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Chapter 1 

Introduction 

 

 This thesis is divided into two main topics which are focused on the mechanical behavior 

of lithium-ion batteries and the fatigue behavior of welds in lap-shear specimens of dissimilar 

magnesium and steel sheets with adhesive.  Lithium-ion batteries have been considered as the 

solution for electric vehicles for the automotive industry due to their lightweight and high energy 

density.  One of the major design considerations of the lithium-ion batteries is the mechanical 

performance since it is of great importance for crashworthiness analyses.  Therefore, macro 

homogenized material models of the representative volume elements (RVEs) for both the battery 

cells and modules have to be developed for crashworthiness analyses with sacrifice of the 

accuracy at the micro scale.  The concept of the macro homogenized material model is to treat 

the various components in battery cells and modules as a homogeneous material such that a 

single material model can be used to model the mechanical behaviors of battery cells and 

modules instead of modeling each component in the cells and modules individually in finite 

element analyses.   

 Lightweight materials such as advanced high strength steels, aluminum, and magnesium 

alloys have been replacing the low-carbon steel in the automotive industry to reduce vehicle 

weight for better fuel efficiency.  Therefore, the failure modes and fatigue properties of the 

dissimilar joints are of great importance.   
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 In this thesis, the mechanical behavior of representative volume elements of lithium-ion 

battery cells and modules under various loading conditions and the failure modes and fatigue 

behavior of lap-shear specimens of dissimilar sheets are investigated.  The chapters were 

prepared as individual papers.  Therefore some concepts are repeated as necessary to facilitate 

comprehension for each chapter separately. 

 In Chapter 2, the mechanical behavior of lithium-iron phosphate battery cells is 

investigated by conducting in-plane and out-of-plane compression tests of RVE specimens of dry 

cells.  An innovative test fixture was developed to achieve this goal.  The experimental stress-

strain curves are correlated to the deformation patterns of battery cells.  Buckling analyses were 

conducted to justify the length selection of cell RVE specimens.  The buckling analysis also 

provides a theoretical basis for future design of cell and module RVE specimens.  The buckling 

of cell components is correlated to the buckling stress of battery cells and the buckling analysis 

provides an analytical method to estimate the yield stress for cells and modules.  Finally, an 

idealized kinematics model is presented to explain the physical mechanisms of the kink and 

shear band formation in the cell RVE specimens under in-plane constrained compression.  

In Chapter 3, the mechanical behavior of lithium-ion battery modules is investigated by 

conducting tensile tests of the module components, constrained compression tests of dry module 

RVE specimens, and a constrained punch indentation test of a small-scale dry module specimen.  

The results of tensile tests of the module components are used to characterize the tensile 

behavior of module specimens.  The in-plane compressive stress-strain curves are correlated to 

the deformation patterns of modules.  The buckling of the module components is correlated to 

the buckling stresses of modules.  Finally, a small-scale module punch indentation test was also 
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conducted to benchmark the computational results based on a macroscopic homogenized foam 

material model. 

 In Chapter 4, the failure modes and fatigue behaviors of ultrasonic spot welds in lap-

shear specimens of magnesium AZ31B and hot-dipped-galvanized mild steel sheets with and 

without adhesive are investigated.  Ultrasonic spot welded, adhesive-bonded, and weld-bonded 

lap-shear specimens were made.  These lap-shear specimens were tested under quasi-static and 

cyclic loading conditions.  Interrupted tests were conducted to investigate the fatigue behavior of 

adhesive-bonded and weld-bonded lap-shear specimens under cyclic loading conditions.  

Fracture surfaces of the specimens that failed in the  kinked crack failure were also characterized 

to study the kinked crack growth in the magnesium sheet.    

 In Chapter 5, stress intensity factor solutions for adhesive-bonded lap-shear specimens of 

magnesium alloy AZ31B and hot-dip-galvanized mild steel sheets with and without kinked 

cracks are investigated for fatigue life estimations.  The analytical global J  integral and 

effective stress intensity factor solutions for main cracks in lap-shear specimens of three 

dissimilar sheets under plane strain conditions are developed based on beam bending theory.  

The global stress intensity factor solutions for the main cracks in the lap-shear specimens from 

the corresponding finite element analyses are then presented to validate the analytical solutions.  

Next, the local stress intensity factor solutions for kinked cracks with the experimentally 

observed kink angle as functions of the kink length from the corresponding finite element 

analyses are presented and the computational solutions are also compared with the analytical 

solutions at small kink lengths.  The computational local stress intensity factor solutions are then 

adopted to estimate the fatigue lives of the lap-shear specimens based on a kinked crack growth 

model and available material constants for the Paris law.   
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 In Chapter 6, the analytical stress intensity factor and J  integral solutions for welds in 

lap-shear specimens for two dissimilar sheets based on the beam bending theory are first 

reviewed.  The solutions are then presented in the normalized forms.  Next, two-dimensional 

finite element analyses were selectively conducted to validate the analytical solutions based on 

the beam bending theory.  The interfacial crack parameters, the stress intensity factor solutions, 

and the J  integral solutions for welds in lap-shear specimens of different combinations of steel, 

aluminum, and magnesium and the combination of aluminum and copper sheets of different 

thickness ratios are then presented for convenient fracture and fatigue analyses.  The transition 

thickness ratios for critical crack locations for different combinations of dissimilar materials are 

then determined from the analytical solutions.  The transition weld widths for applicable ranges 

of the weld widths for the analytical solutions based on the beam bending theory are also 

presented.  Finally, fracture and fatigue behaviors of dissimilar ultrasonic magnesium/steel, 

dissimilar laser aluminum/copper, and similar laser steel welds in lap-shear specimens are 

examined and demonstrate the usefulness of the graphical stress intensity factor solutions.  
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Chapter 2 

Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Cells 

under Compressive Loading Conditions 

 

2.1. Introduction 

 Lithium-ion batteries have been considered as the solution for electric vehicles for the 

automotive industry due to their lightweight and high energy density.  The major design 

considerations for lithium-ion batteries involve electrochemistry, thermal management and 

mechanical performance.  The electrochemistry has been widely studied since it directly 

determines the battery performance and its life cycle.  Different active materials on electrodes 

form different types of lithium-ion batteries.  However, the basic chemical reactions of battery 

cells are similar.  For automotive applications, the mechanical performance is of great 

importance for crashworthiness analyses.  Mechanical tests such as shock, drop, penetration, roll-

over, and crush tests for abuse conditions of battery cells, modules and packs were documented 

in SAE J2462 [1].  Research was conducted on the safety performance of the battery cells under 

mechanical tests such as nail penetration tests, round bar crush tests, and pinch tests, for example, 

see [2-4].  However, the research on the mechanical behavior of the representative volume 

elements (RVEs) of lithium-ion batteries are quite limited.   

 Sahraei et al. [5] conducted a series of mechanical tests and computational works on 

commercial LiCoO2/graphite cells used for cell phones.  The results indicate that the 

compressive mechanical behavior is characterized by the buckling and densification of the cell 

components.  Other testing and modeling data available were also conducted on commercial 



6 
 

LiCoO2 cylindrical or prismatic battery cells [6,7].  However, this information is of limited use 

for researchers to model the mechanical performance of automotive high-voltage LiFePO4 

battery cells and modules for crashworthiness analyses.  Sahraei et al. [5] indicated that 

computational effort is quite significant to model local buckling phenomenon of battery cells 

under in-plane compression.  Therefore, macro homogenized material models of the 

representative volume elements (RVEs) for both the battery cells and modules have to be 

developed for crashworthiness analyses with sacrifice of the accuracy at the micro scale.   

 One of the primary objectives of this investigation is to develop testing methods to 

determine the detailed mechanical properties of lithium-ion battery cells and modules [8] in a 

systematic fashion.  Another is to provide the necessary experimental data for the development 

of macro homogenized material models, see [9,10].  At this point, there is no test standard for 

characterizing the mechanical properties of the representative volume elements (RVEs) of 

lithium-ion batteries under large deformation because it is difficult to test a live battery due to the 

safety concern.  Even in the discharged state, the volatile and toxic electrolyte still poses a severe 

safety concern.  Further, standard compression tests in an in-plane direction of cell specimens do 

not provide useful information since there are almost no bonding forces between the anode, 

cathode, separator and cover sheets.  The cell specimens fall apart when no out-of-plane 

constraints are applied.  Therefore, a constrained compression test procedure needs to be 

developed and provide other researchers a way to conduct tests and compare the test results.  The 

results presented in this study can also help to understand the deformation process and 

mechanical behavior of battery cells such that homogenized material models can be developed 

for battery cells.   
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One ultimate goal of this investigation is to provide test data for development of 

computational models for multi-scale multi-physics analyses of battery packs in vehicles under 

crash loading conditions.  Battery pack designs are different for different electric vehicles.  

Battery packs can have various shapes of plastic or metal shells that enclose a cooling system, 

electronics, and battery modules, that contain battery cells with electronics cover plates, control 

electronics, pressure plates, laser welded bus bars, heat sink plates, interconnected covers and 

compression bands.  Battery pack designs are usually quite complex.  Different types of finite 

elements such as shell elements, solid elements, rigid elements, and weld elements are typically 

used in computational models to reduce the sizes of the models.  However, the sizes of the 

computational models for battery packs can still be quite large for crashworthiness analyses since 

the sizes of finite elements have to be small with consideration of small thicknesses of pack 

components and deformation patterns of interest.  It is not possible to model the details of all 

battery pack components for computational efficiency in full vehicle crashworthiness analyses.   

Finite element models for small cell specimens under compression in Sahraei et al. [5] 

showed the complexity of the finite element analyses at the length scale of cell components.  

Finite element models for cell RVE specimens under in-plane constrained compression in Ali et 

al. [9] also showed the complexity of the finite element analyses at the length scale of cell 

components.  Sahraei et al. [7] conducted finite element analyses of an idealized battery pack 

with an outer steel shell and a homogenized crushable foam core to simulate a drop test of the 

battery pack on a rigid cylinder. The results showed that with the homogenized foam model, it 

was computationally efficient to model the drop test of the battery pack for optimum design.  Ali 

et al. [10] conducted finite element analyses of a small-scale module specimen under in-plane 

punch indentation [8] based on several homogenized material models.  The computational results 
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indicated that it was computationally efficient to simulate the module specimen under punch 

indentation with the homogenized material models.   Therefore, homogenized material models 

for cells and modules can be quite useful for simulation and control of the crush responses of 

battery packs for optimum design under crash loading conditions with computational efficiency.  

