ (Trajtenberg,

1990). The number of citations a patent receives is correlated with its economic value

(Griliches, 1990; Hall et al., 2005).9

The second dependent variable measures new combinations as the sum of nan-

otechnology patents applied for by firm i at t + 1 and t + 2 that bridge previously

uncombined technological domains. Incremental innovations build on existing com-

binations by offering minor improvements. Breakthroughs are characterized by novel

combinations and have the potential to create new fields (Christensen, 1997). The

U.S. Patent and Trademark Office (USPTO) organizes all inventions using a fine-

grained system of roughly 100,000 subclasses (Fleming et al., 2007). This system is

updated regularly as science and technology evolve. With each update, all patents

dating to the USPTO’s (1790) founding are revised to ensure uniform classification.

To identify new combinations, I counted the times a particular set of subclasses used

by the USPTO to classify a given patent had been used previously between its is-

sue date and 1790. Patents that were first to fall into a particular combination of

subclasses were given a score of 1, while those that were classified using an existing

combination received a score of 0.10 Note that impact is determined ex post as the

8The results are robust to alternative windows and to the use of lifetime citation counts.
9Although the general patent data set used in this study ends in 2008, I have citation data through

2011, which ensures that all patents have a full window within which to accumulate citations.
10For more detail on this type of measure, see Fleming et al. (2007, 474–475). To ob-
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patent is used, while new combinations are determined ex ante during the application

process.

To identify nanotechnology patents, I searched the full-text of all patents granted

by the USPTO. I identified nanotechnology patents as those containing at least one

of 29 keyword and wild-card terms (e.g., “atomic force microscope,” “biomotor,”

“quantum dot”) identified by subject specialists as reliable indicators of the domain.

I dropped patents containing only noise terms that could have been picked up in the

keyword search but did not involve nanotechnology (e.g., patents containing “nanosec-

ond” were excluded if no additional “nano-keyword” warranted inclusion). An array

of prior work on nanotechnology has employed this methodology (Rothaermel and

Thursby, 2007; Zucker et al., 2007).

2.4.2 Independent Variables

Firm proximity. The first hypothesis predicts that nanotechnology firms will

be more innovative if they are near other companies that perform related R&D. I

computed proximity as

FPit =
∑
j 6=i

xj
(1 + dij)

, (2.2)

where xj is a weight, dij is the distance between firm i and firm j, t is an index for

time, and j is an index for all firms other than i (Sorenson and Audia, 2000). The

measure effectively represents the average distance between firm i and all other firms

at time t. Proximity may be less important if nearby firms have little knowledge to

share. To control for this possibility, I set the weighting parameter, xj, equal to the

logged number of nanotechnology patents awarded to firm j at time t. I computed

the distance parameter, dij, by obtaining the latitude and longitude of each firm at

time t based on the center of the zip code in which they were located at time t. I

tain patent classifications back to 1790, I relied on the 2011 U.S. Patent Grant Master
Classification File, available at http://commondatastorage.googleapis.com/patents/patent_

classification_information/mcfpat.zip.

30

http://commondatastorage.googleapis.com/patents/patent_classification_information/mcfpat.zip
http://commondatastorage.googleapis.com/patents/patent_classification_information/mcfpat.zip


then calculated dij in Euclidean distance, following Sorenson and Audia (2000), as

dij = α {arccos [sin (lati) sin (latj) + cos (lati) cos (latj) cos (|longi − longj|)]} , (2.3)

where dij is the distance between points i and j, α is a constant, set to 343.78,

which gives the result in units of 10 miles, and latitude (lat) and longitude (long) are

measured in radians.

Inventor networks—Cohesion. I measured cohesion as the overall level of

clustering in a firm’s network of inventors. Clustering captures the extent to which

inventors’ collaborators also collaborate with one another—a hallmark of cohesive

groups (Coleman, 1988; Newman et al., 2001). The measure, known as the clustering

coefficient, was calculated for each firm i at time t as

CCit =
3N4
N∨

=
3× (number of triangles)

(number of connected triples)
, (2.4)

where a triangle is a closed triad and a triple is an open triad. The coefficient ranges

from 0 to 1. Larger values signal higher levels of cohesion.

Recall that the collaborative ties analyzed here are derived from a unipartite

projection of a bipartite network. As a result, some of the observed clustering may

be artificial: all inventors listed on a patent are automatically clustered through the

process of projection. To account for this artificial clustering, I followed the approach

suggested by Newman et al. (2001) and scale the clustering coefficient in the observed

network (CCO
it ) by clustering coefficient for the unipartite projection of a simulated

random network (CCR
it ) with an identical bipartite degree distribution. Values at or

below 1 imply that any clustering in an observed network is largely an artifact of

the projection process. Values greater than 1 indicate that clustering in the observed

network results from collaborations that span teams (i.e., the set of inventors who

work on a patent together) and consequently a higher level of cohesiveness than
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expected by chance (Uzzi and Spiro, 2005). Following prior work, I dropped ties after

five years. Only collaborations involving an inventor from a firm’s main research

facility were included in the measure.

Inventor networks—Inefficiency. Hypothesis 3 predicts that more inefficient

inventor networks will lead to better performance for firms that are less proximate

to others in their field. I measured inefficiency as the average length of the paths in

each firm i’s network of nanotechnology inventors at time t. Networks with longer

characteristic path lengths have more intermediaries separating nodes. Information

should spread more slowly and less accurately as path length increases. Because

paths across disconnected components are undefined, I considered only those within

connected components when computing the measure (Gulati et al., 2012, 458).11

As described below, all models include controls for number of components. I also

performed robustness tests using an alternative proxy for inefficiency; these provided

similar results. Because the unipartite projection process can result in artificially

short path lengths, I scaled this measure relative to the expected path length of a

random network (Newman et al., 2001). I dropped ties after five years.

2.4.3 Control Variables

Publicly traded. I controlled for whether a firm was publicly or privately held at

time t. This measure varies as firms make initial public offerings (IPOs) or transition

to private holding. Public firms may have more resources than private ones, which

could influence performance.

Research sites. Some firms perform a portion of their R&D in satellite facilities,

which may enable inventors to source knowledge from multiple locales (Lahiri, 2010).

To account for the possibility that firms with distributed R&D are influenced differ-

11 I also tested an alternative measure based on closeness centrality that sets path lengths between
nodes in different components to 0 (Opsahl et al., 2010). The results were similar. I thank an
anonymous reviewer for this suggestion.
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ently by the region of their main research facility, I controlled for the total number of

U.S. research sites operated by each firm at time t. The number varies as firms open

and close satellites.

Global geographic distribution. Firms also differ in terms of the global geo-

graphic distribution of their R&D. I was unable to find reliable data on international

R&D satellites for many private companies. Given these constraints, I created for

each firm a measure of international geographic R&D dispersion using the inventor

addresses listed on all of the firm’s patents, in all technology areas. I constructed a

Herfindahl index based on the distribution of inventors across countries, calculated as∑
c2
i , where ci is the proportion of inventors in country i. I subtracted the result from

1 so that firms with more globally distributed R&D operations have higher values on

this measure. Inventors were dropped after five years of no activity.

Technological diversity. Some sample firms also perform R&D in areas other

than nanotechnology. Firms active in multiple fields could have greater exposure to

diverse knowledge, which may enhance their innovation. To account for this possi-

bility, I collected data on all patents (not just those in nanotechnology) granted to

each sample firm. Using a five-year window, I measured technological diversity as the

Herfindahl index of the primary classes of the firm’s patents, subtracting the result

from 1 so that firms with diverse portfolios have higher values.

Nonnanotechnology patent stock. A related alternative explanation for pre-

dicted outcomes is that neither networks nor proximity are important if a firm has a

large technological base outside of nanotechnology on which inventors can draw for

new ideas. To control for this possibility, I included a measure of the size of each firm’s

nonnanotechnology patent portfolio. Given the pace of change in nanotechnology, I

constructed this variable using a depreciated stock model in which older patents are
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worth less than recent discoveries. Formally,

NSit =
t∑

τ=0

(
1− δ

)t−τ
Kiτ , (2.5)

where K is the set of patents applied for by firm i at time τ and δ is a constant, set to

0.15, that imposes a 15 percent annual depreciation (Hall et al., 2005). The measure

includes all patents, regardless of geographic origin. I logged the variable to account

for diminishing returns to large stocks.

Main R&D facility and HQ separate. Using the data on establishment lo-

cations and their movements described above, I controlled for whether a firm’s main

research facility and corporate headquarters were located in the same CBSA at time

t. The separation of management and R&D (sometimes called “skunk works”) may

lead to greater exploration in product development.

Recent relocation. Some sample firms relocated their main research facilities

during the study period. Although these moves are reflected through annual changes

in the value of the firm proximity variable, I also include an indicator for whether a

firm relocated its main research facility at time t. Long-distance moves in particular

could disrupt projects, collaborative relationships, and ultimately innovation.

California. Researchers have long noted the unique success of high-technology

clusters in California’s Silicon Valley and San Diego regions (Saxenian, 1994). Califor-

nia also generally invalidates noncompete agreements, which helps enhance knowledge

flows between firms. To account for these unique state characteristics, I controlled

for whether or not a firm’s main research facility was located in California at time t.

Local university ties. Existing theories point to the importance of local embed-

dedness for explaining how geography affects innovation. Local connections offer one

source from which firms can acquire relatively exclusive new knowledge. Such con-

nectivity also signals legitimacy to neighboring organizations and in so doing creates
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opportunities for exchange (Owen-Smith and Powell, 2004). Given the importance

of science for nanotechnology R&D, I controlled for the number of collaborations a

firm had with local universities at time t. I defined collaborations as coauthored

nanotechnology publications whose authors’ affiliations include a focal firm’s main

research facility and a university in the same CBSA. Nanotechnology publication

data were obtained from Scopus using a search strategy analogous to the one used

for patents.

Local inventor hires. I also sought to capture each firm’s embeddedness in

local labor markets. To do so, I controlled for the number of new inventors at time t

that joined a focal firm’s main research facility after having previously patented with

another organization in the same CBSA. Patenting serves as a proxy for employment.

Because the measure only captures inventors with prior patents, it is a conservative

estimate of local hiring.

Inventor geographic distribution. I assigned all inventors listed on nanotech-

nology patents applied for by employees at a firm’s main research facility to a CBSA,

using a five-year window, and then constructed a Herfindahl index to capture the

spread of inventors across U.S. communities. After the result is subtracted from 1,

higher values indicate more dispersed R&D activities. This control helps account for

the alternative explanation that performance differences result from the presence or

absence of distant ties.

Distant inventors. This control counts the number of inventors who are included

in a main research facility’s collaboration network but who resided in an external

CBSA at time t. The variable helps to account for the geographic composition of a

network while also offering an additional way of assessing the possibility that distant,

external knowledge sources explain the varying benefits of proximity to performance,

as emphasized in prior theory.

Inventor career experience. I controlled for the total number of distinct orga-
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nizations, as of time t, with which active inventors at a firm’s main research facility

patented before joining a focal firm. This variable helps to control for spillovers

that result from labor mobility (possibly over long distances) or strategic recruitment

(Agrawal et al., 2006; Rosenkopf and Almeida, 2003).

High-mobility inventors. What may matter more than the aggregate career

experience of a firm’s R&D team is whether it can attract even a small number of

talented individuals. To account for this, I controlled for the number of high-mobility

inventors at a firm’s main research facility at time t. High-mobility inventors are

those with a value two standard deviations above the mean on the number of prior

organizations patented with.

Inventor technological experience. I also controlled for the median number of

career nanotechnology patents granted to inventors at a firm’s main research facility

as of time t. This variable helps account for the possibility that the performance of

some firms is simply due to their ability to recruit successful inventors.

Median team size. I controlled for team size, measured as the median number

of inventors listed on each nanotechnology patent awarded to a firm’s main research

facility over the past five years. Team size has been shown to be related to performance

in knowledge production (Wuchty et al., 2007). This variable also helps to control

for the alternative explanation that team size or a culture of participation (and not

structure) drives innovation.

Components. As discussed above, path lengths are undefined for inventors who

cannot be connected through any intermediaries. To account for differences among

networks with varying number of undefined paths, I controlled for the number of

components present in each firm’s network, using a five-year window.

Inventors. The number of active inventors in a firm is likely related to the firm’s

innovative potential—the more employees in R&D, the more chances for discovery.

Inventors were dropped after five years if they had not been awarded any new patents
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at their firm’s main research facility.

Nanotechnology patent stock. This variable controls for nanotechnology

patents awarded to a main research facility. As with nonnanotechnology patents,

I used a depreciated stock model to account for the fact that older patents are likely

less valuable than newer ones. The control captures unobserved heterogeneity in

innovative capabilities (Blundell et al., 1995). Patent stocks help control for R&D

spending (Griliches, 1990).

Nanotechnology portfolio complexity. Prior research suggests that proximity

is advantageous for sharing complex knowledge. Proximity may not be important for

firms with simpler technologies, because they can acquire knowledge from sources like

technical publications. I therefore controlled for the median complexity of each firm’s

nanotechnology patent portfolio using Sorenson et al.’s (2006) measure of interde-

pendence. This metric defines complexity as a function of “the historical difficulty of

recombining the elements that constitute” a technology (Sorenson et al., 2006, 1002).

Higher values indicate more complex portfolios.
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Table 2.1: Variable Names and Definitions

Name Definition Panel Structure

Dependent Variables

Patent impact(t+1 and t+2) Count of citations to nanotechnology patents applied for
by inventors at the main research facility at times t + 1
and t+ 2 for first 5 years after issue

Updated annually as inventors apply for patents

New combinations(t+1 and t+2) Count of nanotechnology patents applied for by inventors
at the main research at times t+ 1 and t+ 2 that brought
together a previously uncombined set of technology sub-
classes

Updated annually as inventors apply for patents

Independent Variables

Firm proximity Local density of nanotechnology firms at time t, weighted
by logged nanotechnology patent counts; region based on
location of main research facility

Updated annually as facilities relocate and as other sample
firms open, close, relocate, and apply for patents

Cohesion Extent to which inventors’ collaborators collaborate with
one another; emphasizes cohesion

Updated annually as inventors collaborate on new projects
and ties older than 5 years are dropped

Inefficiency Harmonic mean path length separating inventors; empha-
sizes inefficient networks

Updated annually as inventors collaborate on new projects
and ties older than 5 years are dropped

Cohesion × firm proximity Interaction of cohesion and firm proximity (weighted)

Inefficiency × firm proximity Interaction of inefficiency and firm proximity (weighted)

Covariates—Firm

Publicly traded Dummy variable; 1 = public company Updated annually if the firm makes an IPO or transitions
to private holding

Research sites Count of active U.S. R&D facilities in any technology area Updated annually if the firm opens or closes research
facilities

Global geographic distribution Herfindahl of inventor countries for all firm patents over
past 5 years

Updated annually as inventors apply for patents and those
older than 5 years are dropped

Technological diversity Herfindahl of primary classes for all patents filed by firm
over past 5 years

Updated annually as inventors apply for patents and those
older than 5 years are dropped

Non-nanotechnology patent stock (log) Cumulative non-nanotechnology patents awarded to the
firm, depreciated annually by 15%

Updated annually as inventors apply for non-
nanotechnology patents

Covariates—Main Research Facility

Main research and HQ separate Dummy variable; 1 = research facility and corporate head-
quarters are not co-located

Updated annually as facilities relocate
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Table 2.1 (Continued)

Recent relocation Dummy variable; 1 = research facility relocated at time t Updated annually as facilities relocate

California Dummy variable; 1 = research facility is located in Cali-
fornia

Updated annually as facilities relocate

Local university ties Count of ties to universities in local CBSA based on nan-
otechnology paper collaborations

Updated annually as new collaborations form and ties
older than 1 year are dropped

Local inventor hires Updated annually as new inventors join the firm

Inventor geographic distribution Herfindahl of inventor CBSAs for research facility nan-
otechnology patents over past 5 years

Updated annually as inventors apply for patents and those
older than 5 years are dropped

Distant inventors Count of inventors residing outside local CBSA Updated annually as inventors apply for patents and those
older than 5 years are dropped

Inventor career experience Count of distinct organizations with which inventors
patented before joining the firm

Update annually as new inventors join the firm

High mobility inventors Count of inventors 2 SD or more above the mean on career
experience

Update annually as new inventors join the firm inventors
join the firm

Inventor technological experience Median number of career nanotechnology patents per in-
ventor at main research facility

Updated annually as inventors apply for patents and new

Median team size Median number of inventors per nanotechnology patent
over past five years

Updated annually as inventors apply for patents and those
older than 5 years are dropped

Inventors (log) Number of inventors in the network Updated annually as inventors apply for patents and those
older than 5 years are dropped

Components Count of discrete subsets of collaborating inventors who
are disconnected from all other subsets

Updated annually as inventors apply for patents and those
older than 5 years are dropped

Nanotechnology patent stock Cumulative nanotechnology patents, depreciated annually
by 15%

Updated annually as inventors apply for nanotechnology
patents

Nanotechnology portfolio complexity Median historical difficulty of combining subclasses repre-
sented among patents in portfolio

Updated annually as inventors apply for nanotechnology
patents

Nanotechnology paper stock Cumulative nanotechnology papers, depreciated annually
by 15%

Updated annually as employees publish nanotechnology
papers

Other Variables

Constraint Alternative proxy for inefficient networks, higher con-
straint implies fewer structural holes and less inefficient
networks; used in robustness checks

Updated annually as inventors collaborate on new projects
and ties older than 5 years are dropped
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Nanotechnology paper stock. Finally, firms might differ in the extent to which

they are embedded in larger scientific communities (Gittelman, 2007). Firms that

are active in science might depend less on local sources for new knowledge, because

scientific networks are geographically dispersed. Embeddedness might also serve as a

source of relatively more exclusive knowledge, because not all firms have such access.

To account for different levels of engagement, I controlled for the stock of scientific

nanotechnology publications produced by individuals at each firm’s main research

facility. As with patents, I used a depreciated stock model in which the contribution

of a publication to the measure decreases 15 percent annually.
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Table 2.2: Descriptive Statistics and Correlations†

Variable Mean
SD

1 2 3 4 5 6 7 8 9 10 11 12 13Overall Between Within

1. Patent impact(t+1 and t+2) 62.92 157.18 98.78 96.62 1.00
2. New combinations(t+1 and t+2) 9.37 21.15 13.52 12.13 0.90 1.00
3. Publicly traded 0.64 0.48 0.48 0.13 0.15 0.21 1.00
4. Research sites 3.02 3.91 3.26 0.91 0.28 0.37 0.32 1.00
5. Global geographic distribution 0.09 0.11 0.10 0.05 0.09 0.16 0.26 0.27 1.00
6. Technological diversity 0.72 0.24 0.23 0.10 0.21 0.26 0.35 0.38 0.21 1.00
7. Non-nanotechnology patent stock (log) 3.71 2.58 2.43 0.49 0.39 0.47 0.61 0.64 0.37 0.59 1.00
8. Main research and HQ separate 0.12 0.32 0.27 0.10 0.05 0.10 0.17 0.43 0.21 0.19 0.30 1.00
9. Recent relocation 0.03 0.16 0.09 0.15 −0.03 −0.05 −0.09 −0.04 −0.06 −0.06 −0.11 −0.01 1.00
10. California 0.33 0.47 0.47 0.06 0.01 −0.03 −0.02 −0.14 −0.07 −0.13 −0.11 −0.17 0.06 1.00
11. Local university ties 0.37 1.40 0.87 0.99 0.18 0.26 0.09 0.29 0.15 0.16 0.26 0.07 −0.03 −0.08 1.00
12. Inventor geographic distribution 0.31 0.22 0.21 0.09 −0.04 −0.04 0.02 0.10 0.07 0.13 0.04 0.11 0.05 0.23 −0.04 1.00
13. Distant inventors 8.63 21.51 13.38 12.41 0.34 0.48 0.20 0.53 0.26 0.23 0.44 0.26 −0.05 −0.05 0.28 0.21 1.00
14. Local inventor hires 1.00 2.23 1.75 1.65 0.39 0.41 0.06 0.22 0.09 0.14 0.22 0.05 −0.03 0.07 0.22 0.04 0.25
15. Inventor career experience 53.51 98.18 62.90 71.66 0.27 0.37 0.12 0.21 0.13 0.16 0.29 0.07 −0.05 0.07 0.32 0.11 0.54
16. High mobility inventors 1.84 3.14 2.33 2.13 0.18 0.27 0.12 0.23 0.15 0.17 0.26 0.11 −0.04 0.11 0.31 0.21 0.54
17. Inventor technological experience 2.43 1.94 1.62 1.16 −0.06 −0.07 −0.17 −0.16 −0.10 −0.12 −0.23 −0.01 0.04 −0.01 −0.05 −0.01 −0.08
18. Median team size 3.16 1.36 1.14 0.83 −0.10 −0.10 −0.07 −0.11 −0.02 −0.19 −0.15 −0.01 0.02 0.03 −0.03 0.19 0.07
19. Inventors (log) 2.97 1.16 0.93 0.51 0.46 0.59 0.36 0.51 0.32 0.45 0.69 0.16 −0.09 −0.06 0.38 0.12 0.61
20. Components 5.36 8.23 6.27 2.84 0.55 0.65 0.32 0.63 0.28 0.37 0.66 0.17 −0.07 −0.14 0.49 0.01 0.60
21. Nanotechnology patent stock 26.93 55.08 35.02 31.06 0.56 0.73 0.24 0.39 0.22 0.26 0.52 0.10 −0.06 −0.06 0.41 −0.05 0.64
22. Nanotechnology portfolio complexity 2.32 1.08 1.04 0.58 −0.09 −0.10 −0.05 0.01 −0.01 0.00 0.00 0.04 0.03 0.04 0.05 0.01 −0.04
23. Nanotechnology paper stock 11.77 36.48 27.27 19.97 0.18 0.28 0.15 0.36 0.20 0.19 0.34 0.08 −0.04 −0.07 0.74 0.02 0.45
24. Firm proximity 17.15 16.44 16.08 7.72 0.09 0.07 −0.04 −0.04 0.02 −0.01 −0.04 −0.11 0.07 0.59 −0.01 0.29 0.08
25. Cohesion 1.32 0.39 0.28 0.26 0.29 0.37 0.27 0.35 0.22 0.29 0.50 0.14 −0.05 −0.06 0.25 0.07 0.37
26. Inefficiency 0.87 0.29 0.20 0.20 0.15 0.22 −0.17 −0.15 −0.07 −0.11 −0.17 −0.04 0.02 0.03 0.14 0.00 0.26
27. Constraint 0.70 0.19 0.16 0.12 −0.11 −0.14 0.00 −0.02 −0.07 −0.14 −0.06 −0.02 0.01 −0.01 −0.09 −0.16 −0.22

Variable 14 15 16 17 18 19 20 21 22 23 24 25 26 27

14. Local inventor hires 1.00
15. Inventor career experience 0.30 1.00
16. High mobility inventors 0.37 0.78 1.00
17. Inventor technological experience −0.04 0.13 0.03 1.00
18. Median team size 0.00 0.10 0.10 0.11 1.00
19. Inventors (log) 0.34 0.57 0.55 −0.15 0.02 1.00
20. Components 0.35 0.39 0.39 −0.18 −0.10 0.79 1.00
21. Nanotechnology patent stock 0.28 0.64 0.48 −0.03 −0.05 0.73 0.71 1.00
22. Nanotechnology portfolio complexity −0.02 0.00 0.05 0.01 −0.02 −0.02 −0.03 −0.04 1.00
23. Nanotechnology paper stock 0.22 0.45 0.42 −0.07 0.00 0.48 0.56 0.47 0.05 1.00
24. Firm proximity 0.20 0.28 0.33 0.07 0.03 0.10 −0.03 0.07 0.09 0.02 1.00
25. Cohesion 0.21 0.30 0.29 −0.14 −0.11 0.57 0.55 0.45 −0.02 0.30 0.03 1.00
26. Inefficiency 0.07 0.44 0.34 0.19 0.28 0.23 0.01 0.36 −0.02 0.16 0.16 −0.06 1.00
27. Constraint −0.10 −0.39 −0.32 −0.12 −0.36 −0.47 −0.07 −0.25 −0.02 −0.13 −0.15 −0.07 −0.55 1.00

†N = 2, 760
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Inverse Mills ratio (λ). Some measures can only be constructed for networks

of a minimal size, which raises the possibility of selection bias. To address this

possibility, I tested the hypotheses using firms with networks consisting of at least

three nodes and two ties, as is required to measure clustering.12 This criterion helps

shift selection to the independent variables. Some firms had more than 15 patents,

but all were filed by lone inventors—these firms did not use networks. In short, both

innovative and noninnovative firms can be excluded.

To examine any remaining bias, I estimated a probit model predicting membership

in the sample, from which I calculated the inverse Mills ratio to include as a covariate.

The first-stage equation includes the main (nonnetwork) controls listed above but

adds de novo entry and firm age as exclusion restrictions. Founded explicitly to

develop new nanotechnologies, de novo firms may be less likely to organize research

around teams because they are often small start-ups that spend their first years

building and diversifying their R&D operations. Age may also predict the use of

R&D teams. Recent studies document dramatic growth in team-based knowledge

production (Wuchty et al., 2007). To the extent that the organization of R&D is

path dependent, much older firms may be slow to adopt team-based approaches in

nanotechnology (Porter and Youtie, 2009). The proportion of correct predictions for

the probit model was 0.76.

Tables 2.1 and 2.2 provide variable summaries and descriptive statistics, respec-

tively. After entry and exit of firms over the observation period are accounted for,

the panel consists of 2,760 firm-year observations. Variance inflation factors were well

within acceptable ranges (i.e., none larger than 10).

12In unreported analyses, I set the clustering coefficient to 0 if the measure was undefined, which
eliminated the need for a selection model. The results were similar. I thank an anonymous reviewer
for this suggestion.
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2.5 Model Estimation

Both dependent variables are counts and take on only nonnegative integer val-

ues. Given this distribution, I estimated conditional fixed-effects quasi-maximum-

likelihood Poisson models with conditional means of the form

E[yit|αi,xit] = αiexp(x′itβ), i = 1, . . . , N, t = 1, . . . , Ti, (2.6)

where yit is the dependent variable for firm i at time t, xit are the independent and

control variables, β are the coefficients to be estimated, and αi are time-invariant, unit

(firm) specific effects. Fixed-effects models are advantageous in that they control for

all time-invariant unobserved heterogeneity by relying on within-unit variation. The

models allow for correlation between the unit specific (time-invariant) intercepts (αi)

and the independent variables (xit), but not for correlation between the independent

variables and the (time-varying) idiosyncratic error term (εit). Thus, they relax the

assumption of random effects, but maintain the assumption of strict exogeneity, i.e.

E(εit|xi1, . . . , xiT , αi) = 0, t = 1, 2, . . . , T . Note that the fixed-effects approach models

changes within units over time and does not exploit cross-sectional variability.

Although negative binomial models are common in research on innovation, a

Poisson approach has several features that make it attractive for the analysis of

panel count data. Most importantly, Poisson models rely on weaker distributional

assumptions than negative binomial methods and provide consistent estimates as

long as the conditional mean is correctly specified (Gourieroux et al., 1984). Fur-

ther, quasi-maximum-likelihood Poisson standard errors are robust to overdispersion,

which occurs when the conditional variance of an outcome variable is greater than

the conditional mean.

Despite their attractions, fixed-effects models’ exclusive reliance on within-unit

variance has drawbacks. For example, the models may produce incorrect point esti-
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mates and inflated standard errors for variables that exhibit relatively little change

within units. I therefore also present random-effects models for each dependent vari-

able. Random effects was attractive because it takes advantage of between-unit varia-

tion but allows for different intercepts, provisions more realistic here than what pooled

models would allow, given the diversity of sample firms.

2.6 Results

Tables 2.3 and 2.4 present models of nanotechnology patent impact and new com-

binations, respectively. Estimates in Models 1-7 (Table 2.3) and 9-15 (Table 2.4) are

derived from a conditional fixed-effects quasi-maximum-likelihood specification. Mod-

els 8 (Table 2.3) and 16 (Table 2.4) present estimates derived from a random-effects

Poisson specification with bootstrap estimates of the standard errors to account for

overdispersion and serial correlation. The results offer substantive support for the

findings obtained with the fixed-effects models.

