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CHAPTER I

Introduction

1.1 Main theorem

In this thesis we address the following problem:

Problem I.1. Determine all rational functions f(X) ∈ C(X) for which the numer-

ator of
f(X)− f(Y )

X − Y
has an irreducible factor whose normalization is a curve of

genus zero or one.

In the following sections we will discuss the applications of Problem I.1 to several

questions in complex dynamics, number theory, and complex analysis.

We will solve the problem when f(X) is a Laurent polynomial, or in other words,

an element of C[X,X−1]. There are three types of nonconstant Laurent polynomials

f(X), depending on whether f−1(∞) is {∞}, {0}, or {0,∞}. The first two types

consist of f(X) = g(X) and f(X) = g(1/X) where g(X) is a polynomial. In these

cases, Problem I.1 was solved recently in [2]. Therefore in this thesis we focus on the

third type of Laurent polynomials, which we will call genuine Laurent polynomials.

Definition I.2. A genuine Laurent polynomial is an element f(X) in C[X,X−1]

such that f−1(∞) = {0,∞}.

For ease of expression, we define

1
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Definition I.3. For any f(X) ∈ C(X) \ C, define Ff (X, Y ) to be the numerator of

f(X)− f(Y )

X − Y
. Define Ff,c(X, Y ) to be the numerator of f(X)−cf(Y ) for c ∈ C∗\{1}.

Definition I.4. For any n ≥ 2 define Tn(X) ∈ C[X] to be the unique polynomial

satisfying Tn(X + 1/X) = Xn + 1/Xn.

Our main results are as follows.

Theorem I.5. For a genuine Laurent polynomial f(X) ∈ C[X,X−1] and a bivariate

polynomial H(X, Y ) ∈ C[X, Y ], the following are equivalent:

• H(X, Y ) is an irreducible factor of Ff (X, Y ) which defines a curve whose nor-

malization has genus 0 or 1.

• f = g ◦ h ◦ µ for some g ∈ C[X] and some µ(X) = eXp with e ∈ C∗ and p ∈

{1,−1}, where the numerator Ĥ(X, Y ) of H(µ−1(X), µ−1(Y )) divides Fh(X, Y )

and in addition Ĥ (up to multiplication by a nonzero constant in C) and h

satisfy at least one of the following:

1. h =
(X + 1)n

Xk
, where n > k are coprime positive integers; here Ĥ(X, Y ) =

Fh(X, Y ) has genus zero.

2. h = h1 ◦ Xn where n > 1 and h1 is a genuine Laurent polynomial, with

Ĥ(X, Y ) = X − cY for some c 6= 1 such that cn = 1; here Ĥ(X, Y ) = 0 has

genus 0.

3. h = Tn ◦L where n ≥ 3 and deg(L) ≤ 3 and (L, Ĥ(X, Y )) is listed in Table

1.3.

4. h = Xn ◦ h1 where n ≥ 2 and h1 is a genuine Laurent polynomial and

Fh1,c(X, Y ) has an irreducible factor of genus 0 or 1 for some c 6= 1 such

that cn = 1. This case is solved in Theorem I.6. Here Ĥ(X, Y ) is this

irreducible factor.
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5. h is a genuine Laurent polynomial of degree at most 10. The pairs (h, Ĥ(X, Y ))

are listed in Table 1.1 and Table 1.2.

Theorem I.6. Pick any d ∈ C∗ \ {1}, any genuine Laurent polynomial f(X) ∈

C[X,X−1], and any H(X, Y ) ∈ C[X, Y ]. Then the following are equivalent:

• H(X, Y ) is an irreducible factor of Ff,d(X, Y ) which defines a curve of genus 0

or 1

• f = g ◦ h ◦ µ for some g ∈ C[X], some genuine Laurent polynomial h ∈

C[X,X−1], some µ(X) = eXp with e ∈ C∗ and p ∈ {−1, 1} and some c ∈ C∗

for which the pair (h, c) is described in the following list, where the numerator

Ĥ(X, Y ) of H(µ−1(X), µ−1(Y )) divides Fh,c(X, Y ) and d ∈ 〈c〉, and if m ∈ Z

satisfies cm = d then all terms of g(X) have degree congruent to m modulo the

order of c (where congruence (mod ∞) is interpreted to mean equality).

1. h(X) =
(X + 1)n

Xk
where n > k are coprime positive integers. Here Ĥ(X, Y ) =

Fh,c(X, Y ) has genus 0.

2. h(X) = h1(Xm) where m is any positive integer, c = −1, and h1 is a

genuine Laurent polynomial such that h1(X) = −h1(a/X) for some a ∈ C∗.

Here Ĥ(X, Y ) = XY − β has genus 0 where βm = a.

3. h(X) = h1(Xm) where m is any positive integer, c is a root of unity, and

h1 is a genuine Laurent polynomial satisfying h1(aX) = ch1(X) for some

a ∈ C∗ such that c ∈ 〈a〉. Here Ĥ(X, Y ) = X − βY has genus 0 where

βm = a.

4. h(X) = Tm ◦L where m ≥ 2 and c = −1, with (L, Ĥ(X, Y )) being an entry

in Table 1.3 for values n and r where n = 2m and r is odd.
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5. h has degree at most 8, and (h, c, Ĥ(X, Y )) occurs in Table 1.4 or Table 1.5.
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Table 1.1: Fh(X,Y ) has a genus 0 or 1 irreducible factor: sporadic cases part I

For case (1) to (24) Ĥ(X,Y ) = Fh(X,Y ), which has genus 0 in case (1), (5), (7), (11), (14) and
(15), and genus 1 in all the other cases.
(1) X + 1/X
(2.1) (X3 + 1)/X
(2.2) (X3 +X2 + a)/X where a ∈ K \ {0, 1/27}
(3) (X2 + aX + 1)2/X where a2 ∈ K \ {4,−12}
(4) (X − 1)3(X + a)/X2 where a ∈ K \ {0,−1, 7± 4

√
3}

(5) (X4 + 4X3 + 2X − 1/4)/X2

(6) (X4 − 6X2 − 3)/X
(7) (X − 1)3(X − 9)/X
(8.1) (X − 1)4(X − 4(i+ 1))/X where i2 = −1
(8.2) (X − 1)4(X − 27/2)/X2

(9) (X − 1)5(X + (3s+ 7)/2)/X3 where s2 = 5
(10) (X − 1)5(X − (3s+ 11)/2)/X2 where s2 = −15
(11) (X − 1)5(X + 4s− 9)/X3 where s2 = 5
(12.1) (X3 + 9X + 2)2/X3

(12.2) (X3 + 3X2 + (9w2 − 1)X + 2w3 + w2 − 1/27)2/X3 where w ∈ K \ {0, 1/6,−1/3, 2/3} and
w2 + 8/21w − 8/63 6= 0
(13) (X − 1)4(X + (3s− 11)/2)2/X where s2 = −15
(14) (X2 + 8X − 2)3/X2

(15) (X2 + 10X + 5)3/X
(16) (X2 + 5X − 5)3/X
(17) (X − 1)3(X − 16)2(X − 25)/X
(18) (X − 1)4(X2 − 6X + 25)/X
(19.1) (X + 9)(X2 + (2w + 7)X + w + 2)3/X where w ∈ K has order 3
(19.2) (X + 25)(X2 +X − 256/5)3/X2

(19.3) (X + 1)(X2 + 5/27X − 1/48)3/X3

(20) (X2 + 13X + 49)(X2 + 5X + 1)3/X
(21.1) (X2 + 2X + (s+ 3)/14)4/X where s2 = −7
(21.2) (X2 +X − 27/20)4/X3

(22.1) (X3 + 12X2 + 3(s+ 11)X + s+ 5)3/X where s2 = −2
(22.2) (X3/21 +X2 +X/4− 32/3)3/X2

(22.3) (X3 + 3/2X2 + 24/5X − 10)3/X4

(23.1) (X2 +X + (i+ 1)/32)5/X2 where i2 = −1
(23.2) (X2 + 3X − 4)5/X4

(24) (X + 1/4)8(X + a(a+ 1)2 − 1/4)2/X5 where a4 − 2a2 + 2 = 0

For case (25) to (28) Fh(X,Y ) is reducible.
(25) h(X) = (X + 2)(2X2 − X − 1)4/X3 and Fh(X,Y ) has two irreducible factors. The factor
Ĥ(X,Y ) = X2Y 4 −X3Y 3 +X(X3 − 9X/4 + 1/2)Y 2 +X2Y/2 + 1/4 has genus 1.

(26) h(X) = (X + s− 2)(X3 −X2 + (s+ 1)X/2 + (s+ 1)/2)3/X5 where s2 = 5, and Ĥ(X,Y ) has
genus 0 and it is either of the two irreducible factors of Fh(X,Y ).

(27) h(X) = (X + (11− 5s)/2)2(X2 +X − 1)4/X5 where s2 = 5, and Ĥ(X,Y ) is either of the two
irreducible factors of Fh(X,Y ).

(27.1) Ĥ(X,Y ) has genus 0 and it is the degree-30 factor.

(27.2) Ĥ(X,Y ) has genus 1 and it is the degree-60 factor.

(28) h(X) = (X + 2)6(X − s − 3)3(X + 3s + 7)/X5 where s2 = 5, and Ĥ(X,Y ) = X3Y + (s +
1)X2Y 2/2 + (s+ 5)X2Y + (2s+ 6)X2 +XY 3 + (s+ 5)XY 2 − (2s+ 2)XY + (2s+ 6)Y 2 which has
genus 1.
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Table 1.2: Fh(X,Y ) has a genus 0 or 1 irreducible factor: sporadic cases part II

(1) h = L(X2) where L = (X − 1)3(X − 9)/X. Ĥ(X,Y ) has genus 1 and is either of the two
irreducible factors of FL(X2, Y 2).

(2) h = L(Xm) where L(X) = (X+1)n

Xk and

(2.1) (m,n, k) = (2, 4, 1). Ĥ(X,Y ) has genus 1 and is either of the two irreducible factors of
FL(Xm, Y m).

(2.2) (m,n, k) = (3, 3, 1). Ĥ(X,Y ) is either of the two irreducible factors of FL(Xm, Y m): the
factor X2Y +XY 2 − 1 has genus 0 and X4Y 2 −X3Y 3 +X2Y 4 +X2Y +XY 2 + 1 has genus 1.

(2.3) (m,n, k) = (2, 3, 1) and Ĥ(X,Y ) = FL(X3, Y 3) has genus 0.

(3) h = P◦L where P (X) = X3(X2+5X+40) and L is a deg-2 genuine Laurent polynomial for which
Λ(L) = { 12 (−5 + 3i

√
15) or 1

2 (−5− 3i
√

15), 3}. Here Ĥ(X,Y ) is the numerator of FP (L(X), L(Y ))
and has genus 1
(4) h = P ◦L where P = Xr(X − 1)s with gcd(r, s) = 1 and r+ s > 3, and L is a degree-2 genuine

Laurent polynomial. Let Λ(L) = {α1, α2}, and let λ1, λ2 be the two simple roots of L(X)− rr(−s)s

(r+s)r+s ,

then

(4.1) P = (X − a)(X − b)3 where {a, b} = {0, 1}, and α1 = λ1, α2 = λ2. Here Ĥ(X,Y ) has genus
0 and is either of the two irreducible factors of the numerator of FP (L(X), L(Y ))

(4.2) P = (X − a)(X − b)3 where {a, b} = {0, 1}, and α1 = a, α2 = λ1. Here Ĥ(X,Y ) has genus 1
and is the numerator of FP (L(X), L(Y ))

(4.3) P = (X − a)(X − b)3 where {a, b} = {0, 1} and L = (X + 1
16X + 1

2 ). Here Ĥ(X,Y ) has genus
1 and is any irreducible factor of the numerator of FP (L(X), L(Y ))

(4.4) P = (X − a)(X − b)4 where {a, b} = {0, 1}, α1 = a and α2 = λ1. Here Ĥ(X,Y ) has genus 1
and is the numerator of FP (L(X), L(Y ))

Table 1.3: Fh(X,Y ) has a genus 0 or 1 irreducible factor: h = Tn ◦ L
In this table L is a genuine Laurent polynomial and define T (X,Y, r) to be the numerator of
L(X)2 + L(Y )2 − 2L(X)L(Y ) cos(2πr/n)− 4 sin2(2πr/n) where 0 < r < n/2.
(1) L has branch points {−2, 2, α,∞} where each has type (1121) and α2 = 2(1 + cos(2πr/n)) for
some 0 < r < n/2. Here Ĥ(X,Y ) has genus 1 and is an irreducible factor of T (X,Y, r).

(2) L(X) = aX+ b/X+ c where a, b, c ∈ C∗ and let {β1, β2} := {2
√
ab+ c,−2

√
ab+ c} be the finite

branch points of L. Then β1 = 2 or −2. If β2
2 6= 2(1 + cos(2πr/n)) then Ĥ(X,Y ) = T (X,Y, r) has

genus 1; otherwise Ĥ(X,Y ) has genus 0 and it is any irreducible factor of T (X,Y, r).

Table 1.4: Fh,c sporadic cases part I

(1) h = X + 1/X and c = −1 and µ(X) = −X or −1/X
(2) h = (X3 + 1)/X and c = w (w3 = 1 and w 6= 1) and µ(X) = w2X
(3) h = (X2 + 1)2/X and c = −1 and µ(X) = 1/X
(4) h = (X − 1)3(X + 1)/X2 and c = −1 and µ(X) = 1/X
(5) h = (X4 + 4X3 + 2X − 1/4)/X2 and c = −1 and µ(X) = −1/(2X)
(6) h = (X4 − 6X2 − 3)/X and c = −1 and µ(X) = −X
For case (1) to (6) Ĥ(X,Y ) is the numerator of Fh(X,µ(Y )) and the genus is 0 in case (1) and (5),
and is 1 in all other cases.

(7) h = P ◦L where P = X4 + 4X3 + 3(a+ 3)X2 with a2 = 3, and c = −1, and deg(L) = 2. Let λ
be a nonzero finite branch point of P then the two simple roots of P (X)−λ are all the finite branch
points of L. Here Ĥ(X,Y ) has genus 1 and it is either of the two irreducible factors of Fh,−1(X,Y ).
(8) h = L(X2) where L is any genuine Laurent polynomial of degree 2 and c ∈ C∗ \ {1}. Here
Ĥ(X,Y ) has genus 0 or 1 and it is any irreducible factor of FL,c(X

2, Y 2).
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Table 1.5: Fh,c sporadic cases part II

item n k g
order
of c reduced sequences ramification types

(1) 2 1 0 ≥ 3 (12)→ (21)→ (21)→ (12)

(2) 2 1 1
≥ 2
≥ 5

(12)↔ (21), (12)↔ (21) or
(12)→ (21)→ (12)→ (21)→ (12)

(3) 3 1, 2 0 4 (1121)→ (1121)→ (1121)→ (1121)

(4) 3 1, 2 1
≥ 5
≥ 4
2

(13)→ (1121)→ (1121)→ (1121)→ (13) or
(13)→ (1121)→ (1121)→ (13), (1121) or
(13)↔ (1121), (1121)↔ (1121)

(5) 4 1, 3 0 2 (1221)↔ (1221), (22)
(6) 4 1, 3 1 ≥ 2 P1 = P2 = (1221), P3 = (22), any matching pattern
(7) 4 1, 3 1 ≥ 4 (14)→ (1221)→ (1221)→ (14), (22)
(8) 4 1, 3 1 2 (1221)↔ (1221), (1131)
(9) 4 2 0 2 (1221)↔ (1221), (1131)
(10) 4 2 0 ≥ 4 (1221)→ (1221)→ (22)→ (1221)
(11) 4 2 1 2 (1221)↔ (41)
(12) 4 2 1 2 (1131)↔ (22)
(13) 4 2 1 ≥ 2 four (1221), any matching pattern

(14) 4 2 1
2
≥ 5

(14)↔ (1221), (1221)↔ (22) or
(14)→ (1221)→ (22)→ (1221)→ (14)

(15) 4 2 1 ≥ 4 (14)→ (1221)→ (1221)→ (14), (1131)
(16) 6 1, 5 1 2 (32), (1421)↔ (1421)
(17) 6 2, 4 0 2 (32), (1421)↔ (1421)
(18) 6 2, 4 1 2 (1421), (23)↔ (1222)
(19) 6 3 0 2 (2141), (1421)↔ (1421)
(20) 6 3 1 2 (1151), (1421)↔ (1421)
(21) 6 3 1 4 (1421)→ (1421)→ (1421)→ (1421), (23)
(22) 6 3 1 ≥ 2 three (1222), any matching pattern
(23) 6 3 1 ≥ 4 (1n)→ (1n−221)→ (1n−221)→ (1n), (2141)

In this table h(X) is a genuine Laurent polynomial of degree n with denominator Xk and h(X)
satisfies the reduced sequence condition. For the definition and motivation of reduced sequence we
refer the reader to Definition IX.3. Here Ĥ(X,Y ) = Fh,c(X,Y ) with genus g as described in the
table.

1.2 Application I: Complex functional equations

The functional equation

(1.1) f ◦ P = f ◦Q

plays an important role in many contexts, where f is a complex rational function

and P,Q are distinct nonconstant meromorphic functions on the complex plane.

Picard [15] showed that an irreducible algebraic curve admits a parametrization by

meromorphic functions if and only if it has genus 0 or 1. Therefore, for a given
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nonconstant f(X) ∈ C(X), Equation (1.1) has a solution if and only if Ff (X, Y ) has

a component of genus zero or one. Thus Theorem I.5 implies the following result.

Theorem I.7. For any genuine Laurent polynomial f(X) ∈ C[X,X−1], the equation

f ◦P = f ◦Q has a solution in distinct nonconstant meromorphic functions P,Q on

C if and only if f is one of the Laurent polynomials described in Theorem I.5.

In addition to determining the Laurent polynomial f(X) for which Equation (1.1)

has a solution, we can also use our results to describe all possibilities for the mero-

morphic functions P and Q. This is because we determine all irreducible components

of Ff (X, Y ) = 0 having genus 0 or 1, so that with some work we can determine a

“minimal” parametrization of each such component via rational or elliptic functions,

and then use the known description [2] of how all meromorphic parametrizations can

be obtained from a minimal parametrization. We note that an analogue of Theorem

I.5 in the case of polynomials was proved in [2] (building on earlier work from [1]),

and yields a solution of Equation (1.1) when f(X) is a polynomial.

The classification result in this thesis has several applications in complex dynamics

and complex analysis, as follows:

1. Lyubich and Minsky [9] used hyperbolic orbifold 3-laminations to study back-

ward orbits of a rational function, as well as other dynamical questions. In item

10 on page 83 they asked several questions about solutions to Equation (1.1),

as such solutions play an important role in their theory. Specifically, they asked

if all solutions to the Equation (1.1) have a specific form. Theorem I.7 provides

many classes of solutions to Equation (1.1) and gives a negative answer to their

most ambitious question.

2. Nevanlinna’s Five-Values Theorem ([14], [6, Theorem 2.6]) says that a noncon-
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stant meromorphic function is completely determined by its preimages at five

complex numbers. More precisely, if P,Q are nonconstant meromorphic func-

tions such that P−1(ai) = Q−1(ai) for each of five distinct complex numbers

ai, then P = Q. This result inspired a great deal of subsequent work, with the

ultimate goal being to move from preimages of points to preimages of finite sets.

Many authors studied the analogous question: when can distinct meromorphic

functions P,Q satisfy P−1(Si) = Q−1(Si) for several finite subsets Si ⊂ C? If

the finite sets Si satisfy certain conditions, then one can use Nevanlinna’s sec-

ond main theorem to show that there exists a rational function f such that

f ◦P = f ◦Q. In the opposite direction, if f ◦P = f ◦Q, then for any complex

number b, the set f−1(b) has the same preimage under P as it does under Q, in

other words, f−1(b) plays the role of the finite sets Si.

Our Theorem I.7 provides several new classes of meromorphic functions P and

Q for which there are infinitely many finite sets Si such that P−1(Si) = Q−1(Si).

In addition, Theorem I.7 can be combined with results from Nevanlinna theory

in order to classify all P,Q with this property if in addition the sets Si satisfy

certain further conditions.

3. In complex dynamics, two important invariants of a rational function are its

Julia set and its measure of maximal entropy. Many authors have studied the

extent to which these invariants determine a rational function, or in other words,

when two distinct rational functions can have the same Julia set or the same

measure of maximal entropy. In the work of Levin-Przytycki [7, 8] and Ye [19],

the authors reduce the these two questions to the solution of Equation (1.1),

where f, P,Q are all rational functions. The work of [2] gives the complete list

of solutions when f is a polynomial, and this thesis gives the complete list when
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f is a Laurent polynomial.

1.3 Application II: Diophantine equations and near-injectivity of ratio-
nal functions

Theorem I.5 has the following number-theoretic consequence.

Theorem I.8. Let f(X) ∈ Q̄[X,X−1] be a genuine Laurent polynomial. Then f is

listed in Theorem I.5 if and only if there is a number field K which contains infinitely

many elements c for which the equation f(X) = c has at least two solutions in K.

Proof. We first prove the “if” direction of the theorem. The condition on f says

that there is number field K for which the equation the equation f(X) = f(Y ) has

infinitely many solutions in K ×K which do not satisfy X = Y (since only finitely

many solutions satisfy X = Y ). It follows that Ff (X, Y ) = 0 has infinitely many

K-rational points, so also some irreducible component of Ff (X, Y ) has infinitely

many K-rational points. Such a component must be geometrically irreducible, and

hence by Faltings’ theorem [4] must have genus zero or one, so that f is described in

Theorem I.5.

We then prove the “only if” direction of the theorem. Note that any smooth

projective geometrically irreducible curve of genus 0 or 1 has infinitely many points

over some number field, more precisely for genus 0, the number field could be any

number field over which the curve has one point; and for genus 1, the number field

could be any number field over which the curve has two points whose difference in

the Jacobian has infinite order. If a genuine Laurent polynomial f satisfies that

Ff (X, Y ) has a factor whose normalization has genus zero or one, then Ff (X, Y ) has

infinitely many K-rational points for some number field K, and this implies that

there are infinitely many elements c ∈ K for which the equation f(X) = c has at
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least two solutions in K.

The version of Theorem I.8 when f is any polynomial is proved by Carney, Hortsch

and Zieve in [2]. Using the theorem, they proved the following unexpected result:

Theorem I.9 (Carney–Hortsch–Zieve [2]). For any f(X) ∈ Q[X], the polynomial

map Q→ Q defined by c 7→ f(c) is at most 6-to-1 over all but finitely many values.

They also proved the following more general result for number fields.

Theorem I.10 (Carney–Hortsch–Zieve [2]). Let K be a number field, and let N be

the largest positive integer for which some primitive N-th root of unity ξ satisfies

ξ+ ξ−1 ∈ K. Then, for any f(X) ∈ K[X], the function K → K defined by c 7→ f(c)

is (≤ N)-to-1 over all but finitely many values. Moreover, there are polynomials

f(X) ∈ K[X] which induce functions K → K that are N-to-1 over infinitely many

values.

In the very near future we hope to prove analogues of these results for Laurent

polynomials, using Theorem I.8 and its polynomial analogue from [2]. We will explain

the method at the end of this section. If there is an analogue of Theorem I.10

for Laurent polynomials, then this would be evidence in support of the following

conjectures.

Conjecture I.11 (Carney–Hortsch–Zieve [2]). Let K be a number field, and let

f(X) ∈ K(X) be any rational function. Then the map K → K defined by c 7→ f(c)

is at most N-to-1 over all but finitely many values, where N is a constant depending

only on [K : Q].

Conjecture I.12 (Carney–Hortsch–Zieve [2]). For any positive integers d and D,

there is an integer C(d,D) with the following property: for any degree-d number field
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K, and any morphism f : V1 → V2 between D-dimensional varieties defined over K,

the induced map f : V1(K)→ V2(K) is (≤ C(d,D))-to-1 over all elements of V2(K)

which are not contained in some proper Zariski-closed subset of V2(K̄).

These conjectures are related to Mazur and Merel’s results about rational torsion

on elliptic curves. Their result will be a direct consequence of Conjecture I.11.

Theorem I.13 (Mazur [10], Merel [11]). For any positive integer d, there is an

integer C(d) with the following property: for any degree-d number field K, every

elliptic curve E over K has at most C(d) torsion points defined over K. Moreover,

one may take C(1) to be 16.

In just a few lines, one can deduce Theorem I.13 from the special case of Con-

jecture I.12 in which V1 and V2 are genus-1 curves, and conversely. Moreover, it is

shown in [2] that Theorem I.13 also follows quickly from Conjecture I.11.

We now outline the envisioned strategy for proving a the Laurent polynomial

analogue of Theorem I.10.

The first step is to use Faltings’ theorem to translate the arithmetic question into

geometry. In particular, if a Laurent polynomial f(X) ∈ K(X)\K induces a function

K → K which is (≥ r)-to-1 over infinitely many values, then the algebraic set V

defined by f(X1) = f(X2) = . . . = f(Xr) contains infinitely many K-rational points

with distinct coordinates. Since every component is a curve, by Faltings’ theorem

at least one component has genus 0 or 1. Theorem I.8 and its polynomial analogue

in [2] solve the problem when r = 2, and yield the set of Laurent polynomials.

We will then continue the following process inductively on r. Suppose we have the

list of Laurent polynomials for r, then for r + 1, we can relate each component of

f(X1) = f(X2) = . . . = f(Xr+1) with a component of f(X1) = f(X2) = . . . = f(Xr),
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and the component from r + 1 is expected to have a larger genus, unless some

specific ramification constraints are satisfied. Since we only want components of

genus zero or one, from r to r + 1, the set of Laurent polynomials satisfying the

genus condition shrinks. Let r be the smallest value for which this set of Laurent

polynomials is empty; then the Laurent polynomial analogue of Theorem I.10 will

be true for N = r − 1.



CHAPTER II

Proof of Theorem I.5 and Theorem I.6

In this chapter we prove Theorem I.5 and Theorem I.6, using results whose proofs

appear in subsequent chapters. We begin with an outline of the thesis.

2.1 Notation and terminology

Let K be an algebraically closed field of characteristic 0. We will work over such a

field K throughout this thesis. We use capital letters X, Y, U, V for rational function

variables, and lower case letters x, y, u, v, t for elements which are transcendental over

K (but which might be algebraically dependent over K).

For any f(X) ∈ K(X) we define Ff (X, Y ) to be the numerator of f(X)−f(Y )
X−Y and

define Ff,c(X, Y ) to be the numerator of f(X)− cf(Y ) for any c ∈ K∗ \ {1}.

The goal of this thesis is to classify the genuine Laurent polynomials f(X) ∈

K[X,X−1] for which Ff (X, Y ) has an irreducible factor of genus zero or one. Here

by “genus” we mean the genus of the normalization of the irreducible factor. Since

the polynomial case is already solved in [2], we will assume f is a genuine Laurent

polynomial in this thesis.

We say that a rational function f(X) ∈ K(X) of degree at least 2 is indecomposable

if it cannot be written as the composition of two lower-degree rational functions in

K(X); otherwise, we say that f(X) is decomposable.

14
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2.2 Outline of the thesis

In section 2.3 we will show how the results proved in subsequent chapters can

be combined to prove Theorem I.5 and Theorem I.6. The bulk of the work in this

thesis occurs in the subsequent chapters, where Theorem I.5 and Theorem I.6 are

proved when f(X) is restricted to certain classes of Laurent polynomials. We begin

in Chapter III with preliminary results and background material. In particular,

we show in Lemma III.3 that any genuine Laurent polynomial has a decomposition

f = f1 ◦f2 ◦f3, where P := f1 is a polynomial, L := f2 is an indecomposable genuine

Laurent polynomial, and f3 = Xn for some positive integer n. We will use different

types of arguments depending on the nature of this decomposition of f .

The following chapters solve the classification of genuine Laurent polynomials f

for which Ff (X, Y ) has an irreducible factor of genus 0 or 1.

• In Chapter IV we classify indecomposable genuine Laurent polynomials f = L

for which Ff (X, Y ) is irreducible with genus 0 or 1. The classification is Theorem

IV.1.

• In Chapter V we classify indecomposable genuine Laurent polynomials f = L

for which Ff (X, Y ) is reducible with an irreducible factor of genus 0 or 1. The

classification is Theorem V.1.

• In Chapter VI we solve the decomposable case that f = L ◦Xn (where n > 1).

The classification is Theorem VI.1.

• In Chapter VII we solve the decomposable case that f = P ◦L. The classification

is Theorem VII.1.

• In Chapter VIII we solve the decomposable case that f = P ◦ L ◦ Xn (where
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n > 1). The classification is Theorem VIII.1.

Some cases in Theorem VII.1 and Theorem VIII.1 are reduced to the problem of

classifying genuine Laurent polynomials f and c ∈ K∗ \ {1} for which Ff,c(X, Y ) has

an irreducible factor of genus 0 or 1, and we solve this problem in Chapter IX and

Chapter X. The following is the outline of Chapter IX and Chapter X.

• In Chapter IX we solve the case when Ff,c(X, Y ) is irreducible with genus 0 or

1. The classification is Theorem IX.6.

• In Chapter X we solve the case when Ff,c(X, Y ) is reducible with an irreducible

factor of genus 0 or 1. Each section of Chapter X solves the problem for one

type of f .

1. We solve the case when f = L is indecomposable. The classification is

Proposition X.3 and Proposition X.4.

2. We solve the case when f = P ◦ L. The classification is Proposition X.13.

3. We solve the case when f = L ◦Xn or f = P ◦ L ◦Xn (where n > 1). The

classification is Proposition X.14 and Proposition X.15.

2.3 Proof of Theorem I.5

Pick an irreducible factor H(X, Y ) of Ff (X, Y ) such that H(X, Y ) = 0 has genus

0 or 1. Let x be transcendental over K, and let y satisfy H(x, y) = 0. Then let

t := f(x) = f(y), and let h be a genuine Laurent polynomial which has the minimal

degree such that f = g ◦ h ◦ µ for some polynomial g, and µ(X) = eXp with some

e ∈ K∗ and p ∈ {−1, 1}, and h(µ(x)) = h(µ(y)). Now H(X, Y ) is an irreducible

factor of Fh◦µ(X, Y ). By Remark III.26 there is a genus-preserving bijection between

the irreducible factors H(X, Y ) of Fh◦µ(X, Y ) and the irreducible factors Ĥ(X, Y )
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of Fh(X, Y ) up to multiplication by some nonzero element in K∗, where Ĥ(X, Y ) is

the numerator of H(µ−1(X), µ−1(Y )). Therefore it suffices to solve the problem in

case µ(X) = X, which we will assume in what follows.

In the following proof we assume that f = h.

Put r := f3(x) = xn, s := f3(y) = yn, u := f2(r), v := f2(s), and t := f1(u).

Note that t = f(x) = f(y) = f1(v) and that [K(x) : K(r)] = n = [K(y) : K(s)] and

[K(r) : K(u)] = deg(f2) = [K(s) : K(v)] and [K(u) : K(t)] = deg(f1) = [K(v) : K(t)].

By Riemann–Hurwitz, every subfield of K(x, y) which properly contains K will have

genus at most equal to the genus of K(x, y); the latter genus equals the genus of

Ĥ(X, Y ), and hence is 0 or 1.

There are three cases we need to consider.

1. K(r) = K(s).

2. K(r) 6= K(s), but K(u) = K(v).

3. K(u) 6= K(v).

2.3.1 Case 1: K(r) = K(s)

In this case there must be a linear fractional µ(X) ∈ K(X) such that s = µ(r), so

f1◦f2◦µ(r) = f1◦f2(r). Since r is transcendental over K, this means f1◦f2◦µ(X) =

f1 ◦ f2(X). Now consider the preimage of ∞ on the both sides: on the right it is

{0,∞}, and on the left it is {µ−1(0), µ−1(∞)}. Since µ preserves {0,∞}, µ(X) must

be either cX or c/X for some c ∈ K∗. Since f3 = Xn, this implies that either y = ax

or y = a/x, where an = c.

(1) If y = ax then f(ax) = f(x), so that f(x) is in the subfield of K(x) fixed

by the automorphism x 7→ ax. Denoting this order by m, we see that a is a

primitive m-th root of unity, and the fixed field of x 7→ ax is K(xm). Therefore
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f = g ◦ Xm for some genuine Laurent polynomial g, and Ĥ(X, Y ) = X − aY

which has genus 0.

