INTELLIGENT MANAGEMENT OF INTER-THREAD
SYNCHRONIZATION DEPENDENCIES FOR
CONCURRENT PROGRAMS

by

Hyoun Kyu Cho

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2014

Doctoral Committee:
Professor Scott Mahlke, Chair
Terence Kelly, HP Labs
Professor Stéphane Lafortune
Professor Trevor Mudge
Assistant Professor Satish Narayanasamy

© Hyoun Kyu Cho 2014
All Rights Reserved

To my family

ACKNOWLEDGEMENTS

First, I would like to express my sincerest gratitude to myisaor, Prof. Scott Mahlke,
for his continuous guidance and support. In Korean culti@@&;her-student relationships
are thought to be very important and respected very muchy ateoften metaphorically
compared to father-son relationships. While | think my tielaship with Scott is quite
close to the ideal, it is not because | am a traditional Kokmarit is because Scott is a true
mentor.

| also owe thanks to the remaining members of my dissertabommittee, Prof. Stéphane
Lafortune, Prof. Trevor Mudge, Prof. Satish Narayanasamg,Dr. Terence Kelly. They
gave me a lot of advices, supports, ideas, and encouragenigms dissertation also in-
cludes results from joint work with Dr. Yin Wang, Dr. Hongwagro, Dr. Tipp Moseley,
Dr. Richard Hank, and Dr. Derek Bruening. | am grateful fa@dé wonderful teachers that
| could meet over the graduate school years.

| was fortunate to be among my fellow comrades in the Compienreating Custom
Processors (CCCP) group. They not only helped me inteldgtwith the discussions and
feedbacks, but also made my graduate school life much mararid enjoyable with the
endless kitchen runs and the actual runs. | would like tokhlhe members (and honorary

members) of the CCCP group: Hyunchul Park, Mojtaba Mehgarar Hormati, Shantanu

Gupta, Shuguang Feng, Ganesh Dasika, Amin Ansari, Sange@n\&ark Woh, Yongjun
Park, Jeff Hao, Po-Chun Hsu, Mehrzad Samadi, Ankit Sethaar& Chadha, Anoushe
Jamshidi, Daya Khudia, Andrew Lukefahr, Janghaeng Lea@nlasng Kyu Park, Shruti
Padmanabha, Silky Arora, and John Kloosterman.

Above all, the utmost of thanks go to my dear family. Whatdvam today, | exist
thanks to the unconditional love and support of my pareng)giCheol Cho and Young
Soo Kim. Learning how things work from my late grandfathegdung Kwon Kim, made
me not hesitate a moment to choose becoming an engineell. restember the day my
uncle, Joo Youn Kim, taught me how to use Norton Commander SAINDS 5.0 and such
days led me to take computer engineering as my major. Fiaalty most importantly, |

truly thank my wife, Hyo Jin Lee, for turning my life into thexppiest one.

TABLE OF CONTENTS

DEDICATION e i
ACKNOWLEDGEMENTS e e e iii
LISTOFFIGURES e viii
LISTOFTABLES e e e e e e e X
ABSTRACT . . . e Xi
CHAPTERS
1 Introduction 1
1.1 CorrectnessChallenges. 4
1.2 EfficiencyChallenges 5
1.3 Contributions 7
2 Practical Lock/Unlock Pairing 9
2.1 Introduction. 9
2.2 Background and Motivation. L. 12
221 Gadara 12
2.2.2 Challenges for Lock/Unlock Pairing 13
2.3 Static Lock/Unlock Pairing Analysis 17
2.3.1 Simple Example of AnalysisFlow 17
2.3.2 Mapping Lock to Set of Corresponding Unlocks 20
2.3.3 Path Condition Calculation 21
2.3.4 Checking Lock/Unlock Pairing 22
235 CFGPruning. 23
2.4 Inter-procedural Analysis L. 24
2.4.1 Proximity-based Callgraph Partitioning 26
2.4.2 Extending Lock/Unlock Pairing for Inter-procedubalal-
VSIS . e 26
25 DynamicChecking. 28
2.5.1 Checking Lock-to-Unlocks Mapping. 30

2.5.2 Checking Semiflow Property 31

2.6 ExperimentalResults 32
2.6.1 Effectiveness of Static Analysis. 32
2.6.2 Runtime Overhead of Dynamic Checking. 35
2.6.3 AssumptionViolation 37

27 RelatedWork 38

2.8 Summary e 43

3 Dynamic Core Boosting and Per-Core Power Gating. 44

3.1 Introduction. 44

3.2 Motivationand Background L. 48
3.2.1 Low Utilization of AsymmetricCMPs 48
3.22 CoreBoosting 51
3.2.3 Per-CorePowerGating. 52

3.3 CoreBoostingAssignment, 53
3.3.1 Modeling and Problem Formulation 55
3.3.2 Assignment for Data Parallel Programs. 57
3.3.3 Assignment for Pipeline Parallel Programs 59

3.4 Synchronization-Aware Dynamic Core Boosting 61
3.41 SystemOverview 61
3.4.2 DCBArchitecture 62
3.43 DCBCompiler, 64
3.4.4 DCBRuntime Subsystem. 67

3.5 Synchronization-Aware Per-Core Power Gating 68
3.5.1 Operating System Support. 68
3.5.2 Profiling-based Selective Power Gating. 69
3.5.3 Wakeup Hintand Prefetching. 70

3.6 Evaluation Methodology. 70
3.6.1 DBT-based Performance Evaluation. 71
3.6.2 Evaluationof Energy Saving 74

3.7 ExperimentalResults 74
3.7.1 Accuracy of DBT-based Performance Evaluation . . . 75
3.7.2 DCB Performance Improvement. 76
3.7.3 Energy Saving of Synchronization-Aware Power Gating 80

38 RelatedWork 82
3.8.1 Performance Asymmetry inCMPs. 83
3.8.2 Dynamic Adaptation of Core Performance 83
3.8.3 Thread Criticality Assessment 84

3.9 Summary e 86

4 Instrumentation Sampling for Lightweight Profiing 88

4.1 Introduction. 88

4.2 Background. 92
4.2.1 Dynamic Binary Instrumentation. 92
4.2.2 OverviewofDynamoRIO 93

Vi

4.3 Instrumentation Sampling. 94

4.3.1 ContextSwitch. 96

4.3.2 Temporal Unlinking and Relinking of Fragments. . . . 97

4.3.3 Multi-threaded Programs 97

4.3.4 Summarizing ProfileData. 99

4.4 Pre-populating Software Code Cache 99

4.4.1 Finding Basic Block Headers. 100

4.4.2 Affinity-based Pre-populatian. 101

4.5 Performance Evaluation. 102
4.5.1 Experimental Configuratioan. 104

452 EdgeProfiling, 105

4.5.3 Performance Overhead. 106

45.4 ProfilingAccuracy 108

46 RelatedWork 110

A7 SUMMAIY o o e e e e e e e e e 113
5 Conclusion. 115
51 Summary e 115

52 FutureWork. 117
BIBLIOGRAPHY 119

Vil

Figure
1.1

1.2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9
3.10
3.11
3.12
3.13
4.1

LIST OF FIGURES

Speedup of PARSECL]] benchmarks with varying number of threads

compared to single thread executions.. 6
CPU cycles spent blocked for synchronization operation 7
Infeasible pathexample. oL 10
Challenges for lock/unlock pairing. 14
Simple example of lock/unlock pairing. 18
Finding unlock set correspondingtolock 19
Calculating path conditions. 22
Example of CFG pruning.. 25
Example of uncaught infeasiblepath. 28
Instrumentation wrapper forlockandunlack 30
Example of unpaired lock due to type mismatch.. 33
Runtime overheads of dynamic checking.. 36
Incorrectly paired lock due to pointer problem.. 39
Slowdown caused by performance asymmetrty. 48
CPU time wasted for synchronization.. 50
Modeling of workload imbalance and core boosting.. 55
Dynamic Core Boosting system overview.. 61
Example of progress reporting instrumentation. 65
Core boosting emulation with dynamic binary translatio. 72
Errors in the simulated execution time of the perfornesamymmetry eval-
uationplatform. 75
Normalized execution time of Heterogeneous, Readivé,DCB. 76
Synchronization overheads of Heterogeneous, Reaoiy®CB. 78
Arrival time of each thread for blackscholes. 79
Overhead of synchronization-aware per-core powéngat 80
Impact of optimization for streamcluster. 81
Energy savings of synchronization-aware per-corespoating. 82
Control transfer for instrumentation sampling. 95

viii

4.2
4.3
4.4
4.5

4.6
4.7

4.8

Traditional vs. DynamoRIO’s basic blocks. 101

Overhead of edge profiling.. 103
Execution time overhead of the instant profiling framewaross five con-
figurations of(duration/frequency) 104
Computational overhead of the instant profiling framewvexross five con-
figurations of(duration/frequency) 104
Effect of pre-populating a software code cache. 106
Edge profiling accuracy of the instant profiling framekvacross five con-
figurations of(duration/frequency) 107
Asymptotic edge profilingaccuracy. 110

Table
2.1
2.2
2.3
2.4
3.1

LIST OF TABLES

Number of annotations neededtomodel 12
Coverage of static lock/unlock pairing analysis. 28
Number of Basic Blocks before/after Pruning. 35
Number of Unlocks in Corresponding Unlock Sets. 37
Simulated architecture details.. 74

ABSTRACT

INTELLIGENT MANAGEMENT OF INTER-THREAD

SYNCHRONIZATION DEPENDENCIES FOR CONCURRENT PROGRAMS

by

Hyoun Kyu Cho

Chair: Scott Mahlke

Power dissipation limits and design complexity have madentiicroprocessor industry
less successful in improving the performance of monolitiharessors, even though semi-
conductor technology continues to scale. Consequenilyabltiprocessors (CMPs) have
become a standard for all ranges of computing from cellutames to high-performance
servers. As sufficient thread level parallelism (TLP) isessary to exploit the computa-
tional power provided by CMPs, most performance-awarenarmgers need to parallelize
their programs.

For shared memory multi-threaded programs, synchrooizatiechanisms such as mu-
texes, barriers, and condition variables, are used to eatbe threads to interact with each
other in the way the programmers intended. However, empépgiynchronization oper-

Xi

ations in both correct and efficient way at the same time ieextly difficult, and there
have been trade-offs between programmability and effigiehcising synchronizations.

This thesis proposes a collection of works that increasgtbgrammability and effi-
ciency of concurrent programs by intelligently managing siynchronization operations.
First, we focus on mutex locks and unlocks. Many concurrdngydetection tools and au-
tomated bug fixers rely on the precise identification of caitsections guarded by lock/unlock
operations. We suggest a practical lock/unlock pairinghmasm that combines static
analysis with dynamic instrumentation to identify critisactions in POSIX multi-threaded
C/C++ programs. Second, we present Dynamic Core Boosti@Bjo accelerate crit-
ical paths in multi-thread programs. Inter-thread depan@s through synchronizations
form critical paths. These critical paths are major periange bottlenecks for concurrent
programs, and they are exacerbated by workload imbalangesriormance asymmetric
CMPs. DCB coordinates its compiler, runtime subsystem gacklitecture to mitigate such
performance bottlenecks. In addition, we propose expigiynchronization operations
for better energy efficiency through dynamic power managenvehile maintaining per-
formance. Finally, combining instrumentation samplingfwdynamic binary translation is
suggested for low overhead profiling.

Although the works presented in this thesis address a yasfassues related to syn-
chronizations from correctness to performance and endfigjeacy, they are all inspired
by the same observation that neither a static nor a dynarpioaph is sufficient for intel-
ligent management of synchronizations. Based on this gagen, we combine compiler
techniques to analyze programs without burdening the execaf programs and runtime
techniques to adjust the execution with more accuratenmition. By applying this theme

Xil

of hybrid static/dynamic mechanism to managing synchadion dependencies, we ex-

plore the possibility of increasing programmability anticééncy of concurrent programs.

Xiii

CHAPTER 1

Introduction

The semiconductor industry continues to scale down thed$imelividual transistor ac-
cording to Moore’s law. Increasing clock frequencies angl@xng instruction level par-
allelism (ILP) have been the main methodologies to turndienology scaling into appli-
cation performance gains for more than four decades. Imtgears, however, CPU clock
frequencies have flattened out due to power dissipationtardial constraints. Similarly,
design complexity and verification issues inhibit compatehitects from exploiting more
ILP. For these reasons, improving the performance of mthmolprocessors has become
less successful, and chip multiprocessors (CMPs) havergimw a mainstream paradigm
to improve application performance with the increaseddistar counts, for all ranges of
computing from cellular phones to high-performance sexv&ince CMPs require suffi-
cient thread level parallelism (TLP) to benefit from the pdad computing power, most
performance-conscious programmers face increasingyeetsparallelize their programs.

In shared-memory multi-threaded programs, which is thet pp@valent programming

model for CMPs, threads communicate with each other by ngaidom and writing to the

shared memory. The value read from the shared memory chdageading on the order of
memory accesses to the location, and the order of memorgseses decided according to
the interleaving of threads. Therefore, controlling thee#td interleaving is very important
for making multi-threaded programs work in correspondenitk the original intention,
and programmers limit the legal interleavings of threadsgisynchronization operations
such as mutexes, barriers, and condition variables.

While synchronization operations play an important rolerfulti-threaded program-
ming by enforcing the threads to interact with each otheheway that the programmers
intended, employing them in both correct and efficient wathatsame time is very diffi-
cult. Faulty employment of synchronizations can resultriors (atomicity violations and
order violations) or nontermination (deadlock). Such defere collectively called con-
currency bugs, and they are significantly more difficult ttedeand fix than other types of
bugs because they only manifest depending on specific timesateavings.

Naive placement of synchronization operations can alaeecaverly serialized execu-
tions. Synchronization operations sometimes can blockxeeution of threads and make
them to wait until some conditions are satisfied. This blogkis necessary to prohibit
illegal thread interleavings. However, blocking also lisrthe concurrency of parallel pro-
grams. If blocking is enforced more than necessary, it caa performance bottleneck.
Eyerman et al. 5] investigates a number of parallel benchmarks and dissaveat syn-
chronizations is the primary roadblock that prohibits thestmumber of benchmarks from
scaling to many threads.

Programmers often make trade-offs between the prograntitgaid the efficiency for
employing synchronization operations. Since the funddal@urpose of synchronizations

2

is to limit a set of undesired thread interleavings, the nioterleavings are prohibited, the
more likely they cover all intended illegal thread intexgas. At the same time, however,
larger set of illegal interleavings means higher possibdf blocking, limiting the concur-
rency of the execution. This trade-off can be seen in thelfangixample of coarse-grained
locking and fine-grained locking. Coarse-grained lockiegalless number of mutexes and
guards larger region of code with locks and unlocks. It isezde use because it guarantees
more atomicity and it is less prone to deadlocks. On the dthed, fine-grained locking is
usually better for performance scaling because it seeglike execution less.

This thesis studies a collection of mechanisms that ineréas programmability and
efficiency of concurrent programs, without the interventaf programmers, by intelli-
gently managing the synchronization operations. Firstfages on mutex locks and un-
locks. Many concurrency bug detection tools and automatgdikers rely on the precise
identification of critical sections guarded by lock/unlagperations. We suggest a practical
lock/unlock pairing mechanism that combines static anslygh dynamic instrumentation
to identify critical sections in POSIX multi-threaded C/Eprograms. Second, we present
Dynamic Core Boosting (DCB) to accelerate critical pathsirti-thread programs. Inter-
thread dependencies through synchronizations form akipaths. These critical paths are
major performance bottlenecks for concurrent prograntsilaey are exacerbated by work-
load imbalances in performance asymmetric CMPs. DCB coatds its compiler, runtime
subsystem, and architecture to mitigate such performanitiebecks. Finally, we propose
exploiting synchronization operations for better enerffigiency through dynamic power
management, while maintaining performance.

In the following sections, the synchronization-relatedlt@nges for the programmabil-

3

ity and efficiency of concurrent programs are discussedi,Nexpresent our contribution
for intelligent management of inter-thread synchron@atilependencies. Finally, we de-

scribe the organization of this thesis.

1.1 Correctness Challenges

The foremost source that makes it so difficult to write cdr@mncurrent programs is
concurrency bugs. Concurrency bugs are synchronizatiectdeallowing thread interleav-
ings that are not expected by the programmers. They resdHten corruption (atomicity
violations and order violations) or nontermination (deatt). They often survive thorough
testing and introduce fatal errors in production, becaheg tio not manifest very well de-
pending on thread interleavings. In this section, we intoedthe most common types of

concurrency bugsipl.

Deadlocks: Synchronizations operations sometimes let threads wasidime conditions
that must be satisfied by other threads, and these relatowns ihter-thread dependen-
cies. If there exists a cycle of inter-thread dependenthesset of involved threads cannot

progress and the execution is said to be in a deadlodk [

Atomicity Violations: Atomicity is a guarantee of isolation from different threadf the
data manipulation effect of a set of operations from oneatthr@ppears to be equivalent
to that of a serial execution without intervention from ath@eads, the set of operations
is told to bear atomicity. Programmers frequently expectratity of operations. For in-

stance, consider the case where a counter variable neeglgicrémented. It will consist of

three operations: load from the variable, increment, amégb the variable. These opera-
tions need to execute atomically, or the counter might haue@xpected value. Atomicity
is usually enforced by mutex synchronizations. If the atdtyintention of a programmer

is not satisfied by the actual implementation, it is callexhatity violation [66].

Order Violations: Programmers also expect certain orders among operatiarsex-
ample, pointer dereferencing needs to occur after theatlmt to the pointer but before
freeing the pointer. Similarly, processing data is expgttehappen after partitioning the
input, followed by summarizing the results. Such ordersaddten placed with condition
variables or barriers. If the programmer fails to enforce dinder expectations, an order

violation occurs $5].

1.2 Efficiency Challenges

Synchronizations are prone to become a performance betttdar multi-threaded pro-
grams since they limit concurrency. Naive placement afitican overly serialize the exe-
cutions. Eyerman et al3[] studies the scaling bottlenecks of PARSEC][and SPLASH-
2 [10q benchmarks, and identifies that synchronizations areringgpy bottleneck for the
largest number of benchmarks. In this section, we confirnfabiewith some preliminary
experiments on a machine with 32 cores.

Figurel.1shows the speedups of a subset of PARSEQ henchmarks with different
number of threads normalized against their single threadwion. Ideally, an application

that scales perfectly has to show the speedup equal to thberushthreads. As can be

30

-&-blackscholes
—e—bodytrack
—-canneal [
——facesim
—-»—fluidanimate
streamcluster

-¢swaptions

Normalized Performance

1 2 4 8 16 32

Figure 1.1: Speedup of PARSEC]1] benchmarks with varying number of threads compared
to single thread executions.

seen, the benchmarks possess varying amount of scalaWilitiye some programs such as
blackscholeandcannealkcale pretty close to the ideal, others lgteeamclusteor facesim
do not scale very well. Regardless of whether they scaleaveibt, all of them show less
performance improvement per thread as the number of thirad=sases.

We focus on how much processor time is wasted waiting for Isyorgzation oper-
ations including mutex locks, condition variable waitsddrarrier waits. We intercept
every Pthread library calls by overloadihdg_PREL OAD environment variable in Linux
and measure waiting time for each operation. Figugdepicts the portion of time spent
for synchronization. Comparing Figufie2 with Figure 1.1, we can see the benchmarks
that spend more time for synchronization do not scale vei; which support the previ-
ous findings of Eyerman et al3§]. Furthermore, this shows the potential of performance

improvement if we can reduce the time spent for synchroioizatperations.

intro/fig/scalability2.eps

80
70
60
50
40
30

20

10
) B =

Synchronization (%)

blackscholes
bodytrack
facesim
swaptions
vips
X264
canneal I
dedup I
streamcluster

Figure 1.2: CPU cycles spent blocked for synchronization ogrations.

1.3 Contributions

Although the works presented address a variety of diffeisstes related to synchro-
nizations from correctness to performance and energyetfiy] they are motivated by one
observation that neither a static nor a dynamic approaalffisient for intelligently man-
aging synchronizations. Based on such observation, we icencbmpiler techniques and
runtime techniques to increase programmability and effayreof concurrent programs. In

particular, the main contributions offered in this disagdn are as follows:

e First, practical lock/unlock pairing mechanism for C/CsHiresented. This mech-
anism combines static analysis and dynamic instrumemt&tiadentify critical sec-
tions in POSIX multi-threaded programs. It first applies asarvative inter-procedural
path-sensitive dataflow analysis to pair up all lock and cklealls. When the static
analysis fails, our method makes likely assumptions allmupairing using common

heuristics. These assumptions are checked at runtime ligdiigyeight instrumenta-

intro/fig/sync.eps

tion [25].

e The second part of this dissertation proposes Dynamic Coestihg (DCB), a
software-hardware cooperative system that accelerdteatipaths formed by inter-
thread synchronization dependencies. DCB coordinateitgiler, runtime sub-
system, and architecture for near-optimal assignment k& boosting. The com-
piler instruments the program with instructions to givegyess hints and the run-
time subsystem monitors their execution, enabling the Df@Biecture to assign a
core boosting budget for better performance. Improvinggnefficiency through

synchronization-aware per-core power gating is also ptesg’?2, 23].

e The third part presents Instant Profiling, a lightweightifdé profiling mechanism
used for the other parts of the dissertation. Instant pngfihaintains low overhead
with instrumentation sampling technique using dynami@bjrtranslation. Instead
of instrumenting the entire execution, instant profilingipéically interleaves na-
tive execution and instrumented execution according tdigorable profiling dura-
tion and frequency parameters. It further reduces the dgteiegradation by pre-

populating a software code cach&l].

The rest of this dissertation is organized as follows. Cérahintroduces the practical
lock/unlock pairing mechanism. The Dynamic Core Boostind aynchronization-aware
per-core power gating is described in Cha@einstrumentation sampling for lightweight

flexible profiling is presented in Chaptér Finally, Chapteb concludes the dissertation.

CHAPTER 2

Practical Lock/Unlock Pairing

2.1 Introduction

Most performance-aware programmers are experiencinggegesing pressure to par-
allelize their programs because uniprocessor performhasdlattened out and multicore
processors promise more cores in each successive harderaeatgon. Parallel program-
ming, however, remains a daunting task for a variety of reasd-irst of all, reasoning
about concurrent events and synchronization is inherehtljlenging for human program-
mers, who think sequentially. In addition, concurrencyssgch as deadlocks, data races,
and atomicity violations require global knowledge of thegmam. Finally, the nondeter-
ministic execution of parallel programs makes these bugd teadetect, reproduce, and
fix.

There has been much effort to relieve the burden of paralt@nramming. For exam-
ple, many automatic concurrency bug detection tools haea loevelopedd4, 34, 66].

Automated bug fixing tools are also availab¥&[53]. In addition, researchers are explor-

ing ways to adapt classical compiler optimization techagfor sequential programs to
parallel programsd6, 87].