Based on homogenized material models, computational results for deformed battery cells from 

full vehicle crashworthiness analyses can then be used for further combined structural, electrical 

and thermal analyses of battery cells at the smaller length scales. 

 In this investigation, cell RVE specimens were first made from the individual cell 

components and in-plane constrained compression tests were then conducted.  Out-of-plane 

compression tests of cell RVE specimens were also conducted to understand the different 

behaviors in the in-plane and out-of-plane directions.  Based on the experimental observations of 

the cell RVE specimens under in-plane constrained compression and the results of the 

corresponding finite element analyses, the buckling mode of the cell RVE specimens under in-

plane constrained compression is examined by elastic buckling analyses of a beam with lateral 

constraints.  The buckling loads for the cell RVE specimens are then obtained based on the 

elastic buckling solutions and the composite rule of mixture (ROM).  In addition, an idealized 

kinematics model is developed to explain the physical mechanisms of the kink and shear band 

formation in the cell RVE specimens under in-plane constrained compression.  Finally, some 

conclusions are made. 

 

2.2. Specimens 

 The structure of a typical battery module based on prismatic pouch cells is shown in 

Figure 2.1.  As shown in the figure, the module is composed of many compartments separated by 
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aluminum heat dissipater sheets.  Inside each compartment (in the middle portion of the module 

where the side aluminum heat dissipater sheet is removed), there are two cells (shown in grey) 

with one layer of foam (shown in black) between the two cells.  The battery module is usually 

held together by two stainless steel bands (not shown) with a specified tension and adhesive 

(between the cell and the foam layer, and between the cell and the aluminum heat dissipater 

sheet).  

 Each cell consists of five major components: cover sheet, anode, cathode, separator and 

electrolyte.  Since the electrolyte is difficult to handle during assembly due to its toxicity, all the 

cell RVE specimens tested in this study were made without electrolyte.  Table 2.1 lists all the 

detailed material and thickness information of the cell and module components.  The cover sheet 

is composed of aluminum foil with polyamide and polypropylene layers on both sides bonded 

together by adhesive.  The thicknesses of the individual layers of the cover sheet are shown in 

Table 2.1 and the total thickness of the cover sheet is 0.111 mm.  The anode and cathode selected 

for this study are graphite coated on copper foil and LiFePO4 coated on aluminum foil, 

respectively.  The copper foil has a thickness of 9 µm and the total thickness of the anode sheet 

is 0.2 mm.  The aluminum foil has a thickness of 15 µm and the total thickness of the cathode 

sheet is 0.2 mm.  Both the anode and cathode sheets are double-side coated.  The SEM images of 

the graphite and LiFePO4 on the anode and cathode sheets are shown in Figures 2.2(a) and 2.2(b), 

respectively.  It is noted that both active materials on the electrodes are in a powder form held 

together by binders and therefore possess a high degree of porosity.  It is not the intent of this 

investigation to characterize the morphology of the active materials.  The separator is made of 

polyethylene with the porosity ranging from 36 to 44% and a thickness from 16 to 25 µm. All the 

cell components are purchased commercially.  
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 Figure 2.3(a) shows a schematic of a pouch cell and a cell RVE specimen with the z-y-z 

coordinate system.  Here, x and y are referred to as the in-plane directions and z is referred to as 

the out-of-plane plane direction.  A small cell RVE specimen with the dimensions is shown in 

Figure 2.3(b).  Figure 2.3(c) shows a side view of a portion of a cell RVE specimen with the 

individual cell components.  The large arrows shown in the figures indicate the in-plane 

compressive direction.  As shown in Figure 2.3(c), the anodes and cathodes form alternating 

layers with two cover sheets.  The separators are located between electrode and cover sheets.  

The cell RVE specimen is composed of 10 anode, 10 cathode, 21 separator and 2 cover sheets.  

The cell components were manually cut and assembled.  The assembly of the cell components in 

the generic cell RVE specimen as schematically shown in Figure 2.3(c) may be slightly different 

from those in usual lithium-ion cells for convenience of assembly of the purchased cell 

components.  However, generic cell RVE specimens with slightly different assemblies should 

have the similar buckling, kink and shear band mechanisms under constrained compression as 

discussed later due to their layered structures. The specimen has the size of 25 mm × 25 mm × 

4.6 mm.  No electrolyte was added for the dry cells.  Due to the large specimen width in the x 

direction compared to the specimen thickness, the specimen width does not change before and 

after in-plane compression tests. Therefore, the specimens are subject to the plane strain 

conditions in the x direction under in-plane compression tests.   