44



Table 2.3: Models of Impact†

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Controls—Firm

Publicly traded −0.5671∗∗ −0.6091∗∗ −0.5864∗∗ −0.5450∗∗ −0.6074∗∗ −0.5657∗∗ −0.5554∗∗ −0.5747∗∗
(0.2526) (0.2463) (0.2414) (0.2319) (0.2381) (0.2278) (0.2366) (0.2262)

Research sites −0.0192 −0.0060 −0.0094 0.0061 −0.0170 −0.0004 −0.0007 −0.0010

(0.0402) (0.0330) (0.0322) (0.0304) (0.0323) (0.0304) (0.0313) (0.0376)

Global geographic distribution −2.1978∗ ∗ ∗ −2.1260∗∗ −1.9839∗∗ −2.0006∗∗ −2.0970∗∗ −2.1262∗ ∗ ∗ −1.9490∗∗ −2.1214∗∗
(0.8220) (0.8485) (0.8431) (0.8257) (0.8420) (0.8192) (0.8662) (0.9079)

Technological diversity −0.4148 −0.3211 −0.3266 −0.2452 −0.3036 −0.2169 −0.5145 −0.2046

(0.4853) (0.4662) (0.4549) (0.4539) (0.4522) (0.4502) (0.4241) (0.4584)

Non-nanotechnology patent stock (log) 0.3642∗ ∗ ∗ 0.3197∗ ∗ ∗ 0.3105∗ ∗ ∗ 0.3112∗ ∗ ∗ 0.3097∗ ∗ ∗ 0.3111∗ ∗ ∗ 0.2862∗ ∗ ∗ 0.3072∗∗
(0.1187) (0.1133) (0.1107) (0.1092) (0.1069) (0.1049) (0.1086) (0.1210)

Controls—Main Research Facility

Main research and HQ separate 0.2241 0.2560 0.2750 0.2411 0.3315 0.2980 0.3427 0.2651

(0.4438) (0.4341) (0.4348) (0.4166) (0.4347) (0.4149) (0.3982) (0.5255)

Recent relocation −0.0992 −0.0756 −0.0818 −0.1047 −0.0629 −0.0860 0.0686 −0.0833

(0.2153) (0.2260) (0.2221) (0.2176) (0.2245) (0.2196) (0.1906) (0.2163)

California −0.1114 −0.1908 −0.2107 −0.2504 −0.1938 −0.2374 −0.0649 −0.1895

(0.2561) (0.2615) (0.2502) (0.2515) (0.2549) (0.2574) (0.2436) (0.3392)

Local university ties −0.0104 −0.0098 −0.0111 −0.0133 −0.0080 −0.0097 −0.0019 −0.0097

(0.0156) (0.0153) (0.0151) (0.0148) (0.0147) (0.0143) (0.0133) (0.0151)

Local inventor hires 0.0129∗ 0.0051 0.0035 0.0011 0.0038 0.0014 0.0017 0.0016

(0.0072) (0.0084) (0.0083) (0.0085) (0.0077) (0.0078) (0.0084) (0.0099)

Inventor geographic distribution 0.4159 0.5091 0.6056 0.6882∗ 0.5457 0.6345∗ 0.5646 0.6244

(0.3838) (0.3858) (0.3944) (0.3930) (0.3675) (0.3648) (0.3588) (0.3829)

Distant inventors 0.0006 0.0010 0.0006 0.0005 0.0004 0.0004 0.0007 0.0004

(0.0016) (0.0017) (0.0016) (0.0017) (0.0016) (0.0016) (0.0018) (0.0052)

Inventor career experience −0.0011 −0.0016∗ −0.0016∗ −0.0018∗∗ −0.0013 −0.0015∗ −0.0015 −0.0015

(0.0008) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0010) (0.0011)

High mobility inventors −0.0012 −0.0049 −0.0059 −0.0070 −0.0042 −0.0057 −0.0016 −0.0060

(0.0242) (0.0248) (0.0237) (0.0243) (0.0236) (0.0242) (0.0269) (0.0296)

Inventor technological experience −0.0248 −0.0391 −0.0411 −0.0367 −0.0460 −0.0421 −0.0849∗ ∗ ∗ −0.0405

(0.0289) (0.0287) (0.0284) (0.0291) (0.0283) (0.0291) (0.0289) (0.0328)

Median team size −0.1335∗∗ −0.1045∗ −0.1158∗ −0.1049∗ −0.1194∗∗ −0.1076∗ −0.0760 −0.1093∗
(0.0599) (0.0587) (0.0597) (0.0576) (0.0589) (0.0562) (0.0567) (0.0564)

Inventors (log) 0.3925∗∗ 0.3040∗ 0.2715 0.3064∗ 0.2657 0.3009∗ −0.0194 0.3062

(0.1939) (0.1758) (0.1729) (0.1705) (0.1732) (0.1694) (0.1427) (0.2031)
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Table 2.3 (Continued)

Components 0.0081 0.0053 0.0050 0.0027 0.0048 0.0022 0.0094 0.0021

(0.0066) (0.0072) (0.0076) (0.0081) (0.0069) (0.0073) (0.0073) (0.0088)

Nanotechnology patent stock 0.0018 0.0024∗∗ 0.0023∗ 0.0025∗∗ 0.0022∗ 0.0025∗∗ 0.0036∗ ∗ ∗ 0.0024

(0.0012) (0.0011) (0.0012) (0.0012) (0.0012) (0.0012) (0.0013) (0.0018)

Nanotechnology portfolio complexity −0.0066 −0.0186 −0.0143 −0.0123 −0.0127 −0.0097 −0.0134 −0.0097

(0.0531) (0.0519) (0.0530) (0.0528) (0.0517) (0.0515) (0.0528) (0.0585)

Nanotechnology paper stock −0.0017 −0.0011 −0.0014 −0.0013 −0.0016 −0.0016 −0.0015 −0.0015

(0.0011) (0.0012) (0.0012) (0.0012) (0.0011) (0.0011) (0.0013) (0.0027)

Independent Variables

Firm proximity(centered) 0.0133∗ 0.0134∗∗ 0.0094 0.0171∗ ∗ ∗ 0.0134∗∗ 0.0167∗ ∗ ∗ 0.0134

(0.0068) (0.0066) (0.0070) (0.0065) (0.0067) (0.0061) (0.0094)

Cohesion(centered) 0.0856 0.0452 0.0850 0.0400 0.0075 0.0402

(0.1034) (0.1022) (0.0997) (0.0981) (0.1002) (0.0966)

Inefficiency(centered) 0.2033∗ 0.1636 0.2510∗∗ 0.2138∗ 0.2444∗∗ 0.2149∗
(0.1181) (0.1195) (0.1181) (0.1155) (0.1188) (0.1253)

Cohesion × firm proximity 0.0117∗ ∗ ∗ 0.0126∗ ∗ ∗ 0.0118∗ ∗ ∗ 0.0125∗ ∗ ∗
(0.0041) (0.0038) (0.0038) (0.0046)

Inefficiency × firm proximity −0.0107∗∗ −0.0118∗∗ −0.0133∗ ∗ ∗ −0.0119∗
(0.0053) (0.0051) (0.0051) (0.0068)

Other

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes No

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Inverse Mills ratio (λ) 1.5722∗ ∗ ∗ 1.3988∗ ∗ ∗ 1.3913∗ ∗ ∗ 1.4354∗ ∗ ∗ 1.3356∗ ∗ ∗ 1.3726∗ ∗ ∗ 1.3710∗ ∗ ∗
(0.3928) (0.4185) (0.4130) (0.4082) (0.4140) (0.4093) (0.4253)

Constant 0.8424∗ ∗ ∗
(0.1054)

N 2569 2569 2569 2569 2569 2569 2569 2760

Firms in model 317 317 317 317 317 317 317 376

Log likelihood −27170.10 −26744.87 −26593.71 −26339.41 −26403.72 −26108.13 −26724.61 −28256.12

Model d.f. 37 38 40 41 41 42 41 42

* p < 0.1, ** p < 0.5, *** p < 0.01; two tailed tests.
† The estimates presented in Models 1-7 are derived from a conditional fixed effects quasi-maximum likelihood Poisson specification with robust standard errors (in parentheses).
Model 8 reports results from a random effects Poisson specification with bootstrap estimates of the standard errors to account for overdispersion and serial correlation.
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The controls are highly consistent in sign and significance across models and de-

pendent variables. Although most coefficients are in the expected directions, a few

surprising deviations offer insights into the nature of nanotechnology innovation. For

example, in the models of patent impact, publicly traded firms have lower predicted

innovative performance than those that are privately held. One explanation for this

negative association is that as firms grow and seek out investment from public equity

markets, they may shift their focus from exploratory R&D to an emphasis on exploit-

ing discoveries made in their earlier years. Similarly, contrary to expectations, in-

ventor career experience exhibits a negative association with innovative performance.

As inventors gain experience, they may rely on knowledge and routines acquired ear-

lier in their careers. Given the pace of change in nanotechnology, this reliance could

make innovation harder. Finally, inefficiency has a positive and significant associa-

tion with both measures of innovation, a finding that accords with work done using

computational modeling (Lazer and Friedman, 2007).
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Table 2.4: Models of New Combinations†

Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15 Model 16

Controls—Firm

Publicly traded −0.2915 −0.3408 −0.3049 −0.2498 −0.3372 −0.2808 −0.2844 −0.3254

(0.2816) (0.2770) (0.2661) (0.2613) (0.2652) (0.2608) (0.2534) (0.2136)

Research sites −0.0210 −0.0098 −0.0127 0.0006 −0.0204 −0.0060 −0.0033 −0.0055

(0.0347) (0.0286) (0.0259) (0.0244) (0.0259) (0.0240) (0.0243) (0.0282)

Global geographic distribution −1.1624 −1.1098 −0.9545 −0.9084 −1.0860 −1.0495 −0.9172 −0.9278

(0.8370) (0.8359) (0.7970) (0.7806) (0.7871) (0.7660) (0.8079) (0.7414)

Technological diversity 0.0711 0.1199 0.1095 0.1226 0.1448 0.1626 −0.0237 0.2708

(0.3801) (0.3716) (0.3637) (0.3540) (0.3700) (0.3592) (0.3426) (0.3560)

Non-nanotechnology patent stock (log) 0.2751∗∗ 0.2259∗∗ 0.2177∗∗ 0.2183∗∗ 0.2223∗∗ 0.2236∗∗ 0.2013∗∗ 0.2250∗ ∗ ∗
(0.1134) (0.1028) (0.0954) (0.0934) (0.0936) (0.0910) (0.0912) (0.0649)

Controls—Main Research Facility

Main research and HQ separate 0.1126 0.1515 0.1664 0.1521 0.2140 0.2007 0.2031 0.1259

(0.3162) (0.3139) (0.3123) (0.3010) (0.3126) (0.2997) (0.2891) (0.2951)

Recent relocation −0.1005 −0.0877 −0.0926 −0.1119 −0.0811 −0.1009 0.0055 −0.0832

(0.1909) (0.1967) (0.1921) (0.1855) (0.1977) (0.1908) (0.1744) (0.1764)

California 0.0492 −0.0603 −0.0635 −0.0912 −0.0522 −0.0845 0.0242 −0.0738

(0.2236) (0.2408) (0.2224) (0.2269) (0.2318) (0.2379) (0.2144) (0.2030)

Local university ties −0.0147 −0.0130 −0.0139 −0.0158 −0.0116 −0.0131 −0.0078 −0.0138

(0.0143) (0.0138) (0.0136) (0.0131) (0.0133) (0.0128) (0.0107) (0.0137)

Local inventor hires 0.0129 0.0062 0.0043 0.0030 0.0040 0.0026 0.0026 0.0054

(0.0080) (0.0074) (0.0074) (0.0074) (0.0065) (0.0064) (0.0065) (0.0080)

Inventor geographic distribution −0.3431 −0.2457 −0.1113 −0.0554 −0.1569 −0.0933 −0.1241 −0.1368

(0.2888) (0.3020) (0.3277) (0.3319) (0.3053) (0.3074) (0.2875) (0.2992)

Distant inventors 0.0023∗ 0.0027∗ 0.0024∗ 0.0024∗ 0.0022∗ 0.0022∗ 0.0024∗ 0.0021

(0.0012) (0.0014) (0.0013) (0.0014) (0.0013) (0.0013) (0.0014) (0.0038)

Inventor career experience −0.0008 −0.0011 −0.0011∗ −0.0013∗∗ −0.0009 −0.0011∗ −0.0012∗ −0.0010

(0.0008) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0008)

High mobility inventors 0.0094 0.0056 0.0028 0.0009 0.0047 0.0025 0.0054 0.0006

(0.0224) (0.0229) (0.0202) (0.0205) (0.0205) (0.0207) (0.0225) (0.0240)

Inventor technological experience −0.0089 −0.0210 −0.0235 −0.0153 −0.0311 −0.0235 −0.0422 −0.0102

(0.0297) (0.0298) (0.0290) (0.0286) (0.0284) (0.0280) (0.0269) (0.0273)

Median team size −0.0975∗∗ −0.0720 −0.0855∗ −0.0766∗ −0.0896∗∗ −0.0802∗ −0.0634 −0.0888∗∗
(0.0486) (0.0456) (0.0455) (0.0445) (0.0454) (0.0438) (0.0433) (0.0416)

Inventors (log) 0.4260∗ ∗ ∗ 0.3458∗∗ 0.2910∗∗ 0.3229∗∗ 0.2828∗∗ 0.3154∗∗ 0.1200 0.3898∗ ∗ ∗
(0.1461) (0.1416) (0.1377) (0.1301) (0.1368) (0.1278) (0.1077) (0.1354)
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Table 2.4 (Continued)

Components 0.0018 0.0001 0.0000 −0.0021 −0.0005 −0.0029 0.0014 −0.0048

(0.0050) (0.0053) (0.0054) (0.0057) (0.0051) (0.0053) (0.0054) (0.0066)

Nanotechnology patent stock 0.0010 0.0014 0.0014 0.0016 0.0013 0.0016 0.0023∗∗ 0.0014

(0.0011) (0.0011) (0.0011) (0.0011) (0.0012) (0.0011) (0.0012) (0.0015)

Nanotechnology portfolio complexity −0.0220 −0.0296 −0.0242 −0.0241 −0.0214 −0.0205 −0.0224 −0.0244

(0.0546) (0.0558) (0.0557) (0.0558) (0.0551) (0.0552) (0.0547) (0.0602)

Nanotechnology paper stock −0.0012 −0.0007 −0.0010 −0.0009 −0.0012 −0.0011 −0.0010 −0.0009

(0.0013) (0.0013) (0.0012) (0.0012) (0.0012) (0.0012) (0.0013) (0.0025)

Independent Variables

Firm proximity(centered) 0.0124∗ 0.0129∗∗ 0.0086 0.0171∗ ∗ ∗ 0.0130∗∗ 0.0154∗ ∗ ∗ 0.0119∗
(0.0066) (0.0061) (0.0060) (0.0059) (0.0058) (0.0054) (0.0067)

Cohesion(centered) 0.1049 0.0719 0.1063 0.0685 0.0544 0.0689

(0.0940) (0.0868) (0.0950) (0.0854) (0.0869) (0.0852)

Inefficiency(centered) 0.2813∗ ∗ ∗ 0.2484∗∗ 0.3060∗ ∗ ∗ 0.2725∗∗ 0.2930∗ ∗ ∗ 0.2694∗∗
(0.1071) (0.1034) (0.1137) (0.1060) (0.1093) (0.1219)

Cohesion × firm proximity 0.0120∗ ∗ ∗ 0.0130∗ ∗ ∗ 0.0130∗ ∗ ∗ 0.0128∗ ∗ ∗
(0.0026) (0.0023) (0.0024) (0.0036)

Inefficiency × firm proximity −0.0116∗ ∗ ∗ −0.0130∗ ∗ ∗ −0.0139∗ ∗ ∗ −0.0131∗ ∗ ∗
(0.0040) (0.0036) (0.0038) (0.0045)

Other

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes No

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Inverse Mills ratio (λ) 1.1348∗ ∗ ∗ 0.9384∗∗ 0.8946∗∗ 0.9060∗∗ 0.8400∗∗ 0.8435∗∗ 0.9063∗ ∗ ∗
(0.3834) (0.4022) (0.3986) (0.3936) (0.3925) (0.3881) (0.3259)

Constant 0.2093∗
(0.1187)

N 2491 2491 2491 2491 2491 2491 2491 2760

Firms in model 302 302 302 302 302 302 302 376

Log likelihood −5831.26 −5779.05 −5733.18 −5694.37 −5702.61 −5656.67 −5691.43 −7121.68

Model d.f. 37 38 40 41 41 42 41 42

* p < 0.1, ** p < 0.5, *** p < 0.01; two tailed tests.
† The estimates presented in Models 9-16 are derived from a conditional fixed effects quasi-maximum likelihood Poisson specification with robust standard errors (in parentheses).
Model 16 reports results from a random effects Poisson specification with bootstrap estimates of the standard errors to account for overdispersion and serial correlation.
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Hypothesis 1 predicts that proximity will positively affect a firm’s innovation.

Models 2 and 10 test this hypothesis by introducing the proximity variable. The

results show that proximity to other firms (weighted by their annual nanotechnology

patents) has a positive and significant effect on impact and new combinations. These

findings support Hypothesis 1.

The next hypotheses address the interdependent effects of inventor network struc-

ture and firm proximity on innovation. Hypothesis 2 predicts a positive interaction

between proximity and intraorganizational network cohesion. When firms have many

neighbors, cohesive networks benefit innovation because they facilitate information

processing and focused collaboration. In addition, given the frequency of spillovers in

more concentrated areas, firms that have cohesive inventor networks in these settings

are at less risk for the knowledge redundancies that plague such social structures.

Hypothesis 3 predicts that inefficient networks will be ideal when firms are situated

in more isolated environments with fewer peers that perform related R&D. In these

contexts, inventors may be better able to compensate for reduced access to spillovers if

they have opportunities to bridge disconnected colleagues who serve as nonredundant

information sources. These types of networks should also promote parallel problem

solving.

Models 6 and 14 test these hypotheses by introducing interactions between the

two measures of network structure—cohesion and inefficiency—and firm proximity.

The models show strong support for both hypotheses. The interaction between cohe-

sion and proximity is positive and significant in both Models 6 (impact) and 14 (new

combinations); as proximity to other nanotechnology firms increases, more cohesive

inventor networks lead to greater innovative performance, as predicted by Hypothe-

sis 2. Both models reveal, in support of Hypothesis 3, a significant negative associ-

ation between proximity and inefficiency. These coefficients imply that as proximity

decreases, inefficient networks are beneficial.
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Figure 2.3: Predicted patent impact and new combinations. Calculations for impact are based on Model 6 and those
predicting new combinations come from Model 14. In both cases, all control variables are held at their mean. Measures
of high and low density are taken from the 90th and 10th percentiles of the regional density variable, respectively.

The plots displayed in Figure 2.3 offer illustrations of the interdependent effects

of inventor network structure and firm proximity on innovation. The top two pan-

els show predicted patent impact as a function of network cohesion (left side) and

inefficiency (right side) for sample firms at the 10th, mean, and 90th percentile of
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firm proximity using estimates derived from Model 6, while the bottom two panels

present analogous plots for predicted new combinations using estimates from Model

14. To put the illustrated levels of firm proximity in perspective, note that the value

of this measure for companies in San Jose, California—also the home of NeoPho-

tonics Corp.—is only slightly above the 90th percentile (in the 91st). By contrast,

NanoScale Materials, Inc., in Manhattan, Kansas, has a firm proximity at almost

exactly the 10th percentile. The values displayed for cohesion and inefficiency all lie

within the observed data.

The figure reveals interesting nuances about the relationship between proximity

and network structure. First, consider the two plots on the left-hand side, which

illustrate the predicted effects of cohesion. Both graphs show that the most advan-

taged firms are those that are located near many other organizations and that also

have highly cohesive networks. In fact, even at the mean level of cohesion (which is 0

after centering), firms with high proximity to industry peers have a predicted patent

impact of 1.88 and a predicted 1.62 new combinations—respectively a 31 and 29 per-

cent increase over those at the mean level of proximity. The two plots also suggest

that cohesion leads to important performance variations within levels of proximity.

As Hypothesis 2 predicts, firms with high proximity to other organizations see the

most improvement with increases in cohesion. For example, a two standard deviation

increase above mean cohesion (i.e., over the mean for cohesion) leads to a predicted

2.35 impact-weighted patents and 2.08 new combinations, increases of 25 and 28 per-

cent, respectively. By contrast, among firms with less proximity, inventor network

cohesion leads to a decrease in performance. Here, a two standard deviation increase

above mean cohesion results in predictions of 1.14 impact-weighted patents and 1.03

new combinations, or respective performance declines of 8 and 6 percent.

The two panels displayed on the right side of Figure 2.3 elaborate the effects of

inefficient networks on innovation. Findings are similar to those for network cohe-
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sion: highly proximate firms have the best expected performance on both dependent

variables when inefficiency is at its mean (which is also zero after centering). These

predictions start to change with a two standard deviation increase above mean in-

efficiency (0.58 on the x-axis), where the gap separating firms at all three levels

narrows considerably. This change stems from the different implications of inefficient

networks—and brokerage opportunities and parallel problem solving—for firms at

varying levels of proximity. For highly proximate firms, a two standard deviation

increase above mean inefficiency leads to a 2.9 percent decrease in impact, while the

predicted number of new combinations remains effectively unchanged. By contrast,

firms with much lower proximity should see a 22 percent increase in impact and a

29 percent increase in new combinations for a corresponding two standard deviation

move up on inefficiency.

Although the effects are most pronounced for firms with either very many or very

few neighbors, fit between proximity and intraorganizational network structure is

consequential for companies in many geographic settings. To see this, consider once

again the 2003 map of U.S. nanotechnology firms displayed in Figure 2.1. Models 6

and 14 suggest the presence of an inflection point for determining whether more co-

hesion is likely to be beneficial or harmful at values of firm proximity that correspond

to locations such as the Chicago suburbs (e.g., Hoffman Estates, Willowbrook). In

2003, 62 percent of sample firms were above this inflection point; 38 percent were

below. If a firm is more isolated than those in such locations, then increases in in-

traorganizational network cohesion will likely harm performance. If a firm is less

isolated, then increases in cohesion will generally be beneficial. For inefficiency, Mod-

els 6 and 14 reveal an inflection point at values of firm proximity corresponding to

locations such as Livermore, California. The average proximity of a firm located in

Livermore is approximately one standard deviation higher than the average proximity

of a firm located in the Chicago suburbs. In 2003, 17 percent of sample firms were

53



above this inflection point; 83 percent were below. The position of this inflection

points suggests that, for instance, firms moving from Livermore to the even more

concentrated Menlo Park, California, should try to minimize network inefficiencies.

By contrast, firms moving from Livermore to the Chicago suburbs will likely have

better performance if inefficiency increases.13

In sum, all three hypotheses receive strong support. Location matters for in-

novation in nanotechnology. However, the magnitudes of locational benefits—and

constraints—are moderated by intraorganizational network structure. If a firm per-

forms R&D in proximity to industry peers, cohesive networks can promote innovation

by making it easier for inventors to process information and enroll the support of their

colleagues. By contrast, if a firm has fewer neighboring organizations, an inefficient

network can be beneficial by creating brokerage opportunities that allow inventors ac-

cess to nonredundant information and by promoting parallel problem solving. Finally,

note that the results do not suggest that network structure substitutes for location.

Although firms with high proximity do not perform better in all cases, at mean levels

of cohesion and inefficiency, these firms have more favorable outcomes than others on

both dependent variables. The results do imply, however, that performance advan-

tages accrue to firms that have the right fit between their intraorganizational network

structure and geographic context.

2.7 Robustness Checks

I performed a variety of analyses to examine the robustness of the findings. One

concern was the potential endogeneity of location choice. If firms choose to locate

in particular areas that offer unmeasured benefits for nanotechnology R&D, then the

13 Although pairing these inflection points with locations on a map is informative for purposes
of illustration, it is important to remember that the design of the proximity measure suggests that
absolute counts of neighbors are less important than relative distances between proximate firms,
weighted by their patent productivity.
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observed benefits of proximity for innovation may actually result from the concen-

tration of astute entrepreneurs. The fixed-effects specification, lag structure of the

panel, and controls for patent stocks and inventor experience should alleviate many

of these concerns (Blundell et al., 1995). However, knowledge about the growth of

nanotechnology could be used to provide an additional robustness check. As noted

earlier, equipment prices limited the commercial pursuit of nanotechnology until the

late 1980s and early 1990s. To the extent that factors particular to nanotechnology

drive location choices (e.g., proximity to customers, state tax credits), consideration

of these factors should have been much less influential for firms that selected locations

in the distant past. Demonstrating the results hold for this subsample would weaken

the plausibility of endogeneity-based explanations. Models 21 and 22 in Table 2.5

provide estimates for firms that established their nanotechnology R&D in facilities

that were in existence before 1990 and did not relocate during the study. Because

these facilities never moved, the coefficients for recent relocation and California are

not identified. Despite losing 60 percent of firms and 50 percent of firm-year obser-

vations, the results support the main findings.
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Table 2.5: Robustness Checks†

Model 17 Model 18 Model 19 Model 20 Model 21 Model 22

(Impact) (NC) (Impact) (NC) (Impact) (NC)

Controls—Firm

Publicly traded −0.5531∗ ∗ ∗ −0.2684 −0.6624∗ ∗ ∗ −0.3599 −0.7771∗ ∗ ∗ −1.2231∗ ∗ ∗
(0.2118) (0.2602) (0.2526) (0.2331) (0.2912) (0.2641)

Research sites 0.0016 −0.0015 0.0025 −0.0161 0.0063 0.0048

(0.0287) (0.0243) (0.0313) (0.0239) (0.0292) (0.0223)

Global geographic distribution −2.0803∗ ∗ ∗ −1.0444 −1.8595∗∗ −1.0111 −1.7495∗ −0.6640

(0.8069) (0.7831) (0.8272) (0.7391) (0.9222) (0.8610)

Technological diversity −0.0396 0.2866 −0.1641 0.1825 0.1785 0.3664

(0.4887) (0.3913) (0.4586) (0.3466) (0.5053) (0.3552)

Non-nanotechnology patent stock (log) 0.3059∗ ∗ ∗ 0.2051∗∗ 0.2744∗ ∗ ∗ 0.1863∗∗ 0.5074∗ ∗ ∗ 0.3934∗ ∗ ∗
(0.1034) (0.0932) (0.1030) (0.0853) (0.1289) (0.1112)

Controls—Main Research Facility

Main research and HQ separate 0.2899 0.1848 0.3776 0.2388 0.8559∗ ∗ ∗ 0.5673∗ ∗ ∗
(0.4300) (0.3109) (0.4752) (0.3175) (0.1686) (0.1393)

Recent relocation −0.1110 −0.1580 −0.1850 −0.2819∗
(0.2345) (0.2115) (0.2418) (0.1704)

California −0.1978 −0.0712 −0.2903 −0.1386

(0.2794) (0.2600) (0.3228) (0.3146)

Local university ties −0.0108 −0.0149 −0.0189 −0.0131 −0.0167 −0.0119

(0.0147) (0.0132) (0.0187) (0.0117) (0.0199) (0.0186)

Local inventor hires 0.0053 0.0068 −0.0055 0.0028 −0.0031 −0.0038

(0.0076) (0.0066) (0.0098) (0.0072) (0.0103) (0.0083)

Inventor geographic distribution 0.6239∗ −0.1512 0.4497 −0.2961 1.1682∗ ∗ ∗ 0.2986

(0.3616) (0.2927) (0.3948) (0.3065) (0.4337) (0.3445)

Distant inventors 0.0006 0.0024∗ 0.0002 0.0020∗ 0.0003 0.0024

(0.0016) (0.0013) (0.0015) (0.0012) (0.0021) (0.0016)

Inventor career experience −0.0012 −0.0009 −0.0014∗ −0.0009 −0.0017∗ −0.0013∗
(0.0008) (0.0006) (0.0008) (0.0006) (0.0009) (0.0007)

High mobility inventors −0.0041 0.0060 −0.0044 0.0042 −0.0057 0.0022

(0.0248) (0.0231) (0.0236) (0.0204) (0.0234) (0.0211)

Inventor technological experience −0.0429 −0.0200 −0.0570∗ −0.0274 −0.0294 −0.0490

(0.0318) (0.0298) (0.0317) (0.0254) (0.0323) (0.0381)

Median team size −0.0859∗ −0.0536 −0.0970 −0.0651 −0.1028∗ −0.0696

(0.0510) (0.0402) (0.0613) (0.0449) (0.0571) (0.0511)

Inventors (log) 0.3417∗ 0.3823∗∗ 0.2538 0.3109∗∗ 0.3773∗∗ 0.4515∗ ∗ ∗
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Table 2.5 (Continued)

(0.1845) (0.1484) (0.1653) (0.1252) (0.1630) (0.1220)

Components 0.0013 −0.0035 0.0040 0.0013 −0.0073 −0.0121∗∗
(0.0086) (0.0068) (0.0071) (0.0050) (0.0077) (0.0055)

Nanotechnology patent stock 0.0025∗∗ 0.0017 0.0032∗ ∗ ∗ 0.0021∗∗ 0.0013 0.0004

(0.0011) (0.0010) (0.0012) (0.0010) (0.0010) (0.0010)

Nanotechnology portfolio complexity 0.0020 −0.0163 −0.0416 −0.0397 0.0683 0.0091

(0.0496) (0.0563) (0.0540) (0.0568) (0.0661) (0.0684)

Nanotechnology paper stock −0.0011 −0.0006 −0.0010 −0.0011 −0.0022 −0.0032

(0.0012) (0.0013) (0.0012) (0.0011) (0.0027) (0.0024)

Independent Variables

Firm proximity(centered) 0.0187∗∗ 0.0164∗∗ 0.0183∗ ∗ ∗ 0.0147∗ ∗ ∗ 0.0232∗ ∗ ∗ 0.0206∗ ∗ ∗
(0.0073) (0.0067) (0.0069) (0.0052) (0.0057) (0.0056)

Cohesion(centered) −0.0033 0.0222 0.0890 0.1016 0.0917 0.1512∗
(0.0997) (0.0901) (0.1086) (0.0956) (0.1068) (0.0916)

Inefficiency(centered) 0.3041∗∗ 0.3145∗ ∗ ∗ 0.1496 0.2275∗∗
(0.1302) (0.1195) (0.1145) (0.0969)

Constraint(centered) 0.2144 0.2795

(0.4875) (0.4107)

Cohesion × firm proximity 0.0104∗ ∗ ∗ 0.0115∗ ∗ ∗ 0.0108∗ ∗ ∗ 0.0114∗ ∗ ∗ 0.0090∗ 0.0111∗ ∗ ∗
(0.0035) (0.0026) (0.0033) (0.0024) (0.0051) (0.0033)

Inefficiency × firm proximity −0.0131∗∗ −0.0127∗ ∗ ∗ −0.0123∗ ∗ ∗ −0.0142∗ ∗ ∗
(0.0058) (0.0037) (0.0047) (0.0031)

Constraint × firm proximity 0.0523∗ ∗ ∗ 0.0455∗ ∗ ∗
(0.0160) (0.0146)

Other

Firm fixed effects Yes Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes Yes

Inverse Mills ratio (λ) 1.2904∗ ∗ ∗ 0.8165∗∗ 1.1204∗ ∗ ∗ 0.6214∗ 2.1309∗ ∗ ∗ 1.7765∗ ∗ ∗
(0.4198) (0.4161) (0.3898) (0.3642) (0.4525) (0.4875)

N 2569 2491 2561 2483 1374 1344

Firms in model 317 302 315 300 130 125

Log likelihood −25956.54 −5675.59 −21554.77 −4355.76 −16444.15 −3646.90

Model d.f. 42 42 42 42 40 40

* p < 0.1, ** p < 0.5, *** p < 0.01; two tailed tests.
† All estimates are derived from a conditional fixed effects quasi-maximum likelihood Poisson specification with robust standard errors (parentheses).
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Next, I evaluated how sensitive the results were to a particular lag structure.