The aforementioned techniques often rely on , ; (x)
or benefit from precise lock usage information, I ock(L);

which is very difficult to obtain for languages
if (x)

unl ock(L);

without lexically scoped critical sections. For
instance, static bug detection tools usiogkset Figure 2.1: Infeasible path example
analysis[84] must map each statement to the set

of locks held by the thread of execution. Infeasible pathghsas the one illustrated in
Figure2.1 are a major source of false positives]]. Automated bug fix tools often add
locks to avoid deadlockof] or restore atomicity§ 3], which may introduce new deadlocks
if the usage of existing locks is unknown. Finally, it is wkiown that many compiler
optimization techniques cannot be directly applied to corent programsq7]. Currently
compilers only optimize code sections that do not involwelaok operation, which can be
quite conservativedd]. Correct identification of critical sections allows betbgtimization

for concurrent programs.

Numerous static analysis approaches have been develogedaay can be adapted to
infer critical sections. In general, model checking basedstare precise but do not scale to
practical programsiZ], while scalable tools using specially designed algorgtare often
imprecise P8, 19, 29. For example, Saturr?f] is a scalable static analysis engine that is
both sound and complete with respect to the user-providalysis script. Writing a script
that is sound and complete with respect to the target prognamever, is as difficult as

writing an analysis engine itself. The lock analysis schphdled with Saturn is neither

10

sound nor complete, most notably because it lacks glotkesd alalysis.

In this chapter, we propose a practical lock/unlock painmgchanism that combines
dataflow analysis with dynamic instrumentation. Our integedural path-sensitive dataflow
analysis is a variant of existing tool&d, 19. It conservatively identifies lock acquisition
and release pairs. When the analysis is uncertain, we usestesisuch as those based
on structure types and location proximity to determine taie. g-inally, we instrument the
target program with light-weight checking instructionsnnitor whether the pairing is
correct at run-time. When a violation occurs, feedbackrimtation is provided to revise
the pairing.

This chapter makes several contributions. We presentia kiek/unlock pairing anal-
ysis algorithm which yields accurate results in most casé& develop a lightweight
dynamic checking mechanism to ensure our analysis is dork&e demonstrate the ef-
fectiveness of our lock/unlock pairing mechanism inclgdboth static analysis and dy-
namic checking with real-world multithreaded programshsas OpenLDAP, Apache, and
MySQL.

The remainder of the chapter is organized as follows. We girssent the challenges
with motivating examples in SectioR.2 Next, Section2.3 describes how our static
lock/unlock pairing analysis works, and Secti@i discusses how to extend the analy-
sis for inter-procedural cases. We explain the dynamickihganechanism in Sectia5.
Section2.6 presents the experimental results and Se@i@outlines related work. Finally,

we summarize the contributions and conclude in Se@i8én

11

Benchmarks | Number of Annotations
OpenLDAP 90
MySQL 71
Apache 19

Table 2.1: Number of annotations needed to model

2.2 Background and Motivation

While our approach can help any tool that needs accurate stiairmation about criti-
cal sections, we show its effectiveness in the context ofide& avoidance. In this section,
we briefly provide some background on dynamic deadlock araid in GadaraSp] and

explain what kind of challenges exist for lock/unlock padyi

2.2.1 Gadara

Gadara is a tool that enables multithreaded programs td awcular-mutex-wait dead-
locks at runtime. The basic idea is to intelligently postptotk acquisition attempts when
necessary to ensure that deadlock cannot occur. It proceéuls following phases. First,
Gadara constructs a Petri net model from program sourceusidg compiler techniques.
Based on structural analysis of the model, Gadara syneés$stedback control logic for
each structural construct in the model that contributes potantial deadlock. Finally, it
instruments the control logic into the target program.

Given that the model is correct, Gadara automatically sgites maximally permis-
sive controllers that delay lock acquisitions only if thegram model indicates that dead-
lock might later result if the lock were granted immediateBue to lack of accurate in-

formation about critical sections, however, Gadara’s pgoganalysis or control synthesis

12

could fail. In such cases, Gadara requires programmertoda annotations. These an-
notations specify which unlocks match and that no mutex eahddd at certain program
points. Table2.1 shows the number of annotations needed to model the benkriwar

Gadara. Providing annotations can be tedious, difficult,emor-prone even for program-

mers familiar with both the target program and Gadara.

2.2.2 Challenges for Lock/Unlock Pairing

This subsection discusses the major challenges that alsteitfunlock pairing analysis
should address in order to model programs accurately indhiegt of deadlock avoidance.

We illustrate the challenges via simplified code examples.

2.2.2.1 Infeasible Path

One of the challenges for static lock/unlock pairing is thebayuity caused by infea-
sible paths. The traditional way in which compilers abst@ograms’ control path is to
represent programs with control flow graphs (CFGs). Eactexen a CFG represents a
basic block and each edge corresponds to a branch from oiwebb@sk to another. Thus,
a sequence of basic blocks connected with edges in a CFGsegpsea control path. Not
all sequences, however, are actually possible controkpatprogram execution; some are
infeasible paths

Infeasible paths are a challenge for lock/unlock pairingaose there can be cases
where a lock is paired up with unlocks for all feasible paths ot paired up for some
infeasible paths. This can be seen in the example of Fg&@). If we assume the value
of variablef | ag is not changed throughout the snippet, all the branchegsponding

13

PP OOO~NOUOPMWNEE

B

O©CoO~NOULA~,WNPE

O©oO~NOOOUTA,WNPEP

if (flag) | ock(node- >nmut ex) ;
while (condition) {

if (flag) unl ock(node- >nut ex) ;
ﬁbae = node- >next ;
if (flag) | ock(node->mut ex) ;
if (flag) unl ock(node->nutex);
(a)

void callee(task *ptr) {
unl ock(ptr->nutex);

I ock(ptr->mutex);

}

void caller(task *ptr) {
| ock(ptr->nutex);

ééilee(ptr);
Qﬁiock(ptr—>nutex);
(b)
| ock(par ent - >nut ex) ;

if (conditionl) {
[ock(chil d->nmut ex);

unl ock(chi | d- >mut ex) ;

}

unl ock(par ent - >nut ex) ;

(c)

Figure 2.2: Challenges for lock/unlock pairing

14

to thei f statements should follow the same direction. However, gensiiatic analysis
would consider all possible combinations of branch digewi if it cannot correlate branch
conditions. Another example of infeasible path is infinb®ps, since we can assume
a finite number of iterations for all reasonable executiolmsthe same example, if the
analysis considers the infinite loop, the lock of line 8 migbt be paired up.

This challenge is especially problematic for Gadara, wimsdels must have the semi-
flow property P9. Intuitively, the semiflow property means that a mutex acegiby a
thread should be released later in the model. It is not alwatisfied, however, if we di-
rectly translate the CFG to a Gadara model due to the infiegsétth problem as described
above. The semiflow property is one of the most importantaattaristics of Gadara mod-
els, and it is the main reason why accurate lock/unlock pgiis important in the context

of deadlock avoidance.

2.2.2.2 Spanning Function Boundaries

Another challenge arises from the fact that locks and urdosed not reside in the
same function. For widely used concurrent programs, it tsare for locks and unlocks to
span multiple levels of call chains. If a lock/unlock pagianalysis operates only within
function boundaries it is not possible to pair up such cases.

Figure2.2 (b) illustrates such a case. An intra-procedural lock/ckloairing analysis
would conclude that the lock in functiaral | er () is paired up inside the function and
the lock in functioncal | ee()) is not paired up. However, actually the lock in line 8 is
paired up with the unlock in line 2 and the lock in line 4 is edirup with the unlock in

line 12, in this calling context.

15

It gets even more complicated since there can be many caftintgxts. Gadara models
function calls by substituting into the call site a copy of ttallee’s Petri net moded§{],
thus the model of one function can be analyzed differentjyedeling on the calling con-
texts. Therefore, in order to handle this kind of cases, ¢lo&/Unlock pairing analysis

should be inter-procedural and context-sensitive.

2.2.2.3 Pointers

Imperfect pointer analysis imposes another challenge. eMuwariables are usually
passed to lock/unlock functions via pointers. Since onbtk$and unlocks on the same
mutex variable pair up, itis important to figure out whichkgminters point to the same lo-
cation and which pointers do not. As widely known, howeveerestate-of-the-art pointer
analyses cannot provide perfect information. For somesgéisey can only conservatively
tell that two pointersnayalias.

Figure2.2(c) illustrates how pointers can cause problems for lodkftkpairing anal-
ysis. Assume that the pointer analysis concludes that tinegypar ent andchi | d may
alias, which is the normal case for heap variables. In thég calthough it is reasonable for
a human programmer to pair up the lock in line 1 and the unlodloe 9, it is not trivial
for a static analysis to reach the same conclusion.

In order to model concurrent programs accurately, the lodkck pairing analysis
should work well under such circumstances with imperfefcrimation about pointers. Fur-
thermore, Gadara conservatively approximates mutex @aittased on typeS§]. More
specifically, it models the mutexes accessed by pointerghadre enclosed in the same

type of structure, as one resource place. The lock/unlotihgaanalysis can relieve the

16

impact of this kind of approximation.

2.3 Static Lock/Unlock Pairing Analysis

In Section2.3and2.4, we discuss how our static analysis pairs up locks and uslock
to cope with the challenges described in the previous secBection2.3first covers the
detailed steps for intra-procedural cases and we show hextémd it for inter-procedural
cases in SectioB.4.

Our static lock/unlock pairing analysis is carried out imifeteps. First, the analyzer
extracts an enhanced control flow graph (CFG) from source and prunesit. This CFG is
augmented with information about function calls and bracminditions. It prunes the CFG
for computational efficiency, leaving only relevant braeshSecond, it maps each lock to
a set of corresponding unlocks through dataflow analysietsang the CFG in a depth first
manner while managing lock stack data structures. Thicdldulates Boolean expressions
that express the conditions under which each lock and unsoekecuted. Finally, using a
SAT solver [37], it examines whether all locks are paired up with unlockeweery feasible
path. Sectior2.3.1shows how the analysis works with a simple example, thendsieaf

the section describes each of these steps in detail.

2.3.1 Simple Example of Analysis Flow

This section presents the conceptual flow of our lock/unipaking analysis with a
simple example in Figur2.3. In this example, the mutex acquired by the lock in line 3 is

always released before the functivandl e_t ask() returns by either the unlock in line 7

17

1 : int handle_task(task *job) {
2 i f(job->has_nut ex)

3 | ock(j ob->mut ex);

4 i f(job->is _special) {

5 : /1 Handl e special case
6 : i f(job->has_mutex) {

7 unl ock(j ob->nut ex) ;
8 : return result;

9 : }

10: }

11: // Handl e nornal cases

12; i f(job->has_nut ex)

13: unl ock(j ob->nmut ex) ;

14: return result;

15: }

Figure 2.3: Simple example of lock/unlock pairing.

or the unlock in line 13. However, directly translating thE@&of this example to Petri net
violates the semiflow property due to infeasible paths asrdeed in Sectior2.2.2 Our
analysis rules out the infeasible paths and gives accureitéunlock pairing results through
the following process.

After pruning the CFG, the corresponding unlock set mappiagdes that both the
unlock in line 7 and the unlock in line 13 can release the mateuired by the lock
in line 3. Then, the path condition calculation step detesnithe Boolean expressions
that represent path conditions for each lock and unlock.hig @éxample, path condition
(job — hasmutex# 0) must be true for the lock to be executed. Similarly, the ukloc
line 7 has(job — is_special# 0) A (job — hasmutex# 0), and the unlock in line 13 has
(job — is_special=0) A (job — hasmutex£ 0) as their path conditions. The analysis
then translates them into Boolean expressions by assigniBgolean variable to each
branch condition. In order to encode the branch correlatioto the expressions, this
assignment process assigns the same Boolean variablentthlanditions that must have

the same value. As a result, the Boolean expression of tikeidde;), and the unlock in

18

/1l Apply analysis to all functions
void traverse_function(fn)
/1l Traverse CFG to calculate GEN and KILL sets
traverse_bb(entry);
for(each | ock discovered)
correspondi ng_unl ocks[| ock]
= GEN[l ock] - KILL[Iock];
end

OO ~NOUITA,WN P

10: // Conpute GEN and KILL sets for all |ocks traversing
11: // CFGin a depth first manner while managi ng | ock
12: // stack data structure

13: void traverse_bb(bb)

14: for(each instruction s in bb in order)
15: if(s is a lock)

16: push s to | ock stack

17: el se if(s is an unlock)

18: top = top elenment of |ock stack
19: add s in GCENtop];

20: for(each elenent e in lock stack, e!=top)
21: add s in KILL[e];

22: pop fromlock stack

23: for(each successor child of bb)

24 traverse_bb(child);

25: end

Figure 2.4: Finding unlock set corresponding to lock

line 7 and the unlock in line 13 receivi; A X1) and(—x2 AX1), respectively.

The final step of the analysis is to check whether the lock@daorresponding unlocks
pair up for all feasible paths. This can be done by deterrginvhether the statement
“if the path condition for the lock is true, then the disjuoct of the path conditions for
corresponding unlocks is true” is always true or not. In #xample, the statement is
interpreted as the Boolean expressjom;) VV (X2 AX1) V (—X2 AX1). In order to verify if it
is always true, we apply a SAT solver on the negation of thel@ooexpression. If it is
unsatisfiable, then the statement is always true, and thealod the corresponding unlocks
are paired. Otherwise, they are not paired up. In this exantipé negation of the Boolean

expression is unsatisfiable and the lock is paired up witlutieck in line 7 and line 13.

19

2.3.2 Mapping Lock to Set of Corresponding Unlocks

Before applying the infeasible path analysis, this stepugsacorresponding locks and
unlocks. More specifically, it maps a set of correspondingeks to each lock. We say an
unlock corresponds to a lock if it can release the mutex aeduy the lock on any path.
Since the mutex acquired by a lock can be released at diffpregram points, we map a
set of corresponding unlocks and not just a single unlocks $tep is necessary because
the same mutex can be acquired and released multiple times.

This analysis algorithm traverses the CFG in a depth firstmaamwhile managing a
stack of locks for each mutex. The core analysis algorithgiven in Figure2.4. Although
we only show it for one mutex in this version, the actual asalgimultaneously works on
all mutexes.

The underlying idea is to add an unlock to the correspondirigak set of a lock, if
there is a path in which the unlock follows the lock but ther@d path in which there is
another lock of the same mutex between the lock and unlock.tdjn element of the lock
stack is the most recent lock that the traversal encountsed adds the unlock to the
CEN set of the top element. Other elements in the lock stack arltks that the traversal
met before the last lock along the traversal, so it adds theckrto theKl LL sets of them.
Ultimately, the corresponding unlocks of each lock are thiecks that are in th€EN set

but not in theKl LL set.

20

2.3.3 Path Condition Calculation

This step calculates the Boolean expressions for path tonslithat must be true for
each lock and unlock to execute. It first calculates path itond and translates them by
assigning a Boolean variable for each branch condition. &fme the path condition of
a statement as the Boolean combination, i.e., ANDOR(V), NOT(-), of branch condi-
tions, which must be true for the statement to be executed.

The core path condition calculation algorithm is illuséhtin Figure2.5. With this
algorithm, the path condition of a statement is the path itmmdrom the entry basic block
to the basic block that the statement belongs to. The undgrigiea of this algorithm is
that the path condition from the CFG nodsr ¢’ to* dest’ is the disjunction (OR) of
the conditions along the paths which go througthi | d’ , for all children of* src’ .
This idea is reflected in line 18.

This algorithm uses caching and post dominator informatawncomputational effi-
ciency. Since there can be an exponential number of pattetoumber of basic blocks,
the naive recursive algorithm is not feasible for real paogs. In order to avoid repetitive
computation for the same path, it uses a path condition cexclexed by(sr c, dest)
pair. In addition, it uses post dominator (PDOM) informates a shortcut, to simplify the
resulting conditions.

After path condition calculation, the analysis transldtespath conditions to Boolean
expressions by assigning a Boolean variable to each bramditon. To reveal the branch
correlations in the Boolean expressions, our analysigasshe same Boolean variable to

the branch conditions that must have the same value. Thassige by using global value

21

1 : // Recursively calculates path condition from

2 /1 src to dest

3 : condition cal cul ate_path_cond(CFG src, dest)

4 /1l Consult path condition cache for efficiency
5 : if (src, dest) is in cache

6 : return condition from cache;

7 /1 Always reaches dest if it post-dom nate src
8 : if dest PDOM src

9 : return TRUE

10: /'l Dead end

11: if src has no successor

12: return FALSE

13: /1 The control can reach dest follow ng

14: /'l each successor

15: for(each successor ¢ of src)

16: condl = branch condition of branch (src->c);
17: cond2 = cal cul ate_path_cond(CFG c, dest);
18: condition = condition OR (condl AND cond?2);
19: put condition in cache with index (src, dest);
20: return condition

21: end

Figure 2.5: Calculating path conditions

numbering (GVN) and hashing them to map to Boolean variables

2.3.4 Checking Lock/Unlock Pairing

Using the analysis results of the previous steps, this stehyfiverifies whether all
locks are paired up with the corresponding unlocks on eveagible path. To achieve this
goal, we use an open source SAT solver MiniSAY][For each lock, through the previous
steps, we have the set of corresponding unlocks and theargl®oolean expressions for
the path conditions of them and the lock. With these anafgsislts, to verify the statement
“the lock is paired up with the corresponding unlocks on g¥easible path” is equivalent
to checking the proposition “if the Boolean expression fa@ kock is true, the disjunction
of the corresponding unlocks’ Boolean expressions is awaye.” LetL be the Boolean

expression for the lock, andy, U», ...,U, be the Boolean expressions for the corresponding

22

unlocks. Then our analysis tries to check if the followingession is always true.

L= U vUsV..VvU, (2.1)

or equivalently

LV (Ui1VvUzV...VUp) (2.2)

Checking whether a Boolean expression is always true oratobe done with a SAT
solver. If the expression is always true, its negation absasaluates false, which in turn im-
plies that the negation of the expression is unsatisfialiter&fore, we can check whether
the lock is paired up with the corresponding unlocks by aipgly SAT solver to the nega-
tion of (2.2), which is

LA-ULA=UsA L. A=Up (2.3)

2.3.5 CFG Pruning

One of the hurdles that the static lock/unlock pairing asiglynust overcome is com-
putational complexity. In real world server programs, thenber of basic blocks in a
function easily grows to several hundreds. In addition Bbelean satisfiability problem is
well known to be NP complete. For these reasons, we mustdigrafinimize the number
of clauses in the Boolean expressions, in order to make @lysis scale to real programs.
We achieve this by pruning the CFG.

Our analysis tool prunes the CFG without losing any releuafiotmation needed for
the analysis based on control dependence analygjsiptuitively, CFG nodeX is control

dependent on nod¥ if the outgoing edges fronY determine whetheX is executed or

23

not, and control dependencies can be calculated by findisggmminator frontiers in the
CFG. Given this property of control dependence, when weutatie the path condition for
a basic blockX, we must consider the basic blocks on whiKls control dependent, the
basic blocks on which those basic blocks are dependent, @afaith. Therefore, if we
calculate the control dependence closure for the basi&illbe basic blocks in the closure
are the only ones that are relevant for the path conditiooutation. We calculate the
control dependence closure by iteratively including basicks until it converges.

The CFG pruning algorithm works as follows. It starts witl thasic blocks of interest
as input. Then, it calculates the control dependence aolurthem, i.e., the closure
relevant basic blocks. Finally, we prune the CFG by maxiynalerging irrelevant basic
blocks that are connected. The CFG pruning algorithm carab#gyeunderstood with the
example in Figure.6. In this example, basic block 9 is the basic block of interdst
is control dependent on basic block 7; furthermore basickolbis control dependent on
basic block 1. After calculating the control dependencswle{1,7,9}, the rest of the
basic blocks can be merged if they are connected. The siegplifFG on the right results
from pruning. By working on this pruned CFG, the path comditcalculation and the

resulting Boolean expressions get much simpler.

2.4 Inter-procedural Analysis

As discussed in Sectioh2.2.2 many lock/unlock pairs span function boundaries. In
order to model concurrent programs for most cases, ourdoti¢k pairing analysis must

be inter-procedural and context-sensitive. In this se¢twe describe how to extend the

24

3,5,6

2,4,8,10,11

Figure 2.6: Example of CFG pruning.

analysis presented in the previous section for inter-fho cases.

One straightforward way to make the analysis inter-procads a top-down approach
that performs the analysis on the whole program CFG by cdoe#yp replacing call in-
struction with the CFG of callee function at every call sisgarting from themai n()
function. However, this can cause a computational comgylgxioblem by producing an
excessively large CFG to analyze.

Instead of flattening out the CFG for the entire program, weddi the problem into
small pieces and perform the analysis on subgraphs in avdienit the analysis time. We
first partition the callgraph with a proximity-based heticisand analyze the subgraphs in

a bottom-up manner. We describe the details of this analysiee following subsections.

25

lock/fig/pruning.eps

2.4.1 Proximity-based Callgraph Partitioning

We made two observations while we were trying to manually pailocks and unlocks
across function boundaries. The first observation is thet#iling contexts of a lock and
paired unlocks differ from a lowest common ancestor in tHeyph with respect to the
root nodemai n() , in most cases. Suppose that a mutex acquired by a lock veitetling
context ofmain= f; = ... = f,= fi1 = ... = fi, is released by an unlock with the calling
contextofmain=- f; = ... = f, = fu1 = ... = fynon a path, then the other unlocks, if any,
that pair up with the lock usually have calling context tHaresnain=- f; = ... = f, and
fn is a lowest common ancestor of them in the callgraph. Thergkobservation is that
the depths from locks and unlocks to the lowest common amicesthe pairing context
are relatively smal{< 5) for most cases.

Based on the above observations we use a heuristic of prigxbased callgraph parti-
tioning to keep the inter-procedural lock/unlock pairimgbysis tractable. The partitioning
algorithm works as follows. It starts from functions thav@ainpaired locks and follows
upward the callgraph. It continues until it reaches a nodehhs the nodes with potentially
pairing unlocks as descendants or a predefined depth thdedteen, it cuts the subgraph
from the node as a root. In this way, we can limit the size of IBan expressions to be

small enough to analyze.

2.4.2 Extending Lock/Unlock Pairing for Inter-procedural Analysis

For inter-procedural lock/unlock pairing, we apply thelgee described in Sectiah 3

on the subgraph partitioned in the previous subsection. iftee-procedural lock/unlock

26

pairing analysis must handle function calls in a differerywrom the intra-procedural

analysis, which just ignores function calls except locks @nlocks. The information about
locks and unlocks in callee functions must be consideredwleanalysis meets a function
call. Our analysis takes two different approaches to do smfpping a lock to the set of

corresponding unlocks and for path condition calculation.

Mapping a lock to the set of corresponding unlocks can be fieoldo be inter-procedural
in a relatively straightforward way. It can be consideread@sceptually inlining function
calls. When it meets a function call it follows the CFG of trelee function. When the
function returns it goes back to the caller function’s CF@éD than that, it is identical to
the mapping algorithm explained in Secti®18.2 It is a simple extension but it is enabled
by the proximity-based callgraph partitioning.

On the other hand, path conditions are calculated in a bettprmanner. In order to
calculate the path condition that decides the executionalq it first calculates the lock’s
path condition in the leaf node function that contains tteld hen, following the context
recognized in the partitioning, it calculates the path dtma of the function call in its
caller function, and its caller function, and so forth urtiteaches the root function of
the partition. These conditions get merged with a conjamctiperator to finally calculate
the context-sensitive path condition for the lock. Aftecaticulates the context-sensitive
path conditions for the locks and the unlocks, the remaistegs are identical to the intra-

procedural analysis.

