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ABSTRACT

INTELLIGENT MANAGEMENT OF INTER-THREAD

SYNCHRONIZATION DEPENDENCIES FOR CONCURRENT PROGRAMS

by

Hyoun Kyu Cho

Chair: Scott Mahlke

Power dissipation limits and design complexity have made the microprocessor industry

less successful in improving the performance of monolithicprocessors, even though semi-

conductor technology continues to scale. Consequently, chip multiprocessors (CMPs) have

become a standard for all ranges of computing from cellular phones to high-performance

servers. As sufficient thread level parallelism (TLP) is necessary to exploit the computa-

tional power provided by CMPs, most performance-aware programmers need to parallelize

their programs.

For shared memory multi-threaded programs, synchronization mechanisms such as mu-

texes, barriers, and condition variables, are used to enforce the threads to interact with each

other in the way the programmers intended. However, employing synchronization oper-
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ations in both correct and efficient way at the same time is extremely difficult, and there

have been trade-offs between programmability and efficiency of using synchronizations.

This thesis proposes a collection of works that increase theprogrammability and effi-

ciency of concurrent programs by intelligently managing the synchronization operations.

First, we focus on mutex locks and unlocks. Many concurrencybug detection tools and au-

tomated bug fixers rely on the precise identification of critical sections guarded by lock/unlock

operations. We suggest a practical lock/unlock pairing mechanism that combines static

analysis with dynamic instrumentation to identify critical sections in POSIX multi-threaded

C/C++ programs. Second, we present Dynamic Core Boosting (DCB) to accelerate crit-

ical paths in multi-thread programs. Inter-thread dependencies through synchronizations

form critical paths. These critical paths are major performance bottlenecks for concurrent

programs, and they are exacerbated by workload imbalances in performance asymmetric

CMPs. DCB coordinates its compiler, runtime subsystem, andarchitecture to mitigate such

performance bottlenecks. In addition, we propose exploiting synchronization operations

for better energy efficiency through dynamic power management, while maintaining per-

formance. Finally, combining instrumentation sampling with dynamic binary translation is

suggested for low overhead profiling.

Although the works presented in this thesis address a variety of issues related to syn-

chronizations from correctness to performance and energy efficiency, they are all inspired

by the same observation that neither a static nor a dynamic approach is sufficient for intel-

ligent management of synchronizations. Based on this observation, we combine compiler

techniques to analyze programs without burdening the execution of programs and runtime

techniques to adjust the execution with more accurate information. By applying this theme

xii



of hybrid static/dynamic mechanism to managing synchronization dependencies, we ex-

plore the possibility of increasing programmability and efficiency of concurrent programs.

xiii



CHAPTER 1

Introduction

The semiconductor industry continues to scale down the sizeof individual transistor ac-

cording to Moore’s law. Increasing clock frequencies and exploiting instruction level par-

allelism (ILP) have been the main methodologies to turn the technology scaling into appli-

cation performance gains for more than four decades. In recent years, however, CPU clock

frequencies have flattened out due to power dissipation and thermal constraints. Similarly,

design complexity and verification issues inhibit computerarchitects from exploiting more

ILP. For these reasons, improving the performance of monolithic processors has become

less successful, and chip multiprocessors (CMPs) have grown into a mainstream paradigm

to improve application performance with the increased transistor counts, for all ranges of

computing from cellular phones to high-performance servers. Since CMPs require suffi-

cient thread level parallelism (TLP) to benefit from the provided computing power, most

performance-conscious programmers face increasing pressure to parallelize their programs.

In shared-memory multi-threaded programs, which is the most prevalent programming

model for CMPs, threads communicate with each other by reading from and writing to the

1



shared memory. The value read from the shared memory changesdepending on the order of

memory accesses to the location, and the order of memory accesses is decided according to

the interleaving of threads. Therefore, controlling the thread interleaving is very important

for making multi-threaded programs work in correspondencewith the original intention,

and programmers limit the legal interleavings of threads using synchronization operations

such as mutexes, barriers, and condition variables.

While synchronization operations play an important role for multi-threaded program-

ming by enforcing the threads to interact with each other in the way that the programmers

intended, employing them in both correct and efficient way atthe same time is very diffi-

cult. Faulty employment of synchronizations can result in errors (atomicity violations and

order violations) or nontermination (deadlock). Such defects are collectively called con-

currency bugs, and they are significantly more difficult to detect and fix than other types of

bugs because they only manifest depending on specific threadinterleavings.

Naı̈ve placement of synchronization operations can also cause overly serialized execu-

tions. Synchronization operations sometimes can block theexecution of threads and make

them to wait until some conditions are satisfied. This blocking is necessary to prohibit

illegal thread interleavings. However, blocking also limits the concurrency of parallel pro-

grams. If blocking is enforced more than necessary, it can bea performance bottleneck.

Eyerman et al. [35] investigates a number of parallel benchmarks and discovers that syn-

chronizations is the primary roadblock that prohibits the most number of benchmarks from

scaling to many threads.

Programmers often make trade-offs between the programmability and the efficiency for

employing synchronization operations. Since the fundamental purpose of synchronizations

2



is to limit a set of undesired thread interleavings, the moreinterleavings are prohibited, the

more likely they cover all intended illegal thread interleavings. At the same time, however,

larger set of illegal interleavings means higher possibility of blocking, limiting the concur-

rency of the execution. This trade-off can be seen in the familiar example of coarse-grained

locking and fine-grained locking. Coarse-grained locking uses less number of mutexes and

guards larger region of code with locks and unlocks. It is easier to use because it guarantees

more atomicity and it is less prone to deadlocks. On the otherhand, fine-grained locking is

usually better for performance scaling because it serializes the execution less.

This thesis studies a collection of mechanisms that increase the programmability and

efficiency of concurrent programs, without the intervention of programmers, by intelli-

gently managing the synchronization operations. First, wefocus on mutex locks and un-

locks. Many concurrency bug detection tools and automated bug fixers rely on the precise

identification of critical sections guarded by lock/unlockoperations. We suggest a practical

lock/unlock pairing mechanism that combines static analysis with dynamic instrumentation

to identify critical sections in POSIX multi-threaded C/C++ programs. Second, we present

Dynamic Core Boosting (DCB) to accelerate critical paths inmulti-thread programs. Inter-

thread dependencies through synchronizations form critical paths. These critical paths are

major performance bottlenecks for concurrent programs, and they are exacerbated by work-

load imbalances in performance asymmetric CMPs. DCB coordinates its compiler, runtime

subsystem, and architecture to mitigate such performance bottlenecks. Finally, we propose

exploiting synchronization operations for better energy efficiency through dynamic power

management, while maintaining performance.

In the following sections, the synchronization-related challenges for the programmabil-

3



ity and efficiency of concurrent programs are discussed. Next, we present our contribution

for intelligent management of inter-thread synchronization dependencies. Finally, we de-

scribe the organization of this thesis.

1.1 Correctness Challenges

The foremost source that makes it so difficult to write correct concurrent programs is

concurrency bugs. Concurrency bugs are synchronization defects allowing thread interleav-

ings that are not expected by the programmers. They result indata corruption (atomicity

violations and order violations) or nontermination (deadlock). They often survive thorough

testing and introduce fatal errors in production, because they do not manifest very well de-

pending on thread interleavings. In this section, we introduce the most common types of

concurrency bugs [65].

Deadlocks: Synchronizations operations sometimes let threads wait for some conditions

that must be satisfied by other threads, and these relations form inter-thread dependen-

cies. If there exists a cycle of inter-thread dependencies,the set of involved threads cannot

progress and the execution is said to be in a deadlock [88].

Atomicity Violations: Atomicity is a guarantee of isolation from different threads. If the

data manipulation effect of a set of operations from one thread appears to be equivalent

to that of a serial execution without intervention from other threads, the set of operations

is told to bear atomicity. Programmers frequently expect atomicity of operations. For in-

stance, consider the case where a counter variable needs to be incremented. It will consist of

4



three operations: load from the variable, increment, and store to the variable. These opera-

tions need to execute atomically, or the counter might have an unexpected value. Atomicity

is usually enforced by mutex synchronizations. If the atomicity intention of a programmer

is not satisfied by the actual implementation, it is called atomicity violation [66].

Order Violations: Programmers also expect certain orders among operations. For ex-

ample, pointer dereferencing needs to occur after the allocation to the pointer but before

freeing the pointer. Similarly, processing data is expected to happen after partitioning the

input, followed by summarizing the results. Such orders areoften placed with condition

variables or barriers. If the programmer fails to enforce the order expectations, an order

violation occurs [65].

1.2 Efficiency Challenges

Synchronizations are prone to become a performance bottleneck for multi-threaded pro-

grams since they limit concurrency. Naı̈ve placement of them can overly serialize the exe-

cutions. Eyerman et al. [35] studies the scaling bottlenecks of PARSEC [11] and SPLASH-

2 [100] benchmarks, and identifies that synchronizations are the primary bottleneck for the

largest number of benchmarks. In this section, we confirm thefact with some preliminary

experiments on a machine with 32 cores.

Figure1.1shows the speedups of a subset of PARSEC [11] benchmarks with different

number of threads normalized against their single thread execution. Ideally, an application

that scales perfectly has to show the speedup equal to the number of threads. As can be
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Figure 1.1: Speedup of PARSEC [11] benchmarks with varying number of threads compared
to single thread executions.

seen, the benchmarks possess varying amount of scalability. While some programs such as

blackscholesandcannealscale pretty close to the ideal, others likestreamclusteror facesim

do not scale very well. Regardless of whether they scale wellor not, all of them show less

performance improvement per thread as the number of threadsincreases.

We focus on how much processor time is wasted waiting for synchronization oper-

ations including mutex locks, condition variable waits, and barrier waits. We intercept

every Pthread library calls by overloadingLD PRELOAD environment variable in Linux

and measure waiting time for each operation. Figure1.2depicts the portion of time spent

for synchronization. Comparing Figure1.2 with Figure1.1, we can see the benchmarks

that spend more time for synchronization do not scale very well, which support the previ-

ous findings of Eyerman et al. [35]. Furthermore, this shows the potential of performance

improvement if we can reduce the time spent for synchronization operations.

6
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Figure 1.2: CPU cycles spent blocked for synchronization operations.

1.3 Contributions

Although the works presented address a variety of differentissues related to synchro-

nizations from correctness to performance and energy efficiency, they are motivated by one

observation that neither a static nor a dynamic approach is sufficient for intelligently man-

aging synchronizations. Based on such observation, we combine compiler techniques and

runtime techniques to increase programmability and efficiency of concurrent programs. In

particular, the main contributions offered in this dissertation are as follows:

• First, practical lock/unlock pairing mechanism for C/C++ is presented. This mech-

anism combines static analysis and dynamic instrumentation to identify critical sec-

tions in POSIX multi-threaded programs. It first applies a conservative inter-procedural

path-sensitive dataflow analysis to pair up all lock and unlock calls. When the static

analysis fails, our method makes likely assumptions about the pairing using common

heuristics. These assumptions are checked at runtime usinglightweight instrumenta-

7
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tion [25].

• The second part of this dissertation proposes Dynamic Core Boosting (DCB), a

software-hardware cooperative system that accelerate critical paths formed by inter-

thread synchronization dependencies. DCB coordinates itscompiler, runtime sub-

system, and architecture for near-optimal assignment of core boosting. The com-

piler instruments the program with instructions to give progress hints and the run-

time subsystem monitors their execution, enabling the DCB architecture to assign a

core boosting budget for better performance. Improving energy efficiency through

synchronization-aware per-core power gating is also presented [22, 23].

• The third part presents Instant Profiling, a lightweight flexible profiling mechanism

used for the other parts of the dissertation. Instant profiling maintains low overhead

with instrumentation sampling technique using dynamic binary translation. Instead

of instrumenting the entire execution, instant profiling periodically interleaves na-

tive execution and instrumented execution according to configurable profiling dura-

tion and frequency parameters. It further reduces the latency degradation by pre-

populating a software code cache [24].

The rest of this dissertation is organized as follows. Chapter 2 introduces the practical

lock/unlock pairing mechanism. The Dynamic Core Boosting and synchronization-aware

per-core power gating is described in Chapter3. Instrumentation sampling for lightweight

flexible profiling is presented in Chapter4. Finally, Chapter5 concludes the dissertation.
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CHAPTER 2

Practical Lock/Unlock Pairing

2.1 Introduction

Most performance-aware programmers are experiencing evergrowing pressure to par-

allelize their programs because uniprocessor performancehas flattened out and multicore

processors promise more cores in each successive hardware generation. Parallel program-

ming, however, remains a daunting task for a variety of reasons. First of all, reasoning

about concurrent events and synchronization is inherentlychallenging for human program-

mers, who think sequentially. In addition, concurrency bugs such as deadlocks, data races,

and atomicity violations require global knowledge of the program. Finally, the nondeter-

ministic execution of parallel programs makes these bugs hard to detect, reproduce, and

fix.

There has been much effort to relieve the burden of parallel programming. For exam-

ple, many automatic concurrency bug detection tools have been developed [84, 34, 66].

Automated bug fixing tools are also available [98, 53]. In addition, researchers are explor-
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ing ways to adapt classical compiler optimization techniques for sequential programs to

parallel programs [56, 87].

if ( x )

lock(L);

...

if ( x )

unlock(L);

Figure 2.1: Infeasible path example

The aforementioned techniques often rely on

or benefit from precise lock usage information,

which is very difficult to obtain for languages

without lexically scoped critical sections. For

instance, static bug detection tools usinglockset

analysis[84] must map each statement to the set

of locks held by the thread of execution. Infeasible paths such as the one illustrated in

Figure2.1 are a major source of false positives [34]. Automated bug fix tools often add

locks to avoid deadlock [98] or restore atomicity [53], which may introduce new deadlocks

if the usage of existing locks is unknown. Finally, it is wellknown that many compiler

optimization techniques cannot be directly applied to concurrent programs [87]. Currently

compilers only optimize code sections that do not involve any lock operation, which can be

quite conservative [56]. Correct identification of critical sections allows better optimization

for concurrent programs.

Numerous static analysis approaches have been developed and many can be adapted to

infer critical sections. In general, model checking based tools are precise but do not scale to

practical programs [52], while scalable tools using specially designed algorithms are often

imprecise [28, 19, 29]. For example, Saturn [29] is a scalable static analysis engine that is

both sound and complete with respect to the user-provided analysis script. Writing a script

that is sound and complete with respect to the target program, however, is as difficult as

writing an analysis engine itself. The lock analysis scriptbundled with Saturn is neither

10



sound nor complete, most notably because it lacks global alias analysis.

In this chapter, we propose a practical lock/unlock pairingmechanism that combines

dataflow analysis with dynamic instrumentation. Our interprocedural path-sensitive dataflow

analysis is a variant of existing tools [28, 19]. It conservatively identifies lock acquisition

and release pairs. When the analysis is uncertain, we use heuristics such as those based

on structure types and location proximity to determine the pair. Finally, we instrument the

target program with light-weight checking instructions tomonitor whether the pairing is

correct at run-time. When a violation occurs, feedback information is provided to revise

the pairing.

This chapter makes several contributions. We present a static lock/unlock pairing anal-

ysis algorithm which yields accurate results in most cases.We develop a lightweight

dynamic checking mechanism to ensure our analysis is correct. We demonstrate the ef-

fectiveness of our lock/unlock pairing mechanism including both static analysis and dy-

namic checking with real-world multithreaded programs such as OpenLDAP, Apache, and

MySQL.

The remainder of the chapter is organized as follows. We firstpresent the challenges

with motivating examples in Section2.2. Next, Section2.3 describes how our static

lock/unlock pairing analysis works, and Section2.4 discusses how to extend the analy-

sis for inter-procedural cases. We explain the dynamic checking mechanism in Section2.5.

Section2.6presents the experimental results and Section2.7outlines related work. Finally,

we summarize the contributions and conclude in Section2.8.
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Benchmarks Number of Annotations
OpenLDAP 90

MySQL 71
Apache 19

Table 2.1: Number of annotations needed to model

2.2 Background and Motivation

While our approach can help any tool that needs accurate static information about criti-

cal sections, we show its effectiveness in the context of deadlock avoidance. In this section,

we briefly provide some background on dynamic deadlock avoidance in Gadara [98] and

explain what kind of challenges exist for lock/unlock pairing.

2.2.1 Gadara

Gadara is a tool that enables multithreaded programs to avoid circular-mutex-wait dead-

locks at runtime. The basic idea is to intelligently postpone lock acquisition attempts when

necessary to ensure that deadlock cannot occur. It proceedsin the following phases. First,

Gadara constructs a Petri net model from program source codeusing compiler techniques.

Based on structural analysis of the model, Gadara synthesizes feedback control logic for

each structural construct in the model that contributes to apotential deadlock. Finally, it

instruments the control logic into the target program.

Given that the model is correct, Gadara automatically synthesizes maximally permis-

sive controllers that delay lock acquisitions only if the program model indicates that dead-

lock might later result if the lock were granted immediately. Due to lack of accurate in-

formation about critical sections, however, Gadara’s program analysis or control synthesis
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could fail. In such cases, Gadara requires programmers to provide annotations. These an-

notations specify which unlocks match and that no mutex can be held at certain program

points. Table2.1 shows the number of annotations needed to model the benchmarks for

Gadara. Providing annotations can be tedious, difficult, and error-prone even for program-

mers familiar with both the target program and Gadara.

2.2.2 Challenges for Lock/Unlock Pairing

This subsection discusses the major challenges that a static lock/unlock pairing analysis

should address in order to model programs accurately in the context of deadlock avoidance.

We illustrate the challenges via simplified code examples.

2.2.2.1 Infeasible Path

One of the challenges for static lock/unlock pairing is the ambiguity caused by infea-

sible paths. The traditional way in which compilers abstract programs’ control path is to

represent programs with control flow graphs (CFGs). Each vertex in a CFG represents a

basic block and each edge corresponds to a branch from one basic block to another. Thus,

a sequence of basic blocks connected with edges in a CFG represents a control path. Not

all sequences, however, are actually possible control paths in program execution; some are

infeasible paths.