 

2.3. Quasi-static compression tests of cell RVE specimens 

2.3.1. In-plane (y direction) constrained compression tests of cell RVE specimens   

 Battery modules are usually held together by adhesive between the cells and the neighbor 

foam layers and aluminum heat dissipater sheets as well as two wrapping bands with tension as 
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shown in Figure 2.1.  In the middle portion of a module, the cells are constrained by the neighbor 

foam layer and aluminum heat dissipater sheet.  In an individual cell, the cell components can 

buckle individually with constraints from the neighbor cell components since there are no 

bonding forces between the cell components.  Hence, a fully constrained die set was designed for 

constrained compression tests of cell RVE specimens. The punch and die setup for in-plane 

constrained compression tests of cell RVE specimens is shown in Figure 2.4.  The setup is 

composed of a male rectangular punch and a female die such that the specimen slot can be 

adjusted for different specimen geometries.  A PMMA side window was made for recording the 

deformation process during the compression.  The specimen slot in the die has an opening of 5 

mm × 25 mm which leaves a gap of about 0.4 mm between the specimen and the side walls.  The 

compression tests were conducted with the displacement rate of 0.5 mm/min (nominal strain rate 

of 0.0003 s
-1

).  The punch displacement was taken from the cross-head displacement recorded 

during the experiments.  

 Figure 2.5 shows the nominal compressive stress-strain curves of three cell RVE 

specimens tested at a displacement rate of 0.5 mm/min.  The specimens showed a nearly linear 

behavior in the beginning with the effective compressive elastic modulus of 188 MPa.  The term 

"effective compressive elastic modulus" is used since the specimens are subjected to the plane 

strain conditions in the x direction.  This value of 188 MPa is in good agreement with the 

effective compressive elastic modulus of 190 MPa which is estimated from the effective 

compressive elastic moduli of the nominal stress-strain curves of the cell component specimens 

under in-plane constrained compression tests based on the composite rule of mixture (ROM) 

presented in Appendix A.  As shown in Figure 2.5, a noticeable change of slope takes place 

when the strain increases to about 2%.  As the strain continues to increase, the slope appears to 
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remain constant until the strain reaches about 20%.  Then the slope starts to increase gradually as 

the strain increases to about 34%.  Some minor stress drops were observed after the initial linear 

stage due to the development of kinks and shear bands.  The trends of all three curves are quite 

consistent.  The nominal compressive stress-strain curve of the RVE specimen from the finite 

element analysis of Ali et al. [9] is also shown in Figure 2.5 for comparison.   

 Figures 2.6(a) to 2.6(d) show the deformation patterns of a cell RVE specimen at the 

nominal strain of 1% in the initial linear stage, at the nominal strain of 2% where the slope 

changes, and at the nominal strains of 10% and 15%.  A careful examination of the deformation 

pattern shown in Figure 2.6(a) indicates the initial linear stage corresponds to the development of 

a smooth buckling mode of the cell components.  A detailed analysis of the elastic buckling of 

the cell components will be presented in the next section.  As the displacement increases toward 

the nominal strain of 2% where the slope starts to level off, the cell RVE specimen shows the 

development of kinks or plastic hinges of the cell components as indicated in Figure 2.6(b).  The 

presence of the kinks promotes the shear band formation as indicated in Figure 2.6(b).  The shear 

band formation accommodates for the in-plane compression and hence induces the slope change 

of the nominal stress-strain curve.  As the strain continues to increase, more kinks and shear 

bands form across the cell RVE specimen, as shown in Figures 2.6(c) and 2.6(d).  Figures 2.6(e) 

and 2.6(f) show the front and back views of the tested cell RVE specimen at the nominal strain 

of about 34%.  As shown in the figures, the kinks are fully developed to the folds and many 

shear band regions can be identified.  After the efficient compaction mechanism of shear bands is 

completed, further compression can be accommodated by the micro buckling of the cell 

components outside the shear band regions, as marked in Figures 2.6(e) and 2.6(f), and the 

compression in the shear band regions. 
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 It should be noted that although the cell RVE specimen was almost fully constrained 

during the test, the clearance in the die between the specimen and the die walls in the out-of-

plane direction still provided some space for the cell RVE specimen to buckle.  Also, the large 

porosities of the graphite, LiFePO4 and separator layers provided extra space for the components 

of the cell RVE specimen to buckle.  In addition, the microscopic gaps between the cell 

components provided more space for the cell components to compact.  As the displacement 

further increases in the last stage of compression, the cell RVE specimen reaches the nearly fully 

dense stage.  At this stage, nearly 7 half waves of the macro buckling can be seen in Figures 

2.6(d) to 2.6(f).  Based on the original specimen length, each half wavelength is about 3.6 mm, 

which is close to the specimen thickness (4.6 mm).  The experimental results can also be 

compared with the results of the finite element analysis reported in Ali et al. [9].  As shown in 

Figure 2.5, the nominal stress-strain curve from the finite element analysis based on the Gurson’s 

yield function for the porous components of the cell specimen is in good agreement with the test 

results by selecting a proper void volume fraction for the porous components of the cell RVE 

specimen. Images of the deformed cell at the strain of 34% from the experiment and the 

corresponding finite element analysis [9] are shown as two inserts in Figure 2.5 for comparison.  

As shown in the figures, 7 half waves were observed in the experiment whereas 10 half waves 

were obtained from the finite element analysis. 