Following research on technology lags (Kotha et al., 2011) I defined the dependent

variables as, respectively, the number of impact-weighted nanotechnology patents

and the number of nanotechnology patents introducing new combinations produced

by each firm in two subsequent time periods (i.e., t+1 and t+2). However, because I

relied on application dates for assigning patents to years—which usually correspond

closely to the date of invention—and nanotechnology firms are generally quick to seek

patent protection, I also considered a shorter lag, one year. Models 19 and 20 report

these results, which are consistent with those relying on lags of two periods.

I also consider an alternative measure of inefficient networks. As discussed above,

average path length is an attractive proxy because it captures networks that are less

connected and in which information diffusion is slow (Lazer and Friedman, 2007).

However, path lengths are undefined for nodes that reside in different components.

To confirm that the findings are not dependent on this measure choice, I also estimated

models that substituted Burt’s (1992) measure of constraint averaged over all actors

in the network. Lower values on this measure signal less connected networks. The

results, shown in Models 17 and 18, support the core findings.

The hypotheses are based on the assumption that a key advantage of proximity is

access to knowledge. Thus, I weighted firm proximity by the annual count of patents

awarded to each sample firm. However, patents may be a poor proxy for knowledge

access; furthermore, a few isolated firms with unusually high patenting rates might

influence the measure unexpectedly. In unreported analyses I address these concerns

using a version of firm proximity with the weight, xj, set to 1. The results are

supportive of the findings with the alternative measure.

Finally, some authors suggest that including the inverse Mills ratio in nonlinear

models may lead to inconsistent estimates (Terza, 1998). In unreported analyses,

I performed a Box-Cox transformation of the two count dependent variables and
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reestimated the models with OLS. The results are similar to those discussed above.

2.8 Discussion and Conclusion

Organizational innovation is a complex phenomenon, one that in many cases ap-

pears largely driven by serendipity. Despite this complexity, researchers have uncov-

ered many factors bearing on firms’ ability to generate novel ideas, processes, and

products. Since at least the time of Marshall’s (1890, 271) observation that in geo-

graphically concentrated industries “the mysteries of the trade become no mysteries;

but are as it were in the air,” social scientists have emphasized the importance of

proximity for innovation. To generate the novel recombinations that underpin impor-

tant discoveries, actors need exposure to diverse knowledge. Moreover, in dynamic

fields of technology, cutting-edge knowledge is often difficult to codify and transmit

over distances. Location near other organizations helps firms acquire both sorts of

knowledge by increasing chance encounters—and thus the broad diffusion of diverse

information—and by facilitating face-to-face interaction (Bathelt et al., 2004; Malm-

berg and Maskell, 2006).

More recently, organizational theorists have extended these insights by showing

that not all firms benefit equally from proximity (McEvily and Zaheer, 1999; Tallman

et al., 2004). Researchers emphasize that the effects of proximity on innovation are

moderated by whether a firm can pair information acquired locally and informally

from neighbors with other more exclusive sources of new knowledge. Firms acquire

such knowledge by establishing ties to distant collaborators (Bathelt et al., 2004;

Whittington et al., 2009), recruiting employees (Saxenian, 1994; Zucker et al., 1998),

embedding themselves in scientific communities (Gittelman, 2007; Owen-Smith and

Powell, 2004), or forging other connections outside their boundaries.

Despite these advances, theories of geography and innovation in organizations

remain limited in several respects. Importantly, because they have been designed
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primarily to explain the process of knowledge acquisition, existing perspectives are

not equipped to account for how firms that are located near many other organizations

internalize, process, and use the potentially enormous volumes of information avail-

able to them locally. Contemporary theories also do not address how, despite lacking

the advantages of proximity, some firms that are relatively isolated geographically are

able to produce important innovations.

The approach developed in this chapter is an effort to advance theories of geogra-

phy and innovation by integrating insights from research on networks in organizations

to demonstrate the importance of considering firms’ local external environments and

their internal patterns of collaboration in tandem. The findings show that firms can

be successful innovators whether they are located in the heart of Silicon Valley or in

the more remote areas of the American Midwest, but doing especially well in either

environment requires making the most of where they are. Intraorganizational net-

works are a key source of support for inventors, but the structure of these networks

has consequences for their value. If a firm is proximate to many industry peers, then

a cohesive network helps inventors process knowledge spillovers and mobilize support

from colleagues for developing their ideas. By contrast, when a firm has few prox-

imate organizations from which to capture spillovers, inefficient networks that are

slow at diffusing information are beneficial. Such networks provide opportunities for

brokerage and parallel problem solving, which together help create and sustain the

diverse ideas and perspectives needed for innovation.

While firms can succeed in both higher- and lower-proximity environments, they

do not necessarily succeed equally. An important though unhypothesized finding

of this study is that firms with high proximity to industry peers and very cohesive

networks should have the greatest absolute performance. One explanation for this

finding is that these firms have the best of both worlds: from their external environ-

ment, their employees obtain frequent exposure to new knowledge, which stimulates
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ideas and provides raw material for novel recombinations. Further, the cohesive struc-

ture of their networks suggests that employees of these firms will find support from

their colleagues in developing ideas. Despite these benefits of proximity, location near

many neighboring organizations can pose challenges. As illustrated in Figure 2.3, for

those located in the highest-proximity areas, sparsely connected, inefficient networks

lead to worse performance than will be demonstrated by comparable firms in more

isolated environments. Further, the findings show that when firms in isolated locales

have highly inefficient networks, they are able to perform better than some peers in

higher-proximity areas. In sum, although appropriate intraorganizational network

structures should not be viewed as a substitute for proximity, network structure does

moderate the benefits of proximity for innovation in important ways.

To arrive at these conclusions, in this study I employed a novel research design

that made use of patent data to approximate the structure of collaborations among

inventors at several hundred high-technology firms over a 14-year period. Though

existing studies examine intraorganizational networks, they tend to focus on single

organizations and examine the relationships among individuals or units. While this

work has led to valuable insights, research comparing global network structures among

a broad sample of organizations is necessary for understanding how aggregate pat-

terns of relations and the structural embeddedness of actors influence performance

(Granovetter, 1992; Phelps et al., 2012). Moreover, this study also used detailed,

time-varying data on R&D locations to situate each intraorganizational network in

physical space. Care was taken to control for explanations that emphasize knowl-

edge acquisition from external sources such as collaboration, mobility, and science.

Together, these data enabled a rare investigation that relates insights from macro

research on the external determinants of innovation with those from micro studies

that point to the importance of internal network structures.

Before discussing some broader implications, I note several limitations. First,
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the models presented here use a measure of proximity based on distance to other

firms. However, organizations including universities, nonprofit research institutes,

and government laboratories are active in nanotechnology and may provide spillover

benefits. Moreover, for some firms, distance to a key partner could be more important

than overall proximity. Future research should explore more nuanced measures of

regional composition to offer a better understanding of the effects of geography and

intraorganizational ties on outcomes of interest. Second, like the models in all studies

that derive network and innovation data from archival sources like patents, the models

used in this chapter miss many of the collaborative ties and innovations that leave

no paper trail. Though I have made efforts to mitigate this problem by studying

a field where patenting is common, future research could benefit from alternative

data on intraorganizational ties and performance, such as scientific publications or

surveys. These data would also be valuable for better documenting the interpersonal

connections of a firm’s employees to colleagues outside the organization—such as

those to collaborators from earlier career stages—and how various human resource

practices might facilitate or constrain the persistence of these ties (Stern, 2004).

Despite these limitations, the theoretical approach and empirical findings have

implications for research on geography and innovation, collaboration networks, and

social capital.

Social structure and the geography of innovation. A major contribution of

this study is that it shows how internal social structures moderate the effects of ge-

ography on organizations. I focused specifically on the implications of this insight for

firms’ performance at innovation. Beyond helping to account for innovation among

firms in very different local environments, knowledge of collaborative structures within

organizations is likely to have broader value for research on the geographic diffusion

of knowledge and ultimately the vitality of regional economies. An array of recent

work argues that the character of different regions results in large part from the net-
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works connecting organizations within them (Bell, 2005; Whittington et al., 2009).

Surprisingly, even among comparatively successful regions, these network structures

vary widely in form (Buhr and Owen-Smith, 2010; Saxenian, 1994). Moreover, some

research suggests that well-known models of network diffusion do poorly at explain-

ing regional knowledge flows (Fleming et al., 2007). Future research on how networks

affect the geographic diffusion of knowledge might benefit from attending to patterns

of collaboration within the organizations that constitute the nodes of such networks.

To the extent that they vary among organizations, within and across regions, intraor-

ganizational networks should have consequences for broader knowledge flows because

of differences in their capacity to absorb, transmit, and alter the information that

diffuses to (and through) them geographically.

The findings of this study also point more broadly to the need for systematic

research on geographically isolated firms. Existing work on geography and innovation

largely focuses on explaining the conditions under which proximity leads to maximum

performance gains. Yet many innovative companies, even in knowledge-intensive

sectors, are located far from peer organizations. Future analyses should seek to further

explain the success of such companies given the disadvantages of isolation. Additional

research in this area will both help to clarify the conceptual relationship between

geography and innovation and also lead to valuable insights for practicing managers

of firms in locations less proximate to industry peers.

Collaboration networks and performance. This study also makes theoretical

contributions to the understanding of networks in organizations. Researchers have

made progress in identifying the relative advantages and disadvantages of different

network structures for a variety of outcomes ranging from creativity and innovation

to career advancement (Burt, 2004; Fleming et al., 2007). A consistent finding in

this literature echoes an early contingency theory observation that “there is no best

way to organize” (Galbraith, 1973, 2). Prior research at the individual level has
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focused extensively on how factors like personality, task requirements, and tie strength

moderate the effects of networks (Hansen, 1999; Mehra et al., 2001; Uzzi, 1997).

My approach builds on these insights from ego network research but departs by

considering contingencies in the overall structure of relations—at the global network

level. The findings accord with ego research in supporting the value of a contingency

approach. However, the results of this study also suggest that theoretical insights

drawn from ego network research about the effects of different contingencies may

not easily translate to the global level. Moreover, the functioning of global network

structures can appear counterintuitive if interpreted through an ego network lens.

For example, a key finding of this study is that organizations with less access to new

knowledge from geographically proximate sources have better performance if their

employees are less connected to one another. In such cases, decreases in connectivity

are beneficial because they create and sustain diversity through parallel problem

solving and by opening brokerage opportunities. This diversity prevents organizations

from settling prematurely on suboptimal solutions to problems (by generating many

to pick from) and allows employees to bridge diverse pockets of knowledge in search

of novel recombinations (Burt, 2004; Lazer and Friedman, 2007).

Note that my prediction of greater performance is at a collective, not an indi-

vidual, level. Lower connectivity does not imply that all actors in a network will

see performance gains; some individuals will likely do worse because they either de-

vote too much time to following unpromising leads or because they cannot identify

a necessary piece of information, both contingencies that might be averted with bet-

ter communication. Likewise, few theories of networks suggest that at an ego level,

becoming less connected or occupying a network position that is less efficient for

collecting information fosters innovation (Singh and Fleming, 2010; Wuchty et al.,

2007). Thus, the effects of network contingencies can diverge across ego and global

levels of analysis; future research should work to identify the applicability of different
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contingencies across levels.

Structure of community social capital. The findings of this study also have

implications for community social capital, defined as “the benefits that accrue to

the collectivity as a result of the maintenance of positive relations between different

groups, organization units, or hierarchical levels” (Ibarra et al., 2005, 360). From

the time of a few early theoretical statements (Bourdieu, 1986; Coleman, 1988), com-

munity social capital theorists have generally emphasized the importance of dense,

cohesive ties among network members for producing collective benefits (Lin, 1999).

Network fragmentation, moreover, is typically expected to create a host of negative

consequences for members of a community (Burt and Ronchi, 1990; Putnam, 2000).

The results presented in this chapter, particularly the finding that less connected net-

works can improve collective innovation, suggest that a more nuanced, contingency-

based perspective might prove useful in future research on community social capital.

Although dense, cohesive ties provide community members with certain benefits, such

as trust and monitoring (Coleman, 1988), they can also preclude other advantages,

such as diverse ideas and perspectives. Depending in the goals of those embedded in

the community, greater or lesser connectivity could be beneficial.

Team design and venture location choice. This study also has a number

of managerial implications. Although it may seem counterintuitive in light of beliefs

about the value of connectivity, managers seeking to stimulate innovation should con-

sider structuring teams in ways that limit overall ties among their R&D employees,

especially when those employees have little exposure to new knowledge from peers

at proximate organizations. Decreasing connectivity might lead to slower informa-

tion sharing, but such inefficiencies can also help preserve the diverse perspectives

necessary for tackling complex problems. To decrease connectivity, managers could

create formal units to house separate project teams. Skunk-works models that intro-

duce rigid, physical separations between new product development groups might also
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be appropriate (Fang et al., 2010). By contrast, for managers operating in settings

proximate to industry peers, increasing cohesion among R&D employees should foster

innovation. Managers might achieve greater cohesion by holding frequent meetings at

which employees who work on diverse kinds of projects can come together and engage

in collective problem solving (Hargadon and Sutton, 1997).

The results might also be useful for entrepreneurs or managers seeking to choose

a location for a new venture or relocate an existing one. Dense concentrations of

firms in places like Silicon Valley or Boston are attractive because they facilitate

local knowledge transfer and offer other well-documented benefits (Owen-Smith and

Powell, 2004). Managers, however, might have reasons for favoring other locations

that are less proximate to rivals; in that case, the findings of this study suggest, closely

monitoring patterns of collaboration among employees might attenuate some of the

innovation disadvantages of isolation. Put differently, the findings of this research

should help managers evaluate the trade-offs of different kinds of locations.
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CHAPTER III

The Dark Side of Brokerage: Conflicts Between

Individual and Collective Pursuits of Innovation

f

3.1 Introduction

In the vocabulary of social network analysis, a broker is a person who is connected

to people who are not directly connected to one another (Burt, 1992).1 Although in-

terest in this general phenomenon can be traced back at least to the writings of Simmel

(1950), research on the causes and consequences of brokerage has increased dramat-

ically over the past two decades (Ahuja, 2000; Fernandez and Gould, 1994; Fleming

et al., 2007). One common finding among studies in this area is that brokers tend

to have better outcomes. For instance, people with less densely interconnected con-

tacts are likely to get more compensation than their colleagues (Burt, 1997; Mizruchi

et al., 2011; Podolny and Baron, 1997). Individuals who occupy brokerage positions

in a network also tend to have more timely access to information about job openings

and other resources that help them advance their careers. And many studies report

1More precisely, people have the opportunity to broker if they have disconnected contacts. They
may or may not act on that opportunity. Nevertheless, for smoother exposition and to follow the
convention of earlier writing, I use the terms “broker” and “brokerage” to imply these opportunities.
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positive associations between network brokerage, creativity, and other dimensions of

workplace performance (Aral and Van Alstyne, 2011; Lingo and O’Mahony, 2010;

Obstfeld, 2005). The mechanism by which brokerage may lead to these sorts of ben-

efits depends on the context, but in many cases it emanates from the broker’s ability

to access and control the flow of information among his or her disconnected contacts.

As these findings illustrate, the private benefits of brokerage are well documented

in prior research. However, surprisingly little is known about the implications of

brokerage for people other than the person in the broker role. This knowledge gap is

surprising because by definition, brokerage involves the broker and two other people.

Do these other individuals get any returns to performance by virtue of their mediated

connection? If so, how do these returns compare to those of the broker? More broadly,

do the effects of brokerage matter for the organizations in which the broker and the

people he or she connects are embedded?

There are undoubtedly many cases where having a tie to a broker is a good

thing. After all, by virtue of their position, brokers have access to unique information,

contacts, and other resources that they may share with others.

However, there is also a potentially darker side of brokerage. A large part of

what may make a broker especially helpful is his or her ability to access and share

information. But there are many barriers to sharing. For instance, brokers may

deliberately refrain from passing along information if doing so would allow them to

exploit potentially valuable opportunities on their own. Similarly, because the value

of their position often depends on the absence of ties between their contacts, brokers

may choose not to facilitate otherwise useful connections. And even in cases where

they do not behave opportunistically, brokers may withhold potentially valuable in-

formation because sharing would require they devote too much time and energy to

translation. Finally, having disconnected contacts may place more demands on bro-

kers, and therefore leave them with less time and attention that they can devote to
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each of their contacts individually. Given these considerations, it is unclear whether

the advantages of a broker’s position spill over in a positive, negative, or neutral way

to influence other people’s performance.

In this chapter, I explore the potentially negative effects of connecting to bro-

kers for innovation using data on the intraorganizational collaboration networks of

inventors in 37 pharmaceutical firms that were active in research and development

(R&D) between 1997 and 2001. To help disentangle the causal effects of brokerage, I

use propensity score weighting in a pretest–posttest framework with a double robust

estimator that is unbiased if either the model for exposure or outcome (or both) are

correctly specified. Additionally, when testing the effects of connection to a broker,

I am able to limit my investigation to changes among existing contacts, where the

decision to connect was made prior to the contact becoming a broker and is therefore

exogenous to the focal inventor’s performance. My findings are strongly consistent

with the notion of a dark side of brokerage. Using multiple proxies for innovation, I

find that becoming a broker has a positive and significant effect on performance, but

the opposite is true for having a connection to one.

The remainder of this chapter is organized as follows. First, I review the existing

theoretical and empirical work on brokerage and innovation to develop my hypotheses.

Next, I offer a sketch of the research setting, which I follow with an overview of my

statistical approach and strategy for identifying causal effects. I then turn to the

findings, and close with a discussion of their implications for theories of social capital,

innovation, and future research.

3.2 Brokerage and Innovation

In this section, I offer theoretical arguments in support of two predictions alluded

to above. First, net of other factors, becoming a broker should have a positive effect

on an inventor’s performance at innovation. Although not without exceptions (e.g.,
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Ahuja, 2000; Lee, 2010), prior research offers support for this idea and therefore the

role of the prediction in this study is to help establish a baseline. The second predic-

tion is that connecting to a broker should negatively affect an inventor’s performance,

again holding other factors constant. Earlier writings also anticipate this prediction

(e.g., Brass, 2009), but relative to the direct effects of brokerage it has received far

less attention, and I am unaware of any empirical investigations that examine the

consequences of connection to a broker for innovation. Below, I discuss each of these

hypotheses in greater detail.

One prominent view of innovation suggests that novelty emerges from the re-

arrangement of existing physical and conceptual materials into new configurations

(Arthur, 2009; Fleming, 2001; Schumpeter, 1934). For people in the business of cre-

ating new things, access to colleagues with diverse ideas, perspectives, and experiences

is essential because it expands the amount of raw material available to them for re-

combination and offers insight into possible applications. Given the importance of

diversity for creativity, it seems reasonable to anticipate that an inventor’s position in

a social network will influence his or her performance at innovation. But what kinds

of network positions are most helpful?

Evidence from prior research suggests that having ties to people who are not di-

rectly connected to one another is useful for gaining exposure to diverse information.

One reason for this is that there is generally greater variation in the information that

people have between groups than within them. People tend to pass information along

more quickly to friends, colleagues, and acquaintances with whom they are closely

connected; after those friends, colleagues, and acquaintances receive that information,

they may in turn pass it along to their own friends, colleagues, and acquaintances.

The information among people with many dense interconnections tends to be more

homogeneous because of this sharing behavior; if a person does not get a particular

piece of information from one contact, he or she may still get it from another mutual
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acquaintance (Granovetter, 1973). The opposite is true for disconnected contacts.

Because they travel in different circles, an inventor’s disconnected contacts will likely

offer him or her exposure to more diverse information. Therefore, occupying a bro-

kerage position should enhance inventors’ performance at innovation, not only by

increasing the stock of physical and conceptual material that they may recombine,

but also by exposing them to more general information about different processes,

methods, and tools to support their workflow.

Connection to otherwise disconnected partners may also enhance an inventor’s

performance in deeper ways, especially through its effects on learning. Burt (2004,

2005) touches on this idea in describing what he calls the “vision advantage” of

brokerage. In his formulation, brokers have a vision advantage because their position

helps them become “more familiar with alternative ways of thinking and behaving”

and provides a window into “options otherwise unseen” (Burt, 2005, 59). The vision

advantage of brokerage is related to the benefit of access to diverse information, but

it also differs in important ways. Access to diverse information should be useful

primarily for inventors because it allows them to import materials that they may

use in novel combinations. By contrast, a vision advantage implies a deeper change

in perspective that happens when a person is pushed to be more open-minded. To

the extent that occupying a brokerage position makes an inventor more receptive

to different ideas, perspectives, and experiences more generally, he or she may be

better at developing innovations that build on physical and conceptual materials

from a range of sources, even beyond his or her immediate contacts. In short, a

vision advantage implies that more than just being useful for acquiring information

and knowledge, occupying a brokerage position also leads to potentially much deeper

benefits of learning.

Benôıt Mandelbrot—the founding father of fractal geometry and one of the 20th

century’s most influential mathematicians—offers a useful illustration of the vision
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advantage. In an interview given just a few months before his death, Mandelbrot

remarks on the relationship between his unconventional career and his unique intel-

lectual contributions.

When people ask me what’s my field? I say, on one hand, a fractalist.
Perhaps the only one, the only full-time one. On the other hand, I’ve
been a professor of mathematics at Harvard and at Yale.. . . But I’m not a
mathematician only. I’m a professor of physics, of economics, a long list.
Each element of this list is normal. The combination of these elements is
very rare at best. And so in a certain sense, it is not the fact that I was a
professor of mathematics at these great universities, or professor of physics
at other great universities, or that I received, among other doctorates,
one in medicine, believe it or not. And one in civil engineering. It is the
coexistence of these various aspects that in one lifetime it is possible, if
one takes the kinds of risks which I took, which are colossal, but taking
risks, I was rewarded by being able to contribute in a very substantial
fashion to a variety of fields. I was able to reawaken and solve some very
old problems. The problems are just so old that in a certain sense, they
were no longer being pursued. And nobody. . . It was a hopeless subject.
But I did it and there’s a whole field by which has been created by that.
(Mandelbrot, 2010)

Mandelbrot’s quote does not suggest he was able to make great breakthroughs

because he had access do lots of diverse information that he could piece together and

make into something useful. Rather, his connection to so many different organizations

and fields seems to have instilled in him a particular way of thinking—a vision—that

allowed him to take on problems in ways that were fundamentally different from his

peers who did not have those kinds of experiences.

Beyond information and vision, brokers also get control benefits from their posi-

tions. This dimension of brokerage has been explored most extensively in research

on competitive economic contexts (Fernandez-Mateo, 2007). Fewer studies consider

the potential control benefits of brokerage in creative settings, perhaps because these

settings tend to be more collaborative in nature (Lingo and O’Mahony, 2010; Ob-

stfeld, 2005). Nevertheless, the ability to serve as an intermediary and control the

flow of information between two otherwise disconnected parties may be important for
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understanding performance at innovation, for several reasons. First, to the extent

that brokers are able to regulate access to essential information among their discon-

nected contacts, they may be in a better position to scoop those contacts when a

breakthrough is imminent. A second, related possibility is that a broker may use his

or her exclusive access to information to create a relationship of dependence among

the disconnected groups. This may be especially likely to happen in creative settings

when the broker has some special knowledge, skill, or credential that allows him or

her to translate information or access resources across groups that the otherwise dis-

connected members could not do on their own. Both of these scenarios suggest the

possibility that brokers may have better performance at innovation at least in part

because of their ability to control the flow of information.

Despite these potential benefits, there are also some reasons to believe that oc-

cupying a brokerage position may be harmful for innovation. For instance, because

they straddle otherwise disconnected groups, brokers may be seen as outsiders, and

therefore have trouble getting the support of their colleagues. Burt (2004) offers

some support for this idea in his finding that although supply chain managers who

spanned disconnected sets of contacts at a large electronics company were more likely

to have good ideas, they were unlikely to act on them. The value of occupying a

brokerage position for innovation may also depend to a certain degree on whether the

disconnected contacts have information that is complementary or potentially useful

for recombination. Brokers who span groups that are too drastically different from

one another may simply be draining their time.2 Finally, to the extent that brokers

use their position to control the flow of information for their own gain, they may lose

the trust of their colleagues, thereby making innovation more challenging.

Despite these potential downsides, most theory and evidence points to some ben-

efits of occupying a brokerage position for innovation. Put differently, the benefits

2However, some of the benefits cited above, especially those relating to vision and learning, may
persist even if there are no complementarities across the groups.
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appear to outweigh the costs. With these considerations in mind, I therefore propose

the following, baseline hypothesis.

Hypothesis 4. Entry into a brokerage position will have a positive effect on an

inventor’s performance at innovation.

If becoming a broker is helpful for an inventor’s performance, can the same also

be said of having a connection to one? Are there spillover effects, such that a bro-

ker’s contacts also benefit from his or her network position? On quick inspection,

there seem to be some reasons to believe connection to a broker may entail positive

spillovers, while perhaps even eliding several of the costs of being one. By virtue

of their positions, brokers should have access to relatively more diverse information,

which they may in turn pass onto their contacts; in so doing, brokers may help ad-

vance their contacts’ performance. Moreover, brokers may filter, sort, and screen the

information that they pass along to others—keeping only the most relevant pieces—

which suggests that a connection to a broker may help a person economize on search

costs. And unlike a broker, people who simply have a connection to someone who

straddles disconnected group may have fewer problems getting their colleagues to

devote time and energy to supporting them.

Despite these potential benefits, a closer look suggests a darker side of having

a connection to a broker. Notably, several considerations cast doubt over the relia-

bility of brokers as useful sources of novel information. First, there is a problem of

incentives. When brokers pass along novel information among their contacts, they

make it easier for others to compete with them by eroding the unique value of their

position. To the extent that a person who straddles disconnected contacts fears such

competition, he or she may choose not to share otherwise useful information. Of

course, these concerns about disclosure may vary substantially with organizational

policies. Many qualitative studies of brokerage examine highly collaborative organi-

zations where there are policies that foster information sharing (e.g., Obstfeld, 2005;
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Hargadon and Sutton, 1997; Lingo and O’Mahony, 2010). But there are also many or-

ganizations where there are few incentives for sharing across boundaries. Microsoft is

an especially illustrative example (Eichenwald, 2012). Under its stack-ranking system

(abandoned in late 2013), employees were evaluated once every six months. Managers

were required to rank their employees in order to fit a predetermined distribution from

top performers to poor, regardless of whether their employees were meeting expec-

tations. Some observers suggest that the policy stifled collaboration, as employees

sought to avoid working with people who might outshine them at evaluation time.

