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ABSTRACT 

Despite its relatively low abundance in the brain, the neurotransmitter dopamine is vitally 

important for controlling motor coordination, motivation, reward, and cognition, among other 

processes.  The amount of dopamine in the extracellular space determines the amount of 

dopamine signaling and is primarily controlled by two presynaptic proteins:  the dopamine 

transporter (DAT), which removes dopamine from the extracellular space, and the D2-like 

dopamine autoreceptor (D2 autoreceptor).  D2 autoreceptor decreases extracellular dopamine by 

inhibiting dopamine synthesis, decreasing dopamine exocytosis, and increasing dopamine 

reuptake by DAT.  My thesis focuses on understanding the regulation of D2 autoreceptor and I 

determined that D2 autoreceptor regulation changes depending on its context in the membrane.  

D2 autoreceptor activation increases surface DAT localization, particularly in times of high 

neuronal stimulation, such as in response to natural rewards or abused drugs.  I investigated the 

converse, DAT regulation of the D2 autoreceptor and found that co-expression of DAT with D2R 

in a heterologous cell system transforms the regulation of D2R through a novel D2R-DAT 

context.  Within this context, less D2R was on the surface as compared to expression without 

DAT, an effect dependent on protein kinase C (PKC) activity.  The D2R-DAT context was 

disrupted by removing PKC phosphorylation sites from D2R and DAT, suggesting PKC 

stabilizes this context.  Normally, PKC causes internalization and desensitization of D2R; using 

PKC knockout mice and specific PKC inhibitors, I found that PKC decreases D2 

autoreceptor activity.   Furthermore, in the presence of DAT, agonist stimulation of D2R 

increased surface D2R localization, reminiscent of the D2 autoreceptor-mediated increase in 
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surface DAT localization.  Interaction with DAT increases D2R signaling through ERK, perhaps 

through an arrestin-mediated mechanism.  Because the D2 autoreceptor stimulated increase of 

dopamine uptake only occurs during neuronal burst firing, I propose that the D2 autoreceptor-

DAT context is a mechanism to quickly decrease the extracellular dopamine concentration 

following burst firing through increased dopamine reuptake.  During tonic dopamine release, D2 

autoreceptor regulates extracellular dopamine by suppressing dopamine synthesis and exocytotic 

release.  My results identify a novel, DAT-mediated mechanism for regulation of D2 

autoreceptor and further our understanding of D2R regulation.   
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CHAPTER ONE 

INTRODUCTION 

The Dopaminergic System 

Despite its relatively low abundance in the brain, the neurotransmitter dopamine is a critical 

regulator of many important physiological processes, including motor function, cognition, 

motivation, and pituitary function.  Dopamine is a precursor to the other catecholamines 

norepinephrine and epinephrine, though dopamine has its own separate neurons for signaling.  

Dopamine cell bodies are primarily located in the substantia nigra and the ventral tegmental area 

in the mesencephalon area of the brain, or midbrain.  These cells project to other regions of the 

brain through three main pathways (Figure 1-1).  The nigrostriatal pathway connects the cell 

bodies in the substantia nigra with the dorsal striatum.  This projection is involved in controlling 

voluntary motor function and is implicated in neurological diseases such as Parkinson’s and 

Tourette’s syndromes.  The dopaminergic cell bodies in the ventral tegmental area (VTA) form 

two dopamine projections.  The mesocortical pathway connects the VTA with the frontal cortex. 

This pathway is integral for motivation, emotion, and cognitive control and is implicated in 

schizophrenia and attention deficit hyperactivity disorder.  The second projection emanating 

from the VTA is the mesolimbic pathway, which terminates in the limbic structures of the brain, 

including the nucleus accumbens, olfactory tubercles, amygdala, and hippocampus.  This 

pathway is involved in incentive salience, reinforcement, learning and desire and thus is thought 

to play a central role in addiction (Berridge, 2007).  Several smaller projections exist, such as  
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Figure 1-1:  Dopamine Neuron Projections (Brody et al., 1998) 
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those in the hypothalamus and pituitary gland which control prolactin secretion.  Dopamine is 

also found in the periphery and is involved in blood pressure regulation in the heart and kidney. 

The synthetic pathway for the catecholamines is shown in Figure 1-2.  The first step of this 

synthesis is the conversion of the amino acid tyrosine to 3, 4-dihydroxyl-l-phenylalanine (L-

DOPA) by tyrosine hydroxylase.  This enzyme is the rate-limiting step in the catecholamine 

synthesis pathway.  L-DOPA is then decarboxylated by DOPA decarboxylase (aromatic amino 

acid decarboxylase) to form dopamine.  In other cells, both within and outside the central 

nervous system, dopamine can be converted to norepinephrine and epinephrine.  Once 

synthesized, dopamine is stored in vesicles to protect the neurotransmitter from degradation.  

These vesicles use the vesicular monoamine transporter 2 (VMAT2), which is coupled to a 

proton pump to provide the energy to concentrate dopamine inside the vesicle.  The turnover of 

dopamine in the vesicles in the brain is very rapid due to leaky vesicles (Floor et al., 1995).  

Dopamine must be constantly synthesized to maintain stable dopamine levels in the brain.  

Following action potential stimulation, the dopamine neuron depolarizes.  Rising intracellular 

calcium concentrations stimulate the fusion of vesicles containing dopamine to the plasma 

membrane and dopamine is released in the extracellular synaptic space.  From there, dopamine 

can bind to and activate receptors to propagate neuronal signaling.  The amount of dopamine in 

the extracellular space determines the amount of dopaminergic signaling.  Dopamine signaling is 

primarily terminated via reuptake of dopamine into the presynaptic neuron by the dopamine 

transporter.  This removal of dopamine is more efficient than degradation by metabolizing 

enzymes or simple diffusion of dopamine away from the synapse.   

Dopamine is metabolized primarily by two enzymes:  monoamine oxidase (MAO) and catechol-

o-methyl transferase (COMT).  MAO is located inside the neuron on the exterior of  
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Figure 1-2:  Synthetic Pathway for Dopamine (Gnegy, 2012) 
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mitochondria.  It oxidizes the amine group on cytosolic dopamine, forming 3, 4-dihydroxy-

phenylacetic acid, or DOPAC.  MAO inhibitors have been used clinically to increase monoamine 

concentrations for the treatment of depression, obsessive-compulsive disorder, and Parkinson’s 

disease.  When on these drugs, the patient must not consume foods containing tyramine, which 

can cause an unsafe increase in monoamines in the body, leading to a hypertensive crisis.  

COMT is positioned on post-synaptic neurons and glia.  Within cells, it is localized to the 

plasmalemmal membrane, the outer mitochondrial membrane, and rough endoplasmic reticulum.  

COMT metabolizes released dopamine and DOPAC by adding a methyl group to a hydroxyl 

group on the catechol ring, forming 3-methoxytyramine.  MAO and COMT can further 

metabolize each other’s metabolites, forming homovanillic acid (HVA).  DOPAC and HVA are 

the major metabolites of dopamine.  Measurement of these metabolites from cerebral spinal fluid 

or the bloodstream can be used to assess dopamine signaling in the patient.   

The D2 Dopamine Receptor 

Identification and Classification 

Dopamine signals through dopamine receptors.  In the late 1970s, two different types of 

dopamine receptors, the D1 and D2 receptors, were identified using pharmacological methods 

(Cools and Van Rossum, 1976).  The D1 receptors stimulated adenylyl cyclase activity and had 

lower affinity for the butyrophenone and substituted benzamide classes of dopamine receptor 

ligands.  The D2 receptors, on the other hand, had high affinity for the butyrophenones and 

substituted benzamides.  Unlike the D1 receptors, D2 receptors had either no effect on or 

inhibited adenylyl cyclase (Kebabian and Calne, 1979).  Using molecular cloning techniques, 

five separate dopamine receptors were identified in the late 1980s.  These five receptors were 

classified into two subfamilies according to activity.  The D1-like family contains the D1 and D5 
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receptors and is coupled to the stimulatory Gs protein for signaling.  The D2-like family 

comprises the D2, D3, and D4 receptors and signals through the inhibitory G proteins Gi/o.  The 

D2 receptor is the focus of this thesis and will be discussed in greater detail. 

Structure 

The D2 receptor (D2R) is a seven transmembrane receptor and a member of the class A GPCR 

family. It is translated from the gene DRD2.  D2R was first cloned using a 2 adrenergic receptor 

probe to screen a rat genomic library (Bunzow et al., 1988).  In humans, this gene is 

approximately 52 kb long and contains 8 exons, the first of which is non-coding (Gandelman et 

al., 1991).  Similar gene structures have been found for rat and mouse (Mack et al., 1991; 

O'Malley et al., 1990). 

The human DRD2 gene is translated to form a 414-443 amino acid protein containing seven 

transmembrane domains.  The amino acid sequence and topology of D2R is shown in Figure 1-3.  

The N-terminus is extracellular and contains three consensus sites for N-linked glycosylation.  

The receptor has a long third intracellular loop and short intracellular C-terminus tail, both of 

which are characteristic of receptors coupled to inhibitory G proteins (Sibley et al., 1993).  

Additionally, the receptor contains consensus sites for phosphorylation by various kinases, 

generally in the second and third intracellular loops, including cAMP-dependent protein kinase 

(protein kinase A) (Elazar and Fuchs, 1991), protein kinase C (PKC) (Morris et al., 2007; 

Namkung and Sibley, 2004), and G protein receptor kinases (Namkung et al., 2009a; Namkung 

et al., 2009b).  Alternative splicing of the sixth exon of DRD2 leads to the expression of short 

and long D2R isoforms (D2S, short; D2L, long).  The short isoform of D2R lacks 29 amino acids in 

the third intracellular loop (Usiello et al., 2000).  Because G proteins bind in this region of the  
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Figure 1-3:  Amino acid sequence and topology of D2R.  Blue residues are involved in ligand 

binding.  Green residues are protein kinase C (PKC) phosphorylation sites.  Orange residues 

are G protein-coupled receptor kinases (GRK) phosphorylation sites.  The 29 amino acids 

present in D2L but not D2S due to alternative splicing are indicated by the grey residues.  

Modified from (Namkung and Sibley, 2004). 
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receptor, this splice variant is reported to alter G protein interaction between the two receptors 

(Guiramand et al., 1995; Montmayeur et al., 1993).   

The binding pocket in D2R has been identified using several experimental approaches as well as 

molecular modeling.  These studies found that dopamine and other ligands bind in a pocket 

formed by transmembrane domains three and five.  Ionic interactions between the protonated 

amine and Asp114 in TM3 and hydrogen bonds between Ser193, 194, and 197 in TM5 and the 

catechol ring coordinate dopamine binding.  The second extracellular loop also interacts with the 

ligand binding pocket such that Ile 183 and 184 form hydrophobic interactions with the ligand 

(Moreira et al., 2010).  In addition to the ligand binding pocket, D2R activity is influenced by 

ions such as Na+, Mg2+, and H+.  Sodium and lowering pH increase ligand affinity, while 

magnesium increases Bmax (Neve, 1991; Sibley and Creese, 1983; Watanabe et al., 1985).  These 

findings suggest that ions change the conformation of D2R, altering the affinity and binding 

states of the receptor. 

The other members of the D2-like family, D3R and D4R, have the same basic receptor structure, 

with a long third intracellular loop and a short C-terminus.  Homology between the receptors is 

highest within the transmembrane segments, with approximately 75% homology between D2R 

and D3R and 53% homology between D2R D4R (Gingrich and Caron, 1993).  The D3R contains 

400-446 amino acids and also has several splice variants of the D3R receptor.  Splice variants of 

the third and fifth transmembrane domains and the second intracellular loop have no 

dopaminergic ligand binding activity (Giros et al., 1991).  Two splice variants of D3R that have 

receptor activity were identified in mouse, resulting in 21 additional amino acids in the third 

intracellular loop (Fishburn et al., 1993).  The longer isoform shared high homology with the rat 

D3R, while the short isoform more closely resembled the human D3R.  The D4R normally 
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contains 387 amino acids, however this receptor has a 48 base pair variable-number tandem 

repeat in exon three.  D4R expressing 2-11 repeats have been found, resulting in 32-176 extra 

amino acids in the third intracellular loop (Grady et al., 2003).  Associations between the 7-

repeat allele of D4R and novelty seeking and attention deficit hyperactivity disorder (ADHD) 

have been found (Ebstein et al., 1996; Faraone et al., 1999).   

Distribution and Cellular Localization 

D2R expression throughout the brain was determined using autoradiography and ligand binding 

studies as well as through mRNA detection.  Within the central nervous system, the receptor has 

the highest expression in the caudate putamen, nucleus accumbens, and olfactory tubercule, 

while lower expression has been detected in the substantia nigra and ventral tegmental area.  

Outside of the central nervous system, D2R is expressed in the pituitary, retina, and kidney.  The 

D3R is expressed to a smaller extent than D2R and is primarily found in the limbic regions of the 

brain, including the olfactory tubercle and nucleus accumbens, as well as the substantia nigra and 

ventral tegmental area (Gingrich and Caron, 1993).  D4R is also expressed at lower levels than 

D2R and is primarily expressed in the frontal cortex, medulla, and amygdala (Sibley et al., 1993).  

Peripherally, both D3R and D4R are expressed in the kidney.  Additionally, D4R is highly 

expressed in the heart (O'Malley et al., 1992). 

Differences in expression and localization of D2S and D2L are not fully understood.  The mRNA 

for D2S and D2L are both found in the brain regions that express D2R, though the ratio of D2S to 

D2L differs between regions (Neve et al., 1991).  Some regions, including pituitary, striatum, and 

the midbrain were found to express more D2L than D2S.  Other regions, including substantia nigra 

and cortex, express more equivalent amounts of the two splice variants.  Khan and colleagues 

attempted to identify differences in cellular localization of D2L in D2S. In primate brain, D2S co-
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stained with tyrosine hydroxylase in dopaminergic neurons in the substantia nigra and ventral 

tegmental area (Khan et al., 1998).  In the rhesus monkey striatum, D2L was primarily found on 

GABAergic and cholinergic neurons.  This promoted the thinking that D2S was located 

presynaptically on dopaminergic neurons and functioned as an autoreceptor while D2L was 

located postsynaptically.  However, studies using single-cell RT-PCR from dopaminergic 

neurons isolated from rat substantia nigra found that these neurons are capable of expressing 

both D2S and D2L either singly or together (Jang et al., 2011).  Further work is needed to 

determine if a difference in localization between D2S and D2L truly exists and what this may 

mean functionally. 

G protein coupling 

The members of the D2-like dopamine receptor family are coupled to an inhibitory G protein 

heterotrimer of the Gi/o family for signaling.  This family of G proteins is characterized by 

inhibition of adenylyl cylase signaling and inactivation by pertussis toxin treatment.  The D2R 

has expressed promiscuity in coupling to G proteins.  Several groups have found that D2R can 

couple effectively to both Go and Gi (Gazi et al., 2003; Lledo et al., 1992) and that agonists 

may induce selectivity for one G protein subtype over another (Cordeaux et al., 2001; Gazi et al., 

2003).  Studies using Gz knockout mice found that D2R couples to this pertussis toxin-

insensitive G protein (Leck et al., 2006).  The other members of the D2-like family, D3R and 

D4R, activate multiple G proteins.   D3R can also couple to Gz and Gq, which activate 

phospholipase C (Lane et al., 2008; Sidhu and Niznik, 2000) in addition to Go and Gi.  D4R 

activates Gz, Go, and Gt (transducin) (Sidhu and Niznik, 2000).  D2-like family receptor coupling 

to specific G or G members of the G protein hetermotrimer have not been determined. 
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The G protein heterotrimer binds to a receptor at the third intracellular loop of the receptor.  As 

previously stated, the alternative splice variant of D2R contains 29 additional amino acids in the 

third intracellular loop of D2L.  The secondary structure of this third intracellular loop appears to 

confer G protein selectivity, which may be affected by the amino acid insert in D2L (Guiramand 

et al., 1995).  D2L and D2S preferentially couple to different G proteinswith D2S favoring 

coupling to Go and D2L preferring coupling to Gi (Lane et al., 2008; Liu et al., 1994; Montmayeur 

et al., 1993; Nickolls and Strange, 2003). 

Signaling 

By way of its coupling to G proteins, D2R mediates downstream signaling through a variety of 

pathways.  Many of the D2R signaling pathways are summarized in Figure 1-4.  Inhibition of 

adenylyl cyclase was the first signaling pathway identified for Gi/o proteins coupled to D2R 

(Neve et al., 2004).  Activation of D2R triggers a Gi/o protein to inhibit adenylyl cyclase, 

decreasing in cAMP production and, in some cases, opposing the action of the stimulatory D1Rs.  

The decrease in cAMP mediated by D2R elicits other signaling changes, such as decreases in 

DARP32 (Lindgren et al., 2003) and tyrosine hydroxylase phosphorylation (Lindgren et al., 

2001).   

D2R activation of G subunits regulates the intracellular concentrations of Na+ and Ca2+ ions.  

D2R decreases neuron excitability by hyperpolarizing the cells via activation of potassium 

channels by G (Fulton et al., 2011; Leaney and Tinker, 2000).  Depending on cellular 

localization, the D2 autoreceptor can activate different potassium channels.  Somatodendritic D2 

autoreceptors activate G protein inwardly rectifying potassium (GIRK) channels (Inanobe et al., 

1999; Pillai et al., 1998)  At the terminal, D2 autoreceptors couple with voltage gated potassium  
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Figure 1-4:  D2R Signaling Pathways.  Stimulatory pathways are indicated with solid arrows 

and inhibitory pathways are indicated with dashed bars.  Signaling pathways are simplified 

with intermediate steps omitted.  AA, arachidonic acid; AC, adenylyl cyclase; CREB, cAMP 

response element binding protein; DARPP-32, dopamine and cAMP regulated 

phosphoprotein, 32 kDA; MAPK, mitogen-activated protein kinase; NHE, Na+/H+ 

exchanger; PA, phophatidic acid; PC, phosphatidylcholine; PI3K, phophatidylinositol 3 

kinase; PKA, protein kinase A; PKC, protein kinase C; PLA2, phospholipase A2; PLC, 

phospholipase C; PLD, phospholipase D; PP1 or PP2A, protein phosphatase 1 or 2A; RTK, 

receptor tyrosine kinase. (Neve et al., 2004) 
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channels, particularly those containing the Kv1.2 subunits (Cass and Zahniser, 1991; Congar et 

al., 2002; Fulton et al., 2011).  D2R can also inhibit L, N, and P/Q-type calcium channels to 

decrease neuron activity (Lledo et al., 1992; Neve et al., 2004).  This leads to a decrease in 

intracellular calcium and inhibition of exocytosis of neurotransmitters such as acetylcholine 

(Dunlap et al., 1995), glutamate (Koga and Momiyama, 2000), and GABA (Momiyama and 

Koga, 2001).  D2R does not have a consistent effect on sodium channels, perhaps due to 

localization and interaction with other receptors, including D1Rs (Neve et al., 2004).  By 

activating the Na+/H+ exchanger, D2R can increase the pH of the neuron to modulate signaling 

(Neve et al., 1992).  Alterations to the sodium and pH balance of the neuron will also affect D2R 

ligand affinity (Neve, 1991).   