27

1 : Connection *xc = NULL;
2 for(; index < tblsize; index++) {
3: ce
4 . i f (connections[index].state == C USED) {
5 : c = &connections[index];
6 : | ock(&c->c_mut ex);
7 br eak;
8 : }
9: }
10: ...
11: if (c!'=NULL) unl ock(&c->c_mutex);
Figure 2.7: Example of uncaught infeasible path.
Our Approach
Benchmarks | LOC Number | Trivial | DFT | Statically | Speculatively | Total | Unpaired Static
of lock Paired Paired Paired Analysis
OpenLDAP | 271,546 357 110 267 319 34 353 4 152.7%
MySQL 926,111 499 147 428 463 26 489 10 211.8%
Apache 224,884 19 0 0 17 0 17 2 33.9%
pbzip2 4,011 3 0 1 2 1 3 0 23.4%
pfscan 752 11 8 10 10 1 11 0 50.0%
aget 835 2 2 2 2 0 2 0 43.8%
Table 2.2: Coverage of static lock/unlock pairing analysis
2.5 Dynamic Checking

Our static lock/unlock pairing analysis can be potentiallyorrect in some cases due

to the assumptions and heuristics it uses. In this sectierdiscuss these potential sources

of incorrect analysis results and explain how our dynamigcking instrumentation can

detect them.

One important reason why our analysis might yield potelgtiatorrect results is point-

ers as described in Secti@x2.2.3 Due to the limitations of the default memory depen-

dency analysis, we augment it with generic aggressive regmés. Although the probabil-

ity is very low, they can result in incorrect analysis result

The second source of potentially incorrect analysis ressiithe proximity-based call-

28

graph partitioning heuristic. Although we could not find alrexample, it is theoretically

possible that one lock has two pairing unlocks whose lowestraon ancestors with the
lock differ. In that case, our partitioning algorithm cawegan incorrect subgraph to ana-
lyze and end up with an incorrect analysis result.

Lastly, there are cases where our analysis maps unlocksotigrbut cannot guarantee
the lock is paired up with unlocks for all feasible paths duthe limitations of our analysis.
An example of this case is shown in Figi@&. Our analysis can map the unlock in line 11
as the corresponding unlock of the lock in line 6. Howeveraitnot guarantee the lock is
paired up for all feasible paths due to the lack of understanabout program semantics.
A human programmer can easily figure out that the variabenotNULL when the lock
in line 6 is executed, thus the lock is paired up with the ukliodine 11 if the value ot
is not modified in between. However, it is difficult for a stagéinalysis to understand such
program semantics. In this case, our analysis provides #ppmng for the modeling as the
best effort result. However, this type of best effort analyssult might be incorrect for
other cases.

For these reasons, our lock/unlock pairing mechanism naeasy to verify whether
all of the analysis results are correct or there exists anjation of the assumptions it
made. In order to do that, we need to check two types of camditi First, the mapping
of unlocks to each lock should be checked. If the mutex aequay a lock is released by
an unlock that is not in the corresponding unlock set, it sthbe detected. Second, the
semiflow requirement has to be checked. In other words, vehetiich lock is paired up
with an unlock for all feasible paths or not is to be checkedthke following subsections,

we discuss these two types of checking in detail.

29

1 : lock wapper(nutex, callsite, callstack) {
2 | ock(mut ex) ;

3 LOCK ID = get_id(callsite, callstack);

4 mutex_to _lock id[nmutex] = LOCK I D

5 ROOT_FI D = SEM FLOW RESULT[LOCK_I D] ;

6 : hel d_nut ex[ROOT_FI D] . i nsert (nut ex);

7}

8 : unlock_wapper(nutex, callsite, callstack) {
9 : UNLOCK I D = get _id(callsite, callstack);
10: LOCK ID = nutex_to | ock_id[nutex];

11: mut ex_to_ | ock _id.erase(nutex);

12: assert (LOCK_UNLOCK_PAI R LOCK_I D] [UNLOCK_I D]) ;
13: ROOT_FI D = SEM FLOW RESULT[LOCK_I D] ;

14: hel d_nut ex[ROOT_FI D] . er ase(mut ex) ;

15: unl ock(mut ex) ;

16: }

Figure 2.8: Instrumentation wrapper for lock and unlock
2.5.1 Checking Lock-to-Unlocks Mapping

We instrument all locks and unlocks to check whether the nmgppf each lock to
corresponding unlocks is correct or not. We first assign gumiD to each lock and
unlock. At runtime, the instrumented code manages a thiezad-data structure that keeps
the acquiring lock’s ID of each mutex. Since the data stmects thread local, it does
not need to synchronize with other threads to access thesttatzture. When an unlock
releases the mutex, the instrumented code looks up theramglock’s ID of the mutex
and checks whether its own ID is in the corresponding unletlksthe lock.

The IDs of locks and unlocks can be simply assigned as a umqu#er to each
calling instruction for intra-procedural cases. Howeviethey are paired up by the inter-
procedural analysis, we need to manage different IDs fderdifit calling contexts even
for the same lock or unlock. This is achieved by managingapeicall stacks. For the
functions that appear in the subgraph analyzed by the prtaredural analysis, we assign

IDs and instrument the entrances and exits to push and pdp tinehe private call stack.

30

This call stack information is concatenated to the IDs ok$oand unlocks in order to make
it context sensitive.

Figure2.8is the pseudo code for our locks and unlock wrapper functidingbtains
context sensitive IDs of the locks used by the acquisitioth @hease functions at lines 3
and 9, respectively. We verify whether the released lock thé unlock set corresponding

to the acquired lock at line 12.

2.5.2 Checking Semiflow Property

Another condition that we need to check dynamically is theilew property. As
described in Sectio.2.2.1 the semiflow property guarantees that a mutex acquired by
a thread will always be released later. With the static asigalywe check this property by
testing whether locks are paired with unlocks for all fekesgmths. If the condition is not
satisfied due to incorrect analysis, the dynamic checkinglshbe able to detect it.

We also check this property by instrumenting locks, unlpeksl function exits. For
this type of check, the instrumented code maintains thenmition about held mutexes
indexed with the acquiring lock’s ID. Again, these IDs arecatenated with call stack
information for context-sensitive cases. We instrumeetrtiot node functions of the sub-
graphs partitioned by the proximity-based partitioningh@ck whether it is holding any
lock that should be paired up inside the calling context wiheaturns. This is done by
checking whether the helchutex[FID] set (kept in line 6 of Figur2.8) is empty when the

root node function (FID) returns.

31

2.6 Experimental Results

We have implemented the lock/unlock pairing mechanismuitidlg both the static
analysis and checking instrumentation as a pass of the LLviMpiler infrastructurefd)].
Our implementation operates on the LLVM intermediate repnéation and provides both
analysis results and instrumented code. For the aggresgimement of LLVM’s memory
dependency analysis, we use Gadara’s type-based methdifex pointers and memory
profiling for other variables.

All of our experiments were executed on a 2.50GHz Intel Co@uad machine with
8GB of memory running Linux 2.6.32. We evaluate the effesmiess of our lock/unlock
pairing with Apache 2.2.11 web servér] [MySQL 5.0.91 database servet7], OpenL-
DAP 2.4.21 lightweight directory access protocol servél,[pbzip2 1.1.4, pfscan 1.0, and

aget 0.4.

2.6.1 Effectiveness of Static Analysis

Table 2.2 shows the effectiveness of our static lock/unlock pairinglgsis. The third
column is the total number of locks and the fourth column esthmber of locks trivially
paired up in a basic block. We also compare our approach stgadépth first traversal
(DFT) of control flow graph, which is used by previous statickset-based tools such
as RacerX }4]. Statically paired locks mean the number of locks that ddug paired
up with infeasible path analysis. Speculatively pairekoare the ones that our analysis
could successfully map the corresponding unlock sets hultlamot guarantee pairing for

all feasible paths due to the limitation described in Sec2®. Thus the sums of the sixth

32

1: <class THD {

2 struct st_ny_thread _var *mysys var;
3: C

4 char* enter_cond(nutex_t* nutex) {
5 : C

6 : nysys_var->current_nutex = mutex;
7 :

8 : }

9 : void exit_cond(char* old nsg) {

10: -

11: unl ock(nysys_var->current _mut ex);
12:

13: }

14: %},

15 ...

16: bool wait _for_relay_ | og space(RELAY LOG INFOx rli) {
17: THD *thd = rli->m->io_thd,

18: char =*save_proc_info;

19: C

20: | ock(&rli->log space_l ock);

21: save_proc_info = thd->enter_cond(&li->log_space_l ock);
22: ce

23: t hd- >exi t _cond(save_proc_i nfo);

24

25 }

Figure 2.9: Example of unpaired lock due to type mismatch.

and seventh columns are the numbers of locks that our stadilgsas could pair up with
unlocks. As can be seen in the table, our static analysis swveifiectively for nearly all
of the cases. Overall, trivial pairing fails to handle 70%axtks and DFT fails to handle
20.5% of locks. By contrast, our approach handles all bu¥l1o8 locks—an eleven-fold
improvement compared with DFT.
There are still unpaired locks, although the number of swades is relatively small.
There are three types of causes for these cases. Firstatteeireherently unpaired locks in
the programs. Three unpaired locks of OpenLDAP are from onetion,| dap_new_connecti on(),
and in this category. When the function is called in certa@intexts, these locks are paired

up and our analysis can catch those cases. In other corttextsyer, they are not paired

33

up and thus our analysis cannot pair them up.

The second category of unpaired locks is due to the typedbasenory dependency
analysis refinement that we use for mutex pointers. Thiseefent assumes that two
mutex pointers do not alias if the types of wrapper structueclosing the mutex vari-
ables are different. With this assumption our analysis oapair up a lock and unlocks
if they have different types. The example in Fig@r® shows how this can cause a prob-
lem. In this example, the lock in line 20 and the unlock in lirdeare called on the same
mutex, because the call eint er .cond() in line 21 saves the mutex in a pointer and
passes it t&exi t _.cond() . The problem is that the types of wrapping structure for the
lock and the unlock are different. The wrapping typdEELAY_LOG.| NFO for the lock
andst _ny_t hr ead_var for the unlock. The type based memory dependency refinement
would consider them not to alias, and consequently our log&tk pairing analysis cannot
pair them. Among the unpaired locks of MySQL, eight of themiarthis category.

The last cause of unpaired unlocks is function pointers. cimeent implementation of
our lock/unlock pairing analysis cannot track the intesgadural cases in which a function
is called via a function pointer, since it uses the callgrajpdrmation which only puts edges
for direct function calls. One of OpenLDAP’s locks, two of B@L's locks, and two of
Apache’s locks could not be paired up for this reason.

Static analysis time as a percentage of compilation timedsemted in the last column
of Table2.2 Analyzing MySQL and OpenLDAP takes considerably longantianalyz-
ing other benchmarks because they have more complex cdlaws and include more
lock/unlock function calls. Tabl@.3 presents the number of basic blocks in a function
before and after CFG pruning, as described in Seci@%h Our CFG pruning signifi-

34

Benchmarks Before Pruning After Pruning
Average | Maximum | Average | Maximum

OpenLDAP | 20.19 818 2.22 80
MySQL 5.88 3513 1.18 112
Apache 12.12 465 1.02 13
pbzip2 6.16 431 1.06 10
pfscan 10.57 48 3.61 33
aget 12.11 35 1.83 16

Table 2.3: Number of Basic Blocks before/after Pruning

cantly reduces both average and maximum number of basi&gladich is essential for

the scalability of our static analysis procedure.

2.6.2 Runtime Overhead of Dynamic Checking

Figure2.10presents the runtime overheads of the dynamic checkingimsntation.
For server programs, it is measured as the comparison dgeeesponse time to clients on
the same machine. Fpbzi p2, pf scan, andaget , the execution times are compared.
Four parallel clients and worker threads are used for theeseiand the other programs,
respectively. As can be seen in the graph, our checkinguim&ntation imposes very small
overheads for the programs. The runtime overheads range 0t6% to 3.4% and the
average is 1.6%.

As discussed in Sectidh 6.1, our static analysis yields three types of results: sthyica
paired, speculatively paired, and unpaired. For bothcstlyi and speculatively paired
locks, our framework instruments the checking mechanissgnted in Sectiop.5 whose
major overhead comes from the executions of locks and usloCkerefore, even if our
analysis does not work well so that it yields more specudfitipaired locks, the runtime

overhead would not be drastically increased. For unpawekis, the current implemen-

35

— 4
X
=~ 35
s
S 3
+ 25
2
2
(@)
o 15
£
[=
s 05
z . |
- o o~ c = c
T o = = 8§ 5 g
o] 7] = N - ® @
| > o 2 o E_
z = < o o a
o
o

Figure 2.10: Runtime overheads of dynamic checking.

tation of our framework falls back to programmer annotatiand does not add checking
instrumentation. It is possible to add more heuristics thkemguesses for unpaired locks,
but the dynamic checking overhead would be still roughlypprtional to the number of
the executions of locks and unlocks even for those cases.

Compared to the native implementation of lock and unlock,imstrumentation slows
down a pair of lock and unlock by roughly ¥8 Thus, it is possible that our dynamic
checking incurs excessive overhead if the target prograksland unlocks too many times
without doing much work. However, it is not a common practicenake programs lock
and unlock too often, and such programs would already spéfer performance. Further-
more our current instrumentation implementation is a semypl-optimized use of the C++
STL library, and overheads can be further reduced by opiigithe implementation of

instrumented code.

36

lock/fig/overheads.eps

Benchmarks | Average | Maximum
OpenLDAP 1.37 7
MySQL 1.37 10
Apache 1.35 2
pbzip2 1.67 2
pfscan 1.09 2
aget 1.00 1

Table 2.4: Number of Unlocks in Corresponding Unlock Sets

2.6.3 Assumption Violation

Although the frequency is very low, our static lock/unlockinng analysis can poten-
tially yield incorrect results due to the assumptions anarisécs it uses as described in
Section2.5. As our analysis yields a set of unlocks for each lock, thigriegision means
mistakenly including (false positives) or omitting (falsegatives) an unlock. Both forms
of imprecision can spell trouble, depending on how pairimfgrimation is employed. Our
strategy is two-fold. The static analysis first strives tegkéhe unlock sets small, reducing
false positives. Our dynamic checks then reliably find ambriefalse negatives. It does
not attempt to catch false positives, which would requingl@xng all possible execution
paths.

Table2.4shows the size of corresponding unlock sets. For the mostsafs; the unlock
sets are quite small, minimizing the possibilities of fatsesitives. However, there are a
few cases which need upto ten unlocks to cover the many sitteafxcomplicated control
flows. We manually went over those cases, and did not find dsg feositives.

Once the instrumented dynamic checking detects a fals¢inegae information is fed
back to the analyzer and the underlying client system retts model. While we perform

the experiments on the six programs, only one such casellgaaaurred for OpenLDAP

37

and the dynamic checking instrumentation detected it.

The code snippet that caused the violation is summarizedguwr&2.11 The cause
of this incorrect analysis result is the type-based memepeddency analysis refinement
that we use for mutex pointers. As opposed to the cases wifégeedt types for lock
and unlock cause a problem, two distinct mutexes having $gpeeis the problem in this
case. The programmer’s intention is that the lock in line @ #re unlock in line 11 are
called for different mutexes in the same iteration becauisgis supposed to point to one
of the children of the node pointed &y p. Since both pointers have the same wrapper
type, however, our mapping algorithm results in mappinguihieck in line 11 to the lock
in line 9 and the unlock in line 16 to the lock in line 3. In regkeution the mutex acquired
by the lock in line 9 can be released by either the unlock ie lith of the next iteration or
the unlock in line 16 after breaking the loop. The lock in IBiehould also be paired up
with both unlocks in line 11 and line 16. The instrumentedogingy code for the lock-to-

unlocks mapping check detects this violation and repodsrtborrect analysis result.

2.7 Related Work

In order to better model concurrent programs by pairing egda@and unlocks, we com-
bine static analysis and dynamic checking. Since existiaticsanalysis methods cannot
provide a perfect solution to our purpose, we obtain bdsttednalysis results with static
analysis and check them at runtime to verify whether thelt®swe correct. In this sec-
tion, we first survey previous work on static analysis andasigit monitoring techniques,

focusing on the application of the lock/unlock pairing desh. Then, we provide possible

38

1: Entrylnfo xeip, =*ei?2;

20 ..

3 : for (lock(&eip->kids nmutex); eip;) {
4 e

5: /'l Search children in tree-like in data structure
6 : ei2 = avl _find(eip->kids, ...);

7 C

8 : /'l Lock for next iteration

9 : | ock(&ei 2- >ki ds_nut ex) ;

10: /1 Unl ock current node

11: unl ock(&ei p- >ki ds_nmnut ex) ;

12: eip = ei2;

13: C

14: '}

15:

16: unl ock(&ei p->ki ds_nut ex) ;

Figure 2.11: Incorrectly paired lock due to pointer problem.

use case scenarios for our framework.

Static analysis. Existing static techniques applicable to the lock/unloakipg prob-
lem can be largely divided into model checking methods thapteasize precision, and
program analysis methods that emphasize scalability.

Software model checking has a long history. We recommendegllent survey for
the background on this subjectd. Here we summarize several results relevant to this
chapter. Classical model checking techniques model syséstabeled transition systems
and verify properties specified temporal logic These techniques scale poorly for soft-
ware verification due to the state explosion problem. Mo&tswe model checking tools
are execution based and stateless. These tools systdiyatiqgaore all program paths in
hope to find bugs more quickly than stress testirig, [4].

Abstract model checking scales to real software by mappingram states to an ab-
stract domainj7]. As abstraction may not capture all the information neettederify

a property, when a counter-example is discovered, it isaamalvhether it is genuine or

39

spurious due to abstraction. In this case, the abstracsiofe refined to filter out spurious
examples. Automated program abstraction and refinemerdiffi@ilt, and the iterative
process may not converge. In practice, automated abst@delinchecking methods are
limited to small or special-purpose program§,[50)].

In the area of static program analysis, many scalable detafhalysis algorithms have
been developed, which can be viewed as model checking wittuatly defined abstrac-
tion [85]. For example, Saturn?f] is a scalable analysis engine that is both sound and
complete with respect to the user-provided abstractioitfesrin its Calypso language.
This framework enables the programmer to manually refineagtitnize the abstraction
for each specific analysis task. Other scalable algorithsa<arefully tuned heuristics that
can be viewed as predefined abstraction. For example, E$fs[a path-sensitive anal-
ysis tool that scales to large programs by merging brandtegddad to the same analysis
state. The analysis is sound but incomplete with respettisaabstraction. Regarding the
original program, however, manually defined abstractisasoéten unsound.

For example, the locking patterns in Figure 1(a) often cee$ustandard dataflow anal-
ysis algorithms integrated in tools designed for higheeleypplications $4, 9€]. Both the
locking analysis script bundled in Saturn and the ESP dlgorivould identify the branch
correlations easily if the code snippet is inside one fuamctBut as both tools use function
summaries for scalability, they can fail to infer corredtiyer-procedural variations of the
pattern if the function summary does not encode enoughrirdtion. In this case, the anal-
ysis result can be sound but incomplete as missing infoonasi often modeled by free
variables with arbitrary values. On the other hand, theilgglscript in Saturn and ESP
both ignore global alias, therefore the analysis resulbhsound if the branching condition

40

f I ag is modified via a global pointer. Encoding sound and compé&tbal alias infor-
mation in function summaries is nontriviall]. Applications of Saturn often ignore alias
analysis too [07].

As of today, we are not aware of any sound and complete progratysis tool that
can verify the lock pairing property in large software sushApache and OpenLDAP.
Nevertheless, the analysis techniques in the previougg@mognalysis tools have partially
inspired the static analysis part of our work. For instamee employ the infeasible path
analysis similar to the ones used ih9] 28] and we also adopt caching analysis results for
computational efficiency as RacerX4] does.

Dynamic monitoring. Although not directly suitable for our problem, there hasibe
a considerable body of work on monitoring the behavior ofgpams, especially in the
context of profiling and bug detection. The main benefit ofaiyiic techniques is that they
can closely collect information about program executiohicl is difficult for static tools
to infer.

Such tools as DynamoRIQ §], Pin [67], and Valgrind [/ 8] provide generic instrumen-
tation frameworks for dynamic monitoring. Through the coefensive API of Pin and
DynamoRIO, users can write their own monitoring clienttigttheir purpose, and Valgrind
is widely used to detect memory bugs. In spite of the manynapttions they exploit such
as code cache, branch linking, and trace building, howghrey, can impose a substantial
amount of runtime overheads depending on what kind of codeldlbe instrumented.

There are also dynamic monitoring techniques customizedgdecific purposes. Lit-
eRace (9] and ReEnact{?] track concurrent programs’ memory accesses to detect data
races. AVIO (6] and AtomTracker T6] aim for atomicity violations. Our framework

41

shares the idea of reducing runtime overheads by custogni@type of tracking infor-
mation with these tools. As opposed to these tools, howeueframework performs most
of its analysis offline and uses dynamic checking only forficoration.

Use casesAs mentioned in SectioB.1, our framework can benefit static bug detection
tools and automated bug fix tools by providing more accunafierination about critical
sections. Forinstance, static bug detection tools usickgket analysis suffer false positives
due to infeasible paths. RacerX4] uses many heuristics and error ranking to mitigate the
impact of such false positives. Our framework would helprihgrune invalid locksets and
thus reduce the false positives. On the other hand, autdnbaig fix tools b3, 54] often
add synchronizations to restore atomicity or order comggaand they may introduce new
deadlock if the usage of existing locks is unknown. AFix][sets timeout for the new
synchronizations to avoid introducing deadlocks. Our famrk can help them eliminate
the timeouts and the potential chances of missing bugs.

Our framework can also promote compiler optimizations toraurrent programs. Cur-
rently compilers only optimize code sections that do nobime any lock operations, lim-
iting the efficiency of the generated code. Joisha et $uggest extending the scope
of optimizations beyond the synchronization-free regionsising procedural concurrency
graph (PCG). With accurate lock/unlock pairing, they cathfer refine PCGs by reflecting
the concurrency limited via mutexes. Consequently, this m@vide more optimization

opportunities.

42

2.8 Summary

We have proposed a practical lock/unlock pairing mechanishcombines an inter-
procedural analysis and dynamic checking for better modelf critical sections in POSIX
multithreaded C/C++ programs. We have demonstrated tleeteféness of our mecha-
nism through experiments on six benchmarks including theiege and complex server
programs. Compared with depth-first traversal, our metleodices by 1% the number
of statically unpaired locks. CFG pruning keeps problere sinall so that compile time
is low, and dynamic checking compensates for imperfectionsur static analysis with

modest overhead (at most 3.3%).

43

CHAPTER 3

Dynamic Core Boosting and Per-Core Power Gating

3.1 Introduction

Due to power dissipation limits and design complexity, theroprocessor industry has
become less successful in improving the performance of tithitoprocessors, even with
continued technology scaling. As a result, chip multipsstes (CMPs) have grown into
a standard for all ranges of computing from cellular phowesigh-performance servers.
Since CMPs require sufficient thread level parallelism (Jtd?benefit from the increased
computing power, most performance-aware programmersif@ceasing pressure to par-
allelize their programs.