As indicated in Sahraei et al. [5], cutting specimens from commercial full sized battery 

cells poses a formidable task.  Testing high voltage automotive battery cells and modules is 

expensive and needs special safety attention since electrolyte is toxic and difficult to handle.  The 

results of a companion research program on testing full sized commercial battery cells under in-

plane constrained compression showed similar stress-strain curves as those presented in this 
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study.  However, with the potential severe heating and fire hazard for the full sized commercial 

battery cells under compression, it was difficult to observe and understand the fundamental 

deformation mechanisms of the battery cells under compression.  The compressive stress-strain 

curves of small lithium cobalt dioxide cells for cell phones presented in Sahraei et al. [5] are also 

similar to those presented in this study.  It should be noted that one focus of this study is on 

characterizing and understanding the compressive behavior of cells rather than characterizing 

specific battery cells, with or without electrolyte, which may vary from one manufacturer to 

another. 

 

2.3.2. Out-of-plane (z direction) compression tests of cell RVE specimens 

 Figure 2.7(a) shows a schematic of a pouch cell and a cell RVE specimen with the x-y-z 

coordinate system.  A small out-of-plane compression cell RVE specimen is shown in Figure 

2.7(b) with the dimensions.  Figure 2.7(c) shows a side view of a small portion of the cell RVE 

specimen with the individual cell components.  The large arrows shown in the figure indicate the 

out-of-plane compressive direction.  The out-of-plane compression cell RVE specimen was 

smaller than the in-plane compression cell RVE specimen in order to avoid exceeding the load 

limit of the load cell.  The size of the out-of-plane compression cell RVE specimen is reduced to 

10 mm × 10 mm × 4.6 mm as shown in Figure 2.7(b).  The layered structure of the cell RVE 

specimen is the same as that of the cell RVE specimens for in-plane constrained compression 

tests.  The test was conducted with a displacement rate of 0.25 mm/min (nominal strain rate of 

0.0009 s
-1

).  No constraint was applied to the lateral sides of the specimen in the x and y 

directions.  
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 Three nominal compressive stress-strain curves of the cell RVE specimens under out-of-

plane compression are shown in Figure 2.8(a).  The three in-plane nominal compressive stress-

strain curves in Figure 2.5 are also shown for comparison.  As shown in the figure, the low stress 

response in the early stage of the out-of-plane compression tests can be attributed to the 

consumption of the porosity in the cell components and the microscopic gaps between the cell 

components.  With the increasing strain, densification of the cell components started to 

contribute to the sharp increase of the stress.  The nominal stress-strain curves appear to be linear 

elastic again at the strain of about 40% as the strain increases.  This suggests that the total 

volume fraction of the porosity in the components and the microscopic gaps between the 

components is about 40% when the cell RVE specimens are nearly fully condensed and become 

linear elastic as the strain increases.  The tested specimens retained the final thicknesses and 

appeared to be permanently deformed.  However, no dimension change was observed in the two 

lateral directions perpendicular to the loading direction, which corresponds to zero Poisson's 

ratio.  Figure 2.8(b) shows pictures of cell RVE specimens before (left) and after (right) the 

compression. 

 

2.4. Buckling analyses of cell RVE specimens under in-plane (y direction) constrained 

compression 

 Based on the experimental observations of the cell RVE specimens under in-plane 

constrained compression, the physical mechanism to accommodate the compression starts with 

the elastic buckling of the cell components.  When a cell RVE specimen was made, the 

component sheets were first assembled and packed together.  The specimen was then put in the 

slot of the female die.  When a cell RVE specimen is under in-plane compression, the component 
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sheets buckle independently with the lateral constraints from the neighbor component sheets.  

Since the component sheets were only packed together, each component sheet can be treated as 

an individual thin plate or beam under in-plane compression with the lateral constraints which 

can be treated as unattached elastic foundations.  

 Figure 2.9 shows a uniform straight beam under end loads and supported by two 

unattached elastic foundations.  Both ends are hinged and the beam is supported by the elastic 

foundations through the lateral pressure p  proportional to the deflection z
 
in the Z direction.  

Here, 
1k  and 

2k  represent the spring constants of the harder and softer elastic foundations on the 

two sides of the beam, respectively.  The buckling load solution of the beam can be found in [11].  

Based on the solution listed in [11], the buckling load of the i -th component with the two 

unattached elastic foundations can be expressed as 
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where m  represents the number of half waves in which the component buckles and is equal to 
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In Equation (1), 21 / kk  and   depends upon the value of m .  In Equations (1) and (2), iI  

(= 12/3

ibh ) is the moment of inertia for the i -th component. iE   is the effective elastic modulus 

for a thin plate under plane strain compression conditions and is equal to )1/( 2

iiE  , where iE  

and 
i  are the compressive elastic modulus and Poisson’s ratio of the i -th component.  The 

effective compressive elastic moduli for the cell component specimens are listed in Table 2.2.  