(2) If y = a/x then f(a/x) = f(x), so that f(x) is in the subfield of K(x) fixed by the

automorphism x 7→ a/x, namely the field K(x+a/x). Hence f(X) = g(X+a/X)

for some rational function g, but since f−1(∞) = {0,∞} = (X + a/X)−1(∞),

it follows that g−1(∞) = {∞}, whence g is a polynomial. Then the minimality

of f implies that g is a constant which can be chosen to be 1, so f = X + a/X.

Now since f = (
√
aX) ◦ (X + 1/X) ◦ (X/

√
a) we can choose f = X + 1/X.

Thus in this case: f = X + 1/X where Ĥ(X, Y ) = XY − 1.

2.3.2 Case 2: K(r) 6= K(s), but K(u) = K(v)

Since K(u) = K(v), we have v = µ(u) for some linear fractional µ ∈ K(X), so

f1(µ(u)) = f(y) = f(x) = f1(u). Since f1 is a polynomial, this equality shows

f−1(∞) = {∞} = µ−1(∞), so µ must be a linear polynomial. Likewise, µ permutes

f−1
1 (S) for any finite subset S of K, so by taking by taking S large enough we see that

µ permutes a finite set of size at least 3, which forces µ to have finite order. Let c be

the unique fixed point of µ in K, so that (X−c)◦µ◦(X+c) has finite order and fixed

point 0, and hence equals aX for some root of unity a, so µ = (X+ c)◦aX ◦ (X− c).

If a 6= 1, put F1 := f1 ◦ (X + c) and F2 := (X − c) ◦ f2. Note that f1 ◦ (X + c) ◦

aX ◦ (X − c) = f1, so F1(aX) = F1(X), whence F1(X) = g(Xm) where m is the

order of a. Moreover, F1 ◦F2 = f1 ◦f2. Note that F1 and F2 satisfy all the properties

required of f1 and f2, namely that K(F2(r)) = K(F2(s)) and F2 is a genuine Laurent

polynomial which is indecomposable, and F1 is a polynomial. Therefore we lose no

generality by replacing f1 and f2 by F1 and F2, while also replacing u and v by u− c

and v − c (note that these replacements do not change f , x, y, or H). After these
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replacements, we may assume that either

(2a) u = v or

(2b) v = au where a is a primitive m-th root of unity for some m > 1, and F1(X) =

g(Xm) for some polynomial g. The minimality of f implies that g is a nonzero

constant so we can assume F1(X) = Xm.

Case 2a: u = v

The minimality of f implies f1 is a nonzero constant so we can assume f =

f2 ◦ f3 = L ◦ Xn. In this case r, s are distinct transcendentals over K such that

f2(r) = f2(s), and K(r, s) has genus 0 or 1. Now we have the function field tower in

Figure 2.1.

K(u) = K(v)

K(r) K(s)

K(x) K(r, s) K(y)

K(x, s) K(r, y)

K(x, y)

r = f3(x) = xn s = f3(y) = yn

u = f2(r) = L(r) u = f2(s) = L(s)

Figure 2.1: Tower of function fields

Here K(r, s) is the function field of some irreducible factor of FL(X, Y ), where all

possibilities for L are classified in Theorem IV.1 (when FL(X, Y ) is irreducible) and

Theorem V.1 (when FL(X, Y ) is reducible). If n > 1, we also require K(x, y) to have

genus zero or one. For each such L, the possibilities for n are classified in Theorem

VI.1.
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Case 2b: v = au for some primitive m-th root of unity a and f1(X) = Xm where a 6= 1
and m > 1

This case Ĥ(X, Y ) is an irreducible factor of Fh1,a(X, Y ) where h1 = f2 ◦ f3 =

L ◦Xn. This is case (4) of the theorem.

2.3.3 Case 3: K(u) 6= K(v)

In this case, K(u, v) is the function field of an irreducible factor H1(X, Y ) of

Ff1(X, Y ) and K(u, v) has genus zero or one. If f = f1 ◦ f2 = P ◦L, then Ĥ(X, Y ) is

an irreducible factor of FP (L(X), L(Y )) and this is solved in Theorem VII.1. Case

(3) in Theorem VII.1 is the case (3) in this theorem; case (1) and (2) in Theorem

VII.1 are cases (3) and (4) in Table 1.2. Case (4) in Theorem VII.1 is a special case

of case (4) in this theorem.

If f3 := Xn with n > 1, then f = P◦L◦Xn and f(X)−f(Y )
X−Y = P◦L(Xn)−P◦L(Y n)

Xn−Y n
Xn−Y n
X−Y ,

so Ĥ(X, Y ) is an irreducible factor of FP◦L(Xn, Y n) and this is solved in Proposition

VIII.1. The case in Proposition VIII.1 is case (4) in this theorem.

2.4 Proof of Theorem I.6

There exists a pair (h, c) where h is a genuine Laurent polynomial of minimal

degree such that c ∈ K∗ \ {1} and f = g ◦ h for some polynomial g and h(X) −

ch(Y ) divides f(X) − df(Y ). First we show that d ∈ 〈c〉 and for any m ∈ Z such

that cm = d, all terms of g(X) have degree congruent to m (mod the order of

c). From the congruences h(X) ≡ ch(Y ) (mod H(X, Y )) and g(h(x)) = dg(h(Y ))

(mod H(X, Y )), we find that dg(h(Y )) ≡ g(h(X)) ≡ g(ch(Y )) (mod H(X, Y )). It

follows that dg(h(Y )) = g(ch(Y )), since otherwise H(X, Y ) would divide a nonzero

polynomial in K[Y ], so that H(X, Y ) would be an element of K[Y ], contradicting

the fact that H(X, Y ) is an irreducible factor of h(X) − ch(Y ). Next the equality
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dg(h(Y )) = g(ch(Y )) implies that dg(Y ) = g(cY ), so if g(Y ) has a term of degree j

then d = cj. Therefore indeed d ∈ 〈c〉, and if d = cm then all terms of g(X) have

degree congruent to m (mod the order of c).

Now since H(X, Y ) is an irreducible factor of Fh,c(X, Y ) then we only need to work

on the pair (h, c). In fact for the set of pairs (f ◦ µ−1, d) where µ(X) = eXp with

e ∈ K∗ and p ∈ {−1, 1}, we only need to work on the pair (h, c) since (h ◦µ−1, c) is a

minimal pair of (f ◦ µ−1, d), and any H(X, Y ) of Fh,c(X, Y ) will yield an irreducible

factor Ĥ(X, Y ) of Fh◦µ−1,c(X, Y ) of genus at most 1 where Ĥ(X, Y ) is the numerator

of H(µ−1(X), µ−1(Y )).

The case when Fh,c(X, Y ) is irreducible with genus 0 or 1 is solved in Theorem

IX.6. When Fh,c(X, Y ) is decomposable, we consider the four types of h. The case h

is indecomposable is solved in Proposition X.3 and Proposition X.4; the case when

h = P ◦L is solved in Proposition X.13; the case when h = L ◦Xn or h = P ◦L ◦Xn

(where n > 1) is solved in Proposition X.14 and Proposition X.15. This concludes

the proof.



CHAPTER III

Preliminaries

In this chapter we present the notation, terminology, and background results that

will be used in this thesis. We firstly define what indecomposable and decomposable

rational functions are, and state how genuine Laurent polynomials decompose. After

that we define curves, function fields, places, and monodromy groups, and how to

build function field towers. Then we give the Riemann–Hurwitz formula to compute

the genus, and list some tools to analyze the degree of the composite of two extensions

of a function field. At the end we give the factorizations of some special polynomials,

and some inequalities related to the genus formula.

Throughout this thesis, we work over an arbitrary algebraically closed field K of

characteristic zero, instead of the complex field C. We use capital letters X, Y, U, V

for rational function variables, and lower case letters x, y, u, v, t for elements which

are transcendental over K (but which might be algebraically dependent over K).

The irreducible factors of the numerator of a rational function we come across in

this thesis always define irreducible algebraic curves, and by the genus of a factor, we

always mean the genus of the normalization of the curve defined by the irreducible

factor.

22
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3.1 Decomposability

Definition III.1. We say that a rational function f(X) ∈ K(X) of degree at least

2 is indecomposable if it cannot be written as the composition of two lower-degree

rational functions in K(X); otherwise, we say that f(X) is decomposable.

Lemma III.2. If f1, f2 ∈ K(X) are nonconstant rational functions such that f1 ◦

f2 ∈ K[X], then there is a linear fractional µ ∈ K(X) so that f1 ◦ µ ∈ K[X] and

µ−1 ◦ f2 ∈ K[X].

If g1, g2 ∈ K(X) are nonconstant rational functions such that g1 ◦ g2 is a genuine

Laurent polynomial in K[X,X−1], then there is a linear fractional µ ∈ K(X) so that

one of the following holds

(1) g1 ◦ µ ∈ K[X] and µ−1 ◦ g2 is a genuine Laurent polynomial in K[X,X−1]

(2) g1◦µ is a genuine Laurent polynomial in K[X,X−1] and µ−1◦g2 = Xn for some

n > 0

Proof. For the first half, since f1 ◦ f2 is a polynomial which is totally ramified at ∞,

we have f−1
1 (∞) = a and f−1

2 (a) = ∞ for some a ∈ K ∪ {∞}. Let µ ∈ K(X) be

a linear fractional such that µ(∞) = a, then f1 ◦ µ and µ−1 ◦ f2 are both totally

ramified at ∞ with preimage ∞, so they are both polynomials.

For the second half, g−1
2 ◦ g−1

1 (∞) = (g1 ◦ g2)−1(∞) = {0,∞}. Then there are two

cases:

(1) g−1
1 (∞) has one element. Let µ be a linear fractional such that µ−1 moves

that element to ∞, then (g1 ◦ µ)−1(∞) = ∞, so g1 ◦ µ is a polynomial. Now

(µ−1 ◦ g2)−1(∞) = {0,∞}, so µ−1 ◦ g2 is a genuine Laurent polynomial.

(2) g−1
1 (∞) has two elements. Let µ be a linear fractional such that µ−1 moves the
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two elements to {0,∞}, then (g1 ◦ µ)−1(∞) = {0,∞}, so g1 ◦ µ is a genuine

Laurent polynomial. Now (µ−1 ◦ g2)−1({0,∞}) = {0,∞}, so µ−1 ◦ g2 = Xn for

some nonzero integer n. We can assume n > 0 since otherwise we can replace

µ with µ ◦ 1/X and then (µ ◦ 1/X)−1 ◦ g2 = X−n with the exponent −n > 0.

This concludes the proof.

Lemma III.3. Any genuine Laurent polynomial f ∈ K[X,X−1] can be written as

f = f1◦f2◦f3 where f1 ∈ K[X] is a polynomial, f2 ∈ K[X,X−1] is an indecomposable

genuine Laurent polynomial, and f3 = Xn for some positive integer n.

Proof. If f is indecomposable, then take f1 = X, f2 = f and n = 1. If f is

decomposable, suppose f = g ◦h where g and h are both rational functions of degree

at least 2. Since f−1(∞) = {0,∞}, g−1(∞) could have one point or two points.

In either case, we can find an appropriate linear fractional µ(X) ∈ K(X) such that

(g ◦ µ)−1(∞) = {∞} in the first case, and {0,∞} in the second case. We will then

replace g, h with g ◦ µ and µ−1 ◦ h. In the first case, g is a polynomial and since

h−1{∞} = {0,∞}, h is a genuine Laurent polynomial. In the second case, g is a

genuine Laurent polynomial, and since h−1{0,∞} = {0,∞}, we have h = aXn where

n 6= 0 is an integer, and we can assume n > 0 since otherwise we can replace g with

g ◦ (1/X). Therefore, there are two cases, either g is a polynomial and h is a genuine

Laurent polynomial, or g is a genuine Laurent polynomial and h = Xn with n > 0.

If f is decomposable, we can decompose it until we see an indecomposable genuine

Laurent polynomial L. Each time either we have a polynomial Pi on the left, or a Xj

on the right, so f = P1 ◦P2 ◦ . . . Pk ◦L◦Xn1 ◦Xn2 ◦ · · · ◦Xnl , let f1 = P1 ◦P2 ◦ · · ·Pk,

f2 = L and f3 = Xn1 ◦Xn2 ◦ · · · ◦Xnl . This concludes the proof.
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3.2 Curves and function fields

By a curve we always mean a non-singular projective geometrically irreducible

curve. In this thesis, we usually represent curves by affine equations which might

have singularities, but this curve is always birationally equivalent to the unique

non-singular projective curve corresponding to its function field. When we refer to

genus of a curve defined by equations, this genus is always the genus of this unique

non-singular projective curve, or equivalently, the genus of the function field.

By a function field over a field K, we mean a finitely-generated extension L/K of

transcendental degree 1, and we require that K is the full constant field of L.

3.3 Function field tower

Let f(X), g(X) ∈ K(X) \ K be any rational functions, let t be a transcendental

element over K, and let x, y be roots of f(X) − t and g(X) − t respectively. Then

we can build the following function fields tower in Figure 3.1.

K(t)

K(x) K(y)

K(x, y)

t = f(x) t = g(y)

Figure 3.1: Function field tower

In this tower, K(x, y) is the function field of an irreducible factor of f(X)− g(Y ),

and in fact, for every irreducible factor of f(X) − g(Y ), we can choose appropriate

x, y, such that the function field K(x, y) is the function field of the factor. We will

work with function fields directly, instead of working on the irreducible factors of

f(X)− g(Y ). Besides the stated correspondence between the irreducible factors and
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the function fields, there are more reasons why we choose to work with function

fields:

1. The genus of a factor is in fact the genus of the normalization of the factor (as a

curve), which equals the genus of the function field, so we do not need to know

what the normalization of the factor looks like.

2. There are a lot of tools in terms of function fields (Galois theory, Abyhankar’s

lemma, Riemman-Hurwitz formula) to analyze reducibility and calculate genus.

The goal of this thesis may be restated as determining all genuine Laurent poly-

nomials f for which there is a corresponding function field K(x, y) of genus at most

1.

Definition III.4. Let L be a function field over K, let M1 and M2 be finite extensions

of L, and let M = M1M2. Then we refer to the diagram in Figure 3.2 as a square.

We say the square is irreducible if [M : M1] = [M2 : L] or equivalently, [M : L] =

L

M1 M2

M

Figure 3.2: Function field tower

[M1 : L][M2 : L]; otherwise, we say the square is reducible.

For example, in the tower in Figure 3.1, if the square is irreducible, then f(X)−

g(Y ) must be irreducible; and otherwise, K(x, y) corresponds to an irreducible factor

of f(X)− g(Y ).

We use the following two towers very often in this paper:
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1. In Figure 3.1, choose g = f and y 6= x. Then K(x, y) is the function field of an

irreducible factor of Ff (X, Y ) = f(X)−f(Y )
X−Y .

2. In Figure 3.1, choose g = cf where c ∈ K \ {1} is a root of unity. Then K(x, y)

is the function field of an irreducible factor of f(X)− cf(Y ).

The tower above is for single functions f, g. We will often study function field

towers in which f and g are given as compositions of lower-degree functions, namely

f = f1 ◦ f2 and g = g1 ◦ g2 where f1, f2, g1, g2 ∈ K(X) \ K. In this setting we build

the following more complicated function field tower, as in Figure 3.3.

K(t)

K(u) K(v)

K(x) K(u, v) K(y)

K(x, v) K(u, y)

K(x, y)

u = f2(x) v = g2(y)

t = f1(u) t = g1(v)

Figure 3.3: Tower of function fields

In Figure 3.3, x is transcendental over K, y satisfies f(x) = g(y), and we define

u := f2(x) and v := g2(y) and t := f1(u). It follows that t = g1(v).

Definition III.5 (top/bottom/left/right square). In Figure 3.3, from top to bottom,

from left to right, we call the four squares the top square, left square, right square,

and bottom square.

In this paper, most times we choose f = g to be the same genuine Laurent

polynomial. A genuine Laurent polynomial has two possible decompositions, either
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a polynomial composed with a genuine Laurent polynomial, or a genuine Laurent

polynomial composed with a cyclic polynomial (in other words, Xn), and we choose

f1 = g1, f2 = g2 according to which decomposition we are working on.

In the following sections, we will discuss the tools that can be applied to the

function field tower. With the tools, we will be able to determine the degrees of the

field extensions in a square, and compute the genus of a given function field in the

tower.

3.4 Ramification and genus

3.4.1 Places and ramification

Each place in K(t) corresponds to a value α ∈ K∪{∞}, in fact, the maximal ideal

of the place is generated by (t − α) if α ∈ K and 1/t if α = ∞, and we write αt to

represent the corresponding place in K(t). We use similar notation for other rational

function fields such as K(u). We note that more complicated function fields such as

K(u, v) do not necessarily contain exactly one place having a given value of u and

v; in subsequent sections we will describe how many such places exist in terms of

ramification indices. The same thing is not true for K(u, v), K(x, v), etc, since there

may be more than one place in K(u, v) for a given value of u and v, to find exactly

how many places, we will use Abyhankar’s lemma stated in the following sections.

Let f(X) ∈ K(X) be a genuine Laurent polynomial, and let Λ(f) be the set of

values λ ∈ K such that f(X)− λ has at least one multiple root. For any λ0 ∈ Λ(f),

if the set of multiplicities of f(X)− λ0 has ai many bi’s, i ∈ {1, . . . , d}, then we say

λ0 has ramification type (ba11 . . . badd ). For example, for f(X) = X + 1
X

, Λ(f) = {±2},

and ±2 both have ramification type (21), and ∞ will have ramification type (12).

Definition III.6. Let f(X) ∈ K(X) be a rational function, and λ ∈ K ∪ {∞}. If



29

X = a (where a ∈ K ∪ {∞}) is a solution to f(X) = λ, then we define ef (a) to be

the multiplicity of the root X = a.

The ramification of f determines the ramification of K(x)/K(t), where f(x) = t.

For example, for f(X) = X + 1
X

, ∞t is unramified with 0x,∞x lying over it, and 2t

is totally ramified with 1x lying over it.

Generally, let L/M be an extension of function fields over K, let P be a place of

M , and let Q1, . . . , Qd be the places of L lying over P . We write e(Qi|P ) for the ram-

ification index of Qi/P , and we refer to the multiset of values e(Q1|P ), . . . , e(Qd|P )

as the ramification multiset over P in L/M , which denote by Raml(P ). If we collect

the multiplicity of the values in the multiset, we will get the ramification type as

mentioned before.

Note that the sum of the elements of Raml(P ) equals [L : M ]. We say that P is

a branch point of L/M if the ramification multiset over P includes an integer larger

than 1, and the branch locus Br(L/M) of L/M is the set of all branch points of

L/M .

If L = K(x) and M = K(t), and if ∞ is a branch point of f , then Br(f) :=

Br(L/M) = Λ(f) ∪ {∞}; if not, then Br(f) := Br(L/M) = Λ(f). Note that here

we use values to represent places.

3.4.2 Monodromy groups, Riemann’s existence theorem and ramification

Definition III.7. Let f(X) ∈ K(X)\K be any rational function, let t be a transcen-

dental element over K(X), and let x be a root of f(X)−t. We define the monodromy

group of f(X) to be the Galois group of the Galois closure of K(x)/K(t), viewed as

a group of permutations of the set of conjugates of x over K(t); in other words, it is

the Galois group of f(X)− t over K(t).
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Throughout the thesis K is fixed, since the monodromy group does not depend

on the choice of t, once K is fixed then the monodromy group only depends on f , so

we can write the monodromy group as Mon(f).

The monodromy group is very useful for the following reasons.

1. Müller [12] has determined all permutation groups which occur as monodromy

groups of indecomposable genuine Laurent polynomials, see Theorem V.2.

2. Ff (X, Y ) is irreducible if and only if Mon(f) is doubly transitive. If Mon(f) is

not doubly transitive, we can use it to compute the degree and genus of each

irreducible factor of Ff (X, Y ).

3. Lemma III.9 states the relationship between the ramification of f and the mon-

odromy group. Given the monodromy group, we are able to get some informa-

tion on the ramification of f . Given a collection of ramification types, we can

also determine whether there exists a corresponding rational function.

Definition III.8. For any σ ∈ Sn, define O(σ) to be the number of cycles in σ.

We will use the following consequence of Riemann’s existence theorem.

Lemma III.9. For any f(X) ∈ K(X) \ K with Br(f) = {t1, . . . , td}, there exist

τ1, . . . , τd ∈ Mon(f) satisfying all of the following:

• Mon(f) = 〈τ1, . . . , τd〉.

•
∏d

i=1 τi = 1.

• For each τi, the multiset of cycle lengths of τi equals the multiset of ramification

indices of ti.

•
∑d

i=1(n−O(τi)) = 2n− 2.
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Pick any nontrivial elements tau1, . . . , τd ∈ Sn such that
∑d

i=1(n−O(τi)) = 2n−2,

the group 〈τ1, . . . , τd〉 is transitive, and
∏d

i=1 τi = 1. Then, for any pairwise distinct

elements t1, . . . , td ∈ K ∪ {∞}, there exists a rational function f(X) ∈ K(X) such

that

• Mon(f) = 〈τ1, . . . , τd〉.

• Br(f) = {t1, . . . , td}, and for each ti, the multiset of cycle lengths of τi equals

the multiset of ramification indices of ti.

Proof. It suffices to prove the result in case K = C. The first part is proved in [18,

Theorem 2.13]. That result also shows that, for any τi’s as in the second part, there

exists an extension F/K(t) and pairwise distinct places P1, . . . , Pd of C(t) such that

• [F : K(t)] = n

• Every place of K(t) other than the Pi’s is unramified in F/K(t)

• The multiset of cycle lengths of τi equals the multiset of ramification indices in

F/K(t) of all the places of F which lie over Pi.

Applying the Riemann–Hurwitz formula to F/K(t) shows that

2g(F )− 2 = −2n+
d∑
i=1

(n−O(τi)),

so that 2g(F ) − 2 = −2 and thus F has genus zero. Therefore there is some x ∈ F

for which F = K(x), whence t = f(x) for some rational function f(X) ∈ K(X). It

follows that f has the required properties.

3.4.3 Abhyhankar’s lemma, genus and Riemann-Hurwitz formula

We will often need to determine the ramification in the compositum of two ex-

tensions of a function field. The first tool for this is known as Abhyankar’s lemma.
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Lemma III.10 (Abhyankar’s lemma, Theorem 3.9.1 in [17]). Let M1/L and M2/L

be extensions of function fields over K. For any place R of M1M2, let Qi := R ∩Mi

for i ∈ {1, 2}, and let P := R ∩ L. Then e(R|P ) is the least common multiple of

e(Q1|P ) and e(Q2|P ).

The second tool describes the number of places R which correspond to prescribed

places Q1, and Q2. This number is the greatest common divisor of e(Q1|P ) and

e(Q2|P ) if [M1M2 : M2] = [M1 : L]; when this condition does not hold, we still get

this number of places if we sum over the fields whose product is M1⊗LM2. It is more

convenient to state this result in the language of curves, where a modern reference

is [3].

Lemma III.11 (Lemma 7.1 in [3]). Let φ1 : C1 → D, and φ2 : C2 → D be non

constant morphisms of curves over K, and let B1, . . . , Bd be the curves which are

components of the fibered product C1 ×D C2. Let Qi ∈ Ci(K) for i ∈ {1, 2}, and

assume that φ1(Q1) and φ2(Q2) both equal the same point P ∈ D(K). For each

j ∈ {1, . . . , r}, let mj be the number of points in Bj(K) whose image in Ci(K) is Qi

for each i ∈ {1, 2}. Then
∑l

j=1mj = gcd(e(Q1|P ), e(Q2|P )).

Combining the above two lemma with the Riemann-Hurwitz genus formula for

M1M2/M1 yields the following useful formulas, which we will refer to as Riemann-

Hurwitz.

Lemma III.12 (Riemann-Hurwitz). Let M1/L and M2/L be extensions of function

fields over K, and write ni := [Mi : L]. Let gi be the genus of Mi, and let g be the

genus of M1M2. If [M1M2 : M2] = n1 then

2g− 2 = n1(2g1 − 2) +
∑

P∈Br(M1/L)

∑
ei∈RamMi (P )

(e1 − gcd(e1, e2)).
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If M1/L and M2/L are isomorphic extensions and [M1M2 : M2] = n1 − 1 then

2g− 2 = (n1 − 1)(2g1 − 2) +
∑

P∈Br(M1/L)

∑
ei∈RamMi (P )

(e1 − gcd(e1, e2)).

Proof. Apply Riemann–Hurwitz genus formula on M1M2/M2, we have

2g− 2 = [M1M2 : M2](2g1 − 2) +
∑

P∈Br(M1/L)

∑
Q/R/P

(e(Q|R)− 1).

where Q, R are places in M1M2 and M2 lying over P , and Q lies over R. Suppose

R1, . . . , Rd be the places over P with ramification indices e1, . . . , ed. Pick any Ri in

M2 and Rj in M1, then there are gcd(ei, ej) many places in M1M2 lying over both Ri

and Rj, and by Abhyankar’s lemma, each place has ramification index lcm(ei, ej)/ei,

which equals ej/ gcd(ei, ej). Therefore,
∑

Q/Rj
(e(Q|Rj) − 1) = ej − gcd(ei, ej). We

get the desired result by summing over all Rj’s. This proves the first formula. For

the second formula, for each Rj, there are ej − 1 places in M1M2 lying over Rj in

M1 and Rj in M1 instead of ej many. However, this does not matter since all such

places are unramified over Rj, the same formula still holds. This proves the second

formula.

Definition III.13. We use gxy, gxv, etc., to represent the genus of the function field

K(x, y),K(x, v), etc.

The two Riemann–Hurwitz formulas give us information on the ramification in

function field extensions. In particular, we will apply Riemann–Hurwitz to the tower

in Figure 3.3, where the condition gxy imposes severe constraints on the ramification

in the various field extensions in the diagram. We often apply the following special

case of Lemma III.12.
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Lemma III.14 (Riemann–Hurwitz). Let f, g ∈ K(X) \K be two rational functions.

If f(X) − g(Y ) is irreducible, then the genus g of the curve f(X) − g(Y ) = 0 is

given by

2g− 2 = −2 deg(f) +
∑

λ∈Br(f)∪Br(g)

∑
f(a)=g(b)=λ

(ef (a)− gcd(ef (a), eg(b))).

If Ff (X, Y ) is irreducible, then the genus g of the curve Ff (X, Y ) = 0 is given by

2g− 2 = −2(deg(f)− 1) +
∑

λ∈Br(f)

∑
f(a)=f(b)=λ

(ef (a)− gcd(ef (a), ef (b))).

Proof. Let K = K, M1 = K(x) and M2 = K(y) where x is a root of f(X)− t and y

is a root of g(Y )− t. The two formulas follow directly from Lemma III.12.

In this paper, we will apply the first formula to f(X)− cf(Y ), where c ∈ K \ {1},

f(X) is a genuine Laurent polynomial, and f(X)− cf(Y ) is irreducible.

3.5 Degree of the composite of two extensions of a function field

Recall in Definition III.4, we call the function field tower formed by a function

field, two extension fields, and the composite of the two extensions a square. Most

of the time, we cannot apply the Riemann–Hurwitz formula to a square directly,

unless we know the square is irreducible, or reducible in the specific way stated in

Lemma III.12. So irreducibility is the first thing we need to check before applying

the Riemann–Hurwitz formula.

However, it is not always true that a square is irreducible or reducible in the way

we want. The good news is we can divide the square into tower of squares, by adding

intermediate fields, and after that the left, right, top squares in this tower will be
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irreducible, as stated in Theorem III.15, and Theorem III.16 gives more constraints

on the ramification in the bottom square.

Theorem III.15 (Fried–Müller–Zieve). Let K be a function field over K, and let L

and M be finite extensions of K. Then there are fields L′ and M ′ satisfying all of

the following:

(1) K ⊆ L′ ⊆ L and K ⊆M ′ ⊆M .

(2) L′/K and M ′/K have the same Galois closure.

(3) [L : L′] = [L.M : L′ : M ] and [M : M ′] = [L.M : L.M ′].

Condition (3) says that the top, left, and right squares are irreducible, while condition

(2) gives a strong constraint on the bottom square (which might be reducible).

Proof. A weaker version is proved in [5, Proposition 2]. The general version stated

in this theorem is proved by Müller and Zieve in [13].

If L′/K and M ′/K have the same Galois closure, as in the above theorem, we

have more constraints, as shown in the following theorem. These constraints will

enable us to analyze the conditions for the bottom square to be reducible.

Theorem III.16. If L′/K and M ′/K have the same Galois closure N , then for any

place P of K, the ramification index in N/K of any place lying over P equals the

lcm of the ramification indices in L′/K of all the places lying over P , and likewise

equals the lcm of the ramification indices in M ′/K of all places lying over P . In

particular, Br(L′/K) = Br(M ′/K).

Proof. We use the fact that, if L′/K is an extension of function fields over K, and

N is its Galois closure, and we pick a place Q of N having inertia group I in N/K,

then the orbits of I on the set HomK(L′, N) are in bijection with the places of L′
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which lie over the place Q ∩ K, and moreover this bijection can be chosen so that

the size of the I-orbit equals the ramification index in L′/K of the corresponding

place of L′. Next, since N is the Galois closure of L′/K, no nonidentity element

of Gal(N/K) fixes every element of HomK(L′, N). It follows that Gal(N/K) (and

hence I) embeds into the group of permutations of HomK(L′, N). Since I is cyclic,

this means that the order of I is cyclic, it follows that the order of I is the lcm of

the lengths of its orbits on HomK(L′, N), and hence is the lcm of the ramification

indices in L′/K of the places over Q ∩K.

3.6 Facts on the factorization of certain polynomials

One case we will study in this thesis is when a genuine Laurent polynomial is the

composition of a polynomial and an indecomposable genuine Laurent polynomial.

In this case, in Figure 3.3, f1 = g1 will be the polynomial. There are two important

classes of polynomials we use very often in this thesis: the cyclic polynomial Xn and

the Chebyshev polynomial Tn. We list some facts about their factorizations in this

section.

Definition III.17. The Chebyshev polynomial Tn is the unique polynomial which

satisfies the equation Tn(X + 1
X

) = Xn + 1
Xn .

If n = 2 then T2(X) = X2 − 2 which has branch points {−2,∞}, both of which

are totally ramified. Now we study the ramification and branch points of Tn for

n > 2. Let y be transcendental over K, then the field extension K(y)/K(yn + 1/yn)

has an intermediate field K(y + 1/y). The branch points of K(y)/K(yn + 1/yn) are

{−2, 2,∞} where ∞ has type (n2) and ±2 both have type (2n). For the branch

point ∞, note that y = 0 and y = ∞ both lie over y + 1/y = ∞ so ∞ is a totally

ramified branch point of K(y+ 1/y)/K(yn + 1/yn). All the places in K(y) lying over
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yn + 1/yn = ±2 have ramification index 2 over K(yn + 1/yn) but are unramified

over K(y + 1/y) unless y = ±1, therefore all the places in K(y + 1/y) lying over

yn + 1/yn = ±2 has ramification index 2 except the place y + 1/y = ±1 which is

unramified. The analysis above shows that:

If n > 2, then the branch locus of Tn(X) is {2,−2,∞}; the infinite place of

K(Tn(x)) is totally ramified in K(x)/K(Tn(x)); all places of K(x) which lie over the

places Tn(x) = ±2 have ramification index 1 or 2 in K(x)/K(Tn(x)), and the only

such places of K(x) which have ramification index 1 are the places x = ±2.

In the following lemma, we define µn to be the set of all n-th root of unity.

Lemma III.18. For any positive integer n and any c ∈ K∗, we have

Xn − cY n =
∏
ξn=c

(X − ξY )

Moreover, Tn(X) − cTn(Y ) is irreducible if c 6= ±1. Finally, if e ∈ {0, 1} satisfies

e ≡ n (mod 2), then

FTn(X, Y ) = (X + Y )1−e
∏

ξ∈µn\{±1}
ξ∼ξ−1

(X2 −XY (ξ + ξ−1) + Y 2 + (ξ − ξ−1)2).