Infeasible paths are a challenge for lock/unlock pairing because there can be cases

where a lock is paired up with unlocks for all feasible paths but not paired up for some

infeasible paths. This can be seen in the example of Figure2.2(a). If we assume the value

of variableflag is not changed throughout the snippet, all the branches corresponding
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1 : if (flag) lock(node->mutex);
2 : while (condition) {
3 : ...
4 : if (flag) unlock(node->mutex);
5 : ...
6 : node = node->next;
7 : ...
8 : if (flag) lock(node->mutex);
9 : ...
10: }
11: if (flag) unlock(node->mutex);

(a)

1 : void callee(task *ptr) {
2 : unlock(ptr->mutex);
3 : ...
4 : lock(ptr->mutex);
5 : }
6 :
7 : void caller(task *ptr) {
8 : lock(ptr->mutex);
9 : ...
10: callee(ptr);
11: ...
12: unlock(ptr->mutex);
13: }

(b)

1 : lock(parent->mutex);
2 : ...
3 : if (condition1) {
4 : lock(child->mutex);
5 : ...
6 : unlock(child->mutex);
7 : }
8 : ...
9 : unlock(parent->mutex);

(c)

Figure 2.2: Challenges for lock/unlock pairing
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to theif statements should follow the same direction. However, a naive static analysis

would consider all possible combinations of branch directions, if it cannot correlate branch

conditions. Another example of infeasible path is infinite loops, since we can assume

a finite number of iterations for all reasonable executions.In the same example, if the

analysis considers the infinite loop, the lock of line 8 mightnot be paired up.

This challenge is especially problematic for Gadara, whosemodels must have the semi-

flow property [99]. Intuitively, the semiflow property means that a mutex acquired by a

thread should be released later in the model. It is not alwayssatisfied, however, if we di-

rectly translate the CFG to a Gadara model due to the infeasible path problem as described

above. The semiflow property is one of the most important characteristics of Gadara mod-

els, and it is the main reason why accurate lock/unlock pairing is important in the context

of deadlock avoidance.

2.2.2.2 Spanning Function Boundaries

Another challenge arises from the fact that locks and unlocks need not reside in the

same function. For widely used concurrent programs, it is not rare for locks and unlocks to

span multiple levels of call chains. If a lock/unlock pairing analysis operates only within

function boundaries it is not possible to pair up such cases.

Figure2.2 (b) illustrates such a case. An intra-procedural lock/unlock pairing analysis

would conclude that the lock in functioncaller() is paired up inside the function and

the lock in functioncallee() is not paired up. However, actually the lock in line 8 is

paired up with the unlock in line 2 and the lock in line 4 is paired up with the unlock in

line 12, in this calling context.
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It gets even more complicated since there can be many callingcontexts. Gadara models

function calls by substituting into the call site a copy of the callee’s Petri net model [98],

thus the model of one function can be analyzed differently depending on the calling con-

texts. Therefore, in order to handle this kind of cases, the lock/unlock pairing analysis

should be inter-procedural and context-sensitive.

2.2.2.3 Pointers

Imperfect pointer analysis imposes another challenge. Mutex variables are usually

passed to lock/unlock functions via pointers. Since only locks and unlocks on the same

mutex variable pair up, it is important to figure out which lock pointers point to the same lo-

cation and which pointers do not. As widely known, however, even state-of-the-art pointer

analyses cannot provide perfect information. For some cases, they can only conservatively

tell that two pointersmayalias.

Figure2.2(c) illustrates how pointers can cause problems for lock/unlock pairing anal-

ysis. Assume that the pointer analysis concludes that the pointerparent andchildmay

alias, which is the normal case for heap variables. In this case, although it is reasonable for

a human programmer to pair up the lock in line 1 and the unlock in line 9, it is not trivial

for a static analysis to reach the same conclusion.

In order to model concurrent programs accurately, the lock/unlock pairing analysis

should work well under such circumstances with imperfect information about pointers. Fur-

thermore, Gadara conservatively approximates mutex pointers based on types [98]. More

specifically, it models the mutexes accessed by pointers, which are enclosed in the same

type of structure, as one resource place. The lock/unlock pairing analysis can relieve the
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impact of this kind of approximation.

2.3 Static Lock/Unlock Pairing Analysis

In Sections2.3and2.4, we discuss how our static analysis pairs up locks and unlocks

to cope with the challenges described in the previous section. Section2.3 first covers the

detailed steps for intra-procedural cases and we show how toextend it for inter-procedural

cases in Section2.4.

Our static lock/unlock pairing analysis is carried out in four steps. First, the analyzer

extracts an enhanced control flow graph (CFG) from source code and prunes it. This CFG is

augmented with information about function calls and branchconditions. It prunes the CFG

for computational efficiency, leaving only relevant branches. Second, it maps each lock to

a set of corresponding unlocks through dataflow analysis traversing the CFG in a depth first

manner while managing lock stack data structures. Third, itcalculates Boolean expressions

that express the conditions under which each lock and unlockis executed. Finally, using a

SAT solver [32], it examines whether all locks are paired up with unlocks onevery feasible

path. Section2.3.1shows how the analysis works with a simple example, then the rest of

the section describes each of these steps in detail.

2.3.1 Simple Example of Analysis Flow

This section presents the conceptual flow of our lock/unlockpairing analysis with a

simple example in Figure2.3. In this example, the mutex acquired by the lock in line 3 is

always released before the functionhandle task() returns by either the unlock in line 7
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1 : int handle_task(task *job) {
2 : if(job->has_mutex)
3 : lock(job->mutex);
4 : if(job->is_special) {
5 : // Handle special case
6 : if(job->has_mutex) {
7 : unlock(job->mutex);
8 : return result;
9 : }
10: }
11: //Handle normal cases
12: if(job->has_mutex)
13: unlock(job->mutex);
14: return result;
15: }

Figure 2.3: Simple example of lock/unlock pairing.

or the unlock in line 13. However, directly translating the CFG of this example to Petri net

violates the semiflow property due to infeasible paths as described in Section2.2.2. Our

analysis rules out the infeasible paths and gives accurate lock/unlock pairing results through

the following process.

After pruning the CFG, the corresponding unlock set mappingdecides that both the

unlock in line 7 and the unlock in line 13 can release the mutexacquired by the lock

in line 3. Then, the path condition calculation step determines the Boolean expressions

that represent path conditions for each lock and unlock. In this example, path condition

( job→ has mutex6= 0) must be true for the lock to be executed. Similarly, the unlock in

line 7 has( job→ is special6= 0) ∧ ( job→ hasmutex6= 0), and the unlock in line 13 has

( job→ is special= 0) ∧ ( job→ hasmutex6= 0) as their path conditions. The analysis

then translates them into Boolean expressions by assigninga Boolean variable to each

branch condition. In order to encode the branch correlations into the expressions, this

assignment process assigns the same Boolean variable to branch conditions that must have

the same value. As a result, the Boolean expression of the lock is (x1), and the unlock in
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1 : // Apply analysis to all functions
2 : void traverse_function(fn)
3 : // Traverse CFG to calculate GEN and KILL sets
4 : traverse_bb(entry);
5 : for(each lock discovered)
6 : corresponding_unlocks[lock]
7 : = GEN[lock] - KILL[lock];
8 : end
9 :
10: // Compute GEN and KILL sets for all locks traversing
11: // CFG in a depth first manner while managing lock
12: // stack data structure
13: void traverse_bb(bb)
14: for(each instruction s in bb in order)
15: if(s is a lock)
16: push s to lock stack;
17: else if(s is an unlock)
18: top = top element of lock stack;
19: add s in GEN[top];
20: for(each element e in lock stack, e!=top)
21: add s in KILL[e];
22: pop from lock stack;
23: for(each successor child of bb)
24: traverse_bb(child);
25: end

Figure 2.4: Finding unlock set corresponding to lock

line 7 and the unlock in line 13 receive(x2∧x1) and(¬x2∧x1), respectively.

The final step of the analysis is to check whether the lock and the corresponding unlocks

pair up for all feasible paths. This can be done by determining whether the statement

“if the path condition for the lock is true, then the disjunction of the path conditions for

corresponding unlocks is true” is always true or not. In thisexample, the statement is

interpreted as the Boolean expression(¬x1)∨ (x2∧x1)∨ (¬x2∧x1). In order to verify if it

is always true, we apply a SAT solver on the negation of the Boolean expression. If it is

unsatisfiable, then the statement is always true, and the lock and the corresponding unlocks

are paired. Otherwise, they are not paired up. In this example, the negation of the Boolean

expression is unsatisfiable and the lock is paired up with theunlock in line 7 and line 13.
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2.3.2 Mapping Lock to Set of Corresponding Unlocks

Before applying the infeasible path analysis, this step groups corresponding locks and

unlocks. More specifically, it maps a set of corresponding unlocks to each lock. We say an

unlock corresponds to a lock if it can release the mutex acquired by the lock on any path.

Since the mutex acquired by a lock can be released at different program points, we map a

set of corresponding unlocks and not just a single unlock. This step is necessary because

the same mutex can be acquired and released multiple times.

This analysis algorithm traverses the CFG in a depth first manner while managing a

stack of locks for each mutex. The core analysis algorithm isgiven in Figure2.4. Although

we only show it for one mutex in this version, the actual analysis simultaneously works on

all mutexes.

The underlying idea is to add an unlock to the corresponding unlock set of a lock, if

there is a path in which the unlock follows the lock but there is no path in which there is

another lock of the same mutex between the lock and unlock. The top element of the lock

stack is the most recent lock that the traversal encountered, so it adds the unlock to the

GEN set of the top element. Other elements in the lock stack are the locks that the traversal

met before the last lock along the traversal, so it adds the unlock to theKILL sets of them.

Ultimately, the corresponding unlocks of each lock are the unlocks that are in theGEN set

but not in theKILL set.
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2.3.3 Path Condition Calculation

This step calculates the Boolean expressions for path conditions that must be true for

each lock and unlock to execute. It first calculates path conditions and translates them by

assigning a Boolean variable for each branch condition. We define the path condition of

a statement as the Boolean combination, i.e., AND(∧), OR(∨), NOT(¬), of branch condi-

tions, which must be true for the statement to be executed.

The core path condition calculation algorithm is illustrated in Figure2.5. With this

algorithm, the path condition of a statement is the path condition from the entry basic block

to the basic block that the statement belongs to. The underlying idea of this algorithm is

that the path condition from the CFG node‘src’ to ‘dest’ is the disjunction (OR) of

the conditions along the paths which go through‘child’, for all children of‘src’.

This idea is reflected in line 18.

This algorithm uses caching and post dominator informationfor computational effi-

ciency. Since there can be an exponential number of paths to the number of basic blocks,

the naive recursive algorithm is not feasible for real programs. In order to avoid repetitive

computation for the same path, it uses a path condition cacheindexed by(src,dest)

pair. In addition, it uses post dominator (PDOM) information as a shortcut, to simplify the

resulting conditions.

After path condition calculation, the analysis translatesthe path conditions to Boolean

expressions by assigning a Boolean variable to each branch condition. To reveal the branch

correlations in the Boolean expressions, our analysis assigns the same Boolean variable to

the branch conditions that must have the same value. This is possible by using global value
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1 : // Recursively calculates path condition from
2 : // src to dest
3 : condition calculate_path_cond(CFG, src, dest)
4 : // Consult path condition cache for efficiency
5 : if (src, dest) is in cache
6 : return condition from cache;
7 : // Always reaches dest if it post-dominate src
8 : if dest PDOM src
9 : return TRUE;
10: // Dead end
11: if src has no successor
12: return FALSE;
13: // The control can reach dest following
14: // each successor
15: for(each successor c of src)
16: cond1 = branch condition of branch (src->c);
17: cond2 = calculate_path_cond(CFG, c, dest);
18: condition = condition OR (cond1 AND cond2);
19: put condition in cache with index (src, dest);
20: return condition;
21: end

Figure 2.5: Calculating path conditions

numbering (GVN) and hashing them to map to Boolean variables.

2.3.4 Checking Lock/Unlock Pairing

Using the analysis results of the previous steps, this step finally verifies whether all

locks are paired up with the corresponding unlocks on every feasible path. To achieve this

goal, we use an open source SAT solver MiniSAT [32]. For each lock, through the previous

steps, we have the set of corresponding unlocks and the relevant Boolean expressions for

the path conditions of them and the lock. With these analysisresults, to verify the statement

“the lock is paired up with the corresponding unlocks on every feasible path” is equivalent

to checking the proposition “if the Boolean expression for the lock is true, the disjunction

of the corresponding unlocks’ Boolean expressions is always true.” LetL be the Boolean

expression for the lock, andU1,U2, ...,Un be the Boolean expressions for the corresponding
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unlocks. Then our analysis tries to check if the following expression is always true.

L ⇒U1∨U2∨ ...∨Un (2.1)

or equivalently

¬L∨ (U1∨U2∨ ...∨Un) (2.2)

Checking whether a Boolean expression is always true or not can be done with a SAT

solver. If the expression is always true, its negation always evaluates false, which in turn im-

plies that the negation of the expression is unsatisfiable. Therefore, we can check whether

the lock is paired up with the corresponding unlocks by applying a SAT solver to the nega-

tion of (2.2), which is

L∧¬U1∧¬U2∧ ...∧¬Un (2.3)

2.3.5 CFG Pruning

One of the hurdles that the static lock/unlock pairing analysis must overcome is com-

putational complexity. In real world server programs, the number of basic blocks in a

function easily grows to several hundreds. In addition, theBoolean satisfiability problem is

well known to be NP complete. For these reasons, we must carefully minimize the number

of clauses in the Boolean expressions, in order to make our analysis scale to real programs.

We achieve this by pruning the CFG.

Our analysis tool prunes the CFG without losing any relevantinformation needed for

the analysis based on control dependence analysis [38]. Intuitively, CFG nodeX is control

dependent on nodeY if the outgoing edges fromY determine whetherX is executed or
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not, and control dependencies can be calculated by finding post-dominator frontiers in the

CFG. Given this property of control dependence, when we calculate the path condition for

a basic blockX, we must consider the basic blocks on whichX is control dependent, the

basic blocks on which those basic blocks are dependent, and so forth. Therefore, if we

calculate the control dependence closure for the basic block, the basic blocks in the closure

are the only ones that are relevant for the path condition calculation. We calculate the

control dependence closure by iteratively including basicblocks until it converges.

The CFG pruning algorithm works as follows. It starts with the basic blocks of interest

as input. Then, it calculates the control dependence closure for them, i.e., the closure

relevant basic blocks. Finally, we prune the CFG by maximally merging irrelevant basic

blocks that are connected. The CFG pruning algorithm can be easily understood with the

example in Figure2.6. In this example, basic block 9 is the basic block of interest. It

is control dependent on basic block 7; furthermore basic block 7 is control dependent on

basic block 1. After calculating the control dependence closure{1,7,9}, the rest of the

basic blocks can be merged if they are connected. The simplified CFG on the right results

from pruning. By working on this pruned CFG, the path condition calculation and the

resulting Boolean expressions get much simpler.

2.4 Inter-procedural Analysis

As discussed in Section2.2.2.2, many lock/unlock pairs span function boundaries. In

order to model concurrent programs for most cases, our lock/unlock pairing analysis must

be inter-procedural and context-sensitive. In this section, we describe how to extend the
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Figure 2.6: Example of CFG pruning.

analysis presented in the previous section for inter-procedural cases.

One straightforward way to make the analysis inter-procedural is a top-down approach

that performs the analysis on the whole program CFG by conceptually replacing call in-

struction with the CFG of callee function at every call site,starting from themain()

function. However, this can cause a computational complexity problem by producing an

excessively large CFG to analyze.

Instead of flattening out the CFG for the entire program, we divide the problem into

small pieces and perform the analysis on subgraphs in order to limit the analysis time. We

first partition the callgraph with a proximity-based heuristic, and analyze the subgraphs in

a bottom-up manner. We describe the details of this analysisin the following subsections.
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2.4.1 Proximity-based Callgraph Partitioning

We made two observations while we were trying to manually pair up locks and unlocks

across function boundaries. The first observation is that the calling contexts of a lock and

paired unlocks differ from a lowest common ancestor in the callgraph with respect to the

root nodemain(), in most cases. Suppose that a mutex acquired by a lock with the calling

context ofmain⇒ f1 ⇒ ...⇒ fn ⇒ fl1 ⇒ ...⇒ fln is released by an unlock with the calling

context ofmain⇒ f1 ⇒ ...⇒ fn⇒ fu1 ⇒ ...⇒ fun on a path, then the other unlocks, if any,

that pair up with the lock usually have calling context that sharesmain⇒ f1 ⇒ ...⇒ fn and

fn is a lowest common ancestor of them in the callgraph. The second observation is that

the depths from locks and unlocks to the lowest common ancestor of the pairing context

are relatively small(< 5) for most cases.

Based on the above observations we use a heuristic of proximity-based callgraph parti-

tioning to keep the inter-procedural lock/unlock pairing analysis tractable. The partitioning

algorithm works as follows. It starts from functions that have unpaired locks and follows

upward the callgraph. It continues until it reaches a node that has the nodes with potentially

pairing unlocks as descendants or a predefined depth threshold. Then, it cuts the subgraph

from the node as a root. In this way, we can limit the size of Boolean expressions to be

small enough to analyze.

2.4.2 Extending Lock/Unlock Pairing for Inter-procedural Analysis

For inter-procedural lock/unlock pairing, we apply the analysis described in Section2.3

on the subgraph partitioned in the previous subsection. Theinter-procedural lock/unlock
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pairing analysis must handle function calls in a different way from the intra-procedural

analysis, which just ignores function calls except locks and unlocks. The information about

locks and unlocks in callee functions must be considered when the analysis meets a function

call. Our analysis takes two different approaches to do so for mapping a lock to the set of

corresponding unlocks and for path condition calculation.

Mapping a lock to the set of corresponding unlocks can be modified to be inter-procedural

in a relatively straightforward way. It can be considered asconceptually inlining function

calls. When it meets a function call it follows the CFG of the callee function. When the

function returns it goes back to the caller function’s CFG. Other than that, it is identical to

the mapping algorithm explained in Section2.3.2. It is a simple extension but it is enabled

by the proximity-based callgraph partitioning.