Second, even when brokers do have an incentive to share information, problems of

transmission may prevent them from doing so effectively. Brokers are able to access

diverse information at least in part because they have direct access to disconnected

contacts. But any time a broker attempts to pass along information to others, he

or she adds a step between the ultimate sender and receiver, thereby creating the

possibility for noise and distortion, even if unintentionally. Closely related to this

idea is the observation that people who have ties to many different areas are less

likely to be experts in any of them. To the extent that brokers have a more shallow

understanding of the information they receive from their disconnected contacts, they

may be more likely to introduce errors when transmitting it to others, or to simply

refrain from sharing because it is too hard for them to articulate. Finally, even wen

brokers do wish to share information, their ability to do so effectively may suffer if

they have a limited knowledge of what their contacts would actually find most useful.

Up to this point, I have focused on outlining why having a connection to a broker

may not be especially helpful for getting novel information. But is it possible that

brokers may facilitate learning among their partners? In short, are there positive

spillovers of the vision advantage? Available evidence offers hints that the learn-

ing benefits of brokerage come through direct contact. For instance, Burt (2007)

conducted three separate studies of performance among managers, bankers, and ana-

75



lysts. Across these three groups, he finds a positive association between direct access

to non-redundant contacts and performance, but no evidence of benefits to indirect

access. Because information should flow relatively easily among indirect contacts,

Burt (2007) interprets these findings as evidence that brokerage creates value by fa-

cilitating learning, and moreover, that learning requires direct connection, and a deep

need (or even requirement) to confront diverse ideas and perspective.3

Findings from studies in social psychology also suggest that the learning benefits of

connection to a broker may be minimal. In a series of experiments, Stasser and Titus

(1985, 1987) examined information sharing and group decision-making. They found

that when people share more information relevant to a decision before beginning their

deliberations, they tend to focus their discussions on the information they have in

common relative to the unique pieces each brings to the table. Therefore, it seems

plausible that when people talk with brokers, they may spend more time discussing

already shared information, rather than the potentially novel insights and perspectives

of the brokers, thereby minimizing the learning benefits of connection.

To the extent that connections to brokers do not offer information or learning

benefits, it may be reasonable to predict that the implications of such ties for an in-

ventor’s performance are neutral. Consider the counterfactual. Had the inventor not

been connected to a broker, he or she may not have acquired any novel information

or learned anything anyway—nothing ventured, nothing gained. But there are a few

reasons to think that connection to a broker may entail costs. Recall that one of

the advantages of being a broker is control over information flows. By virtue of their

position, brokers who are especially opportunistic may take advantage of their dis-

connected contacts, swooping in at the last minute to scoop them on a breakthrough

or withholding a critical piece of information necessary for success. Even connection

3Burt’s (2007) findings are, however, open to other interpretations. For example, following the
logic of my earlier discussion about the incentive and transmission problems of sharing, it may be
that brokerage does create value by providing access to novel information (rather than through
learning and vision) but that brokers are bad at diffusing information among their contacts.
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to a more benevolent broker entails risks. An inventor may depend on a broker for

access to information, data, or other resources that are essential for his or her work.

But what if the two have a falling out, or something happens to the broker? Losing

any relationship can be bad for a person’s performance, but losing one that offers

irreplaceable access to a resource may be devastating.

One final consideration suggests that there may be negative (rather than neutral)

spillovers from connection to a broker, and that is time. All relationships require some

level of maintenance. At the very least, people need to have conversations, phone calls,

exchange emails, or other forms of communication to share information. And gaining

access to some information likely entails substantially greater investments of time,

especially when that information is complex or sensitive (Hansen, 1999). Following

this logic, it seems likely that brokers spend more time on maintaining relationships.

One advantage of having contacts that know each other is that the amount of time and

energy spent on maintenance should be less. As an example, with a single lunchtime

meeting, an inventor who has connected contacts can catch up with all of his or her

colleagues, while a broker needs to have at least two and maybe more lunches to do

the same. An implication is that brokers will have less time and energy to devote to

any given contact. From the perspective of a person with a connection to a broker,

relative to other colleagues, the broker will likely have less ability to offer support,

and in so doing, may negatively effect performance.4

By way of summary, the arguments above suggest that brokers are likely an un-

reliable source of novel information, and moreover, their ability to facilitate learning

among their contacts also appears limited. Having a connection to a broker is also

risky because it may make an inventor vulnerable to opportunism and dependence.

4Vedres and Stark (2010, 1174) offer some support for this idea at the inter-firm network level,
and moreover, suggest that connection to a broker may ultimately harm the group, perhaps by
increasing demands on the time of members. As they report on their findings, “the number of
brokered ties to other groups is significantly correlated with decreased group cohesion, a finding
that suggests that brokers adversely affect the structures they exploit. This finding is in line with
the idea that the price of brokerage is borne by those who are connected by the broker.”
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And finally, connections may require investments of time, but it is unclear whether

brokers can reciprocate, potentially making them less valuable than closely connected

colleagues. These considerations lead to a second hypothesis.

Hypothesis 5. A tie to a broker will have a negative effect on an inventor’s perfor-

mance at innovation.

A few existing studies make predications that are related to mine, although they

do not address innovation. For example, Burt (2007, 2010) reports on findings from

three separate studies comparing the relative effects of brokerage and “secondhand”

brokerage among managers, bankers, and analysts. Secondhand brokerage refers to

indirect connections to otherwise disconnected groups. Although the results of Burt’s

investigation suggest a strong relationship between direct brokerage and performance,

there is little evidence that the secondhand type is beneficial.5 Galunic et al. (2012)

conducted a related study that also looked at bankers. Similar to Burt’s (2007,

2010) results, they do not find evidence of positive returns from indirect access to

disconnected contacts, unless that access comes from someone of higher rank. Finally,

Fernandez-Mateo (2007) examined a firm known as InterCo that specialized in finding

temporary positions for information technology (IT) professionals. Because it acted

as an intermediary between buyers and sellers, the firm was a broker in the true

sense of the word. In line with observations about the control benefits of brokerage,

Fernandez-Mateo reports that InterCo was able to offer discounts to its preferred

buyers at the expense of the IT professionals, and therefore without lowering its own

margins.

5However, Burt (2007) does find some evidence that secondhand brokerage is related to direct
brokerage in a later period; watching brokers may be useful for learning how to become one.
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3.3 Research Setting

I test the hypotheses laid out above using data on 37 pharmaceutical firms that

were active in researching and developing novel human therapeutic compounds be-

tween 1997 and 2001. Several considerations make pharmaceuticals an attractive

setting in which to study the relationships between brokerage and innovation. R&D

is essential to the success of leading pharmaceutical firms, and according to National

Science Board (2012) data, the industry consistently ranks among the highest in R&D

spending and intensity. Moreover, pharmacologists, medicinal chemists, and other in-

ventors in the field rely on highly specialized, complex, and often-tacit knowledge.

Successful innovation therefore requires teamwork, which suggests the relevance of

network factors in this setting.

Pharmaceuticals are also attractive because there are data readily available that

allow me not only to measure the structure of inventors’ personal collaboration net-

works over time, but also to identify each inventor’s position in the broader, intraor-

ganizational collaboration network that links together inventors across a particular

firm. Companies in this sector have a high propensity to guard their intellectual

property by seeking patent protection. As I elaborate below, patents are valuable for

studying collaboration networks because they provide a written record of the people

who worked together on a particular invention.

More broadly, in contrast to many other sectors, it is possible to link pharmaceu-

tical patents directly to products and therefore to get some sense for the potential

marketplace implications of collaboration network structure. And finally, several

other recent studies of collaboration networks and innovation in organizations use

data from the pharmaceuticals sector, which helps to facilitate comparisons between

my findings and prior investigations (Grigoriou and Rothaermel, 2013; Guler and

Nerkar, 2012).
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3.4 Data and Methods

3.4.1 Sample

My hypotheses are targeted at the individual level of analysis. However, because

organizational factors may have substantial influence over inventors’ collaboration

patterns and their performance at innovation, I begin my sampling strategy with

firms. This approach helps to ensure that I only compare inventors who work at

similar types of organizations and also allows me to carefully control for a range of

other possible organizational confounders in my statistical models.

Following prior research on the pharmaceuticals industry, I relied on a variety

of sources to identify appropriate firms, especially Wards Business Directory and

the Security and Exchange Commission’s EDGAR database. Using these sources, I

created a list of companies that had 2834 (“Pharmaceutical Preparations”) as their

primary Standard Industrial Classification code, revenues of more than $100 million,

and were publicly traded, at any point in time between 1975 and 2010 (Gerstner et al.,

2013). With this list in hand, I then excluded companies that focused primarily on

the manufacture of generic drugs or the creation of non-human products.

I then sought to link firms with data on patents and pharmaceutical products.

There have been several merger waves in the pharmaceuticals industry over the past

few decades, which makes it hard to track organizations over time and therefore

complicates this matching process. For example, how should matching occur after

the merger of two major firms? How can major, transformational acquisitions be

distinguished from relatively minor ones that are less likely to influence collaboration

patterns and innovation? Prior research offers a number of possibilities. To facilitate

replication and maximize transparency, I adopted a fairly simple approach in which

I treat a merger or acquisition among firms in the list I describe above as two deaths

and one birth (i.e., the creation of a new, combined company). I ignore all other
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mergers and acquisitions, as these are typically much smaller or are less relevant to

pharmaceutical innovation. Using similar procedures, I also fold major subsidiaries

into their respective parent organizations.

After implementing this procedure, I then matched companies with patent data

taken from the U.S. Patent and Trademark Office (USPTO) and the Harvard Patent

Dataverse (Lai et al., 2011). To identify pharmaceutical products, I linked the patents

to drugs approved by the U.S. Food and Drug Administration (FDA) using the

Approved Drug Products with Therapeutic Equivalence Evaluations reference, com-

monly known as the Orange Book (April 2014 edition).6 First published in 1980, the

Orange Book began listing patents after the 1984 passage of the Hatch-Waxman Act

(Hemphill and Sampat, 2012).

Although the underlying data span several decades, I focus the statistical analyses

on 1997 to 2001. Several factors led me to narrow the time period of the study. Many

of the data sets I draw on are of higher quality in later years, and because this is not

historical investigation, my goal is to characterize innovation in the pharmaceuticals

industry as it is today, not as it once was. Both of these considerations suggest

using more recent data. However, as I move closer to the present, I also increase the

risk of censoring because I do not have data on patents and products that are still

making their way through their respective approval processes. 7 An end year of 2001

achieves some level of balance between recency-censoring tradeoff. I chose 1997 as an

appropriate start year because it is far enough from the beginning of my data that I

am able to carefully control for several dimensions of inventor’s past productivity, an

important source of heterogeneity. Finally, I favor a relatively short study window

because it helps minimize the effects of time trends, including industry and regulatory

transformations.

6http://www.fda.gov/Drugs/InformationOnDrugs/ucm129689.htm, accessed May 16, 2014
7As a frame of reference, the mean duration of clinical and regulatory evaluation for FDA ap-

proved small molecule drugs between 1982 and 2001 was 7.6 years (Reichert, 2003).
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After implementing all of the above criteria, my sample consists of 41,051 inventor-

year observations among 18,668 inventors, across 37 pharmaceutical firms.8

3.4.2 Network Construction

I used a multistep procedure to map the collaboration networks of inventors and

the broader firms in which they are embedded. As discussed above, patent collabora-

tions serve as my proxy for network structure. One major challenge with patent data

from the USPTO is that inventors are not given unique identifiers, and moreover,

their names are often listed inconsistently across filings. To overcome this problem, I

identify inventors and their collaborators using a unique record label for each inven-

tor obtained with a probabilistic name matching algorithm, supplied by the Harvard

Patent Dataverse.

Once the data are prepared, I then build the networks. Patent data have a bi-

partite structure, meaning that there are two types of nodes: actors (inventors) and

events (patents). Inventors are not directly connected to one another—strictly speak-

ing, they only have ties to patents. Interlocking corporate directorates are another

commonly studied bipartite network, in which the actors are directors and the events

are the boards on which they sit (Mizruchi, 1996). Because many measures are

designed for unipartite networks, I follow prior work and project the collaboration

network data such that inventors are directly connected to one another. After com-

pleting the projection process, I have a list of inventor-inventor dyads.

The final step in the process of building the networks is to situate each dyad in

time. A collaboration between two inventors on a patent is an manifestation of a

relationship that may persist into the future. To capture this idea, I approximate the

structure of each inventor’s network (and of broader collaboration networks that span

their organizations) at any given point in time t using a sliding window that includes

8These analyses have been approved by the University of Michigan Institutional Review Board
(study id: HUM00064545).
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Figure 3.1: Years separating repeat collaborations. This plot helps to justify the use
of a five-year sliding window filter for constructing the inventor networks, as almost all
collaborations that will ever be repeated occur within that timeframe. To the extent
that ongoing relationships among inventors manifest themselves in collaborations on
patents, this window should be also relatively effective in pruning dead or dormant
ties.
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all collaborations that occurred over the past five years, in line with prior research.

Ties that are older than five years are dropped from the network. Figure 3.1 helps

to justify the use of a sliding window by showing the cumulative distribution of years

separating repeat collaborations between pairs of inventors. As indicated by the dark

vertical line, almost all collaborations that will ever be repeated occur within five

years.

3.4.3 Study Design

A major challenge of linking a person’s position in a social network to his or

her performance is that position is rarely exogenous. Inventors are not randomly

assigned to collaborators, and unobservable factors that guide who they choose to

work with may also shape how well they do at creating innovations. By using a

quasi-experimental design and a novel statistical modeling approach, I was able to

gain some leverage on these challenges. I describe each in turn.

Sampling. Recall that Hypothesis 4 suggests that becoming a broker will have a

positive effect on an inventor’s performance. My strategy for testing this prediction

is to find a subsample of inventors who became brokers during the study period and

to compare their performance to similar inventors who did not make the transition.

In the language of an experiment, the former inventors make up the treatment group,

while the latter are controls. To identify appropriate cases for each group, I began

by following prior work (e.g., Fleming et al., 2007) and breaking inventor’s careers

into units of three years, which become my observations in the statistical analyses

described in greater detail below. I use data from the first year, t − 1, to model an

inventor’s propensity to be exposed to the treatment (i.e., to become a broker). Data

from the second year, t, then allow me to model an inventor’s performance in the

third year, t+ 1. After creating these three year career blocks, I built the treatment

group by identifying cases where inventors were not brokers at t− 1 but had become
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one by t. Following this logic, inventors who were not brokers at t − 1 and did not

make the transition at t are eligible to be controls.

My approach to testing Hypothesis 5—which anticipates a negative effect of having

a connection to a broker on performance—is analogous to my test of Hypothesis 4,

but with the important difference that here, treatment is exogenous to performance.

To fill the treatment group, I extracted career blocks where inventors had zero ties to

brokers at t− 1 and one tie at time t, but only where that tie came from an existing

contact. Using this criterion, treatment is exogenous because the decision to connect

was made prior to the contact occupying a broker role. To isolate potential controls,

I identified inventors who had zero ties to brokers at both t− 1 and t.

Figures 3.2 and 3.3 show hypothetical examples of treatment and control inventors

for tests of Hypotheses 4 and 5, respectively.

Statistical modeling. A number of different statistical techniques are also avail-

able for aiding with the challenges of disentangling causality in observational data. I

make use of a technique based on propensity score weighting (Rosenbaum and Rubin,

1983) that has several attractive features.

A propensity score is the probability of exposure to a treatment given a set of

observable covariates, X. Formally, this may be written as

ei = P (T = 1|X), (3.1)

where T is a dummy variable that takes on a value of 1 for people exposed to treatment

and 0 otherwise. The appropriateness of propensity scores for estimating treatment

effects rests on several assumptions. Let Y1 denote the potential outcome for those

who for those who are exposed to the treatment (i.e., occupation of a particular

network position) and Y0 for those who are not exposed. The first assumption, then,

is that
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(Y1, Y0) ⊥⊥ T |X. (3.2)

In words, potential outcomes Y1 and Y0 are independent of T , conditional on X. The

second assumption is that

0 < P (T = |X) < 1, (3.3)

such that all inventors have a nonzero probability of either treatment or non-treatment.

When these two assumptions are met, treatment assignment is said to be strongly

ignorable, and propensity scores may be used to obtain estimates of the treatment

effect (Rosenbaum and Rubin, 1983).

Researchers typically estimate propensity scores with a logit or probit model that

predicts treatment as a function of observable covariates. After obtaining these scores,

they may be used to estimate the treatment effect by either stratifying and comparing

observations or by weighting observations in a regression model of the outcome of

interest (Morgan and Winship, 2007).

To obtain unbiased estimates of the treatment effects, the model for the propensity

score must be correctly specified. Moreover, in the case of weighting, the quality of

the estimates also hinges on getting the model for the outcome right. Recently,

however, a new class of estimator has been proposed that eases some of this burden

on the researcher by using information in both the exposure and the outcome models

to estimate the effects of treatment. Known as “double robust,” these estimators

remain unbiased as long as either the model for the exposure or outcome (or both)

are correctly specified. Following (Lunceford and Davidian, 2004), the estimator I

use is
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∆̂DR =
1

N

N∑
i=1

TiYi − (Ti − êi)m1(Xi, α̂1)

ei
− 1

N

N∑
i=1

(1− Ti)Yi + (Ti − êi)m0(Xi, α̂0)

1− ei
,

(3.4)

where mT (X, α̂T ) are the predicted values of different regressions for treated and

control observations of X on the outcomes. This double robust estimator is similar

in form to those that rely on inverse probability weights, but differs by augmenting

with the regressions (Glynn and Quinn, 2010).

3.4.4 Dependent Variables

I consider three dependent variables, all of which serve as useful proxies for the

oftentimes-elusive phenomenon of innovation. Consistent evidence across all three

variables should add greater confidence to any findings.

Patents (weighted). The first variable is a count of patents applied for by in-

ventor i at time t + 1 that were assigned to his or her primary firm during the focal

career period. I use patent application dates rather than grant dates because appli-

cation dates usually correspond reasonably well to the time of invention, while grant

dates are influenced by the duration of the USPTO evaluation process. Following Lee

(2010), I weight the value of each patent by team size, which is simply the number of

listed inventors, before summation. Because patents may vary widely in their quality,

many authors recommend weighting raw patent counts by the number of future cita-

tions that each patent receives (Trajtenberg, 1990). I found broadly similar results

when using citation weights, but those models were also less tractable due to excess

zeros and extreme outliers.

Products (weighted). The second dependent variable helps to address potential

concerns about patent quality. Like the first measure, it is a count of patents applied

for by inventor i at time t+ 1. Once again, I include only patents that were assigned
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to the inventor’s primary firm during the focal career period, and I weight by team

size. The unique feature of this measure is that I only include patents that ultimately

contributed to an FDA approved drug. As noted above, I obtain these data from the

April 2014 edition of the FDA’s Orange Book, which lists patents associated with

approved drug products under provisions of the 1984 Hatch-Waxman Act.

Products. Finally, because very few inventors apply for patents that ultimately

contribute to an FDA approved drug product, especially in a single year, I also

consider a version of the products measure without the weight for team size. This

helps to account for the possibility that simply being involved with the invention of

a successful drug product matters more than how many other inventors contributed

to the product’s creation.

3.4.5 Independent Variables

Broker. Prior research uses many different measures of brokerage. One of the

most widely known is Burt’s (1992) measure of network constraint, which captures, on

a continuous scale, the extent to which a person’s direct contacts are interconnected

with one another and therefore are redundant. Although attractive for some purposes,

I chose not to use this measure because it does not offer a clear and objective way of

identifying when a person is a broker, which is essential for testing my hypotheses.

Instead, I created a dummy variable, broker, that I set to 1 if, at time t, an

inventor’s immediate network neighborhood (i.e., the other inventors to which he or

she is directly connected and their connections among one another) breaks into two or

more discrete, disconnected segments (or components) upon the inventor’s removal

from the network. This measure is attractive because it allows me to clearly and

unambiguously identify “treated” inventors (i.e., those who become brokers) from

potential controls, and in so doing, to apply statistical techniques that are helpful for

disentangling causality in quasi-experimental, pretest–posttest study designs. And
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more importantly, it corresponds exactly to the definition of brokerage offered at the

beginning of this chapter—i.e., it identifies inventors who are connected to people

who are not directly connected to one another.

Connection to a broker. After identifying brokers, I created the second inde-

pendent variable, connection to a broker, which takes on a value of 1 if an inventor

has a tie to a broker at time t, and 0 otherwise. Note that the value of this variable

will be 1 regardless of the number of brokers to which the focal inventor is connected

(as long as they are connected to at least 1). As I discuss later, when creating the

matched treatment and control data sets, I focus on inventors who were treated by

a connection to only one broker to ensure comparability of effects across cases. This

measure offers a clearer indication of having a connection to a broker than those of

related studies by Burt (2007, 2010) and Galunic et al. (2012), discussed earlier, who

used the average constraint and network density of direct contacts, respectively.

3.4.6 Control Variables

I include a variety of control variables to help account for other factors that may

influence an inventor’s propensity to become a broker (or to have a connection to

one) and his or her performance at innovation. Unless otherwise noted, all variables

are included in both the exposure (i.e., propensity score) and outcome equations.

Control variables that appear in the outcome equation are measured at time t; those

appearing in the exposure model are measured at time t− 1.

Degree centrality. My hypotheses place a heavy emphasis on the structure

of connections among collaborating inventors. A simpler explanation, however, is

that what really matters is having connections and that the structure among them is

irrelevant. With this possibility in mind, I include a control for each inventor’s degree

centrality, which is a count of the number of other inventors to which he or she is

directly connected. This variable is also relevant for predicting exposure. People with
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more connections may have better interpersonal skills that help them form strategic

partnerships and build better network positions. Additionally, having more partners

also increases the likelihood of having a connection to a broker.

Clustering (local). I also control for the level of clustering in each inventor’s

network neighborhood (i.e., among his or her direct contacts), defined as the ratio of

closed triangles (i.e., sets of three inventors with three ties) to connected triples (i.e.,

sets of three inventors with two ties) running through each inventor. Clustering is

often used as a measure of cohesion, which prior studies link to innovation (Fleming

et al., 2007). The cohesiveness of an inventor’s network neighborhood may also relate

to his or her propensity to become a broker or to have a connection to one—to

the extent that an inventor’s contacts are already highly interconnected, it may be

harder to establish ties to disconnected people (or to have a connection to someone

who does).

Main component. Many of the intraorganizational networks in my sample of

pharmaceutical firms contain multiple components, where a component is a discrete

set of inventors such that there is some (potentially indirect) pathway connecting each

pair of inventors. Typically, there was also one component that was substantially

larger than all others, which I call the main component. Prior research suggests

that location in the main component of a network may influence innovation (Owen-

Smith and Powell, 2004). Membership may also relate to an inventor’s propensity to

become a broker or to have a connection to one, since there are likely more potential

collaborators. Given these considerations, I include a dummy variable that takes on

a value of 1 if the inventor is a member of the largest connected component and 0

otherwise.

Community size. Inventors may differ substantially in their level of access to

potential collaborators, even within connected components (Sytch et al., 2012). As

a way of accounting for these differences, I control for the size of each inventor’s
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network community. A network community is a set of nodes that have many dense

interconnections among one another, but relatively few connections to other nodes

in the network. There are many algorithms available for partitioning networks into

communities. I use the Infomap algorithm (Rosvall and Bergstrom, 2008). Infomap

partitions a network into communities by trying to minimize the description length

of the path of a random walker traversing the network. After running the algorithm,

I compute the measure of community size as the number of other inventors in each

inventors’ assigned network community at t − 1. I include this measure only in the

exposure model because it relates primarily to opportunities become a broker or to

have a connection to one.9

Patent stock. Prior research suggests that high-performing inventors may be

better able to identify opportunities and and attract collaborators that allow them

to occupy brokerage positions (e.g., Lee, 2010), in which case some (or all) of the

association between becoming a broker (or having a connection to one) may be driven

by some underlying difference in ability. To help account for this possibility, I include

a measure of the size of each inventor’s portfolio of patents. Because older patents

may be less reflective of an inventor’s current ability, I use a use a depreciated stock

model, defined as

PSit =
t∑

τ=0

(
1− δ

)t−τ
Kiτ , (3.5)

where K is the set of patents applied for by inventor i at time t (or t − 1 for the

exposure equation) and δ is a constant, set to 0.15, that regulates the annual rate of

depreciation (Azoulay et al., 2007). I include patents in the calculation going back as

far as 1975 (when my data begin) but only if they were assigned to the focal inventor’s

primary firm for the sampled career period.

Career experience. I also include a control analogous to the one for patent

9The substantive results are not sensitive to the addition of this or other variables that appear
only in the exposure model to the the outcome equation.
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stock, but that only sums patents if they were not assigned to the focal inventor’s

primary firm for the sampled career period. This variable helps further account for

differences in ability among inventors. More importantly, however, it should also

help to differentiate people who are highly mobile or perhaps have only temporary

affiliation with their primary focal firm, and that as a result may have systematically

different patterns of connectivity.

Technological diversity. Inventors who are active in multiple fields could have

greater exposure to diverse information, which may enhance their innovation, while

also increasing their likelihood of working with otherwise disconnected collaborators.

To account for this possibility, I control for the technological diversity of each in-

ventor’s patent portfolio as the Herfindahl index of the patents’ primary classes. I

include only patents that inventors applied for over the past five years, and that were

assigned to his or her primary firm for the focal career period. I subtract the result

from 1 so that inventors with more diverse portfolios have higher values.

Clustering. Firms may differ in the degree to which their intraorganizational

collaboration networks offer opportunities for inventors to work with otherwise dis-

connected contacts and therefore become brokers (Sytch et al., 2012). Several factors

likely shape the overall level of opportunity, but one that may be especially impor-

tant is the network’s cohesiveness. As an intraorganizational network becomes more

cohesive (and therefore inventor’s collaborators tend to also collaborate with one an-

other), opportunities should decrease. With these considerations in mind, I control

for the global level of clustering in each intraorganizational network, as of time t− 1.

The clustering coefficient is defined as

CCit =
3N4
N∨

=
3× (number of triangles)

(number of connected triples)
, (3.6)

where a triangle is a closed triad and a triple is an open triad, and higher values indi-
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cate more cohesive networks. Because this measure relates primarily to an inventor’s

propensity to become a broker or to have a connection to one, I only include it in the

model for exposure.

Communities (global). I control for the total number of communities in each

firm’s intraorganizational network at time t − 1 as an additional way of capturing

differences in opportunities to become a broker (or to have a connection to one).

In line with my other controls for opportunity, I only include this variable in the

exposure equation.

R&D spending. Inventor’s firms may also differ in the extent to which they have

an interest and ability to support brokerage activity and innovation at a given point

in time. To help account for these potential differences in strategy and resources, I

control for each firm’s annual costs incurred while developing new products or services,

in millions of dollars. This measure, along with my other financial controls, uses data

from Compustat.

EBIT. To capture more general differences in current resources, I also control for

each firm’s earnings before interest and taxes, in millions of dollars.

Total assets. As a final measure of financial health, I also control for each firm’s

current assets, once again in millions of dollars.

Firm fixed effects. Firms may differ in other ways not captured by the controls

above, but that nevertheless shape both inventors’ propensities to become or have

a connection to a broker and their performance at innovation. Therefore, I include

dummy variables for 36 of the 37 sample firms. These fixed effects control for all

firm-level differences that do not change over the study period.

Year fixed effects. Finally, to help account for various temporal differences and

potential right censoring in counts of FDA approved drug products, I include dummy

variables for 5 of the 6 study years.