Here, L , b  and ih  are the length, width, and thickness of the i -th component.  
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After the buckling of the cell components, kinks and shear bands are formed according to 

the buckling mode of the cell components.  Based on the experimental observations, the cell 

RVE specimens appear to buckle in an asymmetric fashion where no symmetry with respect to 

the central anode sheet was observed.  However, the results of the finite element analysis [9] 

indicated that in the very early stage the component sheets buckle in the symmetric mode.  For 

anode, cathode, and separator sheets in the cell RVE specimen, the sheets can be thought as a 

beam with two unattached elastic foundations on both sides.  For the anode, cathode and 

separator sheets in the middle portion of the cell RVE specimens, the buckling mode will be 

dominated by the constraints on both sides of the sheets.  It is assumed that the spring constants 

for the elastic unattached foundations are the same and denoted by k .  Here, k  represents the 

lateral force per unit plate length per unit deflection of the neighbor components in the out-of-

plane direction.  The spring constant k  can be expressed in terms of the out-of-plane 

compressive elastic modulus E  of the cell RVE specimens as 

h

Eb
k              (3) 

where h
 
represents the thickness of the neighbor cell components.  With the elastic spring 

constant k  on both sides of the beam is equal to each other, Equation (1) becomes  
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where m  again represents the number of half waves in which the component buckles and is 

equal to the lowest integer greater than m as before.  Here, m  is defined as 
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Equations (4) and (5) represent the buckling solution in Timoshenko [12] for a beam with an 

attached elastic foundation.  Considering m  as a real number as in Ali et al. [9], 0/  mPi

m  

gives 
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The critical buckling load i

cP  can be determined as 
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Equation (6) can be rewritten for the half wavelength mL /  as 
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As indicated in Equations (7) and (8), the critical buckling load i

cP  and the half wavelength 

mL /  are independent of the specimen length. 

 The cover sheets have only one unattached elastic foundation and are free to buckle to the 

unconstrained side due to the small clearances in the die for the cell RVE specimen.  However, 

the small clearances will limit the cover sheets to fully develop a lower order buckling mode.  

For the anode, cathode and separator sheets near the cover sheets, they can start to buckle in a 

lower order mode but will also be constrained by the rigid walls through the cover sheets.  The 

results of the finite element analysis [9] indicate that the cover sheets are constrained by the rigid 

walls and buckle in a high order mode.  For a beam with one unattached elastic foundation on 

one side and a small clearance to a rigid wall on the other side, the elastic buckling solution is 

approximated by the elastic buckling solution for a beam with an unattached elastic foundation 

on one side and a rigid wall on the other side as discussed in Ali et al. [9].  For the cover sheets 
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and the neighbor sheets, the buckling load of the i -th component can approximately be 

expressed as 
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where n  represents the number of waves in which the component buckles and is equal to the 

lowest integer greater than n .  Here, n  is defined as 
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Considering n  as a real number as in Ali et al. [9], 0/  nPi
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The critical buckling load i

cP  can be determined as 
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Equation (11) can be rewritten for the wavelength nL /  as 
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As indicated in Equations (12) and (13), the critical buckling load i

cP  and the wavelength nL /  

are independent of the specimen length. 

 Based on the nominal out-of-plane compressive stress-strain curves shown in Figure 

2.8(a), the elastic compressive modulus E  of the cell RVE specimens can be approximated by 

taking the initial slope of the curve.  The estimated compressive modulus E  of the cell RVE 

specimens is 8.5 MPa.  The spring constant k  can be estimated as 7106.4   N/m
2
 for the cover 
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sheets and neighbor sheets near the die walls, and 7102.9  N/m
2
 for the component sheets in the 

middle portion of the cell specimen.  For the sheets in the middle portion of the cell specimen, 

the original solution given by Timoshenko [12] in Equations (4) and (5) can be used to estimate 

the buckling modes and loads of the component sheets in the middle portion of the specimen as 

listed in Table 2.3.  The results for the cover sheets are not applicable (NA) but are listed in 

Table 2.3 for reference only.  As listed in Tables 1.3, the values for m  are 21.3, 22.2, 16.3 and 

124.6 based on Equation (5) which give the buckling modes of 22, 23, 17 and 125 that give the 

lowest buckling loads with the constraints for the cover sheet, anode, cathode and separator 

sheets in the middle portion of the cell specimen, respectively.     

 For the cover sheets and the neighbor sheets near the die walls, the buckling modes and 

loads can be estimated based on Equations (9) and (10) for a beam with an unattached elastic 

foundation on one side and a rigid boundary on the other side as listed in Table 2.4.  Note that 

one wave of the cover sheets and neighbor sheets corresponds to two half waves of the 

component sheets in the middle portion of the cell RVE specimen.  Therefore, the values for n2  

are listed in Table 2.4 for comparison.  As listed in Table 2.4, the values for n2  are 23.1, 24.1, 

17.6 and 137.4, which give the buckling mode number n2  of 24, 26, 18 and 138 that give the 

lowest buckling loads with the constraints for the cover sheet, anode, cathode and separator 

sheets near the sides of the cell RVE specimen, respectively.  The corresponding buckling loads 

for the component sheets are listed in Tables 2.3 and 2.4.  

 The corresponding compressive strains at these buckling loads can be calculated by 
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for the component sheets in the middle portion or near the sides of the cell specimen.  Here, iA  

is the cross sectional area of the i -th component.  Equation (14) gives the strains at these 

buckling loads for the i -th components.  The values are also listed in Tables 2.3 and 2.4.  As 

listed in the tables, the strains for all the cell components calculated in both buckling analyses are 

comparable to those obtained from the experiments and from the results of the finite element 

analysis [9].   