On the other hand, path conditions are calculated in a bottom-up manner. In order to

calculate the path condition that decides the execution of alock, it first calculates the lock’s

path condition in the leaf node function that contains the lock. Then, following the context

recognized in the partitioning, it calculates the path condition of the function call in its

caller function, and its caller function, and so forth untilit reaches the root function of

the partition. These conditions get merged with a conjunction operator to finally calculate

the context-sensitive path condition for the lock. After itcalculates the context-sensitive

path conditions for the locks and the unlocks, the remainingsteps are identical to the intra-

procedural analysis.
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1 : Connection *c = NULL;
2 : for(; index < tblsize; index++) {
3 : ...
4 : if (connections[index].state == C_USED) {
5 : c = &connections[index];
6 : lock(&c->c_mutex);
7 : break;
8 : }
9 : }
10: ...
11: if (c!=NULL) unlock(&c->c_mutex);

Figure 2.7: Example of uncaught infeasible path.

Our Approach
Benchmarks LOC Number Trivial DFT Statically Speculatively Total Unpaired Static

of lock Paired Paired Paired Analysis
OpenLDAP 271,546 357 110 267 319 34 353 4 152.7%

MySQL 926,111 499 147 428 463 26 489 10 211.8%
Apache 224,884 19 0 0 17 0 17 2 33.9%
pbzip2 4,011 3 0 1 2 1 3 0 23.4%
pfscan 752 11 8 10 10 1 11 0 50.0%
aget 835 2 2 2 2 0 2 0 43.8%

Table 2.2: Coverage of static lock/unlock pairing analysis

2.5 Dynamic Checking

Our static lock/unlock pairing analysis can be potentiallyincorrect in some cases due

to the assumptions and heuristics it uses. In this section, we discuss these potential sources

of incorrect analysis results and explain how our dynamic checking instrumentation can

detect them.

One important reason why our analysis might yield potentially incorrect results is point-

ers as described in Section2.2.2.3. Due to the limitations of the default memory depen-

dency analysis, we augment it with generic aggressive refinements. Although the probabil-

ity is very low, they can result in incorrect analysis results.

The second source of potentially incorrect analysis results is the proximity-based call-
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graph partitioning heuristic. Although we could not find a real example, it is theoretically

possible that one lock has two pairing unlocks whose lowest common ancestors with the

lock differ. In that case, our partitioning algorithm can give an incorrect subgraph to ana-

lyze and end up with an incorrect analysis result.

Lastly, there are cases where our analysis maps unlocks correctly but cannot guarantee

the lock is paired up with unlocks for all feasible paths due to the limitations of our analysis.

An example of this case is shown in Figure2.7. Our analysis can map the unlock in line 11

as the corresponding unlock of the lock in line 6. However, itcannot guarantee the lock is

paired up for all feasible paths due to the lack of understanding about program semantics.

A human programmer can easily figure out that the variablec is notNULL when the lock

in line 6 is executed, thus the lock is paired up with the unlock in line 11 if the value ofc

is not modified in between. However, it is difficult for a static analysis to understand such

program semantics. In this case, our analysis provides the mapping for the modeling as the

best effort result. However, this type of best effort analysis result might be incorrect for

other cases.

For these reasons, our lock/unlock pairing mechanism needsa way to verify whether

all of the analysis results are correct or there exists any violation of the assumptions it

made. In order to do that, we need to check two types of conditions. First, the mapping

of unlocks to each lock should be checked. If the mutex acquired by a lock is released by

an unlock that is not in the corresponding unlock set, it should be detected. Second, the

semiflow requirement has to be checked. In other words, whether each lock is paired up

with an unlock for all feasible paths or not is to be checked. In the following subsections,

we discuss these two types of checking in detail.
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1 : lock_wrapper(mutex, callsite, callstack) {
2 : lock(mutex);
3 : LOCK_ID = get_id(callsite, callstack);
4 : mutex_to_lock_id[mutex] = LOCK_ID;
5 : ROOT_FID = SEMIFLOW_RESULT[LOCK_ID];
6 : held_mutex[ROOT_FID].insert(mutex);
7 : }
8 : unlock_wrapper(mutex, callsite, callstack) {
9 : UNLOCK_ID = get_id(callsite, callstack);
10: LOCK_ID = mutex_to_lock_id[mutex];
11: mutex_to_lock_id.erase(mutex);
12: assert(LOCK_UNLOCK_PAIR[LOCK_ID][UNLOCK_ID]);
13: ROOT_FID = SEMIFLOW_RESULT[LOCK_ID];
14: held_mutex[ROOT_FID].erase(mutex);
15: unlock(mutex);
16: }

Figure 2.8: Instrumentation wrapper for lock and unlock

2.5.1 Checking Lock-to-Unlocks Mapping

We instrument all locks and unlocks to check whether the mapping of each lock to

corresponding unlocks is correct or not. We first assign a unique ID to each lock and

unlock. At runtime, the instrumented code manages a thread-local data structure that keeps

the acquiring lock’s ID of each mutex. Since the data structure is thread local, it does

not need to synchronize with other threads to access the datastructure. When an unlock

releases the mutex, the instrumented code looks up the acquiring lock’s ID of the mutex

and checks whether its own ID is in the corresponding unlock set of the lock.

The IDs of locks and unlocks can be simply assigned as a uniquenumber to each

calling instruction for intra-procedural cases. However,if they are paired up by the inter-

procedural analysis, we need to manage different IDs for different calling contexts even

for the same lock or unlock. This is achieved by managing private call stacks. For the

functions that appear in the subgraph analyzed by the inter-procedural analysis, we assign

IDs and instrument the entrances and exits to push and pop theID in the private call stack.
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This call stack information is concatenated to the IDs of locks and unlocks in order to make

it context sensitive.

Figure2.8 is the pseudo code for our locks and unlock wrapper functions. It obtains

context sensitive IDs of the locks used by the acquisition and release functions at lines 3

and 9, respectively. We verify whether the released lock is in the unlock set corresponding

to the acquired lock at line 12.

2.5.2 Checking Semiflow Property

Another condition that we need to check dynamically is the semiflow property. As

described in Section2.2.2.1, the semiflow property guarantees that a mutex acquired by

a thread will always be released later. With the static analysis we check this property by

testing whether locks are paired with unlocks for all feasible paths. If the condition is not

satisfied due to incorrect analysis, the dynamic checking should be able to detect it.

We also check this property by instrumenting locks, unlocks, and function exits. For

this type of check, the instrumented code maintains the information about held mutexes

indexed with the acquiring lock’s ID. Again, these IDs are concatenated with call stack

information for context-sensitive cases. We instrument the root node functions of the sub-

graphs partitioned by the proximity-based partitioning tocheck whether it is holding any

lock that should be paired up inside the calling context whenit returns. This is done by

checking whether the heldmutex[FID] set (kept in line 6 of Figure2.8) is empty when the

root node function (FID) returns.
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2.6 Experimental Results

We have implemented the lock/unlock pairing mechanism including both the static

analysis and checking instrumentation as a pass of the LLVM compiler infrastructure [59].

Our implementation operates on the LLVM intermediate representation and provides both

analysis results and instrumented code. For the aggressiverefinement of LLVM’s memory

dependency analysis, we use Gadara’s type-based method formutex pointers and memory

profiling for other variables.

All of our experiments were executed on a 2.50GHz Intel Core 2Quad machine with

8GB of memory running Linux 2.6.32. We evaluate the effectiveness of our lock/unlock

pairing with Apache 2.2.11 web server [5], MySQL 5.0.91 database server [77], OpenL-

DAP 2.4.21 lightweight directory access protocol server [79], pbzip2 1.1.4, pfscan 1.0, and

aget 0.4.

2.6.1 Effectiveness of Static Analysis

Table2.2 shows the effectiveness of our static lock/unlock pairing analysis. The third

column is the total number of locks and the fourth column is the number of locks trivially

paired up in a basic block. We also compare our approach against depth first traversal

(DFT) of control flow graph, which is used by previous static lockset-based tools such

as RacerX [34]. Statically paired locks mean the number of locks that could be paired

up with infeasible path analysis. Speculatively paired locks are the ones that our analysis

could successfully map the corresponding unlock sets but could not guarantee pairing for

all feasible paths due to the limitation described in Section 2.5. Thus the sums of the sixth
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1 : class THD {
2 : struct st_my_thread_var *mysys_var;
3 : ...
4 : char* enter_cond(mutex_t* mutex) {
5 : ...
6 : mysys_var->current_mutex = mutex;
7 : ...
8 : }
9 : void exit_cond(char* old_msg) {
10: ...
11: unlock(mysys_var->current_mutex);
12: ...
13: }
14: };
15: ...
16: bool wait_for_relay_log_space(RELAY_LOG_INFO* rli) {
17: THD *thd = rli->mi->io_thd;
18: char *save_proc_info;
19: ...
20: lock(&rli->log_space_lock);
21: save_proc_info = thd->enter_cond(&rli->log_space_lock);
22: ...
23: thd->exit_cond(save_proc_info);
24: ...
25: }

Figure 2.9: Example of unpaired lock due to type mismatch.

and seventh columns are the numbers of locks that our static analysis could pair up with

unlocks. As can be seen in the table, our static analysis works effectively for nearly all

of the cases. Overall, trivial pairing fails to handle 70% oflocks and DFT fails to handle

20.5% of locks. By contrast, our approach handles all but 1.8% of locks—an eleven-fold

improvement compared with DFT.

There are still unpaired locks, although the number of such cases is relatively small.

There are three types of causes for these cases. First, thereare inherently unpaired locks in

the programs. Three unpaired locks of OpenLDAP are from one function,ldap new connection(),

and in this category. When the function is called in certain contexts, these locks are paired

up and our analysis can catch those cases. In other contexts,however, they are not paired
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up and thus our analysis cannot pair them up.

The second category of unpaired locks is due to the type-based memory dependency

analysis refinement that we use for mutex pointers. This refinement assumes that two

mutex pointers do not alias if the types of wrapper structures enclosing the mutex vari-

ables are different. With this assumption our analysis cannot pair up a lock and unlocks

if they have different types. The example in Figure2.9 shows how this can cause a prob-

lem. In this example, the lock in line 20 and the unlock in line11 are called on the same

mutex, because the call ofenter cond() in line 21 saves the mutex in a pointer and

passes it toexit cond(). The problem is that the types of wrapping structure for the

lock and the unlock are different. The wrapping type isRELAY LOG INFO for the lock

andst my thread var for the unlock. The type based memory dependency refinement

would consider them not to alias, and consequently our lock/unlock pairing analysis cannot

pair them. Among the unpaired locks of MySQL, eight of them are in this category.

The last cause of unpaired unlocks is function pointers. Thecurrent implementation of

our lock/unlock pairing analysis cannot track the inter-procedural cases in which a function

is called via a function pointer, since it uses the callgraphinformation which only puts edges

for direct function calls. One of OpenLDAP’s locks, two of MySQL’s locks, and two of

Apache’s locks could not be paired up for this reason.

Static analysis time as a percentage of compilation time is presented in the last column

of Table2.2. Analyzing MySQL and OpenLDAP takes considerably longer than analyz-

ing other benchmarks because they have more complex controlflows and include more

lock/unlock function calls. Table2.3 presents the number of basic blocks in a function

before and after CFG pruning, as described in Section2.3.5. Our CFG pruning signifi-
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Benchmarks Before Pruning After Pruning
Average Maximum Average Maximum

OpenLDAP 20.19 818 2.22 80
MySQL 5.88 3513 1.18 112
Apache 12.12 465 1.02 13
pbzip2 6.16 431 1.06 10
pfscan 10.57 48 3.61 33
aget 12.11 35 1.83 16

Table 2.3: Number of Basic Blocks before/after Pruning

cantly reduces both average and maximum number of basic blocks, which is essential for

the scalability of our static analysis procedure.

2.6.2 Runtime Overhead of Dynamic Checking

Figure2.10presents the runtime overheads of the dynamic checking instrumentation.

For server programs, it is measured as the comparison of average response time to clients on

the same machine. Forpbzip2, pfscan, andaget, the execution times are compared.

Four parallel clients and worker threads are used for the servers and the other programs,

respectively. As can be seen in the graph, our checking instrumentation imposes very small

overheads for the programs. The runtime overheads range from 0.5% to 3.4% and the

average is 1.6%.

As discussed in Section2.6.1, our static analysis yields three types of results: statically

paired, speculatively paired, and unpaired. For both statically and speculatively paired

locks, our framework instruments the checking mechanism presented in Section2.5, whose

major overhead comes from the executions of locks and unlocks. Therefore, even if our

analysis does not work well so that it yields more speculatively paired locks, the runtime

overhead would not be drastically increased. For unpaired locks, the current implemen-
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Figure 2.10: Runtime overheads of dynamic checking.

tation of our framework falls back to programmer annotations and does not add checking

instrumentation. It is possible to add more heuristics to make guesses for unpaired locks,

but the dynamic checking overhead would be still roughly proportional to the number of

the executions of locks and unlocks even for those cases.

Compared to the native implementation of lock and unlock, our instrumentation slows

down a pair of lock and unlock by roughly 18×. Thus, it is possible that our dynamic

checking incurs excessive overhead if the target program locks and unlocks too many times

without doing much work. However, it is not a common practiceto make programs lock

and unlock too often, and such programs would already sufferpoor performance. Further-

more our current instrumentation implementation is a simple un-optimized use of the C++

STL library, and overheads can be further reduced by optimizing the implementation of

instrumented code.
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Benchmarks Average Maximum
OpenLDAP 1.37 7

MySQL 1.37 10
Apache 1.35 2
pbzip2 1.67 2
pfscan 1.09 2
aget 1.00 1

Table 2.4: Number of Unlocks in Corresponding Unlock Sets

2.6.3 Assumption Violation

Although the frequency is very low, our static lock/unlock pairing analysis can poten-

tially yield incorrect results due to the assumptions and heuristics it uses as described in

Section2.5. As our analysis yields a set of unlocks for each lock, this imprecision means

mistakenly including (false positives) or omitting (falsenegatives) an unlock. Both forms

of imprecision can spell trouble, depending on how pairing information is employed. Our

strategy is two-fold. The static analysis first strives to keep the unlock sets small, reducing

false positives. Our dynamic checks then reliably find and report false negatives. It does

not attempt to catch false positives, which would require exploring all possible execution

paths.

Table2.4shows the size of corresponding unlock sets. For the most of cases, the unlock

sets are quite small, minimizing the possibilities of falsepositives. However, there are a

few cases which need upto ten unlocks to cover the many side exits of complicated control

flows. We manually went over those cases, and did not find any false positives.

Once the instrumented dynamic checking detects a false negative, the information is fed

back to the analyzer and the underlying client system revises the model. While we perform

the experiments on the six programs, only one such case actually occurred for OpenLDAP
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and the dynamic checking instrumentation detected it.

The code snippet that caused the violation is summarized in Figure 2.11. The cause

of this incorrect analysis result is the type-based memory dependency analysis refinement

that we use for mutex pointers. As opposed to the cases where different types for lock

and unlock cause a problem, two distinct mutexes having sametype is the problem in this

case. The programmer’s intention is that the lock in line 9 and the unlock in line 11 are

called for different mutexes in the same iteration becauseei2 is supposed to point to one

of the children of the node pointed byeip. Since both pointers have the same wrapper

type, however, our mapping algorithm results in mapping theunlock in line 11 to the lock

in line 9 and the unlock in line 16 to the lock in line 3. In real execution the mutex acquired

by the lock in line 9 can be released by either the unlock in line 11 of the next iteration or

the unlock in line 16 after breaking the loop. The lock in line3 should also be paired up

with both unlocks in line 11 and line 16. The instrumented checking code for the lock-to-

unlocks mapping check detects this violation and reports the incorrect analysis result.

2.7 Related Work

In order to better model concurrent programs by pairing up locks and unlocks, we com-

bine static analysis and dynamic checking. Since existing static analysis methods cannot

provide a perfect solution to our purpose, we obtain best-effort analysis results with static

analysis and check them at runtime to verify whether the results are correct. In this sec-

tion, we first survey previous work on static analysis and dynamic monitoring techniques,

focusing on the application of the lock/unlock pairing problem. Then, we provide possible
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1 : EntryInfo *eip, *ei2;
2 : ...
3 : for (lock(&eip->kids_mutex); eip; ) {
4 : ...
5 : // Search children in tree-like in data structure
6 : ei2 = avl_find(eip->kids, ...);
7 : ...
8 : // Lock for next iteration
9 : lock(&ei2->kids_mutex);
10: // Unlock current node
11: unlock(&eip->kids_mutex);
12: eip = ei2;
13: ...
14: }
15: ...
16: unlock(&eip->kids_mutex);

Figure 2.11: Incorrectly paired lock due to pointer problem.

use case scenarios for our framework.

Static analysis.Existing static techniques applicable to the lock/unlock pairing prob-

lem can be largely divided into model checking methods that emphasize precision, and

program analysis methods that emphasize scalability.

Software model checking has a long history. We recommend an excellent survey for

the background on this subject [52]. Here we summarize several results relevant to this

chapter. Classical model checking techniques model systems aslabeled transition systems

and verify properties specified intemporal logic. These techniques scale poorly for soft-

ware verification due to the state explosion problem. Most software model checking tools

are execution based and stateless. These tools systematically explore all program paths in

hope to find bugs more quickly than stress testing [75, 14].

Abstract model checking scales to real software by mapping program states to an ab-

stract domain [27]. As abstraction may not capture all the information neededto verify

a property, when a counter-example is discovered, it is unclear whether it is genuine or
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spurious due to abstraction. In this case, the abstraction can be refined to filter out spurious

examples. Automated program abstraction and refinement aredifficult, and the iterative

process may not converge. In practice, automated abstract model checking methods are

limited to small or special-purpose programs [42, 50].

In the area of static program analysis, many scalable dataflow analysis algorithms have

been developed, which can be viewed as model checking with manually defined abstrac-

tion [85]. For example, Saturn [29] is a scalable analysis engine that is both sound and

complete with respect to the user-provided abstraction, written in its Calypso language.

This framework enables the programmer to manually refine andoptimize the abstraction

for each specific analysis task. Other scalable algorithms use carefully tuned heuristics that

can be viewed as predefined abstraction. For example, ESP [28] is a path-sensitive anal-

ysis tool that scales to large programs by merging branches that lead to the same analysis

state. The analysis is sound but incomplete with respect to this abstraction. Regarding the

original program, however, manually defined abstractions are often unsound.