Activation of D2R stimulates MAP kinases, including extracellular signal-regulated kinase 

(ERK).  ERK activation regulates many cellular processes, including growth and differentiation.  

D2R activates ERK through either G or arrestin-mediated signaling, though there is some 

evidence that D2R can activate ERK through Gi (Beom et al., 2004; Kim et al., 2004; Lan et al., 

2009).  As will be discussed below, D2R activation of ERK leads to an increase in surface DAT 

localization, resulting in greater dopamine reuptake from the extracellular space (Bolan et al., 

2007).  Although activation of phospholipase C activity is often associated with Gq-coupled 

signaling, D2R can activate phospholipase C  via G.  This leads to increased intracellular 

calcium concentrations and activation of protein kinase C (Hernandez-Lopez et al., 2000).

Desensitization and Internalization 

D2R signaling is terminated via desensitization and internalization of the receptor.  

Desensitization can be either homologous or heterologous, depending on if desensitization is 

mediated by the receptor’s agonist (homologous) or if the desensitization is triggered by another 
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receptor type (heterologous).  D2R can undergo both types of desensitization.  When undergoing 

homologous desensitization, agonist stimulation of D2R triggers phosphorylation of the receptor 

by G protein-coupled receptor kinases (GRKs).  This phosphorylation decreases the receptor-G 

protein coupling, as well as increase the recruitment of arrestin and subsequent internalization 

and sequestration of the receptor.  Using a heterologous cell system, six serine and two threonine 

(serines 285, 286, 288, 311, 317, and 321; threonines 287 and 293) residues in the third 

intracellular loop of D2L were identified as GRK phosphorylation sites (Namkung et al., 2009a).  

Phosphorylation of these sites was increased by agonist treatment and overexpression of GRK2 

and GRK3, but not by protein kinase C activation.  Though this study was done using D2L, the 

identified GRK phosphorylation sites are present in both D2L and D2S.  For many GPCRs, 

agonist-stimulated phosphorylation of the receptor by GRK recruits arrestins to the receptor, 

triggering internalization of the receptor.  D2R preferentially associates with arrestin2 in 

neostriatal neuron cultures, though both arrestin2 and arrestin3 interact with the third 

intracellular loop of D2R in striatal brain homogenates and heterologous cell systems (Macey et 

al., 2004).  Once internalized and sequestered, GPCRs can either be recycled back to the surface 

of the cell or degraded (Ferguson et al., 1996).  The internalization of D2L and D2S is 

differentially regulated.  In a heterologous cell system, dopamine stimulated sequestration of D2S 

at a faster rate than D2L (Itokawa et al., 1996).  Additionally, internalized D2S receptors recycled 

back to the cell surface following dopamine washout faster than did D2L receptors.   

Interestingly, removal of the GRK phosphorylation sites did not alter the desensitization, 

internalization, or arrestin recruitment of D2R in a heterologous cell system (Namkung et al., 

2009a).  Instead, the lack of GRK phosphorylation resulted in less recycling of the receptor back 

to the cell surface.  This suggests that GRK phosphorylation determines the fate of the receptor 
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once it is internalized.  Further, GRK2 suppressed D2R surface localization and coupling to G 

proteins in a phosphorylation-independent manner (Namkung et al., 2009b).  These findings 

suggest that GRKs can regulate receptors through mechanisms other than desensitization.  

Similar findings have been described for the -adrenergic receptor where distinct 

phosphorylation of the receptor by two different GRKs leads to different signaling responses by 

the receptor (Nobles et al., 2011).   

Heterologous desensitization occurs when activation of one receptor type causes the 

desensitization of a second.  D2R undergoes homologous desensitization via protein kinase C 

(PKC) phosphorylation (Morris et al., 2007; Namkung and Sibley, 2004).  Mutation studies 

identified several PKC phosphorylation sites in the third intracellular loop of D2L.  

Phosphorylation of these sites (serines 228, 229, and 355; threonines 352 and 354) caused 

internalization and desensitization of the receptor.  These residues are also present in D2S.  Others 

have reported that D2L is resistant to PKC-mediated desensitization due to a PKC 

pseudosubstrate domain in the third intracellular loop of the receptor (Morris et al., 2007).  A D2L 

mutant lacking the pseudosubstrate domain was regulated by PKC phosphorylation similarly to 

D2S. Though D2R can activate PKC via a non-canonical G-mediated phospholipase 

Cpathway, agonist treatment of D2R does not stimulate PKC-stimulated phosphorylation of the 

receptor (Namkung and Sibley, 2004).  The precise mechanism for PKC activation leading to 

regulation of D2R is unknown.  PKC is classically activated through Gq protein-mediated 

signaling.  Stimulation of the Gq-coupled neurotensin receptor results in PKC-mediated 

internalization and desensitization of D2R (Thibault et al., 2011), though more investigation is 

needed to determine if this is the mechanism responsible for PKC activation.   
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The D2-Like Dopamine Autoreceptor 

Because dopamine signaling is integral for so many normal physiological functions, as noted at 

the start of the Introduction, synaptic dopamine must be carefully regulated.  The amount of 

dopamine in the extracellular space determines the amount of signaling and is controlled 

primarily by two proteins, the dopamine transporter and the D2-like dopamine autoreceptor (D2 

autoreceptor).   

Many D2Rs are located postsynaptically and act as heteroreceptors on other neuron types that 

receive dopaminergic input, such as GABAergic and cholinergic cells (Khan et al., 1998).  Some 

D2Rs are located on dopaminergic cells and act as autoreceptors to decrease the amount of 

dopamine released by that cell.  These receptors are located on the dendrites, soma, axons, and 

nerve terminals of dopaminergic neurons (Bello et al., 2011).  The D2 autoreceptors located on 

the dendrites and soma mainly decrease neuron firing rate (Bunney et al., 1973), while 

autoreceptors at the terminals inhibit dopamine synthesis by regulating tyrosine hydroxylase, 

decreasing dopamine exocytosis, and increasing reuptake through the dopamine transporter, 

discussed later in this section.  Dopamine autoreceptors were identified as belonging to the D2-

like family rather than the D1-like family due to the ability of selective D2-like agonists and 

antagonists to alter stimulated dopamine release (Cubeddu et al., 1989).  Due to receptor 

distributions, it was determined that D2R and D3R, but not D4R can act as autoreceptors 

(Gingrich and Caron, 1993; Jang et al., 2011; Sibley et al., 1993).   

D2R and not D3R was found to be the predominant autoreceptor in mice (Bello et al., 2011; 

L'Hirondel et al., 1998) In experiments measuring the release of dopamine ex vivo from wild 

type mice, the D2R favoring agonist R(-)-propylnorapomorphine suppressed dopamine release 

but the selective D3R agonist PD-128,907 could not (L'Hirondel et al., 1998).  Additionally, in 
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D2R knockout mice neither D2R nor D3R agonists could suppress dopamine release suggesting 

that the autoreceptor in mice is strictly D2R.  This conclusion is reinforced by the development of 

autoreceptor-selective knockout mice.  These mice were generated by crossing Drd2loxP/loxP mice 

with Dat+/IRES-cre mice  resulting in loss of D2R only in those neurons also expressing the 

dopamine transporter (Bello et al., 2011).  Again, the lack of presynaptic D2R resulted in a loss 

of dopaminergic autoreceptor function.  Together, these findings strongly suggest that D2R is the 

predominant autoreceptor in mice.  However, a role of D3R as an autoreceptor cannot be ruled 

out in other animals (Jang et al., 2011). 

Activation of D2 autoreceptor results in hyperpolarization of the neuron and a decrease in cell 

firing (Anzalone et al., 2012; Bunney et al., 1973).  While this autoreceptor activation occurs in 

response to exogenous agonists in vitro, in vivo it occurs in response to released dopamine 

(Paladini et al., 2003).  D2 autoreceptors influence neuron excitability and dopamine release by 

interacting with ion channels, as discussed above.  The D2 autoreceptor hyperpolarizes cells and 

decreases excitability by activating GIRK potassium channels (Cass and Zahniser, 1991; Fulton 

et al., 2011; Leaney and Tinker, 2000) or inhibiting calcium channels (Lledo et al., 1992; Neve et 

al., 2004).  Both types of channels are involved in the release of dopamine (Phillips and 

Stamford, 2000).  Not all dopaminergic neurons express GIRK channels (Lammel et al., 2008), 

thus the exact channel type(s) that D2 autoreceptors interact with is unknown.  The time course 

of the autoreceptor inhibition of dopamine release is estimated to last for milliseconds to 

seconds, depending on the experimental system and measurement used (Schmitz et al., 2003). 

A second mechanism by which the D2 autoreceptor controls dopamine signaling is by inhibiting 

tyrosine hydroxylase, the first and rate-limiting enzyme in the synthesis of dopamine from 

tyrosine.  Phosphorylation of tyrosine hydroxylase at serine 40 by cAMP-stimulated protein 
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kinase A (PKA) increases the activity of the enzyme, increasing dopamine synthesis.  Dopamine 

storage in vesicles is not very stable, with a half-life of minutes (Floor et al., 1995).  Thus, the 

amount of dopamine synthesis is an important determinant of dopamine signaling and continuous 

synthesis of dopamine is required.  Activation of the D2 autoreceptor decreases phosphorylation 

of tyrosine hydroxylase at serine 40, decreasing dopamine synthesis (Lindgren et al., 2001).  The 

decreased phosphorylation is thought to be through decreased cAMP concentrations in the cell 

which would lower PKA activity; however increased activity of phosphatases cannot be ruled 

out.  Lack of D2R activity, such as in the D2 autoreceptor knockout mice, results in an increase in 

tyrosine hydroxylase activity, as measured by increased accumulation of the tyrosine 

hydroxylase product L-DOPA (Bello et al., 2011). 

The third way the D2 autoreceptor regulates the amount of extracellular dopamine is through 

interaction with the dopamine transporter.  The dopamine transporter (DAT) is a presynaptically 

located transmembrane protein primarily responsible for removing dopamine from the 

extracellular space and thus terminating dopamine signaling.  DAT will be introduced more fully 

in the next section of this chapter.  In striatal synaptosomes from rat, treatment with the D2R 

agonist quinpirole significantly increased the dopamine uptake rate through DAT  (Meiergerd et 

al., 1993).  This effect was blocked by co-treatment with the D2R antagonist sulpiride, 

demonstrating involvement of the D2 autoreceptor.  The D2 autoreceptor-stimulated increase in 

dopamine uptake via DAT is accompanied by an increase in surface DAT localization (Bolan et 

al., 2007).  D2R
-/- mice, which lack all D2Rs, have decreased DAT activity, but no change in 

DAT expression (Dickinson et al., 1999).  D2R
-/- mice have slower dopamine clearance and lack 

the D2 autoreceptor modulation of DAT observed in wild type mice.  Studies using the D2 

autoreceptor knockout mice reported no difference in DAT activity from wild type, though the 
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D2 autoreceptor-mediated increase in DAT activity was not directly assessed (Bello et al., 2011).  

Wu and colleagues determined that the apparent increase in dopamine release following 

treatment with a D2R antagonist is due to decreased dopamine reuptake through DAT (Wu et al., 

2002).  As a result, the authors suggested that two populations of D2 autoreceptor exist, one to 

control dopamine release and one to control dopamine reuptake via DAT.  Furthermore, they 

found that the D2 autoreceptor control of dopamine release predominated at lower stimulation 

frequencies, with autoreceptor control of reuptake becoming prominent at higher stimulation 

frequencies.  Benoit-Marand and colleagues also found that dopamine reuptake is increased only 

in times of high stimulation in vivo (Benoit-Marand et al., 2011), suggesting the D2 autoreceptor-

mediated increase in DAT is a mechanism to decrease high extracellular dopamine during times 

of burst firing.  The mechanism linking the D2 autoreceptor and DAT involves ERK signaling 

stimulated by G protein activation (Bolan et al., 2007).  Pretreatment with either pertussis toxin 

or the ERK inhibitor PD980059 inhibited the D2R agonist quinpirole-mediated increase in 

dopamine uptake.  The PI3K inhibitor LY294002 had no effect on the D2 autoreceptor-

stimulated increase in dopamine uptake, suggesting the Akt pathway is not involved.  The 

signaling pathway leading to increased reuptake following D2 autoreceptor stimulation involves 

PKC PKC mice lack the coordination between the D2 autoreceptor and DAT (Chen et al., 

2013).  A physical interaction between the N-terminus of DAT and the third intracellular loop of 

D2R has been reported, resulting in increased surface DAT localization and dopamine uptake 

(Lee et al., 2007).    

The Dopamine Transporter 

The dopamine transporter (DAT) is another presynaptic protein that predominantly controls the 

amount of dopamine in the extracellular space.  DAT is a member of the family of Na+/Cl- 
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dependent transporters and mRNA for DAT is expressed in dopaminergic neurons.  In primate 

brain, DAT colocalizes with tyrosine hydroxylase in many, but not all dopaminergic neurons 

(Lewis et al., 2001).  In electron microscopy studies DAT was located outside of the active zone 

in the synapse, suggesting that dopamine must diffuse away from the site of release to be taken 

up by DAT.  DAT is made of 620 amino acids and has intracellular N- and C-termini with 

twelve transmembrane domains, separated by alternating extracellular and intracellular loops 

(Giros and Caron, 1993).  The second extracellular loop is particularly large and has several sites 

for glycosylation.  The amino acid sequence and topology of DAT is depicted in Figure 1-5.  The 

crystal structure for DAT has not been solved, but DAT structural analysis has been based on the 

crystal structure of the bacterial homolog leucine transporter (Yamashita et al., 2005).  This 

structure indicated that substrates bind in a pocket formed by transmembrane domains one and 

six.  The model for substrate uptake involves dopamine and two sodium ions binding to the 

outward-facing DAT.  Once the substrate and ions are bound, DAT transitions to an inward 

conformation, where dopamine and sodium are released to the interior of the cell (Krishnamurthy 

et al., 2009). 

DAT contains several consensus sites for phosphorylation by kinases such as PKA, PKC, and 

calcium/calmodulin-dependent protein kinase II (CaMKII), which can alter DAT activity.  For 

example, phosphorylation by PKC at N-terminal serines significantly impairs amphetamine-

stimulated dopamine efflux through DAT, but has no effect on dopamine uptake (Foster et al., 

2002; Khoshbouei et al., 2004).  The N-terminus of DAT interacts with several proteins, 

including syntaxin 1A, RACK1, and synuclein (Torres, 2006).   

The critical role DAT plays in regulating dopaminergic signaling was demonstrated using DAT-/- 

mice (Giros et al., 1996).  These mice were unable to remove dopamine from the extracellular  
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Figure 1-5:  Amino acid sequence and topology of DAT (Giros and Caron, 1993) 
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space, resulting in a profound increase in basal locomotor activity.  Additionally, these mice did 

not respond to the abused drugs cocaine and amphetamine, indicating that these drugs act at 

DAT.  Interestingly, the DAT-/- mice had a 50% reduction in D2R mRNA in the substantia nigra 

and VTA, further indicating the close relationship between these two proteins.   

Protein Kinase C 

PKC is a member of the larger group of serine/threonine kinases that contain protein kinases G 

and A, among others and is widely expressed throughout the body.  The family of PKCs is made 

up of ten different isoforms, classified into three groups based on their regulatory domains.  The 

conventional PKCs ( and ) require diacylglycerol, calcium, and phospholipids for 

activation.  Novel PKCs (, and ) do not require calcium for activation, but do have a 

higher affinity for diacylglycerol.  Finally, the atypical PKCs () require anionic 

phospholipids for activation instead of either calcium or diacylglycerol (Wu-Zhang and Newton, 

2013). 

Within the brain,  PKC interacts with neurotransmitters via several mechanisms, including 

increasing SNARE complex formation, interacting with ion channels, and increasing the vesicle 

pool (Leenders and Sheng, 2005; Majewski and Iannazzo, 1998; Tanaka and Nishizuka, 1994) 

As a result, PKC activity increases the release of many neurotransmitters, including dopamine 

(Cubeddu et al., 1989), norepinephrine (Huang et al., 1989), and glutamate (Barrie et al., 1991; 

Tibbs et al., 1989).  PKC regulates both D2R and DAT through phosphorylation.  As stated 

earlier, the N-terminus of DAT contains a series of serines that are phosphorylated by PKC 

(Foster et al., 2002).  Removal of these serines either via mutation to non-phosphorylatable 

alanines or truncation of the N-terminus abolishes the amphetamine-stimulated efflux of 

dopamine through DAT without altering the normal uptake process (Khoshbouei et al., 2004).  
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D2R is phosphorylated by PKC on the third intracellular loop causing internalization and 

desensitization of the receptor (Morris et al., 2007; Namkung and Sibley, 2004).   

Our lab demonstrated that PKC activity is required for amphetamine-stimulated dopamine 

efflux through the use of PKC-specific inhibitors (Johnson et al., 2005b).  Additionally, we 

found that PKCis involved in the rapid trafficking of DAT to the neuron surface in response to 

substrates and that PKC is expressed in dopaminergic neurons along with DAT (Chen et al., 

2009; Furman et al., 2009; O'Malley et al., 2010).  Finally, we determined that PKCis in the 

signaling cascade that links the D2 autoreceptor and DAT (Chen et al., 2013). 

Thesis Summary 

The aim of this thesis is to better understand the signaling and regulation of the D2 autoreceptor, 

particularly with regard to PKC and DAT.  Together, the D2 autoreceptor and DAT control the 

amount of dopamine in the extracellular space, and thus control the amount of dopamine 

signaling in the brain.  Therefore, understanding how the D2 autoreceptor is regulated is crucial 

to comprehend the control of the dopamine system.   

This thesis project began with the observation that mice lacking PKCdid not display the D2 

autoreceptor-mediated increase in surface DAT localization observed in PKC+/+ mice (Chen et 

al., 2013).  To determine if the D2 autoreceptor is functional in these PKC-/- mice, I developed 

an assay to measure the D2 autoreceptor control of exocytosis.  I found that in the absence of 

PKC activity, the activation of the D2 autoreceptor suppresses dopamine release to a greater 

extent than in the presence of PKC.  The increased D2 autoreceptor activity was not due to 

compensatory changes in overall D2R expression or other PKC isoforms in the knockout mice; 

D2 autoreceptor control of dopamine release was increased following acute inhibition of 
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PKCin synaptosomes from wild type mice.  Our collaborator, using fast-scan cyclic 

voltammetry, which measures electro-stimulated dopamine release with precise spatial and 

temporal resolution, confirmed that acute inhibition of PKCenhances D2 autoreceptor control 

of dopamine exocytosis.  Mechanistically, I found that inhibition of PKCincreases surface 

localization of D2 autoreceptor.  The increase in surface D2R likely leads to greater D2 

autoreceptor activity, resulting in a reduction in extracellular dopamine and dopamine signaling. 