Variable summaries and descriptive statistics are shown in Tables 3.1 and 3.2,
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Table 3.1: Variable Names and Definitions

Name Definition Equation(s)

Dependent Variables

Patents (weighted) Count of patents applied for by each inventor at t+ 1, weighted by team size Outcome

Products (weighted) Count of patents applied for by each inventor at t+ 1 that contributed to an
FDA approved drug, weighted by team size

Outcome

Products Count of patents applied for by each inventor at t+ 1 that contributed to an
FDA approved drug

Outcome

Independent Variables

Broker Dummy variable; 1 if the inventor’s immediate network neighborhood breaks
into two or more components upon the inventor’s removal from the network
at t, 0 otherwise

Propensity score

Connection to a broker Dummy variable; 1 if the inventor has a connection to a broker at t, 0 other-
wise

Propensity score

Controls—Inventors’ Networks

Degree centrality Count of the number of fellow inventors to which each inventor is directly
connected at t− 1 (propensity score equation) or t (outcome equation)

Outcome and propensity score

Clustering (local) Ratio of closed triangles to connected triples running through each inventor
at t− 1 (propensity score equation) or t (outcome equation)

Outcome and propensity score

Main component Dummy variable; 1 if the inventor is a member of the largest connected compo-
nent at t−1 (propensity score equation) or t (outcome equation), 0 otherwise

Outcome and propensity score

Community size Count of the number of other inventors in each inventors’ network community
at t− 1

Propensity score

Controls—Inventors’ Experience

Patent stock Cumulative patents applied for by each inventor while at the focal firm as of
t − 1 (propensity score equation) or t (outcome equation), depreciated 15%
annually

Outcome and propensity score

Career experience Cumulative patents applied for by each inventor while not at the focal firm
as of t − 1 (propensity score equation) or t (outcome equation), depreciated
15% annually

Outcome and propensity score

Technological diversity Herfindahl index of primary classes for all patents filed by each inventor while
at the focal firm over past five years, as of t − 1 (propensity score equation)
or t (outcome equation), subtracted from 1

Outcome and propensity score

Controls—Firm’s (Internal) Network

Clustering Ratio of closed triangles to connected triples in each firm’s inventor network
at t− 1

Propensity score

Communities (global) Count of network communities in each firm’s inventor network at t− 1 Propensity score

Controls—Firm’s Resources
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Table 3.1 (Continued)

R&D spending Sum of each focal firm’s annual costs incurred relating to developing new
products or services at t− 1 (propensity score equation) or t (outcome equa-
tion) (in millions of dollars)

Outcome and propensity score

EBIT Sum of each focal firm’s earnings before interest and taxes at t−1 (propensity
score equation) or t (outcome equation) (in millions of dollars)

Outcome and propensity score

Total assets Sum of each focal firm’s current assets at t− 1 (propensity score equation) or
t (outcome equation) (in millions of dollars)

Outcome and propensity score

Firm fixed effects Dummy variables for 36 of the 37 sample firms Outcome and propensity score

Controls—Other

Year fixed effects Dummy variables for 5 of the 6 study years Outcome and propensity score
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Table 3.2: Descriptive Statistics and Correlations†

Variable Mean SD Min Max 1 2 3 4 5 6 7

1. Patents (weighted) 0.16 0.37 0.00 21.00 1.00
2. Products (weighted) 0.00 0.04 0.00 1.25 0.13 1.00
3. Products (count) 0.01 0.13 0.00 3.00 0.10 0.85 1.00
4. Broker 0.13 0.34 0.00 1.00 0.19 0.03 0.03 1.00
5. Degree centrality 6.19 6.40 0.00 85.00 0.17 −0.01 0.01 0.24 1.00
6. Clustering (local) 0.73 0.37 0.00 1.00 −0.19 −0.04 −0.01 −0.35 −0.01 1.00
7. Main component 0.52 0.50 0.00 1.00 0.05 −0.01 0.00 0.13 0.36 0.09 1.00
8. Community size 11.69 10.72 1.00 83.00 0.02 −0.03 −0.02 0.00 0.54 0.13 0.48
9. Patent stock 2.38 3.36 0.44 99.97 0.47 0.03 0.04 0.31 0.62 −0.21 0.28
10. Career experience 1.48 3.87 0.00 102.54 0.03 0.00 0.00 0.02 0.01 0.02 −0.13
11. Technological diversity 0.14 0.23 0.00 0.87 0.16 0.00 0.01 0.36 0.36 −0.17 0.21
12. Clustering (global) 0.59 0.11 0.00 1.00 −0.02 0.01 0.02 −0.06 −0.08 0.06 −0.33
13. Communities (global) 123.96 53.98 1.00 219.00 −0.06 −0.03 −0.03 −0.02 0.04 0.06 −0.13
14. R&D spending 1712.40 1001.74 9.18 4435.00 0.03 −0.01 −0.02 −0.01 −0.02 0.01 −0.17
15. EBIT 3358.01 2518.62 −198.25 9089.10 0.00 −0.01 −0.01 0.00 0.07 0.01 0.02
16. Total assets 21000.48 14283.45 11.93 44069.30 0.01 −0.02 −0.03 −0.04 −0.01 0.04 −0.22
17. Year 1999.04 0.81 1998.00 2000.00 0.00 −0.01 −0.01 −0.01 0.04 0.02 0.01

Variable 8 9 10 11 12 13 14 15 16 17

8. Community size 1.00
9. Patent stock 0.29 1.00
10. Career experience −0.06 0.01 1.00
11. Technological diversity 0.17 0.38 0.01 1.00
12. Clustering (global) −0.21 −0.16 0.13 −0.08 1.00
13. Communities (global) 0.07 −0.07 −0.01 0.00 0.23 1.00
14. R&D spending 0.04 −0.04 0.01 −0.06 0.11 0.60 1.00
15. EBIT 0.20 0.03 −0.07 −0.01 −0.14 0.45 0.74 1.00
16. Total assets 0.06 −0.06 0.04 −0.05 0.20 0.73 0.83 0.61 1.00
17. Year 0.04 0.00 0.02 −0.01 0.01 0.16 0.17 0.13 0.15 1.00

†N = 41, 051 inventor-years
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respectively.

3.5 Results

Table 3.3 presents estimates of the causal effect of becoming a broker (hereafter,

the “broker test”) and of having a connection to a broker (hereafter, the “connection

test”) on the three different proxies for innovation. Before I discuss the findings, it is

worth noting that the size of the treatment groups across both tests are nearly iden-

tical, but there were fewer relevant control cases in the connection test. Nevertheless,

the treatment and control groups are comparable on observable covariates in both

tests after propensity score weighting.

The first row of estimates in Table 3.3 test Hypothesis 4, which predicts that be-

coming a broker will have a positive effect on an inventor’s performance at innovation.

Across all three dependent variables, becoming a broker has a significant, positive ef-

fect on performance, in strong support of the prediction. The effect is also large in

substantive terms. Becoming a broker is expected to result in an increase of 0.206

weighted patents. That may seem like a small effect, but for perspective, note that

the increase implies a 130.2% performance boost relative to the mean value of of 0.158

weighted patents. The corresponding numbers for weighted products and counts of

products are also large—and surprisingly, almost identical to the relative performance

boost for weighted patents—with values of 129.9% and 131.7%, respectively.10

Hypothesis 5 predicts that in contrast to being a broker, having a connection to

one will negatively influence performance. In support of this idea, the values in the

second row of estimates in Table 3.3 are all negative, and statistically significant.

As one might expect, the effects are somewhat smaller in substantive terms, but

still very notable. Specifically, connection to a broker leads to a decrease of 0.019

10Because I am using more precise values, my percentages may differ slightly from those that
would be obtained using the data presented in Tables 3.2 and 3.3.
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Table 3.3: Effects of Brokerage on Innovation†

Patents Products Products Sample Size

(Weighted) (Weighted) (Counts) Treatment Control

Becoming a broker 0.206 ∗ ∗ 0.005 ∗ ∗ 0.018∗ 953 5,939

(0.098) (0.002) (0.009)

Connection to a broker −0.019 ∗ ∗ −0.003 ∗ ∗ −0.006∗ 959 2,466

(0.009) (0.001) (0.003)

* p < 0.1, ** p < 0.05; two tailed tests.
† Robust standard errors are in parentheses.
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in weighted patents, which implies a performance hit of roughly 12.0% relative to

the mean. Interestingly, the effects are much greater for the pharmaceutical product

measures; the estimates suggest performance hits of roughly 66.6% and 41.8% for

weighted products and counts of products, respectively.

The large differences in the relative effects of connection to a broker for patents

versus products may shed some light on the mechanism by which connection to a

broker can harm an inventor’s performance. For example, it is possible that brokers

do pass information onto their disconnected contacts, which helps to explain the

relatively small negative effect on patents. However, that information may be of lower

quality, and therefore lead an inventor to make fewer contributions to drug products.

Moreover, the finding also suggests that part of what connection to a broker does

is limit the ability of inventors to implement their ideas, which in turn emphasizes

the possibility of opportunistic behavior on the part of brokers, the costs of time and

energy necessary to maintain a relationship with a broker and other contacts, and

related factors.

3.6 Discussion and Conclusion

Over the past few decades, the concept of brokerage has captured the imagina-

tion of network researchers, and for good reason. Reflecting on this body of work,

Reagans and Zuckerman (2008, 797) write, “it is hard to find a more precise and

influential sociological theory.” Even more noteworthy than its theoretical appeal

are the mountains of evidence that show brokerage helps explain why people differ

in many important outcomes, from performing well at work to being more creative.

Given this level of interest, it is surprising that little research considers the effects

of brokerage for the disconnected parties. Our lack of knowledge in this area is even

more troublesome because existing theory also hints that brokers may sometimes do

better at the expense of those contacts.
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In an effort to develop better knowledge about the potentially negative effects

of connections to brokers, I conducted an investigation of intraorganizational col-

laboration networks and innovation using data on more than 18,000 inventors at 37

pharmaceutical firms. I focused my investigation around two hypotheses. To estab-

lish a baseline for this study population, my first prediction was that becoming a

broker would have a positive effect on an inventor’s performance at innovation, a

conjecture that is closely aligned with prior work. I then developed arguments to

support my second hypothesis, which anticipated a negative performance effect of

having a connection to a broker. I took several steps to help ensure that my tests of

these hypotheses could be given a causal interpretation. First, I made use of propen-

sity score weighting and a pretest–posttest framework in combination with a double

robust estimator. This estimator is attractive because it is unbiased if either the

model for exposure or the outcome (or both) are correctly specified. Second, when

testing the effects of connection to a broker, I was able to focus on changes among

existing contacts, where the decision to connect is exogenous to performance because

it was made prior to the contact becoming a broker. And finally, I used three differ-

ent proxies for innovation. My findings strongly supported both predictions. While

becoming a broker was beneficial for an inventor’s performance, the opposite was true

for having a connection to one.

It is important to evaluate these findings in light of several limitations. My in-

ferences about network structure rely on administrative data from the USPTO. Al-

though my own interviews and those in published accounts (Fleming et al., 2007)

suggest that these data offer useful representations of real collaboration networks,

they may miss relevant connections that stem from work on projects that are not

subject to patent protection. Moreover, both my patent and product data may be

influenced by strategic considerations on the part of firms that have nothing to do

with the underlying quality of the ideas or inventor relationships. I have attempted to
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mitigate these concerns to some degree by focusing on a sector where patents are used

routinely to protect intellectual property, and moreover, where there is a reasonably

close correspondence between patents and actual (or potential) products. Addition-

ally, I also sought to account for differences in firm strategy statistically, through

the use of fixed effects and time-varying financial controls. A final limitation is that

my claims of causality must be viewed with caution. Although the double robust

estimator gives me two opportunities to correctly specify my models, the results may

be biased if both of my attempts missed the mark.

Notwithstanding these limitations, my findings suggest several theoretical impli-

cations and directions for future research.

Brokers and individuals. Perhaps the most notable result of this study is its

demonstration of a dark side of network brokerage, at least for innovation. All else

being equal, having a connection to a broker seems to harm performance. Although

this finding is consistent with observations about the control benefits of brokerage

and the potential for opportunism, it is also surprising, especially in light of several

qualitative studies that find evidence of a supportive role for network brokers (Har-

gadon and Sutton, 1997; Lingo and O’Mahony, 2010; Obstfeld, 2005). An important

direction for future work, then, will be identifying cases where all else is not, in fact,

equal—i.e., where personality, task, or other factors may moderate the negative effect

of connection. Studies of this type would also be especially valuable for establishing

the mechanisms by which ties to brokers may harm performance.

Brokers and organizations. Understanding the effects of brokers on their con-

tacts should have special salience for organizations. To the extent that brokers gain

advantages at the cost of others in their organizations, their behavior may lead to

a network analogy to the tragedy of the commons (Hardin, 1968; Ostrom, 1990), in

that by pursuing their own self-interest, brokers undermine the effectiveness of their

larger organizations (Ibarra et al., 2005).
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Table 3.4: Being and Broker and Connection to Brokers†

Ties to brokers

Broker Yes No Total

Yes 4,681 712 5,393

No 22,825 12,833 35,658

Total 27,506 13,545 41,051
†Observations are inventor-years.

To help see why a better understanding of how brokers effect their contacts is so

important for organizations, turn to Table 3.4, which cross tabulates my indicators of

being a broker and having a connection to one for inventors in my sample. There are

a total of 41,051 inventor-year observations reported in the table. Notice that being a

broker is relatively rare, and occurs in only 5,393 of the observations, roughly 13.1%

of the total. By contrast, having a connection to a broker is common, and accounts

for some 27,506 cases. And, in nearly 83% of those cases, the inventor was not also

a broker in the same year. What these numbers suggest is that first, knowledge of

how and why having a connection to a broker influences performance is potentially

of importance to a tremendous number of inventors, not a relatively marginal group.

But more fundamentally, the distributions also highlight the need for future work that

considers whether there may be an optimal balance within an organization between

the number of brokers and the number of people who have connections to them.

Furthermore, recall that the findings from my inferential models suggest that be-

coming a broker leads to a roughly 130% increase in performance. This estimate is

large by any standard and is also notable in comparison to the performance hits of

around 12–67% that I observed for brokers’ disconnected contacts. One possibility,

then, is that from an organizational perspective, the superior performance of brokers

outweighs their potentially negative effects. However, the relatively small number of

brokers and large number of inventors who have a connection to one, as indicated by
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Table 3.4, complicates this possibility. Specifically, it suggests that either the collec-

tive negatives may be greater than the collective positives, or that real organizations

may struggle finding and maintaining the right balance between the two.11

From a broader theoretical point of view, these considerations on the individual

and collective effects of brokerage also bear on an issue at the heart of two very dif-

ferent perspectives on social capital. Authors like Coleman (1988, 1990), Putnam

(2000), and Portes and Sensenbrenner (1993) emphasize the collective benefits of col-

lective social structures like communities. In this framework, cohesive ties among

group members result in public goods like trust and monitoring. By contrast, Burt

(1992) and followers emphasize the individual benefits of occupying particular types

of positions in a (usually much smaller) social structure, where relationships are often

competitive in nature. Little prior work has sought to determine whether these two

forms of social capital are orthogonal or if they exist in fundamental opposition, such

that increases on one leads to decreases in the other (c.f., Ibarra et al., 2005). Never-

theless, empirical investigations that build on my findings and explore the collective

implications of brokers would help to address this issue while also allowing deeper

integrating between these two important theoretical perspectives.

Evidence on the effects of context. As I note above, future research on

personality, task, or other factors that differentiate among individuals will add to a

deeper understanding of why having connections to brokers appears to harm perfor-

mance and should also help reveal whether there are instances when these sorts of

connections may be valuable. But larger contextual factors may also matter, and

some evidence from this study and existing research suggests the possibility that the

use of brokers—and therefore their effects—vary by organization.

To see this, consider Figures 3.4 and 3.5, which show the predicted probabili-

ties of becoming a broker and having a connection to one, respectively, for sample

11Simulation may be an especially fruitful way of testing this idea in future work.
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Figure 3.4: Probabilities of becoming a broker at different firms. Horizontal lines
span the 95% confidence intervals for each point estimate. Values are taken from the
logistic regression used to estimate the exposure (i.e., propensity score) model.
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Figure 3.5: Probabilities of connection to a broker at different firms. Horizontal lines
span the 95% confidence intervals for each point estimate. Values are taken from the
logistic regression used to estimate the exposure (i.e., propensity score) model.
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inventors, stratified by pharmaceutical firm.12 These estimates come from their re-

spective exposure (i.e., propensity score) models, and therefore hold constant an array

of inventor- and firm-level differences. Several features of these plots are noteworthy.

First, supporting the possibility of organizational differences, there is a fair amount

of spread across in the predicted probabilities of both becoming a broker and having

a connection to one across firms, although it is important to keep in mind that many

of these differences are not statistically significant, as indicated by the overlapping

95% confidence intervals. Second, notice that in both figures, large, highly diversi-

fied pharmaceutical companies generally appear closer to the top (i.e., they have the

largest probabilities on each outcome), while those that are smaller and more special-

ized appear near the bottom (i.e., they have the smallest probabilities). A number of

factors could account for these differences in relative position. For instance, brokers

may help facilitate search in large, diversified organizations, in which case there may

be some positive returns to connection. A different possibility, perhaps more consis-

tent with my findings, is that these firms simply have more internal mobility across

disparate areas, which creates organizational “misfits” (Kleinbaum, 2012) who have

many disconnected contacts. Finally, it is also worth noting that although there is

some correspondence in the relative position of firms in Figures 3.4 and 3.5, there are

also interesting deviations. Inventors at Baush and Lomb, for instance, a supplier

of eye products, are well above the median with respect to their probability of be-

coming a broker, but they are among the lowest in terms of having a connection to

one. Future research may benefit from further investigation into whether these sorts

of deviations or other contextual factors moderate the effects of brokerage.

The first chapter of this dissertation also offers suggestive evidence that under

some conditions, brokers may offer collective benefits. Recall that one goal of that

study was to better understand what geographically isolated firms might do to help

12Firms only appear in either plot if they contributed an inventor that appeared in the estimation
sample.
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ensure their inventors are exposed to diverse ideas and perspectives. The results sug-

gested that one important factor is network configuration. Specifically, I found that

geographically isolated firms had better performance at innovation when the structure

of internal collaboration networks among their inventors was more inefficient, with

longer path lengths and therefore, more opportunities for inventors to serve as bro-

kers by spanning disconnected network areas. By contrast, I also found that as firms

became more geographically proximate to industry peers, network configurations that

offer more opportunities for brokerage were harmful for performance.

A few other existing studies also offer indirect evidence that the collective effects

of brokers may vary across organizations and even within organizations over time. For

example, in a computational experiment, Lazer and Friedman (2007) examine how

network structure affects the information diversity of an organization in which people

(or agents, in their model) are looking for solutions to a complex problem. The authors

find that less connected networks—in their case, a linear network where each person

is has two neighbors—preserve diversity longer than ones that are fully connected.

In the former, communication is inefficient, and therefore potential solutions derived

from local knowledge are probed more thoroughly—people are less likely to converge

prematurely on a local optimum. Although not directly addressed in the study,

networks that exhibit greater opportunities for brokerage share some properties of a

linear network. In fact, with the exception of people at either end of the line, everyone

in a linear network has two disconnected contacts and is therefore by definition a

broker. Extrapolating from this computational experiment, it may be that having

more brokers in an intraorganizational network is good for collective performance if

the goal is to facilitate exploration.

As one final example, consider Burt’s (2007) study of secondhand brokerage, dis-

cussed earlier. In a closing discussion, Burt compares the association between per-

formance and brokerage among contacts at varying degrees of separation (e.g., direct
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contacts, direct contacts’ contacts, and so on). The general pattern is one of expo-

nential decline, such that increasingly indirect connections to disconnected contacts

are less relevant for performance. What is more interesting, however, is that the rate

of change differs across the study populations. Although it is hard to draw inferences

given the small sample size (Burt has only three organizations) and other uncontrolled

differences across the populations, this finding further suggests the need for deeper

investigation into organizational factors.

Managing innovation. Finally, this study also has implications for managing

innovation. At a minimum, my findings suggest the need for awareness that in some

cases, rather than creating value, brokerage may actually be redistributing value from

other members of a team or other parts of an organization. Therefore, when allocating

rewards for contributions, it may be helpful to more carefully monitor or consult with

brokers to get a better picture of the potentially less apparent contributions of their

colleagues. Put differently, people who connect extensively with brokers may have

lower than expected performance, but the reason is that they add value by helping

the brokers do better. More broadly, my findings suggest that the indiscriminate

use of brokers may stifle collective efficacy. Although promoting brokerage may be

helpful in some cases, managers should consider doing so with caution and perhaps

moderation when projects require close coordination and teamwork.
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CHAPTER IV

How Knowledge Categorization Systems and

Evaluation Norms Enable and Constrain Network

Change in Organizations

4.1 Introduction

Two findings unite much contemporary scholarship on social networks in organiza-

tions. First, relationships among the members of an organization form networks that

enable those individuals to achieve better outcomes. For example, diverse collabora-

tion networks help people be more innovative by exposing them to heterogeneous ideas

and perspectives (Burt, 2004; Tortoriello and Krackhardt, 2010). Highly connected

individuals often work more efficiently because they have better access to knowledge

about the capabilities of others within their organization and know where to look for

assistance (Singh et al., 2010). And beyond influencing the outcomes for individuals,

recent work also shows that the global structure of relationships among the members

of an organization is an important feature predicting the organization’s performance

(Funk, 2014; Guler and Nerkar, 2012; Lazer and Friedman, 2007).

Second, findings from an array of studies reveal that the effects of networks on per-

formance are contingent and context dependent. Much like students of organizational

design emphasize that “there is no best way” to structure an organization, few, if any,
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types of network configurations are helpful in all times and all places. For instance,

to generate creative ideas for new products, organizations benefit from adaptable

networks with weak connections that promote exploration (Fang et al., 2010; Har-

gadon and Sutton, 1997). Other objectives however, like actually transforming ideas

into products, demand more rigid, hierarchical relations. Using this contingency lens,

researchers have identified how many factors moderate the performance effects of par-

ticular network configurations, including the nature of the underlying task (Hansen,

1999), the behavioral orientation of the parties involved (Lingo and O’Mahony, 2010;

Obstfeld, 2005), and their geographic location (Bell and Zaheer, 2007; Fleming et al.,

2007).

As evidence continues to mount in support of the idea that intraorganizational

network structures have significant but contingent effects on many important out-

comes, researchers have given far less attention to an important complementary ques-

tion: If some kinds of network configurations are better for reaching particular goals

than others, how can organizations change established networks? What strategies

are available for the leaders and members of an organization to reshape the global

patterns of communication, collaboration, and other ties among their subordinates

and peers? Much organizational research implies that even minor changes are likely

difficult because networks have institutional and personal underpinnings and rela-

tionships are supported by routines and habits that are costly to abandon (March

and Simon, 1958; Marquis, 2003; Stinchcombe, 1965). Implementing and sustaining

network change therefore requires knowledge of how social and organizational factors

constrain (or enable) those changes.

In recent years, scholars have made substantial progress in expanding our knowl-

edge of network dynamics across an array of organizational settings, ranging from

the evolution of alliance networks among high-technology companies (Powell et al.,

2005; Sytch et al., 2012) to the persistence of collaborative relationships in academia
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(Dahlander and McFarland, 2013). Despite this progress, several factors limit the

ability of existing studies to account for intraorganizational network change. First,

a substantial portion of research on network dynamics examines interorganizational

relationships. Although many network mechanisms operate across levels of anal-

ysis (Brass et al., 2004; Phelps et al., 2012), relevant contextual factors like the

incentives and opportunities that influence relationship formation likely differ sub-

stantially depending on whether the actors under investigation are organizations or

people. Second, while recent examinations of network dynamics within organizations

show how contextual factors effect people’s propensities to form and maintain re-

lationships, existing studies focus on ego networks, which are the portfolio of ties

that belong to individual actors (Kleinbaum, 2012). By treating tie formation as an

individual-level phenomenon, existing work overlooks how particular features of the

organizational context influence the decision to establish a connection. Consequently,

our knowledge of how leaders and members might reshape the global structure of an

intraorganizational network remains limited.

To address the questions outlined above and extend research on network change, I

conceptualize intraorganizational networks as attributes of organizations rather than

of the people that constitute the nodes of those networks. Using this approach, I fo-

cus on how organizations’ systems for categorizing and norms of evaluating knowledge

shape bridging tie formation. Bridging ties influence many aspects of performance

in knowledge-intensive organizations. A bridging tie is a connection that spans dis-

tant areas in a social network (Granovetter, 1973; Tushman, 1977). These kinds of

boundary-spanning connections are often studied because they enhance integration

and the flow of diverse knowledge (Davis and Eisenhardt, 2011; Grant, 1996; Hender-

son and Cockburn, 1994). My motivation for examining bridging ties differs. Setting

aside their performance implications, bridging ties are a useful starting point for

building theories of network of change because adding even a small number of con-
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nections among otherwise distant actors can lead to qualitative transformations in

global networks properties (Gulati et al., 2012; Watts and Strogatz, 1998). Bridging

ties are therefore powerful tools for reshaping networks.

In general, knowledge categorization systems—which I define as an organization’s

map of its accumulated knowledge and expertise—should facilitate bridging by mak-

ing it easier for the members of an organization to find relevant peers. Knowledge

categorization systems take on many forms and often serve multiple functions. For

example, universities rely heavily on disciplinary departments for organizing knowl-

edge embedded in faculty, journals, books, classes, workshops, and research space

(Abbott, 2001; Stinchcombe, 1990). Virtual organizations use content tagging to fa-

cilitate knowledge storage and retrieval (Golder and Huberman, 2006). And consult-

ing firms employ electronic databases to help their employees draw on accumulated

knowledge embedded in materials and expert colleagues for reuse in ongoing projects

(Haas and Hansen, 2007; Hansen et al., 1999).

Despite their benefits for improving search, I argue that knowledge categorization

systems can sometimes inhibit bridging and therefore network change. I hypothesize

three cases that are likely to be especially pernicious: (1) when an organization’s

knowledge categorization system grows too large, (2) when the knowledge categoriza-

tion system decouples from the actual distribution of expertise within the organiza-

tion, and (3) when the standards used to evaluate knowledge contributions are vari-

able across an organization’s knowledge categorization system. I test and find support

for all three hypotheses using data on 23 million knowledge-sharing exchanges among

1.3 million members of 25 online technical communities over a four-year period.

The remainder of this chapter is organized as follows. First, I draw on theories

of networks and categorization to develop hypotheses that relate characteristics of

organizations’ knowledge categorization systems and norms of evaluating knowledge

contributions to bridging tie formation. I then describe the research setting and
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methods of analysis. Next, I present the results along with a battery of robustness

tests that add confidence to the findings. I close with a discussion of the broader

theoretical and substantive implications.

4.2 Network Change in Knowledge-Intensive Organizations

Knowledge-intensive organizations ranging from high-technology companies to

hospitals face a common dilemma of finding ways to integrate groups of people with di-

verse backgrounds (Lawrence and Lorsch, 1967; Owen-Smith, 2001; Szulanski, 1996).

For these organizations, accomplishing what may even be routine tasks—like imaging

materials with electron microscopes or performing prostatectomies—requires having

members who are deeply specialized in particular knowledge domains. To succeed at

larger objectives, however, knowledge-intensive organizations must also foster com-

munication and collaboration among those specialized members (Argote and Ingram,

2000; Grant, 1996; Henderson and Cockburn, 1994). For example, to develop a new

product, an advanced materials firm’s experts in electron microscopy must trans-

fer knowledge to their colleagues in engineering. Likewise, for a hospital to treat a

patient’s prostate cancer, urologists need to interact effectively with radiation oncol-

ogists, pharmacists, nurses, and a host of other professionals.

Despite the need for integration, at least two factors limit communication and

collaboration among experts in many organizations. First, specialization creates com-

mon bonds between people with similar backgrounds. Substantial research demon-

strates that homophily is pervasive in social relations—people tend to associate with

those who are similar to themselves (Kleinbaum et al., 2013; Kossinets and Watts,

2009; McPherson et al., 2001). Therefore, in the absence of intervening factors, com-

munication and collaboration should be greatest among people with expertise in re-

lated domains. Second, when people do work with peers who specialize in areas other

than their own, differences in technical vocabularies and problem-solving approaches
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can limit the success of their interactions, at least without accompanying efforts at

translation (Galison, 1997). Both factors should decrease integration and create seg-

regated intraorganizational networks, where silos of experts interact extensively with

one another but have few connections to peers who specialize in different domains.

One way for knowledge-intensive organizations to overcome these tendencies for

segregation and eliminate silos of expertise is to promote tighter integration through

bridging ties. By linking distant or unconnected areas of a network, bridging ties

can be powerful tools for network change. For example, even a handful of distant

connections dramatically reduces the number of intermediaries that members of an

organization must travel through to find a person with relevant expertise—even for

those people who are not an anchor of the bridge (Watts and Strogatz, 1998). By

decreasing path lengths, bridging ties enhance knowledge flows within a network

(Lazer and Friedman, 2007). Better knowledge flows help members of an organization

become familiar with the technical vocabulary and problem-solving approaches of

people from different backgrounds, and in so doing, lower barriers to integration.

Moreover, to the extent that bridging ties persist over time, such connections also

change the nature of homophilous behavior, as once distant actors become more alike

through their collective influence over one another (Azoulay et al., 2009; Padgett and

Powell, 2012).