Tn(X) + Tn(Y ) = (X + Y )e
∏

ξ∈µ2n\{µn∪µ2}
ξ∼ξ−1

(X2 −XY (ξ + ξ−1) + Y 2 + (ξ − ξ−1)2).

where each product is taken over a system of representatives of the relevant set of ξ’s

modulo the equivalence relation ξ ∼ ξ−1, and each quadratic polynomial occurring in

each product is irreducible.

Proof. We refer the reader to Lemma 1 on page 52 of [16].

3.7 Ramification and decomposability

Lemma III.19 and Lemma III.20 say that genuine Laurent polynomials of certain

ramification types are decomposable.
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Lemma III.19. Let f(X) ∈ K(X) \ K be any rational function which has at least

three branch points. If there is an integer N > 1 such that at least two branch

points of f have all their ramification indices being multiples of N , then f(X) is

decomposable.

Proof. We can assume the two branch points of f whose ramification indices are all

divisible by N are 0 and ∞, since otherwise we can compose f to the right with a

linear fractional which maps 0 and ∞ to the two branch points. This new function

and f have the same decomposability, so we lose no generality.

Let g, h be the numerator and denominator of f , then the fact that all ramification

indices over 0 and ∞ are divisible by N implies that g = gN1 and h = hN1 for some

polynomials g1 and h1. Thus f = (g1/h1)N , so if f is decomposable then g1/h1 has

degree 1, but then f has only two branch points whereas our hypothesis required it

to have at least three.

Lemma III.20. Let f(X) ∈ K[X,X−1] be a genuine Laurent polynomial of degree

n, where n is even and n > 2. If the denominator of f is Xn/2, and f has three

finite branch points with ramification types {(2n
2 ), (122

n−2
2 ), (1n−221)}, then f(X) is

decomposable.

Proof. Let a, d, b, c be the corresponding branch cycles (see Lemma III.9). Thus,

writing n = 2m, a, b, c, d are elements of Sn with cycle structures a : m,m, d : 2, 1n−2,

b : 2m, and c : 2m−1, 12, such that adbc = 1 and G = 〈a, b, c, d〉 is transitive. To prove

the result, we show that there is a G-invariant partition of {1, 2, ..., n} into m two-

element sets.

Since b, c have order 2, we get ad = (bc)−1 = c−1b−1 = cb.

Assume for the moment that d connects the two cycles of a. Then without loss
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we may assume that a = (1, 2, ...,m)(m + 1, ..., n) and d = (m,n), so that ad =

(1, 2, ..., n). Now let B be the partition of {1, 2, ..., n} into n/2 2-element sets, defined

by B = {{i, i + m} : i = 1, 2, ...,m}. Clearly a and d permute the sets in B. But

since b, c have order 2, each of them conjugates cb to its inverse: b(cb)b = bc = c(cb)c.

Since we already know that ad = cb, it follows that b, c conjugate ad to its inverse.

This lets us write down b, c: say b(k) = r, then b(ad)b maps k 7→ b(r + 1), but we

know that b(ad)b is the inverse of ad, and hence maps k 7→ k−1. So b(r+1) = k−1,

and since b has order 2, we also get b(k − 1) = r + 1. Now repeat this to get

b(k− 2) = r+ 2, b(k− 3) = r+ 3, . . ., and in general b(i) = −i+ constant. But this

clearly permutes the sets in B, since those sets are simply the cosets mod m. Hence

a, d, b (and similarly c) permute the sets in B, so also G = 〈a, b, c, d〉 permutes these

sets, as desired.

We now prove that d must connect the two cycles of a. Suppose otherwise.

Suppose without loss that d = (1, k) for some k ≤ m. Then ad = (1, k + 1, k +

2, ...,m)(2, 3, ..., k)(m+ 1,m+ 2, ..., n). We claim that in this case it is not possible

that 〈a, b, c, d〉 was transitive, since a, b, c, d will map {m + 1,m + 2, ..., n} to itself.

This is clear for a and d. As before, b conjugates da = bc to its inverse, so b normalizes

the group 〈da〉, which implies that b permutes the 〈da〉-orbits ( because b〈da〉 = 〈da〉b

so b〈da〉(i) = 〈da〉b(i) which means that the b-image of the 〈da〉-orbit containing i

equals the 〈da〉-orbit containing b(i)). But {m + 1, ..., n} is strictly bigger than the

other two 〈da〉-orbits, so b must map it to itself. Likewise for c. Hence 〈a, b, c, d〉 is

not transitive, contradicition.
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3.8 Inequalities connected with the Riemann-Hurwitz formula

In this paper, we will apply the first formula in Lemma III.14 to f(X) − cf(Y ),

where f(X) ∈ K[X,X−1] is a genuine Laurent polynomial, c ∈ K∗ \{1}, and f(X)−

cf(Y ) is irreducible. The Riemann-Hurwitz formula looks like this:

0 ≥ 2g− 2 = −2 deg(f) +
∑

λ∈Br(f)∪Br(cf)

∑
f(a)=cf(b)=λ

(ef (a)− gcd(ef (a), ecf (b))).

By switching the roles of f and cf , we get, we get

0 ≥ 2g− 2 = −2 deg(f) +
∑

λ∈Br(f)∪Br(cf)

∑
f(a)=cf(b)=λ

(ecf (b)− gcd(ef (a), ecf (b))).

Then we add the two equations together to get

4 deg(f) ≥
∑

λ∈Br(f)∪Br(cf)

∑
f(a)=cf(b)=λ

(ef (a) + ecf (b)− 2 gcd(ef (a), ecf (b))).

We would like to get a lower bound for
∑

f(a)=cf(b)=λ(ef (a)+ecf (b)−2 gcd(ef (a), ecf (b))),

which will be useful for determining how many branch points f and cf have in total

in Chapter IX. In this section, we just work on the lower bound.

Note that
∑

f(a)=λ ef (a) = deg(f) and
∑

cf(b)=λ ecf (b) = deg(f), so we reduce it

to the following problem.

Problem III.21. Let n, a1, a2, . . . , ad, b1, b2, . . . , bl be positive integers such that∑d
i=1 ai =

∑l
j=1 bj = n. What is a good lower bound for

∑d
i=1

∑l
j=1(ai + bj −

2 gcd(ai, bj)) which depends only on n ?

In the following three lemmas we give lower bounds in case the ai’s and bj’s satisfy

any of three sets of additional conditions.

Lemma III.22 (Carney–Hortsch–Zieve [2]). Let a1, . . . , ad and b1, . . . , bs be positive

integers such that
∑d

i=1 ai =
∑l

j=1 bj = n and gcd(a1, . . . , ad) = gcd(b1, . . . , bl) = 1.
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Then
d∑
i=1

l∑
j=1

(ai + bj − 2 gcd(ai, bj)) ≥ n− 1

unless every ai and every bj is 1. Moreover, equality holds exactly when both the ai’s

and bj’s are 1, 2, 2, . . . , 2, and the sum equals n if and only if either

• both the ai’s and bj’s are 3, 1 (so n = 4)

• both the ai’s and bj’s are 2, 1, 1 (so n = 4) or

• the ai’s are 1, 1, ..., 1 and the bj’s are 2, 1, 1, . . . , 1, or vice-versa.

Lemma III.23. Let a1, . . . , ad be positive integers such that
∑d

i=1 ai = n and gcd(a1, . . . , ad) >

1. Then
d∑
i=1

d∑
j=1

(ai + aj − 2 gcd(ai, aj)) ≥
2n

3

unless all ai’s are equal.

Proof. By applying the previous lemma to a1/a, . . . , ad/a, where a := gcd(a1, . . . , ad),

we see that

d∑
i=1

d∑
j=1

(ai + aj − 2 gcd(ai, aj))

= a

d∑
i=1

d∑
j=1

(
ai
a

+
aj
a
− 2 gcd(

ai
a
,
aj
a

))

≥ a(
n

a
− 1) = n− a

unless all ai’s are equal. If a = n or a = n
2
, then all ai’s are the same, and∑d

i=1

∑d
j=1(ai + aj − 2 gcd(ai, aj)) = 0; if not, then a ≤ n

3
, so the result follows.

Lemma III.24. Let a1, . . . , ad and b1, . . . , bl be positive integers such that
∑d

i=1 ai =∑l
j=1 bj = n and gcd(a1, . . . , as) > 1 but gcd(b1, . . . , bd) = 1. Then

d∑
i=1

l∑
j=1

(ai + bj − 2 gcd(ai, bj)) ≥ n
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where equality holds if and only if the ai’s are 2, 2, . . . , 2, and the bj’s are 1, 1, 2, 2, . . . , 2

or vice-versa.

Proof. It suffices to show that
∑l

j=1(ai+bj−2 gcd(ai, bj)) ≥ ai for every i, and to find

the conditions when the equality holds. Since if this is true, then
∑d

i=1

∑l
j=1(ai +

bj−2 gcd(ai, bj)) ≥
∑d

i=1 ai = n, and the equality holds if and only if
∑l

j=1(ai + bj−

2 gcd(ai, bj)) = ai for every i.

From now on, we fix one i, prove
∑l

j=1(ai + bj − 2 gcd(ai, bj)) ≥ ai and find the

condition when the equality holds.

If some bj satisfies gcd(ai, bj) < bj, say b1, then gcd(ai, b1) ≤ b1
2

and ai + b1 −

2 gcd(ai, b1) ≥ ai. However, in fact this cannot be equality. If equality holds then

gcd(ai, b1) = b1
2

and ai + bj − 2 gcd(ai, bj) = 0 for all j 6= 1. Let b1 = 2b, then ai = bc

where c is odd, and bj = ai = bc for j 6= 1. Now 1 = gcd(b1, . . . , bd) = b, so the bj’s

are 1, c, c, . . . , c and ai = c. However, in this case, gcd(ai, n) = gcd(c, 1+c(l−1)) = 1,

which violates the condition that gcd(a1, . . . , as) > 1.

If all bj satisfy gcd(ai, bj) = bj, then bj | ai for every j. We show there are j1, j2

such that bj1 < ai and bj2 < ai, so
∑l

j=1(ai + bj − 2 gcd(ai, bj)) =
∑l

j=1(ai − bj) ≥∑
j=j1,j2

(ai − ai
2

) = ai. Suppose instead that there is at most one j = j1 for which

bj < ai. Since the bj’s are coprime and they all divide ai, we must have bj1 = 1. Now

n =
∑l

j=1 bj = 1 + (l − 1)ai, so gcd(n, ai) = 1, which violates the non-trivial gcd

condition of ai’s.

Therefore we have the desired inequality.

It becomes equality if and only if for all i,
∑l

j=1(ai + bj − 2 gcd(ai, bj)) = ai.

According to the above arguments, it only can happen in the second case. In that

case
∑l

j=1(ai + bj − 2 gcd(ai, bj)) =
∑l

j=1(ai − bj) ≥
∑

j=j1,j2
(ai − ai

2
) = ai implies

bj1 = bj2 = ai
2

and the rest of the bj’s equal ai. Now gcd(b1, . . . , bd) = ai
2

= 1 implies
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ai = 2, bj1 = bj2 = 1, and the rest of the bj’s equal ai = 2.

3.9 Equivalent and strongly equivalent functions

Definition III.25. For polynomials f, g ∈ K[X] \ K, we say they are equivalent if

f = ν ◦ g ◦ µ for some degree-one µ, ν ∈ K[X]; we say they are strongly equivalent if

f = (aX) ◦ g ◦ µ for some a ∈ K∗ and some degree-one µ ∈ K[X].

For genuine Laurent polynomials f, g ∈ K[X,X−1]\K, we say they are equivalent

if f = ν ◦ g ◦ µ for some degree-one ν ∈ K[X] and µ(X) = eXp for some e ∈ K∗ and

p ∈ {−1, 1}; we say they are strongly equivalent if f = (aX) ◦ g ◦ µ for some a ∈ K∗

and µ(X) = eXp for some e ∈ K∗ and p ∈ {−1, 1}.

Remark III.26. Let f, g be two polynomials or two genuine Laurent polynomials. If

they are equivalent then there is a genus-preserving bijection between the irreducible

factors of Ff (X, Y ) and those of Fg(X, Y ). If they are strongly equivalent then, for

every c ∈ K∗, there is a genus-preserving bijection between the irreducible factors

of Ff,c(X, Y ) and those of Fg,c(X, Y ) up to multiplication by some nonzero element

in K∗. More precisely if H(X, Y ) is an irreducible factor of Fg(X, Y ) (respectively

Fg,c(X, Y )) then the numerator Ĥ(X, Y ) of H(µ(X), µ(Y )) is an irreducible factor

of Ff (X, Y ) (respectively Ff,c(X, Y )) and they have the same genus.



CHAPTER IV

Indecomposable genuine Laurent polynomial case: Part I

In this chapter and the next chapter, we classifiy the indecomposable genuine

Laurent polynomials such that Ff (X, Y ) has a factor of genus at most 1. The main

result in this chapter is Theorem IV.1, which gives the classification of the genuine

Laurent polynomials for which Ff (X, Y ) is irreducible with genus 0 or 1. We prove

this theorem by firstly showing that when deg(f) ≥ 26 there is only one equivalence

class (see Definition III.25) of Laurent polynomials; we use a computer to determine

the small degree cases (up to 26) and get the small degree cases (up to the equivalence

relation defined in Definition III.25) in Table 4.1.

Theorem IV.1. Let f(X) ∈ K[X,X−1] be a genuine Laurent polynomial with de-

nominator Xk. If Ff (X, Y ) is irreducible and its genus g is in {0, 1}, then up to the

equivalence relation one of the following holds:

1. f(X) =
(X + 1)n

Xk
where gcd(n, k) = 1 and n > k. Here Ff (X, Y ) has genus 0.

2. f(X) has degree at most 10 and is one of the Laurent polynomials in Table 4.1.

The values of k and g, the value of n := deg(f), and the ramification type of f

are listed in Table 4.2.

44
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Table 4.1: Indecomposable genuine Laurent polynomials f where Ff (X,Y ) has genus 0 or 1

(1) X + 1/X
(2.1) (X3 + 1)/X
(2.2) (X3 +X2 + a)/X where a ∈ K \ {0, 1/27}
(3) (X2 + aX + 1)2/X where a2 ∈ K \ {4,−12}
(4) (X − 1)3(X + a)/X2 where a ∈ K \ {0,−1, 7± 4

√
3}

(5) (X4 + 4X3 + 2X − 1/4)/X2

(6) (X4 − 6X2 − 3)/X
(7) (X − 1)3(X − 9)/X
(8.1) (X − 1)4(X − 4(i+ 1))/X where i2 = −1
(8.2) (X − 1)4(X − 27/2)/X2

(9) (X − 1)5(X + (3s+ 7)/2)/X3 where s2 = 5
(10) (X − 1)5(X − (3s+ 11)/2)/X2 where s2 = −15
(11) (X − 1)5(X + 4s− 9)/X3 where s2 = 5
(12.1) (X3 + 9X + 2)2/X3

(12.2) (X3 + 3X2 + (9w2 − 1)X + 2w3 + w2 − 1/27)2/X3 where w ∈ K \ {0, 1/6,−1/3, 2/3} and
w2 + 8/21w − 8/63 6= 0
(13) (X − 1)4(X + (3s− 11)/2)2/X where s2 = −15
(14) (X2 + 8X − 2)3/X2

(15) (X2 + 10X + 5)3/X
(16) (X2 + 5X − 5)3/X
(17) (X − 1)3(X − 16)2(X − 25)/X
(18) (X − 1)4(X2 − 6X + 25)/X
(19.1) (X + 9)(X2 + (2w + 7)X + w + 2)3/X where w ∈ K has order 3
(19.2) (X + 25)(X2 +X − 256/5)3/X2

(19.3) (X + 1)(X2 + 5/27X − 1/48)3/X3

(20) (X2 + 13X + 49)(X2 + 5X + 1)3/X
(21.1) (X2 + 2X + (s+ 3)/14)4/X where s2 = −7
(21.2) (X2 +X − 27/20)4/X3

(22.1) (X3 + 12X2 + 3(s+ 11)X + s+ 5)3/X where s2 = −2
(22.2) (X3/21 +X2 +X/4− 32/3)3/X2

(22.3) (X3 + 3/2X2 + 24/5X − 10)3/X4

(23.1) (X2 +X + (i+ 1)/32)5/X2 where i2 = −1
(23.2) (X2 + 3X − 4)5/X4

(24) (X + 1/4)8(X + a(a+ 1)2 − 1/4)2/X5 where a4 − 2a2 + 2 = 0

4.1 Setup and some inequalities

In Lemma III.14, the second formula is the genus formula for Ff (X, Y ), where

Ff (X, Y ) is irreducible.

2gxy − 2 = −2(deg(f)− 1) +
∑

λ∈Br(f)

∑
f(a)=f(b)=λ

(ef (a)− gcd(ef (a), ef (b)))

Our goal is to use this formula to find all the possible ramification types of f(X),

subject to the genus constraint gxy ≤ 1. We expect a result as stated in Theorem

IV.1.
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Table 4.2: Ramification types of Laurent polynomials f from Table 4.1
case Mon(f) g k ramification indices (∞ not counted)
(1) S2 0 1 (21), (21)
(2) S3 1 1 (1121), (1121), (1121)
(3) S4 1 1 (22), (1221), (1221)
(4) S4 1 2 (1131), (1221), (1221)
(5) A4 0 2 (1131), (1131)
(6) A4 1 1 (1131), (1131)
(7) A4 0 1 (22), (1131)

(8.1) AGL1(5) 1 1 (1122), (1141)
(8.2) S5 1 2 (1122), (1141)
(9) A6 1 3 (1151), (1331)
(10) A6 1 2 (1151), (1222)
(11) A5 0 3 (1151), (1222)
(12) S6 1 3 (1331), (23), (1421)
(13) A6 1 1 (2141), (1222)
(14) A6 0 2 (1331), (32)
(15) A5 0 1 (1222), (32)
(16) A6 1 1 (1331), (32)
(17) S6 1 1 (23), (112131)
(18) S5 1 1 (23), (1241)

(19.1) AGL1(7) 1 1 (1123), (1132)
(19.2)& (19.3) S7 1 2 or 3 (1132), (1123)

(20) PSL2(7) 1 1 (24), (1232)
(21.1) ASL3(2) 1 1 (1422), (42)
(21.2) A8 1 3 (1422), (42)
(22.1) AGL2(3) 1 1 (1323), (33)

(22.2) & (22.3) S9 1 2 or 4 (1323), (33)
(23) A10 1 2 or 4 (1622), (52)
(24) A10 1 5 (2181), (1622)

Let n = deg(f), and suppose Br(f) = {λ1, . . . , λr,∞}. For each λi, let ci =∑
f(a)=f(b)=λi

(ef (a)− gcd(ef (a), ef (b))). The key to solving the genus equation is to

get a lower bound for ci in terms of n, and to show that if n is large enough (n ≥ 26),

the lower bound is very large, so f has only a few branch points. This will solve the

large degree cases, namely, n ≥ 26 cases; for the small degree cases, we can use a

computer program.

For each λi, let ai = n − #(distinct roots of f(X) = λi), and let bi = #(simple

roots of f(X) = λi). Then
∑r

i=1 ai = n, by the Riemann-Hurwitz formula on

K(X)/K(t); and ai ≥ n−bi
2

by the definition of ai and bi.

If λ =∞, c∞ =
∑

f(a)=f(b)=λ(ef (a)−gcd(ef (a), ef (b))) = n−2 gcd(n, k). If λ = λi,
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we only sum those terms where ef (b) = 1 (in total there are bi many such b’s), so

ci ≥ bi
∑

f(a)=λ(ef (a)− 1) = biai. By combining this information with the fact that

gxy ≤ 1, we obtain

n+ 2 gcd(n, k)− 2 ≥ 2gxy − 4 + n+ 2 gcd(n, k) ≥
∑

aibi

If k = n/2, then 2n − 2 ≥
∑
aibi; if k 6= n/2, gcd(n, k) ≤ n

3
, so it follows that

5
3
n− 2 ≥

∑
aibi.

The following results provide constraints on ai, bi, ci in the large degree cases,

namely, when n ≥ 26.

Lemma IV.2. If n ≥ 26, then for all i, either bi ≤ 4 or bi ≥ n − 4. If bi ≥ n − 4,

then ai ≤ 2.

Proof. Note that if 5 ≤ bi ≤ n− 5, then aibi ≥ bi
n−bi

2
≥ 2.5(n− 5) > 2n− 2, which

violates the genus formula. If bi ≥ n− 4, and ai ≥ 3, then aibi ≥ 3(n− 4) > 2n− 2,

which also violates the genus formula.

Lemma IV.3. If n ≥ 26, then if bi = 0 and ci > 0, then ci ≥ min(n−1
2
, n

3
) = n

3
.

Proof. Consider the ramification indices of one such point. If their gcd is 1, then by

Lemma III.22, ci ≥ n−1
2

; if their gcd > 1 but they are not all equal, then by Lemma

III.23 ci ≥ n
3
.

Lemma IV.4. If n ≥ 26 and bi ≥ n − 4, we have the following table. And since

ai ≤ 2, f(X) = λi has at least n− 2 many distinct roots.
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bi ai ramification type ci

n− 4 2 (1n−422) 2n− 8

n− 3 2 (1n−331) 2n− 6

n− 2 1 (1n−221) n− 2

Proof. Subject to ai ≥ n−bi
2

, the table lists all the possible values of ai and bi. The

ramification indices and ci can then be easily calculated.

Lemma IV.5. If n ≥ 26 and 1 ≤ bi ≤ 4, then ai, bi, ci and the ramification type

are as in some row of the following table, unless either bi = 1 and ai ≥ n+3
2

or bi = 2

and ai ≥ n+2
2

.

bi ai ramification type ci

1 n−1
2

(112
n−1
2 ) n−1

2

1 n
2

(11312
n−4
2 ) 2n− 6

1 n+1
2

(11412
n−5
2 ) 3

2
(n− 3)

2 n−2
2

(122
n−2
2 ) n− 2

2 n
2

(12412
n−6
2 ) 2n− 6

Proof. Firstly when bi = 1, if ai = n−1
2

or n
2
, the table contains all possible rami-

fication types: if ai = n+1
2

, then ramification type could also be (11312
n−7
2 ), whose

ci = 3.5n − 20.5 > 2n − 2; if ai = n+2
2

, then ramification type could be (11512
n−6
2 ),

(1131412
n−8
2 ) , (11332

n−10
2 ), whose ci = 3n−14, 3n−14, 5n−44 respectively, all bigger

than 2n− 2.

When bi = 2, if ai = n−2
2

, the table contains all possible ramification types; if ai =

n−1
2

, then ramification type is (12312
n−5
2 ), whose ci = 2.5n− 8.5 > 2n− 2; if ai = n

2
,

then ramification type could also be (12322
n−8
2 ), whose ci = 4n − 24 > 2n − 2. If



49

ai = n+1
2

, then ramification type could be (122
n−11

2 33), (122
n−9
2 3141), and (122

n−7
2 51),

whose ci are 11n−97
2

, 7n−33
2

and 7n−33
2

respectively, and they are all bigger than 2n− 2

when n ≥ 26.

4.2 Large degree cases: when n = deg(f) ≥ 26

Proposition IV.6. Let f(x) ∈ K(X) be a genuine Laurent polynomial of degree

n ≥ 26 with denominator Xk. If Ff (X, Y ) is irreducible with genus zero or one, then

n > k, gcd(n, k) = 1, g = 0, and Λ(f) must have ramification type {(1n−221), (n1)}.

In other words, f(X) = (m1 +m0X)◦ (X+1)n

Xk ◦ (m2X
a), where m1,m2 ∈ K∗, m0 ∈ K,

a = ±1.

Proof. As always, let n := deg(f). We determine all plausible ramification types

of f which are consistent with the genus of Ff (X, Y ) being zero or one. Note that

the ramification types we find might not correspond to an indecomposable genuine

Laurent polynomial, and even if they did, the corresponding Laurent polynomial

might have Ff (X, Y ) being reducible.

We firstly deal with the case when f has a finite branch point λ0 such that

f(X) = λ0 has a unique root. In this case, it is easy to check that Λ(f) has ramifi-

cation type {(1n−221), (n1)}. At ∞, the ramification type is (k1(n − k)1). Since all

ramification indices of f over ∞ and λ0 are divisible by gcd(k, n), the fact that f

is indecomposable (which follows from our hypothesis that Ff (X, Y ) is irreducible)

implies that gcd(k, n) = 1, by Lemma III.19.

Now we can use the Riemann-Hurwitz formula to calculate the genus, and easily

find g = 0. In fact, we can find this Laurent polynomial. Writing δ for the unique

root of f(X) = λ0, we obtain f(X) = λ0 + d (X−δ)n
Xk for some d ∈ K∗, which can be

rewritten in the form stated in the proposition.
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From now on, we will assume f has no finite branch whose ramification type is

(n1). We have the following equation from the Riemann–Hurwitz formula:

2n− 2 ≥
∑
bi≤4

aibi +
∑

bi≥n−4

ci ≥
n− 4

2

∑
1≤bi≤4

bi + (n− 2)#{i : bi ≥ n− 4}

It follows that there are at most two values i for which bi ≥ n− 4.

Case 1: If b1, b2 ≥ n − 4 then we must have b1 = b2 = n − 2, a1 = a2 = 1 and

both points have ramification type (1n−221). The above inequality says 2n − 2 ≥

n−4
2

∑
1≤bi≤4 bi+2(n−2), this implies for all i ≥ 3, we must have bi = 0,

∑
i≥3 ci = 2,

and
∑

i≥3 ai = n− 2.

By Lemma IV.3, if bi = 0, and ci > 0, then ci ≥ n
3
> 2, so we should have ci = 0.

Thus each one has ((n
s
)s), ai = n − s ≥ n/2, so there is only one such point, now

n − s = n − 2 implies s = 2, so this point is ((n
2
)2). Moreover, we have the same

thing for ∞, so the ramification indices are

k = n/2, ((
n

2
)2), (1n−221), (1n−221)

in which case g = 0.

When n > 2, f(X) is decomposable by Lemma III.19, so this case cannot occur.

Case 2: suppose that b1 ≥ n − 4 but bi < n − 4 for i > 1. If b1 6= n − 2,

then
∑

i≥2 ci ≤ 6, so bi = 0 for all i ≥ 2, however any nonzero ci satisfies ci ≥

min(n−1
2
, n

3
) ≥ 26

3
> 6, which is a contradiction.

If b1 = n− 2 (so a1 = 1, c1 = n− 2), then n ≥ n−4
2

∑
1≤bi≤4 bi, so

∑
1≤bi≤4 bi ≤ 2.

Thus for the set {1 ≤ bi ≤ 4}, there are a few possibilities:

1. A single 2, say b2 = 2, then n−2
2
≤ a2 ≤ n

2
(since n ≥ c2 ≥ a2b2). By Lemma

IV.5, a2 = n−2
2

, ramification type is (122
n−2
2 ), and c2 = n−2. Now

∑
i≥3 ai = n

2
,

bi = 0 for i ≥ 3, and
∑

i≥3 ci = 0 (if g = 0) or 2 (if g = 1). Note when bi = 0 a
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nonzero ci is at least 26
3

, the only chance is
∑

i≥3 ci = 0 with g = 0. Since ci = 0

implies ai ≥ n
2
, so {bi = 0} has a single point, say b3, then b3 = 0 and a3 = n

2
,

so the ramification type is (2
n
2 ).

k = n/2, (2
n
2 ), (122

n−2
2 ), (1n−221), g = 0

When n > 2, f(X) is decomposable, see Lemma III.20.

2. Two 1’s, say b2 = b3 = 1. Then n−1
2
≤ a2, a3 ≤ n+1

2
. By Lemma IV.5, we must

have a2 = a3 = n−1
2

and both have type (112
n−1
2 ), c2 + c3 = n − 1. Since n is

odd, then k 6= n
2
, but now 5

3
n− 2 ≥ c1 + c2 + c3 = 2n− 3 cannot happen.

3. A single 1, say b2 = 1. Then a2 ≥ n−1
2

, c2 ≥ n−1
2

. Now
∑

i≥3 ai ≤
n−1

2
, bi = 0

for all i ≥ 3, and
∑

i≥3 ci ≤
n+1

2
. Since each ai <

n
2

for i ≥ 3, it follows that

ci > 0 (so ci ≥ n
3
) for i ≥ 3, so there is exactly one such point.

If k 6= n/2, then 5
3
n− 2 ≥ c1 + c2 + c3 ≥ (n− 2) + n−1

2
+ n

3
, which is impossible.

So k = n/2, and now a2 + a3 = n − 1, b2 = 1, b3 = 0. However, now n − 1 =

a2 + a3 ≥
∑

i=2,3
n−bi

2
= n− 0.5, contradiction.

4. No point. Then
∑

i≥2 ai = n − 1 (so at least two points), bi = 0 for all i ≥ 2.

However, now
∑

i≥2 ai ≥ 2n−bi
2

= n, impossible.

Case 3: when #{bi ≥ n−4} = 0. So all bi ≤ 4. Since n =
∑
ai ≥

∑
n−bi

2
, so there

are exactly two points, and assume b1 ≤ b2 ≤ 4. Now 2n−2 ≥ c1+c2 ≥
∑

i=1,2 bi
n−bi

2
,

rewrite we have n ≤ b21+b22−2

b1+b2−4
, we can then easily check that all the cases satisfying

b1 + b2 > 4 violate n ≥ 26, so b1 + b2 ≤ 4.

Moreover, we have 2n− 2 ≥ 2b1
n−b1

2
, so b1 ≤ 2.

Also, we can get a bound for a1. n+b2
2

= n− n−b2
2
≥ n− a2 = a1 ≥ n−b1

2
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1. If b1 = 2, then b2 = 2, and one of ai must be at most n
2
, say it is a1, by Lemma

IV.5, a1 = n−2
2

, c1 = n − 2. Now a2 = n+2
2

, and c2 ≥ b2a2 = n + 2, then

c1 + c2 = 2n > 2n− 2, impossible.

2. If b1 = 1, then 1 ≤ b2 ≤ 3, and n+b2
2
≥ a1 ≥ n−1

2
.

If b2 = 1, then n+1
2
≥ a1, a2 ≥ n−1

2
. By lemma IV.5, the only possibility is

a1 = n−1
2

, a2 = n+1
2

, and c1 + c2 = n−1
2

+ 3
2
(n− 3) = 2n− 5. Since now n is odd,

k 6= n
2
, we should have 5

3
n− 2 ≥ 2n− 5, which is impossible for n ≥ 26.

If b2 = 2, then c2 ≥ a2b2 ≥ n − 2, so c1 ≤ n. Now since n+2
2
≥ a1 ≥ n−1

2
,

by Lemma IV.5, we must have a1 = n−1
2

where c1 = n−1
2

. Now a2 = n+1
2

, by

lemma, c2 > 2n− 2, so this case is impossible.

If b2 = 3, then c2 ≥ a2b2 ≥ 3n−9
2

, so c1 ≤ n+5
2

. Now since n+3
2
≥ a1 ≥ n−1

2
, by

Lemma IV.5, we must have a1 = n−1
2

or n+3
2

, and anyway n is odd and k 6= n/2.

So 5
3
n− 2 ≥ c1 + c2 ≥ 3n−9

2
+ n−1

2
= 20− 5, which is impossible for n ≥ 26.

3. If b1 = 0, then b2 > 0, since otherwise a1 = a2 = n
2

and c1 = c2 = 0, but we

need c1 + c2 > 0 for the genus formula.

First consider the case when c1 > 0, note that this implies a1 >
n
2

and c1 ≥ n
3
.

If n is odd, and b2 ≥ 3, then 5
3
n− 2 ≥ n

3
+ 3n−3

2
, which is impossible for n ≥ 26.

Thus if n is odd, we must have b2 ≤ 2.

If b2 = 1, then n+b2
2
≥ a1 >

n
2

says a1 = n+1
2

, n is odd, and now its ramification

type is (2
n−3
2 31), so c1 = 3

2
(n−3). We also have a2 = n−1

2
, so 5

3
n−2 ≥ c1 + c2 ≥

3
2
(n− 3) + n−1

2
= 2n− 5, impossible.