This mechanism was demonstrated behaviorally as increased locomotor suppression following 

treatment with the D2R agonist quinpirole in the PKC-/- mice.  The results are presented in 

Chapter Two. 

A protein’s environment can have profound effects on its activity.  Phosphorylation at specific 

residues (Namkung et al., 2009a; Namkung et al., 2009b; Nobles et al., 2011) or binding of 

different agonists (Gazi et al., 2003) alter G protein selectivity, signaling pathways, or receptor 

downregulation of G-protein coupled receptors.  Local ion concentrations or pH can regulate 

agonist binding to the receptor (Neve, 1991).  We know that D2 autoreceptor influences DAT 

surface localization and activity through signaling and/or physical interaction (Bolan et al., 2007; 

Lee et al., 2007).  I posed the novel hypothesis that DAT alters D2 autoreceptor surface 

localization and activity.  This investigation into the DAT-specific context of D2R is presented in 

Chapter Three.  For this study, I used confocal microscopy and immunofluorescence to measure 

changes in surface localization of D2S in the presence or absence of DAT.  These experiments 

were performed in N2A neuroblastoma cells transfected with FLAG-D2S with or without HA-

DAT.  I found that the presence of DAT significantly affects the regulation of D2S by agonist or 

PKC.  When D2S is expressed in the absence of DAT, its surface localization is regulated 

similarly to other GPCRs, so that treatment with the agonist quinpirole internalizes the receptor.  
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However, when D2S is co-expressed with DAT, D2S is in a dissimilar, DAT-specific context, 

leading to different regulation.  In this context, D2S is in a state that is susceptible to 

internalization by PKC, manifested as decreased surface localization.  PKC inhibition in this 

context therefore increases surface localization of D2S.  This increase in surface D2S localization 

following PKC inhibition matches my findings in Chapter Two.  In that study, I determined that 

PKC inhibition increases surface D2R localization in mouse striatal synaptosomes, which 

express both D2 autoreceptor and DAT.  PKC appears to have no effect on basal surface D2S 

localization in the absence of DAT.  Removal of three PKC phosphorylation sites on the third 

intracellular loop of D2S or truncation of the DAT N-terminus disrupts the interaction of D2S and 

DAT, thus allowing D2S to be regulated more similarly to a D2S outside of the D2S-DAT context.  

The D2R agonist quinpirole differentially interacts with D2S receptors alone or D2S receptors 

interacting with DAT.  When quinpirole activates D2S receptors in the absence of DAT, the 

receptors internalize.  However, when D2S is interacting with DAT, quinpirole elicits an increase 

in the surface localization of both the D2S receptor and DAT.  This D2S-DAT context also 

extends to ERK signaling, but not cAMP signaling, demonstrating a bias in the coupling of the 

receptor to effector proteins.   

The final chapter of this thesis discusses the implications of the context-dependent regulation of 

D2 autoreceptor, as well as the outstanding questions regarding D2 autoreceptor regulation.  

Because the D2 autoreceptor is one of two presynaptic proteins that controls extracellular 

dopamine, fully understanding its regulation will add to our comprehension of both normal 

dopamine signaling and the changes in that signaling that accompany various neurological and 

psychiatric disorders.     
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CHAPTER TWO 

PROTEIN KINASE C BETAREGULATES THE D2-LIKE DOPAMINE 

AUTORECEPTOR 

Abstract 

Protein Kinase C (PKC) regulates neuronal signaling by interacting with neurotransmitter release 

via several mechanisms, including interacting with ion channels and the structures involved in 

vesicular release.  In addition, PKC desensitizes autoreceptors to increase the release of several 

different neurotransmitters.  The focus of this study was the regulation of the D2-like dopamine 

autoreceptor (D2 autoreceptor) by PKC.  Together with the dopamine transporter, the D2 

autoreceptor regulates the amount of extracellular dopamine and thus dopaminergic signaling.  

Here, using both PKC-/- mice and specific PKC inhibitors, we determined that lack of PKC 

activity increased the D2 autoreceptor-stimulated decrease in dopamine release following both 

chemical and electrical stimulations.  Inhibition of PKCresulted in an increase of D2R on the 

surface of mouse striatal synaptosomes.  The increase in active, surface D2Rs could underlie the 

increased sensitivity to quinpirole following inhibition of PKC.  Finally, inhibition of 

PKCincreased the sensitivity to the quinpirole-induced suppression of locomotor activity, 

demonstrating that this regulation of the D2 autoreceptor by PKCis physiologically significant.  

Overall, we have found that PKC desensitizes the D2 autoreceptor, providing an additional 

layer of regulation for dopaminergic signaling.  We propose that in the absence of PKC 
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activity, surface D2 autoreceptor localization and thus D2 autoreceptor signaling is increased, 

leading to less dopamine in the extracellular space and lower dopaminergic signaling.  

Introduction 

Tight regulation of extracellular dopamine is crucial for normal dopaminergic signaling and is 

primarily achieved presynaptically by both the dopamine transporter (DAT) and the D2-like 

dopamine autoreceptor (D2 autoreceptor).  The primary function of the DAT is to remove 

dopamine from the extracellular space, terminating dopaminergic signaling (Giros et al., 1996).  

The D2 autoreceptor regulates extracellular dopamine levels by inhibiting further dopamine 

release upon agonist stimulation (L'Hirondel et al., 1998).  Both D2R and DAT are substrates for 

the widely expressed serine/threonine kinase protein kinase C (PKC) (Foster et al., 2002; 

Namkung and Sibley, 2004).   

PKC is involved in many cellular processes, including neurotransmitter exocytosis.  Activation 

of PKC by phorbol esters increases the release of various neurotransmitters following a 

depolarizing stimulus, including dopamine (Cubeddu et al., 1989; Huang et al., 1989; Barrie et 

al., 1991).  PKC can affect exocytosis through several different mechanisms, including 

interacting with potassium or calcium channels, increasing the size and replenishing rates of 

vesicle pools, and increasing availability of the SNARE complex proteins involved in vesicle 

fusion [see reviews (Leenders and Sheng, 2005; Majewski and Iannazzo, 1998; Tanaka and 

Nishizuka, 1994)].    PKC can also alter exocytosis by interacting with presynaptic autoreceptors.  

Cubeddu and colleagues (1989) demonstrated that PKC activation with a phorbol ester reduced 

the activity of the D2 autoreceptor, leading to a decrease in D2R agonist-dependent inhibition of 

dopamine release.  PKC activation phosphorylates D2R to cause internalization and 

desensitization of the receptor (Namkung and Sibley, 2004; Morris et al., 2007).  While there is 
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evidence showing that PKC affects the regulation of extracellular dopamine and D2R, it has yet 

to be determined which of the ten mammalian PKC isoforms interacts with D2R to cause these 

changes.   

We previously reported that the PKC isoform regulates DAT trafficking and activity in 

response to amphetamine (Johnson et al., 2005; Furman et al., 2009; Chen et al., 2009).  More 

recently, we determined that PKCis crucial for coordinating the interaction between the D2 

autoreceptor and DAT (Chen et al., 2013).  Because of these findings, we hypothesized that 

PKC also regulates the D2 autoreceptor.  In the present study we used mice genetically lacking 

PKC along with specific PKC inhibitors to determine the impact of this kinase on D2R 

activity.  D2 autoreceptor activity was assessed by measuring dopamine exocytosis following 

chemical stimulation of synaptosomes or electrical stimulation in brain slices, as well as 

measuring D2R-mediated changes in locomotor activity.  We determined that PKC interacts 

with the D2 autoreceptor to regulate its surface localization and activity.  Coupled with our 

findings regarding PKC regulation of DAT, this work identifies a role for PKC as a key 

regulator of extracellular dopamine levels and thus dopaminergic signaling. 

Materials and Methods 

Animals. All animal use and procedures were approved by the Institutional Animal Care and Use 

Committee and were in accordance with the National Institutes of Health guidelines.  Wild type 

C57BL/J6 mice were obtained from an in-house breeding program and Jackson Laboratories.  

The generation of PKCβ+/+ and PKCβ-/- mice was previously described (Leitges et al., 1996) and 

included backcrossing with C57BL/6J mice at least ten times.  Mice had free access to water and 
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standard laboratory chow.  Experimental mice were gender matched and were used between two 

and four months of age. 

Chemicals.  LY379196 was a generous gift from Eli Lilly (Indianapolis, Indiana).  Enzastaurin 

was purchased from LC Labs (Woburn, MA).  The [3H]-sulpiride for radioligand binding studies 

was from PerkinElmer (Waltham, MA).  Complete Mini protease inhibitor was purchased from 

Roche Diagnostics (Indianapolis, IN).  All other chemicals, including 4-aminopyridine, 

quinpirole, sulpiride, and butaclomol, were purchased from Sigma Aldrich (St. Louis, MO).   

Striatal dopamine release via suprafusion.  Synaptosomes from whole striata were prepared as 

described previously (Chen et al, 2009).  Briefly, mice were sacrificed by cervical dislocation.  

Striata were dissected on ice and homogenized in 0.32 M sucrose containing Complete Mini 

protease inhibitor cocktail.  Homogenates were centrifuged at 4°C (800xg, 10 minutes) to 

remove cellular debris.  The supernatant was centrifuged again (12,000xg, 15 minutes, 4°C).  

The pellet containing synaptosomes was resuspended in oxygenated Kreb-Ringer’s Buffer 

(KRB) (145 mM NaCl, 2.7 mM KCl, 1.2 mM KH2PO4, 1.0 mM MgCl2, 10 mM glucose, 24.9 

mM NaHCO3, 0.05 mM ascorbic acid, 0.05 mM pargyline, pH 7.4).  Synaptosomes were loaded 

into the chambers of a Brandel suprafusion apparatus (Brandel Inc., Gaithersburg, MD).  The 

samples were perfused with oxygenated KRB at approximately 800 μl/min.  Following a 60 

minute wash to achieve a steady baseline, 14 fractions were collected at one-minute intervals.  

Exocytotic dopamine release was stimulated at fractions seven and eight with 50 μM 4-

aminopyridine (4AP).  When present, quinpirole and sulpiride treatments were included with the 

4AP stimulation.  Treatment with the PKCβ inhibitor LY379196 began during the 60 minute 

wash period and continued throughout fraction collection.  An internal standard solution 
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composed of 50 mM perchloric acid, 25 μM EDTA, and 10 nM 2-aminophenol was added to 

each fraction.  Dopamine content in each fraction was measured using HPLC with 

electrochemical detection (Thermo Scientific/esa, Sunnyvale, CA).   

Striatal dopamine release via electrical stimulation. Brain slices were prepared as described 

previously (Mateo et al., 2005). Briefly, mice were decapitated, brains rapidly removed, and 

coronal brain slices (400 μm thick) containing the nucleus accumbens were prepared using a 

vibrating tissue slicer.  Slices were maintained at 32 °C in oxygen-perfused (95% O2–5% CO2) 

modified Kreb’s buffer, which consisted of (in mM): NaCl, 126; NaHCO3, 25; D-glucose, 11; 

KCl, 2.5; CaCl2, 2.4; MgCl2, 1.2; NaH2PO4, 1.2; L-ascorbic acid, 0.4; pH adjusted to 7.4. A 

capillary glass-based carbon-fiber electrode (active area ~100 µm long, 7 µm wide) was 

positioned approximately 75 μm below the surface of the slice in the nucleus accumbens core. 

Dopamine release was evoked every 5 min by a 4-ms, one-pulse stimulation (monophasic, 300 

μA) from a bipolar stimulating electrode (Plastics One, Roanoke, VA, USA) placed 100–200 μm 

from the carbon-fiber electrode. 

Fast-scan cyclic voltammetry recordings were performed and analysed using locally written 

software (Demon Voltammetry and Analysis; Yorgason et al., 2011). The electrode potential was 

linearly scanned as a triangular waveform from −0.4 to 1.2 V and back to −0.4 V (Ag vs. AgCl) 

using a scan rate of 400 V/s. Cyclic voltammograms were recorded at the carbon-fiber electrode 

every 100 ms by means of a potentiostat (Dagan, Minneapolis, MN, USA). Once the stimulated 

dopamine response was stable for at least three successive collections, baseline measurements 

were taken.  Evoked extracellular concentrations of dopamine were assessed by comparing the 

current at the peak oxidation potential for dopamine with electrode calibrations of known 

concentrations of dopamine (1–3 μM).  Data were modeled using Michaelis-Menten kinetics to 
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determine DA released and Vmax (Yorgason et al., 2011).   

The selective D2-type receptor agonist (–)-quinpirole hydrochloride was used to induce 

autoreceptor activation. Quinpirole-induced decreases in electrically stimulated dopamine release 

were compared with pre-drug values (each animal served as its own control) to obtain a percent 

change in stimulated dopamine release. Treatment with the PKCβ inhibitor enzastaurin (200 nM) 

began after stable baselines were obtained, 60 minutes before quinpirole was added, and 

continued throughout the experiment.  Quinpirole dose–response curves were plotted as log 

concentration (M) of quinpirole vs. percent of control dopamine response. 

D2 Receptor Binding.  Striatal synaptosomes were prepared as described above and were 

resuspended in KRB.  To measure surface D2R binding, synaptosomes were treated for 5 minutes 

at 37°C with vehicle or the PKCβ inhibitor enzastaurin.  Following treatment, the synaptosomes 

were incubated with 10 nM [3H]-sulpiride, a hydrophilic D2 receptor antagonist, for 3.5 hours on 

ice.  Non-specific binding was determined by including 10 μM (-)-butaclamol.  Binding was 

terminated by filtering over GF/B Whatman filters and washing 3X with ice cold KRB and was 

quantified by scintillation counting.  Overall D2R expression was determined using a membrane 

preparation from the striatal synaptosomes prepared above.  These synaptosomes were 

resuspended in 50 mM Tris-HCl (pH 7.4) and centrifuged at 40,000 x g for 15 minutes.  The 

resulting membrane fraction was resuspended in KRB and then treated with vehicle or 

enzastaurin for 5 minutes at 37°C.  Membranes were incubated with 10 nM [3H]-sulpiride + 10 

M (-)-butaclamol for 90 minutes at room temperature.  Binding was terminated by filtering 

over GF/B Whatman filters and washing 3X with ice cold KRB and was quantified by 

scintillation counting.   
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Locomotor suppression by acute quinpirole treatment.  Locomotor suppression following 

quinpirole treatment in a novel environment was measured using radiotransmitter implantation 

(Mini Mitter Co., Bend, OR) as previously described (Chen et. al, 2007).  Briefly, a 

radiotransmitter was implanted into the peritoneal cavity of each mouse.  Following recovery, 

PKCβ+/+ and PKCβ-/- mice were injected with saline and quinpirole (0.03, 0.1, or 0.3 mg/kg i.p.).  

Locomotor activity (gross activity count) was recorded immediately after the injection for 15 

minutes.   

Statistical Analysis.  Results were analyzed using GraphPad Prism 6 software (San Diego, CA) 

and are plotted as mean + SEM.  Statistical significance was set at p < 0.05.  Comparisons 

between multiple groups or treatments were made using one-, two- or three-way ANOVA with 

appropriate post-test.  Three-way ANOVA was performed using Systat (Chicago, IL).  When 

only two groups were compared, a paired, two-tailed Student’s t-test was used. 

Results 

Suppression of PKC activity increases D2 autoreceptor control of dopamine release.   

The primary function of the D2 autoreceptor is to control the amount of dopamine in the 

extracellular space and thus the amount of dopamine signaling.  Activation of the D2 

autoreceptor inhibits further dopamine exocytosis.  We developed a suprafusion assay to 

measure this D2 autoreceptor control of dopamine exocytosis.  In this assay, striatal 

synaptosomes are prepared from mice and perfused with KRB to achieve steady basal release of 

endogenous dopamine and then several fractions are collected.  The amount of dopamine in each 

fraction is determined using an HPLC coupled with electrochemical detection.  Dopamine  
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Figure 2-1:  Stimulation of the D2 autoreceptor inhibits dopamine exocytosis.  Striatal 

synaptosomes from wild type mice were perfused with KRB and one minute fractions were 

collected for 14 minutes.  Dopamine release was stimulated with 50 M 4AP at fractions 

seven and eight + 3 M quinpirole (QP) + 10 M sulpiride.  The amount of dopamine in each 

fraction collected was determined using HPLC-EC and normalized to protein concentration.  

N = 3, *** p < 0.0001 vs. 4AP control via one-way ANOVA with Tukey’s post-hoc anaylsis. 
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exocytosis is stimulated using the potassium channel blocker 4-aminopyridine (4AP, 50 M) to 

depolarize the synaptosomes (L'Hirondel et al., 1998).  This stimulation increases dopamine 

release 2-3 fold over basal (Figure 2-1).  D2 autoreceptor control of dopamine exocytosis is 

determined by adding the D2R agonist quinpirole simultaneously with 4AP.  Agonist activation 

of D2R reduces 4-AP-stimulated exocytotic dopamine release.  In Figure 2-1, treatment with 3 

M quinpirole, a maximally effective concentration, inhibits 4AP-stimulated dopamine release.  

A one-way ANOVA found a significant effect of quinpirole treatment (N = 3, F(5, 12) = 46.28, p 

< 0.0001).  To demonstrate D2R specificity for the quinpirole suppression of dopamine release, 

we included the D2R antagonist sulpiride.  Sulpiride had no effect on either basal release or 4AP-

stimulated dopamine release.  The sulpiride treatment blocked the quinpirole suppression of 

dopamine release, demonstrating D2R specificity of quinpirole suppression.   