Bridging relationships lead to substantial benefits for those who initiate them, in-

cluding career advancement, compensation, and good ideas (Burt, 1992, 2004). Given

these potential rewards, it seems reasonable to predict that people will naturally seek

to build bridges among disconnected members of their organization. However, stud-

ies that adopt a more macro perspective suggest bridging is rare and that contextual

factors have a substantial influence on the formation of such ties (Sorenson and Stu-

art, 2008; Sytch et al., 2012). In what follows, I build on these insights to develop

hypotheses about how one important contextual factor—the systems organizations
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use to map their accumulated knowledge—enables and constrains people’s ability to

form relationships with distant peers.

4.2.1 Knowledge Categorization Systems and Bridging Tie Formation

Most organizations use some system of categorization to keep track of what they

know (Argote, 2013; Davenport and Prusak, 1998; Walsh and Ungson, 1991). Univer-

sities, for instance, rely on disciplinary departments to—among other things—cluster

knowledge embodied in people (e.g., professors, students) and objects (e.g., books,

electronic archives) in physical and organizational space (Stinchcombe, 1990). Profes-

sional associations establish sections to group members who have similar expertise and

bundle research papers that address related topics. And online communities develop

tagging systems to categorize the content added by their users. Within knowledge-

intensive organizations, these systems of categorization serve as tools that people use

for filtering, sorting, and screening their experience and finding relevant knowledge

to accomplish their goals (March and Simon, 1958). In the search for knowledge,

categories are like maps—they simplify reality and offer direction.

Much research focuses on the role of social relationships as tools for guiding knowl-

edge search, often in place of the more formal categorization systems built into the

structure of many complex organizations (Aral and Van Alstyne, 2011; Hansen, 1999;

Reagans and McEvily, 2003). Despite their value for locating knowledge, social ties

are less effective if a person requires insights on topics that are unfamiliar to his or

her acquaintances. Formal categorization systems offer recourse when social search

fails by helping a person identify knowledge that he or she may otherwise not en-

counter (Evans, 2008). Categorization systems should therefore promote bridging

by allowing people to “hop” to unexplored parts of an intraorganizational network,

where they can locate materials and interact with other members who have a deeper

understanding of the knowledge they seek to obtain.

117



Organizational scholars demonstrate, however, that systems of categorization vary

in their ability to convey helpful information to the people who use them (Hannan

et al., 2007; Pontikes, 2012). Although many factors influence a categorization sys-

tem’s effectiveness, one of the most basic, yet important, is its size—i.e., the number

of categories available. Systems with too few categories group together too many

unrelated objects and therefore the categories convey little information about their

constituent elements. Search costs increase because users need to do more manual

sifting and sorting to find relevant knowledge. Communication challenges also arise

when the categories people have at their disposal fail to match the complexity of

their work. Consider, for instance, research on coding noise and performance in small

groups. In one classic study, Christie et al. (1952) asked subjects to solve a prob-

lem that required sharing knowledge about the color of marbles using only written

messages. When groups were given marbles with standard colors, they solved the

problem easily, but in trials where the marbles had a cloudy and indistinctive fin-

ish, performance fell because members lacked a common language—or categorization

system—for sharing knowledge (Macy Jr. et al., 1953; see also March and Simon,

1958, 161ff). Adding more categories to a system can alleviate these barriers and, in

so doing, facilitate search and bridging tie formation.

Although adding categories should generally be helpful, beyond a certain point,

systems may become too complex for their users to navigate and ultimately make

search challenging. Prior studies across a range of settings, for instance, demonstrate

that “as both the number of options and the information about options increases,

people tend to consider fewer choices and to process a smaller fraction of the overall

information available regarding their choices” (Iyengar and Lepper, 2000, 996) and

therefore often refrain from making any choice at all (Iyengar and Kamenica, 2010;

Tversky and Shafir, 1992). When an organization’s categorization system offers too

many options, I anticipate that because of cognitive limitations, people will use the
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system less effectively to search for knowledge from unfamiliar sources. Consequently,

bridging tie formation should decline. These considerations lead to a first hypothesis.

Hypothesis 6. As the size of an organization’s knowledge categorization system in-

creases, intraorganizational bridging tie formation will also increase up to a point,

beyond which increases in the size of the knowledge categorization system will de-

crease intraorganizational bridging tie formation.

Put another way, a moderately differentiated knowledge categorization system

should create more integrated and tightly coupled networks.

4.2.2 Knowledge Categorization Systems and Informal Knowledge Do-

mains — The Problem of Decoupling

Knowledge categorization systems are part of an organization’s formal structure.

People use them as maps for—among other things—locating peers within their or-

ganization who have knowledge about subjects that lie outside their own areas of

expertise. Hypothesis 6 builds on the analogy between knowledge categorization

systems and maps to suggest that maintaining a balance between abstraction and

detail—in terms of the overall number of categories—should be optimal for helping

people connect with others by forming bridging ties.

Much like a map, however, a knowledge categorization system’s effectiveness also

hinges on the extent to which the categories align with meaningful clusters of knowl-

edge as used by the members of an organization in practice. I refer to these la-

tent groups of knowledge that emerge in practice as “informal knowledge domains.”

Knowledge categorization systems and informal knowledge domains often show signs

of lose coupling in Weick’s (1976, 3) sense—although they are responsive to one an-

other, each “preserves its own identity and some evidence of its physical or logical

separateness.” Bowker and Star (1999, 232) capture this general idea in their notion
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of “intimacy,” which denotes the extent to which a categorization system “acknowl-

edges common understandings that have evolved among members of the community.”

When it comes to categorization systems, intimacy is a good thing.

Orr’s (1996) ethnographic study of technical representatives at Xerox offers a

useful illustration of the distinction between knowledge categorization systems and

informal knowledge domains. To help its representatives service and repair customers’

photocopiers, Xerox developed an expansive technical documentation system. The

system was largely organized around error codes. Given a code, the documentation

explained step-by-step what a representative should do to resolve the problem. In

the field, however, technicians often had to solve issues that fell outside the scope

of the documentation and its highly linear, error-code-based approach to service and

repair. To make their jobs easier, Xerox’s technical representatives met regularly to

discuss the problems they encountered in the field and exchange solutions. Through

these meetings, the representatives developed their own folk knowledge of photocopier

service and repair. In this example, the documentation system is a knowledge catego-

rization system; the representatives’ folk expertise is a bundle of informal knowledge

domains.1

Many routine aspects of organizational life lead knowledge categorization systems

to decouple from the underlying informal knowledge domains they seek to map. In

the case of Xerox, the engineers who wrote the documentation had little firsthand

experience repairing photocopiers—the people who designed the knowledge catego-

rization system were not the ones who used it. Decoupling may also stem from the

more natural evolution of knowledge within an organization, as members make new

discoveries and abandon exhausted topics, but leaders fail to update or prune the

categorization system. Acquisitions, spinoffs, and turnover, furthermore, all change

the collective distribution of knowledge among members of an organization by either

1Eventually, Xerox created a database system, called Eureka, to more formally organize the
technicians’ repair knowledge and facilitate sharing (Brown and Duguid, 2000, 111ff).
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bringing in outsiders or through the loss of active participants (Paruchuri et al., 2006;

Rosenkopf and Almeida, 2003; Tzabbar, 2009).

Whatever the cause, it seems reasonable to predict that the consequences should

be similar. Overlap between a knowledge categorization system and informal knowl-

edge domains reduces some of the difficulties associated with bridging by making it

easier for people to search and browse for knowledge within their organizations. De-

coupling should have the opposite effect. When people have poor quality maps, they

search more narrowly. If they search more narrowly, they will be less likely to venture

into new settings. And if people do not venture into new settings, they are less likely

to form distant ties (Feld, 1981; Sorenson and Stuart, 2008). These observations lead

to a second hypothesis.

Hypothesis 7. As decoupling between an organization’s knowledge categorization

system and informal knowledge domains increases, intraorganizational bridging tie

formation will decrease.

Related literature on the mismatch between formal and informal organizational

structure offers some parallels to the arguments made here. Most notably, they are

similar in their emphasis that, to understand many aspects of organizational behav-

ior, it is necessary to view formal, codified rules and routines and the actual practices

of members as distinct but interacting phenomenon (Brown and Duguid, 1991; Dal-

ton, 1959). Despite these similarities, informal knowledge domains are conceptually

distinct from informal social structure. The former are clusters of related knowledge,

not social relationships.

4.2.3 Heterogeneous Evaluation Norms in Knowledge Categorization Sys-

tems

Hypotheses 6 and 7 propose that structural features of knowledge categorization

systems influence bridging because such systems facilitate (or constrain) members’
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abilities to retrieve accumulated knowledge from their organizations and locate new

exchange partners. However, knowledge categorization systems are not only used

for retrieval. In many organizations, they are also focal points around which new

contributions to knowledge are evaluated. For example, when making hiring and pro-

motion decisions, universities judge candidates with respect to the standards of the

hiring department’s discipline. Similarly, professional conferences evaluate submis-

sions for inclusion in their programs and make awards to exceptional work according

to the norms of sections and divisions.

The particular categories within a categorization system—and the members of

an organization who identify with them—can vary along a number of dimensions in

terms of how new contributions to knowledge are evaluated (Lamont, 2009; Rhoten

and Parker, 2004). Some of these differences may stem from deeply held beliefs about

what constitutes quality. Others may relate to whether convention states that low

quality contributions should simply be ignored, or whether they should be policed and

punished. Furthermore, categories may differ in terms of the extent to which quality

can be determined by some objective standard. Regardless of origin, these and other

factors should lead to the development of heterogeneous norms of evaluation along

the lines of an organization’s knowledge categorization system.

Heterogeneous evaluation norms are problematic for knowledge-intensive orga-

nizations that seek to foster bridging ties among their distant members. Variable

evaluation creates an atmosphere of uncertainty. Research demonstrates that people

tend to refrain from sharing knowledge when they feel uncertain about how their

contribution will be received by their peers, especially if doing so may inadvertently

reveal incompetence or otherwise cause lasting harm to their reputations (Bernstein,

2012; Edmondson, 1999; Irmer et al., 2002). When this kind of uncertainty exists, a

person is likely to believe that sharing no knowledge is safer than sharing something

that is potentially (or perceived to be) wrong. Therefore, to the extent that eval-
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uation is highly variable across an organization and members cannot perceive how

contributions will be evaluated, people should be most likely to share knowledge in

familiar domains and refrain from bridging.

By contrast, in organizations where there is less uncertainty about how new,

potentially low quality contributions will be received, people should feel better about

venturing outside their comfort zone and are more likely to form bridging ties. For

example, Hargadon and Sutton (1997) describe how IDEO, a design consulting firm,

created a culture that rewarded knowledge sharing across disparate domains within

the organization, and even went so far as to shun those engineers who kept potentially

useful insights to themselves. These observations suggest a final hypothesis.

Hypothesis 8. As evaluation norms become more heterogeneous across a knowledge

categorization system, intraorganizational bridging tie formation will decrease.

Note that the hypothesis does not predict that high standards or critical peers

will necessarily prevent bridging but rather emphasizes the effects of uncertainty.

Put differently, I predict that the less certain a person is about how he or she will be

evaluated when straying from his or her comfort zone, the less likely he or she will be

to do so.2

4.3 Research Setting

I tested the hypotheses using data on 23 million knowledge-sharing exchanges

among 1.3 million members of 25 websites on the Stack Exchange Network over the

2Microsoft’s stack ranking employee evaluation system offers an illustrative example of a policy
that constrains tie formation across boundaries by increasing uncertainty about evaluation. The
stack ranking system operates like a deterministic bell curve. As Eichenwald (2012) explains, “every
unit [is] forced to declare a certain percentage of employees as top performers, then good performers,
then average, then below average, then poor” regardless of whether or not all performed beyond
expectations. Consequently, “a lot of Microsoft superstars did everything they could to avoid working
alongside other top-notch developers, out of fear they would be hurt in the rankings” (Eichenwald,
2012). This, stack ranking evaluation systems may have the effect of increasing the attractiveness of
working with colleagues nearby in a network because those nearby are familiar, while also decreasing
the feasibility of working across divisional boundaries.
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period of August, 2008 through July, 2012. As I discuss below, I conceptualize each

site as an independent organization with its own intraorganizational network.

Stack Exchange is a family of online question-and-answer (Q&A) sites that span

a rage of mostly technical topics, from electrical engineering to LATEX typesetting

systems. The origins of Stack Exchange date to August, 2008, when Jeff Atwood

and Joel Spolsky, two prominent technology bloggers, launched Stack Overflow, the

flagship site of the Network and currently one of the largest communities of program-

mers on the Internet (Atwood, 2008). By some estimates, new questions on Stack

Overflow receive an answer in a median time of only 11 minutes (Mamykina et al.,

2011). Server Fault, a sister site focused on system and network administration, was

added in April of 2009, followed shortly thereafter by Super User, a site catering to

general computer Q&A, in August. After an unsuccessful attempt to expand by li-

censing their Q&A platform for commercial use, Atwood and Spolsky founded Stack

Exchange, Inc. in early 2011. Since then, dozens of sites have been added based on

input from members of the community.

Several features of Stack Exchange sites set them apart from competitors and

have contributed to the Network’s rapid growth and continued popularity. All user

generated content on Stack Exchange sites is available under a Creative Commons

Attribution-ShareAlike license, meaning that posts are free to use and modify pro-

vided that attribution is made to the original author(s) and that derivative works are

distributed under a similar license. Stack Exchange sites are also highly democratic.

A portion of each sites’s moderators are chosen through competitive elections. As

a user contributes to a Q&A site, he or she gains the ability edit content, vote for

questions to be closed or deleted, and a host of other privileges (Atwood, 2009).

Perhaps most importantly, Stack Exchange sites stand out for their elaborate

reputation systems that incentivize high quality participation. Members are rewarded

points for answering questions, but the magnitude of their reward is contingent on how
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other participants evaluate the quality of the contribution. Evaluation occurs through

a simple up/down voting mechanism. For each vote up on an answer, the contributor

earns 10 points; a vote down, by contrast, lowers the contributor’s reputation by 2.

“Accepted” answers—i.e., those selected by the person who asked the question as

the best response—earn their contributors 15 points. Members are also rewarded (or

penalized) for asking good (or bad) questions, once again, depending on how they are

evaluated by their peers.3

Finally, Stack Exchange sites are notable for their laser-like focus on high quality

factual knowledge-transfer (as opposed to advice or opinions). Consider a recent

interview with David Fullerton, Vice President of Engineering at the Network.

Everything we do is about connecting experts with each other to ask and
answer questions, so every interaction on the site is people networking.
That social interaction is absolutely critical to how the site works. What
separates us from a traditional social network is our focus on Q&A. We’re
not interested in discussion for discussion’s sake or in chitchat: we want
users to share information and answer real questions. We actually think
communities work best when they work together to solve problems, not
just come together to chat. (Begel et al., 2013, 60)

This mission distinguishes Stack Exchange sites from other online social network

platforms because its primary goal is not connecting people, but rather answering

questions. Unlike Facebook, Twitter, LinkedIn, and similar sites, Stack Exchange

does not allow users to “friend” or “follow” one another, nor does it directly promote

connectivity in other ways—ties are defined only in terms of actual knowledge sharing

relationships.

Several additional considerations make Stack Exchange attractive for testing the

hypotheses outlined above. Notably, all Stack Exchange sites run on a common un-

derlying Q&A software platform. Although they differ in terms of aesthetics (e.g.,

color scheme, icons), they are functionally (e.g., navigation, search) identical. There-

3Although answering questions is by far the most effective way to build reputation, users can
also earn a limited number of points in some other ways. For details, see http://stackoverflow.

com/help/whats-reputation
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fore, variation in behavior across sites should not stem from simple differences in

design.

Despite these commonalities, sites on Stack Exchange can be viewed largely as

independent organizations. Users who are active on more than one Stack Exchange

sites have separate accounts, and reputation earned on one site does not (except

in very limited circumstances) carry over to another. When browsing any particular

Q&A site, there are few signs that others even exist. Only two noteworthy factors hold

the different sites together. First, they have a common underlying administration—

all are operated by Stack Exchange, Inc. Second, in some cases, questions can be

moved from one site to another if the question is off topic for the site on which is was

asked. In most cases, however, such questions will simply be closed.

Stack Exchange is also a valuable research setting because sites use a clear knowl-

edge categorization system—all questions are coded using subject tags (Barua et al.,

2012). Each site has its own independent set of tags for organizing content. New

tags can be proposed by users who have sufficient reputation.4 Over time, some un-

used tags are removed automatically by the Stack Exchange software. Duplicates are

also occasionally removed through the expansion of a crosswalk of synonymous tags,

accessible by moderators.

Finally, the available data are attractive because they allow for the observation

of both successful and unsuccessful bridging ties. Although bridging often leads to

positive outcomes, context also matters, and connecting diverse parties oftentimes

has negative consequences (Smith, 2005; Xiao and Tsui, 2007). The top panel of

Figure 4.1 below shows an example of a bridging tie (in the form of a post) that

received a high rating; the middle panel of the figure, also a bridging connection,

received a low evaluation.

4The reputation threshold is very steep. For example, on Stack Overflow, a reputation of 1,500
is required to add tags, meaning that only 1.6% of users had this privilege as of August, 2012.
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Figure 4.1: Sample Posts†

Question: I have a script that downloads files from an FTP server
using the curl command. When I run the script manually the download
finishes correctly. I wrote a Java program to run the script automatically.
However, when I run the program it freezes after a few minutes. By
freezing, I mean that the Java program is running but the file does not
continue to download anymore. What can cause this type of behavior?
— member0001

Answer: I’m not a Java person, but rather a Unix one, and one thing
seems obvious to me: The buffer on either stdout or stderr is filling
up, and then curl is blocking. Does it work if you run curl in silent
mode? Based on the Java documentation, it looks like you want to use
getErrorStream and getInputStream. — member0002

Question: I wrote a Python script using android-scripting. It basically
vibrates every minute (like a motivator). However, when the phone is
locked with screen blanked out, I don’t sense any vibration. Perhaps
Android is freezing the script? Note that I am running the script as a
service. Is there a way to make it work all the time regardless of the
phone suspend state? — member0007

Answer: Here’s a possible solution—use some scheduler software and
start your script regularly. This way you’ll not need to call time.sleep().
Maybe scripting is not a best solution for such periodic tasks. You will
not face this problem if you write a simple Java app. — member0008

Question: It looks like the lists returned by keys() and values() methods
of a dictionary are always a 1-to-1 mapping (assuming the dictionary is
not altered between calling the 2 methods). If you do not alter the
dictionary between calling keys() and calling values(), is it wrong to
assume the above for-loop will always print True? I could not find any
documentation confirming this. — member0003

Answer: Yes, what you observed is indeed a guaranteed property –
keys(), values() and items() return lists in congruent order if the dict is
not altered. iterkeys() &c also iterate in the same order as the corre-
sponding lists. — member0004

Comments:
-1: no reference to the documentation (or source). — member0005

Dude, that’s Alex Martelli, he’s the author of Python in a Nutshell
and The Python Cookbook. He doesn’t need provide a reference. —
member0006

@member0006 : Even if it was Guido van Rossum, the Benevolent Dic-
tator for Life, I’d still ask for a reference. — member0005
† These posts have been edited for length and adapted to help preserve
the anonymity of their authors.
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4.4 Data and Methods

4.4.1 Sample

I obtained all posts, edits, tags, member profiles, and other content made on Stack

Exchange between August, 2008 and August, 2012 directly from the company. Stack

Exchange makes these data publicly available in XML format on a quarterly basis.5

To facilitate comparisons, several Q&A sites included in the data dump were excluded

from the analyses. I used the following procedure to identify an appropriate sample.

First, I began with all Q&A sites designated by Stack Exchange as having a “Science”

or “Technology” focus. I chose these two categories because prior research suggests

that the social structure of technical Q&A sites differs systematically from those that

cater to other subject areas, where replies tend to offer opinions or advice rather

than factual knowledge (Adamic et al., 2008). Of the 35 substantive sites included

in the data dump, I excluded 4 that were categorized at “Life/Arts” and 6 that fell

under the heading of “Culture/Recreation,” leaving a total of 25. Each Q&A site

on Stack Exchange also includes a companion “Meta” site, where users can report

bugs, propose features, or ask about other aspects of their respective community. I

exclude these sites from the core models, but find in robustness tests that the results

are similar when they are included. Table 4.1 provides an overview of the sites used

in the analyses.

4.4.2 Network Construction

I treat the 25 sample Stack Exchange sites as independent organizations, each with

its own network of members. To measure the structure of each intraorganizational

network, I use data on electronic communications made between users through posts.

On Stack Exchange, posts come in three forms that can be viewed hierarchically:

5http://blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-

dump/
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Table 4.1: Sample Overview

Site Category Age (Years)† URL Tags† Members†

Android Enthusiasts Technology 1.9 http://android.stackexchange.com/ 972 14,702
Ask Different Technology 1.9 http://apple.stackexchange.com/ 932 22,338
Ask Ubuntu Technology 2.0 http://askubuntu.com/ 2,444 65,447
Theoretical Computer Science Science 2.0 http://cstheory.stackexchange.com/ 408 8,371
Database Administrators Technology 1.6 http://dba.stackexchange.com/ 639 9,869
Drupal Answers Technology 1.4 http://drupal.stackexchange.com/ 700 7,769
Electrical Engineering Technology 1.8 http://electronics.stackexchange.com/ 1,092 9,068
Game Development Technology 2.0 http://gamedev.stackexchange.com/ 850 15,963
Geographic Information Systems Technology 2.0 http://gis.stackexchange.com/ 1,123 7,719
Mathematics Science 2.0 http://math.stackexchange.com/ 784 31,109
Mathematica Technology 0.5 http://mathematica.stackexchange.com/ 400 1,846
Physics Science 1.7 http://physics.stackexchange.com/ 745 9,306
Programmers Technology 1.9 http://programmers.stackexchange.com/ 1,714 53,205
IT Security Technology 1.7 http://security.stackexchange.com/ 556 10,973
Server Fault Technology 3.3 http://serverfault.com/ 4,933 89,679
SharePoint Technology 1.7 http://sharepoint.stackexchange.com/ 879 7,001
Stack Overflow Technology 4.0 http://stackoverflow.com/ 31,837 1,295,620
Cross Validated Science 2.0 http://stats.stackexchange.com/ 840 10,755
Super User Technology 3.0 http://superuser.com/ 5,066 112,577
TeX - LaTeX Technology 2.0 http://tex.stackexchange.com/ 935 14,855
Unix & Linux Technology 2.0 http://unix.stackexchange.com/ 1,527 19,075
User Experience Technology 2.0 http://ux.stackexchange.com/ 668 14,638
Web Applications Technology 2.1 http://webapps.stackexchange.com/ 832 17,747
Webmasters Technology 2.1 http://webmasters.stackexchange.com/ 778 14,562
WordPress Answers Technology 2.0 http://wordpress.stackexchange.com/ 792 15,121

† As of July 31, 2012.
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(1) questions, (2) answers, and (3) comments. Questions are the focal point around

which exchanges occur, and always appear as the top post within a thread. Once a

question is posted, members can respond with answers that appear below the ques-

tion. Answers are arranged according to their quality, as measured by votes. Finally,

comments are short communications that appear below specific questions or answers.

Their purpose is to allow members to ask for or append clarifications, suggest cor-

rections, or convey other information that does not directly answer the question that

anchors the thread.

The design of Stack Exchange and the hierarchical nature of questions, answers,

and comments makes it relatively straightforward to identify directed knowledge shar-

ing relationships among members of each sample site. Answers are the most clear-cut:

When a member i posts an answer to a question asked by j, I record a tie from i to

j. Questions that do not receive any replies do not result in the creation of any ties.

Comments are slightly more challenging to map onto ties because the intended

recipient may not be the author of the question or answer to which the comment is

appended—oftentimes, comments are made by members in response to other com-

ments. Fortunately, the Stack Exchange software allows members to specify the

intended target of their remarks by including the target’s name in their comment,

preceded by “@”. (For an example, see the bottom panel of Figure 4.1 above.) Iden-

tifying a target in this way notifies the member of the comment through the Stack

Exchange system and also potentially via e-mail. Thus, for comments, I coded a tie

from member i to j if i explicitly identified j in his or her post; in cases where the

person making the comment does not specify a target, I code the author of the parent

question or answer as the endpoint of a directed relationship originating from i.

I then aggregated the individual-level knowledge sharing relationships to approxi-

mate the global intraorganizational network structure for each sample site. Following

prior research on electronic communication networks, I use a sliding window filter
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approach to make these approximations (Kossinets and Watts, 2006, 2009; Moody

et al., 2005). This approach uses two parameters, τ and δ, to define a global net-

work from individual-level interactions. The first parameter, τ , specifies the size of

the time window during which any pair of members in the network must have had

some form of exchange in order for a tie to exist between them at time t; the second

parameter, δ, defines a discrete interval according to which the the window moves,

and consequently, how old ties are dropped and new ones are added. Therefore, “the

instantaneous network at time t includes all dyads with nonzero strength or, equiva-

lently, all dyads that have exchanged messages within the interval (t−τ, t]” (Kossinets

and Watts, 2009, 414).

In the analyses presented below, I set τ = 7 days and δ = 1 day. Although prior

studies of electronic communication networks vary substantially in terms of window

sizes, many investigations approximate global network structures using longer units of

30 days or more (Aral and Van Alstyne, 2011; Kossinets and Watts, 2009; Zhang et al.,

2007). Several considerations, however, suggest that for Stack Exchange, a shorter

window is appropriate. First, because many sites have substantial activity, older ties

are likely less representative of contemporary communication patterns for any given

Q&A community and therefore retaining them may lead to inaccurate measures.

Second, although some questions remain active for long periods of time, most replies

come within a relatively short window after a question is posted. Figure 4.2 shows

the distribution of active questions (left panel) and replies (right panel) as a function

of time for all 25 sample sites. To minimize right censoring, the figure only includes

questions posted before January 1, 2012—a full eight months before the date of the

data dump.

Only 25% of questions receive any answers or comments 10 days after their initial

posting, and 75% of replies are made within 12 hours. Based on these considerations,

I chose τ = 7 days and δ = 1 because they capture the vast majority relevant
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activity, while also corresponding to substantively meaningful units of weeks and

days, respectively. However, as I discuss in greater detail below, the findings are

robust to a variety of alternative values of τ and δ.

To help clarify the data structure, consider Figures 4.3 and 4.4, which offer

schematic illustrations of the intraorganizational networks of two Stack Exchange

sites, Super User and Server Fault, one year after their foundings. As discussed

above, each site can be viewed as an independent organization, with its own unique

intraorganizational network structure, knowledge categorization system (i.e., tags),

and informal knowledge domains, none of which are influenced directly by activity on

other sites. Super User and Server Fault are comparable along a number of dimen-

sions, including their age, number of members, and total tags.

For their respective sites, Figures 4.3 and 4.4 display connections among the

largest communities of members. Although methodological details are reserved for

Section 4.4.3, these communities correspond roughly to subgroups of members who

have many connections among one another and relatively few ties outside the sub-

group. Arrows correspond to to bridging ties that span communities within a site.

The thickness of an arrow is proportional to the number of underlying exchanges

between members of connected communities; the direction of an arrow corresponds

to the direction of exchange. Notice that knowledge sharing among communities is

not necessarily reciprocal and both figures contain asymmetric ties.

Despite some organizational similarities, Super User and Server Fault have notably

different network structures. Overall, as reflected in Figures 4.3 and 4.4, with a mean

of 2.6 ties per community, bridging is more common on Super User than it is on

Server Fault, where the corresponding statistic is only 1.9. Moreover, Super User’s

top network communities are highly integrated, especially in comparison to Server

Fault, where the network is centralized around the Linux community and there are

few connections among smaller subgroups.
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4.4.3 Dependent Variable

The dependent variable captures new bridging ties created among members of each

sample site at time t + 1. I define bridging ties as knowledge sharing relationships

between members of different network communities within a site (c.f., Sytch et al.,

2012).6 Once again, note that these “network communities” are different from the

Q&A sites discussed above. The former exist only within a site and are defined by

patterns of knowledge sharing among members, while the latter is synonymous with

“a site on Stack Exchange.” None of the network measures or concepts used in this

chapter entail connections across sites.

To identify communities of members, I use a walktrap method developed by Pons

and Latapy (2005). Unlike some community detection algorithms, walktrap is com-

putationally feasible for large networks and therefore is useful for the purposes of this

study given the scale of the data. Although there are many algorithms available for

uncovering community structure in networks, all share the common goal of partition-

ing nodes into groups such that connectivity is higher among nodes within groups

but lower between them (Fortunato, 2010). The basic intuition behind the walktrap

method is that when traversing a network, a random walker should get stuck visiting

pockets of highly interconnected nodes. Using this idea, distances between any pair

of nodes i and j can be measured as the probability that a random walker moves from

i to j within some predetermined number of steps, w, which I set to 4.