If b2 = 2, then n+2
2
≥ a1 >

n
2
. Since c2 ≥ a2b2 ≥ n − 2, we need c1 ≤ n. By

the argument above, a1 can only be n+2
2

, now its ramification type is (2
n−6
2 32)

or (2
n−4
2 41), whose c1 is 3n− 18 and n− 4 respectively, so the ramification type
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should be the latter one. Now a2 = n−2
2

, by Lemma IV.5, c2 = n− 2. Now the

genus formula becomes 2n+ 2g− 4 = n− 4 + n− 2, and g = −1, impossible.

If b2 = 3, then n is even and n+3
2
≥ a1 >

n
2
, so a1 = n+2

2
. By the argument

above, c1 ≥ n − 4, so 2n − 2 ≥ c1 + c2 ≥ n − 4 + 3n−3
2

, this is impossible for

n ≥ 26.

If b2 = 4, then c2 ≥ 2n − 8, so c1 ≤ 6, which is impossible since we assume

c1 > 0.

Second consider the case when c1 = 0. Note this point must have the form

((n
s
)s), and a1 = n − s. Note n − s = a1 ≤ n+b2

2
≤ n+4

2
. If s 6= n

2
, then s ≤ n

3
,

so 2n
3
≤ n+4

2
, which is impossible. Thus s = a1 = a2 = n

2
. Now the genus

formula 2n + 2g − 4 = c2 says c2 is either 2n − 2 or 2n − 4. By Lemma IV.5,

this is impossible for b2 = 1, 2. If b2 = 3, then the ramification type could

be (132
n−12

2 33), (132
n−10

2 3141) or (132
n−8
2 51), and their c2 are 6n − 54, 4n − 20,

4n− 20 respectively, but none of them could be 2n− 2 or 2n− 4 given n ≥ 26.

4.3 Proof of Theorem IV.1

Proof. When n ≥ 26, we get the first case from Proposition IV.6.

When n < 26, it is a finite computation. We can assume that no points in Λ(f)

has ramification type (n1). For each n, there are only finitely many choices for the

ramification types of Λ(f), for each choice we can use a computer program to check if

they satisfy the Riemann–Hurwitz formula. The ramification types of f which make

the Riemann–Hurwitz are those listed in Table 4.2 and the following:

1. (n, k) = (6, 3) with ramification types {(23), (1222), (1421)} at the three finite

branch points. However this case f is decomposable.
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2. (n, k) = (8, 3) with ramification types {(24), (1232))} at the two finite branch

points. However no rational function satisfies this condition.

3. n = 9 and k = 3, 6 with ramification types {(1124), (112241)} at the two finite

branch points. However this case f is decomposable.

The cases in Table 4.2 do happen, and in this table we compute the monodromy

group and the genus of Ff (X, Y ). We list all the corresponding indecomposable

Laurent polynomials in Table 4.1.



CHAPTER V

Indecomposable genuine Laurent polynomial case: Part II

In this chapter we show Theorem V.1, which gives all the indecomposable genuine

Laurent polynomials f (up to the equivalent relation defined in Definition III.25) for

which Ff (X, Y ) is reducible with at least one genus 0 or 1 component.

Our strategy is as follows: Ff (X, Y ) is reducible if and only if the monodromy

group of f(X) is not doubly-transitive. In [12], Müller gave all the groups which could

occur as the monodromy group of an indecomposable genuine Laurent polynomial

(we restate the result in Theorem V.2). These groups are Sn, An, Sm o S2 and a

few finite groups of size at most 40, where n := deg(f) and m2 = n. Among them

the groups which are not doubly-transitive are Sm o S2 and a few finite groups of

small size. The genus of the components of Ff (X, Y ) is easy to compute when the

monodromy group has small size. The hard case is when the group is Sm oS2, and we

deal with this case by explicitly finding the ramification type of the corresponding

Laurent polynomial and then use this to compute the genus of each component of

Ff (X, Y ).

Theorem V.1. Let f(X) ∈ K[X,X−1] be an indecomposable genuine Laurent poly-

nomial for which Ff (X, Y ) is reducible with an irreducible factor H(X, Y ) of genus

0 or 1. Then f = (c1X + c0) ◦ h ◦ µ(X) for some µ(X) = eXp with c1, e ∈ K∗

55
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and p ∈ {1,−1} and c0 ∈ K, where the numerator Ĥ(X, Y ) of H(µ−1(X), µ−1(Y ))

divides Fh(X, Y ) and in addition Ĥ (up to multiplication by a nonzero constant in

K∗) and h satisfy one of the following conditions in Table 5.1. The ramification

information of the irreducible factors are given in Table 5.2.

Table 5.1: Fh(X,Y ) is reducible with a genus 0 or 1 irreducible factor (indecomposable case)
(1) h(X) = (X + 2)(2X2 − X − 1)4/X3 and Fh(X,Y ) has two irreducible factors. The factor
Ĥ(X,Y ) = X2Y 4 −X3Y 3 +X(X3 − 9X/4 + 1/2)Y 2 +X2Y/2 + 1/4 has genus 1.

(2) h(X) = (X + s− 2)(X3 −X2 + (s + 1)X/2 + (s + 1)/2)3/X5 where s2 = 5, and Ĥ(X,Y ) has
genus 0 and it is either of the two irreducible factors of Fh(X,Y ).

(3) h(X) = (X + (11− 5s)/2)2(X2 +X − 1)4/X5 where s2 = 5, and Ĥ(X,Y ) is either of the two
irreducible factors of Fh(X,Y ).

(3.1) Ĥ(X,Y ) has genus 0 and it is the degree-30 factor.

(3.2) Ĥ(X,Y ) has genus 1 and it is the degree-60 factor.

(4) h(X) = (X + 2)6(X − s − 3)3(X + 3s + 7)/X5 where s2 = 5, and Ĥ(X,Y ) = X3Y + (s +
1)X2Y 2/2 + (s+ 5)X2Y + (2s+ 6)X2 +XY 3 + (s+ 5)XY 2 − (2s+ 2)XY + (2s+ 6)Y 2 which has
genus 1.

Table 5.2: Ramification information of factors of Fh(X,Y ) in Table 5.1
Case Mon(h) d g at ∞ first branch point second branch point
(1) S3 o S2 4 1 3[22], 6[14] 1[4], 42[each 14] 13[each 12, 2], 23[each 14]

(2.1) A5 3 0 52[each 13] 1[3], 33[each 13] 12[each 1, 2], 24[each 13]
(2.2) A5 6 0 52[each 16] 1[32], 33[each 16] 12[each 23], 24[each 16]
(3.1) S5 3 0 52[each 13] 2[1, 2], 42[each 13] 14[one13, three 1, 2], 23[each 13]
(3.2) S5 6 1 52[each 16] 2[23], 42[each 16] 14[three 12, 22, one 23], 23[each 16]
(4) S5 3 1 52[each 13] 1[3], 3[1, 2], 6[13] 14[three 1, 2, one 13], 23[each 13]

Here x, y are distinct roots of h(X) − t for which K(x, y) is the function field of the irreducible
factor of Fh(X,Y ) stated in Table 4.1, and d = [K(x, y) : K(x)]. The numbers (not in bracket) in
the last three columns are the ramification indices of places in K(x) over the branch point in K(t),
while the numbers in the bracket are the ramification type of these places in K(x, y)/K(x).

5.1 Monodromy groups of indecomposable genuine Laurent polynomials

Theorem V.2 (Müller [12]). If f(X) ∈ K[X,X−1] is an indecomposable genuine

Laurent polynomial, then the monodromy group G of f satisfies G = An, or G = Sn,

or G = Sm oS2 (where m2 = n), or G has size at most 40 and G is one of the groups

in Table 5.3 or Table 5.4.
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n G n G
5 AGL1(5) 7 AGL1(7)
8 AΓL1(8) 8 AGL3(2)
9 AΓL1(9) 9 AGL2(3)
16 C4

2 o (C5 o C4) 16 index 2 in (S4 × S4) o C2

16 C4
2 o S5 16 AΓL2(4)

16 C4
2 oA7 16 AΓL4(2)

32 AΓL5(2)

Table 5.3: Affine group cases

n G n G
6 PSL2(5) 6 PGL2(5)
8 PSL2(7) 8 PGL2(7)
10 A5 10 S5

10 PSL2(9) 10 PΣL2(9)
10 M10 10 PΓL2(9)
12 M11 12 M12

14 PSL2(13) 21 PΣL3(4)
21 PΓL3(4) 22 M22

22 M22 o C2 24 M24

40 PSL4(3) 40 PGL4(3)

Table 5.4: Almost simple group cases

Proposition V.3. If f(X) ∈ K[X,X−1] is an indecomposable genuine Laurent poly-

nomial for which Ff (X, Y ) is reducible, then the monodromy group of f is one of the

following:

1. Sm o S2 (in degree m2)

2. C4
2 o A7 (in degree 16)

3. index 2 in (S4 × S4) o C2 (in degree 16)

4. A5 and S5 (in degree 10)

Proof. An and Sn are both doubly transitive. G = Sm o S2 acting on {(a; b)|a, b ∈

{1, ...,m}} is not doubly transitive, where by (a; b) we mean an ordered pair with

entries a and b. One can easily check that G acting on 2-pairs, in other words

{(a; b)(c; d)|a, b, c, d ∈ {1, ...,m}} has two orbits, the first orbit is {(a; b)(a; c)} ∪

{(b; a)(c; a)} with b 6= c, the second orbit is {(a; b)(c; d)} with a 6= c and b 6= d.
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We used Magma to check which of the remaining groups are doubly transitive.

5.2 Wreath products as monodromy groups

In this section, we prove the following result for the Sm o S2 case.

Proposition V.4. If f(X) ∈ K[X,X−1] is an indecomposable genuine Laurent poly-

nomial of degree m2 with monodromy group G = Sm oS2 for some m ≥ 4, then every

irreducible factor of Ff (X, Y ) has genus at least 2.

We will prove the proposition by the following method.

Let N = Sm × Sm which acting on the set of pairs {(a; b)|a, b ∈ {1, . . . ,m}},

G = SmoS2 =< τ1, . . . , τr >, τ1 . . . τr = 1 (see Lemma III.9), and let E := {τ1, . . . , τr}.

Note that each τi is corresponding to a branch point of f .

Let ξ ∈ G be a group element which swaps the coordinates of all the pairs, then

G = 〈N, ξ〉, and [G : N ] = 2. Applying Riemann–Hurwitz to K(x)/K(t) gives some

constraints on the τi’s, which when combined with the above properties of the τ ’s

force the ramification types of the τi’s to be one of a handful of possibilities.

The group G has two orbits on the collection of two-point sets, corresponding to

the two irreducible irreducible factors of Ff (X, Y ). Now since we know the type of

all τi’s and the two irreducible factors, we can explicitly compute the genus of the

two irreducible factors.

5.2.1 The structure of τi’s

We will show the following lemma, which gives the structure of τi’s.

Lemma V.5. Besides (m1)× (k1(m− k)1) corresponding to the branch point ∞, all

the remaining τi are exactly
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(1) one τ from the conjugacy class of ξ, and the other τ from the conjugacy class of

(1m−221 × 1m)ξ

(2) two τ ′s from the conjugacy class of ξ, and one τ of type (211m−2) × (1m) or

(1m)× (211m−2)

We will need a few additional lemmas to prove this lemma.

Lemma V.6. at least two τ ’s are in G\N . The τ at∞ has type (k1(m−k)1)×m1 ∈

N , where (k,m) = 1.

Proof. Since G is generated by the τ ’s, at least one τ is in G \N . Since the product

of the τ ’s is 1, there must be at least two such τ ’s.The second claim is from [12,

Lemma 3.15].

Let Ω1 = {(a; b)|a, b ∈ {1, . . . ,m}}, Ω2 = {(a; b)(a; c)} ∪ {(b; a)(c; a)} with b 6= c,

and Ω3 = {(a; b)(c; d)} with a 6= c and b 6= d. By (a; b) we mean an ordered pair with

entries a and b. Let Ki be the fixed field by the stabilizer of Ωi, and gi be the genus

of Ki. The degree (as extension of K(t)) of K1, K2, K3 is the size of corresponding

Ω′is, which is n1 = m2, n2 = 2m2(m− 1) and n3 = m2(m− 1)2 respectively.

Let gi be the genus of Ki, then g1 = 0 because K1 = K(x, t)/(f(x) − t). Let

Oi(τ) be the number of orbits of τ acting on Ωi. By applying the Riemann–Hurwitz

formula to Ki/K(t), we get the following genus formula

Lemma V.7. Let E = {τ1, . . . , τr}, then

2m2 − 2 =
∑
τ∈E

(m2 −O1(τ))

m2 =
∑

τ∈E\{∞}

(m2 −O1(τ))
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Proof. The first comes from 2g1 − 2 = n1(−2) +
∑

τ∈E(m2 − O1(τ)), and g1 = 0,

n1 = m2. The second is because, at ∞, τ has type (k1(m − k)1) × (m1) where

(m, k) = 1, and O1(τ) =
∑

i,j(i, j)aibj = 2.

Lemma V.8. For any nontrivial τ ∈ G, m2−O1(τ) ≥ m, and equality holds if and

only if τ ∈ N , with type (211m−2)× (1m) or (1m)× (211m−2).

Proof. Firstly consider τ ∈ N with type (1a1 · · ·mam)× (1b1 · · ·mbm), where at least

one of a1, b1 is less than m− 2. Acting on Ω1, τ has a1b1 fixed points, and all other

orbits have length at least two, so Ω1(τ) ≤ a1b1 + m2−a1b1
2

= m2+a1b1
2

≤ m2+m(m−2)
2

=

m2 − m. Equality holds if and only if {a1, b1} = {m,m − 2}, which gives us the

desired type. Thus the lemma is true for τ ∈ N .

For τ ∈ G \ N , note τ 2 ∈ N , and O1(τ) ≤ O1(τ 2) ≤ m2 − m. Equality holds

if and only if τ 2 has the type (211m−2) × (1m) or (1m) × (211m−2). However, this is

impossible. Suppose τ = (t1× t2)ξ ∈ G where t1, t2 ∈ Sm, then τ 2 = t1t2× t2t1 ∈ N .

Since t1t2 = t−1
2 (t2t1)t2, t1t2 and t2t1 are in the same conjugacy class, so they must

have the same type, whence it cannot be that one has type 211m−2 and the other has

1m.

Lemma V.9. For any τ ∈ G \N , m2 − O1(τ) > m(m+1)
2

unless τ belongs to one of

the following conjugacy classes

(1) class of ξ, in this case, m2 −O1(τ) = m(m−1)
2

(2) class of type (1m−221 × 1m)ξ, in this case, m2 −O1(τ) = m(m+1)
2

Proof. Say τ = (t1×t2)ξ. We have (t−1
3 ×t−1

4 )·(t1×t2)ξ ·(t3×t4) = (t−1
3 t1t4×t−1

4 t2t3)ξ,

choose t4 = t2t3, and use ∼ to represent conjugacy, this shows (t1×t2)ξ ∼ (t−1
3 t1t2t3×

1)ξ. Note that as t3 runs over all elements in Sm, t−1
3 t1t2t3 runs over all elements in
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Sm of the same type as t1t2, so it makes sense to say class of a certain type as stated

in (2).

Since O1(τ) is the same for the conjugacy class of τ , we just need to pay attention

to the elements in (Sm × 1)ξ. Pick any element (t × 1)ξ, where (say) t has type

(1a1 · · ·mam), we want to calculate its O1. Let (a; b) be an ordered pair, then under

the iterated action of (t× 1)ξ, the orbit is

(a; b) 7→ (tb; a) 7→ (ta; tb) 7→ (t2b; ta) 7→ (t2a; t2b) 7→ · · ·

The orbit length is 1 if and only if a = b is fixed by t, so there are a1 many

1-orbits. The orbit length is 2 if and only if a 6= b are both fixed by t, so there are

a1(a1−1)
2

many 2-orbits. All the remaining orbits have orbit length at least 3, so there

are at most m2−a1−a1(a1−1)
3

=
m2−a21

3
orbits remaining.

Therefore, m2 −O1((t× 1)ξ) ≥ m2 − (a1 + a1(a1−1)
2

+
m2−a21

3
) =

4m2−3a1−a21
6

. When

a1 ≤ m−4, the right hand side is at least 4m2−3(m−4)−(m−4)2

6
= 3m2+5m−4

6
> 3m2+3m

6
=

m(m+1)
2

. Now the remaining cases,

If a1 = m−3, then (t×1)ξ has type ((1m−331)×1m)ξ, and its action on the set of

ordered pairs has type (1m−32
(m−3)(m−4)

2 316m−2). Here the number of 1-orbits and 2-

orbits comes from a1 = m−3. All other orbits have length either 3 or 6, where 3-orbit

requires b = ta, so there are 3 such pairs and they form one 3-orbit. The remaining

6m− 12 pairs form m− 2 many 6-orbits. In this case, m2 −O1 = m2+3m−4
2

> m2+m
2

.

If a1 = m − 2, then (t × 1)ξ has type ((1m−221) × 1m)ξ. Its action on the set of

ordered pairs only has orbit length 1, 2, 4, so the type is (1m−22
(m−2)(m−3)

2 4m−1), and

m2 −O1 = m(m+1)
2

.

If a1 = m, then (t × 1)ξ = ξ, its action on the set of ordered pairs has type

(1m2
m(m−1)

2 ), so m2 −O1 = m(m−1)
2

.
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Now we can prove Lemma V.5.

Proof of Lemma V.5. Consider the formula

(5.1) m2 =
∑

τ∈E\{∞}

(m2 −O1(τ))

from Lemma V.7. By Lemma V.6, at least two τ ′s are in G\N , then by Lemma V.9,

there are exactly two, and their m2 − O1(τ) are either m(m−1)
2

and m(m+1)
2

, or both

m(m−1)
2

. The first choice is case (1); for the second choice, the right side of Equation

(5.1) has m left, by Lemma V.8, this space only fits one τ , and τ must have type

(211m−2)× (1m) or (1m)× (211m−2), this is case (2).

5.2.2 Genus of the two components

Lemma V.10. For the elements invloved in E, the following table gives the number

of their orbits, when acting on Ω2 and Ω3.

(m1)× (k1(m− k)1) ξ (211m−2 × 1m) (211m−2 × 1m)ξ
O2(τ) 3m− 4 m3 −m2 2m3 − 5m2 + 4m m3 − 4m2 + 8m− 6

O3(τ) m(m− 1) m4−2m3+2m2−m
2 m4 − 4m3 + 6m2 − 3m m4−6m3+20m2−35m+24

2

Proof. For (m1) × (k1(m − k)1), acting on {(a; b)(a; c)|b 6= c} it has mk(k−1)
[m,k]

+

m(m−k)(m−k−1)
[m,m−k]

= (k − 1) + (m− k − 1) = m− 2 orbits, acting on {(b; a)(c; a)|b 6= c}

it has m(m−1)k
[m,k]

+ m(m−1)(m−k)
[m,m−k]

= 2m − 2, so O2(τ) = 3m − 4. Now acting on Ω3 =

{(a; b)(c; d)|a 6= c, b 6= d}, O3(τ) = m(m−1)k(k−1)
[m,k]

+2m(m−1)k(m−k)
[m,k,m−k]

+m(m−1)(m−k)(m−k−1)
[m,m−k]

=

m(m− 1).

For the remaining τ , we use Burnside’s lemma, which says #orbit(τ) = 1
|τ |

∑|τ |−1
i=0 #Fix(τ i),

where |τ | is the order of τ .

For τ = ξ, O2(τ) = 1
2
(2m2(m − 1) + 0) = m2(m − 1); O3(τ) = 1

2
((m(m − 1))2 +

m(m− 1)) since Fix(ξ) = {(a; a)(c; c)|a 6= c}.
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For τ with type (211m−2× 1m), choose any element of that type, say τ = (12)× 1,

then O2(τ) = 1
2
(2m2(m− 1) + (m− 2)m(m− 1) + (m− 2)(m− 3)m), since Fix(τ) =

{(a; b)(a; c)|b 6= c, a 6= 1, 2}∪{(b; a)(c; a)|b 6= c and both 6= 1, 2}. O3(τ) = 1
2
((m(m−

1))2+(m−2)(m−3)m(m−1)) since Fix(τ) = {(a; b)(c; d)|a 6= c and both 6= 1, 2, b 6=

d}.

For τ with type (211m−2 × 1m)ξ, choose τ = ((12) × 1)ξ, now τ 2 = (12) × (12),

τ 3 = (1 × (12))ξ, τ 4 = 1. On Ω2, τ and τ 3 has no fixed points, #Fix(τ 2) =

2 · (m − 2)(m − 2)(m − 3), so O2(τ) = 1
4
(2m2(m − 1) + 2(m − 2)(m − 2)(m − 3)).

On Ω3, Fix(τ) = Fix(τ 3) = {(a; a)(c; c)|a 6= c and both 6= 1, 2}, so #Fix(τ) =

#Fix(τ 3) = (m − 2)(m − 3); Fix(τ 2) = {(a; b)(c; d)|a 6= c, b 6= d and all 6= 1, 2}, so

#Fix(τ 2) = (m − 2)2(m − 3)3. Therefore O3(τ) = 1
4
((m(m − 1))2 + 2(m − 2)(m −

3) + (m− 2)2(m− 3)2).

By simplifying the expressions for O2 and O3, we get the desired expressions in

the table.

Now we can prove Proposition V.4.

Proof of Proposition V.4. We have the following formula for g2, g3

2gi − 2 = (−2)ni +
∑
τ∈E

(ni −Oi(τ))

where i = 2, 3, n2 = #Ω2 = 2m2(m− 1), n3 = #Ω3 = (m(m− 1))2.

Lemma V.5 gives us the possible configurations of E, and Lemma V.10 gives us

the Oi values.

In case (1) of Lemma V.5, one can easily find

g2 =
3m2 − 11m+ 12

2

g3 =
(m− 1)(m− 2)(2m− 5)

2
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In case (2) of Lemma V.5, one can easily find

g2 =
3m2 − 7m+ 6

2

g3 =
(m− 2)(2m2 − 3m− 1)

2

It is easy to check that when m ≥ 4, g2, g3 are both > 1.

5.3 Proof of Theorem V.1

Proof of Theorem V.1. In Proposition V.3, there are two finite groups, and Sm o S2.

In Proposition V.4, we showed that when m ≥ 4, and G = Sm o S2, all factors of

Ff (X, Y ) have genus greater than 1, so we only need to consider S2 o S2, S3 o S2 and

the two finite groups in Proposition V.3. By a computer program, we can get the

desired result.



CHAPTER VI

Decomposable case: indecomposable genuine Laurent
polynomial composed with cyclic polynomial

In this chapter, we study the case when the genuine Laurent polynomial f has

decomposition L ◦Xm, where L is an indecomposable Laurent polynomial of degree

at least 3 and m ≥ 2. We do not consider the deg(L) = 2 case here since this case

all the irreducible factors of FL(Xm, Y m) has the form aXY − b where a, b ∈ K∗ and

then K(x) = K(y); this case is already covered in case 1 of the proof of Theorem I.5.

In this case, f(X)−f(Y )
X−Y = L(Xm)−L(Ym)

Xm−Ym
Xm−Ym
X−Y . Each factor in the second part has

genus 0, so we just consider when FL(Xm, Y m) has an irreducible factor of genus 0

or 1. Note that in this case FL(X, Y ) must have an irreducible factor of genus 0 or

1, so such L must come from Theorem IV.1 or Theorem V.1.

Theorem VI.1. Let L ∈ K[X,X−1] be an indecomposable degree-n (n ≥ 3) genuine

Laurent polynomial having denominator Xk, and let m be an integer with m ≥ 2.

If FL(Xm, Y m) has an irreducible factor whose genus gx,y satisfies gxy ≤ 1, then the

pair (L,m) is one of these in Table 6.1.

Proof. First we show that the left square is irreducible. Note that u = 0 and u =∞

are both totally ramified in K(x), and in any case one of u = 0 and u =∞ must have

an unramified place in K(u, v) lying over it, so this place will be totally ramified in

65
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Table 6.1: FL(Xm, Y m) where L is indecomposable genuine Laurent polynomial
(1) L = (X − 1)3(X − 9)/X and m = 2. This case FL(X2, Y 2) has two irreducible factors and each
has genus is 1.

(2) L(X) = (c1X + c0) ◦ (X+1)n

Xk ◦ (c2X
a), where c1, c2 ∈ K∗, c0 ∈ K and a = ±1.

(2.1) (m,n, k) = (2, 4, 1). This case FL(Xm, Y m) has two irreducible factors and each has genus 1.

(2.2) (m,n, k) = (3, 3, 1). Ĥ(X,Y ) is either of the two irreducible factors of FL(Xm, Y m): the
factor X2Y +XY 2 − 1 has genus 0 and X4Y 2 −X3Y 3 +X2Y 4 +X2Y +XY 2 + 1 has genus 1.
(2.3) (m,n, k) = (2, 3, 1). This case FL(Xm, Y m) is irreducible of genus 0.

K(x, v)/K(u, v). This implies the left square is irreducible, and the same argument

shows the right square is irreducible too.

Now we split into two cases, the case FL(X, Y ) is irreducible and the case FL(X, Y )

is reducible. In either case we will consider the possible m values for which gxv ≤ 1,

and then deal with the reducibility of the top square and consider when gxy ≤ 1.

Case 1: FL(X, Y ) is irreducible

In this case, L are the Laurent polynomials from Theorem IV.1. Again we will

build a tower of function fields. Let u = xm 6= v = ym, and L(u) = L(v) = t.

First of all guv must be 0. Note that in any case (k > 1 or n − k > 1 or

k = n − k = 1), one of 0u and ∞u must have an unramified preimage in K(u, v),

then since both of them are totally ramified in K(u), so there is ramification in

K(x, v)/K(u, v). If guv = 1, then gxv will be > 1, contradiction. The argument

above shows that K(x, v)/K(u, v) has a totally ramified branch point of index equal

to m, so we also know the left square (similarly the right square) must be irreducible.

Now we apply Riemann-Hurwitz formula to K(x, v)/K(u, v), see when gxv could be

at most 1.

We firstly look at the cases when k = n
2
. This case ∞u and 0u are all unramified

in K(u, v), so we have 2gxv − 2 = (−2)m+ 2(n− 1)(m− 1) = 2(n− 2)m− 2(n− 1),

so 2 ≤ m ≤ n−1
n−2

= 1 + 1
n−2

and the only possibility is n = 2 (since n is even), and

gxv = 0. However in our assumption n > 3 so we have k 6= n
2
.
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We then look at the cases when gcd(k, n− k) = 1 but k 6= n
2
. These cases are the

(n, k) = (4, 1) and (n, k) = (6, 1) cases from Table 4.1 and the first case in Theorem

IV.1 where n > 2.

For the cases from Table 4.1, the genus formula is 2gxv − 2 = (−2)m + (n −

1)(m − 1) + (m − gcd(m,n − 1)). If n = 6, then the formula becomes 2gxv =

4m− 3− gcd(m, 5) ≥ 3m− 3 ≥ 3, so n = 6 cannot happen. If n = 4, this becomes

2m − 3 − gcd(m, 3) = 0 or −2, so gxv = 1 and m = 2 or 3. If m = 3, let Puv be

the place over 0u and ∞v, then Puv is unramified in K(x, v) but ramified in K(u, y),

so gxy > gxv = 1. If m = 2, then every place in K(u, v) is either totally ramified

or unramified in both K(x, v) and K(u, y), so K(x, y) has genus 1 no matter the top

square is reducible or not. This case L is case 7 in Table 4.1.

For the first case in Theorem IV.1 where n > 2, the genus formula is 2gxv − 2 =

(−2)m + (n − 2)(m − 1) + (2m − gcd(m, k) − gcd(m,n − k)) = (n − 2)(m − 1) −

gcd(m, k) − gcd(m,n − k). Since gcd(k, n − k) = 1, then at least one of gcd(m, k)

and gcd(m,n− k) is 1, and the other is at most m, so 0 ≥ (n− 2)(m− 1)− (m+ 1).

Then n ≤ m+1
m−1

+ 2 = 3 + 2
m−1

. The possibility are (m,n) = (2,≤ 5), (3,≤ 4), (≥

4,≤ 3). For the first two possibilities of (m,n), we get the following solutions:

(m,n, k, gxv) =(2, 3, 1, 0), (2, 4, 1, 1), (2, 5, 1, 1), (2, 5, 2, 1), (3, 3, 1, 1), (3, 4, 1, 1). For

the third possibility of (m,n), n = 3 and (m, gxv) = (4, 1).

Among these cases where gxv = 1 and m ≤ 3, we require any place in K(u, v)

to be totally ramified or unramified in both K(x, v) and K(u, y) no matter the top

square is reducible or not. Therefore we need [m,n−k]
n−k = [m,k]

k
, and the satisfying

genus 1 cases are (m,n, k, gxv) = (2, 4, 1, 1), (3, 3, 1, 1) and these two cases gxy = 1

no matter the top square is reducible or not. The remaining gxv = 1 case is when

(m,n, k) = (4, 3, 1). This case the place in K(u, v) lying over u = ∞ and v = 0 has
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type (22) in K(x, v) but has type (41) in K(u, y), so there is ramification between

K(x, y) and K(x, v), so gxy > 1.

Among these cases the only gxv = 0 case is (m,n, k, gxv) = (2, 3, 1, 0). In this case

the place in K(u, v) lying over u = 0 and v =∞ is unramified in K(x, v) but totally

ramified in K(y, u), so the top square must be irreducible and Rieman–Hurwitz shows

that gxy = 0.

Finally we look at the cases when gcd(k, n− k) > 1 and k 6= n
2
. The only case is

case 16 in Table 4.1, where n = 6, k is even. Without loss of generality, we can assume

k = 2. Now the ramification indices of 0u and ∞u in K(u, v) consist of two 2’s and

six 1’s, so the genus formula gives 2gxv− 2 = (−2)m+ 6(m− 1) + 2(2− gcd(2,m)) ≥

4m− 6 ≥ 2, which is impossible.

Case 2: FL(X, Y ) is reducible

In this case, L are the Laurent polynomials from Theorem V.1. For all of these

cases, one of 0u and ∞u has an unramified preimage in K(u, v), so we just consider

the guv = 0 cases, in other words, case 2, 3 and 4. However, for each case, 0u

and ∞u have at least 6 unramified preimages in K(u, v) in total, so 2gxv − 2 ≥

(−2)m+ 6(m− 1) = 4m− 6 ≥ 2, which is impossible.



CHAPTER VII

Decomposable case: polynomial composed with genuine
Laurent polynomial: Part I

In this chapter f ∈ K[X,X−1] is a decomposable genuine Laurent polynomial of

the form f = P ◦ L, where P ∈ K[X] is an arbitrary polynomial of degree > 1

and L ∈ K[X,X−1] is an indecomposable genuine Laurent polynomial. Note that

f(X)−f(Y )
X−Y = P◦L(X)−P◦L(Y )

L(X)−L(Y )
L(X)−L(Y )

X−Y , an irreducible factor of genus at most 1 could

come from FL(X, Y ) or from FP (L(X), L(Y )). The case FL(X, Y ) is already solved in

Theorem IV.1 and Theorem V.1, so in this chapter we consider when FP (L(X), L(Y ))

can have an irreducible factor H(X, Y ) of genus at most 1.

The main result of this chapter is Theorem VII.1.

Theorem VII.1. Let  L ∈ K[X,X−1] be an indecomposable genuine Laurent polyno-

mial, let P ∈ K[X] satisfy deg(P ) > 1, and pick any irreducible H(X, Y ) ∈ K[X, Y ]

of genus 0 or 1. If H(X, Y ) divides FP (L(X), L(Y )) then P = P2 ◦P1 for some poly-

nomials P1, P2 ∈ K[X], H(X, Y ) divides FP1(L(X), L(Y )), and one of the following

holds after perhaps replacing H by a constant multiple of itself:

1. FP1(L(X), L(Y )) is irreducible of genus 1, where P1(X) = X3(X2 + 5X + 40),

deg(L) = 2 and Λ(L) = {1
2
(−5 + 3i

√
15) or 1

2
(−5− 3i

√
15), 3}.