One lesson that programmers have learned from the longistdnigh performance
computing is that increasing resource utilization resultsetter performance. As the multi-
threaded programming model abstracts away the individo@tacteristics of each core,
uniformly distributing workloads into threads has beensidered an effective strategy to

increase the utilization of CMPs.

44

Despite the best efforts of programmers to evenly dividekboads, it is very diffi-
cult, if not impossible, to perfectly balance workloads.eBvor single program multiple
data (SPMD) multi-threaded workloads with embarrassimglpism, there exists implicit
software heterogeneity among threads due to control floergence, non-deterministic
memory latencies, and synchronization operations. Suftiva@ heterogeneity some-
times inhibits the parallel programs from effectively izithg a larger number of cores.

The performance asymmetry of cores can notably exacerlatdomd imbalance, and
it is highly probable that we will have asymmetry in the fl@gwgenerations of CMPs for
several reasons. First, heterogeneous multicore systaveddeen introduced by many re-
searchers for better performance $&] or saving power$7]. Heterogeneous multicores
are also an effective way to trade die area to higher enefgyesicy [68], and some com-
mercial products40] have already started implementing such designs.

Increasing core-to-core process variation also creatésrpeance asymmetry in CMPS1].
Process variation is the phenomenon where the process @@anof transistors, such as
effective gate length and threshold voltage, diverge frbairthominal value affecting the
maximum operable frequency. The amount of within-die pssoeriation is growing, as
integrated-circuit technology keeps scaling down the sizmdividual transistors. With
the rapidly developing emphasis on power and energy effigidower supply voltages are
preferred by chip designers and this makes the variatiobl@noworse. Future micropro-
cessors are likely to be heterogeneous across the worleggéncy of individual cores,
since making all cores run at the frequency of the slowest loses too much performance
in the presence of large process variation.

One possibility for dealing with performance asymmetry MEs is to place the burden

45

of workload balancing on programmers or compilers. Howgyanmallel programming itself

is already difficult enough for programmers. Even if we assuhat it was possible for

compilers to exploit the heterogeneity for workload balag¢cthe portability issue would

prohibit them from generating the customized code for mioa@ bne specialized setting of
heterogeneity. Furthermore, often the performance asymmoaused by process variation
cannot be determined at compile time because it may vary &noenchip to another even
for the same model processor.

In this chapter, we propose software-hardware coopenat@ehanisms to improve per-
formance and/or energy efficiency for asymmetric CMPs. Faitelo performance, Dy-
namic Core Boosting (DCB) tries to mitigate the workload at@nce problem. DCB relies
on the hardware capability of accelerating individual saiferough dynamic voltage and
frequency scaling (DVFS) at a fine granularity to balancertbekload across the asymmet-
ric cores by boosting critical threads. With the limitedoesce to boost a subset of cores,
DCB orchestrates its compiler, runtime subsystem, andegssmr cores for near-optimal
assignment of the boosting budget. First, a target progsaanalyzed and instrumented by
the compiler to include the instructions that provide pesgrhints. At runtime, the execu-
tion of the program is monitored by the DCB runtime subsystemally, DCB selectively
boosts the critical threads by using the information gatidry the instrumented code and
the DCB runtime subsystem.

We also suggest adapting per-core power gatirijjfor better energy efficiency. Per-
core power gating is an effective way to save power by intcottya gate (or sleep transis-
tor) between the power supply and each core. Compared th ghiing [51], power gating
can save more energy by reducing leakage power to near zemchus a longer wake up

46

latency. Especially, losing private cache contents is thgnobstacle that prevents per-
core power gating from being deployed for finer granularitythis chapter, we propose
applying per-core power gating to idle cores due to worklmaldalances in performance
asymmetric CMPs. By combining early wake up and prefetcipirigate cache contents,
per-core power gating can save substantial amount of wastexd)y with negligible extra

overheads.

This chapter makes the following contributions:

A theoretical background for the optimal assignment of duresting.

A cooperative system to balance workloads in asymmetric €Mbhsisting of a

compiler, runtime subsystem, and architecture.

A novel mechanism to evaluate such systems with performasgemetry and/or

core boosting capability.

A dynamic per-core power gating scheme to increase enefigieety without per-

formance loss.

The remainder of the chapter is organized as follows. Se&id presents our moti-
vation and provides the background of core boosting. Se@&i®mathematically models
the core boosting assignment problem and describes ourithlgs at an abstract level.
Section3.4 explains the detailed implementation of the DCB systemti@es3.6and3.7
present the methodology and the results of our evaluatiadMtuss the related work in

Section3.8and conclude the chapter in Secti®®.

a7

Figure 3.1: Slowdown caused by performance asymmetry.

3.2 Motivation and Background

While we can expect the performance asymmetry in CMPs to ifyatire workload
imbalance in multi-threaded programs, the exact effectpasformance are not obvious.
In this section, we present our motivation by showing thdimiaary results on how much
the asymmetry can affect the performance of multi-thredéed¢hmarks. Then, we provide

the background of the hardware mechanism to accelerataiamdft individual cores.

3.2.1 Low Utilization of Asymmetric CMPs

We compare two simulated eight core systems to understanpettiormance impact
of core asymmetry. The two systems work at the same averagdrequency, but one has
all eight cores operating at the same frequency and the b#sevarying frequencies. We
assume a large variation in core frequenc@s|(= 30%,1: mean,o: standard deviation)

as in Miller et al. /7], and the eight cores run gt — 1.50), (4 —1.00), (u—0.50), U, U,

48

dcb/fig/prelim.eps

(U+0.50), (L+1.00), (L +1.50), respectively. The details of evaluation methodology
are explained in SectioB.6.

Figure3.1presents the slowdowns of the asymmetric system compatbad symmet-
ric one for the PARSEC 2.1 benchmark suité][Most of the benchmarks are configured
to have the same number of worker threads as the number of, @xeept for those with
pipeline parallelismdedupandferret are set to have one thread per pipeline sta@®4
spawns the number of worker threads equal to the numbermklgand there is no trivial
way to change it with the harness of the PARSEC benchmaré&.suit

Even though the two systems have the same average corerimgue can see that
many of the benchmarks experience significant slowdown.ei@ebenchmarks such as
streamclusteandswaptionssuffer the slowdown close to the worst core frequency. Some
others, i.e.podytrack ferret, andraytrace show almostidentical performance to the homo-
geneous system on the other hand. The geometric mean obtiecsiin for all benchmarks
is 17%.

In order to understand what causes more slowdowns for somehberks than the
others, we measure how much portion of CPU time in parallgiees is wasted on each
type of synchronization. Figur@2 presents the measured portions. For each benchmark,
the left bar shows the CPU time spent running on the homogenemres and the right bar
represents the time on the asymmetric CMP. As seen in thé gttagp benchmarks use dif-
ferent types of synchronizations as their main mechanistondrol parallel execution, and
the impact of performance asymmetry varies depending oddh@nant synchronization
pattern.

The simplest method is to spawn threads to work independant join them at the

49

m Join mBarrier @ Condition ™ Mutex

Homogeneous Heterogeneous

70% - l_f

Figure 3.2: CPU time wasted for synchronization.

end.blackscholeandswaptionsare in this category. Having similar structure, if the warke
threads need to progress to the next stages together, theymchronized with barriers.
cannea fluidanimate and streamclusteuse this type of synchronization patterns. For
these two categories, the cores stay idle if their threadshfithhe tasks earlier than other
cores, causing under-utilization of cores. Consequettiby are very likely to be affected
by the asymmetry among cores.

Some benchmarks manage a pool of worker threads. When tedytmexecute in par-
allel, the main thread distributes tasks to the threadsdptol. After they finish the tasks,
they stay idle waiting for the next task. The worker threagsusually synchronized with
condition variables. If the workload distribution is detened dynamically, e.ghodytrack
and raytrace they are less sus-

ceptible to workload imbalance due to asymmetric cores. l@nother handfacesimis

50

dcb/fig/pre-sync.eps

substantially affected by the asymmetry since the worklisagqually divided once and
assigned to the workers.

dedupandferret adopt a pipeline parallel model. The worker threads rureckffit
stages of a pipeline and the data flows from one stage to anthiteeigh a FIFO queue
synchronized with condition variables. For this type ofgtet program, the overall per-
formance of the program is determined by the slowest stageolingly, the performance
IS very sensitive to the stage-to-core scheduling for tlyenasetric setting, but the average
remains unchanged.

Finally, we see a great possibility of improving performarior asymmetric CMPs by
balancing workloads. From the observations made abovey mfathe benchmarks are
directly affected by the performance asymmetry. In addjtlmalancing the pipeline stages

in the programs likeledupandferret can yield performance benefits.

3.2.2 Core Boosting

Performance asymmetry among cores, combined with inteathdependencies formed
by synchronization operations, causes a significant pegace problem for multi-threaded
programs as demonstrated above. We try to solve this probyeralying on the hardware
capability of accelerating the subset of cores while s@gymthe power budget. Dynamic
voltage and frequency scaling (DVFS) has been widely usedrfergy efficiency{, 36).
Moreover, there have been several proposals that use dwal gopplies for boosting in-
dividual cores §0, 72]. Dreslinski et al. 1] shows that very fast boosting transitioft (

10ns) can be achieved. Our system builds on such techniquésdsting cores at a fine

51

granularity.

While the idea of adopting fast core boosting for mitigatmegformance bottlenecks or
reducing performance heterogeneity is not ne® | 7], the main contribution of our work
lies in how to assign core boosting for higher performancd Wie same power budget.
We first provide the theoretical background for the optinsaignment of core boosting. In
order to achieve a close to the optimum solution, we propasesi@m that coordinates the
compiler, runtime, and processor cores.

One important point to notice is that our assignment teaescare not limited to the
specific core boosting technology. Although we assume a\dggabased core boosting to
demonstrate the effectiveness of our techniques in thigstehaour technique can be used
in conjunction with any core acceleration mechanism witbrsknough transition time.
Further differentiation from the previous proposals anderaetails of other feasible core

boosting technologies are covered in Sec8dh

3.2.3 Per-Core Power Gating

Power gating is a commonly used technique to turn off the pewpply to a portion of
circuit. Power gating can be applied at the varying gramiggrfrom functional units101]
and pipeline stages!f] to cores [0]. It is implemented by introducing a gate (or sleep
transistor) between the power supply and the targeteditiycCompared to clock gating
which only turns off the clock signal, power gating can saverenpower by reducing
leakage current to near zero but incurs a longer wake updgaten

While per-core power gating has begun to make its way intonseraial productsg9),

52

itis only used for coarse time granularity (on the order @8 [50]) due to the long wake
up latency. The reason why per-core power gating incurdahig latency is that the state
of the core needs to be saved and restored. Although a reaehkt[@wl] achieves short
latency (on the order of 10ns) per-core power gating andepjtlto memory access stalls,
they assume that the internal data is retained during poatergy

Our motivating observation is that synchronization stedssed by workload imbal-
ances in asymmetric CMPs are good targets for per-core pgateig. In order to minimize

the impact of losing private cache contents, we combing @aake up and prefetching.

3.3 Core Boosting Assignment

Given the core boosting capability and the limited boosbadget, how to assign the
boosting budget is very important for overall performaroehis section, we show our core
boosting assignment at an abstract level. At first, we dest¢he mathematical modeling
of workload imbalance and core boosting. We then formulate doosting assignment
as an optimization problem and provide a theoretical smtutiFinally, we explain our
core boosting assignment algorithms for two commonly usedlfelization practices: data
parallel programs and pipeline parallel programs.

When programmers parallelize their compute intensivenarog for better performance,
they first have to decide how repeated computations can mediinto threads. If the com-
putation is conducted on the multiple subsets of data andddue be potentially performed
concurrently, data parallel structure is most commonlyduge this form of parallel pro-

grams, multiple worker threads are spawned to run same aodédferent, possibly over-

53

lapping, subsets of data. When some regions of code mustisatexi atomically, mutexes
are used to guard the regions. In some cases, all workerdthsteould finish one phase
of execution and be synchronized with each other beforestay the next phase. Barrier
waits are inserted between the phases for these cases.

For data parallel type of parallelism structure, softwagtelogeneity is implicit in the
sense that worker threads run the same code. It does notsaiwegn, however, that the
amounts of computations are identical among the threadstr@dlow divergence is the
primary reason for such mismatch of computation. For exampstatements let different
portions of code be executed depending on condition val&®s.some programs, even
different number of loop iterations can be run dependingmui data. Non-deterministic
memory latencies are another important source of implafivsare heterogeneity. Even
though two threads are accessing the elements in the saayeare might hit and the other
might miss in caches. Modern microprocessors usually haugpte levels of caches and
accurately predicting the latency of each memory accesstipassible. Lastly, synchro-
nization operations also contribute to implicit softwaetdrogeneity. For instance, when
two threads are trying to acquire a mutex at the virtually esame, one might proceed
immediately while the other waits until the mutex is relehse

Another frequently used type of parallel structure is safevpipelines. While the re-
peated computations can be executed concurrently in dasdlgdgprograms, some pro-
grams need to enforce orders among the computations perdioom the different subsets
of data. If different stages of computations can overlagg@nang the orders, pipeline par-
allel structure is an option. For this type of parallel pangs, multiple threads are spawned
to execute the different stages of computations. Diffestages are usually connected

54

1 eee W
W2 b2 n
b,
by 1 1
Core, Core, Core,

Figure 3.3: Modeling of workload imbalance and core boostig.

with FIFO gqueues and data elements flow from one stage to aentbifough these queues.
Condition variables are often used to synchronize the data fl

Software heterogeneity is rather explicit in pipeline flatgprograms, since different
threads execute different codes. Since most modern mmeepsors shows varying laten-
cies depending on the types of instructions and the majofitilem support out-of-order
executions, statically balancing the execution time diedént code is impossible even for
homogeneous multicore processors. In addition, all ssuo€emplicit software hetero-

geneity apply for pipeline parallel programs as well.

3.3.1 Modeling and Problem Formulation

Figure3.3depicts the modeling of workload imbalance and core bogstgsignments
with n cores. Without the loss of generality, this modeling assiore workload for each
core. If there are multiple threads running on a core, we bark tof the total workloads

of the threads as one workload. The assignment of core Ingostéin be changed after a

55

dcb/fig/modeling.eps

certain predetermined amount of time, called a quantume Nhatt this boosting quantum is
much shorter than the traditional OS scheduling quantuns iSlpossible as core boosting
take place with very short transition time as mentioned m pihevious section. Then,
W1, Wo, ..., W, denote the number of quanta taken to run each workload witmyuboosting
on Corg, Core, ..., Corq. Each core can be accelerated to a different extent for the
boosted mode, anloh, by, ..., b, are the amount of acceleration. In addition,tiety, ..., ts
be the number of quanta where the boosting is assigned tcceaeh

Let us define the boosting budget, as the maximum number of cores that can be
boosted at any quantum. For the best performanceres should be boosted every quan-
tum, thus, it takes

1

boosting quanta to finish the execution. Moreovgty, ...,t, are bounded because a core

can be boosted no more than once at any boosting quantum.
vi<k<n, 0<t<T (3.2)

The most important condition for this modeling to explaimebdoosting assignment
is that every core must finish its workload withinquanta. Fok/1 < k < n, Coreg runsty
guanta boosted and— tx quanta in normal mode, and it needs to finish its workloadiwith

T. Therefore, everyy needs to satisfy the following inequality.

vi<k<n, (T —1ty) + by ¥t > wi (3.3)

56

Since the number of boosted quanta for each core is an integyerboosting assign-
ment for the best performance is reduced to the integerrlimegramming $0] of mini-
mizing T. Let us denot® (w1, Ws, ...,W,) as the optimization problem of finding the mini-

mal T and corresponding assignmetitso, ...t, when the workloads ane, wo, ..., Ws.

3.3.2 Assignment for Data Parallel Programs

Although general integer linear programming is NP-hardplait®on can be quickly
found with a greedy algorithm for our case. We will show thssigning the boosting
budget to the cores with the largest remaining workloaddgieln optimal solution. We
first prove the optimality of the greedy solution and thenlaxphow we apply this to data
parallel programs. For the simplicity of proaf,is assumed to be 1, but the same proof

technique can be used for a larger boosting budget. The pordists of two theorems.

Theorem 1 If wy, satisfies mafvy, wo, ..., Wn) = Wy, then there exists an optimal solution

for P(wy, Ws,...,Wn) where t, > 1.
Proof. Suppose there exists an optimal soluti®handty, t;, ..., t3, wherety = 0. Since
Wp iS maxwi, Wa, ..., Wn) andtl’O = 0, the following can be derived from conditio®.8).

vi<k<n, T > wi (3.4)

Then, let us findy such that) > 1, and build another solutioif,” andt{,t7, ...,t%, by ex-
changing the values og andtl’o. Since we just exchanged two valu&$,remains the same

asT’. From condition 8.4), this solution should also meets conditioBs3. Therefore,T”

57

andty, 3, ...,t3 is another optimal solution whetg > 1.

Theorem 2 Let wy, satisfy makwy, wa, ...,Wn) = wp. If T" and ¢, t5, ..., t3 with t; > 1 form
an optimal solution for Pwy, ws, ..., wy), and T and t/,t7, ..., t2 form an optimal solution

for P(wi —Lwo—1,... ,Wp_1—Lwp—by,Wpr1—1,...,.wh—1), then T =14+T".

Proof. SinceT’ andt},t5,...,t; satisfy condition 8.3), we can show they also satisfy the

following condition with a little manipulation.

{(T/—l)—t((}—l—bkxtkz(Wk—l), if K#£p (3.5)

{(T'-1) - (=D} +bex (tk—1) > (We—by), if k=p

Thus, (T'—1) and tj,.. ,tl’o 1 (T 1),t|’o+1, Lt also form a solution for
Pwi—1,wo—1,...,Wp_1—1,wp—by,Wpy1—1,...,wy —1). With the similar manipula-
tion, we can show thatT” +1) andty,...,t; 4, (tg+1),t7, ...ty form a solution for
P(w1,Wo, ...,Wn) as well. Now, if we assum&’ > 1+ T”, it contradicts thal’ is an opti-
mal solution sincé1+ T") is a solution. Likewise, assuming < 1+ T” contradicts that
T is optimal becaus€T’ — 1) is a solution. Thereforel’ =1+ T".

The two proved theorems infer that boosting the core witHalgest remaining work-
load at every quantum gives an optimal solution, hence teedyr algorithm will be opti-
mal. Determining the remaining workload sizes at every twanhowever, is not possible

in real systems. Consequently, we need a heuristic to dedtsh cores have the largest

remaining workloads.

58

If we know the work progress ratio of each thread, we can apprately decide the
thread with the least progress as the thread with the lavga¥ioad remaining. Although
this heuristic is not always accurate, it works well when tineads are running similar
amounts of workloads, which is usually the case for dataleamograms. As data parallel
programs execute the same code for worker threads, we caanment it to report work
progress and assign a boosting budget to the cores withdsepeogress. The details of

the program analysis and progress report instrumentatierglained in Sectio8.4.3

3.3.3 Assignment for Pipeline Parallel Programs

The heuristic used for data parallel programs does not wovkedl for pipeline parallel
programs. Itis primarily because pipeline parallel progsaun different codes on different
threads. It is difficult to measure progress consistenttpsscthreads running different
codes. This makes it less likely that the thread with thetlegysorted progress has the
largest remaining work.

The synchronization pattern of pipeline parallel prograts® makes it hard to apply
the same technique. Multiple threads execute differemestaf pipeline, and the data
flows through the pipeline often using a FIFO queue. As itfSadilt to perfectly balance
workloads, some stages process data faster than the oflhense stage is significantly
faster than its predecessor, the thread running the stage whits on its input queue.
Likewise, slow stages force their predecessors to wait. tiisrtype of synchronization
pattern, different stages make similar progress in termth@fnumber of data elements

processed. Even though the same number of elements arenegy&iowever, faster stages

59

have less workload than slow stages. This invalidates tbedyrsolution and requires us
to use a different approach for pipeline parallel programs.

We adopt an epoch-based approach with the observatiorhthetlative speeds among
threads alter much more slowly than the boosting quanta. Wi look at the ratio of
time spent working and blocked at a coarser grain than a ingogtiantum (100 - 1,000x),
the ratio of each thread tends to stay constant for the lopgeod of time. Our approach
exploits the trend by assuming that the workload size of tiegipus epoch closely repre-
sents the current epoch. The details of how the workload sire approximated at every
epoch is described in Secti@¥.4

At the end of every epoch, the core boosting assignment ®@uleaed for the next
epoch. Since the assignment takes place at runtime and leeavyutation can nullify
the performance gain, we need a simple solution. Insteadleing the integer linear
programming in SectioB.3.], the integerality condition is ignored assuming epoch size
is large enough so that linear programming relaxation gielcclose approximation. A
heuristic based on Simplex algorithm¥] is used to quickly find an approximation with a
minimal amount of computation. Assuming the minimum valfid @xists on one of the
extreme points, conditior8(2) and @.3) states

we—T
b, —1

Vi<k<n, t=0 or t= (3.6)

As a heuristicyy is then compared tma "t‘)’—ll, ‘l’)lzz, - VBI_:) and assigned to O if it is smaller.

Finally, the rest ofys can be directly calculated according to equat®6)(

60

/ DCB Compiler \

[Target Program] > Static Analysis
y
Profiling
v
offline < Instrumentation /
online - —& "~~~

Instrumented Executable DCB

(Thread | Thread | . [Thread -
1 2 n Runtime

DCB 'progress I
HW(Core1 Core2 Core,,

Normal) Normal) Normal
<Boosted <Eoosted C‘Eoosted)

Figure 3.4: Dynamic Core Boosting system overview.

3.4 Synchronization-Aware Dynamic Core Boosting

This section describes how our Dynamic Core Boosting sy$0B) coordinates the
compiler, the runtime subsystem, and the underlying corestiray architecture to obtain

improved performance by balancing workloads.

3.4.1 System Overview

Figure3.4represents the overview of DCB. The DCB compiler takes atgsgpgram
as an input. It first analyzes the parallelism structure aedcontrol flow of the program,
and generates profiling code. The profiling code then runis aviraining input and pro-
duces profile data. Additionally, the DCB compiler makesisieas based on the static

analysis results and the profile data to instrument the progwith progress monitoring

61

dcb/fig/system.eps

code.

The generated executable runs on the DCB architecture aldhghe DCB runtime
subsystem. In the DCB architecture, some cores can run ibdbsted mode, which is
faster than the normal mode. At every boosting quantum, dusting manager in the
DCB architecture decides which cores to run in the boostedenwhile maintaining the
boosting budget.

The instrumented code and the DCB runtime subsystem préwide to the DCB ar-
chitecture, with which the DCB architecture makes the hogsissignment decisions. For
data parallel programs, the instrumented code reportsriigrgss of each thread. At the
end of every boosting quanta, the boosting manager cholesealreads with the smallest
progress for boosting. DCB works differently for pipelinarallel programs. After every
epoch, the DCB runtime subsystem calculates the desirestibgoatio among the threads
to the DCB architecture, which stores the values for the eprich. The boosting man-
ager then probabilistically selects the cores to boostrdang to the boosting probability

distribution.