To determine if PKC influences the D2 autoreceptor activity, we measured the 4AP-stimulated 

dopamine exocytosis in to the presence and absence of quinpirole in striatal synaptosomes 

prepared from PKC+/+ and PKC-/- mice (Figure 2-2).  Addition of 100 nM quinpirole 

decreased dopamine release in PKC+/+ mice, as expected.  4AP-stimulated dopamine release 

was not stastically different in PKC-/- mice as compared to PKC+/+ controls (N = 4).  There 

was, however, an enhanced suppression of dopamine release in response to quinpirole.  A three-

way ANOVA with repeated measures yielded a significant main effect of genotype, F(1,12) = 

8.998, p < 0.05, and drug, F(1,12) = 7.23, p < 0.05, and a significant interaction between time 

and genotype, F(12,144) = 2.44, p < 0.05.   
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Figure 2-2:  Quinpirole (QP)-induced suppression of 4AP-stimulated dopamine release is 

enhanced in PKC-/- mice.  Striatal synaptosomes from PKC+/+ (A) and PKC-/- mice (B) were 

perfused with KRB and one minute fractions were collected for 14 minutes.  Dopamine release 

was stimulated with 50 M 4AP at fractions seven and eight + 100 nM QP.  The amount of 

dopamine in each fraction collected was determined using HPLC-EC and normalized to protein 

concentration.  N = 4, * p < 0.05, ** p < 0.01, # p < 0.0001 vs. 4AP control via three-way 

ANOVA with Bonferonni post-hoc analysis. 
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The results shown in Figure 2-2 were generated using mice constitutively lacking PKC.  To 

ensure any differences observed were not due to compensatory changes in the genetic PKC 

knockout, we inhibited PKC activity in wild type mice using specific inhibitors.  We repeated 

the dopamine exocytosis experiment using the PKC-specific inhibitor LY379196 (IC50 = 30 

nM, Jirousek et. al., 1996).  Striatal synaptosomes from wild type mice were pretreated with 

vehicle or 200 nM LY379196 for 60 minutes prior to addition of 50 μM 4AP and 30 nM 

quinpirole.  The lower concentration of quinpirole was used to better detect potential increases in 

sensitivity due to PKC inhibition.  4AP-stimulated dopamine release following quinpirole 

treatment in the presence and absence of LY379196 is shown in Figure 2-3.  In the vehicle-

treated control samples, 30 nM quinpirole did not significantly decrease stimulated dopamine 

release.  Acute inhibition of PKC by LY379196 increased the D2 autoreceptor reactivity to 

quinpirole, causing a significant suppression of the 4AP-stimulated dopamine release (two-way 

ANOVA, interaction F(1, 8) = 1.683, p = 0.2307; LY379196 treatment F(1, 8) = 0.0048, p = 

0.9464; quinpirole treatment F(1, 8) = 6.861, p = 0.0307, N = 5).  The increased sensitivity to 

quinpirole following acute PKC inhibition mimics the increased quinpirole reactivity measured 

in the PKC-/- mice.  Acute PKC inhibition had no effect on 4AP-stimulated dopamine release 

in the absence of quinpirole, again replicating the results obtained with the PKC-/- mice.   

Lack of PKC activity increases D2 autoreceptor control of dopamine release in the nucleus 

accumbens.   

The suprafusion experiments described above use a depolarizing stimulus to trigger dopamine 

release.  We then used fast-scan cyclic voltammetry to determine if PKC inhibition would 

increase the D2 autoreceptor control of dopamine release using electrical stimulation.   
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Figure 2-3:  Acute PKC inhibition increases dopamine release suppression in response to 

quinpirole (QP).  Striatal synaptosomes from wild type mice were perfused with vehicle 

control or 200 nM LY379196 for 60 minutes and one minute fractions were collected for 

14 minutes.  Dopamine release was stimulated using 50 M 4AP + 30 nM QP at fractions 

seven and eight.  A lower concentration of QP was used here to better detect potential 

increases in sensitivity due to PKC inhibition.  Dopamine content was determined via 

HPLC-EC and was normalized to protein concentration and is shown here as peak 

stimulated dopamine release.  N = 5, * p < 0.05 via two-way ANOVA with Sidak post-hoc 

analysis.   

 



 

47 
 

Dopamine release was evoked from mouse nucleus accumbens core in striatal slices with single 

300 A stimulations.  The slices were pretreated for 60 minutes with either vehicle or the PKC 

inhibitor enzastaurin (200 nM, IC50 = 6 nM, Graff, 2005) and a concentration-response curve 

was generated for dopamine release suppression in response to quinpirole.  Enzastaurin treatment 

had no effect on baseline stimulated dopamine release (Figure 2-4A; vehicle treatment:  1067.24 

+ 80.23 nM, N = 10; enzastaurin treatment:  1058.55 + 88.11 nM, N = 8).  Similar to the 

suprafusion results described above, inhibition of PKC using enzastaurin increased the 

effectiveness of the D2R agonist quinpirole, leading to increased suppression of dopamine 

release (Figure 2-4B).  A two-way ANOVA revealed a significant effect of pretreatment group 

as well as quinpirole, but no significant interaction (Interaction F (5, 82) = 1.00 , p = 0.4231; 

Quinpirole F (5, 82) = 109.4, p < 0.0001; treatment group F (1, 82) = 16.00, p = 0.0001; N = 8-

10).  PKC inhibition also had no effect on the reuptake of dopamine via DAT (Vmax, Vehicle 

treatment:  2335 + 308.3 nM/sec, N = 11; enzastaurin treatment:  2291 + 260.9 nM/sec, N = 8). 

PKC inhibition increases surface localization of the D2 autoreceptor 

We then investigated the mechanism by which PKC inhibition could increase the activity of the 

D2 autoreceptor.  Previous reports found that PKC phosphorylation elicits internalization and 

desensitization of D2R in heterologous cells (Namkung and Sibley, 2004; Morris et al., 2007).  

We therefore hypothesized that inhibition of PKC would increase D2R surface localization.  For 

this experiment, striatal synaptosomes from wild type mice were treated with vehicle or 200 nM 

enzastaurin for 5 minutes prior to using the hydrophilic antagonist [3H]-sulpiride to bind the D2 

autoreceptor located on the surface of the synaptosomes.  To ensure PKC inhibition was not 

altering overall D2R expression or binding, receptor binding was repeated using lysed  
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Figure 2-4:  Acute PKC inhibition increases D2R agonist quinpirole (QP) effectiveness.  

(A) Representative traces of electrically stimulated dopamine release in nucleus accumbens 

core in brain slices was inhibited by QP in a dose-responsive manner. Pretreatment (60 min) 

of slices with 200 nM enzastaurin significantly decreased the QP dose-response curve (B), 

normalized to % pre-QP baseline values to the left, indicating supersensitivity of the D2 

autoreceptor (two-way ANOVA F (1, 82) = 16.00, p = 0.0001). N = 8-10, * p < 0.05 via two-

way ANOVA in post-hoc Bonferroni. 

 

A 
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membranes prepared from striatal synaptosomes.  PKC inhibition significantly increased D2 

autoreceptor surface binding in intact synaptosomes but did not affect D2R binding in lysed 

membranes (Figure 2-5, N = 3 with 4-5 replicates per N, paired t-test, p < 0.01; specific [3H]-

sulpiride binding in vehicle treated samples:  Intact synaptosomes: 79.08 + 0.01 fmol/mg protein, 

Lysed membranes:  82.6 + 0.01 fmol/mg protein).  Thus the increase in D2 autoreceptor surface 

localization following inhibition of PKC may underlie the increased D2 autoreceptor sensitivity 

to quinpirole.  

PKC-/- mice have increased quinpirole-induced locomotor suppression.   

To determine the physiological relevance of PKC inhibition on D2 autoreceptor activity, we 

measured locomotor activity suppression in response to the D2R agonist quinpirole in both 

PKC+/+ and PKC-/- mice.  Studies using mice with a deletion of the D2 autoreceptor 

(Drd2loxP/loxP; Dat+/IRES-cre) in midbrain dopamine neurons have concluded that this locomotor 

suppression is primarily mediated by the D2 autoreceptor (Bello et al., 2011).  Here, the 

locomotor activity following an injection of either saline or an increasing dose of quinpirole in 

PKC+/+ and PKC-/- mice was measured and the results are shown plotted as the total locomotor 

activity in fifteen minutes, normalized to the saline control (Figure 2-6).  Quinpirole dose-

dependently suppressed locomotor activity in both genotypes (N = 6-15).  The PKC-/- mice 

showed a significantly greater locomotor suppression to quinpirole than PKC+/+ controls.  A 

two-way ANOVA indicated a significant main effect of quinpirole dose, F(4,77) = 81.73, p < 

0.0001, and genotype, F(1, 77) = 12.02, p < 0.001, as well as a significant interaction, F(4, 77) = 

2.73, p < 0.05.  The results of this experiment demonstrate that the PKC regulation of the D2 

autoreceptor measured in our suprafusion assays is physiologically relevant.    
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Figure 2-5:  PKC inhibition increases D2 autoreceptor surface localization.  Striatal 

synaptosomes from wild type mice were prepared.  Half of the synaptosomes were lysed and 

membranes were isolated.  The tissue preparations were incubated with vehicle or 200 nM 

enzastaurin for 5 minutes at 37° C.  Following treatment, intact synaptosomes were incubated 

with [3H]-sulpride on ice for 3.5 hours to measure surface D2 autoreceptor binding.  Lysed 

membranes were incubated with [3H]-sulpride for 1.5 hours at room temperature to measure 

total D2 autoreceptor binding.  Binding was terminated by filtering samples and radioligand 

binding was determined via scintillation counting.  N = 3, with 3-5 replicates per N, ** p < 

0.01 via paired t-test.   
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Discussion 

In the present study, we determined that PKC regulates presynaptic D2 autoreceptor surface 

location and activity.  Previous reports demonstrated that PKC activation can regulate D2R 

(Cubeddu et al., 1989; Namkung and Sibley, 2004; Morris, 2007).  Our results identify the PKC 

isoform specifically as a PKC-mediated regulator of the D2 autoreceptor.  Using both PKC-/- 

mice and specific PKC inhibitors, we found that reduced PKC activity increased D2 

autoreceptor function, likely by increasing receptor surface localization. We are the first to 

demonstrate the physiological relevance of the PKC regulation by demonstrating greater 

quinpirole suppression of locomotor behavior in PKC-/- as compared to PKC+/+ mice.  Our 

model for this finding is that under normal conditions, PKCactivity enhances phosphorylation 

of the D2 autoreceptor, causing internalization and desensitization of the receptor, leading to a 

blunting of D2 autoreceptor-mediated control of extracellular dopamine.  However, when PKC 

is inhibited, more D2 autoreceptor is left on the neuronal surface, leading to increased signaling 

and a greater D2 autoreceptor-mediated inhibition of dopamine exocytosis.  This would result in 

lower extracellular dopamine and less dopaminergic signaling, causing increased suppression of 

locomotor activity in response to the D2R agonist quinpirole, as we observed in PKC-/- mice. 

PKC appears to increase the release of neurotransmitters through many different mechanisms.  

By either inhibiting potassium channels (Colby and Blaustein, 1988) or preventing G protein 

blockade of calcium channels (Barrett and Rittenhouse, 2000), PKC can cause cell depolarization 

and an increase in neurotransmitter release.  PKC can also interact with vesicular release 

machinery.  Munc18, a PKC substrate, dimerizes with syntaxin, a SNARE complex member.  

Phosphorylation by PKC breaks the dimer between Munc18 and syntaxin, resulting in increased  
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Figure 2-6:  Quinpirole (QP) suppression of locomotor activity is increased in PKC-/- mice.  

PKC+/+ and PKC-/- mice were implanted with Mini-mitter tracking devices and placed in a 

novel environment.  Mice were injected IP with saline or increasing doses of QP (0.032 – 1 

mg/kg).  Locomotor activity was measured for 15 minutes following injection and total 

activity normalized to saline control is shown.  N = 5-15, * p < 0.05, ** p < 0.01 via two-way 

ANOVA with Bonferonni post-hoc analysis. 
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vesicle fusion and neurotransmitter release (de Vries et al., 2000).  PKC can also interact with 

autoreceptors to alter neurotransmitter release, which is most pertinent to this study.     

Activation of PKC by phorbol esters increased 4AP-stimulated [3H]-norepinephrine release from 

rabbit hippocampus slices (Huang et al., 1989).  In that study, PKC activation increased 4AP-

stimulated norepinephrine release and blocked the 2-adrenergic agonist-mediated inhibition of 

norepinephrine release.  PKC activation also increased electrical stimulation of [3H]-dopamine 

from rabbit striatal and prefrontal cortex slices (Cubeddu et al., 1989, but see (Iannazzo et al., 

1997)).  PKC activation antagonized the activity of several D2R agonists, including quinpirole, 

leading the authors to hypothesize that PKC activation could decrease the surface localization of 

D2 autoreceptors.  Both of these reports agree with our findings.  These authors activated PKC 

and saw decreased autoreceptor control of neurotransmitter exocytosis.  We found that inhibition 

of PKC increased D2 autoreceptor control of dopamine exocytosis. 

Extracellular dopamine levels, and thus dopaminergic signaling, are tightly controlled by both 

DAT and the D2 autoreceptor.  PKC has been found by our lab and others to regulate both of 

these proteins through phosphorylation.  PKC phosphorylates the D2R receptor to change surface 

localization and receptor activity.  Several PKC phosphorylation sites have been identified on the 

receptor using mutagenesis studies, particularly on the third intracellular loop.  Phosphorylation 

at these sites causes internalization and desensitization of the receptor (Namkung & Sibley, 

2004; Morris et al., 2007; Thibault et al., 2011).  Overexpression of PKC in HEK cells suggests 

that this isoform specifically phosphorylates D2R (Namkung & Sibley, 2004).  In addition to 

inhibiting dopamine exocytosis, the D2 autoreceptor can increase the surface localization and 

uptake of dopamine through DAT to control extracellular dopamine levels (Bolan et al., 2007). 

This coordination between DAT and the D2 autoreceptor allows for more precise control of 
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dopaminergic signaling and may occur through a separate population of autoreceptors (Wu et al., 

2002).  Using PKC -/- mice and PKC-specific inhibitors we found that PKC signaling is 

required for this D2 autoreceptor-DAT coordination (Chen et al., 2013).  Additionally, the D2 

autoreceptor and DAT are reported to physically interact between the third intracellular loop of 

D2R and the N-terminus of DAT (Lee et al., 2007).  Both the D2R third intracellular loop (Morris 

et al., 2007; Namkung and Sibley, 2004) and the DAT N-terminus (Foster et al., 2002) contain 

PKC phosphorylation sites, suggesting that PKC phosphorylation may be involved in this D2 

autoreceptor-DAT interaction and thus the regulation of extracellular dopamine.  Studies are 

currently underway to further understand how PKC regulates this D2 autoreceptor-DAT 

interaction. 

In the present study, we used the potassium channel blocker 4-aminopyridine (4AP) to stimulate 

dopamine exocytosis in our suprafusion assay.  Some studies have reported that 4AP or other 

potassium channel blockers interfere with autoreceptor regulation of neurotransmitter release 

(norepinephrine: Hu & Fredholm, 1989; acetylcholine: Drukarch et al., 1989; dopamine: Cass & 

Zahniser, 1991 and Fulton et al., 2011).  Unlike our assay, these studies did not use 4AP 

stimulation alone, but combined potassium channel blockade with electrical stimulation.  This 

combined stimulation appears to cross an upper threshold of neurotransmitter release above 

which autoreceptors are no longer able to regulate the release.  This threshold is crossed 

following prolonged depolarization, such as that seen with high concentrations of KCl which is 

not subject to autoreceptor regulation (Tibbs et al., 1989; L’Hirondel et al., 1998).  Additionally, 

the similarity of our findings using 4AP as a stimulus to those with electrical stimulation in the 

fast-scan cyclic voltammetry experiments suggest that our findings are physiologically relevant.   
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Our findings demonstrate that PKC regulates the D2 autoreceptor in vivo.  Further work is 

needed to understand the conditions under which PKC is activated, leading to the modulation of 

the D2 autoreceptor.  It does not appear that agonist-induced phosphorylation of D2R occurs 

though PKC (Namkung & Sibley, 2004).  PKC is canonically activated by diacylglycerol and IP3 

generated by phospholipase through the Gq or Gi-protein signaling cascades.  Activation of Gq-

coupled GPCRs such as the neurotensin receptor cause internalization and desensitization of D2R 

through a PKC-dependent mechanism (Thibault et al., 2011).  However, the specific mechanisms 

for the in vivo activation of PKC leading to the phosphorylation and subsequent regulation of 

the D2 autoreceptor remain unknown. 

This study focused on the interaction of PKC with the presynaptic D2 autoreceptors; however, 

the majority of D2Rs are located postsynaptically.  In mice lacking the D2 autoreceptor, 

quinpirole treatment no longer suppresses locomotor activity, indicating that this locomotor 

response is mediated by the presynaptic D2R population (Bello et al., 2011).  Our results showing 

that PKC-/- mice have increased suppression of locomotor activity following quinpirole 

treatment strongly suggest that we are measuring regulation of the D2 autoreceptor population by 

PKC.  Otherwise, we are unable to definitively differentiate experimentally between 

postsynaptic and presynaptic receptor populations.  The D2R is also expressed as two splice 

variants, short and long, with the long D2L having an additional 29 amino acids in the third 

intracellular loop (Usiello et al., 2000).  Conflicting reports indicate that PKC may or may not 

differentially regulate the long variant of D2R compared to the short (Namkung & Sibley, 2004; 

Morris et al., 2007).  Future work is needed to understand if PKC regulation is the same for 

both populations of D2R and if this regulation is the same for other D2-like family members, such 

as the closely related D3R receptor.   
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In conclusion, we have found that PKC regulates the D2 autoreceptor in vivo, adding an 

additional layer of regulation to the control of dopamine signaling.  We demonstrated that loss of 

PKC activity increases the sensitivity of the D2 autoreceptor to the agonist quinpirole, as 

measured by the increased suppression of dopamine release.  Mechanistically, PKC inhibition 

increased the surface localization of the D2 autoreceptor, increasing receptor signaling.  Finally, 

we demonstrated that this PKC regulation of the D2 autoreceptor is physiologically relevant, as 

loss of PKC activity increased the sensitivity of mice to quinpirole suppression of locomotor 

activity.  These findings increase our understanding of how the D2 autoreceptor is regulated and 

may aid in the development of therapeutics targeting disorders and disease states associated with 

dopamine signaling. 

Acknowledgements

We would like to thank Dr. Robert Gereau, IV (Washington University, St. Louis, MO) and Dr. 

Michael Leitges (University of Oslo) for providing the PKC-/- and PKC+/+ mice.  The 

LY379196 was a generous gift from Eli Lilly (Indianpolis, IN).  This work was supported by the 

following funding:  DA11697, DA007267, and GM07767.  



 

57 
 

References 

Barrett CF and Rittenhouse AR (2000) Modulation of N-type calcium channel activity by G-

proteins and protein kinase C. The Journal of general physiology 115(3): 277-286. 

Barrie AP, Nicholls DG, Sanchez-Prieto J and Sihra TS (1991) An ion channel locus for the 

protein kinase C potentiation of transmitter glutamate release from guinea pig 

cerebrocortical synaptosomes. J Neurochem 57(4): 1398-1404. 

Bello EP, Mateo Y, Gelman DM, Noain D, Shin JH, Low MJ, Alvarez VA, Lovinger DM and 

Rubinstein M (2011) Cocaine supersensitivity and enhanced motivation for reward in 

mice lacking dopamine D2 autoreceptors. Nature neuroscience 14(8): 1033-1038. 

Bolan EA, Kivell B, Jaligam V, Oz M, Jayanthi LD, Han Y, Sen N, Urizar E, Gomes I, Devi LA, 

Ramamoorthy S, Javitch JA, Zapata A and Shippenberg TS (2007) D2 receptors regulate 

dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-

dependent and phosphoinositide 3 kinase-independent mechanism. Molecular 

pharmacology 71(5): 1222-1232. 

Cass WA and Zahniser NR (1991) Potassium channel blockers inhibit D2 dopamine, but not A1 

adenosine, receptor-mediated inhibition of striatal dopamine release. J Neurochem 57(1): 

147-152. 