2. Here P1 = Xr(X − 1)s where gcd(r, s) = 1 and r + s > 3, and deg(L) = 2. Let
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Λ(L) = {α1, α2}, and let λ1, λ2 be the two simple roots of L(X)− rr(−s)s
(r+s)r+s

, then

(a) P1 = (X − a)(X − b)3 where {a, b} = {0, 1}, and

i. α1 = λ1, α2 = λ2, this case the numerator of FP1(L(X), L(Y )) has two

factors, each has genus 0.

ii. α1 = a, α2 = λ1, this case the numerator of FP1(L(X), L(Y )) is irre-

ducible of genus 1.

iii. L = (X + 1
16X

+ 1
2
) ◦ aX for a ∈ K∗, this case all factor(s) of the

numerator of FP1(L(X), L(Y )) have genus 1

(b) P1 = (X − a)(X − b)4 where {a, b} = {0, 1}, and α1 = a, α2 = λ1, this case

the numerator of FP1(L(X), L(Y )) is irreducible of genus 1

3. Here P1 = Tn, and H(X, Y ) is a factor of the numerator of L(X)2 + L(Y )2 −

2L(X)L(Y ) cos(2πr/n)− 4 sin2(2πr/n) for some 0 < r < n/2.

(a) Br(L) = {−2, 2, α,∞} where each branch point has type (1121) and α2 =

2(1+cos(2πr/n)) for some 0 < r < n/2. This case FTn(L(X), L(Y )) has an

irreducible factor L(X)2 +L(Y )2 − 2L(X)L(Y ) cos(2πr/n)− 4 sin2(2πr/n)

of genus 1.

(b) L(X) = aX + b/X + c where a, b, c ∈ K∗ and let {β1, β2} := {2
√
ab +

c,−2
√
ab + c} be the finite branch points of L. Then β1 = 2 or −2. If

β2
2 6= 2(1 + cos(2πr/n)) then L(X)2 + L(Y )2 − 2L(X)L(Y ) cos(2πr/n) −

4 sin2(2πr/n) is irreducible of genus 1; otherwise each irreducible factor of

L(X)2 + L(Y )2 − 2L(X)L(Y ) cos(2πr/n)− 4 sin2(2πr/n) has genus 0.

4. P2 = Xn for some integer n at least 2, and H(X, Y ) is a factor of the numerator

of FP1◦L,c(X, Y ) where c 6= 1 is a n-th root of unity.
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Remark VII.2. Due to Theorem VII.1, one can see it is essential to classify when

f(X) − cf(Y ) has a factor of genus at most 1. We will leave it to Chapter IX and

Chapter X.

The strategy is as follows.

We can build a function field tower K(x, y) /{K(x, v),K(u, y)} /{K(x),K(u, v),K(y)}

/K(t) as shown in Figure 7.1 where all the function fields in this tower have genus at

most 1. Note that in this function field tower, u = L(x), v = L(y), P (u) = P (v) = t

and K(u) 6= K(v). The possibilities for the polynomial P are described in Theorem

VII.3.

K(t)

K(u) K(v)

K(x) K(u, v) K(y)

K(x, v) K(u, y)

K(x, y)

u = L(x) v = L(y)

t = P (u) t = P (v)

Figure 7.1: Tower of function fields

Theorem VII.3 (Carney–Hortsch–Zieve [2]). Suppose P ∈ K[X] is a polynomial of

degree at least 2, then FP (X, Y ) has a genus zero or one factor if and only if P is

equivalent to one of the polynomials given below:

1. Sporadic cases in Table 7.1. Since we only need their ramification types, we just

list the ramification types in the table.

2. P n
1 (X). Here n > 1 and FP1,c(X) has an irreducible factor of genus at most 1,
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and c ∈ K∗ \ {1} is a n-th root of unity.

3. Xn

4. Tn(X)

5. T n2 (X)

6. Xr(X − 1)s where r > 0, s > 0 and r + s > 3

Case deg(P ) Ramification type of P Genus of FP (X,Y )

1 4 (1221), (1221), (1221) 1
2 5 (1231), (1231) 1
3 5 (1231), (1122) 0
4 5 (1122), (1321), (1321) 1
5 6 (1241), (1222) 1
6 6 (112131), (1222) 1
7 7 (112141), (1322) 1
8 7 (1341), (1123) 1
9 7 (1132), (1431) 1
10 7 (1132), (1322) 0
11 7 (2231), (1322) 1
12 7 (122131), (1123) 1
13 8 (2132), (1422) 1
14 8 (1232), (1223) 1
15 9 (1142), (1522) 1
16 9 (1332), (1124) 1
17 10 (1133), (1423) 1

Table 7.1: Sporadic cases

7.1 When P satisfies case 1 or case 6 (where gcd(r, s) = 1) in Theorem
VII.3

In this section, case 1 is done in Proposition VII.6, and case 6 (when gcd(r, s) = 1)

is done in Proposition VII.7.

The outline is as follows. In Lemma VII.4 we show the left and the right squares

cannot be reducible, so we can use Riemann–Hurwitz on the left and right squares,

and in Lemma VII.5 we show that guv = 0. Then in Proposition VII.6 we deal with

case 1 and in Proposition VII.7 we deal with case 6 (when gcd(r, s) = 1).
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Lemma VII.4. Both the left and the right square are irreducible.

Proof. By symmetry, we just need to show that the left square cannot be reducible.

If the left square is reducible, then by Theorem III.15, there is an intermediate

field L′ in between K(x) and K(u), and M ′ in between K(u, v) and K(u), such that

L′/K(u) and M ′/K(u) have the same Galois closure, and then by Theorem III.16,

any place in K(u) should have the same lcm for its ramification indices in K(x)

and K(u, v). Consider ∞u, it is unramified in M ′, so lcm= 1, this means it is also

unramified in L′, but in L′, it can have at most two preimages, so the only possibility

is that ∞u has two unramified preimages in L′, so [L′ : K(u)] = 2. Thus L′/K(u) is

Galois, so that M ′ = L′.

Therefore

1. d = [K(u, v) : K(u)] is even.

2. [M ′ : K(u)]=2 implies that there are at least two places in K(u), which are

totally ramified in M ′, therefore there are at least two places in K(u) whose

ramification indices in K(u, v) are all even.

Let R be such a place in K(u), and let S be the place of K(t) lying under R.

Then exactly one of the ramification indices of S in K(u) is odd.

Finally, we check that neither case 1 nor case 6 (where gcd(r, s) = 1) satisfies

both of these conditions.

The following lemma shows that gxv can only be 0.

Lemma VII.5. guv = 0.

Proof. If guv = 1, then there will not be any ramifications between K(x, v) and

K(u, v). So deg(L) = 2, and ∞u is unramified in K(x). Note Riemann–Hurwitz
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says between K(x) and K(u), we still need contribution 2, so there are two places,

say Q1, Q2, in K(u) which are totally ramified in K(x). To avoid ramification in

K(x, v)/K(u, v), Q1, Q2 must be ramified in K(u, v) and their ramification indices

must be all even. Suppose Qi is over Ti in K(t), then Ti is ramified in K(v), with all

indices even except at most one. So there are two places in K(t), whose ramification

indices in K(v) are all even except at most one, this rules out all the genus 1 cases

in case 1(Table 7.1). For case 6 when gcd(r, s) = 1, guv = 0 so we do not need to

consider it.

The previous lemma shows guv = 0, so P is either case 6, or one of sub-case 3

and sub-case 10 of case 1 in Theorem VII.3. The following two lemmas gives all the

possibilities of the ramification of L.

Proposition VII.6. If P is sub-case 3 or sub-case 10 of case 1 in Theorem VII.3,

and L is an indecomposable Laurent polynomial such that FP (L(X), L(Y )) has a

genus zero or one component, then

1. f = P ◦L and FP (L(X), L(Y )) is irreducible of genus 1. Here P (X) = X3(X2+

5X + 40), deg(L) = 2 and Λ(L) = {1
2
(−5 + 3i

√
15) or 1

2
(−5− 3i

√
15), 3}.

Proof. Letm = deg(P ) and n = deg(L). Apply Riemann–Hurwitz to K(x, v)/K(u, v),

then 2gxv−2 = (−2)n+(m−1)(n−2)+C, where (m−1)(n−2) is the contribution

of places in K(u, v) over ∞u, and C is the sum of all other contributions. Here

C = (3−m)n+ 2(m− 1) + 2gxv − 2.

Sub-case 10 of Case 1

In this case m = 7, so C = 12− 4n+ 2gxv − 2. Therefore n = 2 or n = 3.

If n = 2, then C = 4 if gxv = 1; C = 2 if gxv = 0. Since n = 2, K(x)/K(u) has two

totally ramified places, say P1 and P2. Let Q1, Q2, Q3 be the three unramified places
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in K(u) lying over the place in K(t) which has type (1322); let R be the unramified

place in K(u) lying over the place in K(t) which has type (1132). If Pi = Qj or

R, then its contribution to Riemann–Hurwitz is 2; if Pi is any other place, the

contribution is 6. Therefore, one of Pi, say P1 must equal some Qj and gxv = 1. Now

in order gxy = 1, regardless of the reducibility of the top square, K(x, v)/K(u, v) and

K(y, u)/K(u, v) must have the same set of branch points. This implies Q1, Q2, Q3

are all totally ramified in K(x), contradiction.

If n = 3, then C = 0 and gxv = 1. Since n = 3, K(u) must have a place which has

type (1121) in K(x), however, the place in K(x) lying over it with index 2 contributes

at least 2 to Riemann–Hurwitz by the argument above, so n 6= 3.

Sub-case 3 of Case 1

In this case m = 5, so C = 8− 2n+ 2gxv − 2 and n = 2, 3 or 4.

Let Q1, Q2 be the two unramified place in K(u) lying over the place in K(t) which

has type (1231); let R be the unramified place in K(u) lying over the place in K(t)

which has type (1122).

When n = 2, let P1, P2 be the two places in K(u) which are totally ramified in

K(x). Then Pi contributes 2 if Pi = Q1 or Q2, and contributes 0 if Pi = R, and

contributes 4 in all other cases. When n = 2, C = 4 if gxv = 1 and C = 2 if gxv = 0.

Therefore if gxv = 0, we must have P1 = R, P2 is Q1 or Q2, say P2 = Q1. Then

the top square must be irreducible, since the place in K(u, v) lying over both Q1

in K(u) and Q2 in K(v) is ramified in K(x, v) but unramified in K(u, y). Now just

apply Riemann–Hurwitz on K(x, y)/K(y, u), we have gx,y = 1, so FP (L(X), L(Y )) is

irreducible of genus 1. We have the following example:

1. f = P ◦L, and FP (L(X), L(Y )) is irreducible of genus 1. Here P is sub-case 3 of
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case 1 in Theorem VII.3, so P (X) = X3(X2 + 5X + 40) and Λ(P ) = {0, 1728}

where 0 has type (1231) and 1728 has type (1122). deg(L) = 2 and Λ(L) =

{α1, α2} where α1 = 1
2
(−5 ± 3i

√
15) is a simple root of L(X) and α2 = 3 is a

simple root of L(X)− 1728.

If gxv = 1, then there are two cases. The first scenario is P1 = Q1 and P2 = Q2.

Since n = 2 and gxv = 1, using the same argument as before, we know that all the

three places lying over the place in K(t) which has type (1231) are totally ramified

in K(x), contradiction. The second scenario is one Pi is either the place in K(u) of

index 3 lying over the place in K(t) which has type (1231), or one place in K(u) of

index 2 lying over the place in K(t) which has type (1122). In the former case, it is

easy to see Q1, Q2 are also branch points of L, which is impossible. In the latter

case, it is easy to see R in K(v) has an index of at least 4 in K(y), which is also

impossible.

When n = 3, then C = 2 if gxv = 1 and C = 0 if gxv = 0. This case one finite

branch point of L must have type (1121), and this point in K(u) does not contribute

to C if and only if this point is R; it contributes 2 if and only if it is Q1 or Q2;

otherwise its contribution is bigger than 2. If L has a branch point of type (31), then

this point in K(u) contributes 2 to C if and only if this point is Q1 or Q2; otherwise

its contribution is bigger than 2. Since L have at least two finite branch points, we

have C must be positive, and gxv = 1. Since C = 2, the above arguments show that

L has two finite branch points: R and Q1 (in fact, R and one of Q1, Q2, where we

use Q1 here). R has type (1121) and Q1 has type (31). Regardless the top square is

reducible or not, in order gxy = 1, we must also have Q2 is a branch point of L of

type (31), contradiction.

When n = 4, then C = 0 and gxv = 1. Any place in K(u) with type (41) or



77

(1131) in K(x) has nonzero contribution, so we must have at least two places which

has either (22) or (1221), this kind of place contributes zero if and only if it is R,

therefore we cannot get zero contribution from both of them. Thus this case is

impossible.

Proposition VII.7. If P = Xr(X − 1)s where gcd(r, s) = 1 and r + s > 3. Let L

be an indecomposable genuine Laurent polynomial. If FP (L(X), L(Y )) has a factor

of genus at most 1, then deg(L) = 2. Let Λ(L) = {α1, α2}, and let λ1, λ2 be the two

simple roots of P (X)− rr(−s)s
(r+s)r+s

, then

1. P = (X − a)(X − b)3 where {a, b} = {0, 1}, and

(a) α1 = λ1, α2 = λ2, this case FP (L(X), L(Y )) has two factors, each has genus

0

(b) α1 = a, α2 = λ1, this case FP (L(X), L(Y )) is irreducible of genus 1

(c) L = (X+ 1
16X

+ 1
2
)◦aX for a ∈ K∗, this case all factor(s) of FP (L(X), L(Y ))

have genus 1

2. P = (X − a)(X − b)4 where {a, b} = {0, 1}, and α1 = a, α2 = λ1, this case

FP (L(X), L(Y )) is irreducible of genus 1

Proof. This case P = Xr(X − 1)s, so P has two finite branch points {0, rr(−s)s
(r+s)r+s

}.

Here 0 has preimages 0 with index r and 1 with index s; here rr(−s)s
(r+s)r+s

has preimage

r
r+s

with index 2, and Q1, . . . , Qr+s−2 with index 1. Therefore in K(u, v)/K(u), the

type of u = 0 is (1r−1s1), the type of u = 1 is (1s−1r1), the type of Qi is (1m−321)

and for the rest the type is (1m−1).

Note that C = (3−m)n + 2(m− 1) + 2gxv − 2 ≥ 0, and gxv = 0, 1, so 4 ≤ m ≤

3 + 4
n−2

. So 2 ≤ n ≤ 6. If n > 2, then m is bounded, this is a finite problem. The

only possible large degree case is n = 2 for case 6.



78

When n = 2

Suppose the finite branch points of L are α1 and α2. The point αi contributes (to

C) r − 1 + 2 − gcd(2, s) = r + 1 − gcd(2, s), s + 1 − gcd(r, 2), m − 3 and m − 1, if

αi = 0, 1, some Qj and some any other value respectively.

Now let us look at the minimum of C, it is either m − 3 + min{r, s} + 1 −

max{gcd(2, s), gcd(s, r)} ≥ m − 3 or s + 1 − gcd(r, 2) + r + 1 − gcd(s, 2) ≥ m − 1.

Therefore C ≥ m− 3, and then 4 ≤ m ≤ 5 if gxv = 0 and 4 ≤ m ≤ 7 if gxv = 1.

If gxv = 0 and m = 4, we must have r = 1 and s = 3. Then the contributions

m− 1, m− 3, r+ 1− gcd(2, s) and s+ 1− gcd(r, 2) are 3, 1, 1 and 3 respectively. If

gxv = 0 we need C = 2, so there are two cases.

1. The two places in K(u) ramified in K(x) are the two unramified places lying

over the branch point ( 27
256

)t in K(t). This case deg(L) = 2, P = X(X − 1)3 or

P = X3(X − 1) and gxv = 0. If the top square is irreducible, then by applying

Riemann–Hurwitz to the top square, we can show that gxy < 0. Therefore the

top square must be reducible. This means FP (L(X), L(Y )) has two factors,

each one has genus 0. This case is case 1(a) in the proposition.

2. For the two places in K(u) ramified in K(x), one place is 0u, the other is an

unramified place lying over the branch point ( 27
256

)t in K(t). This case deg(L) =

2, P = X(X − 1)3 and gxv = 0. The top square must be irreducible since the

place in K(u, v) lying over the the two unramified places of ( 27
256

)t is ramified

in K(x) but unramified in K(y). Using Riemann–Hurwitz we can find gxy = 1.

So this case FP (L(X), L(Y )) is irreducible of genus 1. The same thing is still

true if we replace 0u with 1u, and use P = X3(X − 1). This is case 1(b) in the

proposition.
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If gxv = 0 and m = 5, either (r, s) = (1, 4) or (r, s) = (2, 3). In the first case, the

contributions m− 1, m− 3, r + 1− gcd(2, s) and s+ 1− gcd(r, 2) are 4, 2, 0 and 4

respectively. We need C = 2, so there is one example.

1. For the two places in K(u) ramified in K(x), one place is 0u, the other place

is unramified over the branch point in K(t) which has type (1321). This case,

P = X(X − 1)4, deg(L) = 2 and gxv = 0. The top is irreducible and gxy = 1.

So this case FP (L(X), L(Y )) is irreducible of genus 1. The same thing is still

true if we replace 0u with 1u, and use P = X4(X − 1). This is case 2 in the

proposition.

In the second case, the contributions m−1, m−3, r+1−gcd(2, s) and s+1−gcd(r, 2)

are 4, 2, 2 and 2 respectively. It is impossible to get C = 2.

Now we deal with the case that gxv = 1, this case m could be 4, 5, 6 or 7, and

C = 4. As before, we let α1, α2 be the two places in K(u) which is totally ramified

in K(x), then

• α1, α2 6= Qi when m ≥ 5 for the following reason: no matter the top square

is reducible or not, K(x, v)/K(u, v) and K(y, u)/K(u, v) have the same set of

branch points, then if m ≥ 5, then there are at least three Qj’s, and each one

must be a branch point of K(x)/K(u), which is impossible since K(x)/K(u) only

has two branch points.

• α1, α2 6= r
r+s

. For any place in K(u, v) lying over u = r
r+s

, it is unramified over

K(u) but totally ramified over some place T in K(v), and this T must have a

ramification index 4 in K(y), which is impossible.

• α1, α2 cannot lie over some place T in K(u) which is unramified in K(x). Since

otherwise, all the places in K(u) lying over K(t) are totally ramified in K(x),
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contradiction.

• If r is even, s is odd, then αi 6= 0. Similarly, if r is odd, s is even, then αi 6= 1.

In the first case, 1v will have have a index at least 4 in K(y), contradiction. The

second case is similar.

When m ≥ 5, the above conditions imply that α1 = 0, α2 = 1 and r, s are both

odd. This can only happen when m = 6, where r = 1 and s = 5. Now contribution

C = (r+1−gcd(2, s))+(s+1−gcd(2, r)) = 6, which is bigger than 4, so this cannot

happen.

The only case left is m = 4, and (r, s) = (1, 3). By the arguments above, we know

αi can only be Qj (j = 1, 2), 0 or 1, and the contribution will be 1, 1, 3. In order to

get C = 4, we must have some Qj (say Q1) equals 1, in this case, it is easy to see

v = 0 is totally ramified in K(y), so Q2 = 0. We get one example

1. P = X(X − 1)3, deg(L) = 2 and Λ(L) = {0, 1}. This case gxv = 1, and

gxy = 1. Note that the same thing is also true for P = X3(X − 1). This case

L = (X + 1
16X

+ 1
2
) ◦ aX for a ∈ K∗, and all factor(s) of FP (L(X), L(Y )) have

genus 1. This is case 1(c) in the proposition.

When n > 2

We first consider the case gxv = 0. This case 4 ≤ m ≤ 3 + 2
n−2

, so we have either

n = 3, m = 4, 5 or n = 4, m = 4. If (n,m) = (3, 5) or (4, 4), then C = 0 and there is

no ramification in K(x, v)/K(u, v) from the finite branch points of L, but we can show

this cannot happen for the following reasons. For (n,m) = (4, 4), the finite branch

points of K(u, v)/K(u) have one of type (31), two of type (1121); but K(x)/K(u)

has at least two finite branch points, so at least one of them has one unramified

place in K(u, v) lying over it, this implies that C > 0, contradiction. For (n,m) =
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(3, 5), the finite branch points of K(u, v)/K(u) have either {(41), (1221), (1221)} or

{(1131), (1221), (1221), (1221)}, so all of them have unramified place in K(u, v) lying

over except at most one; but K(x)/K(u) have at least two finite branch points, so

C > 0, contradiction.

Thus we just need to consider (n,m) = (3, 4), then C = 1. This case the fi-

nite branch points of K(u, v)/K(u) have type {(31), (1121), (1121)}; the finite branch

points of K(x)/K(u) have type {(31), (1121)} or {(1121), (1121), (1121)}. The second

case is impossible since each finite branch point of K(x)/K(u) contributes 1 to C.

For the first case, the branch point of K(x)/K(u) with type (31) must have the same

type in K(u, v)/K(u), so it must be 0u; the other branch point must have type (1121)

in K(u, v), so it must be λu where λ is a simple root of X(X − 1)3 − 27/256 (since

P (X) = X(X − 1)3, and P (r/(r + s)) = P (1/4) = 27/256). Now let us calculate

the genus of gxy. First of all, the top square is irreducible since the place in K(u, v)

over u = λ1 and v = λ2 (where λ1, λ2 are the two simple roots of P (X) = 27/256) is

totally ramified in one of K(x, v) and K(y, u) but unramified in the other. Now the

Riemann–Hurwitz shows gxy = 4 > 1, so this case cannot happen.

7.2 When P satisfies case 4 in Theorem VII.3

When P = Tn, then except the factor X + Y when n is even, each factor of

FP (X, Y ) is quadratic of the form X2 + Y 2 − 2XY cos(2πr
n

) − 4 sin2(2πr
n

), where

0 < r < n
2
. For the factor X +Y , H(X, Y ) will be a factor of L(X) +L(Y ), and this

case will be studied in Theorem IX.6. In this section we just need to consider these

quadratic factors.

Let u = L(x) 6= v = L(y), then u, v satisfy u2 +v2−2uv cos(2πr
n

)−4 sin2(2πr
n

) = 0.

Treat this equation as an equation in v, then it has a double root if and only if
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u = ±2, and this double root is v = u cos(2πr/n) 6= ±u, so there is no pair (u0, v0)

such that if u = u0, v = v0 is a double root and if v = v0, u = u0 is a double root. In

terms of function fields, this means any place in K(u, v) cannot be totally ramified

over K(u) and K(v) at the same time.

Note that the left and the right squares are both irreducible, since otherwise

K(u, v) will be a proper intermediate field of K(x)/K(u) or K(y)/K(v), which violates

the indecomposability of L.

Lemma VII.8. Suppose [K(u, v) : K(u)] = 2 and u = ∞ is unramified in K(u, v).

Let the two finite branch points of K(u, v)/K(u) be u = α1 and u = α2. If K(x, v) has

genus at most 1, then the multi-sets of ramification indices of u = α1 and u = α2 in

K(x)/K(u) and the ramification of any additional finite branch point(s) in K(x)/K(u)

must be one of these in Table 7.2.

item Union of the multisets ramification of the additionally finite branch point(s) gxv

1 12, 2m−1 (211m−2) 0
2 12, 4, 2m−3 none 0
3 1, 3, 2m−2 none 0
4 14, 2m−2 either {(211m−2), (211m−2)} or (311m−3) or

(221m−4) or (411m−4)
1

5 14, 4, 2m−4 (211m−2) 1
6 14, 42, 2m−6 none 1
7 14, 6, 2m−5 none 1
8 13, 3, 2m−3 (211m−2) 1
9 13, 3, 4, 2m−5 none 1
10 12, 32, 2m−4 none 1

Table 7.2: Tn ◦ L case, ramification in K(x)/K(u)

Proof. There are two branch points of K(u, v)/K(u), which are at u = α1 and at

u = α2. Consider the Riemann–Hurwitz formula on K(x, v)/K(u, v), we have 2gxv −

2 = (−2)m + 2(m − 2) + C, where C is the contribution from the places in K(u, v)

not lying over ∞u. Therefore C ≤ 4. The set of the ramification indices of all the

finite places of K(u) (other than u = α1 and u = α2) in K(x) can only have several
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1’s, along with perhaps one 3 or one 2, or two 2’s.

Now consider the ramification indices of u = α1 and u = α2 in K(x)/K(u), there

are at most 4 odd indices, since each odd index contributes 1 to the Riemann–Hurwitz

on K(x, v)/K(x), which requires at most 4. Now consider the contribution of u = α1

and u = α2 to the Riemann–Hurwitz of K(x, v)/K(u, v), for all the even indices of

u = α1 and u = α2 in K(x) not equal to 2, we have at most one 6, or two 4’s.

Therefore, there are only a few possibilities of the ramification types between K(x)

and K(u), and they are listed in Table 7.2.

By Theorem V.2, we know the monodromy group of L of degree m can only be Am,

Sm, S√m o S2 or a few small size groups. The following lemma gives the ramification

of L when Mon(L) = S√m o S2.

Lemma VII.9. Let L be an indecomposable genuine Laurent polynomial of degree

m with Mon(L) = S√m o S2, then one of the following is true

1. L has two finite branch points, whose ramification types are (1
√
m2

m−
√
m

2 ) and

(1
√
m−22

(
√
m−2)(

√
m−3)

2 4
√
m−1).

2. L has three finite branch points, whose ramification types are (1
√
m2

m−
√
m

2 ),

(1
√
m2

m−
√
m

2 ) and (1m−2
√
m2
√
m).

Proof. From Lemma V.5 we know the structure of the group elements corresponding

to the finite branch points. For each element, its action on {(a, b)|a, b ∈ {1, ...,
√
m}}

yields an element in Sm, whose set of cycle lengths equals to set of ramification indices

of the corresponding branch point. The class of ξ yields (1
√
m2

m−
√
m

2 ); the class of

(1
√
m−221 × 1

√
m)ξ yields (1

√
m−22

(
√
m−2)(

√
m−3)

2 4
√
m−1); the class of (1

√
m−221)× (1

√
m)

and (1
√
m) × (1

√
m−221) both yield (1m−2

√
m2
√
m). The lemma then directly follows

from Lemma V.5.
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In the following lemma, we study the case when Mon(L) = S√m o S2.

Lemma VII.10. The monodromy group Mon(L) cannot be the wreath product S√m o

S2 where deg(L) = m is a square.

Proof. Firstly we rule out all cases in Table 7.2 with index 3 or 6, since by Lemma

VII.9, the finite branch points of L cannot have ramification index 3 or 6.

Secondly when there are two finite branch points, they must correspond to ξ and

((1
√
m−221) × (1

√
m))ξ, so there are 2

√
m − 2 many 1’s,

√
m − 1 many 4’s. In the

following cases, we can get the prescribed ramification types:

1. Case 6 with m = 9. There are one (1323) at u = 2 and one (1142) at u = −2

and gxv = 1. This case gxy > 1 since the place in K(u, v) lying over u = −2 is

unramified in K(y, u) but ramified in K(x, v).

2. Case 4 with m = 4. There are one (41) at u = 2, one (1221) at u 6= ±2 and

gxv = 1. This case gxy > 1 for the same reason as the case above.

3. Case 2 with m = 4. There are one (41) at u = 2, one (1221) at u = −2 and

gxv = 0. This case k = 2, and either gxy = 1 if the top square irreducible, or

gxy = 0 for both factors if the top square reducible. However, one can check in

this case the genuine Laurent polynomial L has the form L = −T2 ◦ (X − 1 +

1/(4X)) ◦ (cX or c/X) for some c ∈ K∗, so L is decomposable, contradiction.

contradicts

Thirdly when there are more than two branch points, there must be three, cor-

responding to two ξ and one (1
√
m−221)× (1

√
m) or (1

√
m)× (1

√
m−221), so there are

two (1
√
m2

m−
√
m

2 ) and one (1m−2
√
m2
√
m); in total there are m many 1’s and m many

2’s. In the following cases, we can get the prescribed ramification types:
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1. Case 4 with m = 4 and gxv = 1. There are one (22) at u = α1 and two (1221)

at α2, α3. Either α1 6= ±2 and {α2, α3} = {2,−2}, or α1 ∈ {2,−2} and α2, α3

both 6= ±2. In the first case, since it is impossible that there are places in

K(u, v) lying over u = α1 and v = α1, one of the places lying over u = α1

must be ramified in K(x, v) but unramified in K(y, u) and then gxy > 1. In the

second case, any place lying over u = α2 must ramified in K(x, v) but have an

unramified place in K(y, u) lying over it, so gxy > 1.

2. Case 1 with m = 4 and gxv = 0. There are one (1221) at u 6= ±2 and

{(1221), (22)} at u = ±2. This case k = 2, gxy = 0, 1 if the top square is

irreducible and gxy = 0 for both factors if the top square is reducible. However,

by Lemma III.20 any genuine Laurent polynomial of the prescribed ramification

is decomposable, so this case cannot happen.

Lemma VII.11. Let P be a nonconstant polynomial, and let L be an indecomposable

genuine Laurent polynomial. Let x, y be transcendental over K, and suppose that

u := L(x) and v := L(y) satisfy t = P (u) = P (v). If If [K(x, v) : K(x)] = [K(u, v) :

K(u)] = [K(u, y) : K(y)] = 2 and both K(u, y) and K(x, v) have genus at most 1, and

[K(x, y) : K(x, v)] < [K(u, y) : K(u, v)], then Mon(L) can only be Sm (m 6= 6) or Am

(m 6= 6) or S√m o S2.

Proof. Theorem V.2 shows that an indecomposable degree-m genuine complex Lau-

rent polynomial has monodromy group G being either Sm or Am or S√m oS2 or one of

35 small groups which can only occur for certain values of m which are all at most 40.

In some cases Theorem V.2 also gives the information about the orders of the inertia

groups (in the Galois closure) at points over each branch point of K(x)/K(L(x)).
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We use a computer program to determine all these finite groups, for each of them

(1) which subgroups of G can be a one-point stabilizer when G is monodromy

group of an indecomposable Laurent polynomial of the specified degree with

the specified orders of inertia groups?

(2) if L is a Laurent polynomial corresponding to G, and u is transcendental over K,

then for every v not equal to u for which L(u) = L(v), what is [K(u, v) : K(u)],

what is the Galois group of the Galois closure of K(u, v)/K(u), what are the

degrees of the intermediate fields between K(u, v) and K(u), for each such field

what is its ramification over K(u) and what is the Galois group of its Galois

closure over K(u), and what are the possible ramification types of K(u)/K(L(u))

and the possible ramification types of K(u, v)/K(u) ?

(3) if H is an index-2 subgroup of G, can H be imprimitive? If so, what are the

sizes of the groups between H and G ?

We first build the list of groups which match the data in items 1 and 3 of Theorem

V.2, where when convenient we assume that G is primitive. We get one group from

each case, except for C4
2 o S5 (in degree 16) which yields two groups.

We then compute all faithful primitive permutation representations of the pre-

scribed degree for each group in the list– there is exactly one such representation for

each isomorphism class of groups in the list, except for C4
2 o S5 which yields two.

We then check that if L(X) is a degree-6 Laurent polynomial L with monodromy

group S6 or A6 for which there is a polynomial P (X) and transcendentals x, y over

K such that u := L(x) and v := L(y) satisfy P (u) = P (v) and [K(x, v) : K(x)] =

[K(u, v) : K(u)] = [K(u, y) : K(y)] = 2 and both K(u, y) and K(x, v) have genus at

most 1, then [K(x, y) : K(x, v)] = 6. By the argument we used for other Sn’s and
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An’s, we just need to deal with the case that both K(x, v)/K(u, v) and K(u, y)/K(u, v)

have ramification (21, 14), (21, 14), (22, 12) (but where the branch points might not

be listed in the same order, that is, the (22, 12) point for one extension does not

need to be the (22, 12) point for the other extension). Note that the existence of a

2-cycle in the monodromy group forces the group to be S6 rather than A6. Now,

deal with this case by showing that any point of K(u, v) which has ramification

type (2, 14) in K(x, v)/K(u, v) would have ramification type (23) in K(u, y)/K(y) if

Gal(Ω/K(u, y)) were not conjugate to Gal(Ω/K(x, v)), where Ω is the Galois closure

of K(u, y)/K(u, v).