After obtaining these distances, I grouped nodes into network communities using

Ward’s hierarchical clustering algorithm (Pons and Latapy, 2005). For each network,

I selected a partition that maximized the modularity function of Newman and Girvan

(2004). Modularity is defined conceptually as the difference between the proportion

of edges that fall within the communities identified by a given community detection

6I also considered several alternative measures of bridging tie formation, which I discuss in greater
detail in Section 4.7.
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algorithm and the proportion expected for a comparable random network. Across

sample sites, the average modularity was 0.5, which is characteristic of networks with

a strong community structure. To facilitate modeling and interpretation, I use the

log of bridging ties in all analyses.

4.4.4 Independent Variables

Knowledge categorization system size. Hypothesis 6 proposes that there is

a curvilinear (inverted U-shaped) relationship between the size of an organization’s

knowledge categorization system and bridging tie formation. I measure the size of

each sample site’s knowledge categorization system as the number of tags available

for use at time t. As discussed above, tags are an essential component of all Stack

Exchange sites (Barua et al., 2012). When submitting a new question, members are

required to select at least one tag to characterize their post, and many users opt for

more. Tags are also essential for site navigation. All Stack Exchange sites feature a

prominent tab at the top of each page that allows users to filter recent posts by tag,

along with a sidebar on every index page that serves a similar function. In short, tags

are the backbone through which members locate and contribute to organizational

knowledge.

Decoupling. Bridging is also likely to be influenced by the extent to which

an organization’s knowledge categorization system maps onto informal knowledge

domains, as proposed by Hypothesis 7. Although tags offer a clear proxy for the

structure of each site’s knowledge categorization system, informal knowledge domains

are more elusive. Yet measures of both are needed to estimate decoupling.

Recall that informal knowledge domains are defined as groups of related knowledge

that emerge through use and practice (in contrast to the maps of those groups—i.e.,

categorization systems). To capture this idea empirically, I partition questions on each

Stack Exchange site into latent clusters based on their degree of textual similarity.
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Using this approach, it is possible to place questions that contain similar words into

discrete bins that are defined independently of the tags used by members to classify

those questions.

I use affinity propagation to cluster questions on each site posted between t and

t − 30 days. Affinity propagation is an algorithm that finds exemplars among a set

of data points and uses those exemplars as anchors for assembling larger groups of

observations (Frey and Dueck, 2007).7 Although I reserve a more detailed discussion

of the procedure for Appendix B, several attractive features of the algorithm are worth

noting. First, affinity propagation is an unsupervised learning algorithm and therefore

requires no training data. Second, the algorithm does not need the number of clusters

to be specified as an input parameter. This feature is especially important because

I have no basis to estimate the number of latent knowledge domains for each Q&A

community. Even if it were possible to make an educated guess (e.g., using knowledge

about a particular community), the number of sites and observation periods covered

by the sample would make doing so intractable. Finally, relative to comparable

methods, affinity propagation is known to produce higher quality clustering solutions

with only a fraction of the computational resources.

After clustering the questions on each site i into informal knowledge domains, I

then estimate decoupling as

Dit(C,K) =
∑
k∈K

∑
c∈C

p(c, k) log

(
p(c, k)

p(c) p(k)

)
, (4.1)

where p(c, k) is the joint probability distribution function of tags (C) and informal

knowledge domains (K), and p(c) and p(k) are the marginal probability distribu-

tion functions of tags (C) and knowledge domains (K), respectively. Dit(C,K) is

7Because of computational limitations, I was only able to apply the algorithm to a 7 day moving
window on Stack Overflow. The substantive findings are similar if I use a 7 day window for all sites.
However, because I was able to obtain higher quality partitions with more data, I chose to use the
longer window when computationally feasible.
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equivalent to the negative mutual information of tags (C) and knowledge domains

(K) from t to t − 30 at time t (Shannon and Weaver, 1949). Mutual information is

a measure that captures how much knowledge of one random variable reveals (i.e.,

reduces uncertainty) about another. The measure has some conceptual parallels to

the correlation coefficient, but it captures nonlinear relationships and can be used

with discrete variables. Because mutual information increases monotonically with

the number of discrete values (Vinh et al., 2009), I adjust Dit(C,K) for chance agree-

ment using the procedure discussed in Appendix C. After adjustment, I subtract the

results from 1 and multiply by 100 so that larger values indicate greater decoupling

and the regression coefficients correspond to unit changes.

As an illustration, consider a university where knowledge is categorized around

traditional disciplinary departments, but researchers produce work that is actually

highly interdisciplinary in nature. In this example, decoupling should be high (i.e.,

close to 100) because knowing about the distribution of departments will reveal little

about the underlying informal knowledge domains. One might expect, for instance,

that knowing a researcher’s department would not make it easier to guess the kinds

of work he or she does; likewise, knowing about a researcher’s work would not be

useful for discerning his or her departmental home.

Evaluation heterogeneity. Finally, Hypothesis 8 proposes that in organizations

where norms of evaluation are highly variable, people will be less likely to venture

outside of their comfort zones and therefore bridging should be lower. To test this

hypothesis, I created a measure of evaluation heterogeneity as follows. First, for each

site i at time t, I collected all votes on questions and answers associated with each

tag, up to time t. I then assembled a set of values U by obtaining, for each tag, the

difference between the fraction of votes up and fraction of votes down. The values

of U range in theory from -1 (when all votes associated with a tag are down) to 1

(when all votes associated with a tag are up). I use total votes as of time t (rather
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than votes cast within a more narrow window) because they more accurately reflect

the information members will use to form impressions about the risk of asking or

answering a question associated with a particular tag. To calculate the measure of

evaluation heterogeneity, I use the quartile coefficient of dispersion, defined as

Q3 −Q1

Q3 +Q1

, (4.2)

where Q1 and Q3 are the values of the first and third quartiles of U , respectively. As

with decoupling, I multiply the values by 100 so that the regression coefficients are

unit changes. This measure is useful because it is designed specifically to facilitate

comparisons across sets of data that vary in scale. Higher values indicate greater

heterogeneity in evaluation along the dimensions of an organization’s knowledge cat-

egorization system.

4.4.5 Control Variables

Interest homophily. Member’s propensities for interacting with certain types

of people—either through choice or opportunity—play an important role in tie for-

mation. Prior research demonstrates that homophily—the tendency for people to

associate with similar others—is one of the most basic factors driving the forma-

tion of relationships from marriages to business partnerships (Kleinbaum et al., 2013;

McPherson et al., 2001; Ruef et al., 2003). In organizations where there is a greater

propensity among members to interact with similar others, there should also be fewer

bridging ties. For each site at time t, I measured homophily as the median cosine

similarity of interests between members who communicated at any point between t−7

and t.

To approximate members’ interests, I created a metric based on the tags within

which they had prior activity. The measure ranges from 0 to 1, with higher values
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indicating greater similarity. For a more detailed discussion of the procedure, see

Appendix A.

Connectivity homophily. Prior research suggests that in many online Q&A

communities, a relatively small number of highly active members answer a dispropor-

tionate share of questions posted by less seasoned users (Adamic et al., 2008). These

individuals serve as integrators that span otherwise disconnected groups of members.

By contrast, on sites where members interact with others who have similar levels of

connectivity, integration—and therefore bridging—may be lower because highly ac-

tive members are less likely to serve as hubs. To account for this possibility, I control

for connectivity homophily using a measure of assortative mixing. Conceptually, this

measure captures the extent to which the degree (i.e., number of ties) of connected

nodes in a network are positively or negatively correlated (Newman, 2002).

Evaluation harshness. One alternative (and simpler) explanation for Hypothe-

sis 8—i.e., that heterogeneous evaluation norms decrease bridging—is that members

of an organization are less likely to venture outside their comfort zones as standards

of evaluation increase, and that variability along the lines of a formal knowledge cat-

egorization system is irrelevant. To account for this possibility, I include a measure

of evaluation harshness, which I define as the ratio of votes down to votes up across

a site as of time t.

Communities (weighted). Prior research demonstrates that opportunity is a

major driver of bridging tie formation (Sytch et al., 2012). To account for changes

in bridging opportunities, I include a control for the number of network communities

(see section 4.4.2) weighted by the number of network members (i.e., nodes) at time

t.8

Clustering. I also control for the level of clustering in the network of each site

8I also tried controlling for the number of network communities and network members separately.
The results are similar, however, I chose not to include those two variables in the final analyses
because they introduced substantial multicollinearity in several models.
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at time t. Clustering is defined as the ratio of open to closed triads in a network.

The measure ranges from 0 to 1, with higher values indicating more closed triads.

Conceptually, clustering captures the extent to which a person’s acquaintances also

know one another—a hallmark of cohesive networks (Coleman, 1988). Prior research

suggests that cohesive networks tend to be more insular. Therefore, as clustering

increases, members of a site should be less likely to connect with distant peers.

Repeat ties. Personal factors make intraorganizational networks resistant to

change. As people build relationships with others members of their organization,

they may tend to look for opportunities to interact with their close peers rather than

searching more broadly. Therefore, I control for the number of repeated ties in each

site’s network at time t.

Centralization. As an additional check on the possibility that on some sites,

bridging is driven by a small number of highly skilled members who answer questions

from less able participants, I also control for the group out-degree centrality of each

network at time t. The measure can be thought of as a group-level variant of out-

degree centrality that allows networks of different sizes to be directly compared. For

a node i, out-degree centrality is a count of the number of ties to (not from) other

nodes. A person’s out-degree centrality on a Stack Exchange site increases as he or

she answers questions and comments on others’ posts. The group out-degree index

transforms this centrality measure into an aggregate construct by capturing variability

in the scores among nodes (Wasserman and Faust, 1994, 175ff). It ranges from 0 to

1; more centralized networks have larger values.

Age. I control for the age of each site, defined as the number of days elapsed

since the time of founding, divided by 30 so that the units are months. Age has

a profound effect on many outcomes for organizations (Hannan, 1998; Sorensen and

Toby, 2000). With respect to bridging, older sites may have more established routines

and institutions that define relations among communities and, in so doing, decrease
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the likelihood of connections among distant members.

Informal knowledge domains. To account for changes in the distribution of

knowledge on each site, I add a control for the number of informal knowledge domains

as of time t using the natural language methodology outlined in Section 4.4.3. For

more details on the procedure used to obtain this measure, see Appendix B.

New members. The distribution of knowledge and expertise within an organiza-

tion changes as new members join, which may make it harder for existing participants

to search using established routines and therefore alter the propensity for bridging.

To capture these influences and other effects of proximate growth, I control for the

number of new members to join each site at time t.

Prominent member loss. One major reason why networks resist change is

that they have institutional foundations. Over time, sites develop informal, largely

taken-for-granted rules and conventions that guide the question-answering and ask-

ing behavior of at least some of their members. As a crude proxy for institutional

transformations that might impinge on bridging, I control for the (logged) number of

prominent members—defined as those who are among the top 5% in terms of Q&A

activity—of each site at time t who were inactive over the past 30 days. The results

are similar when I use different thresholds to define prominent members.

Time effects. Finally, to account for cyclical patterns in Internet usage (Nie

et al., 2002) and changes in Stack Exchange over time, I include dummy variables for

the day of the week and the year of the observation, respectively, in all models.

Table 4.2 provides a summary overview of the variables used in the analyses.

4.5 Model Estimation

The dependent variable captures the log of new bridging ties created on each

site at time t + 1. Because the measure is continuous and approximately normally

distributed, I use ordinary least squares regression to estimate one-way fixed effects
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Figure 4.3: Network of top communities on Super User, July 12, 2010. Underpinning
this figure are 2,197 exchanges among 1,294 members of the site. To create the
diagram, I first ran a walktrap community detection algorithm on the member-level
network to find groups of people who had many dense ties among one another, but
relatively few ties outside the group. I then identified the most common tags used by
members of each community to select a community label. Node sizes are proportional
to the (logged) number of members in the community; edge width is determined by
the number of ties between members of the connected communities.
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Figure 4.4: Network of top communities on Server Fault, April 30, 2010. Underpin-
ning this figure are 1,983 exchanges among 1,188 members of the site. To create the
diagram, I first ran a walktrap community detection algorithm on the member-level
network to find groups of people who had many dense ties among one another, but
relatively few ties outside the group. I then identified the most common tags used by
members of each community to select a community label. Node sizes are proportional
to the (logged) number of members in the community; edge width is determined by
the number of ties between members of the connected communities.
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Table 4.2: Variable Names and Definitions

Name Definition Panel Structure

Dependent Variables

Bridging ties (log)(t+1) New ties that span distinct network communities at time
t+ 1

Updated daily as members form ties

Bridging ties (log)[t+1,t+3] New ties that span distinct network communities from
time t+ 1 to t+ 3

Updated daily as members form ties

Bridging ties 1 SD (log)(t+1) New ties between members who differ by 1 SD or more on
the similarity of their tags

Updated daily as members form ties

Bridging ties 0.5 SD (log)(t+1) New ties between members who differ by 0.5 SD or more
on the similarity of their tags

Updated daily as members form ties

Independent Variables

Knowledge categorization system size (log)t Count of the number of tags available for use Updated daily as tags are added and removed

Decouplingt Mutual information of knowledge categorization system
size and informal knowledge domains—reverse coded

Updated daily as tags are added and removed and groups
evolve

Evaluation heterogeneityt Quartile dispersion of the fraction of votes up minus the
fraction of votes down by tag

Updated daily as votes are cast

Controls—Members

Interest homophily[t−7,t] Median similarity of tags among connected network mem-
bers

Updated daily as members have activity with different tags

Connectivity homophily[t−7,t] Assortative mixing among network members based on de-
gree

Updated daily as members form ties

Evaluation harshness[t−7,t] Fraction of votes down relative to total votes Updated daily as votes are cast

Controls—Network Structure

Communities (weighted)[t−7,t] Ratio of network communities to network members Updated daily as members form ties

Clustering[t−7,t] Ratio of closed triangles to connected triples Updated daily as members form ties

Repeat ties[t−7,t] Ratio of repeated ties to edges in the network Updated daily as members form ties

Centralization[t−7,t] Uses out-degree centrality to capture extent to which ques-
tions are answered by a small number of members

Updated daily as members form ties

Controls—Site

Age (months)t Number of days since the founding of a focal site, divided
by 30

Updated daily as a site ages

New members (log)t Number of new accounts created on a focal site Updated daily as members join
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Table 4.2 (Continued)

Prominent member loss (log)[t−30,t] Number of members in top 5% by activity who have not
posted in past 30 days

Updated daily as members ask, answer, and comment on
questions

Informal knowledge domainst Number of clusters of questions based on textual similarity Updated daily as members ask questions
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panel models of the form

yit = αi + x′itβ + εit, i = 1, . . . , N, t = 1, . . . , Ti, (4.3)

where yit is the dependent variable for site i and time t, xit are the independent

and control variables, β is a vector of coefficients to be estimated, and αi are time-

invariant, unit (site) specific effects. Fixed effects approaches are attractive because

they model changes within units over time and therefore control for all time-invariant

unobserved heterogeneity (Cameron and Trivedi, 2005).9

The panel structure of my data are such that I have many repeated observations

(large T ) for relatively few cases (small N). This structure differs from typical longitu-

dinal studies of organizations—which tend to be smaller in the T dimension but larger

with respect to N—and they require more careful treatment of temporal dependence.

Researchers have developed a variety of estimators for small N large T panel analyses

that are widely used in political economy and finance, where repeated observations

of a small number of countries or securities are commonplace (Beck and Katz, 2011).

I report standard errors using the covariance matrix estimator of Driscoll and Kraay

(1998), which is robust to cross sectional and temporal dependence for small N , large

T panels (Hoechle, 2007).

4.6 Results

Descriptive statistics and zero-order correlations are shown in Table 4.3. Although

none of the sample sites ever exited the panel, only Stack Overflow was active for the

entire observation period. After accounting for new entries over the course of the

study, the final analysis panel contains 18, 534 site-day observations. The variance

inflation factors (VIFs) were within acceptable ranges across all models.

9A Hausman (1978) test also clearly rejected the appropriateness of a random effects specification
(p < 0.001).
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Table 4.3: Descriptive Statistics and Correlations†

Variable Mean
SD

1 2 3 4 5 6 7Overall Between Within

1. Bridging ties (log)(t+1) 3.15 1.71 1.33 0.66 1.00
2. Bridging ties (log)[t+1,t+3] 4.03 1.75 1.39 0.61 0.97 1.00
3. Bridging ties 1 SD (log)(t+1) 2.78 1.70 1.22 0.75 0.89 0.88 1.00
4. Bridging ties 0.5 SD (log)(t+1) 4.19 1.65 1.26 0.64 0.95 0.94 0.92 1.00
5. Interest homophily[t−7,t] 0.28 0.07 0.06 0.03 −0.31 −0.32 −0.16 −0.37 1.00
6. Connectivity homophily[t−7,t] −0.09 0.08 0.05 0.06 0.26 0.25 0.28 0.30 −0.09 1.00
7. Evaluation harshness[t−7,t] 0.03 0.02 0.01 0.01 0.13 0.13 0.14 0.16 −0.18 0.16 1.00
8. Communities (weighted)[t−7,t] 0.23 0.05 0.02 0.05 −0.15 −0.15 −0.21 −0.15 −0.05 0.03 0.01
9. Clustering[t−7,t] 0.07 0.04 0.04 0.03 −0.33 −0.33 −0.36 −0.44 0.53 −0.24 −0.18
10. Repeat ties[t−7,t] 0.16 0.06 0.05 0.03 0.02 0.03 0.06 −0.06 0.44 −0.39 −0.20
11. Centralization[t−7,t] 0.12 0.08 0.06 0.05 −0.42 −0.42 −0.43 −0.51 0.33 −0.66 −0.18
12. Age (months)t 13.56 9.20 3.85 8.18 0.41 0.40 0.50 0.49 −0.16 0.20 0.15
13. New members (log)t 3.36 1.28 0.93 0.67 0.79 0.78 0.77 0.84 −0.32 0.33 0.21
14. Prominent member loss (log)[t−30,t] 4.97 2.02 1.21 1.64 0.44 0.43 0.51 0.53 −0.29 0.29 0.20
15. Informal knowledge domainst 87.75 157.86 103.77 81.43 0.78 0.79 0.80 0.80 −0.12 0.32 0.11
16. Knowledge categorization system size (log)t 6.79 1.20 0.97 0.33 0.79 0.80 0.76 0.86 −0.50 0.41 0.20
17. Decouplingt 95.04 2.11 1.80 1.19 −0.23 −0.24 −0.22 −0.27 0.24 0.09 0.07
18. Evaluation heterogeneityt 2.83 1.72 1.59 0.84 0.30 0.30 0.35 0.35 −0.24 0.21 0.64

Variable 8 9 10 11 12 13 14 15 16 17 18

8. Communities (weighted)[t−7,t] 1.00
9. Clustering[t−7,t] 0.14 1.00
10. Repeat ties[t−7,t] −0.02 0.50 1.00
11. Centralization[t−7,t] 0.09 0.66 0.55 1.00
12. Age (months)t −0.11 −0.54 0.05 −0.44 1.00
13. New members (log)t −0.12 −0.55 −0.19 −0.59 0.64 1.00
14. Prominent member loss (log)[t−30,t] −0.14 −0.68 −0.14 −0.56 0.88 0.69 1.00
15. Informal knowledge domainst −0.19 −0.39 −0.05 −0.47 0.60 0.80 0.57 1.00
16. Knowledge categorization system size (log)t −0.13 −0.63 −0.29 −0.64 0.62 0.84 0.71 0.81 1.00
17. Decouplingt −0.03 0.39 −0.09 0.15 −0.24 −0.25 −0.24 −0.19 −0.20 1.00
18. Evaluation heterogeneityt −0.06 −0.32 −0.17 −0.31 0.35 0.39 0.42 0.26 0.39 −0.01 1.00

†N = 18, 534
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Table 4.4 presents OLS models of new bridging ties at time t + 1. Because the

dependent variable is logged, the coefficients can be interpreted as elasticities or

semi-elasticities. In general, the controls are consistent in terms of sign and signif-

icance across models. As expected, increases in both forms of homophily—interest

and connectivity—are associated with decreases in bridging tie formation. When

members of an organization tend to interact with others who have similar interests

or connectivity to their own, there also tends to be fewer new connections between

distant areas of the larger intraorganizational network.

Surprisingly, the weighted communities control variable never reaches statistical

significance. Moreover, clustering and repeated ties both show some evidence of

increasing the formation of ties among distant members of a site. One possible

explanation for this finding is that as clustering and repeated interaction among

members increases, the network structure becomes more globally differentiated; in so

doing, it opens more opportunities for people to bridge distant groups (c.f., Watts and

Strogatz, 1998). Therefore, clustering and repeated ties may serve as better controls

for bridging opportunities than my weighted communities measure (i.e., the ratio of

network communities to network members).

As anticipated, site age has a consistent negative association with bridging. The

magnitude of this effect is non-negligible—a one month increase in age corresponds

to a decrease in bridging of about 2.3%. In unreported analyses, I also tested for a

curvilinear (inverted U-shaped) relationship between age and bridging, but found lit-

tle evidence to suggest that the negative effect of age softens as a site grows older. The

workweek effects dummy variables are statistically significant, with highly consistent

coefficient magnitudes across models. Relative to Sundays, the baseline category, site

activity that takes place on Mondays is associated with roughly a 46% increase in

next-day bridging tie formation.10 This increase over the baseline diminishes through-

10Unless otherwise noted, all marginal effects estimates for the control variables are based on
Model 1 of Table 4.4.
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out the week, until Saturdays, which are associated with a 21% decrease in next-day

bridging.

Hypothesis 6 proposes the existence of a curvilinear relationship between the size

of an organization’s knowledge categorization system and bridging tie formation. In-

creases in the number of categories should help people locate peers outside their

immediate network neighborhood, but beyond a certain point, additional refinements

may prove to be cognitively overwhelming. Model 2 of Table 4.4 tests this hypothesis

by adding measures of knowledge categorization system size and a quadratic term,

both of which are significant in the predicted directions. However, the coefficient on

the quadratic term is roughly an order of magnitude smaller than the main effect

of knowledge categorization system size. This suggests that although there is evi-

dence of a curvilinear relationship between knowledge categorization system size and

bridging, the effect appears to flatten out as more and more categories are added,

rather than fully inverting. To put the coefficients in perspective, consider that a

one standard deviation increase in knowledge categorization system size is associated

with more than two-and-a-half-fold increase in bridging ties. In sum, these findings

offer support for Hypothesis 6.

Model 3 of Table 4.4 tests Hypothesis 7, which anticipated a negative association

between decoupling and bridging tie formation. Recall that decoupling occurs when

there is a lack of correspondence between an organization’s knowledge categorization

system and its informal knowledge domains. Model 3’s negative and significant co-

efficient for decoupling supports the idea that bridging suffers when members do not

have an accurate map of the distribution of knowledge within their organizations.

The magnitude of the coefficient is also notable—a one standard deviation increase

in decoupling corresponds to a 17% decrease in bridging ties at time t+ 1.

Finally, Hypothesis 8 predicted that when norms of evaluation vary widely along

the lines of an organization’s knowledge categorization system, members will be less
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Table 4.4: Models of Bridging Ties†

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Members

Interest homophily[t−7,t] −1.531∗ ∗ ∗ −1.012∗∗ −1.568∗ ∗ ∗ −1.611∗ ∗ ∗ −1.119∗ ∗ ∗ −1.106∗ ∗ ∗ −1.662∗ ∗ ∗ −1.221∗ ∗ ∗
(0.385) (0.323) (0.351) (0.382) (0.310) (0.324) (0.346) (0.310)

Connectivity homophily[t−7,t] −0.897∗ ∗ ∗ −1.026∗ ∗ ∗ −0.832∗ ∗ ∗ −0.922∗ ∗ ∗ −0.961∗ ∗ ∗ −1.051∗ ∗ ∗ −0.858∗ ∗ ∗ −0.986∗ ∗ ∗
(0.151) (0.140) (0.139) (0.155) (0.133) (0.146) (0.144) (0.138)

Evaluation harshness[t−7,t] −0.707 −0.775 −0.713 0.004 −0.755 0.033 0.114 0.104

(0.517) (0.510) (0.489) (0.531) (0.490) (0.527) (0.507) (0.510)

Network Structure

Communities (weighted)[t−7,t] 0.051 0.148 0.088 0.065 0.175 0.144 0.105 0.171

(0.166) (0.159) (0.158) (0.166) (0.155) (0.159) (0.158) (0.155)

Clustering[t−7,t] 0.413 2.174∗ ∗ ∗ 1.191∗∗ 0.433 2.384∗ ∗ ∗ 2.299∗ ∗ ∗ 1.240∗∗ 2.523∗ ∗ ∗
(0.440) (0.433) (0.415) (0.429) (0.426) (0.436) (0.404) (0.429)

Repeat ties[t−7,t] 3.397∗ ∗ ∗ 2.581∗ ∗ ∗ 2.921∗ ∗ ∗ 3.303∗ ∗ ∗ 2.388∗ ∗ ∗ 2.443∗ ∗ ∗ 2.796∗ ∗ ∗ 2.235∗ ∗ ∗
(0.336) (0.280) (0.287) (0.332) (0.268) (0.278) (0.285) (0.267)

Centralization[t−7,t] −0.707∗∗ −0.412∗ −0.535∗∗ −0.773∗ ∗ ∗ −0.351+ −0.467∗ −0.606∗∗ −0.407∗
(0.215) (0.205) (0.195) (0.220) (0.196) (0.208) (0.198) (0.198)

Year Effects

Yes Yes Yes Yes Yes Yes Yes Yes

Workweek Effects

Monday 0.455∗ ∗ ∗ 0.456∗ ∗ ∗ 0.458∗ ∗ ∗ 0.455∗ ∗ ∗ 0.458∗ ∗ ∗ 0.456∗ ∗ ∗ 0.458∗ ∗ ∗ 0.458∗ ∗ ∗
(0.014) (0.014) (0.014) (0.015) (0.014) (0.014) (0.014) (0.014)

Tuesday 0.331∗ ∗ ∗ 0.341∗ ∗ ∗ 0.341∗ ∗ ∗ 0.332∗ ∗ ∗ 0.347∗ ∗ ∗ 0.342∗ ∗ ∗ 0.342∗ ∗ ∗ 0.347∗ ∗ ∗
(0.017) (0.017) (0.017) (0.017) (0.016) (0.017) (0.017) (0.016)

Wednesday 0.280∗ ∗ ∗ 0.292∗ ∗ ∗ 0.292∗ ∗ ∗ 0.281∗ ∗ ∗ 0.299∗ ∗ ∗ 0.292∗ ∗ ∗ 0.293∗ ∗ ∗ 0.299∗ ∗ ∗
(0.036) (0.035) (0.036) (0.036) (0.035) (0.035) (0.036) (0.035)

Thursday 0.286∗ ∗ ∗ 0.299∗ ∗ ∗ 0.301∗ ∗ ∗ 0.286∗ ∗ ∗ 0.308∗ ∗ ∗ 0.299∗ ∗ ∗ 0.302∗ ∗ ∗ 0.309∗ ∗ ∗
(0.016) (0.015) (0.016) (0.016) (0.015) (0.015) (0.016) (0.015)

Friday 0.222∗ ∗ ∗ 0.234∗ ∗ ∗ 0.234∗ ∗ ∗ 0.222∗ ∗ ∗ 0.241∗ ∗ ∗ 0.234∗ ∗ ∗ 0.234∗ ∗ ∗ 0.241∗ ∗ ∗
(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

Saturday −0.207∗ ∗ ∗ −0.198∗ ∗ ∗ −0.198∗ ∗ ∗ −0.207∗ ∗ ∗ −0.192∗ ∗ ∗ −0.197∗ ∗ ∗ −0.197∗ ∗ ∗ −0.192∗ ∗ ∗
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

Site

Age (months)t −0.023∗ ∗ ∗ −0.016∗ ∗ ∗ −0.023∗ ∗ ∗ −0.020∗ ∗ ∗ −0.017∗ ∗ ∗ −0.012∗∗ −0.020∗ ∗ ∗ −0.014∗∗
(0.004) (0.005) (0.004) (0.004) (0.005) (0.005) (0.004) (0.004)

New members (log)t 0.416∗ ∗ ∗ 0.389∗ ∗ ∗ 0.391∗ ∗ ∗ 0.415∗ ∗ ∗ 0.376∗ ∗ ∗ 0.389∗ ∗ ∗ 0.389∗ ∗ ∗ 0.375∗ ∗ ∗
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Table 4.4 (Continued)

(0.017) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.015)

Prominent member loss (log)[t−30,t] 0.009 −0.196∗ ∗ ∗ 0.006 0.023 −0.166∗ ∗ ∗ −0.181∗ ∗ ∗ 0.022 −0.149∗ ∗ ∗
(0.020) (0.032) (0.018) (0.019) (0.031) (0.031) (0.018) (0.030)

Informal knowledge domainst 0.002∗ ∗ ∗ 0.002∗ ∗ ∗ 0.001∗ ∗ ∗ 0.001∗ ∗ ∗ 0.002∗ ∗ ∗ 0.002∗ ∗ ∗ 0.001∗ ∗ ∗ 0.002∗ ∗ ∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Independent Variables

Knowledge categorization system size (log)t 1.079∗ ∗ ∗ 0.922∗ ∗ ∗ 1.067∗ ∗ ∗ 0.904∗ ∗ ∗
(0.102) (0.100) (0.108) (0.103)

Knowledge categorization system size (log)2t −0.130∗ ∗ ∗ −0.096∗ ∗ ∗ −0.150∗ ∗ ∗ −0.115∗ ∗ ∗
(0.022) (0.023) (0.023) (0.024)

Decouplingt −0.087∗ ∗ ∗ −0.062∗ ∗ ∗ −0.090∗ ∗ ∗ −0.064∗ ∗ ∗
(0.007) (0.006) (0.007) (0.006)

Evaluation heterogeneityt −0.066∗ ∗ ∗ −0.076∗ ∗ ∗ −0.076∗ ∗ ∗ −0.081∗ ∗ ∗
(0.015) (0.014) (0.015) (0.014)

Constant 2.537∗ ∗ ∗ 2.553∗ ∗ ∗ 2.392∗ ∗ ∗ 2.811∗ ∗ ∗ 2.514∗ ∗ ∗ 2.784∗ ∗ ∗ 2.707∗ ∗ ∗ 2.757∗ ∗ ∗
(0.153) (0.123) (0.152) (0.158) (0.122) (0.140) (0.154) (0.138)

N 18, 534 18, 534 18, 534 18, 534 18, 534 18, 534 18, 534 18, 534

R2 0.34 0.37 0.36 0.35 0.38 0.37 0.36 0.38

d.f. 21 23 22 22 24 24 23 24

Sites 25 25 25 25 25 25 25 25

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001; two tailed tests.
† All models are derived from conditional fixed effects OLS regressions with Driscoll-Kraay standard errors quasi-maximum (in parentheses).
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likely to venture outside their comfort zones and therefore fewer bridging ties should

form. Model 6 of Table 4.4 introduces the measure of evaluation heterogeneity to

test this hypothesis. The coefficient is negative and statistically significant—a one

standard deviation increase in evaluation heterogeneity is associated with a a 12%

decrease in bridging. As hypothesized, when people are less certain about how they

will be evaluated, they tend to build relationships in familiar domains. Note that this

effect holds even when accounting for the overall tendency of site members to be crit-

ical of their peers, as captured by the measure of evaluation harshness. Interestingly,

this latter measure never has a significant association with bridging tie formation.