For example, the locking patterns in Figure 1(a) often confuses standard dataflow anal-

ysis algorithms integrated in tools designed for higher level applications [34, 98]. Both the

locking analysis script bundled in Saturn and the ESP algorithm would identify the branch

correlations easily if the code snippet is inside one function. But as both tools use function

summaries for scalability, they can fail to infer correctlyinter-procedural variations of the

pattern if the function summary does not encode enough information. In this case, the anal-

ysis result can be sound but incomplete as missing information is often modeled by free

variables with arbitrary values. On the other hand, the locking script in Saturn and ESP

both ignore global alias, therefore the analysis result is unsound if the branching condition
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flag is modified via a global pointer. Encoding sound and completeglobal alias infor-

mation in function summaries is nontrivial [41]. Applications of Saturn often ignore alias

analysis too [102].

As of today, we are not aware of any sound and complete programanalysis tool that

can verify the lock pairing property in large software such as Apache and OpenLDAP.

Nevertheless, the analysis techniques in the previous program analysis tools have partially

inspired the static analysis part of our work. For instance,we employ the infeasible path

analysis similar to the ones used in [19, 28] and we also adopt caching analysis results for

computational efficiency as RacerX [34] does.

Dynamic monitoring. Although not directly suitable for our problem, there has been

a considerable body of work on monitoring the behavior of programs, especially in the

context of profiling and bug detection. The main benefit of dynamic techniques is that they

can closely collect information about program execution, which is difficult for static tools

to infer.

Such tools as DynamoRIO [13], Pin [67], and Valgrind [78] provide generic instrumen-

tation frameworks for dynamic monitoring. Through the comprehensive API of Pin and

DynamoRIO, users can write their own monitoring client fitting their purpose, and Valgrind

is widely used to detect memory bugs. In spite of the many optimizations they exploit such

as code cache, branch linking, and trace building, however,they can impose a substantial

amount of runtime overheads depending on what kind of code should be instrumented.

There are also dynamic monitoring techniques customized for specific purposes. Lit-

eRace [69] and ReEnact [82] track concurrent programs’ memory accesses to detect data

races. AVIO [66] and AtomTracker [76] aim for atomicity violations. Our framework
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shares the idea of reducing runtime overheads by customizing the type of tracking infor-

mation with these tools. As opposed to these tools, however,our framework performs most

of its analysis offline and uses dynamic checking only for confirmation.

Use cases.As mentioned in Section2.1, our framework can benefit static bug detection

tools and automated bug fix tools by providing more accurate information about critical

sections. For instance, static bug detection tools using lockset analysis suffer false positives

due to infeasible paths. RacerX [34] uses many heuristics and error ranking to mitigate the

impact of such false positives. Our framework would help them prune invalid locksets and

thus reduce the false positives. On the other hand, automated bug fix tools [53, 54] often

add synchronizations to restore atomicity or order constraints, and they may introduce new

deadlock if the usage of existing locks is unknown. AFix [53] sets timeout for the new

synchronizations to avoid introducing deadlocks. Our framework can help them eliminate

the timeouts and the potential chances of missing bugs.

Our framework can also promote compiler optimizations for concurrent programs. Cur-

rently compilers only optimize code sections that do not involve any lock operations, lim-

iting the efficiency of the generated code. Joisha et al. [56] suggest extending the scope

of optimizations beyond the synchronization-free regionsby using procedural concurrency

graph (PCG). With accurate lock/unlock pairing, they can further refine PCGs by reflecting

the concurrency limited via mutexes. Consequently, this can provide more optimization

opportunities.
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2.8 Summary

We have proposed a practical lock/unlock pairing mechanismthat combines an inter-

procedural analysis and dynamic checking for better modeling of critical sections in POSIX

multithreaded C/C++ programs. We have demonstrated the effectiveness of our mecha-

nism through experiments on six benchmarks including threelarge and complex server

programs. Compared with depth-first traversal, our method reduces by 11× the number

of statically unpaired locks. CFG pruning keeps problem size small so that compile time

is low, and dynamic checking compensates for imperfectionsin our static analysis with

modest overhead (at most 3.3%).
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CHAPTER 3

Dynamic Core Boosting and Per-Core Power Gating

3.1 Introduction

Due to power dissipation limits and design complexity, the microprocessor industry has

become less successful in improving the performance of monolithic processors, even with

continued technology scaling. As a result, chip multiprocessors (CMPs) have grown into

a standard for all ranges of computing from cellular phones to high-performance servers.

Since CMPs require sufficient thread level parallelism (TLP) to benefit from the increased

computing power, most performance-aware programmers faceincreasing pressure to par-

allelize their programs.

One lesson that programmers have learned from the long history of high performance

computing is that increasing resource utilization resultsin better performance. As the multi-

threaded programming model abstracts away the individual characteristics of each core,

uniformly distributing workloads into threads has been considered an effective strategy to

increase the utilization of CMPs.

44



Despite the best efforts of programmers to evenly divide workloads, it is very diffi-

cult, if not impossible, to perfectly balance workloads. Even for single program multiple

data (SPMD) multi-threaded workloads with embarrassing parallelism, there exists implicit

software heterogeneity among threads due to control flow divergence, non-deterministic

memory latencies, and synchronization operations. Such software heterogeneity some-

times inhibits the parallel programs from effectively utilizing a larger number of cores.

The performance asymmetry of cores can notably exacerbate workload imbalance, and

it is highly probable that we will have asymmetry in the future generations of CMPs for

several reasons. First, heterogeneous multicore systems have been introduced by many re-

searchers for better performance [7, 58] or saving power [57]. Heterogeneous multicores

are also an effective way to trade die area to higher energy efficiency [68], and some com-

mercial products [40] have already started implementing such designs.

Increasing core-to-core process variation also creates performance asymmetry in CMPs [92].

Process variation is the phenomenon where the process parameters of transistors, such as

effective gate length and threshold voltage, diverge from their nominal value affecting the

maximum operable frequency. The amount of within-die process variation is growing, as

integrated-circuit technology keeps scaling down the sizeof individual transistors. With

the rapidly developing emphasis on power and energy efficiency, lower supply voltages are

preferred by chip designers and this makes the variation problem worse. Future micropro-

cessors are likely to be heterogeneous across the working frequency of individual cores,

since making all cores run at the frequency of the slowest core loses too much performance

in the presence of large process variation.

One possibility for dealing with performance asymmetry in CMPs is to place the burden
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of workload balancing on programmers or compilers. However, parallel programming itself

is already difficult enough for programmers. Even if we assume that it was possible for

compilers to exploit the heterogeneity for workload balancing, the portability issue would

prohibit them from generating the customized code for more than one specialized setting of

heterogeneity. Furthermore, often the performance asymmetry caused by process variation

cannot be determined at compile time because it may vary fromone chip to another even

for the same model processor.

In this chapter, we propose software-hardware cooperativemechanisms to improve per-

formance and/or energy efficiency for asymmetric CMPs. For better performance, Dy-

namic Core Boosting (DCB) tries to mitigate the workload imbalance problem. DCB relies

on the hardware capability of accelerating individual cores through dynamic voltage and

frequency scaling (DVFS) at a fine granularity to balance theworkload across the asymmet-

ric cores by boosting critical threads. With the limited resource to boost a subset of cores,

DCB orchestrates its compiler, runtime subsystem, and processor cores for near-optimal

assignment of the boosting budget. First, a target program is analyzed and instrumented by

the compiler to include the instructions that provide progress hints. At runtime, the execu-

tion of the program is monitored by the DCB runtime subsystem. Finally, DCB selectively

boosts the critical threads by using the information gathered by the instrumented code and

the DCB runtime subsystem.

We also suggest adapting per-core power gating [60] for better energy efficiency. Per-

core power gating is an effective way to save power by introducing a gate (or sleep transis-

tor) between the power supply and each core. Compared to clock gating [61], power gating

can save more energy by reducing leakage power to near zero but incurs a longer wake up
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latency. Especially, losing private cache contents is the major obstacle that prevents per-

core power gating from being deployed for finer granularity.In this chapter, we propose

applying per-core power gating to idle cores due to workloadimbalances in performance

asymmetric CMPs. By combining early wake up and prefetchingprivate cache contents,

per-core power gating can save substantial amount of wastedenergy with negligible extra

overheads.

This chapter makes the following contributions:

• A theoretical background for the optimal assignment of coreboosting.

• A cooperative system to balance workloads in asymmetric CMPs consisting of a

compiler, runtime subsystem, and architecture.

• A novel mechanism to evaluate such systems with performanceasymmetry and/or

core boosting capability.

• A dynamic per-core power gating scheme to increase energy efficiency without per-

formance loss.

The remainder of the chapter is organized as follows. Section 3.2 presents our moti-

vation and provides the background of core boosting. Section 3.3 mathematically models

the core boosting assignment problem and describes our algorithms at an abstract level.

Section3.4explains the detailed implementation of the DCB system. Sections3.6and3.7

present the methodology and the results of our evaluation. We discuss the related work in

Section3.8and conclude the chapter in Section3.9.
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Figure 3.1: Slowdown caused by performance asymmetry.

3.2 Motivation and Background

While we can expect the performance asymmetry in CMPs to magnify the workload

imbalance in multi-threaded programs, the exact effects onperformance are not obvious.

In this section, we present our motivation by showing the preliminary results on how much

the asymmetry can affect the performance of multi-threadedbenchmarks. Then, we provide

the background of the hardware mechanism to accelerate and turn off individual cores.

3.2.1 Low Utilization of Asymmetric CMPs

We compare two simulated eight core systems to understand the performance impact

of core asymmetry. The two systems work at the same average core frequency, but one has

all eight cores operating at the same frequency and the otherhas varying frequencies. We

assume a large variation in core frequencies (σ/µ = 30%,µ: mean,σ : standard deviation)

as in Miller et al. [72], and the eight cores run at(µ −1.5σ), (µ −1.0σ), (µ −0.5σ), µ, µ,
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(µ +0.5σ), (µ +1.0σ), (µ +1.5σ), respectively. The details of evaluation methodology

are explained in Section3.6.

Figure3.1presents the slowdowns of the asymmetric system compared tothe symmet-

ric one for the PARSEC 2.1 benchmark suite [11]. Most of the benchmarks are configured

to have the same number of worker threads as the number of cores, except for those with

pipeline parallelism.dedupandferret are set to have one thread per pipeline stage.x264

spawns the number of worker threads equal to the number of frames and there is no trivial

way to change it with the harness of the PARSEC benchmark suite.

Even though the two systems have the same average core frequency, we can see that

many of the benchmarks experience significant slowdown. Several benchmarks such as

streamclusterandswaptionssuffer the slowdown close to the worst core frequency. Some

others, i.e.,bodytrack, ferret, andraytrace, show almost identical performance to the homo-

geneous system on the other hand. The geometric mean of the slowdown for all benchmarks

is 17%.

In order to understand what causes more slowdowns for some benchmarks than the

others, we measure how much portion of CPU time in parallel sections is wasted on each

type of synchronization. Figure3.2presents the measured portions. For each benchmark,

the left bar shows the CPU time spent running on the homogeneous cores and the right bar

represents the time on the asymmetric CMP. As seen in the graph, the benchmarks use dif-

ferent types of synchronizations as their main mechanism tocontrol parallel execution, and

the impact of performance asymmetry varies depending on thedominant synchronization

pattern.

The simplest method is to spawn threads to work independently and join them at the
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Figure 3.2: CPU time wasted for synchronization.

end.blackscholesandswaptionsare in this category. Having similar structure, if the worker

threads need to progress to the next stages together, they are synchronized with barriers.

canneal, fluidanimate, andstreamclusteruse this type of synchronization patterns. For

these two categories, the cores stay idle if their threads finish the tasks earlier than other

cores, causing under-utilization of cores. Consequently,they are very likely to be affected

by the asymmetry among cores.

Some benchmarks manage a pool of worker threads. When they need to execute in par-

allel, the main thread distributes tasks to the threads in the pool. After they finish the tasks,

they stay idle waiting for the next task. The worker threads are usually synchronized with

condition variables. If the workload distribution is determined dynamically, e.g.,bodytrack

and raytrace, they are less sus-

ceptible to workload imbalance due to asymmetric cores. On the other hand,facesimis
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substantially affected by the asymmetry since the workloadis equally divided once and

assigned to the workers.

dedupand ferret adopt a pipeline parallel model. The worker threads run different

stages of a pipeline and the data flows from one stage to another through a FIFO queue

synchronized with condition variables. For this type of parallel program, the overall per-

formance of the program is determined by the slowest stage. Accordingly, the performance

is very sensitive to the stage-to-core scheduling for the asymmetric setting, but the average

remains unchanged.

Finally, we see a great possibility of improving performance for asymmetric CMPs by

balancing workloads. From the observations made above, many of the benchmarks are

directly affected by the performance asymmetry. In addition, balancing the pipeline stages

in the programs likededupandferretcan yield performance benefits.

3.2.2 Core Boosting

Performance asymmetry among cores, combined with inter-thread dependencies formed

by synchronization operations, causes a significant performance problem for multi-threaded

programs as demonstrated above. We try to solve this problemby relying on the hardware

capability of accelerating the subset of cores while staying in the power budget. Dynamic

voltage and frequency scaling (DVFS) has been widely used for energy efficiency [2, 36].

Moreover, there have been several proposals that use dual power supplies for boosting in-

dividual cores [30, 72]. Dreslinski et al. [31] shows that very fast boosting transition (<

10ns) can be achieved. Our system builds on such techniques for boosting cores at a fine

51



granularity.

While the idea of adopting fast core boosting for mitigatingperformance bottlenecks or

reducing performance heterogeneity is not new [30, 72], the main contribution of our work

lies in how to assign core boosting for higher performance with the same power budget.

We first provide the theoretical background for the optimal assignment of core boosting. In

order to achieve a close to the optimum solution, we propose asystem that coordinates the

compiler, runtime, and processor cores.

One important point to notice is that our assignment techniques are not limited to the

specific core boosting technology. Although we assume a dualVdd-based core boosting to

demonstrate the effectiveness of our techniques in this chapter, our technique can be used

in conjunction with any core acceleration mechanism with short enough transition time.

Further differentiation from the previous proposals and more details of other feasible core

boosting technologies are covered in Section3.8.

3.2.3 Per-Core Power Gating

Power gating is a commonly used technique to turn off the power supply to a portion of

circuit. Power gating can be applied at the varying granularities from functional units [101]

and pipeline stages [45] to cores [60]. It is implemented by introducing a gate (or sleep

transistor) between the power supply and the targeted circuitry. Compared to clock gating

which only turns off the clock signal, power gating can save more power by reducing

leakage current to near zero but incurs a longer wake up latency.

While per-core power gating has begun to make its way into commercial products [89],
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it is only used for coarse time granularity (on the order of 100ms [60]) due to the long wake

up latency. The reason why per-core power gating incurs thislong latency is that the state

of the core needs to be saved and restored. Although a recent work [51] achieves short

latency (on the order of 10ns) per-core power gating and applies it to memory access stalls,

they assume that the internal data is retained during power gating.

Our motivating observation is that synchronization stallscaused by workload imbal-

ances in asymmetric CMPs are good targets for per-core powergating. In order to minimize

the impact of losing private cache contents, we combine early wake up and prefetching.

3.3 Core Boosting Assignment

Given the core boosting capability and the limited boostingbudget, how to assign the

boosting budget is very important for overall performance.In this section, we show our core

boosting assignment at an abstract level. At first, we describe the mathematical modeling

of workload imbalance and core boosting. We then formulate core boosting assignment

as an optimization problem and provide a theoretical solution. Finally, we explain our

core boosting assignment algorithms for two commonly used parallelization practices: data

parallel programs and pipeline parallel programs.

When programmers parallelize their compute intensive programs for better performance,

they first have to decide how repeated computations can be divided into threads. If the com-

putation is conducted on the multiple subsets of data and they can be potentially performed

concurrently, data parallel structure is most commonly used. In this form of parallel pro-

grams, multiple worker threads are spawned to run same code on different, possibly over-
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lapping, subsets of data. When some regions of code must be executed atomically, mutexes

are used to guard the regions. In some cases, all worker threads should finish one phase

of execution and be synchronized with each other before theystart the next phase. Barrier

waits are inserted between the phases for these cases.

For data parallel type of parallelism structure, software heterogeneity is implicit in the

sense that worker threads run the same code. It does not always mean, however, that the

amounts of computations are identical among the threads. Control flow divergence is the

primary reason for such mismatch of computation. For example, if statements let different

portions of code be executed depending on condition values.For some programs, even

different number of loop iterations can be run depending on input data. Non-deterministic

memory latencies are another important source of implicit software heterogeneity. Even

though two threads are accessing the elements in the same array, one might hit and the other

might miss in caches. Modern microprocessors usually have multiple levels of caches and

accurately predicting the latency of each memory access is not possible. Lastly, synchro-

nization operations also contribute to implicit software heterogeneity. For instance, when

two threads are trying to acquire a mutex at the virtually same time, one might proceed

immediately while the other waits until the mutex is released.

Another frequently used type of parallel structure is software pipelines. While the re-

peated computations can be executed concurrently in data parallel programs, some pro-

grams need to enforce orders among the computations performed on the different subsets

of data. If different stages of computations can overlap preserving the orders, pipeline par-

allel structure is an option. For this type of parallel programs, multiple threads are spawned

to execute the different stages of computations. Differentstages are usually connected
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Figure 3.3: Modeling of workload imbalance and core boosting.

with FIFO queues and data elements flow from one stage to another through these queues.

Condition variables are often used to synchronize the data flow.

Software heterogeneity is rather explicit in pipeline parallel programs, since different

threads execute different codes. Since most modern microprocessors shows varying laten-

cies depending on the types of instructions and the majorityof them support out-of-order

executions, statically balancing the execution time of different code is impossible even for

homogeneous multicore processors. In addition, all sources of implicit software hetero-

geneity apply for pipeline parallel programs as well.

3.3.1 Modeling and Problem Formulation

Figure3.3depicts the modeling of workload imbalance and core boosting assignments

with n cores. Without the loss of generality, this modeling assumes one workload for each

core. If there are multiple threads running on a core, we can think of the total workloads

of the threads as one workload. The assignment of core boosting can be changed after a
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certain predetermined amount of time, called a quantum. Note that this boosting quantum is

much shorter than the traditional OS scheduling quantum. This is possible as core boosting

take place with very short transition time as mentioned in the previous section. Then,

w1,w2, ...,wn denote the number of quanta taken to run each workload without any boosting

on Core1, Core2, ..., Coren. Each core can be accelerated to a different extent for the

boosted mode, andb1,b2, ...,bn are the amount of acceleration. In addition, lett1, t2, ..., tn

be the number of quanta where the boosting is assigned to eachcore.