Chen R, Daining CP, Sun H, Fraser R, Stokes SL, Leitges M and Gnegy ME (2013) Protein 

kinase Cbeta is a modulator of the dopamine D2 autoreceptor-activated trafficking of the 

dopamine transporter. J Neurochem 125(5): 663-672. 

Chen R, Furman CA, Zhang M, Kim MN, Gereau RWt, Leitges M and Gnegy ME (2009) 

Protein kinase Cbeta is a critical regulator of dopamine transporter trafficking and 

regulates the behavioral response to amphetamine in mice. The Journal of pharmacology 

and experimental therapeutics 328(3): 912-920. 

Chen R, Zhang M, Park S and Gnegy ME (2007) C57BL/6J mice show greater amphetamine-

induced locomotor activation and dopamine efflux in the striatum than 129S2/SvHsd 

mice. Pharmacology, biochemistry, and behavior 87(1): 158-163. 

Colby KA and Blaustein MP (1988) Inhibition of voltage-gated K channels in synaptosomes by 

sn-1,2-dioctanoylglycerol, an activator of protein kinase C. The Journal of neuroscience : 

the official journal of the Society for Neuroscience 8(12): 4685-4692. 

Cubeddu LX, Lovenberg TW, Hoffman IS and Talmaciu RK (1989) Phorbol esters and D2-

dopamine receptors. The Journal of pharmacology and experimental therapeutics 251(2): 

687-693. 

de Vries KJ, Geijtenbeek A, Brian EC, de Graan PN, Ghijsen WE and Verhage M (2000) 

Dynamics of munc18-1 phosphorylation/dephosphorylation in rat brain nerve terminals. 

The European journal of neuroscience 12(1): 385-390. 



 

58 
 

Drukarch B, Kits KS, Leysen JE, Schepens E and Stoof JC (1989) Restricted usefulness of 

tetraethylammonium and 4-aminopyridine for the characterization of receptor-operated 

K+-channels. British journal of pharmacology 98(1): 113-118. 

Foster JD, Pananusorn B and Vaughan RA (2002) Dopamine transporters are phosphorylated on 

N-terminal serines in rat striatum. The Journal of biological chemistry 277(28): 25178-

25186. 

Fulton S, Thibault D, Mendez JA, Lahaie N, Tirotta E, Borrelli E, Bouvier M, Tempel BL and 

Trudeau LE (2011) Contribution of Kv1.2 voltage-gated potassium channel to D2 

autoreceptor regulation of axonal dopamine overflow. The Journal of biological 

chemistry 286(11): 9360-9372. 

Furman CA, Chen R, Guptaroy B, Zhang M, Holz RW and Gnegy M (2009) Dopamine and 

amphetamine rapidly increase dopamine transporter trafficking to the surface: live-cell 

imaging using total internal reflection fluorescence microscopy. The Journal of 

neuroscience : the official journal of the Society for Neuroscience 29(10): 3328-3336. 

Giros B, Jaber M, Jones SR, Wightman RM and Caron MG (1996) Hyperlocomotion and 

indifference to cocaine and amphetamine in mice lacking the dopamine transporter. 

Nature 379(6566): 606-612. 

Graff JR, McNulty AM, Hanna KR, Konicek BW, Lynch RL, Bailey SN, Banks C, Capen A, 

Goode R, Lewis JE, Sams L, Huss KL, Campbell RM, Iversen PW, Neubauer BL, Brown 

TJ, Musib L, Geeganage S and Thornton D (2005) The protein kinase Cbeta-selective 

inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, 

induces apoptosis, and suppresses growth of human colon cancer and glioblastoma 

xenografts. Cancer research 65(16): 7462-7469. 

Hu PS and Fredholm BB (1989) Alpha 2-adrenoceptor agonist-mediated inhibition of 

[3H]noradrenaline release from rat hippocampus is reduced by 4-aminopyridine, but that 

caused by an adenosine analogue or omega-conotoxin is not. Acta physiologica 

Scandinavica 136(3): 347-353. 

Huang HY, Hertting G, Allgaier C and Jackisch R (1989) 3,4-Diaminopyridine-induced 

noradrenaline release from CNS tissue as a model for action potential-evoked transmitter 

release: effects of phorbol ester. European journal of pharmacology 169(1): 115-123. 

Iannazzo L, Sathananthan S and Majewski H (1997) Modulation of dopamine release from rat 

striatum by protein kinase C: interaction with presynaptic D2-dopamine-autoreceptors. 

British journal of pharmacology 122(8): 1561-1566. 

Jirousek MR, Gillig JR, Gonzalez CM, Heath WF, McDonald JH, 3rd, Neel DA, Rito CJ, Singh 

U, Stramm LE, Melikian-Badalian A, Baevsky M, Ballas LM, Hall SE, Winneroski LL 

and Faul MM (1996) (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16, 21-

dimetheno-1H, 13H-dibenzo[e,k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-

1,3(2H)-d ione (LY333531) and related analogues: isozyme selective inhibitors of protein 

kinase C beta. Journal of medicinal chemistry 39(14): 2664-2671. 



 

59 
 

Johnson LA, Guptaroy B, Lund D, Shamban S and Gnegy ME (2005) Regulation of 

amphetamine-stimulated dopamine efflux by protein kinase C beta. The Journal of 

biological chemistry 280(12): 10914-10919. 

L'Hirondel M, Cheramy A, Godeheu G, Artaud F, Saiardi A, Borrelli E and Glowinski J (1998) 

Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal 

synaptosomes of D2 receptor-deficient mice. Brain research 792(2): 253-262. 

Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ and Liu F (2007) Dopamine transporter 

cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. 

The EMBO journal 26(8): 2127-2136. 

Leenders AG and Sheng ZH (2005) Modulation of neurotransmitter release by the second 

messenger-activated protein kinases: implications for presynaptic plasticity. 

Pharmacology & therapeutics 105(1): 69-84. 

Leitges M, Schmedt C, Guinamard R, Davoust J, Schaal S, Stabel S and Tarakhovsky A (1996) 

Immunodeficiency in protein kinase cbeta-deficient mice. Science (New York, NY) 

273(5276): 788-791. 

Majewski H and Iannazzo L (1998) Protein kinase C: a physiological mediator of enhanced 

transmitter output. Progress in neurobiology 55(5): 463-475. 

Mateo Y, Lack CM, Morgan D, Roberts DC and Jones SR (2005) Reduced dopamine terminal 

function and insensitivity to cocaine following cocaine binge self-administration and 

deprivation. Neuropsychopharmacology : official publication of the American College of 

Neuropsychopharmacology 30(8): 1455-1463. 

Morris SJ, Van H, II, Daigle M, Robillard L, Sajedi N and Albert PR (2007) Differential 

desensitization of dopamine D2 receptor isoforms by protein kinase C: the importance of 

receptor phosphorylation and pseudosubstrate sites. European journal of pharmacology 

577(1-3): 44-53. 

Namkung Y and Sibley DR (2004) Protein kinase C mediates phosphorylation, desensitization, 

and trafficking of the D2 dopamine receptor. The Journal of biological chemistry 

279(47): 49533-49541. 

Tanaka C and Nishizuka Y (1994) The protein kinase C family for neuronal signaling. Annual 

review of neuroscience 17: 551-567. 

Thibault D, Albert PR, Pineyro G and Trudeau LE (2011) Neurotensin triggers dopamine D2 

receptor desensitization through a protein kinase C and beta-arrestin1-dependent 

mechanism. The Journal of biological chemistry 286(11): 9174-9184. 

Tibbs GR, Barrie AP, Van Mieghem FJ, McMahon HT and Nicholls DG (1989) Repetitive 

action potentials in isolated nerve terminals in the presence of 4-aminopyridine: effects 

on cytosolic free Ca2+ and glutamate release. J Neurochem 53(6): 1693-1699. 



 

60 
 

Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV and Borrelli E 

(2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 

408(6809): 199-203. 

Wang Y, Xu R, Sasaoka T, Tonegawa S, Kung MP and Sankoorikal EB (2000) Dopamine D2 

long receptor-deficient mice display alterations in striatum-dependent functions. The 

Journal of neuroscience : the official journal of the Society for Neuroscience 20(22): 

8305-8314. 

Wu-Zhang AX and Newton AC (2013) Protein kinase C pharmacology: refining the toolbox. The 

Biochemical journal 452(2): 195-209. 

Wu Q, Reith ME, Walker QD, Kuhn CM, Carroll FI and Garris PA (2002) Concurrent 

autoreceptor-mediated control of dopamine release and uptake during neurotransmission: 

an in vivo voltammetric study. The Journal of neuroscience : the official journal of the 

Society for Neuroscience 22(14): 6272-6281. 

Yorgason JT, Espana RA and Jones SR (2011) Demon voltammetry and analysis software: 

analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic 

measures. Journal of neuroscience methods 202(2): 158-164. 

 



 

61 
 

CHAPTER THREE 

THE D2-LIKE DOPAMINE AUTORECEPTOR IS REGULATED BY A NOVEL, 

DOPAMINE TRANSPORTER-MEDIATED CONTEXT 

Abstract 

The function of GPCRs such as the D2-like dopamine autoreceptor (D2 autoreceptor) is regulated 

by the milieu at the plasmalemmal membrane.  This regulation can occur through local ion 

concentrations, phosphorylation, or interaction with other proteins.  In this study, we investigate 

the regulation of the D2 receptor (D2R) by the dopamine transporter (DAT).  Together, D2 

autoreceptor and DAT regulate the amount of extracellular dopamine and dopaminergic 

signaling.  It is well established that activation of the D2 autoreceptor increases dopamine uptake 

by increasing surface DAT localization.  Using a heterologous cell system, we found that co-

expression of DAT with the short isoform of D2R (D2S) induces a different, DAT-dependent 

regulatory context for D2S.  When co-expressed with DAT, the proportion of baseline D2S on the 

surface was decreased as compared to empty vector control, but the surface levels were increased 

following either agonist treatment or inhibition of protein kinase C (PKC).  PKC appears to 

stabilize the D2S-DAT context. Removal of PKC phosphorylation sites from D2S or DAT 

disrupted the context, allowing D2S to be regulated more similarly to other GPCRs.  Within the 

D2S-DAT context there is decreased G protein activation by D2S and increased D2S-mediated 

increases the ERK signaling.  We propose that the D2S-DAT context may ultimately lead to 

increased surface DAT localization, increased dopamine reuptake, and consequently less 

dopaminergic signaling. 
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Introduction 

The function of the D2-like dopamine receptor (D2R) is regulated by the milieu at the 

plasmalemmal membrane.  The activity and cellular location of this G protein-coupled receptor 

are sensitive to ions, ligands, receptor modifications such as phosphorylation and protein binding 

partners.  For instance, increasing intracellular Na+ or H+ concentrations decreases the D2R 

affinity for agonists, but increases the affinity of the substituted benzamide class of D2R 

antagonists (Neve, 1991; Watanabe et al., 1985).  Diverse agonists preferentially promote D2R 

coupling to distinct members of the inhibitory G protein family (Cordeaux et al., 2001; Gazi et 

al., 2003).  Phosphorylation is an important mechanism of regulation of trafficking and signaling 

through GPCRs, including D2R.  Protein Kinase C (PKC) phosphorylates D2R to cause 

heterologous desensitization and internalization (Namkung and Sibley, 2004).  G protein-coupled 

receptor kinases (GRK) phosphorylate receptors including D2R to stimulate internalization and 

desensitization.  Additionally, GRKs are able to regulate the D2R even in the absence of GRK 

phosphorylation sites (Namkung et al., 2009a; Namkung et al., 2009b).  By interacting with D2R 

in the absence of phosphorylation, GRK regulates surface localization and recycling of the 

receptor.    

There is a growing appreciation for the variety of proteins with which both pre- and postsynaptic 

D2-like receptors can interact, resulting in a modulation of activity [see (Hazelwood et al., 

2010)].  In the brain, D2Rs on dopamine neurons function as autoreceptors and serve the 

specialized function of regulating the release of dopamine and thus its extracellular 

concentration.  A striking example of an interaction of the D2 autoreceptor with a complementary 

protein that may or may not be closely within its milieu is the interaction of the D2 autoreceptor 

with the dopamine transporter (DAT).   Both presynaptic proteins function to reduce levels of 
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extracellular dopamine: the D2 autoreceptor by inhibiting the release of vesicular dopamine and 

DAT by transporting dopamine into the cell.   Both proteins are regulated by PKC; PKC 

promotes substrate-induced reverse transport of DAT and inhibits D2 autoreceptor-mediated 

suppression of vesicular dopamine release (Chapter 2).  Stimulation of the D2 autoreceptor by 

agonists increases the surface localization of DAT and consequently reuptake of dopamine, 

ultimately leading to a decrease in extracellular dopamine content (Bolan et al., 2007; Lee et al., 

2007; Meiergerd et al., 1993).  The D2 autoreceptor-mediated enhancement of  DAT activity is 

mediated by extracellular signal-regulated kinase ERK and PKC signaling (Bolan et al., 2007; 

Chen et al., 2013) and may be facilitated by a direct interaction between D2R and DAT (Lee et 

al., 2007).  While this D2 autoreceptor-mediated regulation of DAT has been extensively 

investigated, there have been few investigations as to whether or not DAT regulates the D2 

autoreceptor.   

In this study, we investigated the possibility of a reciprocal regulation of the D2 autoreceptor by 

DAT.  Because the D2 autoreceptor exists both pre- and post-synaptically, we used a 

heterologous cell system transfected with the D2R in the absence and presence of DAT.  We 

analyzed cell surface localization of both proteins as well as changes in downstream G-protein-

mediated signaling and the role of phosphorylation in the regulation.  Our results demonstrate 

that when DAT and D2R are present in the same cell, D2R is in a new, DAT-specific context that 

changes the regulation of D2R by agonists and PKC. 

Materials and Methods  

Cell Culture and Transfection N2A neuroblastoma cells were cultured in Opti-MEM I media 

(Life Technologies) supplemented with FBS and penicillin/streptomycin.  For confocal 

microscope experiments, cells were seeded on poly-D-lysine (Sigma Aldrich) coated glass 
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coverslips at a density of 300,000 cells/mL.  For signaling experiments, cells were seeded onto 

uncoated 10 cm dishes.  The following day, cells were transfected using Lipofectamine 2000 

(Life Technologies).  Cells were transfected with the short isoform of human D2R (D2S) with an 

N-terminal FLAG (DYKDDDDK) tag (FLAG-D2S, a gift from Dr. David Sibley) with either 

hemagglutinin-tagged human DAT (HA-DAT, tag in second extracellular loop, a gift from Dr. 

Jonathan Javitch) or empty vector control.  T225A/S228G/S229G-D2S (FLAG-AGG-D2S) was 

generated by mutagenesis using FLAG-D2S cDNA as a template.  Mutant DNA was generated by 

PCR using Pfu ultra polymerase (Agilent Technologies, Santa Clara, CA) and sense and 

antisense primers containing the desired mutations, followed by digestion of parental DNA by 

DpnI enzyme and transformation into XL10-Gold competent cells (Strategene, La Jolla, CA).  

Mutations were analyzed by DNA sequencing. HA-N22-DAT truncation was made by deleting 

the first 22 amino acids of HA-DAT by PCR using Pfu ultra polymerase and confirmed by 

sequencing.  Experiments were performed 48 hours post-transfection.   

 D2S, which lacks 29 amino acids in the third intracellular loop due to alternative splicing, was 

used for all experiments.  We used D2S because it is known to have a presynaptic location, 

although presynaptic D2 autoreceptors need not be exclusively D2S (Khan et al., 1998; Jang et al., 

2011).  The abbreviation D2S will be used throughout this manuscript when discussing the short 

variant of the D2R specifically, such as when discussing our experimental results.  D2R or D2 

autoreceptor will be used to when discussing the receptor when not discussing the specific 

variants. 

Immunofluorescence Labeling.  Changes in surface localization of FLAG-D2S and HA-DAT were 

determined using immunofluorescence labeling of both surface and intracellular populations.  48 

hours post-transfection, cells were incubated with vehicle, the D2R agonist quinpirole, or a 
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specific PKCinhibitor LY379196 for either 5 or 30 minutes.  Treatment was stopped by 

washing cells with ice cold phosphate buffered saline with calcium and magnesium (155 mM 

NaCl, 2.97 mM Na2HPO4·7H2O, 1.1 mM KH2PO4, 0.1 mM CaCl2, 1 mM MgCl2, pH 7.4) 

(PBS/Ca/Mg).  All immunofluorescence labeling was done on ice.  Non-specific binding was 

blocked with 4% normal goat serum prepared in PBS/Ca/Mg (Vector Laboratories, Burlingame, 

CA).  Surface populations of FLAG-D2S were labeled by incubating with a primary mouse anti-

FLAG antibody (Sigma Aldrich) for 1 hour, followed by secondary goat anti-mouse antibody 

conjugated to Alexa Fluor 488 (Life Technologies) for 45 minutes.  Surface populations of HA-

DAT were labeled by incubating with a primary mouse anti-HA antibody (Covance, Princeton, 

NJ) for 1 hour, followed by secondary goat anti-mouse antibody conjugated to Alexa Fluor 594 

(Life Technologies) for 45 minutes.  Antibody solutions were prepared in PBS/Ca/Mg with 4% 

normal goat serum.  Either surface FLAG-D2S or HA-DAT were labeled on a given cell to 

decrease steric hindrance from antibody labeling.  Following surface labeling, cells were fixed 

and permeabilized for 10 minutes each with 4% paraformaldehyde and 0.1% Triton X-100.  

Cells were then incubated with rabbit anti-FLAG primary antibody (Sigma Aldrich) for 1 hour 

followed by goat anti-rabbit conjugated to Alexa Fluor 405 secondary antibody (Life 

Technologies) for 45 minutes to label intracellular populations of FLAG-D2S.  Following 

labeling for intracellular FLAG-D2S, intracellular HA-DAT was then labeled in cells expressing 

that protein using rabbit anti-HA antibody (Covance) and goat anti-rabbit conjugated to Alexa 

Fluor 647 (Life Technologies).  Once all labeling was completed, coverslips were mounted to 

glass slides using ProLong Gold anti-fade reagent (Life Technologies). 

Confocal Microscopy and Quantification.  Fluorescent signals from the labeled cells were 

imaged using a Nikon A1R confocal microscope (Nikon Instruments, Inc., Melville, NY) with a 
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60x1.4 numerical aperture oil objective.  Cells were imaged by taking a z-series with 0.5 m 

sections.  The laser configuration was as follows:  Alexa Fluor 405 was excited by a 405 nm 

laser and passed through a 450/50 nm filter; Alexa Fluor 488 was excited by a 488 nm laser and 

passed through a 525/50 nm filter; Alexa Fluor 594 was excited by a 561 nm laser and passed 

through a 595/50 nm filter; and Alexa Fluor 647 was excited by a 638 nm laser and passed 

through a 700/75 nm filter.  Sequential scan was used to minimize bleed through of signals. 

Image quantification was performed using Image J software (NIH, Bethesda, MD).  Surface and 

intracellular signal intensities were determined and background was subtracted individually for 

both FLAG-D2S and HA-DAT.  The fraction of FLAG-D2S or HA-DAT on the surface of the cell 

was determined by dividing the surface label intensity by the sum of the surface and intracellular 

label intensities. 