The buckling loads of the cell RVE specimen when the cell components buckle can be 

obtained by summing over the loads of the cell components at the strains when the cell 

components buckle as 

  iii
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where in  is the number of the i -th component in the cell RVE specimen according to the 

composite rule of mixture.  The nominal buckling stress of the cell RVE specimen can be 

obtained by dividing the load by the cross sectional area of the cell RVE specimen as 

A

Pcell
cell              (16) 

The buckling stresses for the cell RVE specimen based on the buckling loads of the cover sheets, 

anode, cathode and separator sheets near the sides of the cell RVE specimen are 3.33, 11.7, 6.47, 

and 3.56 MPa as listed in Table 2.4.  It should be noted that the results of the finite element 

analysis in [9] suggest that the cover sheets actually buckle first.  The buckling stress of 3.33 

MPa based on the buckling load of the cover sheets near the sides of the cell RVE specimen in 

Table 2.4 in general agrees with the critical stress of 4.0 MPa obtained from the experiments.  

The buckling stresses for the cell RVE specimen based on the buckling loads of the anode, 

cathode and separator sheets in the middle portion of the cell RVE specimen are 9.90, 5.47, and 



22 
 

2.91 MPa as listed in Table 2.3.  The buckling stresses listed in Tables 2.3 and 2.4 in general 

agree with the critical stress of 4.0 MPa obtained from the experiments.      

 It should be noted again that the results of the finite element analysis in [9] suggest that 

the cover sheets actually buckle first.  Based on Equation (10), 62.11n and 12n for the cover 

sheets.  This corresponds to 24 half waves for the cell RVE specimen.  Note that 7 half waves 

were observed in the experiment whereas 10 half waves are obtained from the corresponding 

finite element analysis [9].  However, the in-plane constrained compression test conducted in this 

investigation has a total clearance of 0.358 mm between the cell RVE specimen and the die walls.  

This can reduce the spring constants for the unattached elastic foundations.  The computational 

results indicate that when the clearance is reduced to 0, 15 half waves appear which is reasonably 

in agreement with about 20 half waves obtained by both elastic buckling analyses.  It should be 

noted that the analytical results based on Equations (5) and (10) are approximate in nature and 

the analytical results are in reasonable agreement with the experimental and computational 

results.   

 As indicated in Equations (8) and (13), the half wavelength mL /  for the component 

sheets in the middle portion of the cell RVE specimens and the wavelength nL /  for the 

component sheets near the sides of the cell RVE specimens are independent of the specimen 

length.  As indicated in Equations (7) and (12), the buckling loads are functions of the elastic 

bending rigidity and the out-of-plane elastic modulus of the cell RVE specimens, and they are 

independent of the specimen length.  The results suggest that the length of the cell RVE 

specimens is appropriately selected since the cell RVE specimens buckle with multiple half 

waves under in-plane constrained compression.  Therefore, the constrained compressive behavior 

of the cell RVE specimens obtained in this investigation can in general represent that of battery 
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cells with a full length.  After the buckling mode is settled, plastic hinges or kinks will develop 

and the shear band mechanism will start to efficiently compact the cell RVE specimens as the 

compression continues.  

 

2.5. Kink and shear band formation under in-plane (y direction) constrained compression 

 Based on the experimental observations of the cell RVE specimens under in-plane 

constrained compression, the physical mechanism to accommodate the compression can be 

summarized in the following.  First, the elastic buckling of the cell RVE components takes place. 

Next, kinks of the components are initiated and consequently shear band regions across the 

specimen are formed.  As the compression continues, the shear band regions are compressed, 

sheared and rotated.  Also, the regions outside the shear bands are under compression.  Once the 

shear band regions reach their shear and rotational limits, compaction takes place in both regions 

inside and outside of the shear bands.  

 Figures 2.10(a) to 2.10(f) show an idealized deformation process in a cell RVE specimen 

under in-plane constrained compression without any clearance between the specimen and the die 

walls to explain the kink and shear band formation mechanism in the specimen and estimate the 

strains inside and outside of the shear band region in terms of the kink length, kink angle and 

shear band angle.  Figures 2.10(a) to 2.10(c) show schematics of a cell RVE specimen before, 

during, and after the formation of shear band regions under in-plane constrained compression, 

respectively.  Figures 2.10(d) to 2.10(f) show the detailed schematics of one unit cell of the 

specimen corresponding to Figures 2.10(a) to 2.10(c), respectively.  Figures 2.10(a) and 2.10(d) 

show the original configuration of the specimen before the kinks and shear band regions are 

formed.  In Figure 2.10(a), region I between two parallel dashed lines as marked represents the 
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shear band region.  Since no shear bands are formed, the initial kinked angle   (as marked in 

Figure 2.10(e)) is 90 .  Figures 2.10(b) and 2.10(e) show the configuration where the kinks are 

formed and the shear band regions are compressed, sheared and rotated.  During the deformation 

process, the kinked angle   decreases from the original kink angle of 
90  to the final kink 

angle of 0 .  Figures 2.10(c) and 2.10(f) show the configuration when the shear band region 

has reached its shear and rotational limit.  

 Figures 2.10(d) to 2.10(f) show the deformation history of one unit cell of the specimen.  