Let us define the boosting budget,c, as the maximum number of cores that can be

boosted at any quantum. For the best performance,c cores should be boosted every quan-

tum, thus, it takes

T =
1
c
× (t1+ t2+ ...+ tn) (3.1)

boosting quanta to finish the execution. Moreover,t1, t2, ..., tn are bounded because a core

can be boosted no more than once at any boosting quantum.

∀1≤ k≤ n , 0≤ tk ≤ T (3.2)

The most important condition for this modeling to explain core boosting assignment

is that every core must finish its workload withinT quanta. For∀1≤ k≤ n, Corek runstk

quanta boosted andT − tk quanta in normal mode, and it needs to finish its workload within

T. Therefore, everytk needs to satisfy the following inequality.

∀1≤ k≤ n , (T − tk)+bk× tk ≥ wk (3.3)
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Since the number of boosted quanta for each core is an integer, core boosting assign-

ment for the best performance is reduced to the integer linear programming [80] of mini-

mizingT. Let us denoteP(w1,w2, ...,wn) as the optimization problem of finding the mini-

malT and corresponding assignmentst1, t2, ...tn when the workloads arew1,w2, ...,w3.

3.3.2 Assignment for Data Parallel Programs

Although general integer linear programming is NP-hard, a solution can be quickly

found with a greedy algorithm for our case. We will show that assigning the boosting

budget to the cores with the largest remaining workload yields an optimal solution. We

first prove the optimality of the greedy solution and then explain how we apply this to data

parallel programs. For the simplicity of proof,c is assumed to be 1, but the same proof

technique can be used for a larger boosting budget. The proofconsists of two theorems.

Theorem 1 If wp satisfies max(w1,w2, ...,wn) = wp, then there exists an optimal solution

for P(w1,w2, ...,wn) where tp ≥ 1.

Proof. Suppose there exists an optimal solution,T ′ andt ′1, t
′
2, ..., t

′
3, wheret ′p = 0. Since

wp is max(w1,w2, ...,wn) andt ′p = 0, the following can be derived from condition (3.3).

∀1≤ k≤ n , T ′ ≥ wk (3.4)

Then, let us findq such thatt ′q ≥ 1, and build another solution,T ′′ andt ′′1 , t
′′
2 , ..., t

′′
3 , by ex-

changing the values oft ′q andt ′p. Since we just exchanged two values,T ′′ remains the same

asT ′. From condition (3.4), this solution should also meets conditions (3.3). Therefore,T ′′
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andt ′′1 , t
′′
2 , ..., t

′′
3 is another optimal solution wheret ′p ≥ 1.

Theorem 2 Let wp satisfy max(w1,w2, ...,wn) = wp. If T ′ and t′1, t
′
2, ..., t

′
3 with t′p ≥ 1 form

an optimal solution for P(w1,w2, ...,wn), and T′′ and t′′1 , t
′′
2 , ..., t

′′
3 form an optimal solution

for P(w1−1,w2−1, ...,wp−1−1,wp−bk,wp+1−1, ...,wn−1), then T′ = 1+T ′′.

Proof. SinceT ′ andt ′1, t
′
2, ..., t

′
3 satisfy condition (3.3), we can show they also satisfy the

following condition with a little manipulation.

{(T′−1)− t ′k}+bk× tk ≥ (wk−1), i f k 6= p (3.5)

{(T ′−1)− (t ′k−1)}+bk× (tk−1)≥ (wk−bk), i f k = p

Thus, (T ′−1) and t ′1, ..., t
′
p−1,(t

′
p−1), t ′p+1, ..., t

′
n also form a solution for

P(w1−1,w2−1, ...,wp−1−1,wp−bk,wp+1−1, ...,wn−1). With the similar manipula-

tion, we can show that(T ′′+1) and t ′′1 , ..., t
′′
p−1,(t

′′
p+1), t ′′p+1, ..., t

′′
n form a solution for

P(w1,w2, ...,wn) as well. Now, if we assumeT ′ > 1+T ′′, it contradicts thatT ′ is an opti-

mal solution since(1+T ′′) is a solution. Likewise, assumingT ′ < 1+T ′′ contradicts that

T ′′ is optimal because(T ′−1) is a solution. Therefore,T ′ = 1+T ′′.

The two proved theorems infer that boosting the core with thelargest remaining work-

load at every quantum gives an optimal solution, hence the greedy algorithm will be opti-

mal. Determining the remaining workload sizes at every quantum, however, is not possible

in real systems. Consequently, we need a heuristic to decidewhich cores have the largest

remaining workloads.
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If we know the work progress ratio of each thread, we can approximately decide the

thread with the least progress as the thread with the largestworkload remaining. Although

this heuristic is not always accurate, it works well when thethreads are running similar

amounts of workloads, which is usually the case for data parallel programs. As data parallel

programs execute the same code for worker threads, we can instrument it to report work

progress and assign a boosting budget to the cores with the least progress. The details of

the program analysis and progress report instrumentation is explained in Section3.4.3.

3.3.3 Assignment for Pipeline Parallel Programs

The heuristic used for data parallel programs does not work as well for pipeline parallel

programs. It is primarily because pipeline parallel programs run different codes on different

threads. It is difficult to measure progress consistently across threads running different

codes. This makes it less likely that the thread with the least reported progress has the

largest remaining work.

The synchronization pattern of pipeline parallel programsalso makes it hard to apply

the same technique. Multiple threads execute different stages of pipeline, and the data

flows through the pipeline often using a FIFO queue. As it is difficult to perfectly balance

workloads, some stages process data faster than the others.If one stage is significantly

faster than its predecessor, the thread running the stage often waits on its input queue.

Likewise, slow stages force their predecessors to wait. Forthis type of synchronization

pattern, different stages make similar progress in terms ofthe number of data elements

processed. Even though the same number of elements are remaining, however, faster stages
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have less workload than slow stages. This invalidates the greedy solution and requires us

to use a different approach for pipeline parallel programs.

We adopt an epoch-based approach with the observation that the relative speeds among

threads alter much more slowly than the boosting quanta. When we look at the ratio of

time spent working and blocked at a coarser grain than a boosting quantum (100 - 1,000x),

the ratio of each thread tends to stay constant for the longerperiod of time. Our approach

exploits the trend by assuming that the workload size of the previous epoch closely repre-

sents the current epoch. The details of how the workload sizes are approximated at every

epoch is described in Section3.4.4

At the end of every epoch, the core boosting assignment is calculated for the next

epoch. Since the assignment takes place at runtime and heavycomputation can nullify

the performance gain, we need a simple solution. Instead of solving the integer linear

programming in Section3.3.1, the integerality condition is ignored assuming epoch size

is large enough so that linear programming relaxation yields a close approximation. A

heuristic based on Simplex algorithm [74] is used to quickly find an approximation with a

minimal amount of computation. Assuming the minimum value of T exists on one of the

extreme points, condition (3.2) and (3.3) states

∀1≤ k≤ n , tk = 0 or tk =
wk−T
bk−1

(3.6)

As a heuristic,wk is then compared tomax(w1
b1
, w2

b2
, ..., wn

bn
) and assigned to 0 if it is smaller.

Finally, the rest oftks can be directly calculated according to equation (3.6).
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Figure 3.4: Dynamic Core Boosting system overview.

3.4 Synchronization-Aware Dynamic Core Boosting

This section describes how our Dynamic Core Boosting system(DCB) coordinates the

compiler, the runtime subsystem, and the underlying core boosting architecture to obtain

improved performance by balancing workloads.

3.4.1 System Overview

Figure3.4represents the overview of DCB. The DCB compiler takes a target program

as an input. It first analyzes the parallelism structure and the control flow of the program,

and generates profiling code. The profiling code then runs with a training input and pro-

duces profile data. Additionally, the DCB compiler makes decisions based on the static

analysis results and the profile data to instrument the program with progress monitoring
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code.

The generated executable runs on the DCB architecture alongwith the DCB runtime

subsystem. In the DCB architecture, some cores can run in theboosted mode, which is

faster than the normal mode. At every boosting quantum, the boosting manager in the

DCB architecture decides which cores to run in the boosted mode while maintaining the

boosting budget.

The instrumented code and the DCB runtime subsystem providehints to the DCB ar-

chitecture, with which the DCB architecture makes the boosting assignment decisions. For

data parallel programs, the instrumented code reports the progress of each thread. At the

end of every boosting quanta, the boosting manager chooses the threads with the smallest

progress for boosting. DCB works differently for pipeline parallel programs. After every

epoch, the DCB runtime subsystem calculates the desired boosting ratio among the threads

to the DCB architecture, which stores the values for the nextepoch. The boosting man-

ager then probabilistically selects the cores to boost according to the boosting probability

distribution.

3.4.2 DCB Architecture

While each core runs either in normal mode or boosted mode, italso takes hints and

makes boosting assignments differently in two interface modes, namely progress mode and

lottery mode, as briefly mentioned previously. The operating system takes this interface

mode information with a flag for clone system calls when the threads are spawned. It

stores the information and requests the DCB architecture toset the core in the proper mode
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every time a context switch occurs. In addition, the thread ID and the thread group ID are

utilized by the DCB architecture when a thread is scheduled in.

The progress mode is mainly for data parallel programs. Eachthread reports its progress

to the DCB architecture. After every boosting quantum, the boosting manager choosesc

threads with the least progress in the same thread group to beboosted, wherec is the boost-

ing budget assigned to the thread group. The DCB architecture provides two non-privileged

instructions so that the instrumented code can report its progress without the intervention

of the operating system.PROGRESS STEP FORWARD increases the progress counter

of the core by one, andSET PROGRESS TO(value) sets the progress counter tovalue.

The lottery mode works in a slightly different way. Each thread does not directly in-

teract with the DCB architecture. Instead, the DCB runtime subsystem sets the desired

boosting ratio among threads after every epoch. The boosting manager probabilistically

choosec cores based on the ratio distribution in a similar manner to how the Lottery Sched-

uler [95] allocates resources. Pipeline parallel programs use the lottery mode to implement

the assignment algorithm explained in Section3.3.3.

All per thread information needed for the boosting assignment is stored in thread boost-

ing table, which is managed by the operating system in the same way as page tables. The

operating system and the DCB architecture can both access and modify the values in the

thread boosting table. Moreover, the DCB architecture includes a cache for the thread

boosting table as TLB for the page tables.
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3.4.3 DCB Compiler

The main goal of the DCB compiler is to instrument the target program with the

progress reporting instructions so that the boosting assignment algorithm described in Sec-

tion 3.3.2yields near optimal performance. In order to do so, the DCB compiler works in

three steps: static analysis, profiling, and instrumentation.

At first, the DCB compiler statically analyzes the parallelism structure and the control

flow of the target program. For the parallelism structure it investigates the starting and

ending points of parallel execution in the main thread and the highest level functions ex-

ecuted in parallel. For the majority of programs, they are thread spawning function calls,

thread joining function calls, and functions passed over tothe thread spawning function

calls, respectively. For some programs the DCB compiler cannot accurately gather the

information. For example, the DCB compiler might be unable to disambiguate the func-

tion pointers passed over to the thread spawning calls. Moreover, non-standardized task

starting and ending functions are used when the program manages a thread pool and send

tasks to the pool for parallel execution. In those cases, theDCB compiler relies on the

programmers’ annotation specifying the information.

Once the parallelism structure is determined, the DCB compiler analyzes the control

flow of the code regions that can run in parallel. At the highest level, these sections are

the functions passed over to the thread spawning calls and the region of the main threads

between the starting and ending points of parallel execution. There could be function calls

in these regions, and the DCB compiler follows the call graphto analyzes the callees in

turn. It stops following the call graph if there is a call through an ambiguous function
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01 : pthread_barrier_wait(barrier);
02(*): SET_PROGRESS_TO(0);
03(*): period = calc_period_LID_007(start, end);
04 : for( i = start ; i <= end ; ++i ) {
05 : ...
06 : compute1(...);
07 : if(side_exit) {
08(*): SET_PROGRESS_TO(MAX_PROGRESS_007);
09 : break;
10 : }
11(*): if(((end - i) % period) == 0)
12(*): PROGRESS_STEP_FORWARD;
13 : }
14 : compute2(...);
15(*): PROGRESS_STEP_FORWARD;
16(*): period = calc_period_LID_008(max);
17 : for( i = 0 ; i < max ; ++i ) {
18 : compute3(...);
19(*): if(((max - 1 - i) % period) == 0)
20(*): PROGRESS_STEP_FORWARD;
21 : }
22 : pthread_barrier_wait(barrier);

Figure 3.5: Example of progress reporting instrumentation.

pointer or a cycle in the call graph. The barrier synchronization points are also included in

the control flow information.

The DCB compiler generates the profiling code and runs it witha training input. It

focuses on the loops in the parallel regions, using the control flow information gathered in

the static analysis phase. The profiling code records the time spent in each loop and the

iteration counts. Path profiling is also performed to discover the most frequent paths.

The last step exploits the profile data along with the static analysis results to instru-

ment the code with the progress reporting instructions. In order to achieve the goal of the

DCB compiler, all threads need to report progress at the points where they share the same

progress ratio, regardless of what control path they take. One necessary condition is that

all threads should go through the same number of progress reporting steps. It is straight-

forward for the counted loops with constant iterations. However, this is not always the case
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and other types of loops make this condition difficult to meet. In other words, naively in-

crementing a progress counter after every iteration does not work because the total iteration

counts might vary across the threads even for the same loops depending on the input.

For the counted loops with input dependent iteration counts, the DCB compiler inserts

the code to calculate the number of iterations needed to be executed for the next progress

reporting right before entering the loop. This number is then used as a progress report-

ing period inside the loop. The DCB compiler also instruments loop side exits to set the

progress counter to the final progress value of the loop. The DCB compiler does not in-

strument uncounted loops. If an uncounted loop in a parallelregion takes too much time,

it might hurt the workload balancing capability of DCB. However, it is a very rare case

and the programmers can insert the progress reporting code by themselves or turn the loop

into a counted loop. For instance, consider an uncounted loop traversing a linked list. It

is very difficult for a compiler to decide the number of iterations before entering the loop.

However, the programmer can possibly transform it to a counted loop by adding an element

count variable in the list header.

Another requirement for the instrumented code is that the frequency of progress report-

ing should be adequate. If the reporting granularity is too coarse, the boosting manager

cannot get enough information to decide the most lagging thread. It should not be too fine

because the progress reporting instructions can incur excessive overheads for this case. The

DCB compiler tries to insert progress reporting instructions so that the execution times be-

tween them are roughly constant. It estimates the executiontime with the instruction counts

for straight-lined code regions. In the case of loops, it uses the profile data to calculate the

approximate execution time per iteration.
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Figure3.5 shows a simple example of how the instrumented code would look like in

source level. The lines marked with an asterisk presents thecode inserted by the DCB

compiler. calc period L007() in line 3 andcalc period L008() in line 16 are the inline

functions generated by the DCB compiler. They calculate thenumber of loop iterations

needed to be executed for the next progress reporting. Constant values cannot be used

in the same place because of programs that have different number of iterations across the

threads, since the total progress counts should be equal forall threads. The generated

inline functions calculate the progress reporting period so that all threads go through the

same number of progress reporting steps. Another point to notice is the line 8. For the

threads that exits the loop before it finishes the total iterations, the DCB compiler sets the

progress counter to the maximum progress of the loop.

3.4.4 DCB Runtime Subsystem

The most important role of the DCB runtime subsystem is to provide the desired boost-

ing ratio to the DCB architecture when the threads are running in lottery mode. The DCB

runtime subsystem is idle for the most of the time and wakes upafter every epoch. It

then reads the per thread values of the CPU cycles. The DCB architecture has the dedi-

cated hardware counters for per core CPU cycles and the operating system manages the

per thread values in the thread boosting table. The DCB runtime subsystem estimates the

workload size of each thread by comparing the current per thread CPU cycles with the

last value. Then it calculates the desired boosting ratio ofthe threads according to the

assignment algorithm described in Section3.3.3.
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Although the DCB runtime subsystem can be implemented as a shared library, it is

preferable for it to be part of the operating system because it needs fast accesses to the

thread boosting table. Since the thread boosting table is protected from unprivileged ac-

cesses, the DCB runtime subsystem should go through the system call interface if it is

implemented as a shared library. This can cause a performance problem if the epoch size

is too small.

3.5 Synchronization-Aware Per-Core Power Gating

We propose applying per-core power gating to idle cores due to workload imbalances

in performance asymmetric CMPs. In order to minimize the impact of wake up latencies

caused by per-core power gating, we only turn off idle cores when the thread is waiting for

a long duration synchronization operation. Furthermore, we instrument the code to provide

hint for waking up the thread on the power gated core before the signaling thread approach

the synchronization point. Finally, the waken up thread executes prefetching code to warm

up the private cache.

3.5.1 Operating System Support

In recent Linux kernels,futex system calls are used to impelement POSIX synchro-

nization operations without busy waiting. WhenFUTEX WAIT is called, the calling

thread is placed in a kernelspace wait queue. The waiting threads are released by calling

FUTEX WAKE. If there is no active thread running on a core, the kernel issues halt in-

struction. The dynamic power management controller in the underlying hardware decides
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which state the core should be placed in, depending on the core idle duration. The typical

granularities of recent microprocessors are in the order of100ms [60].

We extendfutex system call to support selective power gating and givin wakeup hints

by adding two more operations: FUTEX DEEPWAIT and FUTEX HINT.

FUTEX DEEPWAIT is used to let the OS know this synchronization operation is afeasible

target of per-core power gating. In addition, prefetching code is specified with a parameter.

The OS manages one more waiting queue (deep sleep queue) for power gating targets, and

turns off the core when all the threads are waiting in the deepsleep queue. We assume that

the microprocessor exposes a direct control of the core power states to the kernel.

When FUTEX HINT is called, a thread in the deep sleep queue is waken up. The

thread then executes the prefetching code given by theFUTEX DEEPWAIT call. If it

finishes running the prefetching code before it is waken up byaFUTEX WAKE call, then

it waits on the normal wait queue. On the other hand, if it is waken up by aFUTEX WAKE

call before it finishes, the prefetching code is preempted and the thread starts running the

code after theFUTEX DEEPWAIT call.