ERK Activity.  Cells were harvested 48 hours post transfection and treated in suspension with 

vehicle or the D2R agonist quinpirole for 5 minutes at 37°C in Krebs Ringer’s HEPES buffer 

(KRH, 125 mM NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 1.3 mM CaCl2·2 H20, 1.2 mM MgSO4·7 

H20, 5.6 mM glucose, 25 mM HEPES, pH 7.4).  Treatment was terminated by washing with ice 

cold KRH.  Cells were lysed with solubilization buffer (150 mM NaCl, 50 mM Tris-HCl, 1% 

Triton X-100, pH 7.4) containing Complete Mini protease inhibitor and PhosStop phosphatase 

inhibitors (Roche Diagnostics, Indianapolis, IN) for one hour and protein concentration for each 

sample was determined.  Total and phosphoERK were quantified via Western blotting using 

antibodies against phosphoERK (Cell Signaling Technologies, Danvers, MA) and total ERK 

(Santa Cruz Biotechnology, Dallas, TX).  Band density was measured using Image J software 

and ERK activity was determined by dividing the optical density for phosphoERK by the optical 

density for total ERK. 



 

67 
 

Cyclic AMP Assay.  Cells were incubated with KRH containing 30 M forskolin (adenylyl 

cyclase activator, Sigma Aldrich), 1 mM IBMX (phosphodiesterase inhibitor, Sigma Aldrich), 

and a concentration-response curve of quinpirole for 15 minutes at 37°C.  Treatment was 

terminated by replacing treatment solution with ice cold 3% perchloric acid (Sigma Aldrich) and 

incubating samples for 30 minutes at 4°C.  Samples were neutralized with 2.5 M KHCO3.  

cAMP accumulation was determined using a cyclic AMP EIA kit obtained from Cayman 

Chemical (Ann Arbor, MI).  Results are expressed as percent of forskolin-stimulated control in 

the absence of quinpirole treatment. 

Agonist-Stimulated [35S]GTPγS-Binding Assays.  To measure agonist-mediated activation of G 

proteins, binding of the slowly hydrolysable GTP analog guanosine-5′-O-(3-

[35S]thio)triphosphate ([35S]GTPγS) was measured. N2A cells were harvested 48 hours post 

transfection. Membrane homogenates were prepared as previously described and stored at -80C 

(Clark et al., 2003). Briefly, membrane homogenates (10μg protein) were incubated with 0.1nM 

[35S]GTPγS  in the presence or absence of various concentrations of quinpirole for 60 minutes at 

25°C in the following buffer: 50 mM Tris base, pH 7.4, 5mM MgCl2, 100 mM NaCl, 1mM 

EDTA, and 30 μM GDP. Binding reaction was terminated by rapid filtration onto GF/C filters 

(Whatman, Kent, UK) using a Brandel MLR-24 harvester (Brandel, Gaithersburg, MD). Filters 

were washed 6-8 times with ice-cold wash buffer (50mM Tris base, pH 7.4, 5 mM MgCl2, and 

100 mM NaCl). Filters were dried, saturated with EcoLume scintillation cocktail (MP 

Biomedicals, Solon, OH), and bound radioactivity was measured using a Wallac 1450 MicroBeta 

counter (PerkinElmer, Waltham, MA). 

Statistical Analysis Results were analyzed using GraphPad Prism 6 software (San Diego, CA) 

and are plotted as mean + SEM.  Statistical significance was set at p < 0.05.  Comparisons 
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between two groups were done using paired Student’s t test.   Comparisons between multiple 

groups were performed using one or two-way ANOVA with Dunnett’s or Tukey’s post-test. 

Results 

Co-expression with DAT Changes D2S Regulation  

To test the hypothesis that DAT can alter the regulation of D2S, we used a homologous cell 

system.  To validate the cell system, we initially established that we could measure the D2S-

mediated increase in surface DAT localization, a well-documented phenomenon in both 

heterologous cells and brain tissue.  Cells were transfected with FLAG-D2S and HA-DAT.  

Following a five minute treatment with 1 M quinpirole, a D2R agonist, or 200 nM LY39196, a 

specific PKC inhibitor, surface HA-DAT localization was determined using 

immunofluorescence and confocal microscopy (Figure 3-1).  In agreement with previous studies 

(Bolan et al., 2007; Chen et al., 2013), stimulation of FLAG-D2S by quinpirole significantly 

increased surface HA-DAT localization, (one-way ANOVA, F(2, 228) = 19.61, p < 00001, N = 

32-118 cells per treatment group).  As we found in mouse striatal synaptosomes, PKC 

inhibition had no effect on surface HA-DAT (Chen et al., 2013).  

We next queried if the presence of DAT affects surface FLAG-D2S regulation.  Initially, cells 

expressing FLAG-D2S without HA-DAT were treated for 30 minutes with 1 M quinpirole and  
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Figure 3-1:  FLAG-D2S stimulation increases surface HA-DAT localization.  N2A cells 

transfected with FLAG-D2S and HA-DAT were treated for 5 minutes with vehicle, 1 M 

quinpirole (QP), or 200 nM LY379196 (LY).  Surface HA-DAT was determined by 

immunofluorescence labeling and confocal microscopy.  In representative images, surface 

HA-DAT is green, intracellular is blue.  N = 32-118 cells.  **** p < 0.0001 vs. vehicle 

control by one-way ANOVA with Dunnett’s post-hoc analysis.
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surface FLAG-D2S was measured (Figure 3-2).  As expected for a GPCR, treatment with 

quinpirole internalized FLAG-D2S.  In cells co-expressing FLAG-D2S and HA-DAT, the baseline 

fraction of surface FLAG-D2S was reduced as compared to cells expressing FLAG-D2S alone, 

despite equivalent total amounts of FLAG-D2S between the two transfection conditions as 

determined by total immunofluorescence labeling (FLAG-D2S/Vector vehicle:  9.62 + 0.817, N = 

43; FLAG-D2S/HA-DAT vehicle: 10.09 + 1.008, N = 54).  Surprisingly, quinpirole treatment in 

the FLAG-D2S/HA-DAT-N2A cells increased surface localization of FLAG-D2S (one-way 

ANOVA F(3, 196) = 13.02, p < 0.0001).  The quinpirole-stimulated increase in surface FLAG-

D2S was reminiscent of the D2S-mediated increase in surface HA-DAT, and indicated that DAT 

can alter the regulation of D2S. 

DAT Regulation of D2S Requires PKC Activity and DAT N-Terminus 

We previously demonstrated that PKC is upstream of ERK in the signaling cascade linking D2S 

stimulation to increased surface DAT (Chen et al., 2013). To further investigate the DAT-

mediated regulation of D2S, we now interrogated if PKC is also involved in the contextual 

regulation of D2S.  Cells transfected with FLAG-D2S without or with HA-DAT were treated for 5 

minutes with 200 nM LY39196, a specific PKC inhibitor (IC50 = 30 nM, Jirousek et al., 1996) 

(Figure 3-3).  In cells expressing only FLAG-D2S, inhibition of PKChad no effect on surface 

localization of FLAG-D2S (vehicle:  0.510 + 0.015, N = 43; 200 nM LY379196:  0.469 + 0.0144, 

N = 44).  However, in cells co-expressing FLAG-D2S and HA-DAT, inhibition of 

PKCsignificantly increased surface localization of FLAG-D2S (one-way ANOVA F(3, 252) = 

26.61, p < 0.0001).  PKC, including PKC, phosphorylates the D2R to cause internalization and 

desensitization of the receptor (Namkung and Sibley, 2004).  Our results suggest that when DAT 

regulates D2S, the receptor is in a state that is receptive to phosphorylation by PKC, leading to  
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Figure 3-2:  Quinpirole (QP) stimulation increases surface FLAG-D2S localization in the 

presence of HA-DAT.  N2A cells transfected with FLAG-D2S + HA-DAT were treated for 

30 minutes with vehicle or 1 M QP.  Surface FLAG-D2S localization was determined by 

immunofluorescence labeling and confocal microscopy. In representative images, surface 

FLAG-D2S is green, intracellular is blue.  N = 43-56 cells.  **** p < 0.0001 vs FLAG-

D2S/Vector Vehicle, ** p < 0.01 by one-way ANOVA with Tukey’s post-hoc analysis.
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Figure 3-3:  LY379196 (LY) treatment increases surface FLAG-D2S localization in the 

presence of HA-DAT.  N2A cells transfected with FLAG-D2S + HA-DAT were treated for 

5 minutes with vehicle or 200 nM LY.  Surface FLAG-D2S localization was determined by 

immunofluorescence labeling and confocal microscopy.  In representative images, surface 

FLAG-D2S is green, intracellular is blue.   N = 43-86 cells.  **** p < 0.0001  by one-way 

ANOVA with Tukey’s post-hoc analysis. 
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the decreased basal surface localization of FLAG-D2S in our cell system.  Following PKC 

inhibition, this phosphorylation-driven internalization of FLAG-D2S is blocked, leading to 

increased surface localization.  To test this notion, we used a mutant FLAG-D2S that abrogated 

putative PKC phosphorylation sites.  PKC phosphorylates D2R on several residues in the third 

intracellular loop of the receptor.  Phosphorylation of three residues in particular, threonine 225 

and serines 228 and 229, triggers the internalization of D2R (Morris et al., 2007; Namkung and 

Sibley, 2004).  These three residues were mutated to non-phosphorylatable alanine and glycine 

resides (FLAG-T225A/S228G/S229G-D2S, FLAG-AGG-D2S).  Cells were transfected with HA-

DAT plus either wild type FLAG-D2S or the phosphomutant FLAG-AGG-D2S and were treated 

with vehicle or LY379196 (50 or 200 nM, 5 minute, Figure 3-4A).  In the FLAG-D2S/HA-DAT 

cells, LY379196 concentration-dependently increased surface localization of FLAG-D2S.  A 

two-way ANOVA yielded a significant effect of LY379196 (F(2,332) = 6.883, p = 0.0012), 

FLAG-AGG-D2S (F(1, 332) = 67.25, p < 0.0001), and a significant interaction between the two 

(F(2, 332) = 4.150, p = 0.017).  In cells expressing the FLAG-AGG-D2S phosphomutant and HA-

DAT, LY379196had no effect on surface localization of FLAG-AGG-D2S, suggesting that 

PKC phosphorylates the receptor at these residues to cause internalization (vehicle:  0.511 + 

0.015, N = 44, 50 nM LY379196:  0.544 + 0.0159, N = 55, 200 nM LY379196:  0.525 + 0.018, 

N = 56).  However, a greater fraction FLAG-AGG-D2S was localized on the cell surface as 

compared to wild type FLAG-D2S, supporting our model that during the DAT regulation of D2S, 

the decreased fraction of surface FLAG-D2S is due to increased phosphorylation by 

PKCFLAG-D2S:  0.380 + 0.015, N = 57, FLAG-AGG-D2S:  0.511 + 0.015, N = 44). 

We next tested the hypothesis that the T225/S228/S229 PKC phosphorylation sites within D2S 

are required for agonist activation of D2S to increase surface DAT.  Cells were  
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Figure 3-4:  FLAG-AGG-D2S disrupts DAT regulation of D2S.  (A) N2A cells transfected with 

FLAG-D2S or FLAG-AGG-D2S and HA-DAT were treated for 5 minutes with vehicle, 50nM, or 

200 nM LY.  Surface FLAG-D2S or FLAG-AGG-D2S localization was determined by 

immunofluorescence labeling and confocal microscopy.  In representative images, surface 

FLAG-D2S is green, intracellular is blue.  N = 44-72 cells.  *** p < 0.001, # p < 0.0001 vs. 

FLAG-D2S/HA-DAT vehicle by two-way ANOVA with Tukey post-hoc analysis. (B) N2A 

cells transfected with FLAG-D2S or FLAG-AGG-D2S and HA-DAT were treated for 5 minutes 

with vehicle or 1 M quinpirole (QP).  Surface HA-DAT localization was determined by 

immunofluorescence labeling and confocal microscopy.  In representative images, surface HA-

DAT is green, intracellular is blue.  N = 21-80 cells.  ** p < 0.01, by two-way ANOVA with 

Tukey post-hoc analysis. 

 

A 
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transfected with HA-DAT and either wild type FLAG-D2S or the FLAG-AGG-D2S 

phosphomutant and treated with vehicle or 1 M quinpirole for 5 minutes (Figure 3-4B).  HA-

DAT surface localization was significantly increased following quinpirole treatment in cells co-

expressing FLAG-D2S but not the FLAG-AGG-D2S phosphomutant (two-way ANOVA, 

interaction F(1,171) = 6.228, p = 0.014; quinpirole F(1, 171) = 14.94, p = 0.0002; FLAG-AGG-

D2S F(1, 171) = 0.6891, p = 0.408).  Thus without the possibility of phosphorylation at three 

sites, D2S is unable to stimulate the increase in surface DAT localization (vehicle: 0.354 + 0.014, 

N = 80, quinpirole:  0.379 + 0.017, N = 48).  The disruption of this regulation did not affect 

baseline levels surface HA-DAT like it did for basal surface FLAG-D2S localization (see Figure 

3-4A).  This matches previous findings that PKC inhibition does not affect basal surface DAT 

localization (see Figure 3-1 and Chen et al., 2013).   

DAT and D2R are reported to form a physical complex, interacting at the third intracellular loop 

of D2R and the N-terminus of DAT (Lee et al., 2007).  The interaction was disrupted by 

including a peptide against the first 15 amino acids of DAT.  This region of DAT contains 

several PKC phosphorylation sites (Foster et al., 2002).  To determine if the DAT N-terminus is 

required for the DAT regulation of D2S, we measured changes in surface localization of FLAG-

D2S in cells co-expressing FLAG-D2S and either full-length HA-DAT or a truncation HA-DAT 

mutant lacking the first 22 amino acids (HA-N22-DAT).  Surface FLAG-D2S was determined 

following a 5 minute treatment with vehicle or increasing concentrations of LY379196 to 

ascertain if phosphorylation of DAT by PKCinfluences the DAT regulation of D2S (Figure 3-

5).  As before, PKC inhibition increases surface FLAG-D2S localization in cells expressing full-

length HA-DAT (two-way ANOVA, Interaction F(2, 333) = 2.250, p < 0.1070, DAT F(1, 333) = 

57.67, p < 0.0001, LY379196 F(2, 333) = 8.692, p = 0.0002).  The fraction of surface FLAG-D2S  
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Figure 3-5:  DAT N-terminus is required for DAT regulation of D2S.  N2A cells transfected 

with FLAG-D2S and HA-DAT or HA-N22-DAT were treated for 5 minutes with vehicle, 

50 nM, or 200 nM LY.  Surface FLAG-D2S localization was determined by 

immunofluorescence labeling and confocal microscopy.  In representative images, surface 

FLAG-D2S is green, intracellular is blue.  N = 49-72 cells. *** p < 0.001, # p < 0.0001 vs. 

FLAG-D2/HA-DAT vehicle by two-way ANOVA with Tukey post-hoc analysis. 
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when co-expressed with HA-N22-DAT is greater than with full-length HA-DAT following 

vehicle treatment, but is not further changed following inhibition of PKC (vehicle:  0.524 + 

0.022, N = 49, 50 nM LY379196:  0.503 + 0.019, N = 58, 200 nM LY379196:  0.559 + 0.019, N 

= 49).  This result is similar to the increased surface localization and PKC insensitivity 

demonstrated by FLAG-AGG-D2S (see Figure 3-4A).  Together, these results indicate that the 

DAT N-terminus as well as the T225/S228/S229 PKC phosphorylation sites are required for the 

D2S-DAT regulation.   

DAT Regulation of D2S Changes D2S-Mediated Signaling 

If the presence of DAT changes cellular localization and agonist responsivity of D2S, there 

should be an impact on D2S signaling.   Through its coupling to inhibitory G proteins, D2R 

initiates activation or inhibition of  several second-messenger signaling pathways [see review 

(Neve et al., 2004)].  We chose to measure inhibition of cAMP accumulation, ERK activation 

and G protein activation by [35S]-GTPS binding.  D2R primarily inhibits adenylyl cyclase to 

decrease cAMP formation through G subunits, while ERK can be activated either by G or 

arrestin-mediated signaling (Kim et al., 2004).  N2A cells express members of both the Go and Gi 

inhibitory G protein family (Zhang et al., 2006), and D2Rs can couple to both to elicit 

downstream signaling (Gazi et al., 2003; Lledo et al., 1992). 

To measure the D2S-stimulated inhibition of cAMP formation, cells expressing FLAG-D2S with 

and without HA-DAT were stimulated with 30  forskolin to activate adenylyl cyclase in the 

absence and presence of various concentrations of quinpirole.  No difference was found in 

inhibition of cAMP formation between the two cell types (IC50, FLAG-D2S/Vector 17.10 + 1.43 

nM, FLAG-D2S/HA-DAT 20.09 + 1.92 nM), suggesting that G signaling via D2S is not altered 

by the presence of DAT (Figure 3-6A). 
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Figure 3-6:  D2S-DAT interaction increases D2S signaling through the ERK pathway.  (A) 

Inhibition of cAMP accumulation was measured in N2A cells transfected with FLAG-D2S + 

HA-DAT following treatment with a quinpirole (QP) concentration-response curve.  N = 3. 

(B) Stimulation of ERK in N2A cells expressing FLAG-D2S + HA-DAT or FLAG-AGG-

D2S + HA-DAT was determined via Western blot following 5 minute treatment with 300 nM 

QP.  ** p < 0.01, by two-way ANOVA with Sidak post-hoc analysis, N = 5.  (C) G protein 

activation via [35S]-GTPS binding in cells expressing FLAG-D2S + HA-DAT. 
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Next, we determined ERK activation following treatment with quinpirole by measuring 

phosphoERK formation.  Cells expressing FLAG-D2S + HA-DAT or FLAG-AGG-D2S and HA-

DAT were treated for 5 minutes with 300 nM quinpirole.  Only cells expressing wild type 

FLAG-D2S with HA-DAT showed an increase in ERK activation (Figure 3-6B).  A two-way 

ANOVA indicated a significant interaction of quinpirole and DAT presence (F(2,24) = 6.739, p 

= 0.0048).  We next measured D2S-stimulated G protein activation in the presence or absence of 

DAT (Figure 3-6C).  Cells co-expressing FLAG-D2S and HA-DAT displayed decreased 

effectiveness for G protein activation following quinpirole treatment, as measured by [35S]-

GTPS binding (EC50:  FLAG-D2S/HA-DAT 652.63 + 1.54 nM, FLAG-D2S/Vector 159.59 + 

1.45 nM, p = 0.039 by unpaired t-test; Top:  FLAG-D2S/HA-DAT 150.1 + 3.3%, FLAG-

D2S/Vector 164.4 + 3.3%, p = 0.016, N = 5).  Taken together, these data indicate that the DAT 

regulation of D2S impacts D2S signaling, shifting D2S signaling towards the ERK pathway.  