We next check that none of the groups on the list can occur for an indecomposable

Laurent polynomial L such that there are transcendentals x, v over K such that

u := L(x) satisfies [K(x, v) : K(x)] = [K(u, v) : K(u)] = 2 and K(u, v)/K(u) is

unramified over u =∞ and K(x, v) has genus 0 or 1.

Proposition VII.12. If the top square is reducible, then K(x, v) and K(u, y) are

isomorphic field extensions of K(u, v). Thus any place in K(u, v) has the same ram-

ification type in K(x, v) and K(u, y).

Proof. By Lemma VII.11, Mon(L) can only possibly be Sm (m 6= 6) or Am (m 6= 6)

or S√m o S2 where m = deg(L). The wreath product case is ruled out in Lemma

VII.10.

Now Mon(L) is either Sm or Am where m 6= 6. Since [K(u, v) : K(u)] = 2, we

know the Galois group of K(x, v)/K(u, v) is either Mon(L) or an index-2 subgroup

of Mon(L), but Sm or Am does not have index-2 subgroups, so the Galois group of

K(x, v)/K(u, v) is also Sm or Am where m 6= 6. The Galois group of K(x, v)/K(u, v)

implies this is a minimal extension, and by symmetry, so is K(y, u)/K(u, v). If the

top square is reducible, then by Theorem III.15, K(x, v) and K(u, y) must have the



88

same Galois closure, and then since all the index-m subgroups of Sm (respectively,

Am) are conjugate, it follows K(x, v) and K(u, y) are isomorphic field extensions over

K(u, v), which implies any place in K(uv) has the same ramification type in K(x, v)

and K(u, y).

Proposition VII.13. The top square is irreducible, and gxv = guy = 0.

Proof. Assume the top square is reducible, and we apply Proposition VII.12 to Table

7.2. We show that it is impossible that any place in K(u, v) have the same ramifica-

tion type in K(x, v) as in K(u, y), so this implies the top square is irreducible. Note

that this also implies gxv = guy = 0, since if gxv = 1, then gxy = 1 and we have no

ramification in K(x, y)/K(x, v), but then any place in K(u, v) would have the same

ramification indices in K(x, v) as in K(u, y), which is impossible.

Firstly we can rule out cases where there are no additional branch points, since in

those cases every branch point of K(x, v)/K(u, v) ramifies over K(u) and hence does

not ramify over K(v), contradiction.

Next, if there is one additional branch point but the union of the multisets is just

1’s and 2’s then we are done because the additional branch point of K(x)/K(u) is

some u = u0 which lies under two places of K(u, v), but these are the only places of

K(u, v) which ramify in K(x, v)/K(u, v) so they are also the only places of K(u, v)

which ramify in K(u, y)/K(u, v), so (since v = u0 is a branch point of K(y)/K(v))

these two places must both lie over v = u0, which is not possible.

Next, if there is one additional finite branch point and also the union of the

multisets contains a number bigger than 2, then the union of the multisets contains

a unique such number, so exactly one of the two places of K(u, v) which ramifies over

K(u) is in addition a branch point of K(x, v)/K(u, v). Call this branch point P . The

ramification type of P in K(x, v)/K(u, v) is either (311m−3) or (221m−4). But the
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other two branch points Q1, Q2 of K(u, v) both lie over the same value u = u0 and

both have ramification type (211m−2) in K(x, v)/K(u, v). Crucially, this ramification

type is different from the ramification type of K(x, v)/K(u, v) over P . Then do the

same thing for K(u, y)/K(u, v) to get that it also has three branch points, with the

same ramification types as P,Q1, Q2, and finally it follows that P must ramify over

K(v), contradiction (and also Q1,Q2 must lie over the same place of K(v), giving a

second contradiction).

The final possibility is that there are two additional finite branch points of K(x)/K(u),

which lie under four places of K(u, v). These four places are the only places of K(u, v)

which ramify in K(x, v)/K(u, v) (we are ignoring places of K(u, v) which lie over

u = ∞, but those do not matter at all because that also lie over v = ∞). Now

we have a set of four places of K(u, v) which all lie over either u = u0 or u = u1,

and since they are the only places of K(u, v) which ramify in K(x, v)/K(u, v) (except

places over u = ∞, it follows that each of these places lies over either v = u0 or

v = u1. But that is impossible for the following reasons: first if there are two places

in K(u, v) lying over u = u0 and v = u0, then when u = u0, v has a double root

v = u0, then 2u0 cos(2πr/n) = u0 + u0, but this cannot happen; second if two places

in K(u, v) lying over u = u0 (respectively u = u1) lie over v = u0 and v = v1, then we

must have 2u0 cos(2πr/n) = u0 + u1 and 2u1 cos(2πr/n) = u0 + u1, and this cannot

happen either.

By Proposition VII.13, we only need to consider the case when the top square is

irreducible and gxv = guy = 0.

Proposition VII.14. Let L be an indecomposable genuine Laurent polynomial of de-

gree m with denominator Xk, and Tn be the Chebyshev polynomial of degree n > 2. If

H(X, Y ) is an irreducible factor of genus 0 or 1 of L(X)2+L(Y )2−2L(X)L(Y ) cos(2πr/n)−
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4 sin2(2πr/n) for some 0 < r < n/2, then one of the following holds

(1) Br(L) = {−2, 2, α,∞} where each branch point has type (1121) and α2 =

2(1 + cos(2πr/n)) for some 0 < r < n/2. This case FTn(L(X), L(Y )) has

an irreducible factor L(X)2 + L(Y )2 − 2L(X)L(Y ) cos(2πr/n) − 4 sin2(2πr/n)

of genus 1.

(2) L(X) = aX+b/X+c where a, b, c ∈ K∗ and let {β1, β2} := {2
√
ab+c,−2

√
ab+c}

be the finite branch points of L. Then β1 = 2 or −2. If β2
2 6= 2(1 + cos(2πr/n))

then L(X)2 + L(Y )2 − 2L(X)L(Y ) cos(2πr/n)− 4 sin2(2πr/n) is irreducible of

genus 1; otherwise each factor of L(X)2 + L(Y )2 − 2L(X)L(Y ) cos(2πr/n) −

4 sin2(2πr/n) has genus 0.

Proof. We only consider the case when gxv = 0, so the ramification type of L can

only be the first three cases in table 7.2.

For case 2 and 3 in Table 7.2, suppose Puv over 2u has contribution in K(x, v),

then Puv must be unramified in K(y, u), since Puv is over a place in K(v) which is

unramified in K(y). Now apply Riemann-Hurwitz formula on K(x, y)/K(u, y), the

two infinity places in K(u, v) contributes m− 2 gcd(m, k) each to Riemann–Hurwitz,

the two places in K(u, v) which are ramified in K(x, v) and which are over (±2)

contributes 2m each to Riemann–Hurwitz, so the Riemann–Hurwitz formula is now

2gxy − 2 = m(−2) + 2(m− 2 gcd(m, k)) + 4m ≥ 2m > 2, so gxy > 1.

For case 1 in Table 7.2, say αu has type (211m−2) in K(x), then there is a place Puv

over αu which lies over a βv, where α 6= β, so Puv is ramified in K(x, v), but unramified

in K(u, y). Now apply Riemann-Hurwitz formula on K(x, y)/K(u, y), the two infinity

places in K(u, v) contributes m − 2 gcd(m, k) each to Riemann–Hurwitz. The two

places in K(u, v) lying over αu both have type (211m−2) in K(x, v). If both places
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are unramified in K(y, u), then they contribute 2m, so 2gxy − 2 = m(−2) + 2(m −

2 gcd(m, k)) + 2m, so gxy = m+ 1− 2 gcd(m, k). The only solution is k = m/2 and

gxy = 1. This case (α, α) is not solution to u2 +v2−2uv cos(2πr/n)−4 sin2(2πr/n) =

0, so α2 6= 2(1 + cos(2πr/n)).

If α2 = 2(1 + cos(2πr/n)), then the place in K(u, v) lying over u = α and v = α

has ramification type (1m−221) in K(x, v) and K(u, y), so the Riemann–Hurwitz is

now 2gxy − 2 = m(−2) + 2(m− 2 gcd(m, k)) + (2m− 2), so gxy = m− 2 gcd(m, k),

this case (m, k, gxy) = (3, 1, 1) or (m, k, g) = (m,m/2, 0).

However, for all the genuine Laurent polynomial we find above except the case

where (m, k) = (3, 1), all of them have ramification {(1m−221), (112
m−2

2 ), (2
m
2 )} at the

finite branch points and ((m
2

)2) at∞. By Lemma III.20 all such Laurent polynomials

are decomposable unless m = 2. Therefore we get the following cases,

(1) (m, k) = (3, 1). This case Br(L) = {−2, 2, α,∞} where all the branch points

have type (1121) and α2 = 2(1 + cos(2πr/n) for some 0 < r < n/2. This case

FTn(L(X), L(Y )) has an irreducible factor L(X)2+L(Y )2−2L(X)L(Y ) cos(2πr/n)−

4 sin2(2πr/n) of genus 1.

(2) deg(L) = 2 which has one of 2 and−2 as a branch point. This case all irreducible

factors of L(X)2 + L(Y )2 − 2L(X)L(Y ) cos(2πr/n)− 4 sin2(2πr/n) have genus

at most 1. Let L(X) = aX + b/X + c, then the two finite branch points are

{±2
√
ab + c}. This set is not {±2} if and only if c 6= 0. If L(X)2 + L(Y )2 −

2L(X)L(Y ) cos(2πr/n)− 4 sin2(2πr/n) has genus 1, then it must be irreducible

and α2 6= 2(1 + cos(2πr/n)) where α is the finite branch point not equal to ±2;

in all other cases all of its irreducible factor(s) have genus 0.



92

7.3 Proof of Theorem VII.1

Proof of Theorem VII.1. We build the function field tower as in Figure 7.1. Since

gxy ≤ 1, we must have guv ≤ 1, thus K(u, v) corresponds to an irreducible factor of

FP (X, Y ) of genus at most 1. All such polynomials P are given in Theorem VII.3.

In the case where P is a power of another polynomial, say P = P n
1 where n > 1, we

choose the integer n as large as possible, then

FP (L(X), L(Y )) = FP1(L(X), L(Y )) ·
∏

cn=1,c 6=1

(P1(L(X))− cP1(L(Y ))).

If H(X, Y ) is a factor of one of the polynomials P1(L(X))− cP1(L(Y )), then it falls

into case 5 in the theorem. Therefore from now on we can assume P is not a power

of another polynomial, and thus P can only be on of the polynomials in Table 7.1,

Tn or Xr(X − 1)s where gcd(r, s) = 1 and r + s > 3 (When r + s = 2 or r + s = 3,

Xr(X − 1)s is T2 or T3 up to composition with linear polynomials at the left side

and at the right side).

If P is in Table 7.1, then in Lemma VII.5 we proved guv = 0, so P can only be

case 3 or case 10 in the table. This case is solved in Proposition VII.6, and it is case

1 in the theorem.

If P is Xr(X − 1)s where gcd(r, s) = 1 and r + s > 3, this case is solved in

Proposition VII.7, and it is case 2 in the theorem.

If P is Tn, then all factors of FP (X, Y ) are quadratic except X + Y when n is

even. Now H(X, Y ) may be from L(X)+L(Y ) (using the factor X+Y of FP (X, Y ))

and this is case 4. We then just need to consider the case where K(u, v) corresponds

a quadratic factor of FP (X, Y ).

In Lemma VII.10, we show that the monodromy group of L cannot be the wreath

product. Then we consider the monodromy groups listed in Theorem V.2 (for Sm oS2,
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just consider the case deg(L) = m2 > 4). In Proposition VII.13, using these groups,

we show that the top square must be irreducible and gxv = guy = 0, then we solve

the case in Proposition VII.14. This case is case 3(b) in the theorem.



CHAPTER VIII

Decomposable case: polynomial composed with genuine
Laurent polynomial: Part II

In this chapter we assume the genuine Laurent polynomial f is decomposable, in

the form that f = P ◦L ◦Xm, where P ∈ K[X] is an arbitrary polynomial of degree

> 1, L ∈ K[X,X−1] is an indecomposable genuine Laurent polynomial and m ≥ 2

is a positive integer. For f = P ◦ L ◦Xm, f(X)−f(Y )
X−Y = P◦L(Xm)−P◦L(Ym)

Xm−Ym
Xm−Ym
X−Y and

in this chapter we study when FP◦L(Xm, Y m) has a genus zero or one irreducible

factor. Note that FP◦L(X, Y ) necessarily has a genus zero or one irreducible factor,

so that the pair (P,L) must be listed in Theorem VII.1.

Proposition VIII.1. Let P ∈ K[X] be any polynomial of degree at least 2, let

L ∈ K(X) be any genuine Laurent polynomial and let m be an integer at least 2. If

FP◦L(Xm, Y m) has an irreducible factor H(X, Y ) of genus at most one, then one of

the following holds:

1. P = Tn where n is even and FL,−1(Xm, Y m) has an irreducible factor of genus

0 or 1. This case H(X, Y ) is this irreducible factor.

2. P = P n
1 where n > 1 and H(X, Y ) is a factor of P1(L(Xm)) − cP1(L(Y m))

where c 6= 1 is a n-th root of unity.

94
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Proof. Note that FP (X, Y ) must have a genus zero or one factor, so P ◦ L is one of

those in Theorem VII.1. Let r be a root of Xm − x and s be a root of Xm − y, then

we want to know when K(r, s) has genus zero or one.

For the first two cases in Theorem VII.1, since deg(L) = 2 we know that x = 0

and x =∞ are both unramified in K(x, y) but totally ramified in K(r), so [K(r, y) :

K(x, y)] = [K(r) : K(x)]. If gxy = 1 then gry must be bigger than 1. If gxv = 0 then

the case is case 2(a) in Theorem VII.1, here [K(x, y) : K(x)] = [K(x, v) : K(x)] = 3,

so there are 6 unramified places in K(x, y) lying over x = 0 or x =∞. By Riemann–

Hurwitz, 2gry − 2 = (−2)m+ 6(m− 1) = 4m− 6 so gry = 2m− 2 > 1. Therefore we

get no examples from the first two cases of Theorem VII.1.

For case 3 in Theorem VII.1 K(x, y) has genus 1 and there is at least one place

in K(x, y) which is unramified over x = 0 or x = ∞, so [K(r, y) : K(x, y)] = [K(r) :

K(x)] and therefore grs ≥ gry > 1.



CHAPTER IX

The case that f(X)− cf(Y ) is irreducible

In this chapter and the next chapter we study the problem: when can Ff,c(X, Y )

(the numerator of f(X) − cf(Y )) have a genus 0 or 1 component, where f(X) ∈

K[X,X−1] is a genuine Laurent polynomial and c ∈ K∗ \ {1}. This is essential since

we reduced some cases in Theorem VII.1 to this problem.

In this chapter we address this problem for the case that f(X) − cf(Y ) is ir-

reducible. We use the Riemann-Hurwitz formula to get the possible ramification

types of f , and find the matching patterns between the branch points of f and cf

that makes Ff,c(X, Y ) have genus at most 1. Note that here f is not required to be

indecomposable.

This chapter is organized in the following way. In the first section we establish

the Riemann–Hurwitz formula and define what we mean by reduced sequence and

matching sequence. In the next section we state Theorem IX.6, the main result of

this chapter, which gives all the genuine Laurent polynomials f for which Ff,c(X, Y )

is irreducible of genus at most 1. In the subsequent sections we prove Theorem IX.6.

9.1 Riemann-Hurwitz genus formula and reduced sequences

First of all we introduce some notations, formulas and inequalities related to the

genus of f(X)− cf(Y ).

96
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Let Λc = Λ(f) ∪ Λ(cf), in other words, the union of the finite branch points of f

and cf . Let n := deg(f) and g be the genus of Ff,c(X, Y ), then we have the following

formula

(9.1)
∑
λ∈Λc

∑
f(a)=cf(b)=λ

(ef (a)− gcd(ef (a), ecf (b))) = n+ 2 gcd(n, k) + 2g− 2.

By adding this formula to the corresponding formula in which the roles of f and

cf are switched, we obtain the following formula.

(9.2)
∑
λ∈Λc

∑
f(a)=cf(b)=λ

(ef (a)+ecf (b)−2 gcd(ef (a), ecf (b))) = 2n+4 gcd(n, k)+4g−4.

Moreover, we have

(9.3)
∑
λ∈Λ(f)

∑
f(a)=λ

(ef (a)− 1) =
∑

λ∈Λ(cf)

∑
cf(b)=λ

(ecf (b)− 1) = n.

All of these formulas are derived from Riemann-Hurwitz formula (See the prelim-

inaries in chapter III for the background). A simple example is provided in Example

IX.2 to show how Equation 9.1 works (Equation 9.2 will work the same way). We

will define matching sequence and reduced sequence later, where the idea behind is

illustrated in Example IX.2.

Definition IX.1. Given two places P, P ′, with ramification type Q and Q′ respec-

tively, define

C(P, P ′) := C(Q,Q′) :=
∑

index a∈Q
index b∈Q′

(a− gcd(a, b)).

Example IX.2. Let c 6= 1 be a 3-rd root of unity, and suppose f(X) is ramified

at λ = 1. On the left side of Equation 9.1, we will consider λ, λ/c, λ/c2, . . . until it

becomes 1 again, in this case, we consider 1, 1/c, 1/c2, 1/c3 = 1.
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λ ef (a)’s ecf (b)’s

1 ramification indices of f(X) = 1 ramification indices of f(X) = 1/c

1/c ramification indices of f(X) = 1/c ramification indices of f(X) = 1/c2

1/c2 ramification indices of f(X) = 1/c2 ramification indices of f(X) = 1/c3 = 1

Let P0, P1, P2 be the places corresponding to 1, 1/c, 1/c2 respectively, andQ0, Q1, Q2

be the ramification indices of f(X) = 1, 1/c, 1/c2. The matching in the table con-

tributes C(Q0, Q1) + C(Q1, Q2) + C(Q2, Q0) to the left side of Equation 9.1.

Let us furthermore consider the case that 1/c and 1/c2 are both unramified for

f(X), so Q1 = Q2 = (1n). In this case, C(Q0, (1
n)) + C((1n), (1n)) + C((1n), Q0) =

C(Q0, (1
n)) + C((1n), Q0) = C(Q0, Q2) + C(Q2, Q0) since C((1n), (1n)) = 0. Note

that this means we can drop Q1 and replace every remaining Q1 in the sum with Q2.

Now only Q0, Q2 are left, and for these two places, either f or cf is ramified. At the

place Q1 we dropped, neither f nor cf is ramified.

Example IX.2 illustrates the procedure to get the left side of Equation 9.1, and

the idea of the definition of matching sequence and reduced sequence, defined as

follows.

Definition IX.3 (Matching sequence/reduced sequence). For any λ ∈ K∗, we get

the sequence λ, λ/c, λ/c2, . . . , λ/cn (where n is the smallest positive integer such that

cn = 1). Let Qi be the ramification type of f(X) = λ/ci, then the above sequence

yields the sequence of ramification types S := Q0 → Q1 → . . .→ Qn−1 → Qn = Q0.

We call this sequence the Matching sequence, and say the place Pi corresponding

to λ/ci is the Underlying place of Qi. The matching sequence contributes C(S) :=∑n−1
i=0 C(Qi, Qi+1) to the left side of Equation 9.1.

If the matching sequence has consecutive (1n)’s, among them we keep the last



99

(1n) and its underlying place, and remove the remaining (1n)’s and their underlying

places. The resulting sequence will have no consecutive (1n)’s, and we call this

sequence Reduced sequence of S, write as Sred.

Note that in this reduction process, what we in fact did is we kept all places where

either f or cf is ramified, and removed all places where neither f nor cf is ramified,

so all the places in the reduced sequence are from Λc.

Moreover, we have C(S) = C(Sred) since C((1n), (1n)) = 0.

The following lemma will be useful to estimate C(Qi, Qi+1).

Lemma IX.4. C(Q,Q′) ≥ A(Q)B(Q′) where A(Q) = n − # of indices in Q, and

B(Q) = # of 1’s in Q.

Proof. Suppose Q has ramification indices (ai)’s, and Q′ has ramification indices

(bj)’s, then C(Q,Q′) =
∑

i

∑
j(ai − gcd(ai, nj)) ≥

∑
i

∑
bj=1(ai − 1) = A(Q)B(Q′),

since
∑

i(ai − 1) = n by Riemann-Hurwitz.

9.2 Main result: Classification of f for which Ff,c(X, Y ) is irreducible of
genus at most 1

Let P (λ) be the place in K(t) corresponding to λ. Let S(f, c) = {P (ciλ)|λ ∈

Λ(f), i ≥ 0}, then S(f, c) can be divided into several disjoint sets of the form {ciλ|i ≥

0}, and for each set , one can form a matching sequence. Form one matching sequence

for each set, and say all the sequences we get are S1, . . . ,Sm, then Equation 9.1

becomes

2n ≥ n+ 2 gcd(n, k) + 2g− 2 =
m∑
i=1

C(Si) =
m∑
i=1

C(Sred
i )

If we define S−1
i to be the reversed sequence of Si, then Equation 9.2 becomes

4n ≥ 2n+ 4 gcd(n, k) + 4g− 4 =
m∑
i=1

(C(Si) +C(S−1
i )) =

m∑
i=1

(C(Sredi ) +C((S−1
i )red))

Why do we define a reduced sequence? It is in fact a very natural definition.
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1. {λ|P (λ) is in a reduced sequence} = Λc = Λ(f) ∪ Λ(cf). This means the re-

duced sequences are formed by the places in Λc, and all the reduced sequences

use all the places in Λc.

2. Solving Equation 9.2, Equation 9.3 and Equation 9.1 is the same as finding all

the reduced sequences.

Why do we use a matching sequence, if what we want is reduced sequence?

1. It naturally arises in the thinking process, as in Example IX.2.

2. Reduced sequence will not tell us the order of c, if the length is l, then the order

of c is at least l − 1. In contrast, a matching sequence has length either 1 (if

the underlying place is P (0)), or n+ 1 (where n is the order of c)

Remark IX.5. From now on, all sequences are considered REDUCED.

Our goal here is to get all possible configurations of the reduced sequences under

the constraint of Equation 9.1, Equation 9.2 and Equation 9.3. A few inequalities

(Lemma III.22, Lemma III.23 and Lemma III.24) from the preliminaries in Chapter

III will be used to estimate the size of |Λc|.

In this chapter, we prove Theorem IX.6. For the definition of strongly equivalent,

the reader can refer to Definition III.25.

Theorem IX.6. Let f(X) ∈ K[X,X−1] be a genuine Laurent polynomial of degree

n with denominator Xk, and and c ∈ K \ {1}. If Ff,c(X, Y ) is irreducible with genus

0 or 1, then f satisfies one of the following.

(1) f is strongly equivalent to (X+1)n

Xk where n > k, gcd(n, k) = 1, and c 6= 1. This

case Ff,c(X, Y ) has genus 0.

(2) f has degree at most 6 and (f, c) satisfies one row of conditions in Table 9.1.
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Table 9.1: Ff,c is irreducible of genus at most 1

item n k g
order
of c reduced sequences

(1) 2 1 0 ≥ 3 (12)→ (21)→ (21)→ (12)

(2) 2 1 1
≥ 2
≥ 5

(12)↔ (21), (12)↔ (21) or
(12)→ (21)→ (12)→ (21)→ (12)

(3) 3 1, 2 0 4 (1121)→ (1121)→ (1121)→ (1121)

(4) 3 1, 2 1
≥ 5
≥ 4
2

(13)→ (1121)→ (1121)→ (1121)→ (13) or
(13)→ (1121)→ (1121)→ (13), (1121) or
(13)↔ (1121), (1121)↔ (1121)

(5) 4 1, 3 0 2 (1221)↔ (1221), (22)
(6) 4 1, 3 1 ≥ 2 P1 = P2 = (1221), P3 = (22), any matching pattern
(7) 4 1, 3 1 ≥ 4 (14)→ (1221)→ (1221)→ (14), (22)
(8) 4 1, 3 1 2 (1221)↔ (1221), (1131)
(9) 4 2 0 2 (1221)↔ (1221), (1131)
(10) 4 2 0 ≥ 4 (1221)→ (1221)→ (22)→ (1221)
(11) 4 2 1 2 (1221)↔ (41)
(12) 4 2 1 2 (1131)↔ (22)
(13) 4 2 1 four (1221), any matching pattern

(14) 4 2 1
2
≥ 5

(14)↔ (1221), (1221)↔ (22) or
(14)→ (1221)→ (22)→ (1221)→ (14)

(15) 4 2 1 ≥ 4 (14)→ (1221)→ (1221)→ (14), (1131)
(16) 6 1, 5 1 2 (32), (1421)↔ (1421)
(17) 6 2, 4 0 2 (32), (1421)↔ (1421)
(18) 6 2, 4 1 2 (1421), (23)↔ (1222)
(19) 6 3 0 2 (2141), (1421)↔ (1421)
(20) 6 3 1 2 (1151), (1421)↔ (1421)
(21) 6 3 1 4 (1421)→ (1421)→ (1421)→ (1421), (23)
(22) 6 3 1 ≥ 2 three (1222), any matching pattern
(23) 6 3 1 ≥ 4 (1n)→ (1n−221)→ (1n−221)→ (1n), (2141)

1. A sequence Q0 ↔ Q1 is the same as Q0 → Q1 → Q0.

2. A single point Q is the same as Q→ Q and Q is the ramification of f at branch point 0.

3. If there is a reduced sequence with l ≥ 2 many arrows but without (1n), then c has order l;
if this reduced sequence has (1n) then the order of c is at least l or c is not a root of unity.

9.3 The case |Λc|=2

Lemma IX.7. If f(X) + f(Y ) = 0 is irreducible with genus 0 or 1, then f−1(0) has

at most 4 unramified preimages.

Proof. Suppose f−1(0) has m many unramified preimages, P1, . . . , Pm. Since the field

K(x, y) is preserved by the automorphism which swaps x and y, let K be the subfield

of K(x, y) fixed by this automorphism, then [K(x, y) : K] = 2.
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There are at least m places in K(x, y) which is totally ramified with index 2 over

K. Apply Riemann–Hurwitz formula to K(x, y)/K, it says 0 ≥ 2g(K(x, y)) − 2 ≥

2(g(K)− 2) +m, so g(K) ≤ 2− m
2

, this implies m ≤ 4.

Say Λc = {P,Q}, we must have c = −1 and Q = −P 6= 0, therefore f−1(0) has n

many unramified preimages, by the lemma, we have n ≤ 4.

When n ≤ 4, by a computer program, the following are all the possibilities:

• {P,−P,∞} has type {(1131), (1131), (1131)}, n = 4, k = 1, g = 0

• {P,−P,∞} has type {(1131), (22), (22)}, n = 4, k = 2, g = 1

• {P,−P,∞} has type {(22), (1131), (22)}, n = 4, k = 2, g = 1

• {P,−P,∞} has type {(1221), (41), (22)}, n = 4, k = 2, g = 1

9.4 The case |Λc| ≥ 3

Let |Λc| = m, and Λc = {λ1, . . . , λm}. Let Pi = P (λi), and let Qi be the ram-

ification type of f(X) = λi, then we define A(Qi) := A(P (λi)) := Ai := n minus

the number of distinct places over Pi, and B(Qi) := B(Pi) := Bi := the number of

unramified places, in other words, the number of 1’s in Qi.

Let A := min{A1, . . . , Am}, and suppose A = Am. For any place Pi, we can form

a unique reduced sequence, and say the underlying places are P
(0)
i = Pi, P

(1)
i , . . .,

P
(l−1)
i , P

(l)
i = P

(0)
i in order, and let A

(j)
i := A(P

(j)
i ), B

(j)
i := B(P

(j)
i ).

Lemma IX.8. One of the following holds

1. A = Am = 1 and m = 3

2. A = Am = 1 and m = 4

3. A = Am = 2 and m = 3
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4. A = Am = 0 and A
(1)
m = 1 or 2

Proof. We have Ai ≥ n−Bi
2

, so n =
∑
Ai ≥ mn

2
−

∑
Bi

2
, and this implies

∑
Bi ≥

(m− 2)n. Moreover, the genus formula and Lemma IX.4 imply 2n ≥
∑
BiA

(1)
i .

Since A is the minimum, it follows 2n ≥
∑
BiA

(1)
i ≥ A

∑
Bi ≥ A(m − 2)n,

therefore either A = 1,m = 3, 4, or A = 2,m = 3, or A = 0.

If A = 0, by assumption, A = Am, so Am = 0, Bm = n. This implies Pm is

unramified, so P
(1)
m must be ramified, and A

(1)
m > 0. Now the genus formula says

2n ≥ BmA
(1)
m = nA

(1)
m , so A

(1)
m must be 1 or 2.

Now we consider the possible configurations of the reduced sequence Sm, which

starts and ends at Pm. We will use the following lemma.

Lemma IX.9. Suppose P has type (. . . ai . . .) and gcdi(ai) = a > 1. Then A(P ) ≥

n/2, and there is at most one such P in Λc. Moreover, C(P, P ) = 0 if all ai = a,

and C(P, P ) ≥ n
3

otherwise.

Proof. P has at most n/a many distinct places lying over it in K(X), and a is at most

n/2, so A(P ) ≥ n − n/a ≥ n/2. Due to the fact that
∑
Pi = n, there are at most

two such P ’s, and if there are two, they are both of type ((n
2
)2), and no other points.

Now the genus formula says n+ 2 gcd(n, k) + 2g− 2 = 0 since C(((n
2
)2), ((n

2
)2)) = 0.

Clearly it has no solution, so there is at most one such P .

For the second part, see the proof of Lemma III.23.

Lemma IX.10. If S be a reduced sequence of length l ≥ 2, then

C(S) + C(S−1) ≥ l(n− 1).
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Proof. Let . . .→ P → Q→ . . . be a subsequence of S, then . . .→ Q→ P → . . . is a

subsequence of S−1. Note that at most one of P and Q have non-trivial gcd since the

sequence S contains at most one point whose ramification indices have non-trivial

gcd. Now by Lemma III.22 and Lemma III.24, we have that C(P,Q) + C(Q,P ) ≥

n− 1. Then the lemma follows from the condition that S has length l.

9.4.1 The case A = Am = 1, m = 4, and the case A = Am = 2, m = 3

Note that in the proof of Lemma IX.8, we have three inequalities Ai ≥ n−Bi
2

,∑
Bi ≥ (m − 2)n and 2n ≥

∑
BiA

(1)
i ≥ A

∑
Bi ≥ A(m − 2)n. In the two cases

concerned, the last inequality becomes equality, so the first two are also equalities.

The first equality Ai = n−Bi
2

implies each Pi can only have 1’s and 2’s.

The third equality implies that, for each i, either A
(1)
i = A or Bi = 0. If Bi = 0,

then Ai = n−Bi
2

= n
2
, so Pi has type (2

n
2 ), and by lemma 6, there is at most one such

point. If A
(1)
i = A = 1, then P

(1)
i has type (1n−221); if A

(1)
i = A = 2, then P

(1)
i has

type (1n−422).

The case A = Am = 1, m = 4

If there is no (2
n
2 ), then there are four (1n−221) points, so n =

∑
Ai = 3.

C((1n−221), (1n)) = n, C((1n−221), (1n−221)) = n − 2. Then 2n ≥ n + 2 gcd(n, k) +

2g− 2 = 4(n− 2), we have n ≤ 4. One can check the following solutions,

(n, k, g) = (4, 2, 1), four (1221), any matching pattern

If there is one (2
n
2 ) (say it is P1), then the other three are all (1n−221) (say they

are P2, P3, P4). In this case,
∑
Ai = n

2
+ 3 = n, so n = 6.

If P1 does not match itself, then 6 + 2 gcd(6, k) + 2g− 2 = 20, no solution. If P1

matches itself, then 6 + 2 gcd(6, k) + 2g− 2 = 12, we get one solution.

(n, k, g) = (6, 3, 1), P1 = (23), P2 = P3 = P4 = (1421), P2 → P3 → P4 → P2 and P1
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The case A = Am = 2, m = 3

If there is no (2
n
2 ), then there are three (1n−422) points, so n =

∑
Ai = 6. This

case 6 + 2 gcd(6, k) + 2g− 2 = 12. We get one solution.