3.5.2 Profiling-based Selective Power Gating

Due to the substantial amount of wake up latencies, only longenough synchroniza-

tion stalls can save energy with per-core power gating. Our scheme selectively perform

per-core power gating for those long enough synchronizations relying on profiling. Two

versions of each synchronization operation are provided using FUTEX WAIT and FU-

TEX DEEPWAIT, repectively. The compiler selects which version to be usedfor each
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call based on profiling data. For training runs, waiting timefor each synchronization is

measured. For synchronizations of which waiting times exceed a threshold with decent

probability, the synchronization operation is replaced with the corresponding version with

FUTEX DEEPWAIT calls.

3.5.3 Wakeup Hint and Prefetching

For the synchronization call that is replaced with the deep sleep version, the correspond-

ing operation to give wake up hint is instrumented. For example,pthread barrier hint() is

inserted to give hint for the power gating version ofpthread barrier wait().

pthread barrier hint() tracks the number of threads reached the hinting point, and broad-

castsFUTEX HINT when the last thread arrives. The placement of the hinting operation

is also determined based on profiling.

The current implementation of our scheme relies on the programmer for prefetching

code. The programmer provides prefetching function as a parameter for the deep sleep

version of synchronization operations. When a thread is waken up from deep sleep by a

hinting call, the specified prefetching code is executed.

3.6 Evaluation Methodology

This section describes the evaluation methodology that we use in order to measure the

performance improvement of DCB and the energy saving of synchronization-aware per-

core power gating.
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3.6.1 DBT-based Performance Evaluation

As the system level interactions among threads are very important, the evaluation of

DCB is different from the evaluation of other microarchitectural features. This difference

makes the traditional evaluation approach of using cycle-accurate simulation an infeasible

option for our purpose. DCB makes boosting assignment decisions based on the relative

orders of thread progressions, and synchronization operations are critical to these orders.

For instance, let us consider a situation where two threads are competing for a mutex. One

of them is about to enter a long critical section and the critical section of the other is short.

A slight difference of arrival time to the critical section can make a huge difference in the

progress of the threads after they both exit from the critical sections. Moreover, even the

execution path might change depending on the order of events[39]. Sampling [81] based

simulation would not yield meaningful results as the interactions among threads are not

considered. Trace-driven simulation that separates functional and timing simulation might

not be accurate either.

Without sampling or trace-driven mechanisms, cycle-accurate simulators are too slow

to evaluate the performance of DCB. The entire execution of the programs from the begin-

ning to the very end must be measured since the interactions among threads are critical.

This makes it very difficult, if not impossible, to test DCB oncycle-accurate simulators

with realistic workloads. Therefore, we need a different approach.

In order to evaluate DCB in a reasonable amount of time while emphasizing on thread

interactions, we use a dynamic binary translation (DBT) based emulation platform. For

emulating diverse core speed for both performance asymmetry and core boosting, our plat-
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Figure 3.6: Core boosting emulation with dynamic binary translation.

form slows down execution by adding extra instructions to each basic block. Figure3.6

shows the conceptual diagram of this scheme. The iteration counts of the insertednoploop

decides how much the execution is slowed down. Since we need to vary the speed from

thread to thread, Thread Local Storage (TLS) is used to storethe index variabletls idx.

The transition between two different core speeds can be emulated by simply overwriting

the value of this variable. Thecounts array is loaded to the memory before executing the

program.

The key point for the accuracy of this evaluation scheme is that the amount of slowdown

must be inversely proportional to the modeled core speed. Weachieve this by judiciously

deciding the iteration counts for every basic block and for every slowdown value. Our

mechanism to decide the iteration counts is inspired by Eyerman et al. [37] which states

that disruptive miss events such as cache misses and branch mispredictions result in charac-

terizable performance behavior. The basic idea is that we can accurately dictate the iteration

counts according to the required slowdown amount if we can measure the per basic block

number of these disruptive events.
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We choose the number of instructions, the last level cache misses, and the data TLB

misses, since they showed the largest correlations with theCPU time of the programs in

our measurement. Using hardware performance counters, we measure these values for

various time periods during repeated execution of the benchmarks. We then model the

relationship between the CPU time and those variables with linear regression based on the

measurement.

The hardware performance counters are also used for sampling the program counter

values when the miss events occur. We collect the program counter samples to map the

number of the miss events to each basic block. Assuming the sampling preserves the prob-

abilistic distribution of the miss events, the numbers for the miss events per basic block can

be calculated by projecting the sample distribution to the total number of miss events for

the entire execution. Finally, the number of iterations perbasic block and slowdown value

are calculated according to the linear regression model along with the miss event numbers.

We have implemented the evaluation platform on DynamoRIO [13], an open source

dynamic binary translation system. We perform the evaluation on a 32-core machine with

four 8-core Intel Xeon processors running at 2.26GHz with 24MB L3 cache and 32GB of

main memory. Except for the fact that each thread is slowed down, the execution on the

evaluation platform is almost identical to running on native hardware. Since the threads ac-

tively interact with each other, the simulation errors caused by ignoring thread interactions

can be minimized.
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Component Parameters
Core 4-way issue OOO
L1-I cache 32 KB, 4 way, 4 cycle, private
L1-D cache 32 KB, 8 way, 4 cycle, private
L2 cache 256 KB, 8 way, 8 cycle, private
L3 cache 8 MB, 16 way, 30 cycle, shared

Table 3.1: Simulated architecture details.

3.6.2 Evaluation of Energy Saving

We evaluate our synchronization-aware per-core power gating scheme with Sniper mul-

ticore simulator [17], version 5.2, updated with a cycle-level core model. We useIntel

Nehalem [89]-like core model and the details of the simulated architecture are listed in

Table3.1. McPAT 0.8 [63] is used to estimate energy consumption.

3.7 Experimental Results

We first ascertain the validity of the evaluation platform byverifying the errors in the

simulated execution time. Then, we use it to evaluate the performance improvement of

DCB. We use the Pthreads implementation of PARSEC 2.1 benchmark suite [11], with

simlargeworkloads. freqmineis left out because it does not have a parallel version of

Pthreads implementation. Althoughvips has Pthreads implementation, it is not used ei-

ther since it works with GNOME Threads interface at the source code level. The current

implementation of the DCB compiler needs source level interfacing with Pthreads for its

static analysis. Each experiment represented is the average of the trials repeated at least ten

times.
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Figure 3.7: Errors in the simulated execution time of the performance asymmetry evaluation
platform.

3.7.1 Accuracy of DBT-based Performance Evaluation

We verify the accuracy of our evaluation platform by comparing the execution times

with slowdown. Figure3.7shows the errors in the simulated execution time of the platform,

dropping the sign for negative values. For the experiments,we calculated the expected val-

ues from the simulated runs with 5x slowdown and compared them to the simulated runs

with 10x slowdown. On average, our evaluation platform shows 4.8% of errors with the

maximum of 10.8%. While our evaluation platform tries to closely match original execu-

tion using the inferred linear regression model and the per basic block hardware counter

statistics, the main source of error is the difference between the original instructions and

the extra instructions instrumented. Despite the fact thatit does not perform the detailed

microarchitectural simulation, however, it is quite accurate. More importantly, it enables

us to run the programs on realistic inputs without sampling while correctly maintaining

75

dcb/fig/accuracy.eps


Figure 3.8: Normalized execution time of Heterogeneous, Reactive, and DCB.

inter-dependencies arising due to synchronizations.

3.7.2 DCB Performance Improvement

Using the DBT-based performance asymmetry evaluation platform, we evaluate the per-

formance improvement of the DCB system. The underlying asymmetric CMP is assumed

to be identical to the one used in Section3.2.1. The standard deviation (σ ) of the core fre-

quencies is 30% of the average (µ), and the eight cores run at the frequencies of(µ−1.5σ),

(µ −1.0σ), (µ −0.5σ), µ, µ, (µ +0.5σ), (µ +1.0σ), (µ +1.5σ), respectively. As the

current generation of AMD processors [2] already have per-core DVFS capable of operat-

ing at 20 - 30% higher frequencies than the nominal frequencies, we use the acceleration

value of 1.5x assuming fast switching (< 10ns) with dual supply voltage rails. We use

c= 1 for the boosting budget, which means one core can be boostedat any moment. We

use the asymmetric CMP with no boosting,Heterogeneous, as a baseline. For the fairness

of comparison, the frequencies ofHeterogeneousis set to be higher than the underlying

cores for the boosting schemes so that its average core frequency is equal to the boosting
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schemes. Although we cannot directly measure power consumption due to the limitation

of our evaluation platform, we keep the power budgets of boosting schemes as close to the

baseline as possible in this way.

We also compare DCB to a reactive boosting scheme,Reactive, where the priority of

the threads is managed in the same way as a state-of-the-art reactive core acceleration

scheme,Booster SYNC[72]. In Reactive, a thread can be in one of the three priorities:

blocked, normal, andcritical. The default priority isnormaland this changes toblocked

when the thread is waiting for either a mutex, a condition variable, or barrier. The priority is

promoted tocritical if the thread acquires a mutex.Reactivealways prefers the thread with

higher priority. When there are multiple threads with the same highest priority,Reactive

assigns boosting in a round robin manner.

Figure3.8shows the normalized execution time ofHeterogeneous, Reactive, andDCB.

DCB achieves performance improvement over bothHeterogeneousand Reactiveacross

all of the benchmarks. On average, the performance gain ofDCB overHeterogeneousis

32.9%, outperformingReactiveby 10.3%. As expected from the preliminary analysis in

Section3.2.1, DCB is most effective for the benchmarks having thread join or barriers as the

primary synchronization method, as inblackscholesandstreamcluster. Interestingly, both

ReactiveandDCB present substantial performance improvement even for the benchmarks

with dynamic workload distribution, such asbodytrackand raytrace, mainly due to the

sequential regions. For the sequential portions of executions, bothReactiveandDCB can

concentrate the boosting budget to the only working thread yielding better performance

thanHeterogeneous.

In order to better understand the workload balancing capability of DCB without the
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Figure 3.9: Synchronization overheads of Heterogeneous, Reactive and DCB.

effect of accelerating sequential region, we also measure the CPU time wasted for synchro-

nization operations in the same way as in Figure3.2. Figure3.9 presents the CPU time

portion for synchronizations. From this graph, we can confirm thatDCB is very effective

in balancing workloads and reducing the synchronization overheads, for data parallel pro-

grams such asblackscholesandstreamcluster. We can also see thatDCB can reduce the

synchronization overhead of pipeline parallel programs like ferret. Note that this graph

shows the ratio of synchronization overheads to the total CPU time of parallel execution.

Since the execution time is significantly reduced for benchmarks likededupandferret, the

workload balancing effect is actually greater than it looksin the graph.

Figure3.10illustrates howDCB outperforms the other schemes. In this figure,X-axis

presents the time scale normalized against the finishing time of the last threads ofHetero-

geneous, andY-axis is for the number of threads that have finished their tasks. Therefore, if
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Figure 3.10: Arrival time of each thread for blackscholes.

the line hits the ceiling earlier, better performance was achieved. As expected,DCBshows

the best performance among all the schemes. An interesting point to note is thatDCB loses

to the other schemes until the sixth thread finishes its task.This shows thatDCB assigns

the boosting budget in a way closer to the optimum. In other words,DCB saves the boost-

ing budget from already fast threads and assign them to the lagging threads, reducing the

workload imbalance. For this reason, the slope of theDCB line becomes steeper as it gets

to the end. For DCB, only the last three threads are finishing their tasks approximately at

the same time, and this is because the boosting budget is not enough to balance all of the

threads. IfDCBhad more boosting budget, it would have the almost vertical fraction of the

line from an earlier point.

Another point to notice in Figure3.10 is thatReactivestarts almost identically with

Heterogeneousand gains a slightly steeper slope thanHeterogeneous. The reason is that

Reactiveis indeed reactive.Reactivedoes not discriminate threads before some of them
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Figure 3.11: Overhead of synchronization-aware per-core power gating.

reach synchronization operations. So, it starts identicalwith Heterogeneousfairly distribut-

ing the boosting budget to all cores. This is also whyReactivebeatsDCB in the beginning.

Moreover, theReactiveline is slightly steeper thanHeterogeneousbecause it starts concen-

trating the boosting budget by not assigning it to the idle cores.

3.7.3 Energy Saving of Synchronization-Aware Power Gating

We evaluate the energy saving of our per-core power gating scheme. The underlying

asymmetric CMP is assumed to be identical to the one used in Section 3.2.1. The standard

deviation (σ ) of the core frequencies is 30% of the average (µ), and the eight cores run

at the frequencies of(µ −1.5σ), (µ −1.0σ), (µ −0.5σ), µ, µ, (µ +0.5σ), (µ +1.0σ),

(µ +1.5σ), respectively.

Figure3.11shows the normalized execution time of PARSEC benchmarks when we

naı̈vely apply per-core power gating for all synchronization stalls. For sensitivity study, we
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Figure 3.12: Impact of optimization for streamcluster.

vary the wake up latency from 100ns to 1500ns. Leverich et al.[60] shows 190ns of wake

up latency using Spice simulation with similar setting. In this figure, we can see that power

gating the idle cores waiting for synchronizations incurs negligible overhead even with

the conservative wake up latency value of 1500ns, except onebenchmark:streamcluster.

This is because the frequency of synchronization stalls is relatively small compared to the

duration of the stalls.

Figure3.12presents the impact of selective power gating and prefetching. Profiling-

based selective per-core power gating reduces the number ofsynchronization stalls so that

the longer wake up latency shows less impact on the performance. However, cold private

cache after gating still incurs substantial amout of overhead, resulting in about 10% slow-

down. Finally, prefetching private cache contents furtherreduces the overhead to about

1%.

The energy savings of the synchronization-aware power gating scheme is depicted in
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Figure 3.13: Energy savings of synchronization-aware per-core power gating.

Figure3.13. The baseline keeps the cores in active status for synchronization blocking

durations. Although the recent microprocessors support dynamic power management, they

do not place the cores in sleep mode for synchronizations because the time granularities

are too coarse (on the order of 100ms [60]). We assumed 300ns of wake up latency and

200nJ of switching energy overhead following the Spice simulation results of Leverich et

al. [60]. Overall, our scheme improves the energy efficiency by 15% on average with only

negligible performance degradation.

3.8 Related Work

In this section, we first survey previous work that suggests performance asymmetry in

CMPs. Since DCB is not limited to one type of core boosting mechanism as mentioned

before, we then review per-core performance adaptation technologies that could possibly

be used for core boosting. Finally, we study the previous proposals for assessing thread
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criticality and differentiate DCB from them.

3.8.1 Performance Asymmetry in CMPs

There have been numerous prior works that motivate inherentperformance asymme-

try in CMP designs. Several of them [7, 58] are proposed for better performance, and

some others [57] show asymmetry is beneficial to reduce power consumption. Asymmetric

CMPs have been demonstrated to be effective for alleviatingserial bottlenecks [43, 91, 55].

In consequence, some commercial products [40] have started adopting the trend.

Increasing within-die process variation in near-future technologies also demands per-

formance asymmetry even in homogeneous CMP designs. Because of process variation,

Teodorescu et al. [92] claims that it is no longer accurate to think of large CMPs ashomoge-

neous systems. Furthermore, low voltage chips aggravate the impact of process variation,

and maintaining homogeneity by operating at the frequency of the slowest core severely

lowers performance [71].

3.8.2 Dynamic Adaptation of Core Performance

Dynamic voltage and frequency scaling (DVFS) is a widely used technique for dynamic

per-core performance adaptation [49, 36] and some AMD commercial processors support

per-core DVFS [2]. However, off-chip regulator-based DVFS incurs intolerable scaling

overheads (tens of microseconds) for our purpose. On the other hand, DVFS using on-chip

regulators has much shorter transition time but suffers from low efficiency of the regulators.

Miller et al. [72] and Dreslinski [30] recently proposed the use of dual-voltage rails for
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fast adaptation of per-core performance. In addition, Dreslinski et al. [31] confirmed that

very short transition time (< 10ns) is achievable with a new circuit technique. We assume

this technique to demonstrate the effectiveness of the DCB system.

Another feasible option for the underlying mechanism of core boosting is adapting

hardware resources of cores. Composite Cores [68] integrates two different types of com-

puting engines and achieves high performance and energy efficiency. It also shows that

fine-grained (quantum length of 1000 instructions) dynamicper-core performance adapta-

tion is possible.

While Composite Cores adapts in-core hardware resources, Illusionist [4] uses another

core to boost cores. Illusionist consists of many lightweight cores and a small number of ag-

gressive cores, and aggressive cores are used to acceleratethe execution of the lightweight

cores by providing execution hints, running ahead of them.

3.8.3 Thread Criticality Assessment

Thread Criticality Predictor (TCP) [10] identifies thread criticality based on memory hi-

erarchy statistics using hardware counters. It increases energy efficiency by scaling down

the frequency of non-critical threads or improve performance by task stealing from critical

threads. Although TCP shows high accuracy (average of 93%),it is not suitable for our pur-

pose of balancing workloads for asymmetric CMPs. For example, consider two perfectly

identical (including cache misses) threads running on two cores with different frequencies.

In the middle of the workloads, TCP would assess the criticality of faster thread higher than

the slower thread because the faster thread would have more misses to the point.
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Prior work has suggested using barrier synchronizations for thread criticality prediction

for saving energy either by transitioning into low power modes after reaching a barrier or by

scaling down the voltage and frequency of non-critical threads. Liu et al. [64] and Thrifty

Barrier [62] differ from our work as they try to predict the arrival time to the next barrier

based on history while DCB only needs to decide lagging threads for data parallel pro-

grams. Meeting Points [15] is similar to our work considering that it employs instrument-

ing programs with special instructions for monitoring progress. However, it only works for

regular parallel loops with identical iteration counts across all threads, as opposed to DCB

which can handle not only the loops with varying iteration counts but also the threads with

different code.

Accelerating Critical Sections (ACS) [91] and Bottleneck Identification and Scheduling

(BIS) [55] also use special instructions for detecting bottlenecks.Especially, BIS measures

the number of cycles spent by threads waiting for each bottleneck and accelerates the bot-

tlenecks responsible for the highest thread waiting cycles. The primary difference of ACS

and BIS from our work is that they work in coarser granularitysince they rely on thread

migration to accelerate bottlenecks.

The most closely related work to DCB is Booster [72], where it also tries to balance

multi-threaded workloads using core boosting. They propose two boosting algorithms:

Booster VAR and Booster SYNC. Booster VAR balances the CPU cycles spent by each

thread and Booster SYNC improves it by taking priority hintsfrom synchronizations. The

most important difference between Booster and DCB is that Booster is reactive. Even

Booster SYNC does not discriminate threads until they reachsynchronization operations.