Discussion 

In this study, we made the original observation that D2S activity and localization are regulated by 

DAT.  The D2 autoreceptor-mediated increase in DAT trafficking to the cell surface has been 

described previously (Bolan et al., 2007; Lee et al., 2007; Meiergerd et al., 1993) but a 

systematic exploration of the effects of DAT on D2 autoreceptor localization and signaling has 

not been done. D2S, which lacks 29 amino acids in the third intracellular loop due to alternative 

splicing, was used for all experiments.  This variant was thought to be predominantly expressed 

in presynaptic dopaminergic neurons and thus functions as the dopamine autoreceptor (Khan et 

al., 1998; Usiello et al., 2000), however RT-PCR work in cells isolated from rat substantia nigra 

indicate that both the short and long form of D2R as well as D3R are expressed in these cells and 

can function as an autoreceptor (Jang et al., 2011).  Our results demonstrate that the regulation of 
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D2S by receptor agonist and by PKC is profoundly changed by the co-expression of DAT.   We 

therefore propose that DAT regulates D2S via a D2S-DAT context.  The model for our findings is 

summarized in Figure 3-7.  When D2S is not in the presence of DAT, its surface localization is 

regulated similarly to other GPCRs in that agonist treatment elicits internalization of the 

receptor.  When D2S interacts with DAT, D2S enters into a different, DAT-specific context, which 

changes the regulation of the receptor.  By our model, this D2S-DAT context results in a reduced 

surface localization of D2S by changing the conformation of the receptor such that it is more 

susceptible to phosphorylation by PKC, leading to increased internalization of the D2S.  This 

notion is supported by our data showing that inhibition of PKC leads to increased surface 

localization of D2S.  The D2S-DAT context was disrupted either through removal of three PKC 

phosphorylation sites on the third intracellular loop of D2S or by removal of the first 22 amino 

acids of the DAT N-terminus.  Disruption of this complex allows D2S to be regulated more 

similarly to a D2S outside of the D2S-DAT context.  The effect of the D2R agonist quinpirole on 

localization and signaling of D2S differs whether within or outside of the D2S-DAT context.  

Quinpirole, acting on D2S in the absence of DAT, elicits internalization of the receptor.  When 

D2S interacts with DAT, quinpirole treatment brings D2S as well as DAT to the surface.  The 

second messenger signaling through D2S similarly reflects the DAT-dependent regulation.  In the 

D2S-DAT context, there is a more pronounced activation of ERK by quinpirole, reflective of the 

increase in surface D2S by quinpirole in the D2S-DAT context.  Because quinpirole stimulation of 

ERK is involved in the D2 autoreceptor-mediated increase in surface DAT (Bolan et al., 2007; 

Chen et al., 2013), this D2S-DAT context may ultimately lead to increased surface DAT 

localization, increased dopamine reuptake, and consequently less dopaminergic signaling. 
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Figure 3-7:  Model of the D2S-DAT context.  When in the D2S-DAT context, D2S is in a 

conformation that increases PKC-mediated internalization basally.  Treatment with 

quinpirole (QP) increases surface localization of both D2S and DAT.  When D2S is outside 

of the D2S-DAT context, it is regulate more like a GPCR, with QP treatment causing 

internalization of the receptor.   
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The context by which a receptor is surrounded is important for determining the function and 

regulation of that protein, be it the concentration of ions altering ligand affinity (Neve, 1991; 

Watanabe et al., 1985) or a specific ligand that biases signaling of the receptor through a 

particular pathway (Cordeaux et al., 2001; Gazi et al., 2003; Urban et al., 2007).  There is a 

growing understanding of how phosphorylation or interaction with kinases changes the context 

and regulation of the receptor.  Phosphorylation by G protein-coupled receptor kinases (GRKs) is 

associated with desensitization and internalization of receptors (Moore et al., 2007).  Removal of 

the GRK phosphorylation sites from D2R, however, did not change the sensitivity of the receptor 

to desensitization or internalization.  Instead, GRK phosphorylation determined the propensity of 

the receptor to be recycled back to the surface of the cell or degraded (Namkung et al., 2009a).  

Through a novel mechanism, GRK2 physically interacts with D2R to decrease receptor 

expression and signaling without phosphorylation by the kinase (Namkung et al., 2009b).  

Likewise, phosphorylation of discrete residues on the 2-adrenergic receptor directed the second 

messenger signaling pathway of the receptor as well as its response to ligands (Nobles et al., 

2011).  Together, these findings and ours indicate that phosphorylation can regulate receptors, 

including D2R, beyond simple desensitization and internalization.   

The finding that prevention of PKC phosphorylation either through inhibition or removal of 

phosphorylation sites disrupts the D2S-DAT context suggests that PKC is involved in the 

regulation of this context.  PKC mediates the signaling cascade that leads to increased surface 

DAT localization following D2 autoreceptor stimulation (Chen et al., 2013).  In that study, mice 

genetically lacking PKC or wild type mice treated with a PKC inhibitor lacked the D2 

autoreceptor-stimulated increase in surface DAT.  Further experimental work found that PKC 

activation is upstream of ERK activation.  Our results suggest that PKC activity may be driving 
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the formation or stabilization of the D2S-DAT context prior to activation of the ERK signaling 

pathway.  In this study, we used mutant D2S lacking three PKC phosphorylation sites (FLAG-

AGG-D2S) and found that loss of these residues disrupted the D2S-DAT context.  PKC can also 

phosphorylate DAT on several serines residues on its N-terminal tail (Foster et al., 2002).  These 

residues are located within the 22 amino acids deleted in the truncation mutant of DAT we used 

in this study (HA-N22-DAT), which also disrupted the D2S-DAT complex.  So while we posit 

that PKC phosphorylation is important for the D2S-DAT interaction, we cannot definitively say 

if D2S or DAT or both are phosphorylated by PKC for the interaction. 

The D2S-DAT context also preferentially changes D2S-mediated signaling.  While there was no 

change in the Gi/o-coupled decrease in cAMP accumulation, activation of ERK was increased in 

cells expressing FLAG-D2S and HA-DAT compared with cells expressing FLAG-D2S in the 

absence of HA-DAT or FLAG-AGG-D2S with HA-DAT.  D2R activates ERK signaling via Gγ 

(Beom et al., 2004) and arrestin (Kim et al., 2004).  In cells expressing both D2S and DAT, 

quinpirole was less efficacious in activating G proteins as compared to those cells expressing D2S 

without DAT.  These findings suggest that within the D2S-DAT context, ERK is activated via the 

arrestin signaling pathway.   

While we have identified a specific D2S-DAT context, several questions remain concerning its 

regulation.  First, we do not know if the context involves a physical interaction between D2S and 

DAT.  A physical coupling between these two proteins was reported, with the interaction 

occurring between the third intracellular loop of D2S and the N-terminus of DAT (Lee et al., 

2007) though another study found no involvement of the DAT N-terminus (Bolan et al., 2007).  

We attempted to determine if the D2S-DAT complex involves a physical interaction between the 

two proteins with bioluminescence resonance energy transfer (BRET).  Using this technique to 
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measure interactions between two membrane proteins such as D2S and DAT is challenging 

because the technique has difficulties separating true, specific interactions from false signals 

generated from random interactions at the cell surface (Gavalas et al., 2013).  Therefore, we 

abandoned this line of experiments and reached no conclusion concerning a physical complex.   

We also do not currently understand the physiological circumstances under which this D2S-DAT 

context is present.  Complete ablation of the context using DAT-/- mice cannot help us answer 

this question as these have a mice have a 50% decrease in D2R mRNA and lack D2 autoreceptor 

activity consequent to their severe hyperdopaminergia (Giros et al., 1996; Jones et al., 1999).  In 

vitro, D2R
-/- mice display decreased DAT function without a change in overall DAT expression 

and no change in basal or K+-stimulated dopamine release, confirming that D2 autoreceptor 

modulates DAT activity (Dickinson et al., 1999).  In vivo, the D2 autoreceptor-mediated increase 

in dopamine uptake via DAT only occurs at high stimulation frequencies (Benoit-Marand et al., 

2011).  Additionally, the method by which the D2 autoreceptor controls extracellular dopamine 

shifts from decreasing dopamine exocytosis to increasing DA reuptake at these high frequencies 

of stimulation (Wu et al., 2002).  In human cerebrocortical synaptosomes, stimulation using 4-

aminopyridine, a potassium channel blocker, increased cytosolic calcium concentrations and 

increased PKC activity (Moe et al., 2002).  Given these findings, we could speculate that high 

frequencies of stimulation in dopamine neurons would increase PKC activity, increasing the 

number of D2 autoreceptors in the D2S-DAT context.  This would cause increased surface DAT 

localization and increased dopamine reuptake, resulting in decreased extracellular dopamine and 

dopamine signaling.  More studies are needed to prove this hypothesis.   

In conclusion, we have determined that DAT is able to regulate the D2R, specifically the D2S 

splice variant, through a DAT-specific context.  Within this context, treatment with the D2R 
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agonist quinpirole does not trigger internalization of D2S, but instead stimulates increased surface 

localization.  The D2S-DAT context also alters D2S signaling, increasing activation of the ERK 

signaling pathway following agoinst treatment.  PKC phosphorylation and the DAT N-terminus 

are required for the formation of the D2S-DAT interaction, as removal of either allows D2S to be 

regulated more like other GPCRs.  The identification of this DAT-mediated regulation of D2R 

increases our knowledge of how dopaminergic signaling and D2R are regulated.  This may aid in 

the understanding of diseases involving D2R and the dopaminergic system and the development 

of better therapeutics to treat these disorders. 

Acknowledgments

We would like to thank Dr. David Sibley (NINDS) for providing the FLAG-D2S construct, Dr. 

Paul Albert (University of Ottawa) for provided the T225A/S228G/S229G-D2S phosphomutant, 

and Dr. Jonathan Javitch (Columbia University) for providing the HA-DAT construct.  

Additionally, Dr. Javitch and Dr. Prashant Donthamesetti provided D2S and DAT constructs for 

the BRET experiments as well as technical advice.  LY379196 was a generous gift from Eli 

Lilly.  The LY379196 was a generous gift from Eli Lilly (Indianpolis, IN).  This work used the 

DNA Sequencing Core of the University of Michigan.  We would also like to thank the 

University of Michigan Department of Pharmacology confocal microscope facility.  This works 

was supported by the following funding:  DA11697, DA07267, and GM07767.

  



 

86 
 

References 

Benoit-Marand M, Ballion B, Borrelli E, Boraud T and Gonon F (2011) Inhibition of dopamine 

uptake by D2 antagonists: an in vivo study. J Neurochem 116(3): 449-458. 

Beom S, Cheong D, Torres G, Caron MG and Kim KM (2004) Comparative studies of molecular 

mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal-

regulated kinase. The Journal of biological chemistry 279(27): 28304-28314. 

Bolan EA, Kivell B, Jaligam V, Oz M, Jayanthi LD, Han Y, Sen N, Urizar E, Gomes I, Devi LA, 

Ramamoorthy S, Javitch JA, Zapata A and Shippenberg TS (2007) D2 receptors regulate 

dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-

dependent and phosphoinositide 3 kinase-independent mechanism. Molecular 

pharmacology 71(5): 1222-1232. 

Chen R, Daining CP, Sun H, Fraser R, Stokes SL, Leitges M and Gnegy ME (2013) Protein 

kinase Cbeta is a modulator of the dopamine D2 autoreceptor-activated trafficking of the 

dopamine transporter. J Neurochem 125(5): 663-672. 

Clark MJ, Harrison C, Zhong H, Neubig RR and Traynor JR (2003) Endogenous RGS protein 

action modulates mu-opioid signaling through Galphao. Effects on adenylyl cyclase, 

extracellular signal-regulated kinases, and intracellular calcium pathways. The Journal of 

biological chemistry 278(11): 9418-9425. 

Cordeaux Y, Nickolls SA, Flood LA, Graber SG and Strange PG (2001) Agonist regulation of 

D(2) dopamine receptor/G protein interaction. Evidence for agonist selection of G protein 

subtype. The Journal of biological chemistry 276(31): 28667-28675. 

Dickinson SD, Sabeti J, Larson GA, Giardina K, Rubinstein M, Kelly MA, Grandy DK, Low 

MJ, Gerhardt GA and Zahniser NR (1999) Dopamine D2 receptor-deficient mice exhibit 

decreased dopamine transporter function but no changes in dopamine release in dorsal 

striatum. J Neurochem 72(1): 148-156. 

Foster JD, Pananusorn B and Vaughan RA (2002) Dopamine transporters are phosphorylated on 

N-terminal serines in rat striatum. The Journal of biological chemistry 277(28): 25178-

25186. 

Gavalas A, Lan TH, Liu Q, Correa IR, Jr., Javitch JA and Lambert NA (2013) Segregation of 

family A G protein-coupled receptor protomers in the plasma membrane. Molecular 

pharmacology 84(3): 346-352. 

Gazi L, Nickolls SA and Strange PG (2003) Functional coupling of the human dopamine D2 

receptor with G alpha i1, G alpha i2, G alpha i3 and G alpha o G proteins: evidence for 

agonist regulation of G protein selectivity. British journal of pharmacology 138(5): 775-

786. 

Giros B, Jaber M, Jones SR, Wightman RM and Caron MG (1996) Hyperlocomotion and 

indifference to cocaine and amphetamine in mice lacking the dopamine transporter. 

Nature 379(6566): 606-612. 



 

87 
 

Hazelwood LA, Free RB and Sibley DR (2010) Dopamine Receptor-Interacting Proteins, in 

Dopamine Receptors, Second Edition (Neve KA ed) pp 219-254. 

Jang JY, Jang M, Kim SH, Um KB, Kang YK, Kim HJ, Chung S and Park MK (2011) 

Regulation of dopaminergic neuron firing by heterogeneous dopamine autoreceptors in 

the substantia nigra pars compacta. J Neurochem 116(6): 966-974. 

Jirousek MR, Gillig JR, Gonzalez CM, Heath WF, McDonald JH, 3rd, Neel DA, Rito CJ, Singh 

U, Stramm LE, Melikian-Badalian A, Baevsky M, Ballas LM, Hall SE, Winneroski LL 

and Faul MM (1996) (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16, 21-

dimetheno-1H, 13H-dibenzo[e,k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-

1,3(2H)-d ione (LY333531) and related analogues: isozyme selective inhibitors of protein 

kinase C beta. Journal of medicinal chemistry 39(14): 2664-2671. 

Jones SR, Gainetdinov RR, Hu XT, Cooper DC, Wightman RM, White FJ and Caron MG (1999) 

Loss of autoreceptor functions in mice lacking the dopamine transporter. Nature 

neuroscience 2(7): 649-655. 

Khan ZU, Mrzljak L, Gutierrez A, de la Calle A and Goldman-Rakic PS (1998) Prominence of 

the dopamine D2 short isoform in dopaminergic pathways. Proceedings of the National 

Academy of Sciences of the United States of America 95(13): 7731-7736. 

Kim SJ, Kim MY, Lee EJ, Ahn YS and Baik J-H (2004) Distinct Regulation of Internalization 

and Mitogen-Activated Protein Kinase Activation by Two Isoforms of the Dopamine D2 

Receptor. Molecular Endocrinology 18(3): 640-652. 

Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ and Liu F (2007) Dopamine transporter 

cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. 

The EMBO journal 26(8): 2127-2136. 

Lledo PM, Homburger V, Bockaert J and Vincent JD (1992) Differential G protein-mediated 

coupling of D2 dopamine receptors to K+ and Ca2+ currents in rat anterior pituitary cells. 

Neuron 8(3): 455-463. 

Meiergerd SM, Patterson TA and Schenk JO (1993) D2 receptors may modulate the function of 

the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J 

Neurochem 61(2): 764-767. 

Moe MC, Berg-Johnsen J, Roste GK and Vinje ML (2002) Stimulated increase in free cytosolic 

Ca(2+) and protein kinase C activity in human cerebrocortical synaptosomes. Brain 

research 924(1): 116-119. 

Moore CA, Milano SK and Benovic JL (2007) Regulation of receptor trafficking by GRKs and 

arrestins. Annual review of physiology 69: 451-482. 

Morris SJ, Van H, II, Daigle M, Robillard L, Sajedi N and Albert PR (2007) Differential 

desensitization of dopamine D2 receptor isoforms by protein kinase C: the importance of 



 

88 
 

receptor phosphorylation and pseudosubstrate sites. European journal of pharmacology 

577(1-3): 44-53. 

Namkung Y, Dipace C, Javitch JA and Sibley DR (2009a) G protein-coupled receptor kinase-

mediated phosphorylation regulates post-endocytic trafficking of the D2 dopamine 

receptor. The Journal of biological chemistry 284(22): 15038-15051. 

Namkung Y, Dipace C, Urizar E, Javitch JA and Sibley DR (2009b) G protein-coupled receptor 

kinase-2 constitutively regulates D2 dopamine receptor expression and signaling 

independently of receptor phosphorylation. The Journal of biological chemistry 284(49): 

34103-34115. 

Namkung Y and Sibley DR (2004) Protein kinase C mediates phosphorylation, desensitization, 

and trafficking of the D2 dopamine receptor. The Journal of biological chemistry 

279(47): 49533-49541. 

Neve KA (1991) Regulation of dopamine D2 receptors by sodium and pH. Molecular 

pharmacology 39(4): 570-578. 

Neve KA, Seamans JK and Trantham-Davidson H (2004) Dopamine receptor signaling. Journal 

of receptor and signal transduction research 24(3): 165-205. 

Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, 

Bressler EA, Hara MR, Shenoy SK, Gygi SP and Lefkowitz RJ (2011) Distinct 

phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes 

differential functions of beta-arrestin. Science signaling 4(185): ra51. 

Urban JD, Vargas GA, von Zastrow M and Mailman RB (2007) Aripiprazole has functionally 

selective actions at dopamine D2 receptor-mediated signaling pathways. 

Neuropsychopharmacology : official publication of the American College of 

Neuropsychopharmacology 32(1): 67-77. 

Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV and Borrelli E 

(2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 

408(6809): 199-203. 

Watanabe M, George SR and Seeman P (1985) Regulation of anterior pituitary D2 dopamine 

receptors by magnesium and sodium ions. J Neurochem 45(6): 1842-1849. 

Wu Q, Reith ME, Walker QD, Kuhn CM, Carroll FI and Garris PA (2002) Concurrent 

autoreceptor-mediated control of dopamine release and uptake during neurotransmission: 

an in vivo voltammetric study. The Journal of neuroscience : the official journal of the 

Society for Neuroscience 22(14): 6272-6281. 

Zhang L, Tetrault J, Wang W, Loh HH and Law PY (2006) Short- and long-term regulation of 

adenylyl cyclase activity by delta-opioid receptor are mediated by Galphai2 in 

neuroblastoma N2A cells. Molecular pharmacology 69(6): 1810-1819.