3.4.2 DCB Architecture

While each core runs either in normal mode or boosted modadsat takes hints and
makes boosting assignments differently in two interface@sonamely progress mode and
lottery mode, as briefly mentioned previously. The opegatpstem takes this interface
mode information with a flag for clone system calls when thredds are spawned. It

stores the information and requests the DCB architectusettthe core in the proper mode

62

every time a context switch occurs. In addition, the thraaed the thread group ID are
utilized by the DCB architecture when a thread is scheduled i

The progress mode is mainly for data parallel programs. Baelad reports its progress
to the DCB architecture. After every boosting quantum, thedbting manager chooses
threads with the least progress in the same thread grouptodsted, whereis the boost-
ing budget assigned to the thread group. The DCB architepnavides two non-privileged
instructions so that the instrumented code can report dgrpss without the intervention
of the operating systenPROGRESS_STEP_FORWARD increases the progress counter
of the core by one, anBET_PROGRESS_TO(value) sets the progress countentalue.

The lottery mode works in a slightly different way. Each tmtedoes not directly in-
teract with the DCB architecture. Instead, the DCB runtimbsystem sets the desired
boosting ratio among threads after every epoch. The bapstemager probabilistically
choose cores based on the ratio distribution in a similar mannept@ the Lottery Sched-
uler [95] allocates resources. Pipeline parallel programs useottery mode to implement
the assignment algorithm explained in Secti8.3

All per thread information needed for the boosting assigmiisestored in thread boost-
ing table, which is managed by the operating system in theesaay as page tables. The
operating system and the DCB architecture can both accessadify the values in the
thread boosting table. Moreover, the DCB architectureuides a cache for the thread

boosting table as TLB for the page tables.

63

3.4.3 DCB Compiler

The main goal of the DCB compiler is to instrument the targetgpam with the
progress reporting instructions so that the boosting assémt algorithm described in Sec-
tion 3.3.2yields near optimal performance. In order to do so, the DCRmiter works in
three steps: static analysis, profiling, and instrumeoati

At first, the DCB compiler statically analyzes the parafielistructure and the control
flow of the target program. For the parallelism structurenitesstigates the starting and
ending points of parallel execution in the main thread amdhighest level functions ex-
ecuted in parallel. For the majority of programs, they aredd spawning function calls,
thread joining function calls, and functions passed oveh&thread spawning function
calls, respectively. For some programs the DCB compilenctiaccurately gather the
information. For example, the DCB compiler might be unablelisambiguate the func-
tion pointers passed over to the thread spawning calls. d#ere non-standardized task
starting and ending functions are used when the program gearathread pool and send
tasks to the pool for parallel execution. In those casesDGB compiler relies on the
programmers’ annotation specifying the information.

Once the parallelism structure is determined, the DCB ctanphalyzes the control
flow of the code regions that can run in parallel. At the highegel, these sections are
the functions passed over to the thread spawning calls ancethon of the main threads
between the starting and ending points of parallel exesufitiere could be function calls
in these regions, and the DCB compiler follows the call graplnalyzes the callees in

turn. It stops following the call graph if there is a call thgh an ambiguous function

64

01 : pthread_barrier_wait(barrier);
02(*): SET_PROGRESS TQ(O0);
03(*): period = calc_period_LID 007(start, end);

04 o for(start ; i <=end ; ++i) {
05 : -

06 : conputel(...);

07 : if(side_exit) {

08(*): SET_PROGRESS TQ(MAX_PROGRESS 007);
09 : br eak;

10 : }

11(*): if(((end - i) %period) == 0)
12(+): PROGRESS_STEP_FORWARD;

13 o}

14 : conpute2(...);

15(*): PROGRESS_STEP_FORWARD,
16(*): period = calc_period LI D 008(nax);

17 o for(i =0 ; 1 <max ; ++) {

18 : conpute3(...);

19(+*): if(((mx - 1 - i) %period) == 0)
20(~*): PROGRESS_STEP_FORWARD;

21 o}

22 . pthread_barrier_wait(barrier);

Figure 3.5: Example of progress reporting instrumentation

pointer or a cycle in the call graph. The barrier synchramzrepoints are also included in
the control flow information.

The DCB compiler generates the profiling code and runs it withaining input. It
focuses on the loops in the parallel regions, using the obfidw information gathered in
the static analysis phase. The profiling code records the sipent in each loop and the
iteration counts. Path profiling is also performed to disedlie most frequent paths.

The last step exploits the profile data along with the stat@lysis results to instru-
ment the code with the progress reporting instructions.rdieoto achieve the goal of the
DCB compiler, all threads need to report progress at thetpavhere they share the same
progress ratio, regardless of what control path they takee @ecessary condition is that
all threads should go through the same number of progresstirgp steps. It is straight-

forward for the counted loops with constant iterations. ldeer, this is not always the case

65

and other types of loops make this condition difficult to meetother words, naively in-
crementing a progress counter after every iteration doeworx because the total iteration
counts might vary across the threads even for the same l@g@nding on the input.

For the counted loops with input dependent iteration cquhesDCB compiler inserts
the code to calculate the number of iterations needed to éeuead for the next progress
reporting right before entering the loop. This number imthged as a progress report-
ing period inside the loop. The DCB compiler also instrursdabp side exits to set the
progress counter to the final progress value of the loop. TGB Bompiler does not in-
strument uncounted loops. If an uncounted loop in a panalgbn takes too much time,
it might hurt the workload balancing capability of DCB. Hoveg, it is a very rare case
and the programmers can insert the progress reporting gotiheeimselves or turn the loop
into a counted loop. For instance, consider an uncountqu t@versing a linked list. It
is very difficult for a compiler to decide the number of iteoais before entering the loop.
However, the programmer can possibly transform it to a cediftop by adding an element
count variable in the list header.

Another requirement for the instrumented code is that thguency of progress report-
ing should be adequate. If the reporting granularity is toarse, the boosting manager
cannot get enough information to decide the most laggiregtihr It should not be too fine
because the progress reporting instructions can incusseikeeoverheads for this case. The
DCB compiler tries to insert progress reporting instruasiso that the execution times be-
tween them are roughly constant. It estimates the exectiiewith the instruction counts
for straight-lined code regions. In the case of loops, isube profile data to calculate the
approximate execution time per iteration.

66

Figure 3.5 shows a simple example of how the instrumented code woukllike in
source level. The lines marked with an asterisk presentgdbe inserted by the DCB
compiler. calc_period_L007() in line 3 andcalc_period_L008() in line 16 are the inline
functions generated by the DCB compiler. They calculatentivaber of loop iterations
needed to be executed for the next progress reporting. &unghlues cannot be used
in the same place because of programs that have differerntberuoif iterations across the
threads, since the total progress counts should be equallftireads. The generated
inline functions calculate the progress reporting periodhat all threads go through the
same number of progress reporting steps. Another point ticents the line 8. For the
threads that exits the loop before it finishes the total iiena, the DCB compiler sets the

progress counter to the maximum progress of the loop.

3.4.4 DCB Runtime Subsystem

The most important role of the DCB runtime subsystem is teigthe desired boost-
ing ratio to the DCB architecture when the threads are runimrottery mode. The DCB
runtime subsystem is idle for the most of the time and wakesgftgr every epoch. It
then reads the per thread values of the CPU cycles. The DCGi#tecture has the dedi-
cated hardware counters for per core CPU cycles and thetogesystem manages the
per thread values in the thread boosting table. The DCBmensubsystem estimates the
workload size of each thread by comparing the current peathiCPU cycles with the
last value. Then it calculates the desired boosting ratithefthreads according to the

assignment algorithm described in Sect®8.3

67

Although the DCB runtime subsystem can be implemented asagdgHibrary, it is
preferable for it to be part of the operating system becalisedads fast accesses to the
thread boosting table. Since the thread boosting tableoegied from unprivileged ac-
cesses, the DCB runtime subsystem should go through thensysdll interface if it is
implemented as a shared library. This can cause a perfosr@oblem if the epoch size

is too small.

3.5 Synchronization-Aware Per-Core Power Gating

We propose applying per-core power gating to idle cores dweorkload imbalances
in performance asymmetric CMPs. In order to minimize theaoimf wake up latencies
caused by per-core power gating, we only turn off idle coreemthe thread is waiting for
a long duration synchronization operation. Furthermoreingtrument the code to provide
hint for waking up the thread on the power gated core bef@aidnaling thread approach
the synchronization point. Finally, the waken up threaccakes prefetching code to warm

up the private cache.

3.5.1 Operating System Support

In recent Linux kernelsfutex system calls are used to impelement POSIX synchro-
nization operations without busy waiting. WhE&UTEX_WAIT is called, the calling
thread is placed in a kernelspace wait queue. The waitireptis are released by calling
FUTEX_WAKE. If there is no active thread running on a core, the kernelessalt in-

struction. The dynamic power management controller in tiedying hardware decides

68

which state the core should be placed in, depending on tleeidler duration. The typical
granularities of recent microprocessors are in the ordéfoms p0).

We extendutex system call to support selective power gating and givin wakéaints
by adding two more operations: FUTEX_DEEPWAIT and FUTEX_HINT.
FUTEX_DEEPWAIT is used to let the OS know this synchronization operatioriessible
target of per-core power gating. In addition, prefetchiadeis specified with a parameter.
The OS manages one more waiting queue (deep sleep queueper gating targets, and
turns off the core when all the threads are waiting in the ddegp queue. We assume that
the microprocessor exposes a direct control of the core pstates to the kernel.

When FUTEX_HINT is called, a thread in the deep sleep queue is waken up. The
thread then executes the prefetching code given byFtheEX_DEEPWAIT call. If it
finishes running the prefetching code before it is waken up BYTEX_WAKE call, then
it waits on the normal wait queue. On the other hand, if it ikevaup by &FUTEX_WAKE
call before it finishes, the prefetching code is preemptetitha thread starts running the

code after th&UTEX_DEEPWAIT call.

3.5.2 Profiling-based Selective Power Gating

Due to the substantial amount of wake up latencies, only Emgugh synchroniza-
tion stalls can save energy with per-core power gating. @heme selectively perform
per-core power gating for those long enough synchroniaatielying on profiling. Two
versions of each synchronization operation are providéggusUTEX_WAIT and FU-

TEX_DEEPWAIT, repectively. The compiler selects which version to be Usedach

69

call based on profiling data. For training runs, waiting tifoe each synchronization is
measured. For synchronizations of which waiting times edca threshold with decent
probability, the synchronization operation is replacethuwihe corresponding version with

FUTEX_DEEPWAIT calls.

3.5.3 Wakeup Hint and Prefetching

For the synchronization call that is replaced with the déegpsversion, the correspond-
ing operation to give wake up hint is instrumented. For eXangthread_barrier_hint() is
inserted to give hint for the power gating version g@thread_barrier_wait().
pthread_barrier_hint() tracks the number of threads reached the hinting point, avalb
castsFUTEX_HINT when the last thread arrives. The placement of the hintiregaijon
is also determined based on profiling.

The current implementation of our scheme relies on the jragrer for prefetching
code. The programmer provides prefetching function as anpeter for the deep sleep
version of synchronization operations. When a thread isewalp from deep sleep by a

hinting call, the specified prefetching code is executed.

3.6 Evaluation Methodology

This section describes the evaluation methodology thatseamuorder to measure the
performance improvement of DCB and the energy saving of leyimization-aware per-

core power gating.

70

3.6.1 DBT-based Performance Evaluation

As the system level interactions among threads are very rigpi the evaluation of
DCB is different from the evaluation of other microarchttgal features. This difference
makes the traditional evaluation approach of using cyctasate simulation an infeasible
option for our purpose. DCB makes boosting assignment idesivased on the relative
orders of thread progressions, and synchronization apasaare critical to these orders.
For instance, let us consider a situation where two thresgs@npeting for a mutex. One
of them is about to enter a long critical section and theaaitsection of the other is short.
A slight difference of arrival time to the critical sectioart make a huge difference in the
progress of the threads after they both exit from the ctiseations. Moreover, even the
execution path might change depending on the order of eyedfitsSampling B1] based
simulation would not yield meaningful results as the intiens among threads are not
considered. Trace-driven simulation that separatesifumatand timing simulation might
not be accurate either.

Without sampling or trace-driven mechanisms, cycle-aaeusimulators are too slow
to evaluate the performance of DCB. The entire executioh@programs from the begin-
ning to the very end must be measured since the interactioos@threads are critical.
This makes it very difficult, if not impossible, to test DCB oyicle-accurate simulators
with realistic workloads. Therefore, we need a differergrapch.

In order to evaluate DCB in a reasonable amount of time whilpleasizing on thread
interactions, we use a dynamic binary translation (DBT)edasmulation platform. For

emulating diverse core speed for both performance asymngraett core boosting, our plat-

71

code cache l \

BB1
E iter = counts[BB2 + tls_idx];
for(i=iter;i>0;-i){
BB2 % NOP-
< |
| f
BB3 BB4 !
~., E BB2
BB5 :

Figure 3.6: Core boosting emulation with dynamic binary translation.

form slows down execution by adding extra instructions tohelaasic block. Figur8.6
shows the conceptual diagram of this scheme. The iterationts of the insertedoploop
decides how much the execution is slowed down. Since we reeary the speed from
thread to thread, Thread Local Storage (TLS) is used to sheréndex variabldls_idx.
The transition between two different core speeds can beatauiby simply overwriting
the value of this variable. Theounts array is loaded to the memory before executing the
program.

The key point for the accuracy of this evaluation schemessttie amount of slowdown
must be inversely proportional to the modeled core speedadhieve this by judiciously
deciding the iteration counts for every basic block and faerg slowdown value. Our
mechanism to decide the iteration counts is inspired by fagaret al. 7] which states
that disruptive miss events such as cache misses and brasytedictions result in charac-
terizable performance behavior. The basic idea is that waceurately dictate the iteration
counts according to the required slowdown amount if we caasme the per basic block

number of these disruptive events.

72

dcb/fig/emulation.eps

We choose the number of instructions, the last level caclssesj and the data TLB
misses, since they showed the largest correlations witlC#lg time of the programs in
our measurement. Using hardware performance counters, egsure these values for
various time periods during repeated execution of the bmacks. We then model the
relationship between the CPU time and those variables wigat regression based on the
measurement.

The hardware performance counters are also used for sajrthenprogram counter
values when the miss events occur. We collect the programteogamples to map the
number of the miss events to each basic block. Assuming thplsay preserves the prob-
abilistic distribution of the miss events, the numbers f&r niss events per basic block can
be calculated by projecting the sample distribution to titalthumber of miss events for
the entire execution. Finally, the number of iterationsipesic block and slowdown value
are calculated according to the linear regression modabalth the miss event numbers.

We have implemented the evaluation platform on DynamoRIg), [an open source
dynamic binary translation system. We perform the evabumatin a 32-core machine with
four 8-core Intel Xeon processors running at 2.26GHz witMB4_3 cache and 32GB of
main memory. Except for the fact that each thread is sloweehdthe execution on the
evaluation platform is almost identical to running on natiardware. Since the threads ac-
tively interact with each other, the simulation errors @iy ignoring thread interactions

can be minimized.

73

Component | Parameters

Core 4-way issue OO0

L1-I cache | 32 KB, 4 way, 4 cycle, private
L1-D cache | 32 KB, 8 way, 4 cycle, private
L2 cache 256 KB, 8 way, 8 cycle, private
L3 cache 8 MB, 16 way, 30 cycle, share

o

Table 3.1: Simulated architecture details.
3.6.2 Evaluation of Energy Saving

We evaluate our synchronization-aware per-core powengatheme with Sniper mul-
ticore simulator { 7], version 5.2, updated with a cycle-level core model. We lusel
Nehalem §9-like core model and the details of the simulated architextare listed in

Table3.1 McPAT 0.8 (3] is used to estimate energy consumption.

3.7 Experimental Results

We first ascertain the validity of the evaluation platformveyifying the errors in the
simulated execution time. Then, we use it to evaluate thteopeance improvement of
DCB. We use the Pthreads implementation of PARSEC 2.1 beadhsuite [L1], with
simlargeworkloads. fregmineis left out because it does not have a parallel version of
Pthreads implementation. Althougfps has Pthreads implementation, it is not used ei-
ther since it works with GNOME Threads interface at the sewade level. The current
implementation of the DCB compiler needs source level faténg with Pthreads for its
static analysis. Each experiment represented is the avefdbe trials repeated at least ten

times.

74

12%
10%
8%
6%
4%
2%
0%

Relative Error

Figure 3.7: Errors in the simulated execution time of the peformance asymmetry evaluation
platform.

3.7.1 Accuracy of DBT-based Performance Evaluation

We verify the accuracy of our evaluation platform by compgrihe execution times
with slowdown. Figure3.7shows the errors in the simulated execution time of the guiatf
dropping the sign for negative values. For the experimevds;alculated the expected val-
ues from the simulated runs with 5x slowdown and comparegh teethe simulated runs
with 10x slowdown. On average, our evaluation platform shdwB% of errors with the
maximum of 10.8%. While our evaluation platform tries tosgty match original execu-
tion using the inferred linear regression model and the psrchblock hardware counter
statistics, the main source of error is the difference betwie original instructions and
the extra instructions instrumented. Despite the factitdbes not perform the detailed
microarchitectural simulation, however, it is quite aaer More importantly, it enables

us to run the programs on realistic inputs without samplifglevcorrectly maintaining

75

dcb/fig/accuracy.eps

e E Heterogeneous = Reactive ® DCB

C 1

210

209

& 08 - -
307 -

£06

Eos5 -

= S M- > Q : S <@ @ e.‘ o Qo
N R &

Figure 3.8: Normalized execution time of Heterogeneous, Retive, and DCB.

inter-dependencies arising due to synchronizations.

3.7.2 DCB Performance Improvement

Using the DBT-based performance asymmetry evaluatiofgptat we evaluate the per-
formance improvement of the DCB system. The underlying asgtric CMP is assumed
to be identical to the one used in Sect®R2.1 The standard deviatiom] of the core fre-
quencies is 30% of the averagé){ and the eight cores run at the frequenciegof 1.50),
(u—1.00), (L—0.50), y, 4, (L+0.50), (u+1.00), (L+1.50), respectively. As the
current generation of AMD processofq glready have per-core DVFS capable of operat-
ing at 20 - 30% higher frequencies than the nominal freq@sneie use the acceleration
value of 1.5x assuming fast switching (10ns) with dual supply voltage rails. We use
c = 1 for the boosting budget, which means one core can be boastsd moment. We
use the asymmetric CMP with no boostittgterogeneousas a baseline. For the fairness
of comparison, the frequencies Beterogeneouss set to be higher than the underlying

cores for the boosting schemes so that its average coreefiegus equal to the boosting

76

dcb/fig/performance.eps

schemes. Although we cannot directly measure power consomgiue to the limitation
of our evaluation platform, we keep the power budgets of tiegschemes as close to the
baseline as possible in this way.

We also compare DCB to a reactive boosting schdReactive where the priority of
the threads is managed in the same way as a state-of-theagtive core acceleration
schemeBooster SYN@7Z]. In Reactive a thread can be in one of the three priorities:
blocked normal andcritical. The default priority isnormaland this changes tblocked
when the thread is waiting for either a mutex, a conditiomalde, or barrier. The priority is
promoted tccritical if the thread acquires a muteRReactivealways prefers the thread with
higher priority. When there are multiple threads with theeehighest priorityReactive
assigns boosting in a round robin manner.

Figure3.8shows the normalized execution timeHéterogeneoyskeactiveandDCB.
DCB achieves performance improvement over bbiterogeneousnd Reactiveacross
all of the benchmarks. On average, the performance gaidhGB over Heterogeneouss
32.9%, outperformindreactiveby 10.3%. As expected from the preliminary analysis in
Section3.2.1 DCBis most effective for the benchmarks having thread join oriées as the
primary synchronization method, ashiackscholesndstreamclusterinterestingly, both
Reactiveand DCB present substantial performance improvement even forehehmarks
with dynamic workload distribution, such &®dytrackand raytrace mainly due to the
sequential regions. For the sequential portions of execstibothReactiveandDCB can
concentrate the boosting budget to the only working thraattlyng better performance
thanHeterogeneous

In order to better understand the workload balancing céipabi DCB without the

77

E Heterogeneous Reactive =DCB

Relative CPU Time
H
o

~ oy L
S F &L & E L o LT
S & &£ §F & & T o § ¥
S & & g ¢ ¢ §&§ & ¥ &5 ~
S & 5§ ¥ 8 S & & &
g S & g & &
X O
g S & 2
N & 5

Figure 3.9: Synchronization overheads of Heterogeneous,dactive and DCB.

effect of accelerating sequential region, we also meater€PU time wasted for synchro-
nization operations in the same way as in FigBr2 Figure3.9 presents the CPU time
portion for synchronizations. From this graph, we can cantinatDCB is very effective
in balancing workloads and reducing the synchronizaticerioeads, for data parallel pro-
grams such ablackscholesnd streamcluster We can also see th&®CB can reduce the
synchronization overhead of pipeline parallel prograrke ferret Note that this graph
shows the ratio of synchronization overheads to the totd) GfRe of parallel execution.
Since the execution time is significantly reduced for beratks likededupandferret, the
workload balancing effect is actually greater than it lookthe graph.
Figure3.10illustrates howDCB outperforms the other schemes. In this figufeaxis
presents the time scale normalized against the finishing ¢cihthe last threads dietero-

geneousandyY-axis is for the number of threads that have finished thelstaBherefore, if

78

dcb/fig/result-sync.eps

—Heterogeneous Reactive —DCB
8

Number of Finished Threads

0.3 04 0.5 0.6 0.7 0.8 0.9 1
Normalized Time Scale

Figure 3.10: Arrival time of each thread for blackscholes.

the line hits the ceiling earlier, better performance wdseed. As expected)CB shows
the best performance among all the schemes. An interestingtp note is thaDCB loses
to the other schemes until the sixth thread finishes its tabks shows thaDCB assigns
the boosting budget in a way closer to the optimum. In othed&/@CB saves the boost-
ing budget from already fast threads and assign them to gggng threads, reducing the
workload imbalance. For this reason, the slope ofi@B line becomes steeper as it gets
to the end. For DCB, only the last three threads are finistieg tasks approximately at
the same time, and this is because the boosting budget isiaogk to balance all of the
threads. IfDCB had more boosting budget, it would have the almost vertreation of the
line from an earlier point.

Another point to notice in Figur8.10is that Reactivestarts almost identically with
Heterogeneouand gains a slightly steeper slope thadeterogeneousThe reason is that

Reactiveis indeed reactiveReactivedoes not discriminate threads before some of them

79

dcb/fig/time-scale.eps

—+All-Benchmarks -=All-But-Streamcluster -s-Streamcluster
1.5

1.4

1.3

1.2

1.1

1

Normalized Execution Time

0.9
100 300 500 700 900 1100 1300 1500

Switching Latency (ns)

Figure 3.11: Overhead of synchronization-aware per-core gwer gating.

reach synchronization operations. So, it starts identvithl Heterogeneoufairly distribut-
ing the boosting budget to all cores. This is also ®activebeatsDCB in the beginning.
Moreover, theReactivdine is slightly steeper thaHeterogeneoukecause it starts concen-

trating the boosting budget by not assigning it to the idlieeso

3.7.3 Energy Saving of Synchronization-Aware Power Gating

We evaluate the energy saving of our per-core power gatingme. The underlying
asymmetric CMP is assumed to be identical to the one usedctin8&.2.1 The standard
deviation @) of the core frequencies is 30% of the averagg @nd the eight cores run
at the frequencies dfu — 1.50), (1 —1.00), (u—0.50), 4, 4, (L +0.50), (1 +1.00),
(U+1.50), respectively.