Therefore, it cannot address implicit software heterogeneity caused by control flow diver-

85



gence and non-deterministic memory latencies. Similarly,it is not well-suited for pipeline

parallel programs. Even though different stages are heavily biased, Booster gives up the

chance of balancing them until some of them get blocked for synchronizations. Conversely,

DCB is proactive handling software heterogeneity very well. Finally, it is not trivial to ex-

tend Booster for other types of asymmetric CMPs or core boosting mechanisms, since it

uses the core frequency values for balancing cycles. Meanwhile, DCB is applicable to them

without any modification for data parallel programs and it only needs relative acceleration

ratio for pipeline parallel programs.

3.9 Summary

This chapter explored improving performance and energy efficiency for performance

asymmetric CMPs. We investigated the elimination of workload imbalances by relying on

the hardware capability to accelerate individual cores at afine granularity. We proposed

Dynamic Core Boosting (DCB), a software-hardware cooperative system that balances the

workloads by boosting critical threads. DCB coordinates its compiler, runtime, and proces-

sor cores, for near-optimal assignment of core boosting. The DCB compiler instruments

target programs with instructions to give progress hints. The DCB runtime subsystem mon-

itors their execution, enabling intelligent assignment ofthe boosting budget for better per-

formance. On a simulated eight core system of varying frequency, our experiments using

PARSEC benchmarks showed that DCB improves the overall performance by an average

of 33%, outperforming a reactive boosting scheme by an average of 10%. We also sug-

gested applying per-core power gating to the idle cores due to workload imbalances. Our
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synchronization-aware power gating scheme minimizes the performance impact of per-core

power gating through selective gating and prefetching. Ourscheme improves the energy

efficiency by an average of 15%.
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CHAPTER 4

Instrumentation Sampling for Lightweight Profiling

4.1 Introduction

As cloud computing continues to expand, profile-guided optimization (PGO) on data-

center applications has the potential for huge cost savings. Single-digit performance gains

from the compiler can yield tens of millions of dollors in savings. Isolating the execu-

tion of datacenter applications can be complex or even impossible. One challenge of

PGO on datacenter applications is collecting profile data from the applications running

on live traffic [83]. In order to monitor production runs, the profiling overhead in terms

of both throughput and latency should be kept minimal for several reasons. First and fore-

most, datacenter application owners are not tolerant of latency degradations (even at the

99th percentile) of more than a few percent, unlike high performance computing or other

throughput-oriented applications, because they hurt the quality of service. Second, ex-

cessive profiling overhead can cause observer distortion that thwarts meaningful analysis.

Finally, profiling overhead might offset the cost savings gained with PGO.
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One way to keep the profiling overhead minimal is to exploit hardware support. For in-

stance, specialized profiling hardware such as Merten’s hotspot identification [70], Vaswani’s

programmable hardware path profiler [94], and Conte’s profile buffer [26] has been pro-

posed for low overhead profiling. Furthermore, many recent microprocessor designs have

included on-chip performance monitoring units (PMU) [46, 47, 48] containing configurable

performance counters that can trigger software interruptsfor sampling. Google-Wide Pro-

filing (GWP) [83] has shown that PMU-based profiling mechanisms can maintainsmall

enough overhead to be deployed for large datacenters monitoring applications running on

live traffic.

Although hardware profiling mechanisms incur low overhead,they suffer from limita-

tions. First, the possible types of profile data are inherently defined by the features that

the underlying microprocessor supports; thus, hardware profiling mechanisms are not as

flexible as software-only mechanisms. In addition, PMU features are often very processor-

specific, making profiling tools not portable. Lastly, as thetop design priorities are hard-

ware validation and processor performance, performance monitoring hardware tends to be

considered as a second class feature with the increasing time-to-market pressures [90].

Such limitations of hardware profiling can significantly limit the potential of PGO for

datacenter applications, since PGO systems must be aware ofboth what and how to opti-

mize for effective optimization. Although PMUs implemented in recent microprocessors

so far provide quite rich information on where to focus optimization efforts, deciding how

to optimize is a considerably harder problem. For example, sampling the program counter

(PC) at a high rate yields enough information to detect hot code, and current PMUs are

even capable of giving finer information such as cache miss and branch mispredict PCs.
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However, PMU features so far give less attention on how to optimize.

While instrumentation-based profiling mechanisms can provide more useful informa-

tion about how to optimize the target applications, they tend to impose higher overheads

than hardware-based mechanisms. For instance, path profiling [8] is well-known to be ef-

fective for improving code layout and superblock formation, but incurs 30-40% overhead.

Other techniques such as value profiling [16] and data stream profiling [21] not only achieve

gains of over 20% but also cause ten- or hundred-times slowdowns during profiling. Such

high overheads prevent these mechanisms from consideration for profiling even loadtests

for datacenter applications.

In this work, we propose a novel instrumentation sampling technique,instant profiling,

that uses dynamic binary translation. Instead of instrumenting the entire execution, instant

profiling periodically interleaves native execution and instrumented execution. By adjust-

ing profiling duration and frequency parameters, we can keepprofiling overhead under a

few percent, so that the framework can be used to continuously monitor cloud computing

applications running in large scale datacenters with live traffic. We have implemented the

prototype framework of instant profiling on top of DynamoRIO[13], and we evaluate the

possibility of continuous profiling on real datacenter benchmarks.

Instant profiling offers the following features:

• Low computational overhead. Computational overhead includes the cycles con-

sumed by the application as well as out-of-band computationlike profiling and JIT-

ing. When target programs are running natively, instant profiling does not need to

add any extra instructions to the programs, as opposed to previous techniques [6, 44]
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which need checking code even when not profiling. Also, we do not duplicate the

original execution, unlike other prior work [73, 97]. For these reasons, instant profil-

ing can keep the computational overhead minimized.

• Small latency degradation. Due to the overhead amortizing characteristics of dy-

namic translation techniques, end users might observe significant latency degrada-

tion for initial profiling phases even with low sampling rates. Instant profiling further

reduces latency degradation by pre-populating a software code cache and jumping

back to native after a predefined period.

• Eventual profiling accuracy. With sampling techniques, we cannot avoid making er-

rors on profile data. Since our low overhead framework enables continuous profiling

on production runs, however, the accuracy of instant profiling gets closer to full pro-

filing with a long enough application lifetime or enough instances. Since the most

important applications consume the most cycles, they will have the most instances,

run the longest, and yield the most profiles.

• Flexibility. Instant profiling can be applied to any type of profiling or tracing as long

as the entire execution does not need to be monitored, since it is an instrumentation-

based profiling technique and does not rely on specialized hardware features. In

addition, instant profiling is portable to other micro-architectures for the same reason.

• Tuning. The profiling duration and frequency are configurable, making it easy to

adjust the tradeoff between information and overhead.

The remainder of this chapter is organized as follows. Section 4.2 provides a brief
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explanation of dynamic instrumentation systems and DynamoRIO which we harness as a

base platform. Section4.3 then presents the design and implementation details of our in-

stant profiling framework. Section4.4describes how the framework further reduces latency

degradation by pre-populating its software code cache. Section 4.5 explores tuning trade-

offs and evaluates performance. Section4.6discusses related work. Finally, we summarize

the contributions and conclude in Section4.7.

4.2 Background

Before we delve into the details of instant profiling, we briefly describe dynamic binary

instrumentation techniques and where extra overheads comefrom. Then we provide an

overview of DynamoRIO upon which we implement the prototypeframework of instant

profiling.

4.2.1 Dynamic Binary Instrumentation

Dynamic binary instrumentation is a powerful technique forruntime program intro-

spection, particularly collecting profile data for PGO. There are many dynamic binary in-

strumentation systems [13, 67, 78], sharing similar internal mechanisms. They intercept

target applications’ execution, instrument points of interest, place instrumented code in

their software code cache, and execute it from the software code cache. Where and what

to instrument are defined by users (client writers) via custom API’s. One main benefit of

instrumenting programs at runtime is the availability of a complete picture of programs’

runtime behavior including shared libraries, plugins, anddynamically-generated code.
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There are two major sources of overhead for dynamic binary instrumentation systems.

One arises from the dynamic instrumentation systems themselves. Whenever the target

program meets an unknown branch target, the dynamic instrumentation system must per-

form a code cache lookup, copy the original code to the software code cache and insert any

necessary instrumentation. In order to make this process transparent to target programs,

moreover, they have to save and restore program context. Although these costs are un-

avoidable, translation overheads can be amortized over long running time and there have

been suggested many optimization techniques to reduce thistype of overhead, e.g., direct

and indirect branch linking, trace construction, registerreallocation, etc.

The other source of overhead comes from the profiling client.For collecting profile

data, dynamic instrumentation systems insert user-definedcode into application code. As

opposed to instrumentation overhead occurring only when new code comes into the soft-

ware code cache, instrumented client code is executed everytime the application code is

executed. Thus, even fine-tuned profiling clients can imposelarge overheads, continuously

throughout the target application’s execution. Furthermore, while significant progress has

been made in reducing the performance penalty of the dynamicinstrumentation itself, less

attention has been paid to user-defined profiling clients [103].

4.2.2 Overview of DynamoRIO

DynamoRIO [12, 13, 1] is an open source dynamic binary instrumentation system. Dy-

namoRIO exports an interface for building a wide variety of dynamic tools (DynamoRIO

clients) including program analysis, profiling, instrumentation, optimization, etc. It allows
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not just insertion of callouts/trampolines, but also arbitrary modifications to application

instructions via a powerful instruction manipulation library and adaptive intermediate rep-

resentation. DynamoRIO provides efficient, transparent, and comprehensive manipulation

of an unmodified application running on stock operating systems (Windows and Linux)

and commodity hardware (IA-32 and AMD64).

A thorough description of the internal design and implementation of DynamoRIO is

outside the scope of this chapter, but is described by Bruening [13].

4.3 Instrumentation Sampling

We modify DynamoRIO’s control transfer for instrumentation sampling by interleav-

ing native execution and instrumented execution. Unmodified, DynamoRIO initially takes

over the control from native execution when DynamoRIO’s shared library is loaded into

the target program’s address space, and never gives it back.On the other hand, our instant

profiling framework gives back the control to native programexecution right after initial-

ization. During initialization, it sets up a signal handlerfor pre-defined profiling start/stop

signals and creates a shepherding thread. After it starts executing the target program na-

tively, the framework periodically takes over and gives back the control from and to native

execution for sampling.

Figure4.1shows how control is transfered between native execution and instrumented

execution in the instant profiling framework. The shepherding thread manages control

transfers by periodically sending a profiling start/stop signal to each application thread,

according to the profiling duration and frequency parameters. Then, the registered signal
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Figure 4.1: Control transfer for instrumentation sampling.

handler for the predefined signal transitions between native execution and instrumented

execution. In order to make the instrumentation transparent to the target program, instant

profiling needs to save and restore the target program’s state every time the control is trans-

fered via context switch.

If the profiling start signal is delivered when the thread is running natively, the signal

handler saves the program state and hands over the control tothe dispatch unit. iThe dis-

patch unit then checks whether the current program counter (PC) exists in the software

code cache. If so, it restores the saved program state and executes the target code from the

software code cache. If the current PC does not exist in the software code cache it invokes

the instrumentation engine to instrument the target code region and place it in the software

code cache. Then the dispatch unit switches the context to the software code cache.

The transition from instrumented execution to native execution happens in a similar

way. In this case, however, the context switch can only occurin between two instrumented
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fragments. A fragment is DynamoRIO’s unit of translation and it can be either a basic

block or a trace. Mapping the code cache state back to a nativestate is most easily done at

the start or end of a code fragment. Thus, the signal handler delays the context switch until

the current fragment in the software code cache finishes.

The rest of this section describes the technical issues involved in making the start/stop

profiling transitions lightweight and transparent to the target program.

4.3.1 Context Switch

For a sampling mechanism to be effective, transitions of start/stop profiling should

be very lightweight. Otherwise, the transitions would encroach on the overhead budget.

In order to make the transitions lightweight, our instant profiling framework minimizes

the operations needed for the context switch between nativeexecution and instrumented

execution.

The framework performs a context switch to start profiling asfollows: when the start

profiling signal handler gets a signal, the kernel hands overthe machine context of native

execution to the signal handler in the form of asigcontextstruct, which the handler passes

to the dispatch unit after modifying a few fields To invoke thedispatch unit, the ip register

in the sigcontext is set to the re-entry point of the dispatchunit. Then, when the signal

handler returns, the kernel gives the control to the dispatch unit. The dispatch unit starts

instrumented execution starting from the program counter value saved from the sigcontext

struct.
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4.3.2 Temporal Unlinking and Relinking of Fragments

One of DynamoRIO’s optimizations that has a large impact on performance is direct

and indirect branch linking. Since a context switch betweenthe software code cache and

the dispatch unit is expensive, DynamoRIO links branches instead of switching context

whenever a branch target exists in the software code cache.

Although it is good for performance, the direct and indirectbranch linking optimization

can cause a problem for sampling control. Assume a thread is running inside a loop linked

in the software code cache. When the stop profiling signal is delivered, the signal handler

sets up the control transfer and continues running in the software code cache since it is in

the middle of a fragment. In this case, however, the control transfer does not happen until

the execution actually finishes running the loop and returnsto the dispatch unit. For this

reason, the direct and indirect branch linking optimization can cause unbounded profiling.

In order to prevent unbounded profiling, our instant profiling framework temporarily

unlinks the outgoing branches of the currently running fragment when it gets the stop pro-

filing signal. For better performance, the framework needs to re-link the branches after-

ward. So, it saves the unlinked branches in a scratch-pad data structure and re-links them

when it restarts profiling.

4.3.3 Multi-threaded Programs

Although unmodified DynamoRIO seamlessly supports multi-threaded programs, we

need several special treatments due to the structural difference between our instant profiling

framework and DynamoRIO. The key issue is how to take over thecontrol of all threads
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when we want to start profiling. This is not a problem for unmodified DynamoRIO since it

takes over the control of the main thread before it spawns anyother threads, observes every

system call including thread creation, and never gives up the control of any thread. On the

other hand, our framework only takes over the control when itis doing profiling, and does

not keep supervision when the threads are running natively.

The basic strategy that our framework takes is to force its own signal handler for every

thread and to send a profiling start signal to each thread. Theshepherding thread can

enumerate the thread IDs of every application thread even when they are not created and/or

running under control of the framework, and send each threada pre-defined signal that

can be easily configured with a parameter. Since the kernel calls the registered signal

handler when the signal is delivered, the framework can takeover the control of every

thread whenever it needs to in this way.

One problematic case is when the target program tries to maskthe signal that we use or

to register another handler for the signal. In this kind of conflict, the simplest circumvention

is to use a different signal that is not touched by the application. For this purpose, the signal

number we use as the start/stop profiling signal can be easilyconfigured via a command-

line parameter. Another solution is to intercept those tries by slipping in our wrapper

functions for the library functions such as sigaction(), signal(), or sigprocmask(). In this

case there still can be applications which directly call system calls (e.g., with assembly

language), and they need to be handled with ptrace. They are extremely rare cases, however,

especially for datacenter applications which mostly use standard libraries for portability.

Finally, for the programs we have tested so far, changing thesignal was enough.
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4.3.4 Summarizing Profile Data

In order to enable profiling clients to summarize their results, our instant profiling

framework extends DynamoRIO’s API. DynamoRIO has various API functions to regis-

ter customized instrumentation points and we add one more type of such event.

• dr register profiling end event(function)

The function registered with this API is called by the shepherding thread after every

profiling phase. In this way profiling clients can manage profile data. The summarizing

overhead can be hidden as it is performed in the shepherding thread and not included in an

application’s critical path.

4.4 Pre-populating Software Code Cache

Our instant profiling framework further reduces the latencydegradation by pre-populating

its software code cache. As mentioned in Section4.1, minimizing latency degradation is

extremely important for datacenter applications as it is directly related to the applications’

quality of service. Many systems have expected 99th percentile latencies under 10ms.

Meanwhile, using a software code cache technique amortizesits translation overhead over

continued reuse of translated code. This means that end users may observe latency degrada-

tion for initial profiling phases even though we keep averageoverhead very small by setting

a low profiling frequency. Instant profiling does not have to manifest instrumentation over-

head to users, however, as it does not always run the programsfrom the software code

cache. In other words, we can hide instrumentation overheadby instrumenting target code

in parallel while the program is running natively. This can be understood in a similar way
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to prefetching into an instruction cache implemented in many modern micro-architectures,

and we call this technique pre-populating a software code cache.

Our instant profiling framework decides which code regions to instrument for pre-

populating its software code cache based on locality. When the target program is running

natively, it uses hardware performance monitoring units tocollect program counter sam-

ples. It is likely that those code regions with high sample counts will be executed again

when the framework starts profiling. Therefore, it pre-populates its software code cache

with the basic blocks containing the program counter whose counts counts exceed a thresh-

old.

4.4.1 Finding Basic Block Headers

Finding code regions to instrument from program counter samples is not a trivial task,

especially for processors with variable-length instructions like IA-32/AMD64. For Dy-

namoRIO, code fragments are tagged and managed with the program counter values of

their first instructions. Given a program counter, therefore, we need a mechanism to find

the basic block header including that program counter.

One heuristic can be backward decoding. Starting from the target program counter, it

decodes previous bytes until a valid instruction is found. The heuristic repeats this process

until it meets a branch instruction, at which point it takes the post-branch program counter

as the basic block header. With RISC architectures where instructions have fixed length,

backward decoding works quite well. However, the overhead is too high for architectures

with variable-length instructions. The overhead prohibits it from being used for datacenter

100



Figure 4.2: Traditional vs. DynamoRIO’s basic blocks.

applications, since our framework works on IA-32/AMD64 processors.

Instead of the backward decoding heuristic, our framework performs forward decod-

ing. From the entry points of text segments, it decodes consecutive instructions in order

and also records branch targets. After finishing this process, instructions following branch

instructions and branch targets start new basic blocks. We save these basic block header

addresses in sorted order. Then, we can identify the basic block header containing a given

program counter with binary search. The overhead of initialbasic block header calculation

can be hidden by performing it before the start of profiling, or it can be done offline.

4.4.2 Affinity-based Pre-population

A given program counter sample can be in multiple basic blocks for DynamoRIO since

its basic blocks are different from the traditional static analysis notion of basic blocks.