 

89 
 

CHAPTER FOUR 

DISCUSSION 

This thesis highlights the importance of phosphorylation and domain milieu on the regulation of 

the D2 dopamine receptor (D2R) within the dopamine neuron.  Together with DAT, the D2-like 

dopamine autoreceptor (D2 autoreceptor) regulates the amount of extracellular dopamine and 

thus dopaminergic signaling to maintain homeostasis.  The D2 autoreceptor decreases 

extracellular dopamine through three mechanisms:  inhibiting dopamine exocytosis, inhibiting 

tyrosine hydroxylase to decrease dopamine synthesis, and increasing dopamine reuptake by 

interacting with DAT.  Two of these mechanisms, per our current knowledge, involve PKC.  

My thesis expands our understanding of how the D2 autoreceptor is regulated.   

Model 

The results of my thesis indicate that the activity of the D2 autoreceptor is regulated differently 

when it is in a context with DAT than when it is not.  When interacting with DAT, the D2 

autoreceptor will, upon stimulation, increase surface DAT and the amount of dopamine removed 

from the extracellular space will concomitantly be increased.  The D2 autoreceptor regulation of 

DAT mainly occurs during high frequency stimulation of dopamine neurons, whereas the D2R 

autoreceptor inhibition of dopamine exocytosis happens during low frequency stimulations 

(Benoit-Marand et al., 2011; Wu et al., 2002).  Therefore, I propose that the D2 autoreceptor-

DAT interaction that changes the regulation of the receptor mainly occurs at high frequency 
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stimulations.  This D2 autoreceptor-DAT coordination serves as an additional layer of regulation 

for the amount of dopamine in the extracellular space. 

At stimulations occurring at low frequencies, such as with tonic neuronal firing, the D2 

autoreceptor does not interact with DAT (Figure 4-1).  Here, activation of the D2 autoreceptor 

inhibits both dopamine exocytosis and synthesis of dopamine at tyrosine hydroxylase to decrease 

the amount of extracellular dopamine.  During these times of tonic firing, the D2 autoreceptor 

would signal through both G and G pathways, with G signaling decreasing cAMP formation 

and tyrosine hydroxylase activity, while G interaction with potassium or calcium channels 

would hyperpolarize the neuron to inhibit the release of dopamine.  DAT would also remove 

dopamine from the extracellular space via reuptake.  D2 autoreceptor regulation would occur 

through GRK-mediated pathways, similar to other GPCRs (Namkung et al., 2009a).  PKC-

mediated heterologous desensitization of D2R (Namkung and Sibley, 2004) is possible but likely 

does not occur without PKC activation, such as through Gq coupled signaling (Thibault et al., 

2011).  I demonstrated that PKC inhibition has no effect on surface D2S localization in the 

absence of DAT (Chapter 3). 

At higher neuronal firing frequencies, such as during burst firing, the D2 autoreceptor control of 

extracellular dopamine shifts from decreasing dopamine exocytosis to increasing dopamine 

uptake through DAT (Wu et al., 2002).  D2 autoreceptor stimulation increases surface DAT 

localization and increases the amount of dopamine uptake (Bolan et al., 2007; Dickinson et al., 

1999; Meiergerd et al., 1993), though this only occurs during high frequency stimulations and 

not during tonic firing (Benoit-Marand et al., 2011).  This D2 autoreceptor-mediated increase in 

surface DAT involves both the ERK and PKC signaling pathways (Chen et al., 2013).  By my 

model, this high firing neuronal firing rate would drive the D2 autoreceptor and DAT to  
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Figure 4-1:  D2 autoreceptor regulation of extracellular dopamine during low frequency 

stimulation.  QP, quinpirole; TH, tyrosine hydroxylase. 
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interact, causing the D2 autoreceptor to be regulated under the D2 autoreceptor-DAT context 

(Figure 4-2).  D2 autoreceptor and DAT appear to physically couple between the third 

intracellular loop of D2R and the N-terminus of DAT (Lee et al., 2007).  The D2 autoreceptor-

DAT interaction may be stabilized by PKC.  I found that substitution of three PKC 

phosphorylation sites in the third intracellular loop of D2S or truncation of the DAT N-terminus 

disrupts the D2 autoreceptor-DAT regulation (Chapter 3).  PKC can be activated following 

stimulation of human cerebrocortical synaptosomes with the potassium channel blocker 4-

aminopyridine (Moe et al., 2002) or by the DAT substrate amphetamine (Giambalvo, 2004).  

Both mechanisms depolarize the plasmalemmal membrane.  Once the D2 autoreceptor interacts 

with DAT, I hypothesize that it adopts a conformation that makes it more susceptible to 

phosphorylation by PKC.  This increases the internalization of the receptor, perhaps to a 

recycling endosome.   

In Chapter 2, I investigated the regulation of the D2 autoreceptor by PKCusing both PKC-/- 

mice and specific PKC inhibitors.  I found that without PKC activity, mice had increased 

suppression of both dopamine release and locomotor activity following autoreceptor stimulation 

by the D2-like agonist quinpirole.  PKC-/- mice are unable to increase surface DAT localization 

following D2 autoreceptor activation (Chen et al., 2013).  These data suggest that without PKC 

activity, the D2 autoreceptor is regulated under the low stimulation paradigm.   

As discussed in Chapter 3, agonist treatment of the D2 autoreceptor-DAT complex increases the 

surface localization of both the D2 autoreceptor and DAT.  This would serve to further increase 

the mechanisms to reduce extracellular dopamine through increased reuptake and increased D2 

autoreceptor signaling.  The increased D2R signaling includes a shift towards ERK signaling, 
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which would stimulate a further increase in surface DAT localization.  Overall, the D2 

autoreceptor-DAT interaction and changed D2 autoreceptor regulation is a mechanism  

  

 

Figure 4-2:  D2 autoreceptor regulation of extracellular dopamine during high frequency 

stimulation.  RRP, readily releasable pool; QP, quinpirole. 



 

94 
 

to quickly decrease extracellular dopamine concentrations following periods of burst firing.  This 

increased neuron firing occurs in response to cues for natural rewards, such as food, but is 

increased by many abused drugs, including amphetamine (Daberkow et al., 2013).   

D2 Autoreceptor and Amphetamine 

The highly abused DAT substrate amphetamine increases extracellular dopamine by inducing the 

reverse transport of dopamine through DAT (Fleckenstein et al., 2007) and by increasing burst 

firing and exocytotic release of dopamine (Daberkow et al., 2013).  Additionally, amphetamine 

changes the surface localization of the transporter.  Exposing the transporter to amphetamine for 

short periods increases surface DAT localization (Furman et al., 2009; Johnson et al., 2005a); 

longer exposures drives internalization of DAT (Chi and Reith, 2003; Saunders et al., 2000).  It 

is interesting to speculate how amphetamine treatment would affect the D2 autoreceptor-DAT 

interaction.  I hypothesize that amphetamine would stabilize the D2 autoreceptor-DAT 

interaction through its activation of PKC (Giambalvo, 2004).  With the D2 autoreceptor and DAT 

interacting, I predict that D2 autoreceptor surface localization would follow the same pattern as 

DAT, with short amphetamine treatments increasing surface localization and longer treatments 

triggering internalization.  As I demonstrated in Chapter 2, PKC inhibition increases the D2 

autoreceptor control of dopamine release.  Thus, the amphetamine-mediated activation of PKC 

would also inhibit the D2 autoreceptor decrease in dopamine release, perhaps mediating the 

amphetamine stimulated increase in phasic dopamine release (Daberkow et al., 2013).  The D2 

autoreceptor-DAT interaction could serve as a mechanism to rapidly clear dopamine from the 

extracellular space following amphetamine treatment:  dopamine activation of the D2 

autoreceptor would increase ERK signaling, DAT surface localization, and dopamine reuptake.  

Based on the reduction in amphetamine-stimulated behaviors and dopamine release, the Gnegy 
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lab has proposed that a PKC inhibitor would block the reinforcing effects of amphetamine.  My 

data suggest that such a treatment would block the formation of the D2 autoreceptor-DAT 

interaction.  However, a PKC inhibitor would increase the D2 autoreceptor suppression of 

dopamine release, which may block the increase in phasic dopamine release observed following 

treatment with amphetamine and other abused drugs (Daberkow et al., 2013).  

D2R and Disease 

D2R has been implicated in several psychiatric diseases, including drug addiction and 

schizophrenia.  Human cocaine abusers have less available postsynaptic D2R in their basal 

ganglia than normal controls and this effect persists for several months after cocaine taking 

(Volkow et al., 1993; Volkow et al., 1990).  Few studies have determined changes in the D2 

autoreceptor during or following drug abuse.  In humans, novelty-seeking is a strong predictor 

for susceptibility to drug abuse (Piazza et al., 1989).  Novelty seeking and D2-like autoreceptor 

availability are inversely proportional as measured by PET imaging studies in healthy humans 

using the D2-like antagonist [18F]-fallypride (Zald et al., 2008). Additionally, higher impulsivity 

was correlated with decreased D2-like autoreceptor binding in healthy human volunteers.   The 

decreased autoreceptor binding also resulted in greater amphetamine-stimulated dopamine 

release in the striatum (Buckholtz et al., 2010).  A mutation in human D2R (Ser311Cys) 

correlates with increased incidents of schizophrenia and persecution type delusional disorder 

(Arinami et al., 1994; Morimoto et al., 2002).  This mutation is in the third intracellular loop of 

D2R and interferes with G protein activation in cell culture models (Chen and Zhuang, 2003).  

Lack of D2 autoreceptor control clearly impairs dopamine signaling, in both drug abuse, 

schizophrenia, and other psychiatric diseases.  I would propose that these subjects lose the 
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additional D2 autoreceptor-DAT complex and the ability to correct high extracellular levels of 

dopamine.  This could contribute to the dopamine dysfunction and disease development. 

Future Directions 

D2-like receptors involved in D2 autoreceptor-DAT complex 

The D2-like receptor family is comprised of three receptor types: D2R, D3R, and D4R.  After 

determining the distribution of these receptors, it was decided that D2R and D3R but not D4R 

could function as autoreceptors (Gingrich and Caron, 1993; Sibley et al., 1993).  Experiments 

with D2R knockout mice concluded that D2R and not D3R functioned as the autoreceptor 

(L'Hirondel et al., 1998).  Using co-staining experiments and D2L knockout mice, it was 

postulated that the short splice variant of D2R, D2S, and not the long variant of D2R was located 

presynaptically and functioned as the autoreceptor (Khan et al., 1998; Lindgren et al., 2003; 

Usiello et al., 2000).  However, both D2R isoforms and D3R are expressed in dopaminergic 

neurons isolated from rat substantia nigra, often in the same cell (Jang et al., 2011).  All three 

receptor types decreased neuron firing following agonist treatment, suggesting that all can 

function as autoreceptors.  Many of the reports measuring the D2 autoreceptor coordination of 

surface DAT localization used the D2S variant of D2R (Bolan et al., 2007; Chen et al., 2013; Lee 

et al., 2007).  Stimulation of D3R increases surface DAT localization similarly to D2S (Zapata et 

al., 2007).  Interestingly, co-expression of D2L with DAT did not increase DAT surface 

localization or dopamine uptake (Lee et al., 2007).  Further work is needed to determine if D2L or 

D3R can undergo the same D2 autoreceptor-DAT context regulation I found for D2S.  These 

experiments could easily be done in vitro using a heterologous cell system similar to the one 

described in Chapter 3.  However, measurement of this D2 autoreceptor-DAT context ex vivo or 

in vivo and determining the D2-like receptor involved would be more difficult and would require 
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the use of peptides against the D2 autoreceptor-DAT interaction (Lee et al., 2007) and/or siRNA 

knockdown of various D2-like receptors.  

G protein coupling and the D2 autoreceptor-DAT context of regulation 

Within the D2 autoreceptor-DAT context, I found that D2 autoreceptor-mediated signaling was 

shifted towards ERK signaling (Chapter 3).  In cells co-expressing DAT and D2R, G protein 

activation is right-shifted following quinpirole treatment.  I have done preliminary studies to 

investigate the involvement of G protein signaling in the regulation of surface D2R regulation 

within the D2 autoreceptor-DAT context.  For these experiments, I transfected cells with FLAG-

D2S + HA-DAT and treated them overnight with vehicle or pertussis toxin to inhibit Gi/o 

signaling.  Following pertussis toxin treatment, cells were treated with 1 M quinpirole for five 

minutes.  Surface FLAG-D2S and HA-DAT were determined using the immunofluorescence 

technique described in Chapter 3.  In cells expressing FLAG-D2S only, the short treatment with 

quinpirole did not significantly decrease surface FLAG-D2S localization.  However, pertussis 

toxin significantly decreased surface localization of FLAG-D2S (Figure 4-3A, two-way ANOVA, 

interaction F(1, 781) = 3.537, p = 0.0607, pertussis toxin F(1, 781) = 83.58, p < 0.0001, 

quinpirole F(1, 781) =2.888, p = 0.0897).  Pertussis toxin treatment gave a very different result 

in cells co-expressing FLAG-D2S and HA-DAT.  In these cells, surface levels of FLAG-D2S were 

significantly increased following pertussis toxin treatment.  Five minutes of quinpirole treatment 

significantly increased surface levels of FLAG-D2S in vehicle-treated FLAG-D2S/HA-DAT cells 

but had no effect following pertussis treatment (Figure 4-3B).  A two-way ANOVA revealed a 

significant effect of pertussis toxin, F(1, 783) = 93.83, p < 0.0001, and quinpirole, F(1, 783) = 

24.23, p < 0.001, and a significant interaction F(1, 783) = 35.37, p < 0.0001.  Pertussis toxin had 

no effect on surface HA-DAT in cells co-expressing HA-DAT with FLAG-D2S (Figure 4-3C).   



 

98 
 

  

 

 

 

Figure 4-3:  Surface D2R localization but not surface DAT localization is changed following pertussis 

toxin (PTX) treatment.  N2A neuroblastoma cells were transfected with FLAG-D2S + HA-DAT and treated 

overnight with vehicle or 100 pg/mL PTX.  On experiment day, cells were treated for 5 minutes with 

vehicle or 1 M quinpirole (QP).  Surface FLAG-D2S and HA-DAT were labeled using the 

immunofluorescence protocol outlined in Chapter 3.  Representative images accompany the quantification 

for each graph with FLAG-D2S or HA-DAT surface labeled in green and intracellular labeled in blue.  (A) 

Surface FLAG-D2S in cells expressing FLAG-D2S and vector control, N = 83-317, **** p < 0.0001 by 

two-way ANOVA with Tukey’s post-hoc analysis.  (B)  Surface FLAG-D2S in cells expressing FLAG-D2S 

and HA-DAT, N = 100-288 cells, **** p < 0.0001 vs. Vehicle/Vehicle control by two-way ANOVA with 

Tukey’s post-hoc analysis. (C)  Surface HA-DAT in cells co-expressing FLAG-D2S and HA-DAT, N = 81-

256, *** p < 0.001, **** p < 0.0001 by two-way ANOVA with Tukey’s post-hoc analysis. 

A 

B 
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Surprisingly, pertussis toxin did not completely block the quinpirole-stimulated increase in 

surface HA-DAT localization, as was previously reported (Bolan et al., 2007).  By two-way 

ANOVA, there was a significant effect of quinpirole, F(1, 683) = 33.06, p < 0.0001, but neither a 

significant effect of pertussis toxin, F(1, 683) = 1.335, p = 0.2484, nor an interaction, F(1, 683) = 

2.680, p = 0.1021. These results suggest that Gi/o protein signaling is involved in the D2 

autoreceptor-DAT interaction.  Because inhibiting Gi/o with pertussis toxin increased basal 

surface FLAG-D2S signaling but had no effect on surface HA-DAT localization, G protein 

signaling may be involved in stabilizing the D2 autoreceptor-DAT interaction.  This further 

suggests that the D2 autoreceptor can activate ERK signaling to increase surface DAT 

localization because pertussis toxin treatment did not block this effect in the FLAG-D2S/HA-

DAT cells.  Further work is needed to understand how G protein signaling is involved in the D2 

autoreceptor-DAT complex. 

Identification of D2 autoreceptor-DAT context in vivo 

I have measured changes in D2R regulation in the presence and absence of DAT using a 

homologous cell system.  It is yet to be determined if this D2R-DAT context exists in vivo.  

Proving this effect of the D2 autoreceptor-DAT context would be technically challenging.  First, 

D2R is expressed both pre- and post-synaptically, so care would be needed to separate these two 

pools of receptor, such using Percoll-purified synaptosomes (Dunkley et al., 1988).  Lack of 

specific antibodies for D2R limits the ability to measure localization changes of the native 

receptor.  However, changes in D2 autoreceptor-ERK signaling could be measured.  I found that 

cells expressing FLAG-D2S and HA-DAT had greater quinpirole-stimulated ERK activation than 

that in cells expressing FLAG-D2S alone.  In order to measure D2 autoreceptor signaling in the 

presence and absence of DAT, I propose using interfering peptides to disrupt the D2 
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autoreceptor-DAT complex (Lee et al., 2007).  A peptide against the N-terminus of DAT 

increased locomotor activity in mice and decreased dopamine reuptake, which the authors 

concluded resulted from prevention of the D2 autoreceptor-DAT physical interaction.  I predict 

that this interfering peptide would also increase the D2 autoreceptor-mediated suppression of 

dopamine release, as disruption of the D2 autoreceptor-DAT complex allows greater D2 

autoreceptor control of exocytosis such as in the PKC-/- mice.  A seemingly simple solution to 

measure D2 autoreceptor activity in the presence and absence of DAT would be to use the DAT 

knockout mice (Giros et al., 1996).  However, these mice have an approximate 50% decrease in 

D2R expression in both the midbrain and basal ganglia. 

Conclusions 

The D2 autoreceptor can be regulated differently depending on its context.  I determined that 

PKC suppresses D2 autoreceptor activity, as loss of PKC activity increased D2 autoreceptor 

control of dopamine exocytosis.  This resulted in increased locomotor suppression following 

treatment with the D2R agonist quinpirole, indicating that the PKC regulation of D2R is 

physiologically relevant.  Using a heterologous cell system, I found that DAT changes the 

regulation of D2R.  This D2S-DAT context suppresses D2S basal surface localization, likely 

through increased PKC-mediated internalization.  Agonist treatment increases surface 

localization of D2S similarly to DAT.  The D2S-DAT context of regulation can be disrupted by 

removing three PKC phosphorylation sites from D2R (T225A/S228G/S229G) or the DAT N-

terminus.  This D2S-DAT regulation context extends to signaling.  I found that cells co-

expressing D2S and DAT have increased ERK activation following quinpirole treatment but a 

decrease in the quinpirole stimulated activation of G proteins, suggesting a switch to an arrestin 

signaling pathway.  My results further our understanding of how the D2 autoreceptor is regulated 
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and has identified a novel, DAT-mediated mechanism for D2 autoreceptor regulation.  These 

findings, along with the future directions I proposed, add to our knowledge of how the D2 

autoreceptor is regulated and will be useful for future studies regarding other GPCRs, dopamine 

regulation, and diseases of the dopaminergic system.

 

 


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