(n, k, g) = (6, 3, 1), P1 = P2 = P3 = (1222), any matching pattern

If there is one (2
n
2 ), then the rest are two (1n−422), so n =

∑
Ai = n

2
+ 4, so

n = 8. If the (2
n
2 ) point does not match itself, then 8 + 2 gcd(8, k) + 2g− 2 = 24, no

solution. If the (2
n
2 ) point matches itself, then 8 + 2 gcd(8, k) + 2g− 2 = 16. We get

one solution:

(n, k, g) = (8, 4, 1), P1 = (24), P2 = P3 = (1422), P2 ↔ P3 and P1

9.4.2 The case A = Am = 0, A
(1)
m = 1, with n ≥ 5

In this case, Pm has type (1n), P
(1)
m has type (1n−221), so C(Pm, P

(1)
m ) = n. Now

the genus formula says 2n ≥ n+C(P
(1)
m , P

(2)
m ) ≥ n+(n−2)A

(2)
m . This implies A

(2)
m = 0

or 1.

The case A
(2)
m = 1

Then P
(2)
m has type (1n−221) and it cannot equal Pm, so there is P

(3)
m . Now the

genus formula says 2 ≥ (n − 2)A
(3)
m , now n ≥ 5 implies A

(3)
m = 0. If P

(3)
m = Pm, we

get the following matching sequence

Sm = Pm → P (1)
m → P (2)

m → Pm, (1
n)→ (1n−221)→ (1n−221)→ (1n)

∑
Pi∈Sm Ai = 2, we still need n− 2 more. C(Sm) = 2n− 2.

Now Λc−Sm has more points, so there is at least one more sequence, the sequence

could be

1. Q, of type (a1(n− a)1)
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2. Q↔ (1n)

3. Q0 → Q1 → . . . Ql → Q0, where l ≥ 2 and at most one (1n)

For case 1, the genus formula is n+ 2 gcd(n, k) + 2g−2 = 2n−2 +n−2 gcd(a, n),

so g = n− gcd(a, n)− gcd(k, n). If one of a, k is not n/2, then g ≥ n− n
2
− n

3
= n

6
.

We get one example,

n = 6, k = 3, g = 1, (1n)→ (1n−221)→ (1n−221)→ (1n), (2141)

If a, k are both n
2
, then we have the following example

n even, n ≥ 6, k =
n

2
, g = 0, (1n)→ (1n−221)→ (1n−221)→ (1n), ((

n

2
)2)

For case 2, C(Q, (1n)) + C((1n), Q) = n(n− 2) ≥ 5 · 3 = 15 is too much.

For case 3, by Lemma IX.10, C(SQ) +C(S−1
Q ) ≥ (l+ 1)(n− 1) ≥ 3n− 3. We also

have C(Sm) + C(S−1
m ) = 4n− 4, so the genus formula

4n ≥ C(Sm) + C(S−1
m ) + C(SQ) + C(S−1

Q ) ≥ 7n− 7

which violates the assumption that n ≥ 5.

If P
(3)
m 6= Pm, then we must have P

(4)
m , and now C(Sm) ≥ 2n− 2 +nA

(4)
m ≥ 3n− 2,

which is too big for the genus formula, so this cannot happen.

The case A
(2)
m = 0

Then P
(2)
m has type (1n), and it is possible that P

(2)
m = Pm.

If P
(2)
m 6= Pm, then there must be P

(3)
m , and A

(3)
m > 0 (unramified). Now the genus

formula says 2n ≥ n+ 0 + nA
(3)
m , this implies A

(3)
m = 1. We also have P

(4)
m , but since

there is no room for the genus formula, P
(4)
m must equal Pm. We get a sequence

(1n) → (1n−221) → (1n) → (1n−221) → (1n). For these points,
∑
Ai = 2, we still

need n− 2, and we need points whose ramification indices are all the same to avoid
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contribution. Since we can only have one such point, we know this point must be

((n
2
)2). So we get one solution.

n even, n ≥ 6, k =
n

2
, g = 1, ((

n

2
)2), (1n)→ (1n−221)→ (1n)→ (1n−221)→ (1n)

If P
(2)
m = Pm.

Now for Sm,
∑
Ai = 1, we still need n− 1. C(Sm) = C(S−1

m ) = n. There are two

cases.

Case 1: If all the remaining sequences do not have unramified points.

Let S be any such sequence of length l > 1. Since 4n ≥ 2n + C(Sm) + C(S−1
m ) ≥

2n+ l(n−1) and n ≥ 5, it follows l = 2. Thus c = −1. Say the sequence is Q↔ −Q,

then 2n ≥ n+2 gcd(n, k)+2g−2 = n+C(Q,−Q)+C(−Q,Q) ≥ 2n−1, so we must

have n = 2k, and C(Q,−Q) +C(−Q,Q) = n− 1 or n. Since ±Q are both ramified,

and n is odd, by Lemma III.22 and lemma III.24, it follows Q has type (2
n
2 ), and

−Q has type (122
n−2
2 ). Now A(Q) + A(−Q) = n − 1, which is exactly needed. We

have one solution.

n even , n ≥ 6, k =
n

2
, g = 1, c = −1, (2

n
2 )↔ (122

n−2
2 ), (1n)↔ (1n−221)

If no such sequence has length 2, then each sequence must be a fixed point, so we

can only have one such sequence. Since we still need n− 1 for
∑
Ai, this fixed point

should be (n1). Now the genus formula is n+2 gcd(n, k)+2g−2 = C(Sm)+0 = n+0,

note it is true for n ≥ 2, so the solution is

n ≥ 2, gcd(n, k) = 1, g = 0, (1n)↔ (1n−221), (n1)

Case 2: If at least one of the remaining sequences has unramified points.

Let S = Q0 = (1n) → Q1 → . . . be such a sequence. This sequence can contribute
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at most n to the genus formual, so C(S) ≤ n. This forces the sequence to be

(1n)↔ (1n−221), which contributes exactly n.

Now for the remaining sequences, we need n − 2 for
∑
Ai, and no contribution

to genus formula. But this implies all points must have the same ((n
a
)a) type. We

can only have one such point, and since A = n − a = n − 2, a = 2 and the point is

((n
2
)2). This point must match itself. We get one solution.

n even, n ≥ 6, k =
n

2
, g = 1, ((

n

2
)2), (1n)↔ (1n−221), (1n−221)↔ (1n)

9.4.3 The case A = Am = 1, m = 3, with n ≥ 7

Note that A3 = 1 implies P3 has type (1n−221), since P3 has n− 2 ≥ 5 unramified

preimages, P3 6= cP3 (otherwise c = −1, P3 = 0). Therefore P
(1)
3 6= P3. The genus

formula says 2n ≥ (n − 2)A
(1)
3 , and n ≥ 7 implies A

(1)
3 ≤ 2. Since A

(1)
3 ≥ A = 1, it

can only be 1 or 2.

The case A
(1)
3 = 1

This case P
(1)
3 has type (1n−221), now consider P

(2)
3 . The genus formula says

2n ≥ (n− 2) + (n− 2)A
(2)
3 , so A

(2)
3 = 1 (otherwise, we will have n ≤ 6). Now there

are two cases, depending on if P
(2)
3 equals P3.

If P
(2)
3 = P3, then c = −1, and the remaining point must be 0. Since A(0) = n−2,

0 must have type (a1(n − a)1), and A(0) = n − 2 gcd(n, a). Now the genus formula

becomes n + 2 gcd(n, k) + 2g − 2 = (n − 2) + (n − 2) + (n − 2 gcd(n, a)), simplify

we get 1 ≤ n − gcd(n, a) − gcd(n, k) = g + 1 ≤ 2. Note that n > 6, so n
3
> 2,

therefore we must have n > gcd(n, a) + gcd(n, k) ≥ 2
3
n. There are only a handful

cases of the pair (gcd(n, a), gcd(n, k)), which are {(n
2
, n

3
), (n

2
, n

4
), (n

2
, n

5
), (n

2
, n

6
), (n

3
, n

3
)}.

We test each one of them and solve for n, g, a, k (here n ≥ 7). The solutions are
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(n, g, a, k) = (12, 1, 6, 4), (8, 1, 4, 2). Therefore we have the following solutions.

n = 12, g = 1, c = −1, k = 4, (62), (11021)→ (11021)→ (11021)

n = 8, g = 1, c = −1, k = 4, (2161), (1621)→ (1621)→ (1621)

If P
(2)
3 6= P3, then c = ω = e

2π
3
i, then each one of P1, P2, P3 has type (1n−221), but

now
∑
Ai = 3 < n. So no solution is from this case.

The case A
(1)
3 = 2

This case P
(1)
3 has type (1n−422) or (1n−331).

In the first case, C(P3, P
(1)
3 ) = 2(n − 2), so 2n ≥ n + 2 gcd(n, k) + 2g − 2 ≥

2(n − 2) + (n − 4)A
(2)
3 , so 4 ≥ (n − 4)A

(2)
3 , since n ≥ 7 and A

(2)
3 > 0, the only

possibilities are n = 7 or 8, and A
(2)
3 = 1, but one can check n = 7 does not satisfy

the genus inequality, so n = 8.

Note now the genus inequality become equality, which means k = n/2 = 4, and we

have no contributions to the genus formula except C(P3, P
(1)
3 ) and C(P

(1)
3 , P

(2)
3 ). If

P
(2)
3 6= P3, then P

(2)
3 contributes C(P

(2)
3 , P3) = n− 2 > 0, so we must have P

(2)
3 = P3

and c = −1. The remaining point must be 0, and A(0) = n − 1 − 2 = 5, however,

C(0, 0) = 0 implies there are 2 or 4 places, so A(0) = 6 or 4, but not 5. Thus we get

no solution.

In the second case, C(P3, P
(1)
3 ) = 2(n − 2), so 2n ≥ n + 2 gcd(n, k) + 2g − 2 ≥

2(n−2) + (n−3)A
(2)
3 , so 4 ≥ (n−3)A

(2)
3 . The only possibility is n = 7 and A

(2)
3 = 1,

but one can check n = 7 does not make the genus inequality work, so no solution.

9.4.4 The remaining cases

The remaining cases are

1. A = Am = 0, A
(1)
m = 1, n ≤ 4
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2. A = Am = 1, m = 3, n ≤ 6

A = Am = 0, A
(1)
m = 1, n ≤ 4

If n = 2, then Pm = (12), P
(1)
m = (21), since

∑
Ai = n = 2, we must have

two (21)’s and at least one (12)’s. The matching pattern can only be (12) ↔ (21),

(12) ↔ (21), or (12) → (21) → (12) → (21) → (12), or (12) → (21) → (21) → (12).

Now check each possibility, we get the following solutions.

(n, k, g) = (2, 1, 1), (12)↔ (21), (12)↔ (21) or (12)→ (21)→ (12)→ (21)→ (12)

(n, k, g) = (2, 1, 0), (12)→ (21)→ (21)→ (12)

If n = 3, there are two cases.

Case 1: we have three (1121), and at least one (13). Since C((13), (1121)) = 3,

C((1121), (1121)) = 1, and the contribution 3 + 2 gcd(3, 1) + 2g − 2 is either 3 or 5,

we have the following examples.

(n, k, g) = (3, 1, 1), (13)→ (1121)→ (1121)→ (1121)→ (13) or

(13)→ (1121)→ (1121)→ (13), (1121), or (13)↔ (1121), (1121)↔ (1121)

Case 2: we have one (1121), one (31), and at least one (13). Since (13) → (1121)

already contributes 3, we can have a additional 2 or 0. Since (13)→ (31) or (1121)→

(31) contributes larger than 2, (31) should be a fixed point, we get one solution,

(n, k, g) = (3, 1, 0), (13)↔ (1121), (31), but this is a speical case of a known example.

If n = 4, then we already have two points, (14) → (1221). For the remaining

point,
∑
Ai = 3. Now there are three cases.

If it has another (14), then we must have (14) → (1221), the two (14) → (1221)

already contribute 2n to the genus formula, so k = n/2 = 2 and g = 1, and there

is no room for more contributions. Now the sum of Ai value of these four points is
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2, we need 2 more, so there is (are) more point(s). To get 0 contribution, we must

have only one additional point, and its ramification type can only be (22). Thus we

have one example.

n = 4, k = 2, g = 1, (14)↔ (1221), (14)↔ (1221), (22)

If it has a (41), then only one solution, (n, k, g) = (4, 1, 0), (14)↔ (1221), (41), but

this is a known example.

If it does not have additional (14) or (41), since A((1221)) = 1, A((1131)) =

A((22)) = 2 and the remaining points have
∑
Ai = 3, these points have the following

possibilities:

(1) three (1221). Impossible since the total contribution of all points is 10 > 2n = 8.

(2) one (1221) and one (22). All the possible pairs of (k, g) we can get are (1, 1), (2, 1), (2, 0),

we have the following examples:

(n, k, g) = (4, 2, 1), (14)↔ (1221), (1221)↔ (22) or

(14)→ (1221)→ (22)→ (1221)→ (14)

(n, k, g) = (4, 2, 0) or (4, 1, 1), (14)→ (1221)→ (1221)→ (14), (22)

(3) one (1221) and one (1131). C((1221) → (1131)) = 6, but there is room for at

most 4, so this cannot happen, so (1131) is a fixed point, this contributes 2. The

remaining three points include one (14) and two (1221), since we will not have

more fixed point, they must form the sequence (14)→ (1221)→ (1221)→ (14),

which contributes 6. Therefore total contribution is 8, this means k = 2, g = 1,

we have one example.

(n, k, g) = (4, 2, 1), (14)→ (1221)→ (1221)→ (14), (1131)
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The case A = Am = 1, m = 3, n ≤ 6

We have P3 = (1n−221), and A1+A2 = n−1, n+2 gcd(n, k)+2g−2 =contribution.

The matching pattern can only be either one point matches itself and the other two

match each other, or they form a chain (e.g. P1 → P2 → P3 → P1). Use a computer

program, we have the following solutions.

(1) (n, k, g) = (3, 1, 0), P1 = P2 = P3 = (1121), any matching pattern.

(2) (n, k, g) = (4, 1, 1) or (4, 2, 0), P1 = P2 = (1221), P3 = (1131), matching pattern,

P3 ↔ P3, P1 ↔ P2

(3) P1 = P2 = (1221), P3 = (22)

(n, k, g) = (4, 1, 0) for matching pattern P1 ↔ P2, P3

(n, k, g) = (4, 1, 1) or (4, 2, 0) for any matching pattern

(4) (n, k, g) = (5, 1, 1) or (5, 2, 1), P1 = (1321), P2 = P3 = (1122), matching pattern,

P1, P2 ↔ P3

(5) (n, k, g) = (6, 3, 1), P1 = (1151), P2 = P3 = (1421), matching pattern, P1, P2 ↔

P3

(6) (n, k, g) = (6, 2, 1) or (6, 3, 0), P1 = (2141), P2 = P3 = (1421), matching pattern,

P1 ↔ P1, P2 ↔ P3

(7) (n, k, g) = (6, 1, 1) or (6, 2, 0), P1 = (32), P2 = P3 = (1421), matching pattern,

P1 ↔ P1, P2 ↔ P3

(8) (n, k, g) = (6, 2, 1) or (6, 3, 0), P1 = (1421), P2 = (23), P3 = (1222), matching

pattern, P1, P2 ↔ P3 or P2, P1 ↔ P3
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9.5 Summary and proof of Theorem IX.6

Theorem IX.11. The reduced sequences, the values of n, k and genus can only be

one the following cases. However, the following cases do not necessarily correspond

to a genuine Laurent polynomial f such that f(X) − cf(Y ) is irreducible, for some

root of unity c ∈ K \ {1}.

1. (n, k, g) = (4, 1, 0), (1131)↔ (1131)

2. (n, k, g) = (4, 2, 1), (1131)↔ (22)

3.

(n, k, g) = (4, 2, 1), four (1221), any matching pattern

4.

(n, k, g) = (6, 3, 1), P1 = (23), P2 = P3 = P4 = (1421), P2 → P3 → P4 → P2 and P1

5.

(n, k, g) = (6, 3, 1), P1 = P2 = P3 = (1222), any matching pattern

6.

(n, k, g) = (8, 4, 1), P1 = (24), P2 = P3 = (1422), P2 ↔ P3 and P1

7.

n = 6, k = 3, g = 1, (1n)→ (1n−221)→ (1n−221)→ (1n), (2141)

8.

n even, n ≥ 6, k =
n

2
, g = 0, (1n)→ (1n−221)→ (1n−221)→ (1n), ((

n

2
)2)

9.

n even, n ≥ 6, k =
n

2
, g = 1, ((

n

2
)2), (1n)→ (1n−221)→ (1n)→ (1n−221)→ (1n)
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10.

n even , n ≥ 6, k =
n

2
, g = 1, c = −1, (2

n
2 )↔ (122

n−2
2 ), (1n)↔ (1n−221)

11.

n even, n ≥ 6, k =
n

2
, g = 1, ((

n

2
)2), (1n)↔ (1n−221), (1n−221)↔ (1n)

12.

n = 12, g = 1, c = −1, k = 4, (62), (11021)→ (11021)→ (11021)

13.

n = 8, g = 1, c = −1, k = 4, (2161), (1621)→ (1621)→ (1621)

14.

(n, k, g) = (2, 1, 1), (12)↔ (21), (12)↔ (21) or (12)→ (21)→ (12)→ (21)→ (12)

15.

(n, k, g) = (2, 1, 0), (12)→ (21)→ (21)→ (12)

16.

(n, k, g) = (3, 1, 1), (13)→ (1121)→ (1121)→ (1121)→ (13) or

(13)→ (1121)→ (1121)→ (13), (1121), or (13)↔ (1121), (1121)↔ (1121)

17.

n = 4, k = 2, g = 1, (14)↔ (1221), (14)↔ (1221), (22)

18.

(n, k, g) = (4, 2, 1), (14)↔ (1221), (1221)↔ (22) or

(14)→ (1221)→ (22)→ (1221)→ (14)
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19.

(n, k, g) = (4, 2, 0) or (4, 1, 1), (14)→ (1221)→ (1221)→ (14), (22)

20.

(n, k, g) = (4, 2, 1), (14)→ (1221)→ (1221)→ (14), (1131)

21. (n, k, g) = (3, 1, 0), P1 = P2 = P3 = (1121), any matching pattern.

22. (n, k, g) = (4, 1, 1) or (4, 2, 0), P1 = P2 = (1221), P3 = (1131), matching pattern,

P1 ↔ P2, P3

23. P1 = P2 = (1221), P3 = (22)

(n, k, g) = (4, 1, 0) for matching pattern P1 ↔ P2, P3

(n, k, g) = (4, 1, 1) or (4, 2, 0) for any matching pattern

24. (n, k, g) = (5, 1, 1) or (5, 2, 1), P1 = (1321), P2 = P3 = (1122), matching pattern,

P1, P2 ↔ P3

25. (n, k, g) = (6, 3, 1), P1 = (1151), P2 = P3 = (1421), matching pattern, P1, P2 ↔

P3

26. (n, k, g) = (6, 2, 1) or (6, 3, 0), P1 = (2141), P2 = P3 = (1421), matching pattern,

P1, P2 ↔ P3

27. (n, k, g) = (6, 1, 1) or (6, 2, 0), P1 = (32), P2 = P3 = (1421), matching pattern,

P1, P2 ↔ P3

28. (n, k, g) = (6, 2, 1) or (6, 3, 0), P1 = (1421), P2 = (23), P3 = (1222), matching

pattern, P1, P2 ↔ P3 or P2, P1 ↔ P3

29. (1221)↔ (41), n = 4, k = 2, g = 1

30. n ≥ 2, gcd(n, k) = 1, g = 0, (1n)↔ (1n−221), (n1)
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Proof. The theorem is just a summary of all the cases found in the |Λc| = 2, |Λc| ≥ 3

in the last two sections.

Now we see which is not corresponding to a genuine Laurent polynomial, or f(X)−

cf(Y ) is reducible.

Lemma IX.12. If there is a point P ∈ K and a number N > 1 for which every

ramification index over each of ∞, P and cP is divisible by N , then f(X) − cf(Y )

is reducible.

Proof. Say the gcd is a > 1, then there is rational functions g1(X) and g2(X), such

that f(X)−cP = g1(X)a and f(X)−P = g2(X)a, therefore f(X)−cf(Y ) = g1(X)a−

cg2(Y )2 = g1(X)a − (c
1
a g2(Y ))a, which obviously has a factor g1(X) − c 1

a g2(Y ), so

f(X)− cf(Y ) is reducible.

Lemma IX.13. If c = −1 and f(X)− cf(Y ) is irreducible with genus g, then 0 has

at most 2g + 2 distinct preimages under f .

Proof. Suppose 0 has distinct preimages P1, . . . , Pl, then in K(x, y), there is only one

place Qi over both Pi in K(x) and Pi in K(y), for i = 1, . . . , l. Let τ be the degree-2

automorphism which swaps x and y, and let K be the subfield of K(x, y) fixed by τ ,

then [K(x, y) : K] = 2 and each Qi must be totally ramified of index 2. Now apply

Riemann-Hurwitz to K(x, y)/K, we have

2g− 2 = 2(2gK − 2) +
∑

(ep − 1) ≥ 2(2g− 2) + l

so l ≤ 2g + 2− 4gK ≤ 2g + 2.

If l > 2g+2, then gK < 0, which is impossible, so f(X)−cf(Y ) must be reducible

in this case.

Now we are ready to prove Theorem IX.6.



117

Proof of Theorem IX.6. Lemma IX.12 rules out the following cases in Theorem IX.11:

6,8,9,11,12,13, 17,19 (for (n, k, g) = (4, 2, 0)), 23(for (n, k, g) = (4, 2, 0) with a fixed

point), 26(for (n, k, g) = (6, 2, 1)), 28(for (n, k, g) = (6, 2, 1) with P2 fixed).

Lemma IX.13 rules out case 1, 10, 21 (if P1 is fixed), 23 (for (4, 2, 0) and P1 fixed),

24, 28 (for (6, 3, 0)).

For case 30 in Theorem IX.11 we know 0 is a branch point so f(X) = (c1X) ◦
(X−c2)n

Xk for some c1, c2 ∈ K∗, and in order f(X)− cf(Y ) is irreducible we must have

gcd(n, k) = 1. In this case f(X) has only two finite branch points, one is 0 with type

(n1) and the other is f( a
1−n) with type (1n−221). The only condition we need for c is

c 6= 1. This is the first case in Theorem IX.6. For the remaining cases in Theorem

IX.11, we reorganize them and form Table 9.1.



CHAPTER X

The case that f(X)− cf(Y ) is reducible

In this chapter we classify all genuine Laurent polynomials f(X) ∈ K[X,X−1] for

which Ff,c(X, Y ) is reducible with an irreducible factor of genus zero or one where

c ∈ K∗ \ {1}. In the first section we study the case when f is indecomposable.

In the subsequent sections we assume f is decomposable. There are three cases:

f = P ◦ L, f = L ◦Xm and f = P ◦ L ◦Xm, where P ∈ K[X] has degree at least 2,

L ∈ K[X,X−1] is an indecomposable genuine Laurent polynomial and m ≥ 2 is an

integer. In the second section we solve the case that f = P ◦ L. In the last section

we solve the remaining two cases together where we use f̃ for L and P ◦ L, in other

words, f̃ = P̃ ◦ L for some nonconstant polynomial P̃ ∈ K[X].

10.1 Indecomposable case

We first prove Proposition X.3, which says for any indecomposable genuine Lau-

rent polynomial f(X) ∈ K[X,X−1], if Ff,c(X, Y ) is reducible with an irreducible fac-

tor of genus zero or one then f(X)−cf(Y ) = f(X)−f(µ(Y )) = (X−µ(Y ))Ff (X,µ(Y ))

where µ(X) = aX or a/X for some a ∈ K∗. The numerator of X − µ(Y ) is an irre-

ducible factor of genus 0, and we may get more irreducible factors of genus at most

1 from Ff (X,µ(Y )). Note that every irreducible factor of Ff (X,µ(Y )) can be ob-

tained from replacing Y with µ(Y ) in an irreducible factor of Ff (X, Y ) and the genus

118
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remains the same. Therefore f(X) must be one of the Laurent polynomials listed

in Theorem IV.1 and we can find the pair (f, c) which yields additional irreducible

factor(s) of genus at most 1, and these pairs are listed in Proposition X.4.

We first show two lemmas that are used to prove Proposition X.3.

Lemma X.1. For m > 6, every automorphism of each group G ∈ {Sm, Sm, Sm o S2}

is induced by conjugation by an element of G.

Proof. The assertion is well-known in case G ∈ {Sm, Am}, so we assume that G =

Sm o S2. We claim that the only nomal subgroups of G which are isomorphic to Am

are Am × 1 and 1× Am.

Let N be a normal subgroup of G which is isomorphic to Am. Since Am × Am

is a normal subgroup of G, it follows that N ∩ (Am × Am) is a normal subgroup of

N . But [N : N ∩ (Am × Am)] ≤ [G : Am × Am] = 8, so N ∩ (Am × Am) is a normal

subgroup of N having index at most 8; since N is isomorphic to Am, the index must

be 1, so that N is contained in Am × Am.

Next, the image of N under projection to the first coordinate is a normal subgroup

of Am, and hence is either 1 or Am. We may assume that the image is Am. Likewise

we may assume that the image of N under projection to the second coordinate is

Am. But then, for any g ∈ Am, N contains a unique element of the form (h, g) with

h ∈ Am, and moreover h 6= 1 and g 6= 1. But also N contains any conjugate of this

element by Am × 1, so that Am centralizes h, whence h = 1, contradiction. This

proves the claim.

Next, any automorphism σ ∈ G must preserve the set of normal subgroups of G

which are isomorphic to Am, and must induce an automorphism of the group they

generate, namely Am×Am. This gives a homomorphism Aut(G)→ Aut((Am)2). We

will be done once we show that this homomorphism is injective, since by composing
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with conjugation by an element of S2 we may assume that σ induces an automorphism

of both Am × 1 and 1×Am, whence σ acts on each of these groups as an element of

Sm, so that σ acts on G as conjugation by an element of G.

Now suppose that σ acts as the identity on (Am)2. For any g ∈ G and any

h ∈ (Am)2 we have g−1hg ∈ (Am)2 (since (Am)2 is normal in G) so that σ fixes

g−1hg, whence g−1hg = σ(g−1hg) = σ(g)−1hσ(g), but then σ(g)g−1h = hσ(g)g−1 so

that σ(g)g−1 is an element of G which commutes with every element h ∈ (Am)2. To

conclude the proof, it suffices to show that the centralizer of (Am)2 in G is trivial,

since that implies that σ(g) = g for every g ∈ G, so that σ = 1.

Now suppose that some element of G centralizes (Am)2. If the element is (a, b)

with a, b ∈ Sm then both a and b must centralize Am, and hence must be 1. If

the element is (a, b)s with a, b ∈ Sm and s swapping the two copies of Sm, then

(a, b)s(g, 1) = (a, b)(1, g)s = (a, bg)s, and (g, 1)(a, b)s = (ga, b)s, so that ga = a for

every g ∈ Am, contradiction.

Lemma X.2. Let p(X) be an indecomposable Laurent polynomial with monodromy

group G = Sm, G = Am, or G = Sm o S2, where m > 6, and let c ∈ K \ {0, 1}. If

p(X) − cp(Y ) is reducible and has a factor which defines a curve of genus 0 or 1,

then this factor has degree 1.

Proof. Suppose otherwise. Let u, v be transcendental over K such that p(u) = cp(v)

and the genus of K(u, v) is genus 0 or 1. Put t = p(u), and let Ω be the Galois closure

of K(u)/K(t). By Theorem III.15, Ω is also the Galois closure of K(v)/K(t). Extend

the K-isomorphism K(u) → K(v) which maps u → v to an embedding σ ∈ Ω into

the algebraic closure of K(t). Then σ(t) = σ(p(u)) = p(σ(u)) = p(v) = p(u)/c = t/c,

so σ(Ω) is the Galois closure of σ(K(u))/σ(K(t)), in other words, K(v)/K(t), whence

σ(Ω) = Ω. Therefore σ is an automorphism of Ω which maps K(t) to itself; this
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means that σ normalizes G := Gal(Ω/K(t)) in Aut(Ω/K). In particular, σ induces

an automorphism of G, so by Lemma X.1 σ must act on G as conjugation by an

element of G. Finally, since σ(u) = v, we have σGal(Ω/K(u))σ−1 = Gal(Ω/K(v)), so

that Gal(Ω/K(u)) and Gal(Ω/K(v)) are conjugate subgroups of G. This means that

there is an element of G which maps K(u) to K(v). Let w be the image of u under

this element of G, so that p(w) = t. Then [K(w) : K(t)] = deg(p) = [K(v) : K(t)], so

that K(w) = K(v). Then K(u,w) = K(u, v) has genus 0 or 1, so by what we proved

about the genus of factors of (p(X) − p(Y ))/(X − Y ), the only possibility is that

w = u. Therefore K(u, v) = K(u,w) = K(u), so that the minimal polynomial of v

over K(u) has degree 1, as desired.

Proposition X.3. Let f(X) ∈ K[X,X−1] be an indecomposable genuine Laurent

polynomial for which Ff,c(X, Y ) is reducible with a genus zero or one irreducible

factor. Then one of the following conditions holds:

1. f(X) = −f(a/X) for some a ∈ K∗ and c = −1.

2. f(X) = X lh(Xb) where h ∈ K[X,X−1] is some genuine Laurent polynomial,

al = c, and c is a root of unity of order b. In this case cf(X) = f(aX).

Proof. First we assume that if Ff,c(X, Y ) is reducible with a genus zero or one irre-

ducible factor then cf(Y ) = f(µ(Y )) where µ(X) = aX or a/X for some a ∈ K∗,

and we prove the second part of the proposition. Let ai be the coefficient of f for

any integer i. If µ(X) = a/X then we have a−i = caia
i and ai = −a−ia−i, so c2 = 1

and therefore c = −1. If µ(X) = aX then ai(a
i − c) = 0, so if ai 6= 0 then ai = c.

Note that f has at least two nonzero coefficients so c and ai are both root of unity.

Therefore if ai 6= 0 then i ≡ l (mod b) where al = c and b is the order of c. This

implies f(X) = X lh(Xb) for some genuine Laurent polynomial h.
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We now prove the first part of the proposition. We work on the monodromy

group G := Mon(f). The case when the monodromy group of G is Sm, Am or Sm oS2

where m > 6 is proved in Lemma X.2. By Theorem V.2, there are only a few groups

of size at most 40 remaining. We show that for each group, if f(X) − cf(Y ) is

reducible then either K(x, v)/K(u, v) and K(y, u)/K(u, v) are isomorphic extensions

so cf(Y ) = f(µ(Y )), or the genus of each factor of f(X) − cf(Y ) is bigger than 1.

We leave this to a program and we compute in the following way:

We first check that no groups G in Theorem V.2 (and also not G = A6 or S6) can

occur as monodromy group of a genuine Laurent polynomial L such that there is a

constant c 6= 1 for which L(X) = cL(Y ) is reducible and has a component of genus 0

or 1, unless cL(Y ) = L(µ(Y )) for some linear fractional µ. By Theorem III.15, this

setup implies that there are transcendentals u, v over K such that L(u) = cL(v) (call

this common value t) and K(u, v) has genus 0 or 1 and K(u)/K(t) and K(v)/K(t)

have the same Galois closure. The condition on having the same Galois closure forces

K(u)/K(t) and K(v)/K(t) to have the same branch points. Hence multiplication by c

induces a permutation of the branch points of K(u)/K(t), and we know that infinity

is a branch point of K(u)/K(t) which is fixed by multiplication by c, while at most

one other branch point of K(u)/K(t) is fixed (namely t = 0, if it is a branch point). If

exactly one finite branch point of K(t) has the same ramification type in K(u)/K(t)

as does ∞, then this point must be fixed by multiplication by c and hence must

be t = 0. Now, since cL(v) 6= L(µ(v)), the extensions K(u)/K(t) and K(v)/K(t)

are not isomorphic, whence the Galois groups Gal(Ω/K(u)) and Gal(Ω/K(v)) are

not conjugate, where Ω is the Galois closure of K(u)/K(t). Note that these two

Galois group both have index deg(L) in G. So we first restrict to the cases where G

has more than one conjugacy class of maximal subgroups of index deg(L), and for
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each such group H which is not a one-point stabilizer of G we compute for every

element of G (up to conjugacy) the contribution that that element would make to

Riemann-Hurwitz for K(u)/K(t) and for K(u, v)/K(t) if H were Gal(Ω/K(v)).