Figure 3.11 shows the normalized execution time of PARSEC benchmarlenwie

naively apply per-core power gating for all synchroniaatstalls. For sensitivity study, we

80

dcb/fig/parsec.eps

-e-naive selective -s-prefetch
15

1.4
1.3
1.2

1.1

Normalized Execution Time

0.9
100 300 500 700 900 1100 1300 1500

Switching Latency (ns)

Figure 3.12: Impact of optimization for streamcluster.

vary the wake up latency from 100ns to 1500ns. Leverich ¢68).shows 190ns of wake
up latency using Spice simulation with similar setting.Histfigure, we can see that power
gating the idle cores waiting for synchronizations incuegjligible overhead even with
the conservative wake up latency value of 1500ns, excepbenehmark:streamcluster
This is because the frequency of synchronization stallsl&ively small compared to the
duration of the stalls.

Figure 3.12 presents the impact of selective power gating and prefegchiProfiling-
based selective per-core power gating reduces the numignolironization stalls so that
the longer wake up latency shows less impact on the perfareadowever, cold private
cache after gating still incurs substantial amout of ovadheesulting in about 10% slow-
down. Finally, prefetching private cache contents furtlegluces the overhead to about
1%.

The energy savings of the synchronization-aware powengaitheme is depicted in

81

dcb/fig/streamcluster.eps

40%
30%

20

o-/.IIII|

R

Energy Gain

10

R

& +

23 hY L < S
¥ & & & & & & & &
S S ¥ F ¢SSy .@
(}EJ < AN G & &P &
NG S & 9
© 8 &

Figure 3.13: Energy savings of synchronization-aware pecore power gating.

Figure3.13 The baseline keeps the cores in active status for syndatom blocking
durations. Although the recent microprocessors suppaoraayc power management, they
do not place the cores in sleep mode for synchronizationausecthe time granularities
are too coarse (on the order of 100ms§]). We assumed 300ns of wake up latency and
200nJ of switching energy overhead following the Spice &athon results of Leverich et
al. [60]. Overall, our scheme improves the energy efficiency by 1B%awerage with only

negligible performance degradation.

3.8 Related Work

In this section, we first survey previous work that suggestfopmance asymmetry in
CMPs. Since DCB is not limited to one type of core boosting ma@tsm as mentioned
before, we then review per-core performance adaptatidmt#ogies that could possibly

be used for core boosting. Finally, we study the previoupg@sals for assessing thread

82

dcb/fig/energy.eps

criticality and differentiate DCB from them.

3.8.1 Performance Asymmetry in CMPs

There have been numerous prior works that motivate inhgreribrmance asymme-
try in CMP designs. Several of themi,[58] are proposed for better performance, and
some others{7] show asymmetry is beneficial to reduce power consumpticynfmetric
CMPs have been demonstrated to be effective for allevigenigl bottlenecks/[3, 91, 55].

In consequence, some commercial produ¢td have started adopting the trend.

Increasing within-die process variation in near-futurehteologies also demands per-
formance asymmetry even in homogeneous CMP designs. Beo&ysocess variation,
Teodorescu et al9f] claims that it is no longer accurate to think of large CMPh@asoge-
neous systems. Furthermore, low voltage chips aggravatenipact of process variation,
and maintaining homogeneity by operating at the frequerdie slowest core severely

lowers performancer[.].

3.8.2 Dynamic Adaptation of Core Performance

Dynamic voltage and frequency scaling (DVFS) is a widelydusehnique for dynamic
per-core performance adaptaticid] 36] and some AMD commercial processors support
per-core DVFS 7]. However, off-chip regulator-based DVFS incurs intoldeascaling
overheads (tens of microseconds) for our purpose. On tleg bdnd, DVFS using on-chip
regulators has much shorter transition time but suffers flaw efficiency of the regulators.

Miller et al. [7Z] and Dreslinski (] recently proposed the use of dual-voltage rails for

83

fast adaptation of per-core performance. In addition, Dveki et al. [31] confirmed that
very short transition time< 10ns) is achievable with a new circuit technique. We assume
this technique to demonstrate the effectiveness of the DGEB.

Another feasible option for the underlying mechanism ofecboosting is adapting
hardware resources of cores. Composite Ccigkiftegrates two different types of com-
puting engines and achieves high performance and energjeaffy. It also shows that
fine-grained (quantum length of 1000 instructions) dynapeiccore performance adapta-
tion is possible.

While Composite Cores adapts in-core hardware resoultesiphist [4] uses another
core to boost cores. lllusionist consists of many lightweapres and a small number of ag-
gressive cores, and aggressive cores are used to accéerateecution of the lightweight

cores by providing execution hints, running ahead of them.

3.8.3 Thread Criticality Assessment

Thread Criticality Predictor (TCP)L[)] identifies thread criticality based on memory hi-
erarchy statistics using hardware counters. It increasegg efficiency by scaling down
the frequency of non-critical threads or improve perforoehy task stealing from critical
threads. Although TCP shows high accuracy (average of 98%)ot suitable for our pur-
pose of balancing workloads for asymmetric CMPs. For exapgunsider two perfectly
identical (including cache misses) threads running on twegwith different frequencies.
In the middle of the workloads, TCP would assess the criticaf faster thread higher than

the slower thread because the faster thread would have msseso the point.

84

Prior work has suggested using barrier synchronizationthfead criticality prediction
for saving energy either by transitioning into low power rasafter reaching a barrier or by
scaling down the voltage and frequency of non-criticaldldse Liu et al. $4] and Thrifty
Barrier [627] differ from our work as they try to predict the arrival time the next barrier
based on history while DCB only needs to decide lagging ttsdar data parallel pro-
grams. Meeting Points.f] is similar to our work considering that it employs instrume
ing programs with special instructions for monitoring pregs. However, it only works for
regular parallel loops with identical iteration countsass all threads, as opposed to DCB
which can handle not only the loops with varying iterationicts but also the threads with
different code.

Accelerating Critical Sections (ACSY{] and Bottleneck Identification and Scheduling
(BIS) [55] also use special instructions for detecting bottleneBlspecially, BIS measures
the number of cycles spent by threads waiting for each battle and accelerates the bot-
tlenecks responsible for the highest thread waiting cyclég primary difference of ACS
and BIS from our work is that they work in coarser granulasityce they rely on thread
migration to accelerate bottlenecks.

The most closely related work to DCB is Boostéf], where it also tries to balance
multi-threaded workloads using core boosting. They prep®s boosting algorithms:
Booster VAR and Booster SYNC. Booster VAR balances the CPtlesyspent by each
thread and Booster SYNC improves it by taking priority hifitsn synchronizations. The
most important difference between Booster and DCB is thaisB is reactive. Even
Booster SYNC does not discriminate threads until they regtithronization operations.
Therefore, it cannot address implicit software heteroggmaused by control flow diver-

85

gence and non-deterministic memory latencies. Simildrig,not well-suited for pipeline
parallel programs. Even though different stages are hebidlsed, Booster gives up the
chance of balancing them until some of them get blocked foclssonizations. Conversely,
DCB is proactive handling software heterogeneity very welhally, it is not trivial to ex-
tend Booster for other types of asymmetric CMPs or core lmgshechanisms, since it
uses the core frequency values for balancing cycles. MeigaMI'CB is applicable to them
without any modification for data parallel programs and ityoreeds relative acceleration

ratio for pipeline parallel programs.

3.9 Summary

This chapter explored improving performance and energgieficy for performance
asymmetric CMPs. We investigated the elimination of woaklambalances by relying on
the hardware capability to accelerate individual cores fategranularity. We proposed
Dynamic Core Boosting (DCB), a software-hardware cooperatystem that balances the
workloads by boosting critical threads. DCB coordinatesdmpiler, runtime, and proces-
sor cores, for near-optimal assignment of core boostingg 8B compiler instruments
target programs with instructions to give progress hintee DCB runtime subsystem mon-
itors their execution, enabling intelligent assignmenthaf boosting budget for better per-
formance. On a simulated eight core system of varying freqyeour experiments using
PARSEC benchmarks showed that DCB improves the overalbpeence by an average
of 33%, outperforming a reactive boosting scheme by an geeod 10%. We also sug-

gested applying per-core power gating to the idle cores dweotkload imbalances. Our

86

synchronization-aware power gating scheme minimizeséhi®@pnance impact of per-core
power gating through selective gating and prefetching. €slnleme improves the energy

efficiency by an average of 15%.

87

CHAPTER 4

Instrumentation Sampling for Lightweight Profiling

4.1 Introduction

As cloud computing continues to expand, profile-guidedroj@ation (PGO) on data-
center applications has the potential for huge cost savidiggle-digit performance gains
from the compiler can yield tens of millions of dollors in g&ys. Isolating the execu-
tion of datacenter applications can be complex or even igiptess One challenge of
PGO on datacenter applications is collecting profile datenfthe applications running
on live traffic [33]. In order to monitor production runs, the profiling overtea terms
of both throughput and latency should be kept minimal foesaMeasons. First and fore-
most, datacenter application owners are not tolerant ehat degradations (even at the
99th percentile) of more than a few percent, unlike highqrenince computing or other
throughput-oriented applications, because they hurt thadityy of service. Second, ex-
cessive profiling overhead can cause observer distortetrthiwvarts meaningful analysis.

Finally, profiling overhead might offset the cost savingsgd with PGO.

88

One way to keep the profiling overhead minimal is to explortaaare support. For in-
stance, specialized profiling hardware such as Merten'sguitidentification] 0], Vaswani’s
programmable hardware path profilél], and Conte’s profile bufferJ6] has been pro-
posed for low overhead profiling. Furthermore, many receotaprocessor designs have
included on-chip performance monitoring units (PMWYj,[47, 48] containing configurable
performance counters that can trigger software interrdgptsampling. Google-Wide Pro-
filing (GWP) [83] has shown that PMU-based profiling mechanisms can maistaal
enough overhead to be deployed for large datacenters miogitapplications running on
live traffic.

Although hardware profiling mechanisms incur low overhehdy suffer from limita-
tions. First, the possible types of profile data are inhdyedefined by the features that
the underlying microprocessor supports; thus, hardwanélipg mechanisms are not as
flexible as software-only mechanisms. In addition, PMUdeat are often very processor-
specific, making profiling tools not portable. Lastly, as tbp design priorities are hard-
ware validation and processor performance, performancetarmg hardware tends to be
considered as a second class feature with the increasiegttirmarket pressures().

Such limitations of hardware profiling can significantly iirthe potential of PGO for
datacenter applications, since PGO systems must be awamlotvhat and how to opti-
mize for effective optimization. Although PMUs implemedt& recent microprocessors
so far provide quite rich information on where to focus optiation efforts, deciding how
to optimize is a considerably harder problem. For exampleping the program counter
(PC) at a high rate yields enough information to detect haiec@and current PMUs are
even capable of giving finer information such as cache midsbaanch mispredict PCs.

89

However, PMU features so far give less attention on how torope.

While instrumentation-based profiling mechanisms canigewmore useful informa-
tion about how to optimize the target applications, theydtemimpose higher overheads
than hardware-based mechanisms. For instance, pathmpgdfiliis well-known to be ef-
fective for improving code layout and superblock formatibuat incurs 30-40% overhead.
Other techniques such as value profiling][and data stream profilin@[] not only achieve
gains of over 20% but also cause ten- or hundred-times shwslduring profiling. Such
high overheads prevent these mechanisms from considefatigrofiling even loadtests
for datacenter applications.

In this work, we propose a novel instrumentation sampliegtéque instant profiling
that uses dynamic binary translation. Instead of instrumgrthe entire execution, instant
profiling periodically interleaves native execution andtinmented execution. By adjust-
ing profiling duration and frequency parameters, we can kagefiling overhead under a
few percent, so that the framework can be used to continyeoshitor cloud computing
applications running in large scale datacenters with lia#it. We have implemented the
prototype framework of instant profiling on top of DynamoRIC¥], and we evaluate the
possibility of continuous profiling on real datacenter denarks.

Instant profiling offers the following features:

e Low computational overhead. Computational overhead desuthe cycles con-
sumed by the application as well as out-of-band computditterprofiling and JIT-
ing. When target programs are running natively, instanfilprg does not need to

add any extra instructions to the programs, as opposedvopeetechniquesd, 44]

90

which need checking code even when not profiling. Also, we aloduplicate the
original execution, unlike other prior work B, 97]. For these reasons, instant profil-

ing can keep the computational overhead minimized.

e Small latency degradation. Due to the overhead amortiziragacteristics of dy-
namic translation techniques, end users might observéfiseym latency degrada-
tion for initial profiling phases even with low sampling reténstant profiling further
reduces latency degradation by pre-populating a softwade cache and jumping

back to native after a predefined period.

e Eventual profiling accuracy. With sampling techniques, wermot avoid making er-
rors on profile data. Since our low overhead framework esatatinuous profiling
on production runs, however, the accuracy of instant pngfijets closer to full pro-
filing with a long enough application lifetime or enough mstes. Since the most
important applications consume the most cycles, they vaNiehthe most instances,

run the longest, and yield the most profiles.

e Flexibility. Instant profiling can be applied to any type @bfiling or tracing as long
as the entire execution does not need to be monitored, girgcan instrumentation-
based profiling technique and does not rely on specializedwaae features. In

addition, instant profiling is portable to other micro-atehtures for the same reason.

e Tuning. The profiling duration and frequency are configugalohaking it easy to

adjust the tradeoff between information and overhead.

The remainder of this chapter is organized as follows. 8ecti2 provides a brief

91

explanation of dynamic instrumentation systems and Dyrii@avhich we harness as a
base platform. Sectiof.3then presents the design and implementation details ofreur i
stant profiling framework. Sectich4describes how the framework further reduces latency
degradation by pre-populating its software code cachetid®et.5 explores tuning trade-
offs and evaluates performance. Secdofdiscusses related work. Finally, we summarize

the contributions and conclude in SectiiT.

4.2 Background

Before we delve into the details of instant profiling, we Byielescribe dynamic binary
instrumentation techniques and where extra overheads émme Then we provide an
overview of DynamoRIO upon which we implement the prototygaenework of instant

profiling.

4.2.1 Dynamic Binary Instrumentation

Dynamic binary instrumentation is a powerful technique fantime program intro-
spection, particularly collecting profile data for PGO. féare many dynamic binary in-
strumentation systems 3§, 67, 7], sharing similar internal mechanisms. They intercept
target applications’ execution, instrument points of iest, place instrumented code in
their software code cache, and execute it from the softwade cache. Where and what
to instrument are defined by users (client writers) via auséd’l's. One main benefit of
instrumenting programs at runtime is the availability ofcanplete picture of programs’

runtime behavior including shared libraries, plugins, dgdamically-generated code.

92

There are two major sources of overhead for dynamic binatyumentation systems.
One arises from the dynamic instrumentation systems tHeasse\Whenever the target
program meets an unknown branch target, the dynamic institation system must per-
form a code cache lookup, copy the original code to the soéwade cache and insert any
necessary instrumentation. In order to make this processparent to target programs,
moreover, they have to save and restore program contexhoddh these costs are un-
avoidable, translation overheads can be amortized overramning time and there have
been suggested many optimization techniques to reducéytiesof overhead, e.g., direct
and indirect branch linking, trace construction, regiséailocation, etc.

The other source of overhead comes from the profiling cli€éwr collecting profile
data, dynamic instrumentation systems insert user-detiodd into application code. As
opposed to instrumentation overhead occurring only whenguwe comes into the soft-
ware code cache, instrumented client code is executed @uwsgythe application code is
executed. Thus, even fine-tuned profiling clients can imparge overheads, continuously
throughout the target application’s execution. Furtheemwhile significant progress has
been made in reducing the performance penalty of the dyniaistitmentation itself, less

attention has been paid to user-defined profiling cliehts][

4.2.2 Overview of DynamoRIO

DynamoRIO [L2, 13, 1] is an open source dynamic binary instrumentation systeyn. D
namoRIO exports an interface for building a wide variety phamic tools (DynamoRIO

clients) including program analysis, profiling, instrurtegion, optimization, etc. It allows

93

not just insertion of callouts/trampolines, but also advi modifications to application
instructions via a powerful instruction manipulation By and adaptive intermediate rep-
resentation. DynamoRIO provides efficient, transparermd,@mprehensive manipulation
of an unmodified application running on stock operating eyst (Windows and Linux)
and commodity hardware (IA-32 and AMDG64).

A thorough description of the internal design and impleragoh of DynamoRIO is

outside the scope of this chapter, but is described by Bngdni].

4.3 Instrumentation Sampling

We modify DynamoRIQO’s control transfer for instrumentatisampling by interleav-
ing native execution and instrumented execution. UnmadjiftyynamoRIO initially takes
over the control from native execution when DynamoRIO’sretldibrary is loaded into
the target program’s address space, and never gives it Rackhe other hand, our instant
profiling framework gives back the control to native prograxecution right after initial-
ization. During initialization, it sets up a signal handier pre-defined profiling start/stop
signals and creates a shepherding thread. After it staetsuéing the target program na-
tively, the framework periodically takes over and givesktie control from and to native
execution for sampling.

Figure4.1shows how control is transfered between native executidrrestrumented
execution in the instant profiling framework. The shephegdihread manages control
transfers by periodically sending a profiling start/stognai to each application thread,

according to the profiling duration and frequency paranset&hen, the registered signal

94

multi-threaded application

shepherding thread

Figure 4.1: Control transfer for instrumentation sampling.

handler for the predefined signal transitions between @akecution and instrumented
execution. In order to make the instrumentation transpdcetine target program, instant
profiling needs to save and restore the target program& evatry time the control is trans-
fered via context switch.

If the profiling start signal is delivered when the threadusming natively, the signal
handler saves the program state and hands over the contha thspatch unit. iThe dis-
patch unit then checks whether the current program couR@} éxists in the software
code cache. If so, it restores the saved program state andtegehe target code from the
software code cache. If the current PC does not exist in theae code cache it invokes
the instrumentation engine to instrument the target cogiemeand place it in the software
code cache. Then the dispatch unit switches the contexetsdftware code cache.

The transition from instrumented execution to native ekeauhappens in a similar

way. In this case, however, the context switch can only oothetween two instrumented

95

profiling/fig/architecture.eps

fragments. A fragment is DynamoRIO’s unit of translatiordancan be either a basic
block or a trace. Mapping the code cache state back to a reéiteis most easily done at
the start or end of a code fragment. Thus, the signal handlaysithe context switch until
the current fragment in the software code cache finishes.

The rest of this section describes the technical issue$viedton making the start/stop

profiling transitions lightweight and transparent to theyét program.

4.3.1 Context Switch

For a sampling mechanism to be effective, transitions aft/stap profiling should
be very lightweight. Otherwise, the transitions would @ach on the overhead budget.
In order to make the transitions lightweight, our instardfging framework minimizes
the operations needed for the context switch between natigeution and instrumented
execution.

The framework performs a context switch to start profilinga®ws: when the start
profiling signal handler gets a signal, the kernel hands theemachine context of native
execution to the signal handler in the form afigcontexstruct, which the handler passes
to the dispatch unit after modifying a few fields To invoke thgpatch unit, the ip register
in the sigcontext is set to the re-entry point of the dispatch. Then, when the signal
handler returns, the kernel gives the control to the digpatat. The dispatch unit starts
instrumented execution starting from the program courd&ressaved from the sigcontext

struct.

96

4.3.2 Temporal Unlinking and Relinking of Fragments

One of DynamoRIQO’s optimizations that has a large impact erigpmance is direct
and indirect branch linking. Since a context switch betwgensoftware code cache and
the dispatch unit is expensive, DynamoRIO links branchegead of switching context
whenever a branch target exists in the software code cache.

Although itis good for performance, the direct and indite@nch linking optimization
can cause a problem for sampling control. Assume a threashisirg inside a loop linked
in the software code cache. When the stop profiling signatiiseted, the signal handler
sets up the control transfer and continues running in thisvaoé code cache since it is in
the middle of a fragment. In this case, however, the contesidfer does not happen until
the execution actually finishes running the loop and rettwribe dispatch unit. For this
reason, the direct and indirect branch linking optimizattan cause unbounded profiling.

In order to prevent unbounded profiling, our instant pradilimmework temporarily
unlinks the outgoing branches of the currently runningrinagt when it gets the stop pro-
filing signal. For better performance, the framework needsetlink the branches after-
ward. So, it saves the unlinked branches in a scratch-padstiaicture and re-links them

when it restarts profiling.

4.3.3 Multi-threaded Programs

Although unmodified DynamoRIO seamlessly supports mbheéaded programs, we
need several special treatments due to the structuratetiie between our instant profiling

framework and DynamoRIO. The key issue is how to take ovectimtrol of all threads

97

when we want to start profiling. This is not a problem for unified DynamoRIO since it
takes over the control of the main thread before it spawn®#mr threads, observes every
system call including thread creation, and never gives agtimtrol of any thread. On the
other hand, our framework only takes over the control whéndbing profiling, and does
not keep supervision when the threads are running natively.

The basic strategy that our framework takes is to force its signal handler for every
thread and to send a profiling start signal to each thread. shiegherding thread can
enumerate the thread IDs of every application thread evemwltey are not created and/or
running under control of the framework, and send each theepte-defined signal that
can be easily configured with a parameter. Since the kerrisl tbee registered signal
handler when the signal is delivered, the framework can tal@ the control of every
thread whenever it needs to in this way.

One problematic case is when the target program tries to thasiignal that we use or
to register another handler for the signal. In this kind offtiot, the simplest circumvention
is to use a different signal that is not touched by the apttinaFor this purpose, the signal
number we use as the start/stop profiling signal can be eamilfigured via a command-
line parameter. Another solution is to intercept thosestbg slipping in our wrapper
functions for the library functions such as sigaction(@nsil(), or sigprocmask(). In this
case there still can be applications which directly callteyscalls (e.g., with assembly
language), and they need to be handled with ptrace. Thextesreely rare cases, however,
especially for datacenter applications which mostly us@adsrd libraries for portability.

Finally, for the programs we have tested so far, changingitjeal was enough.

98

4.3.4 Summarizing Profile Data

In order to enable profiling clients to summarize their ressubur instant profiling
framework extends DynamoRIO’s APIl. DynamoRIO has variold Ainctions to regis-
ter customized instrumentation points and we add one mpeedf/such event.

o dr_register_profiling_end_event(function)

The function registered with this API is called by the shegdimey thread after every
profiling phase. In this way profiling clients can manage peafata. The summarizing
overhead can be hidden as it is performed in the shephetiegd and not included in an

application’s critical path.