The example in Figure4.2 shows the difference between traditional basic blocks and Dy-
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namoRIO’s basic blocks. DynamoRIO considers each entry point to begin a new basic

block, and follows it until a control transfer is reached, even if it duplicates the tail of an

existing basic block.

DynamoRIO uses this notion for simplicity of code discoveryat runtime [13], but it can

decrease the hit ratio of software code cache pre-population. For instance, suppose program

counter 400550 in Figure4.2 is sampled for pre-population. The basic block header found

by the search in Section4.4.1will yield only 400550. For actual instrumented execution,

however, both basic blocks starting from 400545 and 400550 can be encountered.

In order to solve this problem and exploit spatial locality in higher degree, our instant

profiling framework adopts affinity-based pre-population.Instead of just pre-populating the

software code cache with basic blocks containing sampled program counter, the framework

also instruments additional basic blocks close to those basic blocks. Starting from the basic

blocks found from program counter samples, it includes the branch targets of those basic

blocks. It discovers target basic blocks in a breadth-first-search-like manner to a pre-defined

depth.

4.5 Performance Evaluation

Instant profiling balances a tradeoff between information and overhead. This balance

can be controlled with two parameters. The first parameter, profiling duration, controls

how long one profiling phase lasts. A longer profiling duration gives more information, but

also incurs higher overhead. Moreover, it is possible that end users might feel intermittent

latency degradation during profiling phases. So we limit profiling durations to a few mil-
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Figure 4.3: Overhead of edge profiling.

liseconds at maximum. Another parameter that affects the profiling overhead is profiling

frequency. Considering datacenter applications’ long running characteristics, our scheme

of profiling a very small portion of execution can yield arbitrarily low average computa-

tional overhead, while still giving meaningful profile data. Since most of our benchmark

workloads run only for a few tens to hundreds of seconds, however, we set profiling fre-

quency relatively high – once in a few seconds at minimum. In these experiments, a pair of

profiling duration and frequency parameters sets how long and how often profiling is per-

formed. For example, the (2ms/4s) setting means profiling isconducted for 2 milliseconds

for every 4 seconds. We compare results for (2ms/4s), (1ms/1s), (2ms/1s), (4ms/1s), and

(2ms/250ms).
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Figure 4.4: Execution time overhead of the instant profilingframework across five configura-
tions of (duration / frequency).

Figure 4.5: Computational overhead of the instant profilingframework across five configu-
rations of (duration / frequency).

4.5.1 Experimental Configuration

All experiments are performed on a system with a 6-core IntelXeon 2.67GHz processor

with 12,288KB L3 cache. The system has 12GB of memory and is running Linux kernel

version 2.6.32. We used gcc 4.4.3 to compile all binaries with -O3 optimization.

Instant profiling is evaluated using the SPEC CPU2006 integer benchmark suite and two

proprietary datacenter application benchmarks. For the SPEC CPU2006 benchmark suite,

the floating point benchmarks are omitted because they generally exhibit highly repetitive

behavior that is not as interesting from the perspective of profiling. In addition, four integer
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benchmarks are omitted because our prototype framework does not yet work for them.

The datacenter applications are web search and BigTable [18]. Although each experiment

presented is the average of three repeated trials, there still exists some degree of variability

in performance and accuracy due to the non-determinism caused by random starting points

of profiling and thread interleaving.

4.5.2 Edge Profiling

We choose edge profiling as a profiling client to demonstrate the effectiveness of instant

profiling, since it is widely used and relatively simple to implement, but incurs considerable

overhead. Edge profiling is a traditional control flow profiling technique for profile-guided

optimization. It measures how many times each edge (branch transition) in control flow

graphs executes, and has been the basis of path-based optimizations that select hot paths.

Although edge profiling collects strictly less informationthan path profiling, Ball[9] shows

that various hot path selection algorithms based on edge profiles work extremely well in

most cases.

Figure4.3 presents the overhead of our edge profiling client, when it runs on original

DynamoRIO without sampling. This naive implementation haslittle tuning or optimiza-

tion, and its overheads are far larger than other optimized edge profiling techniques [33].

Although there are opportunities for optimizing the clientitself, it is outside the scope of

this chapter and we demonstrate the effectiveness of instant profiling by showing how it

performs even with a naively implemented experimental client. Since the tradeoff between

information and overhead is tunable with sampling parameters, edge profiling makes a
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Figure 4.6: Effect of pre-populating a software code cache.

good test case because comparing edge profiles’ quality is well studied.

4.5.3 Performance Overhead

The slowdowns caused by our instant profiling framework withthe edge profiling client

are shown in Figure4.4. They are calculated as the profiled execution time (wall time)

divided by the native execution time. Figure4.5 also shows the computational overheads,

which is calculated with CPU time. For all configurations tested, the average slowdown

ranges from 1.4% to 5.9%, and the average computational overhead ranges from 0.6% to

2.9%.

The main trend that can be observed is that increasing sampling rate either by increasing

profiling duration or profiling frequency results in an increase in overhead. We chose pro-

filing frequency once in every 4 seconds at least, since a few benchmarks only run about 30
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Figure 4.7: Edge profiling accuracy of the instant profiling framework across five configura-
tions of (duration / frequency).

seconds. For real datacenter environments, however, applications usually run much longer

and there exist many instances of the same application running concurrently. In production

environments, we can choose a much lower profiling frequencyand expect commensurately

lower overheads.

Although instant profiling can be tuned to impose very low average computational over-

head, some of the configurations caused some benchmarks to slow down by up to 25%.

There are two major locations where instant profiling adds extra instructions. One is pro-

filing phases of every thread, but the durations of this type are controlled by the profiling

duration parameter. The other location is the shepherding thread, especially the profile data

summarizing phase. For the edge profiling client we used for the experiments, the shep-

herding thread summarizes and prints out profile data to diskafter every profiling phase.

While this overhead can be hidden for most benchmarks since it is not in the application’s

critical path, it can cause resource contention resulting in slowdowns. Although it is not

yet clear, in our edge profiling case we think the resources that cause the slowdown are

the data cache and load store queue. The two datacenter applications have larger working
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set size than SPEC benchmarks, and our edge profiling client traverses edge counters after

every profiling phase. This increases the pressure on the data cache. Also, we use atomic

increment instructions to modify edge counters for the datacenter benchmarks, since they

are highly multi-threaded and non-atomic increments can cause data races on the counters

in this case. This can impose substantial contention on the load store queue. As we can see

with the bars where profiling frequency is 4 seconds, however, even the overhead caused

by the resource contention of naively implemented profilingclients can be kept small with

proper parameter settings. Moreover, we expect this overhead would go further down with

practical profiling frequency in real datacenter environments.

We also examine how pre-populating a software code cache canreduce latency degrada-

tion. Figure4.6shows the cumulative number of samples with and without pre-population,

for the web search benchmark with the (4ms/1s) setting. As can be observed in the graph

with small slope phases, instrumentation overhead to populate the software code cache can

result in a small number of samples, and thus more latency degradation, for initial profiling

phases. Pre-populating a software code cache reduces such degradation by decreasing the

software code cache miss rate.

4.5.4 Profiling Accuracy

The accuracy of the edge profiling client can be ascertained by comparing the sampled

profile with the profile collected with full instrumentation. We adopt a method similar to

Wall’s weight matching scheme [96]. We define edge profiling accuracy as

Accuracy=
(MaxError−Error)

MaxError
×100(%) (4.1)
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Error = ∑
e∈Edges

| f reqf ull(e)− f reqsampled(e)| (4.2)

In the second equation,f reqf ull(e) and f reqsampled(e) represent relative frequencies

of edgee in a fully instrumented profile and a sampled profile, respectively. Relative fre-

quency is defined as the number of times that an edge is taken divided by the number of

times any edge in the profile is taken. For the worst case results where edges are biased the

opposite way, this error sums up to 2, definingMaxError as 2.

The profiling accuracy of our instant profiling framework foredge profiling is shown

in Figure4.7. For all configurations tested, the average accuracy rangesfrom 67-81%, and

many of the benchmarks achieve about 90% accuracy.

Despite many sources of noise, we can observe the general trend of increasing accuracy

as profiling duration or profiling frequency increase. The more samples the framework

collects, the closer the profile data gets to full instrumentation.

This can also be seen in Figure4.8, which shows how the average accuracy changes

as the number of profiling phases increases for two datacenter application benchmarks

with (2ms/250ms) parameter setting. In the graph, althoughthe curves are not strictly

monotonic, we can see the accuracy generally goes up as more samples are collected.

Although the edge profile accuracy of our framework reaches 90% for many of the

benchmarks, some benchmarks such as BigTable and gcc show very low accuracy. The

main reason for the low accuracy is that our framework could not collect enough samples

as the execution time of these benchmarks is too short. For real datacenter environments,

however, having low overhead is paramount and it can be tunedto collect profile data that
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Figure 4.8: Asymptotic edge profiling accuracy.

would yield accuracy that is actionable with PGO.

4.6 Related Work

Inspired by the Digital Continuous Profiling Infrastructure (DCPI) [3], Google-Wide

Profiling (GWP) [83] demonstrates continuous profiling is possible for datacenter appli-

cations running with live traffic. Although GWP also collects some lightweight callstack-

based profiles through specialized libraries, it mainly relies on performance monitoring

units (PMU) supported by recent microprocessors [48] to collect system-wide profiles with

low overhead. The types of profiles GWP collects, therefore,are limited to the ones that

either PMUs support or can be collected with specialized libraries. Our work tries to extend

GWP for collecting more general profiles which can be gathered only through instrumen-

tation. These types of profiles will enable more profile-guided optimizations (PGO) by
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providing profiles that can help figure out not only ”what to optimize” but also ”how to

optimize.”

Dynamic instrumentation tools such as DynamoRIO [13], Pin [67], and Valgrind [78]

help instrument an application and collect general profilesof full execution. Even for

simple profiles, however, the overhead of instrumenting an entire execution is prohibitive

and infeasible to be deployed on datacenter applications running with live traffic.

One way to reduce the overhead of profiling is sampling, as several instrumentation

approaches have demonstrated. Among them, the Arnold-Ryder instrumentation frame-

work [6], implemented in the Jalapeno JVM, significantly lowers instrumentation overhead

by sampling bursts of execution. It creates two versions of each procedure, one for checking

and the other for actual profiling. The checking version counts how many times it is exe-

cuted at procedure entries and loop back edges, and transitions to the profiling version if the

counter reaches some pre-defined value. The profiling version collects an intra-procedural

acyclic trace, resets the counter, and transitions back to the checking version. Bursty Trac-

ing [44] extends the Arnold-Ryder framework for longer inter-procedural traces and further

reduces the overhead with a few optimizations. In addition,Bursty Tracing is applied to

IA32 binaries using the Vulcan binary rewriting tool, instead of Java bytecode.

Instant profiling is partially inspired by the Arnold-Ryderframework and Bursty Trac-

ing. Instead of instrumenting all execution for checking, however, it does not instrument

any code when it is not profiling. This is because even simple checking instrumentation

imposes prohibitive overhead for datacenter applications. For example, even without any

profiling client, the Arnold-Ryder framework results in instrumentation overhead of 6-35%,

and Bursty Tracing lowers it to 3-18% [44]. On the other hand, instant profiling imposes
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less than 10% of computational overhead with a naive implementation of edge profiling.

Unlike Arnold-Ryder or Bursty Tracing, moreover, instant profiling will incur neither la-

tency degradation nor computational overhead while it is not profiling. Also, instead of

managing a duplicate copy of every code region, instant profiling only JITs things it will

likely need. Ephemeral Instrumentation [93] also takes a similar sampling approach to

Bursty Tracing, but it is non-trivial to extend Ephemeral Instrumentation for many pro-

file types because it uses branch patching; only informationavailable at the branch can be

recorded and it is difficult to find extra registers for architectures like x86. Conversely, in-

stant profiling is flexible and not limited to any specific profile type. Finally, phase-guided

profiling techniques [86] can help sampling-based profiling methods, including instant pro-

filing, maintain higher accuracy while keeping the overheadlow.

Another vein of previous work to reduce profiling overhead isto exploit parallelism for

profiling. As the micro-architectural trends move toward massively multi-core processors,

Shadow Profiling [73] and SuperPin [97] aim to leverage the abundance of extra hardware.

Shadow Profiling runs the original program uninstrumented in parallel with instrumented

slices to perform profiling. SuperPin uses a similar approach, but tries to deterministically

replicate full execution by creating slices of execution between each system call. They both

exploit modern kernels’ copy-on-write mechanism by forking new processes for profiling.

They significantly reduce the slowdown caused by profiling since the original process is

not instrumented. However, SuperPin is not deployable for datacenters as it at least doubles

resource contention, especially CPU utilization and memory bandwidth. Also, virtualizing

fork for multi-threaded programs is very challenging to implement robustly and their initial

implementations only support single-threaded programs.
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PiPA [103] also exploits parallelism but in a different way. Instead of profiling in an

extra process, it performs profiling in the same thread to produce compact profiles, and uses

multiple threads to pipeline processing and analyzing of profile data. PiPA is particularly

effective for the types of profiling that need complicated post-processing such as cache

simulation.

There have been suggested many techniques specialized for other types of profiling.

Ball [8] proposes techniques for path profiling. Calder [16] suggests an optimization to

turn off profiling by realizing profile data is converging forvalue profiling. Chilimbi [20]

proposes a compact representation for memory stream profiles. Instant profiling is orthog-

onal to these profile-specific techniques including PiPA, and they can be used to further

improve the overhead.

4.7 Summary

We introduce instant profiling, a novel approach to reduce the overhead of instrumentation-

based profiling for datacenter applications. The techniqueworks by executing instrumented

profiling code from a software code cache for only a short profiling duration. For normal

execution phases, the original binary runs natively without any instrumentation. We further

avoid possible latency degradation for initial profiling phases by pre-populating the code

cache. The prototype framework of instant profiling is builton top of DynamoRIO, and it

is evaluated on the SPEC CPU 2006 integer benchmark suite andtwo datacenter applica-

tion benchmarks. We show that the overhead of profiling in terms of both throughput and

latency can be kept to acceptable levels for continuous profiling of live datacenter appli-
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cations. Furthermore, we have shown that sampling-based continuous profiling can yield

asymptotically accurate profiling results with negligibleoverhead by collecting profile data

over many instances or a long time period.
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CHAPTER 5

Conclusion

5.1 Summary

As power dissipation limits and design complexity have beenpreventing the semicon-

ductor industry from improving the performance of monolithic processors, chip multipro-

cessors (CMPs) have grown into a standard to improve application performance. Since suf-

ficient thread level parallelism (TLB) is necessary to benefit from the computational power

provided by CMPs, most performance-conscious programmersface increasing pressure to

parallelize their programs.

For the most prevalent parallel programming model of shared-memory multi-threaded

programs, synchronization operations such as mutexes, condition variables, and barriers,

play a critical role of enforcing the threads to interact with each other in the way the pro-

grammers intended. However, utilizing synchronization operations in both correct and ef-

ficient way at the same time is extremely difficult, and programmers often make trade-offs

between the programmability and the efficiency of employingsynchronization operations.
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In this dissertation, we investigated a set of solutions that increase the programmability and

efficiency of concurrent programs by intelligently managing inter-thread synchronization

dependencies.

In Chapter2, we presented practical lock/unlock pairing mechanism forC/C++ which

helps concurrency bug detection tools and automated bug fixers improve correctness of con-

current programs. This mechanism combines static analysisand dynamic instrumentation

to identify critical sections. It first applies a conservative inter-procedural path-sensitive

dataflow analysis to pair up lock and unlocks. When the staticanalysis is not successful,

our method makes likely assumptions based on common heuristics, and the assumptions

are checked at runtime using lightweight instrumentation.With the experiments on large

server programs, we proved our mechanism can pair up most locks and unlocks with small

overhead incurred by the runtime check.

Chapter3 targeted improving performance and energy efficiency of concurrent pro-

grams for performance asymmetric CMPs. Workload imbalances in asymmetric CMPs

cause more CPU cycles wasted for synchronizations. We investigated the elimination of

workload imbalances by relying on the hardware capability to accelerate individual cores

at a fine granularity. Dynamic Core Boosting (DCB), a software-hardware cooperative

system, is suggested to accelerate critical paths formed bysynchronization operations by

coordinating compiler, runtime, and processor architecture. In addition, we proposed ap-

plying per-core power gating to the idle cores blocked for synchronization operations.

Our synchronization-aware per-core power gating scheme could significantly improve en-

ergy efficiency while minimizing the performance degradation through selective gating and

hinted prefetching.
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Instant Profiling, a lightweight flexible profiling mechanism that could be used for the

other parts of the dissertation, is presented in Chapter4. Instant Profiling maintains low

profiling overhead by combining instrumentation sampling and dynamic binary translation.

It further reduces the latency degradation by pre-populating a software code cache. We

showed that meaningful profile data could be collected in production run with negligible

overhead.

This dissertation has introduced a number of novel techniques to intelligently managing

inter-thread synchronization dependencies. Although these techniques focused on various

aspects from correctness to performance and energy efficiency, they are inspired by the

same observation that neither a static nor a dynamic approach is sufficient. By applying the

theme of hybrid static/dynamic mechanism to managing synchronization dependencies,

we explored the possibility of increasing programmabilityand efficiency of concurrent

programs.

5.2 Future Work

As power dissipation and thermal constraints become primary factors to be considered

for microprocessor design, performance and energy efficiency cannot be pursued indepen-

dently. In this dissertation, synchronization-aware dynamic core boosting and per-core

power-gating are proposed for better performance and energy efficiency, respectively. We

investigated them separately due to the limitations of our evaluation methodologies.

A natural direction to extend this work is to apply both of themechanisms at the same

time. In such systems, a core can be in one of the three modes: normal, boosted, and power-
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gated. For simple cases, straightforwardly applying our schemes might work well, i.e. crit-

ical threads are accelerated in boosted mode while non-critical threads are power-gated to

save energy. However, there could be cases where the two schemes conflict. For exam-

ple, reducing workload imbalances might eliminate the opportunities to save energy with

power-gating. On the other hand, they could be sometimes synergistic. For instance, power-

gating idle cores could enable boosting more number of coressimultaneously. Therefore,

more sophisticated assignment algorithms are necessary for applying both core boosting

and per-core power-gating. Furthermore, the policy must becarefully designed depending

on which attribute has higher priority.
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