We find that there is no batch of elements which make the proper contribu-

tions to both Riemann–Hurwitz formulas, unless either (|G|, deg(L)) = (1344, 8) or

(deg(L), G) = (6, A6) or (deg(L), G) = (6, S6). But in these cases we compute all

tuples of elements of G having the required cycle structures, and also having product

1, and we find that no such tuple generates G. So these ramification types do not

actually occur.

Next determine all possibilities for the branch cycles for each group in Theorem

V.2 of order < 105. Show that this includes all groups on his list which are not doubly

transitive. In case the group is not doubly transitive, check that there is a degree-n

Laurent polynomial f(X) with this group such that (f(X) − f(Y ))/(X − Y ) = 0

has a component of genus 0 or 1. This can only occur if n = 10, when one of the

following occurs:

1. G = A5, genus 0, ramification type (1, 33), (12, 24), (52).

2. G = S5, genus 0 in degree 6, genus 1 in degree 12, ramification type (14, 23),

(2, 42), (52).

3. G = S5, genus 1, ramification type (1, 3, 6), (14, 23), (52).

But we can check that none of these can happen.

Proposition X.4. Let f(X) ∈ K[X,X−1] be a genuine Laurent polynomial and

c ∈ K∗ \ {1} for which cf(Y ) = f(µ(Y )) and Ff (X,µ(Y )) has a genus zero or one

irreducible factor, where µ(Y ) = aY or a/Y for some a ∈ K∗. Then f is strongly
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equivalent to some Laurent polynomial f̂ for which (f̂ , c) satisfy he conditions in one

of the cases in Table 10.1.

Table 10.1: cf(Y ) = f(µ(Y )) and Ff (X,µ(Y )) has an irreducible factor of genus 0 or 1

item f Mon(f) c µ(X) g
(1) X + 1/X S2 −1 −X or −1/X 0
(2) (X3 + 1)/X S3 w (w3 = 1 and w 6= 1) w2X 1
(3) (X2 + 1)2/X S4 −1 1/X 1
(4) (X − 1)3(X + 1)/X2 S4 −1 1/X 1
(5) (X4 + 4X3 + 2X − 1/4)/X2 A4 −1 −1/(2X) 0
(6) (X4 − 6X2 − 3)/X A4 −1 −X 1

In all these cases f ∈ K[X,X−1] is an indecomposable Laurent polynomial and c ∈ K∗ \ {1}, and
Ff (X,µ(Y )) is irreducible of genus 0 or 1.

Proof. Note that in this case Ff (X, Y ) must have an irreducible factor of genus zero

or one so f is one of the Laurent polynomials listed in Theorem V.1 (if Ff (X, Y ) is

reducible) or in Theorem IV.1 (if Ff (X, Y ) is irreducible). In order cf(Y ) = f(µ(Y )),

f(X) must have at two finite branch points with the same ramification types. This

condition rules out all the cases in Theorem V.1 and Theorem IV.1 except the first

6 cases in Table 4.2. For all the remaining cases Ff (X, Y ) is irreducible, and since

we know these Laurent polynomial we can do the calculation explicitly, and we list

all the examples in Table 10.1.

10.2 Decomposable case I: f = P ◦ L

Let P (u) = P (v) = t and L(x) = u 6= v = L(y) and build the function field tower

as usual. In this case guv must be 0 or 1, so FP,c(X, Y ) has an irreducible factor of

genus 0 or 1 and all such P are listed in Theorem X.5. The main result we prove in

this section is Proposition X.13.

Theorem X.5 (Carney–Hortsch–Zieve [2]). Let P (X) ∈ K[X] be a polynomial of

degree at least 2, and let d ∈ K∗ \ {1}. If P (X) − dP (Y ) has a factor H(X, Y ) of
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genus at most 1, then P = g ◦ h ◦ µ for some g, h, µ ∈ K[X] with deg(µ) = 1 and

c ∈ K∗ \ {1}, and H(X, Y ) is a factor of h(X)− ch(Y ) of genus at most 1. The pair

(h, c) is one of the following.

1. h = Xa(X − 1)b for some coprime integers a, b ≥ 1 and a+ b ≥ 3

2. (h, c) is one of those in Table 10.2. Only the ramification types are listed, since

we only need the types.

3. h = T2(X)

4. h = Tn(X) and c = −1 for some integer n > 3

5. h = Xn

10.2.1 The cases where the pair (P, c) is in Table 10.2

Proposition X.6. Suppose that P ∈ K[X] and c ∈ K∗\{1} satisfy the constraints in

some case of Table 10.2. Let L ∈ K[X,X−1] be an indecomposable genuine Laurent

polynomial, and put f := P ◦ L. Suppose that f(X) − cf(Y ) is reducible with a

component of genus at most 1. Then deg(L) = 2 and he pair (P, c satisfies case 6 of

Table 10.3. In this case c = −1 and f(X) + f(Y ) has two irreducible factors, both

of which have genus 1. The finite branch points of L(X) are the two simple roots of

P (X)− λ.

Proof. First we show that the left and the right squares are irreducible unless P

is case 5(a) and case 5(b) in Table 10.2. If the left square is reducible, then by

Theorem III.15 and by looking at the ramification of u = ∞ in K(x) and K(u, v),

we have deg(L) = 2 and K(x) is a subfield of K(u, v), therefore K(u, v)/K(u) must

have at least two finite branch points whose ramification indices are all even. If the

right square is reducible, then the same argument implies that K(u, v)/K(v) must
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Table 10.2: P (X)− cP (Y ) irreducible sporadic cases

case order of c Ramification types and branch points g

1 P : λ : (31) cλ : (13)
cP : λ : (13) cλ : (31)

1

2 6= 2 P : λ : (1121) cλ : (1121) c2λ : (13)
cP : λ : (13) cλ : (1121) c2λ : (1121)

0

3 P : λ : (1121) cλ : (13) Q : (1121) cQ : (13)
cP : λ : (13) cλ : (1121) Q : (13) cQ : (1121)

1

4 2 P : λ : (1131) cλ : (1221)
cP : λ : (1221) cλ : (1131)

1

5a 6= 2 P : λ : (22) cλ : (1221) c2λ : (14)
cP : λ : (14) cλ : (22) c2λ : (1221)

1

5b 6= 2 P : λ : (1221) cλ : (22) c2λ : (14)
cP : λ : (14) cλ : (1221) c2λ : (22)

1

6 2 P : 0 : (1221) λ : (1221) cλ : (1221)
cP : 0 : (1221) λ : (1221) cλ : (1221)

0

7 3 P : λ : (1221) cλ : (1221) c2λ : (1221)
cP : λ : (1221) cλ : (1221) c2λ : (1221)

0

8 6= 2 P : 0 : (1221) λ : (1221) cλ : (1221) c2λ : (14)
cP : 0 : (1221) λ : (14) cλ : (1221) c2λ : (1221)

1

9 2 P : λ : (1221) cλ : (1221) Q : (1221) cQ : (14)
cP : λ : (1221) cλ : (1221) Q : (14) cQ : (1121)

1

10 > 3 P : λ : (1221) cλ : (1221) c2λ : (1221) c3λ : (14)
cP : λ : (14) cλ : (1221) c2λ : (1221) c3λ : (1121)

1

11 2 P : 0 : (1231) λ : (1321) cλ : (1321)
cP : 0 : (1231) λ : (1321) cλ : (1321)

1

12 2 P : 0 : (1122) λ : (1321) cλ : (1321)
cP : 0 : (1122) λ : (1321) cλ : (1321)

0

13 6= 2 P : 0 : (1122) λ : (1321) cλ : (1321) c2λ : (15)
cP : 0 : (1122) λ : (15) cλ : (1321) c2λ : (1321)

1

14 2 P : 0 : (1321) λ : (1122) cλ : (1321)
cP : 0 : (1321) λ : (1321) cλ : (1122)

1

15 3 P : λ : (1122) cλ : (1321) c2λ : (1321)
cP : λ : (1321) cλ : (1122) c2λ : (1321)

1

16 2 P : 0 : (1421) λ : (1222) cλ : (1222)
cP : 0 : (1421) λ : (1222) cλ : (1222)

1

17 2 P : 0 : (1132) λ : (1521) cλ : (1521)
cP : 0 : (1132) λ : (1521) cλ : (1521)

1

have at least two finite branch points whose ramification indices are all even. These

conditions rules out all the cases in Table 10.2 except case 5(a) and case 5(b).

For case 5(a), if the left square is reducible then deg(L) = 2 and Λ(L) must be
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the two simple roots of P (X) − cλ; if the right square is reducible then Λ(L) must

be two simple roots of P (X) − λ/c. Since c 6= −1, we know one of the left and the

right square must be irreducible and then one of gxv and gu,y is bigger than 1, so

gxy > 1. The same argument holds for case 5(b), so we can ignore case 5(a) and 5(b)

from now on.

Then we look at the guv = 1 cases in Table 10.2. Since there is no ramification

in K(x, v)/K(u, v), we must have ∞u is unramified in K(x) and deg(L) = 2. This

case L has two finite branch points of type (21), therefore K(u, v)/K(u) must have

at least two finite places whose ramification indices are all even. This rules out all

the remaining guv = 1 cases in Table 10.2 except case 5(a) and 5(b).

Next we look at the guv = 0 cases in Table 10.2, in other words, case 2, 6, 7 and 12.

First of all, the left and the right square must be irreducible, so the top square must

be reducible. If l := deg(L) is a prime number, then K(x, v) = K(u, y) = K(x, y).

In particular, any place in K(u, v) has the same ramification type in K(x, v) and

K(u, y).

For case 2, every finite branch point of K(u, v)/K(u) has at least one ramification

index 1, so all the contributions from finite branch points in K(x)/K(u) are carried

over to K(x, v)/K(u, v), so we have 2gxv− 2 ≥ (−2)l+ 3(l− 2) + l = 2l− 6, so l ≤ 3.

If l = 3, then this is equality and gxv = 1. Therefore at least one branch point of L is

one simple root of P (X)− c2λ. This implies the simple root of cP − c2λ is a branch

point of cP , so another branch point of L is the simple root of P − cλ. Then this

implies the simple root of cP − cλ is also a branch point, so the third branch point

of L is the simple root of P − λ. But similarly we have all the three simple roots

of P − λ/c are branch points of L. Now in total there are at least 4 finite branch

points, which is impossible. If l = 2, then L has two finite branch points. At least
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one of them must be a simple root of P − ciλ where i = 0, 1 or 2. Note that if a

simple root of P − ciλ is a branch point, then so are all the simple roots of P − ci−1λ.

Thus anyway we will get at least at least three branch points, contradiction.

For case 12, every finite branch point of K(u, v)/K(u) has at least three ram-

ification index 1 except one finite branch point. Thus the finite branch points of

K(x)/K(u) contributes at least l+2 to K(x, v)/K(u, v), and then we have 2gxv−2 ≥

(−2)l + 5(l − 2) + (l + 2) = 4l − 8, so l = 2 and gxv = 1. Since this is equality, one

branch point of L is the simple root of P (X), and the other branch point (say α) of

L is one simple root of P (X)− λ. Now since any simple root β of cP (X)− λ is not

a branch point of L, we have any place lying over u = α and v = β is ramified in

K(x, v) but unramified in K(y, u), contradiction.

Similarly for case 6, 7, every finite branch point of K(u, v)/K(u) has at least two

ramification index 1, so 2gxv−2 ≥ (−2)l+4(l−2)+2l = 3l−6, so l = 2 and gxv = 1.

If a simple root of P (X)− λ is a branch point of L, then so all all the simple roots

of cP (X)− λ. Therefore L will be at least the order of c many finite branch points,

so case 7 cannot happen. For case 6, there is only one case:

1. deg(L) = 2 and Λ(L) = {α1, α2}, where α1, α2 are the two simple roots of P (X).

This case f = P ◦ L, c = −1 and f(X) + f(Y ) has two irreducible factors, and

each has genus 1.

10.2.2 The case P = T2 and c ∈ K∗ \ {1}

Lemma X.7. Let u be a root of T2(X) − t and v be a root of T2(Y ) − t, then the

finite branch points of K(u, v)/K(u) are u = ±
√

2− 2c (where v = 0) and the finite

branch points of K(u, v)/K(v) are v = ±
√

2− 2/c (where u = 0).
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Proof. Now we look at the finite branch points of K(u, v)/K(u) and K(u, v)/K(v).

Since T2 = X2− 2, we have T (X, Y ) := T2(X)− cT2(Y ) = (X2− 2)− c(Y 2− 2). As

a polynomial in X, T (X, Y ) has a double root X = 0 when Y = ±
√

2− 2/c; as a

polynomial in Y , T (X, Y ) has a double root Y = 0 when X = ±
√

2− 2c. Thus the

finite branch points of K(u, v)/K(u) are u = ±
√

2− 2c and the finite branch points

of K(u, v)/K(v) are v = ±
√

2− 2/c.

Lemma X.8. The left and the right square must be irreducible, and the top square

must be reducible.

Proof. The left square cannot be reducible, otherwise by Theorem III.15, we have

deg(L) = 2 and therefore K(u, v) = K(x), but this is impossible since K(x)/K(u) has

two finite branch points but K(u, v)/K(u) has only one. Therefore the left square

and the right square (by symmetry) are both irreducible, and the top square must

be reducible since f(X)− cf(Y ) is reducible.

The following two lemmas say that when P = T2 the monodromy group of L is

very restrictive, and the top square have very strict ramification.

Lemma X.9. Mon(L) 6= S√m o S2 where m = deg(L).

Proof. We will crucially use the fact that the four branch points of K(u, v)/K(u) and

K(u, v)/K(v) all have different values, in other words, ±
√

(1− c)/2 and±
√

(1− 1/c)/2

are all different.

Now we show that Mon(L) cannot be the wreath product. Note that the rami-

fication of L (or equivalently the ramification of K(x)/K(u) and K(y)/K(v)) must

be one of those in Table 7.2 and Lemma VII.9 lists the ramification of L, we firstly

rule out all the cases in Table 7.2 with ramification index 3 or 6. The remaining

cases are case 1, 2, 4, 5 and 6. When m > 4, for all these cases the finite branch
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points of K(u, v)/K(u) and K(u, v)/K(v) are all finite branch points of L, so L has

four finite branch points but L has at most three finite branch points by Lemma

VII.9. Therefore m ≤ 4, but since m is a square so m = 4 and then case 6 is ruled

out. Now for each remaining case, at least one finite branch point of K(u, v)/K(u)

and at least one branch point of K(u, v)/K(v) is a branch point of L, so in Table

7.2 L must have at least one additional finite branch point, and this rules out case

2. Now the remaining cases are case 1, 4 and 5. If L has ramification index 4

then L has only two finite branch points and they have type (1221) and (41), and

they must be branch points of K(u, v)/K(u) or K(u, v)/K(v); suppose u = α is a

finite branch point of K(u, v)/K(u) and it ramifies in K(x) with type (41), then the

place in K(u, v) lying over it is ramified in K(x, v) but unramified in K(u, y), there

gxy > 1 since gxv = guy = 1. Thus L must have three finite branch points and their

types are (1221), (1221) and (22), since at least one point is not a branch point of

K(u, v)/K(u) (or K(u, v)/K(v)) and this branch point has no trivial contribution to

Riemann–Hurwitz in the top square so we must have gxv = guy = 0. This means we

just consider case 1 in Table 7.2 with m = 4, but in this case all the finite branch

points of K(u, v)/K(u) and K(u, v)/K(v) are all branch points of L, so L has at least

four finite branch points and we get a contradiction.

Lemma X.10. The monodromy group of L can only possibly be Sm or Am where

m = deg(L) 6= 6, so K(x, v)/K(u, v) and K(y, u)/K(u, v) have the same set of branch

points and each branch point has the same ramification type in K(x, v) and K(u, y).

Proof. By Lemma VII.11, Mon(L) can only possibly be Sm or Am with m 6= 6, or

S√m o S2, where m = deg(L). Note that the wreath product case is ruled out in

Lemma X.9.

If Mon(L) = Sm or Am with m 6= 6, then by the same argument in Proposi-
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tion VII.12 we have that if the top square is reducible then K(x, v)/K(u, v) and

K(y, u)/K(u, v) have the same set of branch points and each branch point has the

same ramification type in K(x, v) and K(u, y).

Proposition X.11. If P = T2 and c ∈ K∗\{1}, then for any indecomposable genuine

Laurent polynomial L, either T2 ◦ L(X) − cT2 ◦ L(Y ) is irreducible, or T2 ◦ L(X)−

cT2 ◦ L(Y ) is reducible with all factors having genus bigger than 1.

Proof. By Lemma X.10, any place in K(u, v) has the same ramification type in K(x, v)

and K(u, y), and we will this for the top square when necessary. We first study what

ramification type of L makes gxv and guy at most 1.

In order gxv ≤ 1, K(x)/K(u) has to satisfy the ramification constraints in Table

7.2, where the union of the multi-sets are the collection of ramification indices of all

places in K(x) lying over u = ±
√

2− 2c, therefore at least one of v = ±
√

2− 2c is

a branch point of K(y)/K(v). Now consider the right square, K(y)/K(v) also has to

satisfy the ramification constraints in Table 7.2. Note that the finite branch points

of K(u, v)/K(v) are v = ±
√

2− 2/c, which are different from v = ±
√

2− 2c, so

K(y)/K(v) has at least one finite branch point which does not ramify in K(u, v)/K(v).

Now consider the possible ramification of K(y)/K(v). First of all, the above

argument rules out all the cases where there is no additional finite branch point

(except the branch points of K(u, v)/K(u)).

If the multi-sets of K(y)/K(v) contains a index bigger than 2, then u = 0 is

also a branch point of K(x)/K(u) and v = ±
√

2− 2/c are both branch points of

K(y)/K(v), since any place in K(u, v) lying over u = 0 should ramify the same way

in K(y, u) as in K(x, v). This implies K(x)/K(u) has at least three finite branch

points (u = 0, u = ±
√

2− 2/c) which are not u = ±
√

2− 2c, but none of the cases

in Table 7.2 satisfies this properties.
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The final case is that the multi-sets of K(y)/K(v) contains only 1’s and 2’s and

there is at least one additional finite branch point, then one of such additional branch

points must be v =
√

2− 2c or v = −
√

2− 2c, without loss of generality, assume

it is v =
√

2− 2c. Then there are two places in K(u, v) lying over v =
√

2− 2c,

and they lie over u =
√

2− 2c2 and u = −
√

2− 2c2 respectively, so u = ±
√

2− 2c2

are two finite branch points of K(x)/K(u). Therefore K(y)/K(v) have at least three

additional finite branch points, namely, v = ±
√

2− 2c2 and v =
√

2− 2c, which is

impossible.

10.2.3 The case P = Xa(X − 1)b

Proposition X.12. Let P = Xa(X − 1)b for some coprime integer a, b ≥ 1 with

a + b ≥ 3. Let L be any indecomposable genuine Laurent polynomial, and let c ∈

K∗ \ {1}. Then it is impossible that P ◦ L(X)− cP ◦ L(Y ) is reducible with a factor

of genus at most 1.

Proof. Let n := deg(P ). First of all, P (X) = 0 has ramification type (a1b1) and

P (X) = λ where λ := P (a/(a+ b)) has ramification type (1n−221).

The left and the right square must be irreducible, since otherwise by Theorem

III.15, l := deg(L) = 2 and K(u, v)/K(u) has two finite branch points whose ramifi-

cation indices are all even numbers. However, for = Xa(X − 1)b, K(u, v)/K(u) has

no such finite branch point. Therefore, only the top square is reducible.

For the finite branch points of K(u, v)/K(u), there are n many of type (1n−221)

(corresponding to the n simple roots of P (X) = cλ), one of type (1ab1) (at u = 0)

and one of type (1ba1) (at u = 1). Consider the contribution of the finite branch

points of K(x)/K(u) to the Riemann–Hurwitz of K(x, v)/K(u, v). Note that the finite

branch points of K(x)/K(u) contributes l to the Riemann–Hurwitz of K(x)/K(u),
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and these contributions can be carried over to K(x, v)/K(u, v). The worst case is

when the branch points are u = 0 and u = 1, where the contribution to K(x, v)/K(u)

is the least, and which is at least al + (b − a) = al + 2n − a. Therefore, we have

2gxv−2 ≥ (−2)l+n(l−2)+al+2n−a. If gxv = 0, then l ≤ n+2a−2
n+a−2

= 2+ 2−n
n+a−2

< 2,

which is impossible. Therefore gxv = 1, and in this case l ≤ n+2a
n+a−2

= 2 + 4
n+a−2

.

Therefore l = 2, 3 unless n+ a = 4, where l could be 4.

If l is prime, then l = 2 or l = 3. Since the top square is reducible, by Theorem

III.15 we have K(x, v) = K(u, y), so in particular K(x, v) and K(u, y) have the same

branch points in K(u, v) with the same ramification type at each branch point. If

any finite branch point u = α of K(x)/K(u) is not u = 0 or u = 1, then any simple

root X = β of P (X) = P (α) or cP (X) = P (α) yields a finie branch point u = β

of K(x)/K(u), and then K(x)/K(u) will have at least 2n − 2 finite branch points;

however, L can only have at most l many finite branch points, so 4 ≤ 2n − 2 ≤ l,

contradiction. Thus when l = 2 or l = 3, L has two finite branch points u = 0 and

u = 1. If l = 2, since the place in K(u, v) over u = 0 and v = 1 have the same

ramification type in K(x, v) and K(u, y), then a and b must be both odd, so we have

2gxv−2 = (−2)l+n(l−2)+(a+2−gcd(2, b))+(b+2−gcd(2, a)), so 2gxv = n. Since

n > 2, it is impossible that gxv ≤ 1. If l = 3, then u = 0 has type (1221) in K(x) but

u = 1 has type (31) in K(y). In order the place in K(u, v) over u = 0 and v = 1 have

the same ramification type in K(x, v) and K(u, y), we must have b is even and 3 | a.

Therefore we have 2gxv − 2 = (−2)l + n(l − 2) + a + 2b, so gxv = n − 2 + b/2 > 1.

Therefore, the above argument shows that l can not be 2 or 3.

The only possibility remaining is l = 4, and this case n = 3 and a = 1. Note that

this makes 2gxv − 2 ≥ (−2)l + n(l− 2) + al + 2n− a an equality with gxv = 1. This

implies K(x)/K(u) has only two finite branch points, and they are u = 0 and u = 1,
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and the contribution of these two points to K(x, v)/K(u, v) is al+ 2n− a = 9. Note

that the ramification types of the two finite branch points are either {(41), (1221))}

or {(1131), (1131)}. We check each case, and find one solution, u = 0 has type (1221)

and u = 1 has type (41) in K(x). In this case the place in K(u, v) over u = 0 and

v = 1 is unramified in K(x, v) but totally ramified in K(y, u), so this case the top

square is irreducible. Therefore we get no examples when l = 4.

10.2.4 The classification of genuine Laurent polynomials f where f(X) − cf(Y ) is re-
ducible with a genus zero or one factor

Proposition X.13. Let P ∈ K[X] be a polynomial of degree at least 2. Let L ∈ K(X)

be any indecomposable genuine Laurent polynomial and c ∈ K∗ \ {1}. Let f = P ◦L.

If f(X) − cf(Y ) is reducible with a factor H(X, Y ) of genus at most 1 then one of

the following is true

1. P = X4 + 4X3 + 3(a + 3)X2 with a2 = 3, and c = −1, and deg(L) = 2. Let

λ be a nonzero finite branch point of P then Λ(L) := {α1, α2} where α1, α2 are

the two simple roots of P (X)− λ. In this case f(X) + f(Y ) has two irreducible

factors, each has genus 1.

2. The polynomial P = Tn with n > 3 and c = −1, and let T (X, Y, n, r) :=

X2+Y 2−2XY cos(2πr/n)−4 sin2(2πr/n). In this case H(X, Y ) is an irreducible

factor of genus 0 or 1 of the numerator of T (L(X), L(Y ), 2n, r) where r is odd

and one of the following holds

(1) Br(L) = {−2, 2, α,∞} where each branch point has type (1121) and α2 =

2(1 + cos(πr/n)). In this case H(X, Y ) has genus 1.

(2) L(X) = aX + b/X + c where a, b, c ∈ K∗ and let {β1, β2} := {2
√
ab +

c,−2
√
ab+ c} be the finite branch points of L. Then β1 = 2 or −2. If β2

2 6=
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2(1 + cos(πr/n)) then H(X, Y ) is the numerator of T (L(X), L(Y ), 2n, r)

and it has genus 1; otherwise H(X, Y ) has genus 0 and it is either of the

two factors of the numerator of T (L(X), L(Y ), 2n, r).

3. The polynomial P = Tn with n > 3 being odd and c = −1. In this case L is

any indecomposable Laurent polynomial for which FL,−1(X, Y ) has an irreducible

factor of genus at most 1 and H(X, Y ) is the factor.

4. The polynomial P = Xn with n ≥ 2. In this case H(X, Y ) is a factor of

L(X)− c1L(Y ) where cn1 = c.

Proof. We just look at the three cases in Theorem X.5. The first case in Theorem X.5

is solved in Proposition X.12 and we get no examples. The second case in Theorem

X.5 is solved in Proposition X.6, and gives the first case in this proposition. The third

case in Theorem X.5 is solved in Proposition X.11 and we get no examples. The fifth

case in Theorem X.5 gives the last case in this proposition. For the fourth case in

Theorem X.5, note that Tn(X)+Tn(Y ) is a factor of FT2n(X, Y ). All these quadratic

factors in Tn(X)+Tn(Y ) has the form X2+Y 2−2XY cos(πr/n)−4 sin2(πr/n) where

0 < r < n and r is odd. For the quadratic factors all the possible L are given in case

3 of Theorem VII.1, where we replace cos(2πr/n) and sin(2πr/n) with cos(πr/n)

and cos(πr/n). For the factor X +Y , then H(X, Y ) is an irreducible factor of genus

at most 1 of FL,−1(X, Y ).

10.3 Decomposable case II: f = f̃ ◦Xm

Here f̃ = P̃ ◦L where P̃ is a nonconstant polynomial and L is an indecomposable

Laurent polynomial. The case when Ff̃ ,c is irreducible is solved in Proposition X.14.

The case when Ff̃ ,c is reducible is solved in Proposition X.15.
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10.3.1 When Ff̃ ,c is irreducible

Proposition X.14. Let c ∈ K∗ \ {1} and let f̃ be a genuine Laurent polynomial for

which Ff̃ ,c is irreducible. Let m ≥ 2 and put f := f̃ ◦Xm. If Ff,c has an irreducible

factor of genus at most 1, then deg(f̃) = 2, m = 2 and each factor of Ff,c(X, Y ) has

genus 0 or 1.

Proof. We build the function field tower as usual where f̃(u) = cf̃(v) = t, u = xm

and v = ym.

We first deal with the case when deg(f̃) = 2 and m = 2. Since K(x, y) has genus

0 or 1, then K(u, v) must have genus 0 or 1. In the function field tower there is

no ramification in K(x, v)/K(u, v) and K(y, u)/K(u, v) so gxy is indeed 0 or 1. This

means for any genuine Laurent polynomial f̃ and c 6= 1, each irreducible factor of

Ff,c(X, Y ) must have genus at most 1.

From now on we assume (deg(f̃),m) 6= (2, 2) and we show that we will get no

examples under this assumption. Note that the left and the right squares are irre-

ducible (since 0u is totally ramified in K(x) but has at least one unramified preimage

in K(u, v), if the bottom square is reducible then the intermediate field gotten from

Theorem III.15 cannot satisfy the conditions in Theorem III.16), and therefore the

top square must be reducible. Note that Ff̃ ,c must be irreducible of genus at most

1, so the pair (f̃ , c) must come from Theorem IX.6 and we will check all of them.

Let r be the total number of unramified places in K(u, v) over 0u and ∞u, then

2gxv − 2 + (2 − 2guv)m ≥ r(m − 1). Note that there must be ramification between

K(x, v) and K(u, v), we must have guv = 0. Since gxv ≤ 1, we have 2m ≥ r(m− 1),

so r ≤ 2m
m−1

= 2 + 2
m−1
≤ 4.

Note that r ≥ n because there are n many places in total in K(u, v) lying over 0u
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and 0v or lying over∞u and∞v, therefore n ≤ r ≤ 4. If n = 4 and k = 2 then there

are 8 places in K(u, v) over 0u and ∞u, so r ≥ 8; if k = 1 then similarly r ≥ 5, both

are impossible.

If n = 3, then k = 1, r = 4 and m = 2, and there is no ramification between

K(x, v)/K(u, v) except the places in K(u, v) over 0u and ∞u. However, in this case

the place in K(u, v) lying over u =∞ and v = 0 is unramified in K(x, v) but totally

ramified in K(u, y), so the top square is irreducible, which is impossible.

10.3.2 When Ff̃ ,c is reducible

Proposition X.15. Let P̃ ∈ K[X] be a polynomial, L ∈ K[X,X−1] be an indecom-

posable genuine Laurent polynomial and c ∈ K∗ \ {1}. Put f̃ := P̃ ◦ L and suppose

Ff̃ ,c(X, Y ) is reducible. Let m ≥ 2 and put f := f̃ ◦ Xm. If Ff,c(X, Y ) has an

irreducible factor H(X, Y ) of genus at most 1, then one of the following conditions

holds:

1. f̃(X) = −f̃(a/X) for a ∈ K∗. Here H(X, Y ) = XY − β (up to multiplication

by a constant in K∗), where βm = a.

2. f̃(aX) = cf̃(X) for some a ∈ K∗ such that c ∈ 〈a〉. Here H(X, Y ) = X − βY

(up to multiplication by a constant in K∗), where βm = a.

3. FL◦Xm,c(X, Y ) has an irreducible factor of genus 0 or 1, and H(X, Y ) is this

factor. Here one of the followings conditions holds:

(a) P̃ = Tn with n > 3 being odd and c = −1.

(b) P̃ = Xn with n ≥ 2 and cn = 1.

Proof. First of all we consider the case that f̃ is indecomposable. By Proposition

X.3 we have cf̃(X) = f̃(µ(X)) where µ(Y ) = aX or a/X for some a ∈ K∗ (More
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precisely either f̃(aX) = cf̃(X) or f̃(X) = −f̃(a/X)). Therefore H(X, Y ) is either

an irreducible factor of Xm − µ(Y m) (where each factor has genus 0) or an irre-

ducible factor of Ff̃ (X
m, µ(Y m)). In the latter case since Ff̃ (X,µ(Y )) must have

an irreducible factor of genus 0 or 1 so (f̃ , c) must satisfy one of the conditions in

Proposition X.4. Since now Ff̃ (X
m, Y m) also has an irreducible factor of genus 0 or

1 so f̃ must be one of the Laurent polynomials listed in Table 6.1, however, none of

the cases in Table 6.1 is in Proposition X.4, so Ff̃ (X
m, µ(Y m)) does not have any

irreducible factor of genus at most 1.

Next we consider the case that f̃ is decomposable. Note that in this case P̃ is a

polynomial of degree at least 2. Since Ff̃ ,c(X, Y ) has an irreducible factor of genus

at most 1 we know f̃ = P ◦L satisfies one of the conditions in Proposition X.13. By

Proposition VIII.1 we get no examples from case 2 in Proposition X.13. For case 3

and case 4 in Proposition X.13, we get the last case in this proposition.

Now the only case remaining is case 1 in Proposition X.13. Let r be a root of

Xm−x, note that K(x, v)/K(x) is unramified but K(r) is totally ramified over x = 0

and x =∞, we have that [K(r, v) : K(x, v)] = [K(r) : K(x)] = m. Then by Riemann–

Hurwitz we know grv > 1 when m > 1, therefore all factors of f(X) − cf(Y ) has

genus bigger than 1 and we get no examples from this case.
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