4.4 Pre-populating Software Code Cache

Our instant profiling framework further reduces the latetiegradation by pre-populating
its software code cache. As mentioned in Sectidh minimizing latency degradation is
extremely important for datacenter applications as itisally related to the applications’
guality of service. Many systems have expected 99th pdtedatencies under 10ms.
Meanwhile, using a software code cache technique amoitgzésnslation overhead over
continued reuse of translated code. This means that ensimsgrobserve latency degrada-
tion for initial profiling phases even though we keep aver@agrhead very small by setting
a low profiling frequency. Instant profiling does not have tanifiest instrumentation over-
head to users, however, as it does not always run the programsthe software code
cache. In other words, we can hide instrumentation overhgaadlstrumenting target code
in parallel while the program is running natively. This canunderstood in a similar way

99

to prefetching into an instruction cache implemented inymandern micro-architectures,
and we call this technique pre-populating a software codbea

Our instant profiling framework decides which code regiomsnistrument for pre-
populating its software code cache based on locality. Wherarget program is running
natively, it uses hardware performance monitoring unitedibect program counter sam-
ples. It is likely that those code regions with high samplarte will be executed again
when the framework starts profiling. Therefore, it pre-dapes its software code cache
with the basic blocks containing the program counter whosets counts exceed a thresh-

old.

4.4.1 Finding Basic Block Headers

Finding code regions to instrument from program counter@asis not a trivial task,
especially for processors with variable-length instrasi like 1A-32/AMD64. For Dy-
namoRIO, code fragments are tagged and managed with theaprogpunter values of
their first instructions. Given a program counter, therefave need a mechanism to find
the basic block header including that program counter.

One heuristic can be backward decoding. Starting from tfgetgprogram counter, it
decodes previous bytes until a valid instruction is founide Tieuristic repeats this process
until it meets a branch instruction, at which point it takies post-branch program counter
as the basic block header. With RISC architectures wheteui®ns have fixed length,
backward decoding works quite well. However, the overhsado high for architectures

with variable-length instructions. The overhead prolitifrom being used for datacenter

100

40053a: mov %rax, -0x10(%rbp) 40053a:
40053e: cmp $0x0, -0x10(%rbp)
400543: je 400550

400545: mov -0x10(%rbp), %orax
400549: mov (%rax),%rax
40054c: mov %rax, -0x10(%rbp)
400550: mov -0x10(%rbp), Jerax
400557 jmp 400561 oo

- Traditional Basic Blocks

400545:

40053a:

400545:

400550:

DynamoRIQ’s Basic Blocks
Figure 4.2: Traditional vs. DynamoRIO’s basic blocks.

applications, since our framework works on IA-32/AMD64 pessors.

Instead of the backward decoding heuristic, our framewentgoms forward decod-
ing. From the entry points of text segments, it decodes @utise instructions in order
and also records branch targets. After finishing this pmdestructions following branch
instructions and branch targets start new basic blocks. ae these basic block header
addresses in sorted order. Then, we can identify the basok Ibleader containing a given
program counter with binary search. The overhead of iniigelic block header calculation

can be hidden by performing it before the start of profilingt can be done offline.

4.4.2 Affinity-based Pre-population

A given program counter sample can be in multiple basic lddokDynamoRIO since
its basic blocks are different from the traditional stati@lysis notion of basic blocks.

The example in Figurd.2 shows the difference between traditional basic blocks ayxd D

101

profiling/fig/bbs.eps

namoRIO’s basic blocks. DynamoRIO considers each entmgtgoibegin a new basic
block, and follows it until a control transfer is reachedee\f it duplicates the tail of an
existing basic block.

DynamoRIO uses this notion for simplicity of code discovatryuntime [.3], but it can
decrease the hit ratio of software code cache pre-populdfar instance, suppose program
counter 400550 in Figuré.2is sampled for pre-population. The basic block header found
by the search in Sectioh4.1will yield only 400550. For actual instrumented execution,
however, both basic blocks starting from 400545 and 400a85Me encountered.

In order to solve this problem and exploit spatial localityhigher degree, our instant
profiling framework adopts affinity-based pre-populatibistead of just pre-populating the
software code cache with basic blocks containing samplegrpm counter, the framework
also instruments additional basic blocks close to thosie béscks. Starting from the basic
blocks found from program counter samples, it includes tlaadh targets of those basic
blocks. It discovers target basic blocks in a breadth-§iestrch-like manner to a pre-defined

depth.

4.5 Performance Evaluation

Instant profiling balances a tradeoff between informatind averhead. This balance
can be controlled with two parameters. The first parametefjlipg duration, controls
how long one profiling phase lasts. A longer profiling dunatiives more information, but
also incurs higher overhead. Moreover, it is possible thdtiwesers might feel intermittent

latency degradation during profiling phases. So we limififing durations to a few mil-

102

50X
45X

40X
35X
30X
25X
20X
15X
10X
5X
0X
o =
Q
[=
)
2
o
2
o
=]
<

liseconds at maximum. Another parameter that affects tbélipg overhead is profiling

Slowdown

403.gcc -

429.mct |

445 .gobmk -

462.libquantum .

amean [N

473.astar -

401.bzip2 |
web search .
bigtable

a64.n264ret | N

Figure 4.3: Overhead of edge profiling.

frequency. Considering datacenter applications’ longiimgp characteristics, our scheme
of profiling a very small portion of execution can yield arhiily low average computa-
tional overhead, while still giving meaningful profile datdince most of our benchmark
workloads run only for a few tens to hundreds of seconds, leweave set profiling fre-
guency relatively high — once in a few seconds at minimumhésé experiments, a pair of
profiling duration and frequency parameters sets how lomighanv often profiling is per-
formed. For example, the (2ms/4s) setting means profilicgmslucted for 2 milliseconds
for every 4 seconds. We compare results for (2ms/4s), (Bh9Ams/1s), (4ms/1s), and

(2ms/250ms).

103

profiling/fig/fulledge.eps

B 2ms/4s @ 1ms/1s [O2ms/1s B 4ms/is B 2ms/250ms

ﬂﬂﬂﬂﬂﬂﬂﬂﬂdﬂ

1.30
1.25
1.20
115
1.10
1.05
1.00
0.95
0.90

Normalized Execution Time

400.perlbench
401.bzip2
403.gcc
429.mcf
445.gobmk
462.libquantum
464.h264ref
473.astar

web search
bigtable
a.mean

Figure 4.4: Execution time overhead of the instant profilingframework across five configura-
tions of (duration / frequency).

B 2ms/4s B 1ms/1s O2ms/1s B 4ms/1s B 2ms/250ms

112
110
1.08
1.06
1.04

:ﬂnﬂunnnnﬂdﬂ

1.00
0.98
0.94

Normalized CPU Time

400.perlbench
401.bzip2
403.gcc
429.mcf
445.gobmk
462.libquantum
464.h264ref
473.astar

web search
bigtable
a.mean

Figure 4.5: Computational overhead of the instant profilingframework across five configu-
rations of (duration / frequency).

4.5.1 Experimental Configuration

All experiments are performed on a system with a 6-core Xeeln 2.67GHz processor
with 12,288KB L3 cache. The system has 12GB of memory andnising Linux kernel
version 2.6.32. We used gcc 4.4.3 to compile all binarieb wit3 optimization.

Instant profiling is evaluated using the SPEC CPU2006 imtegiechmark suite and two
proprietary datacenter application benchmarks. For tteCSEPU2006 benchmark suite,
the floating point benchmarks are omitted because they ginexhibit highly repetitive

behavior that is not as interesting from the perspectivedflpg. In addition, four integer

104

profiling/fig/walltime.eps
profiling/fig/cputime.eps

benchmarks are omitted because our prototype framework doeyet work for them.

The datacenter applications are web search and BigTa8leAlthough each experiment
presented is the average of three repeated trials, thérexsits some degree of variability
in performance and accuracy due to the non-determinisnedamsrandom starting points

of profiling and thread interleaving.

4.5.2 Edge Profiling

We choose edge profiling as a profiling client to demonstraetfectiveness of instant
profiling, since itis widely used and relatively simple tgadl@ment, but incurs considerable
overhead. Edge profiling is a traditional control flow praoigitechnique for profile-guided
optimization. It measures how many times each edge (braaasition) in control flow
graphs executes, and has been the basis of path-basedzegitoms that select hot paths.
Although edge profiling collects strictly less informatithran path profiling, Ballj] shows
that various hot path selection algorithms based on eddédgsavork extremely well in
most cases.

Figure4.3 presents the overhead of our edge profiling client, whennis on original
DynamoRIO without sampling. This naive implementation hitile tuning or optimiza-
tion, and its overheads are far larger than other optimizigg @rofiling techniquessf3).
Although there are opportunities for optimizing the clié@self, it is outside the scope of
this chapter and we demonstrate the effectiveness of ingtafiling by showing how it
performs even with a naively implemented experimentahtli€ince the tradeoff between

information and overhead is tunable with sampling pararegtedge profiling makes a

105

=& v/ pre-population == wj/o pre-population

3,500,000
3,000,000
2,500,000
2,000,000
1,500,000
1,000,000

500,000

Cumulative Number of Samples

0 g’
0 1 2 3 4 5 6 7 8 9

Sampling Phases

Figure 4.6: Effect of pre-populating a software code cache.

good test case because comparing edge profiles’ qualitylistudied.

4.5.3 Performance Overhead

The slowdowns caused by our instant profiling framework withedge profiling client
are shown in Figuré.4. They are calculated as the profiled execution time (walejim
divided by the native execution time. Figute also shows the computational overheads,
which is calculated with CPU time. For all configurationstéels the average slowdown
ranges from 1.4% to 5.9%, and the average computationaheadrranges from 0.6% to
2.9%.

The main trend that can be observed is that increasing sagmglie either by increasing
profiling duration or profiling frequency results in an inase in overhead. We chose pro-

filing frequency once in every 4 seconds at least, since a &wlmmarks only run about 30

106

profiling/fig/prepopulation.eps

M 2ms/4s @ 1ms/1s [02ms/1s B 4ms/1s B 2ms/250ms

aill il

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Profiling Accuracy

gcc
mcf

2 g
= i}
=) £
3 <

401.bzip2

403

429
445.gobmk
462.libquantum
464.h264ref
473.astar
web search

<
o
c
5]
f=
5]
Q
o
=]
<

Figure 4.7: Edge profiling accuracy of the instant profiling framework across five configura-
tions of (duration / frequency).

seconds. For real datacenter environments, howevergcagiphs usually run much longer
and there exist many instances of the same applicationmgrooincurrently. In production
environments, we can choose a much lower profiling frequandyexpect commensurately
lower overheads.

Although instant profiling can be tuned to impose very lowage computational over-
head, some of the configurations caused some benchmarksaasivn by up to 25%.
There are two major locations where instant profiling addsagrstructions. One is pro-
filing phases of every thread, but the durations of this tyjeecantrolled by the profiling
duration parameter. The other location is the shephertiegt, especially the profile data
summarizing phase. For the edge profiling client we usedhereixperiments, the shep-
herding thread summarizes and prints out profile data to afigk every profiling phase.
While this overhead can be hidden for most benchmarks sins@ot in the application’s
critical path, it can cause resource contention resultinglowdowns. Although it is not
yet clear, in our edge profiling case we think the resourcas dause the slowdown are

the data cache and load store queue. The two datacentecatis have larger working

107

profiling/fig/edge.eps

set size than SPEC benchmarks, and our edge profiling cteargrses edge counters after
every profiling phase. This increases the pressure on tlaecdahe. Also, we use atomic
increment instructions to modify edge counters for the datger benchmarks, since they
are highly multi-threaded and non-atomic increments caiseaata races on the counters
in this case. This can impose substantial contention orode $tore queue. As we can see
with the bars where profiling frequency is 4 seconds, howexan the overhead caused
by the resource contention of naively implemented profithgnts can be kept small with
proper parameter settings. Moreover, we expect this oaeriwvuld go further down with
practical profiling frequency in real datacenter environtse

We also examine how pre-populating a software code cacheedane latency degrada-
tion. Figure4.6 shows the cumulative number of samples with and withoupmeulation,
for the web search benchmark with the (4ms/1s) setting. Aseaobserved in the graph
with small slope phases, instrumentation overhead to pdgtie software code cache can
result in a small number of samples, and thus more latenaadatjon, for initial profiling
phases. Pre-populating a software code cache reduces egidddtion by decreasing the

software code cache miss rate.

4.5.4 Profiling Accuracy

The accuracy of the edge profiling client can be ascertaigensbimparing the sampled
profile with the profile collected with full instrumentatiofVe adopt a method similar to

Wall's weight matching schemé@§]. We define edge profiling accuracy as

(MaxError— Error)

Accuracy= MaxError

x 100(%) (4.1)

108

Error = zd | fregtun(€) — fredsampled€)| (4.2)

ecEdges

In the second equatiorfreqs(e) and fregsampied€) represent relative frequencies
of edgee in a fully instrumented profile and a sampled profile, respebt Relative fre-
guency is defined as the number of times that an edge is takelediby the number of
times any edge in the profile is taken. For the worst casetsastiere edges are biased the
opposite way, this error sums up to 2, definMgxError as 2.

The profiling accuracy of our instant profiling framework faige profiling is shown
in Figure4.7. For all configurations tested, the average accuracy ranges67-81%, and
many of the benchmarks achieve about 90% accuracy.

Despite many sources of noise, we can observe the generdidféncreasing accuracy
as profiling duration or profiling frequency increase. Therensamples the framework
collects, the closer the profile data gets to full instrura@anh.

This can also be seen in Figu4e8, which shows how the average accuracy changes
as the number of profiling phases increases for two datacapfdication benchmarks
with (2ms/250ms) parameter setting. In the graph, althabghcurves are not strictly
monotonic, we can see the accuracy generally goes up as amoes are collected.

Although the edge profile accuracy of our framework react@% %or many of the
benchmarks, some benchmarks such as BigTable and gcc shpwweaccuracy. The
main reason for the low accuracy is that our framework cowolidcollect enough samples
as the execution time of these benchmarks is too short. Bbdegacenter environments,

however, having low overhead is paramount and it can be ttmedllect profile data that

109

= bigtable == web search

100
90 en=
8o+
70
60
50
40
30
20
10

Cumulative Accuracy
--------.--.-.~

0 20 40 60 80 100 120 140
Sampling Phases

Figure 4.8: Asymptotic edge profiling accuracy.

would yield accuracy that is actionable with PGO.

4.6 Related Work

Inspired by the Digital Continuous Profiling InfrastruauDCPI) [3], Google-Wide
Profiling (GWP) B3] demonstrates continuous profiling is possible for dattereappli-
cations running with live traffic. Although GWP also collsgome lightweight callstack-
based profiles through specialized libraries, it mainlyesebn performance monitoring
units (PMU) supported by recent microprocesséf$ fo collect system-wide profiles with
low overhead. The types of profiles GWP collects, therefare,limited to the ones that
either PMUs support or can be collected with specializegtibs. Our work tries to extend
GWP for collecting more general profiles which can be gatherdy through instrumen-

tation. These types of profiles will enable more profile-gaidptimizations (PGO) by

110

profiling/fig/asymptotic.eps

providing profiles that can help figure out not only "what taiopze” but also "how to
optimize.”

Dynamic instrumentation tools such as DynamoRIG [Pin [67], and Valgrind [/ 8]
help instrument an application and collect general profikfull execution. Even for
simple profiles, however, the overhead of instrumentingraimezexecution is prohibitive
and infeasible to be deployed on datacenter applicatiamamg with live traffic.

One way to reduce the overhead of profiling is sampling, asraéinstrumentation
approaches have demonstrated. Among them, the ArnoldfRysigumentation frame-
work [6], implemented in the Jalapeno JVM, significantly lowergrimsentation overhead
by sampling bursts of execution. It creates two versiongaofhg@rocedure, one for checking
and the other for actual profiling. The checking version ¢simow many times it is exe-
cuted at procedure entries and loop back edges, and taanssiti the profiling version if the
counter reaches some pre-defined value. The profiling ecsilbects an intra-procedural
acyclic trace, resets the counter, and transitions badietctiecking version. Bursty Trac-
ing [44] extends the Arnold-Ryder framework for longer inter-pedaral traces and further
reduces the overhead with a few optimizations. In additRursty Tracing is applied to
IA32 binaries using the Vulcan binary rewriting tool, instieof Java bytecode.

Instant profiling is partially inspired by the Arnold-Rydeamework and Bursty Trac-
ing. Instead of instrumenting all execution for checkingwiver, it does not instrument
any code when it is not profiling. This is because even simpéeking instrumentation
imposes prohibitive overhead for datacenter applicati¢itgs example, even without any
profiling client, the Arnold-Ryder framework results iningnentation overhead of 6-35%,
and Bursty Tracing lowers it to 3-18%4]. On the other hand, instant profiling imposes

111

less than 10% of computational overhead with a naive imphtatien of edge profiling.
Unlike Arnold-Ryder or Bursty Tracing, moreover, instambfding will incur neither la-
tency degradation nor computational overhead while it ispmofiling. Also, instead of
managing a duplicate copy of every code region, instantlprgfonly JITs things it will
likely need. Ephemeral Instrumentations] also takes a similar sampling approach to
Bursty Tracing, but it is non-trivial to extend Ephemerasthumentation for many pro-
file types because it uses branch patching; only informati@iable at the branch can be
recorded and it is difficult to find extra registers for arehtures like x86. Conversely, in-
stant profiling is flexible and not limited to any specific pi®type. Finally, phase-guided
profiling techniquesd6] can help sampling-based profiling methods, includinganspro-
filing, maintain higher accuracy while keeping the overhiead

Another vein of previous work to reduce profiling overheatbisxploit parallelism for
profiling. As the micro-architectural trends move towardssigely multi-core processors,
Shadow Profiling T3] and SuperPing7] aim to leverage the abundance of extra hardware.
Shadow Profiling runs the original program uninstrumentegarallel with instrumented
slices to perform profiling. SuperPin uses a similar apgnphat tries to deterministically
replicate full execution by creating slices of executiotween each system call. They both
exploit modern kernels’ copy-on-write mechanism by fogkimew processes for profiling.
They significantly reduce the slowdown caused by profilimgsithe original process is
not instrumented. However, SuperPin is not deployabledtacknters as it at least doubles
resource contention, especially CPU utilization and mgrbandwidth. Also, virtualizing
fork for multi-threaded programs is very challenging to lempent robustly and their initial
implementations only support single-threaded programs.

112

PiPA [103 also exploits parallelism but in a different way. Insteddwoofiling in an
extra process, it performs profiling in the same thread tdypece compact profiles, and uses
multiple threads to pipeline processing and analyzing ofilerdata. PiPA is particularly
effective for the types of profiling that need complicatedtporocessing such as cache
simulation.

There have been suggested many techniques specializethtartgpes of profiling.
Ball [8] proposes techniques for path profiling. Caldét][suggests an optimization to
turn off profiling by realizing profile data is converging fealue profiling. Chilimbi P0]
proposes a compact representation for memory stream prdfilstant profiling is orthog-
onal to these profile-specific techniques including PiPA] trey can be used to further

improve the overhead.

4.7 Summary

We introduce instant profiling, a novel approach to redueetlerhead of instrumentation-
based profiling for datacenter applications. The techmgaris by executing instrumented
profiling code from a software code cache for only a short jagfiduration. For normal
execution phases, the original binary runs natively witlamy instrumentation. We further
avoid possible latency degradation for initial profilinggsies by pre-populating the code
cache. The prototype framework of instant profiling is baiittop of DynamoRIO, and it
is evaluated on the SPEC CPU 2006 integer benchmark suitenandiatacenter applica-
tion benchmarks. We show that the overhead of profiling im$eof both throughput and

latency can be kept to acceptable levels for continuouslipigf live datacenter appli-

113

cations. Furthermore, we have shown that sampling-basetthcous profiling can yield
asymptotically accurate profiling results with negligiblesrhead by collecting profile data

over many instances or a long time period.

114

CHAPTER 5

Conclusion

5.1 Summary

As power dissipation limits and design complexity have beeventing the semicon-
ductor industry from improving the performance of monatithrocessors, chip multipro-
cessors (CMPs) have grown into a standard to improve apiplicperformance. Since suf-
ficient thread level parallelism (TLB) is necessary to beriefim the computational power
provided by CMPs, most performance-conscious programfaeesincreasing pressure to
parallelize their programs.

For the most prevalent parallel programming model of shanechory multi-threaded
programs, synchronization operations such as mutexedjtmnvariables, and barriers,
play a critical role of enforcing the threads to interacthwetach other in the way the pro-
grammers intended. However, utilizing synchronizatioeragions in both correct and ef-
ficient way at the same time is extremely difficult, and progngers often make trade-offs

between the programmability and the efficiency of employygchronization operations.

115

In this dissertation, we investigated a set of solutionsiti@ease the programmability and
efficiency of concurrent programs by intelligently managinter-thread synchronization
dependencies.

In Chapter2, we presented practical lock/unlock pairing mechanisnCit@2++ which
helps concurrency bug detection tools and automated bug fim@rove correctness of con-
current programs. This mechanism combines static anaysigiynamic instrumentation
to identify critical sections. It first applies a conservatinter-procedural path-sensitive
dataflow analysis to pair up lock and unlocks. When the statalysis is not successful,
our method makes likely assumptions based on common hegyiand the assumptions
are checked at runtime using lightweight instrumentatifith the experiments on large
server programs, we proved our mechanism can pair up mdst &l unlocks with small
overhead incurred by the runtime check.

Chapter3 targeted improving performance and energy efficiency ofcaaent pro-
grams for performance asymmetric CMPs. Workload imbalariceasymmetric CMPs
cause more CPU cycles wasted for synchronizations. Wetige¢sd the elimination of
workload imbalances by relying on the hardware capabititgdcelerate individual cores
at a fine granularity. Dynamic Core Boosting (DCB), a sofevaardware cooperative
system, is suggested to accelerate critical paths formexyibghronization operations by
coordinating compiler, runtime, and processor architectin addition, we proposed ap-
plying per-core power gating to the idle cores blocked fancéyonization operations.
Our synchronization-aware per-core power gating scherak ggnificantly improve en-
ergy efficiency while minimizing the performance degragiathrough selective gating and
hinted prefetching.

116

Instant Profiling, a lightweight flexible profiling mechamghat could be used for the
other parts of the dissertation, is presented in Chaptdnstant Profiling maintains low
profiling overhead by combining instrumentation samplind dynamic binary translation.
It further reduces the latency degradation by pre-pomdadi software code cache. We
showed that meaningful profile data could be collected idpetion run with negligible
overhead.

This dissertation has introduced a number of novel teclasidqmintelligently managing
inter-thread synchronization dependencies. Althougkehechniques focused on various
aspects from correctness to performance and energy effycidmey are inspired by the
same observation that neither a static nor a dynamic appieaafficient. By applying the
theme of hybrid static/dynamic mechanism to managing symihation dependencies,
we explored the possibility of increasing programmabibiyd efficiency of concurrent

programs.

5.2 Future Work

As power dissipation and thermal constraints become pyirfi@ators to be considered
for microprocessor design, performance and energy eftigieannot be pursued indepen-
dently. In this dissertation, synchronization-aware agitacore boosting and per-core
power-gating are proposed for better performance and gmdiigiency, respectively. We
investigated them separately due to the limitations of @atluation methodologies.