4.7 Robustness Checks

I examined the robustness of the findings to a range of different model specifica-

tions and alternative explanations. First, I considered whether an interaction between

the size of an organization’s knowledge categorization system and the number of in-

formal knowledge domains could provide a simpler account than the one proposed by

Hypothesis 7 (on decoupling). One might predict, for example, that bridging may

decline as the size of a knowledge categorization system grows large relative to the

number of informal knowledge domains. Although simpler, I suggest that this alter-

native explanation is less appropriate because the theory proposed by this chapter

does not address size of the categorization system relative to the informal distribution

of knowledge, but rather only considers their relationship. I did, however, find a neg-

ative and significant association—as shown in Model 1 of Table 4.5—which suggests

that as the size of the knowledge categorization system increases relative to the num-

ber of informal domains, bridging should decrease. The magnitude of the interaction,

however, is small in comparison to the main effect of both knowledge categorization

system size and the number of informal knowledge domains.
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Table 4.5: Robustness Checks†

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Bridging Ties Bridging Ties Bridging Ties Bridging Ties Bridging Ties Bridging Ties

No SO [t+ 1, t+ 3] 1 SD 0.5 SD

Members

Interest homophily[t−7,t] −1.066∗ ∗ ∗ −1.153∗ ∗ ∗ −1.446∗ ∗ ∗ −1.274∗ ∗ ∗ −2.393∗ ∗ ∗ −2.355∗ ∗ ∗
(0.278) (0.269) (0.285) (0.344) (0.277) (0.270)

Connectivity homophily[t−7,t] −0.776∗ ∗ ∗ −0.741∗ ∗ ∗ −0.794∗ ∗ ∗ −1.224∗ ∗ ∗ −0.614∗ ∗ ∗ −0.564∗ ∗ ∗
(0.138) (0.133) (0.131) (0.164) (0.120) (0.110)

Evaluation harshness[t−7,t] −0.148 −0.087 −0.030 −0.146 −0.383 −0.294

(0.505) (0.496) (0.487) (0.582) (0.408) (0.417)

Network Structure

Communities (weighted)[t−7,t] 0.007 0.034 0.074 0.127 0.137 −0.026

(0.148) (0.145) (0.143) (0.150) (0.116) (0.103)

Clustering[t−7,t] 2.013∗ ∗ ∗ 2.192∗ ∗ ∗ 2.555∗ ∗ ∗ 2.810∗ ∗ ∗ 0.610 1.214∗ ∗ ∗
(0.392) (0.387) (0.400) (0.486) (0.381) (0.365)

Repeat ties[t−7,t] 2.270∗ ∗ ∗ 2.125∗ ∗ ∗ 2.102∗ ∗ ∗ 2.333∗ ∗ ∗ 1.512∗ ∗ ∗ 1.665∗ ∗ ∗
(0.252) (0.246) (0.248) (0.285) (0.254) (0.216)

Centralization[t−7,t] −0.153 −0.124 −0.150 −0.557∗ −0.513∗∗ −0.470∗∗
(0.187) (0.181) (0.179) (0.226) (0.168) (0.161)

Year Effects

Yes Yes Yes Yes Yes Yes

Workweek Effects

Monday 0.458∗ ∗ ∗ 0.459∗ ∗ ∗ 0.448∗ ∗ ∗ 0.135∗ ∗ ∗ 0.464∗ ∗ ∗ 0.535∗ ∗ ∗
(0.014) (0.014) (0.015) (0.009) (0.015) (0.011)

Tuesday 0.382∗ ∗ ∗ 0.384∗ ∗ ∗ 0.370∗ ∗ ∗ −0.008 0.383∗ ∗ ∗ 0.457∗ ∗ ∗
(0.016) (0.016) (0.017) (0.014) (0.016) (0.012)

Wednesday 0.339∗ ∗ ∗ 0.342∗ ∗ ∗ 0.329∗ ∗ ∗ −0.094∗ 0.343∗ ∗ ∗ 0.391∗ ∗ ∗
(0.035) (0.035) (0.034) (0.041) (0.035) (0.045)

Thursday 0.349∗ ∗ ∗ 0.354∗ ∗ ∗ 0.341∗ ∗ ∗ −0.199∗ ∗ ∗ 0.371∗ ∗ ∗ 0.413∗ ∗ ∗
(0.015) (0.015) (0.016) (0.015) (0.015) (0.014)

Friday 0.284∗ ∗ ∗ 0.287∗ ∗ ∗ 0.274∗ ∗ ∗ −0.375∗ ∗ ∗ 0.269∗ ∗ ∗ 0.323∗ ∗ ∗
(0.017) (0.017) (0.018) (0.014) (0.017) (0.015)

Saturday −0.158∗ ∗ ∗ −0.155∗ ∗ ∗ −0.157∗ ∗ ∗ −0.360∗ ∗ ∗ −0.207∗ ∗ ∗ −0.204∗ ∗ ∗
(0.015) (0.015) (0.016) (0.012) (0.015) (0.013)

Site

Age (months)t −0.010∗∗ −0.012∗∗ −0.009∗ −0.014∗∗ −0.010∗ −0.013∗ ∗ ∗

153



Table 4.5 (Continued)

(0.004) (0.004) (0.004) (0.005) (0.004) (0.004)

New members (log)t 0.301∗ ∗ ∗ 0.295∗ ∗ ∗ 0.300∗ ∗ ∗ 0.355∗ ∗ ∗ 0.337∗ ∗ ∗ 0.370∗ ∗ ∗
(0.015) (0.015) (0.015) (0.018) (0.013) (0.013)

Prominent member loss (log)[t−30,t] −0.159∗ ∗ ∗ −0.136∗ ∗ ∗ −0.131∗ ∗ ∗ −0.181∗ ∗ ∗ −0.036+ −0.101∗ ∗ ∗
(0.025) (0.024) (0.027) (0.033) (0.020) (0.022)

Informal knowledge domainst 0.028∗ ∗ ∗ 0.027∗ ∗ ∗ 0.008∗ ∗ ∗ 0.002∗ ∗ ∗ 0.000∗ ∗ ∗ 0.001∗ ∗ ∗
(0.002) (0.002) (0.001) (0.000) (0.000) (0.000)

Independent Variables

Knowledge categorization system size (log)t 0.893∗ ∗ ∗ 0.781∗ ∗ ∗ 0.493∗ ∗ ∗ 1.068∗ ∗ ∗ 0.946∗ ∗ ∗ 0.871∗ ∗ ∗
(0.088) (0.084) (0.105) (0.117) (0.083) (0.091)

Knowledge categorization system size (log)2t −0.062∗∗ −0.041∗ −0.178∗ ∗ ∗ −0.132∗ ∗ ∗ −0.034+ −0.104∗ ∗ ∗
(0.020) (0.020) (0.029) (0.026) (0.020) (0.022)

Knowledge categorization system size (log)t −0.003∗ ∗ ∗ −0.002∗ ∗ ∗
× Informal knowledge domains (0.000) (0.000)

Decouplingt −0.048∗ ∗ ∗ −0.061∗ ∗ ∗ −0.067∗ ∗ ∗ −0.055∗ ∗ ∗ −0.051∗ ∗ ∗
(0.006) (0.006) (0.008) (0.006) (0.005)

Evaluation heterogeneityt −0.051∗ ∗ ∗ −0.056∗ ∗ ∗ −0.063∗ ∗ ∗ −0.078∗ ∗ ∗ −0.046∗ ∗ ∗ −0.048∗ ∗ ∗
(0.012) (0.011) (0.012) (0.014) (0.011) (0.010)

Constant 2.516∗ ∗ ∗ 2.509∗ ∗ ∗ 3.298∗ ∗ ∗ 3.968∗ ∗ ∗ 2.813∗ ∗ ∗ 3.807∗ ∗ ∗
(0.114) (0.113) (0.053) (0.151) (0.122) (0.107)

N 18, 534 18, 534 17, 074 18, 534 18, 534 18, 534

R2 0.41 0.42 0.36 0.37 0.45 0.52

d.f. 25 26 25 25 25 25

Sites 25 25 24 25 25 25

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001; two tailed tests.
† All models are derived from conditional fixed effects OLS regressions with Driscoll-Kraay standard errors quasi-maximum (in
parentheses).
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Second, as noted earlier, Stack Overflow is both older and an order of magnitude

larger than any other site on Stack Exchange. To ensure that the findings are not

driven by any unusual influence of Stack Overflow, I removed the site from the sample

and reran the analyses. The results, reported in Model 3 of Table 4.5, are supportive

of the main findings. Interestingly, note that the coefficient estimate for the main

effect of knowledge categorization system size decreases by more than 45% while

the negative estimate for the quadratic term increases by nearly 55%, compared to

Model 8 of Table 4.4. This suggests that relative to Stack Overflow, increases in

knowledge categorization system size on other sites actually has a more inverted-U

shaped association with bridging tie formation, as predicted by Hypothesis 6.

Third, although the majority of replies to questions on Stack Exchange come

within just a few hours of the initial post, it is possible that a 24-hour window

may be too narrow and therefore artificially truncate relevant new bridging ties,

especially given that members of Stack Exchange sites come from many different

time zones. To evaluate the robustness of the findings to a larger forward lag, Model

4 of Table 4.5 uses a dependent variable that includes all bridging ties formed between

(and including) t+1 and t+3. The results are similar to those reported in the primary

models of Table 4.4.

Finally, I considered two alternative specifications of the dependent variable that

did not rely on community or network structure to measure bridging ties. Instead,

these measures identify bridging among interacting members in terms of the similarity

of their interests.11 Specifically, I define bridging ties as exchanges between members

who are 1 (Table 4.5, Model 5) and 0.5 (Table 4.5, Model 6) standard deviations away

from the mean similarity of interacting members on their respective Stack Exchange

site as of time t. Both alternative specifications are in line with the main findings.

11For more details on the procedure used to calculate these measures, see Appendix A.
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4.8 Discussion and Conclusion

Knowledge-intensive organizations depend on effective communication and col-

laboration networks among their members. These networks help an organization

develop new capabilities and ultimately achieve better outcomes by enhancing inte-

gration among people who are otherwise highly specialized (Grant, 1996; Lawrence

and Lorsch, 1967). Building on insights from research on organizational design and

studies of individual’s social ties, however, recent investigations demonstrate that the

degree to which communication and collaboration networks lead to better outcomes

is contingent on both the global configuration of those networks and the nature of the

organization’s goals and environment. For example, although increasing connectivity

among members of an organization is often beneficial, eliminating ties and isolat-

ing subgroups can be helpful at times for promoting innovation by enabling parallel

problem solving and retaining diversity (Fang et al., 2010; Funk, 2014; Lazer and

Friedman, 2007).

An important implication of these findings is that as goals evolve and environmen-

tal conditions change, organizations must also find ways to reshape their networks.

Yet surprisingly little work addresses the methods organizations might use to imple-

ment such changes (Davis, 2008). In this study, I contribute to research in this area

by examining how knowledge categorization systems and evaluation norms influence

bridging tie formation in intraorganizational networks. Bridging ties are a useful

starting point for developing theories of change because adding even a small number

of such connections can dramatically alter global properties of networks. By creating

and strengthening connections among otherwise distant groups of people, bridging

ties transform the flow of knowledge among the members of an organization and help

foster tighter integration (Kleinbaum and Tushman, 2007; Watts and Strogatz, 1998).

I hypothesize three conditions under which features of an organization’s knowledge-

categorization system are likely to inhibit bridging and therefore network change.
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First, although size can be beneficial, when knowledge categorization systems grow

too large, cognitive limitations may make them difficult to use and therefore members

of an organization should be less likely to connect with distant peers. Second, knowl-

edge categorization systems can be helpful maps, but when they become decoupled

from the actual distribution of knowledge within an organization, their value is likely

to fade, along with bridging. Finally, when the standards used to evaluate new and

existing knowledge contributions are highly variable across an organization’s knowl-

edge categorization system, people should be less likely to share knowledge outside

their comfort zones and therefore will make fewer connections with unfamiliar peers.

Using data on 23 million knowledge-sharing exchanges among 1.3 million members of

25 online Q&A communities, I find strong support for all three hypotheses.

The conclusions of this study must be viewed in light of some limitations. First,

despite the overall strengths, further research is needed to specify the representa-

tiveness of the Stack Exchange data and to replicate the findings in other settings.

Clearly, the intraorganizational networks found on virtual Q&A communities like

Stack Exchange differ from many of the kinds of connections that exist among people

in brick-and-mortar organizations. Nevertheless, there are many similarities between

online and offline organizations, and therefore at least some of the findings are likely

to transfer with little adaptation. Recent work demonstrates, for instance, that many

well-known properties of individual’s ‘real world’ social networks are also found in

virtual communities (Burt, 2013). Moreover, setting aside their correspondence to

offline networks, the data are of interest in their own right. As more and more or-

ganizations adopt systems like corporate wikis, enterprise social software, and other

tools that facilitate virtual collaboration, it becomes important to understand how the

social networks that exist by virtue of such tools influence organizational outcomes

(Mcafee, 2006). Stack Exchange shares many features with these systems.

Second, as with all observational studies, it is possible that the statistical esti-
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mates are influenced by unknown or unmeasurable factors. I have sought to account

for the effects of many potential confounding variables by relying only on compar-

isons within Q&A communities, which eliminates the influence of all time invariant

heterogeneity on the statistical estimates. Moreover, I have also included controls for

a broad array of factors identified by prior research as having an effect on bridging tie

formation. Finally, I have found no evidence to suggest that leaders or members of

Stack Exchange seek to strategically promote bridging or other tie formation, which

should help to ease some concerns about one major source of endogeneity that arises

in much network research (Ahuja et al., 2012). Despite these corrections, care should

be taken when making inferences from the findings.

Although not without limitations, the results of this study have several noteworthy

implications.

Network dynamics. This study contributes to the growing literature on the

evolutionary dynamics of networks. Although researchers have recently made sub-

stantial progress in accounting for the origins of different network structures, most

existing investigations focus on how individual actors—whether they are people or

organizations—come to occupy advantageous positions in a social structure. Far less

is known about the factors that enable and constrain the evolution of global network

configurations. This oversight especially problematic—even for scholars who focus on

individual actors—in light of recent studies showing that the performance effects of

networks are a function of both local and global position (Paruchuri, 2010; Sytch and

Tatarynowicz, 2014). Furthermore, research on the dynamics of global social struc-

tures is necessary to further develop theories that link networks to organizational

outcomes. Organizations contain collections of actors; thus, the ties of individual

actors may not be as relevant to collective performance as the pattern of relations

among them. My analysis of the relationship between knowledge categorization sys-

tems, evaluation norms, and bridging tie formation takes one step towards filling this
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gap in the literature by revealing how two pervasive features of organizations enable

and constrain network change, while also suggesting that future research on network

dynamics might fruitfully examine the influence of other components of organizational

structure.

More broadly, my study suggests that research on the dynamics of global net-

work structures can open new opportunities for linking theory and research with

practice. Potential applications are clearest in the area of intraorganizational net-

work change, where the findings of this chapter suggest that to promote exchange

among distant groups, leaders should consider implementing policies that streamline

knowledge search, and members should be more attentive to how they respond to con-

tributions from outsiders. However, research on global network change is also likely

to have valuable practical implications at larger levels of analysis. For example, reg-

ulators might try to increase or decrease the global cohesiveness of director interlock

or alliance networks in order to meet certain policy objectives (Davis and Mizruchi,

1999; Mizruchi, 2013). Relatedly, research on patient transfer networks among hos-

pitals finds that although such transfers have significant consequences for outcomes,

the methods hospitals use to initiate and accept transfers from outside institutions

are often unclear and the structures of the resulting networks are likely suboptimal

(Iwashyna et al., 2009). Investigations of global network dynamics could therefore be

attractive for leaders who seek to build more effective regional transfer networks that

lower the cost and increase the quality of care.

Organizational change and growth. To ensure their survival, organizations

must adapt as their environments change (O’Reilly III and Tushman, 2008; Teece

et al., 1997). However, adaptation is often a major challenge, and according to some

perspectives, may even add to the risk of failure (Hannan and Freeman, 1984). Al-

though many factors inhibit the success of efforts to change, one leading cause is the

unwillingness or inability of an organization’s members to adapt their social relations
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to match new routines. Oftentimes, resistance to change arises because some mem-

bers stand to lose status and other resources (Battilana and Casciaro, 2012; Paruchuri

et al., 2006). However, the challenges people face in effectively navigating a trans-

formed organization also play a role, especially when those transformations entail

substantial disruptions like the restructuring of divisions or major acquisitions. No-

tably, the findings of this study suggest that if efforts at change introduce decoupling

between an organization’s knowledge categorization system and informal knowledge

domains, or if they increase uncertainty about evaluation, members will be less likely

to establish ties with new (i.e., formerly distant) peers, which may curtail organiza-

tional change.

Although important in established firms, communication and collaboration net-

work dynamics have major consequences for growth and performance in startups.

For instance, Stinchcombe (1965) argues that communication patterns are central to

understanding why new firms have high failure rates—what he terms the “liability

of newness.” “For some time until roles are defined,” Stinchcombe writes, “people

who need to know things are left to one side of communication channels. John thinks

George is doing what George thinks John is doing” (1965, 148-9). Communication

difficulties inhibit the flow of potentially valuable knowledge among relevant par-

ties, while the ambiguous and continually evolving nature of roles in new firms poses

challenges for employees in search of relevant collaborators or other assistance. Put

differently, the primary benefits that social networks bring to innovation—knowledge

flows and supportive relationships—are likely difficult for entrepreneurs to attain in

their organizations. The findings of this study could offer guidance to entrepreneurs

who seek to build more effective communication and collaboration networks within

their organizations that help them reap those benefits and manage growth more ef-

fectively.

Collaboration in knowledge-intensive organizations. Finally, this study

160



has implications for the design of policies intended to promote collaboration. Among

researchers and policymakers alike, there is growing recognition that making progress

on major scientific and technological challenges requires collaborations between ex-

perts from diverse disciplines. Although integrating people with different special-

izations can be valuable for all types of organizations (Grant, 1996), the potential

payoff—and roadblocks—to increasing collaboration are especially apparent in uni-

versities. In recent years, many academic institutions have instituted programs de-

signed to strengthen interdisciplinary exchanges, but so far, evidence in support of

their success is mixed (Porter and Rafols, 2009). The findings of this study could be

useful for administrators who seek to promote tighter integration among seemingly

disparate scholars at their institutions. Notably, the results suggest that challenges

in locating colleagues may limit the number of collaborations that bridge disciplinary

boundaries. Perhaps counterintuitively, these challenges could arise in part from ef-

forts to enhance interdisciplinarity through the creation of centers and institutes that

lie and the interstices between established disciplinary departments, at least to the

extent that the new organizational units lead to decoupling between a university’s

predominant knowledge categorization system (e.g., disciplinary departments) and its

informal knowledge domains (e.g., what scholars actually study).

Finally, the results of this study correspond with other research that suggests dif-

ferences in how academic contributions are evaluated across fields of study influences

the propensity for scholars to venture outside their home departments (Rhoten and

Parker, 2004). In light of these findings, future research could consider the effective-

ness of a variety of policies on enhancing integration across disciplines. For instance,

one way for universities to increase interdisciplinary collaboration might be to re-

duce uncertainty about evaluation for scholars who seek to bridge across disparate

fields, perhaps by adapting formal policies used to make promotions and allocate

resources. Interdisciplinary research teams could also increase their effectiveness by
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having explicit discussions about the yardsticks used to measure progress for their

group efforts. Regardless of the approach, the prospects for successful integration

in any knowledge intensive organization likely depend substantially on the ability of

leaders and members to reduce unnecessary barriers to the already difficult task of

bridging.
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APPENDIX A

Comparing Members’ Interests

Several variables used in Chapter IV require a measure of the degree to which

the members of a site share similar (or have divergent) interests. Although one could

envision an array of possible approaches, I approximate members’ interests at time t

as a function of the tags in which they are active. I consider a member active within

a tag c if he or she had asked, answered, or commented on a question tagged as

c at any point in time between the date he or she joined a focal site and the date

of measurement. More precisely, for each site at time t, I create an m × n matrix

S in which rows index members, columns index tags, and entries correspond to the

frequency of activity (i.e., questions, answers, and comments) for all member × tag

dyads as of time t.

In principle, the raw frequencies recorded in S could be used to estimate members’

interest similarities. However, tags vary dramatically in terms of their frequency of

use; therefore, knowing that two members both have substantial activity in a popular

tag reveals less information about their interests than if they both had even a minor

amount of activity in a rare one. Similarly, members differ substantially with respect

to the magnitude of their activity on a site; consequently, two people may have a

relatively large absolute number of tags in common, but only because they are active
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in many tags—not as a result of having similar interests.

To account for differences in tag popularity and member activity, I adjust the

entries of S using a composite term frequency-inverse document frequency weighting

(tf-idf) approach originally developed to compare documents based on the similarity of

their constituent words (Manning et al., 2008). In my application, tags are analogous

to terms (or words), while members correspond to documents. Inverse document

frequency accounts for whether a term (tag) is rare across documents (members).

For a term t, the measure is calculated as

idft = log
N

dft
, (A.1)

where N is the total number of documents and dft is the number of documents in

which the term appears. A composite weight for each entry of S is obtained using

tf-idft,d = tft,d × idft, (A.2)

where tft,d is the raw frequency of term (tag) t for some document (member) d.

To account for changes over time, I update tf-idf weights daily for each site. After

applying tf-idf weights to S, I then compare the interests of any pair of members x

and y with tag vectors x = (sx1, sx2, . . . , sxn−1, sxn) and y = (sy1, sy2, . . . , syn−1, syn)

using their cosine similarity, defined as

sim(x, y) =
x · y
‖x‖‖y‖

=

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

. (A.3)

The intuition behind this measure is that the similarity of two n-dimensional

vectors can be approximated by the degree of the angle between them. Because

term frequencies (or other commonly used weights) are never negative, the angle

between two vectors is at most 90 degrees and therefore the measure ranges from

0 to 1. Cosine similarity is attractive over other metrics because it is not sensitive
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to document length. Although doubling the size of a document would change the

magnitude of its corresponding vector, the direction (and therefore angle relative to

other vectors) would remain the same.
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APPENDIX B

Identifying Informal Knowledge Domains

Conceptually, informal knowledge domains refer to latent groups of knowledge that

emerge as members use and contribute to an organization’s knowledge base. Using the

Stack Exchange data, I identified informal knowledge domains by partitioning ques-

tions into clusters according to their textual similarity. I chose to focus on questions

and did not supply the clustering algorithm with the text of answers or comments for

several reasons. First, on Stack Exchange, only questions are tagged; therefore, by

clustering questions, I am more accurately able to compare the correspondence be-

tween a site’s knowledge categorization system and its informal knowledge domains.

Second, as noted in the text, threads are anchored by a single question and conse-

quently, even if they were included, comments and answers should align with clusters

that are similar to their parent questions. Finally, given the size of the data, identi-

fying clusters is computationally intensive; obtaining results for Stack Overflow alone

took nearly one week using 20 processors with 500 gigabytes of memory.

To transform natural language text into a format amenable to clustering, I use a

vector space model in which questions (hereafter referred to as documents) are rep-

resented as weighted vectors of terms (Salton et al., 1975). Before assembling the

vectors, I perform several common preprocessing steps (Manning et al., 2008). First,
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following the recommendations of Barua et al. (2012), I removed all large blocks of

code, which are delimited on Stack Exchange by <code> and </code> tags. Next, I

separate the strings of characters that constitute each document into distinct words

(or tokens). Although seemingly straightforward, identifying accurate word bound-

aries can prove vexing, for example, with compound names (e.g., New York) or words

that contain punctuation (e.g., www.google.com). After comparing several tokeniza-

tion algorithms, I found splitting on whitespace to be ideal for identifying meaningful

words in the Stack Exchange data, especially since many documents contain small

snippets of code where punctuation often does not correspond to word boundaries.

Following tokenization, I then convert all tokens to lowercase (e.g., ipad, iPad, IPAD

⇒ ipad), and apply Porter’s (1980) stemming algorithm to convert words to their

base form (e.g., boats, boating, boater⇒ boat). Once I finish transforming the

tokens by folding cases and stemming, I then remove common stop words like the,

is, at, which, and on that appear frequently in almost all documents and contribute

little useful information for clustering. I also eliminate extremely rare tokens that

appear in very few documents and are most often misspellings.

After preprocessing, I then assemble the document vectors into a document ×

term matrix and apply daily-updated tf-idf weights analogous to those described in

Appendix A. Even after preprocessing, the documents contain many thousands of

tokens and the resulting matrices are extremely large. To facilitate computation, I

reduce the dimensionality of the document × term matrices using principal compo-

nents analysis. Following the dimension reduction, I then compute pairwise negative

Euclidean distances among documents and perform clustering using Frey and Dueck

(2007) affinity propagation algorithm, as described in Section 4.4.4. The resulting

cluster assignments correspond to informal knowledge domains.
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APPENDIX C

Adjusting Decoupling for Chance Agreement

The measure of decoupling I present in Equation 4.1 is equivalent to the mutual

information of two discrete random variables (Shannon and Weaver, 1949). My use

of mutual information is motivated by an array of research that employs informa-

tion theoretic measures to evaluate agreement among different clustering algorithms.

Recent simulation studies show, however, that the mutual information among two

clustering solutions increases monotonically with the number of clusters (Vinh et al.,

2009); therefore, it is necessary to adjust the measure to account for potential cor-

respondence due to random chance. For the purposes of exposition, Equation 4.1

presents the uncorrected form of mutual information; however, for use in the statisti-

cal models, I compute an adjusted version of decoupling, following Vinh et al. (2010),

as

D′it(C,K) =
Dit(C,K)− E{Dit(C,K)}√
H(C)H(K)− E{Dit(C,K)}

, (C.1)

where E{Dit(C,K)} is the expected value of decoupling and
√
H(C)H(K) is the

measure’s upper bound. H(C) and H(K) refer to the entropy of tags and clusters,

respectively, where entropy is defined as
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H(X) = −
∑
x∈X

p(x) log p(x), (C.2)

and p(x) is the probability density function of the discrete random variable X. Fol-

lowing the discussion in 4.4.4, I subtract D′it(C,K) from 1 so that higher values

correspond to greater decoupling, and multiply the resulting values by 100.
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