A natural direction to extend this work is to apply both of thechanisms at the same

time. In such systems, a core can be in one of the three modesah boosted, and power-

117

gated. For simple cases, straightforwardly applying obestes might work well, i.e. crit-
ical threads are accelerated in boosted mode while noeairihreads are power-gated to
save energy. However, there could be cases where the twmssheonflict. For exam-
ple, reducing workload imbalances might eliminate the opputies to save energy with
power-gating. On the other hand, they could be sometimesygigtic. For instance, power-
gating idle cores could enable boosting more number of cginesltaneously. Therefore,
more sophisticated assignment algorithms are necessaapfidying both core boosting
and per-core power-gating. Furthermore, the policy musidoefully designed depending

on which attribute has higher priority.

118

BIBLIOGRAPHY

119

BIBLIOGRAPHY

[1] Dynamorio: Dynamic instrumentation tool platform -
http://dynamorio.org/home.htm®.3

[2] AMD. AMD Family 10h Server and Workstation Processor Power anerifial
Data SheetJune 2010. http://support.amd.com/us/Proce$sohnDocs/43374.pdf.
51, 76, 83

[3] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. hieger, S.-T. A. Leung,
R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. EilVeContinuous
profiling: Where have all the cycles gone?Rroc. of the 16th ACM Symposium on
Operating Systems Principlgsages 1-14, 1997.10

[4] A. Ansari, S. Feng, S. Gupta, J. Torrellas, and S. Mahlkesionist: Transforming
lightweight cores into aggressive cores on deman@rde. of the 19th International
Symposium on High-Performance Computer Architecioages 436—447, 20184

[5] The Apache HTTP Server Project, 201#.t p: / / ht t pd. apache. or g. 32

[6] M. Arnold and B. G. Ryder. A framework for reducing the tad instrumented
code. InProc. of the '01 Conference on Programming Language Desighlmple-
mentation pages 168-179, 20090, 111

[7] S.Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The iropaf performance asym-
metry in emerging multicore architectures Rroc. of the 32nd Annual International
Symposium on Computer Architectupages 506517, 20085, 83

[8] T.Balland J. R. Larus. Efficient path profiling. Froc. of the 29th Annual Interna-
tional Symposium on Microarchitectyneages 46-57, 19960, 113

[9] T. Ball, P. Mataga, and M. Sagiv. Edge profiling versushpatofiling: The show-
down. InConference Record of the 25th Annual ACM Symposium on Blascof
Programming Languagepages 134-148, 199805

[10] A. Bhattacharjee and M. Martonosi. Thread criticajiyedictors for dynamic per-
formance, power, and resource management in chip mulegsmes. IrProc. of the
36th Annual International Symposium on Computer Architegctpages 290-301,
2009.84

120

http://httpd.apache.org

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsechemark suite: Character-
ization and architectural implications. Rroc. of the 17th International Conference
on Parallel Architectures and Compilation Technigupages 72-81, 2008iii, 5,
6,49, 74

D. Bruening, T. Garnett, and S. Amarasinghe. An infiadure for adaptive dy-
namic optimization. IrProc. of the 2003 International Symposium on Code Gener-
ation and Optimizationpages 265-275, 20093

D. L. Bruening.Efficient, Transparent, and Comprehensive Runtime Codepgdan
lation. PhD thesis, Massachusetts Institude of Technology, 26p4. 41, 73, 90,
92,93 94,102 111

C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassistatiautomatic generation
of high-coverage tests for complex systems programsPréteedings of the 8th
USENIX Symposium on Operating Systems Design and Implatioenpages 209—
224,2008.39

Q. Cai, J. Gonzalez, R. Rakvic, G. Magklis, P. Chapaara A. Gonzalez. Meeting
points: Using thread criticality to adapt multicore hardevéo parallel regions. In
Proc. of the 17th International Conference on Parallel Atebtures and Compila-
tion Techniguespages 240-249, 20085

B. Calder, P. Feller, and A. Eustace. Value profiling aptimization. The Journal
of Instruction-Level Parallelispi, 1999.90, 113

T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Bxiplg the level of abstrac-
tion for scalable and accurate parallel multi-core simatet. InProc. of the 2011
International Conference on High Performance Computingiwérking, Storage
and Analysis (SCR011.74

F. Chang, J. Dean, S. Chemawat, W. C. Hsieh, D. A. WallktiBurrows, T. Chan-
dra, A. Fikes, and R. E. Gruber. Bigtable: A distributed atm system for structured
data. InProceedings of the 7th USENIX Symposium on Operating Sysesign
and Implementatiorpages 205-218, 200605

S. Cherem, L. Princehouse, and R. Rugina. Practical ongteak detection us-
ing guarded value-flow analysis. Proc. of the '07 Conference on Programming
Language Design and Implementatjgrages 480—491, 20010, 11, 41

T. M. Chilimbi. Efficient representation and abstracis for quantifying and ex-
ploiting data reference locality. IRroc. of the '01 Conference on Programming
Language Design and Implementatigmages 191-202, 200113

T. M. Chilimbi and M. Hirzel. Dynamic hot data stream fathing for general-
purpose programs. IRroc. of the ‘02 Conference on Programming Language De-
sign and Implementatigmpages 199-209, 20020

121

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

H. K. Cho and S. Mahlke. Dynamic acceleration of muhghded program critical
paths in near-threshold systems.Aroc. of the 2012 Workshop on Near-Threshold
Computing2012.8

H. K. Cho and S. Mahlke. Enbracing heterogeneity withayic core boosting. In
2014 Symposium on Computing Frontie2814.8

H. K. Cho, T. Moseley, R. Hank, D. Bruening, and S. Mahlkastant profiling:
Instrumentation sampling for profiling datacenter appiass. InProc. of the 2013
International Symposium on Code Generation and Optinomagiages 1-10, 2013.
8

H. K. Cho, Y. Wang, H. Liao, T. Kelly, S. Lafortune, and Blahlke. Practical
lock/unlock pairing for concurrent programs. HRroc. of the 2013 International
Symposium on Code Generation and Optimizatpages 1-12, 2013

T. M. Conte, B. A. Patel, and J. S. Cox. Using branch hiagdhardware to support
profile-driven optimization. IrProc. of the 27th Annual International Symposium
on Microarchitecturepages 12-21, 199489

P. Cousot and R. Cousot. Abstract interpretation: Aiadilattice model for static
analysis of programs by construction or approximation gidixts. InConference
Record of the 4th ACM Symposium on Principles of Programimamguagespages
238-252, 197739

M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitiegfam verification in poly-
nomial time. InProc. of the '02 Conference on Programming Language Desigh a
Implementationpages 57—-68, 20020, 11, 40, 41

I. Dillig, T. Dillig, and A. Aiken. Sound, complete anatalable path-sensitive anal-
ysis. InProc. of the '08 Conference on Programming Language Desighlenple-
mentation pages 270-280, 200&0, 40

R. G. Dreslinski. Near Threshold Computing: From Single Core to Many-Core
Energy Efficient ArchitecturesPhD thesis, University of Michigan, 20181, 52,
83

R. G. Dreslinski, B. Giridhar, N. Pinckney, D. Blaauw, Bylvester, and T. Mudge.
Reevaluating fast dual-voltage power rail switching dirge June 2012. In 10th
Annual Workshop on Duplicating, Deconstructing, and Déag (WDDD) in con-
junction with ISCA 39.51, 84

K. Een and N. Sorensson. An extensible sat-solver V& 2003.17, 22

A. E. Eichenberger and S. M. Lobo. Efficient edge proglior ilp-processors. In
Proc. of the 7th International Conference on Parallel Atelctures and Compilation
Techniquespages 294-303, 199805

122

[34] D. Engler and K. Ashcraft. Racerx: Effective, stati¢etdion of race conditions and
deadlocks. IrProc. of the 19th ACM Symposium on Operating Systems Plagcip
pages 237-252, 2008, 10, 32, 40, 41, 42

[35] S. Eyerman, K. D. Bois, and L. Eeckout. Speedup staadantifying scaling bot-
tlenecks in multi-threaded applications. Pnoc. of the 2012 IEEE Symposium on
Performance Analysis of Systems and Softwaages 145155, 2012, 5, 6

[36] S. Eyerman and L. Eeckhout. Fine-grained dvfs usingluip-regulators. ACM
Transactions on Architecture and Code Optimizati®fl), 2011.51, 83

[37] S. Eyerman, L. Eeckout, T. Karkhanis, and J. E. Smith. échanistic performance
model for superscalar out-of-order process@&GM Transactions on Computer Sys-
tems 27(2), 2009.72

[38] J. Ferrante, K. J. Ottenstein, and J. D. Warren. Thenaraglependence graph and
its use in optimizationACM Transactions on Programming Languages and Systems
9(3):319-349, July 198723

[39] S. R. Goldschmidt and J. L. Hennessy. The accuracy oétdhiven simulations of
multiprocessors. IProc. of the ‘93 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systepeges 146-157, 19931

[40] P. Greenhalgh. Big.little processing with arm corté & cortex-a7: Im-
proving energy efficiency in high-performance mobile patfis, Sept. 2011.
http://www.arm.com/files/downloads/big.LITTLENal.pdf. 45, 83

[41] B. Hackett. Type Safety in the Linux KernePhD thesis, Stanford University, Apr.
2011.41

[42] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMiilaAbstractions from
proofs. InConference Record of the 31st Annual ACM Symposium on Plasodf
Programming Languagepages 232—-244, 20040

[43] M. D. Hill and M. R. Marty. Amdahl’s law in the multicorera. IEEE Computer
41(1):33-38, 200883

[44] M. Hirzel and T. Chilimbi. Bursty tracing: A frameworlof low-overhead temporal
profiling. InIn 4th ACM Workshop on Feedback-Directed and Dynamic Opaimi
tion, pages 117-126, 20090, 111

[45] Z. Hu, A. Buyuktosunoglu, V. Srinivisan, V. Zyuban, Hacbbson, and P. Bose.
Microarchitectural techniques for power gating of exematuinits. InProc. of the
2004 International Symposium on Low Power Electronics aadi@n pages 32-37,
2004.52

[46] IBM. PowerPC 740/PowerPC 750 RISC Microprocessor User’'s Manl@299.89

123

[47] Intel Corporation.Intel Itanium 2 Processor Reference Manual: For Software De
velopment and OptimizatipiMay 2004.89

[48] Intel Corporation.Intel 64 and IA-32 Architectures Software Developer’'s Malnhu
volume 3B: System Programming Guide, PgriNdv. 2006.89, 110

[49] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Madsi. An analysis of
efficient multi-core global power management policies: Maxing performance
for a given power budget. IRroc. of the 39th Annual International Symposium on
Microarchitecture pages 347-358, Dec. 20083

[50] F. Ivancic, Z. Yang, M. K. Ganai, A. Gupta, and P. Asharffident sat-based
bounded model checking for software verificatidiheor. Comput. S¢i404(3):256—
274,2008.40

[51] K. Jeong, A. B. Kahng, S. Kang, T. S. Rosing, and R. StroMAPG: Memory
access power gating. Froc. of the 2012 Design, Automation and Test in Euyope
pages 1054-1059, 20133

[52] R. Jhala and R. Majumdar. Software model checkiAGM Comput. Sury41(4),
2009.10, 39

[53] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automatatbmicity-violation
fixing. In PLDI, 2011.9, 10, 42

[54] G.Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu. Automatszhcurrency-bug fixing.
In Proceedings of the 10th USENIX Symposium on Operatingr8y4design and
Implementationpages 221-246, 20122

[55] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt. Battek identification
and scheduling in multithreaded applications.2Bth International Conference on
Architectural Support for Programming Languages and OfiataSystemspages
223-234, 201283, 85

[56] P. G. Joisha, R. S. Schreiber, P. Banerjee, H.-J. BoamahD. R. Chakrabarti. A
technique for the effective and automatic reuse of clasmapiler optimizations
on multithreaded code. IROPL, 2011.10, 42

[57] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan,nill. Tullsen. Single-
ISA Heterogeneous Multi-Core Architectures: The Potérita Processor Power
Reduction. InProc. of the 36th Annual International Symposium on Micobéec-
ture, pages 81-92, Dec. 20035, 83

[58] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppd, lénl. Farkas. Single-
isa heterogeneous multi-core architectures for mult#tieel workload performance.
In Proc. of the 31st Annual International Symposium on Compéitehitecture
page 64, 200445, 83

124

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

C. Lattner and V. Adve. LLVM: A compilation framework fdifelong program
analysis & transformation. IRroc. of the 2004 International Symposium on Code
Generation and Optimizatigmpages 75-86, 20082

J. Leverich, M. Monchiero, V. Talwar, P. Ranganathamj &. Kozyrakis. Power
management of datacenter workloads using per-core powiagg&omputer Archi-
tecture Letters8(2):48-51, 200946, 52, 69, 81, 82

H. Li, S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy. f@eministic clock gating
for microprocessor power reduction. Rroc. of the 9th International Symposium on
High-Performance Computer Architectyumages 113-122, 20036

J. Li, J. F. Martinez, and M. C. Huang. The thrifty barri€Energy-aware syn-
chronization in shared-memory multiprocessorsPtac. of the 10th International
Symposium on High-Performance Computer Architectoage 14, 200485

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullseand N. P. Jouppi.
The McPAT framework for multicore and manycore architeeturSimultaneously
modeling power, area, and timingACM Transactions on Architecture and Code
Optimization 10(1), 2013.74

C. Liu, A. Sivasubramaniam, M. Kademir, and M. J. Irwiexploiting barriers
to optimize power consumption of cmps. Rroc. of the 19th Int’l Parallel and
Distributed Processing Symposiupage 5a, 200585

S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakecomprehensive study
on real world concurrency bug characteristics 16th International Conference on
Architectural Support for Programming Languages and OfiataSystemspages
329-339, 20084, 5

S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting atoity violations via access
interleaving invariants. 1i4th International Conference on Architectural Support
for Programming Languages and Operating Systgrmages 37-48, 2006, 9, 41

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loeywy, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building customized prograralgsis tools with
dynamic instrumentation. IRroc. of the '05 Conference on Programming Language
Design and Implementatioppages 190-200, 20081, 92,111

A. Lukefahr, S. Padmanabha, R. Das, F. Sleiman, R. is&g| T. Wenisch, and
S. Mahlke. Composite cores: Pushing heterogeneity intoe ¢oProc. of the 45th
Annual International Symposium on Microarchitectu2812.45, 84

D. Marino, M. Musuvathi, and S. Narayanasamy. Literadeffective sampling for
lightweight data-race detection. Froc. of the ‘09 Conference on Programming
Language Design and Implementatigrages 134-143, 20081

125

[70] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaahd W. mei W. Hwu. A
hardware-driven profiling scheme for identifying prograat 8pots to support run-
time optimization. InProc. of the 26th Annual International Symposium on Com-
puter Architecturepages 136-147, 19989

[71] T. Miller, R. Thomas, and R. Teodorescu. Mitigating gfeects of process variation
in ultra-low voltage chip multiprocessors using dual sypltages and half-speed
units. Computer Architecture Letteré1(2):45-48, 201283

[72] T. N. Miller, X. Pan, R. Thomas, N. Sedaghti, and R. Teedgu. Booster: Reac-
tive core acceleration for mitigating the effects of praceariation and application
imbalance in low-voltage chips. IRroc. of the 18th International Symposium on
High-Performance Computer Architectumages 1-12, 20128, 51, 52, 77, 83, 85

[73] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. PesBhadow profiling:
Hiding instrumentation costs with parallelism. Broc. of the 2007 International
Symposium on Code Generation and Optimizatiayges 198—-208, 20091, 112

[74] K. G. Murty. Linear Programming Wiley, 1983.60

[75] M. Musuvathi and S. Qadeer. lIterative context boundorgsystematic testing of
multithreaded programs. Froc. of the ‘07 Conference on Programming Language
Design and Implementatiopages 446—-455, 20039

[76] A. Muzahid, N. Otsuki, and J. Torrellas. Atomtracker:cAmprehensive approach
to atomic region inference and violation detection. RAroc. of the 43rd Annual
International Symposium on Microarchitectupages 287-297, 201@1

[77] MySQL: The World's Most Popular Open Source Database(122
http://ww. nysql.com 32

[78] N. Nethercote and J. Seward. Valgrind: A framework featnyweight dynamic
binary instrumentation. IRroc. of the ‘07 Conference on Programming Language
Design and Implementatippages 89-100, 20041, 92, 111

[79] OpenLDAP: Community Developed LDAP Software, 2012.
http://ww. openl dap. org. 32

[80] C. H. Papadimitriou and K. SteiglitZZombinatorial Optimization: Algorithms and
Complexity Dover Publications, 199&7

[81] E. Perelman, G. Hamerly, and B. Calder. Picking staadly valid and early simula-
tion points. InProc. of the 12th International Conference on Parallel Atebtures
and Compilation Techniquepage 244, 200371

[82] M. Prvulovic and J. Torrellas. Reenact: Using threaekl speculation mechanisms
to debug data races in multithreaded code®rbt. of the 30th Annual International
Symposium on Computer Architectupages 110-121, 20031

126

http://www.mysql.com
http://www.openldap.org

[83] G.Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundb@ke-wide profiling: A
continuous profiling infrastructure for data centelSEE Micro, 30(4):65-79, July
2010.88, 89, 110

[84] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and idekson. Eraser: A
dynamic data race detector for multithreaded progra®€M TOCS 15(4):391—
411, Nov. 19979, 10

[85] D. A. Schmidt. Data flow analysis is model checking oftads interpretations. In
Conference Record of the 25th Annual ACM Symposium on Blascof Program-
ming Languagespages 38-48, 19980

[86] A. Sembrant, D. Black-Schaffer, and E. Hagersten. Plyasded profiling for fast
cache modeling. I®roc. of the 2012 International Symposium on Code Generatio
and Optimizationpages 175-185, 201212

[87] J. Sevcik. Safe optimisations for shared-memory oorent programs. [#PLDI,
2011.10

[88] A. Silberschatz, P. B. Galvin, and G. Gagr@perating System Principles, 9th Edi-
tion. John Wiley and Sons, Inc, Indianapolis, IN, 20242.

[89] R. Singhal. Inside intel next generation nehalem nactbitecture, 2008.
http://software.intel.com/file/189762, 74

[90] B. Sprunt. Performance monitoring hardware will alwdye a low priority, sec-
ond class feature in processor design until.., Feb. 200%Vdrkshop on Hardware
Performance Monitors in conjunction with HPCA-189

[91] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Asterating critical
section execution with asymmetric multi-core architegsur In17th International
Conference on Architectural Support for Programming Laagges and Operating
Systemspages 253-264, 20083, 85

[92] R. Teodorescu and J. Torrellas. Variation-aware appbn scheduling and power
management for chip multiprocessors. Rroc. of the 35th Annual International
Symposium on Computer Architectupages 363—374, June 200, 83

[93] O. Traub, S. Schechter, and M. D. Smith. Ephemeralumséntation for lightweight
program profiling, 2000112

[94] K. Vaswani, M. J. Thazhuthaveetil, and Y. N. Srikant. Pfogrammable hardware
path profiler. InProc. of the 2005 International Symposium on Code Generaiil
Optimization pages 217-228, 20089

[95] C. A. Waldspurger and W. E. Weihl. Lottery schedulingeXble proportional-share
resource management. Broceedings of the 1st USENIX Symposium on Operating
Systems Design and Implementati®@94.63

127

[96] D.W. Wall. Predicting program behavior using real airasited profiles. IrProc. of
the '91 Conference on Programming Language Design and Im@iegation pages
59-70, 1991108

[97] S. Wallace and K. Hazelwood. Superpin: Parallelizingnamic instrumentation
for real-time performance. IRroc. of the 2007 International Symposium on Code
Generation and Optimizatigpages 209-220, 20091, 112

[98] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlk&adara: Dynamic dead-
lock avoidance for multithreaded programsPFroceedings of the 8th USENIX Sym-
posium on Operating Systems Design and Implementgiagyes 281-294, 2008,
10,12, 16,40

[99] Y. Wang, H. Liao, S. Reveliotis, T. Kelly, S. Mahlke, aBdLafortune. Gadara nets:
Modeling and analyzing lock allocation for deadlock aveida in multithreaded
software. InProc. of the 48th IEEE Conference on Decision and Confpalges
4971-4976, 200915

[100] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Guptae splash-2 programs:
Characterization and methodological considerationsPrbt. of the 22nd Annual
International Symposium on Computer Architecfyrages 24—36, 1995.

[101] A. Youssef, M. Anis, and M. Elmasry. Dynmaic standbgKage prediction for
leakage tolerant microprocessor functional unitsPtac. of the 39th Annual Inter-
national Symposium on Microarchitectyumages 371-384, 20062

[102] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. PasupatSherlog: error diag-
nosis by connecting clues from run-time logs.18th International Conference on
Architectural Support for Programming Languages and OfiataSystemspages
143-154, 201041

[103] Q. Zhao, I. Cutcutache, and W.-F. Wong. Pipa: Pipelipfiling and analysis on
multi-core systems. IRroc. of the 2008 International Symposium on Code Gener-
ation and Optimizationpages 185-194, 20083, 113

128

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Correctness Challenges
	Efficiency Challenges
	Contributions

	Practical Lock/Unlock Pairing
	Introduction
	Background and Motivation
	Gadara
	Challenges for Lock/Unlock Pairing

	Static Lock/Unlock Pairing Analysis
	Simple Example of Analysis Flow
	Mapping Lock to Set of Corresponding Unlocks
	Path Condition Calculation
	Checking Lock/Unlock Pairing
	CFG Pruning

	Inter-procedural Analysis
	Proximity-based Callgraph Partitioning
	Extending Lock/Unlock Pairing for Inter-procedural Analysis

	Dynamic Checking
	Checking Lock-to-Unlocks Mapping
	Checking Semiflow Property

	Experimental Results
	Effectiveness of Static Analysis
	Runtime Overhead of Dynamic Checking
	Assumption Violation

	Related Work
	Summary

	Dynamic Core Boosting and Per-Core Power Gating
	Introduction
	Motivation and Background
	Low Utilization of Asymmetric CMPs
	Core Boosting
	Per-Core Power Gating

	Core Boosting Assignment
	Modeling and Problem Formulation
	Assignment for Data Parallel Programs
	Assignment for Pipeline Parallel Programs

	Synchronization-Aware Dynamic Core Boosting
	System Overview
	DCB Architecture
	DCB Compiler
	DCB Runtime Subsystem

	Synchronization-Aware Per-Core Power Gating
	Operating System Support
	Profiling-based Selective Power Gating
	Wakeup Hint and Prefetching

	Evaluation Methodology
	DBT-based Performance Evaluation
	Evaluation of Energy Saving

	Experimental Results
	Accuracy of DBT-based Performance Evaluation
	DCB Performance Improvement
	Energy Saving of Synchronization-Aware Power Gating

	Related Work
	Performance Asymmetry in CMPs
	Dynamic Adaptation of Core Performance
	Thread Criticality Assessment

	Summary

	Instrumentation Sampling for Lightweight Profiling
	Introduction
	Background
	Dynamic Binary Instrumentation
	Overview of DynamoRIO

	Instrumentation Sampling
	Context Switch
	Temporal Unlinking and Relinking of Fragments
	Multi-threaded Programs
	Summarizing Profile Data

	Pre-populating Software Code Cache
	Finding Basic Block Headers
	Affinity-based Pre-population

	Performance Evaluation
	Experimental Configuration
	Edge Profiling
	Performance Overhead
	Profiling Accuracy

	Related Work
	Summary

	Conclusion
	Summary
	Future Work

	BIBLIOGRAPHY