In Figure 2.10(d), the global y and z coordinates are shown.  In Figures 2.10(d) to 2.10(f), the 

local material y' and z' coordinates represent the coordinates that rotate or move with the material 

during the deformation.  In Figures 2.10(d) to 2.10(f), w  represents the cell thickness, d  

represents the kink length (which is assumed to be constant in this idealized model),   

represents the shear band angle, and i  and f  represent the initial and final shear band angles, 

respectively.  As shown in Figure 2.10(d), shear bands (between two parallel dashed lines) are to 

be formed across the cell RVE specimen (shown in gray) to accommodate the compression.  

During the deformation, the kink angle   deceases from 90 toward 0  while the shear band 

angle   changes due to the rotation of the shear band region and the deformation in the regions 

inside and outside the shear band.  As shown in Figures 2.10(d) to 2.10(f), the shear band region 

I can be represented by the parallelogram ABCD which is deformed into A'B'C'D' and then 

A"B"C"D".  Therefore, in region I inside the shear band, the material has the compressive strains 

in the y' and z' directions and the shear strain in the Y'-Z' plane.  As shown in Figures 2.10(d) to 

2.10(f), region II outside the shear band can be represented by the triangle CDE which is 

deformed into C'D'E' and then C"D"E".  Therefore, in region II outside the shear band, the 

material is under biaxial compressive strains in the y' and z' directions.  After   reaches 0 ,   
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decreases as the compression continues.  It should be noted that Figures 2.10(a) to 2.10(f) are 

idealized.  In reality, the shear bands do not form at the same time and the shear band angles are 

different for different parts of the specimens.  

 Based on the idealized shear band deformation process, the local material strains inside 

and outside the shear band regions can be estimated in terms of the compressive strain of the cell 

RVE specimen.  The shear band mechanism appears to optimize the total compressive strain in 

the y direction.  It should be mentioned that the cell can be thought of a unidirectional composite 

where the load carrying capacity is high in the y or y' direction and low in the z or z' direction 

under compression.  Therefore, the strain in the y' direction is assumed to be zero in the shear 

band region for this idealized model.  The nominal strains in region I inside the shear band with 

respect to the local material coordinate system are 
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Here, the engineering shear strain ZY   is defined according to the definition of the engineering 

shear strain of the small strain theory.  The nominal strains in region II outside the shear band 

with respect to the local coordinate system can be expressed as 
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The total nominal strain
 

T

Y  for one unit cell of the specimen can be written as 
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where sh  is the shear band height.  The nominal strains inside and outside the shear band can be 

estimated for a given set of w , d , i , and  . 

 When the compressive strain in the Y' direction in region II increases uniformly, the 

shear band angle remain unchanged.  Since the change of the shear band angle   was found to 

be small as   decreases, the shear band angle is assumed to be constant.  With this assumption, 

the equations for the nominal strains in both regions can be simplified.  For region I inside the 

shear band region, Equation (18) can be simplified to 
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In region II outside of the shear band region, Equation (20) can be simplified to 
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Equations (21) and (24) indicate that region II is now subjected to equal biaxial compression.  

The total nominal strain for one unit cell of the specimen in Equation (22) can be simplified to 
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The nominal strains inside and outside the shear band region can be estimated for 0  when 

the shear band reaches its shear and rotational limit.  The total nominal strain in Equation (25) 

becomes 

w

d
w

d

dw

dd

i

i

i
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



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)1(tan
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tan
         (26) 
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As indicated in Equation (26), the shear band compaction mechanism is quite efficient to 

produce compaction with the extra contribution due to the kink length d .  After   reaches the 

limit of 0, the shear band angle   decreases as the compression increases in both regions I and II.  

 Another idealization can also be made with the assumption that the cell components are 

rigid in the y or Y' direction but plastic hinges or kinks can be formed whereas the components 

are compliant in the z or z' direction.  In this case, the nominal strain in the y or Y' direction in 

region II becomes 

 0Y            (27) 

The additional term due to the compressive strain in the y or Y' direction in region II in Equation 

(26) disappears and the total strain of one unit cell of the specimen becomes 

w

d
w

d

dw

d

i
i

T

Y
















tan
tan

         (28) 

As indicated in Equation (28), the total compressive strain of the specimen can be estimated 

easily from the normalized kinked length wd .  Finally, it should be mentioned that the 

deformation mechanism as discussed here is purely kinematic and it gives some physical insight 

on the deformation mechanism of the cell RVE specimens under in-plane constrained 

compression as observed in experiments and as obtained from the results of the finite element 

analysis [9].   

 It should be mentioned that the physical mechanism of the kink and shear band formation 

appears in different types of battery cells such as the lithium iron phosphate battery RVE 

specimens under in-plane constrained compression as investigated in this study and the lithium 

cobalt dioxide battery cells under in-plane constrained compression as reported in [5].  The 

physical mechanism also appears in cover sheet, anode, cathode and separator specimens as 
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shown in Figures A1 to A4.  Note that the anode, cathode and separator are compressible porous 

sheets while the cover sheet is made of nearly incompressible polyamide, polypropylene and 

adhesives.  It seems that the physical mechanism of the kink and shear band formation is a 

general deformation mechanism that can appear in unattached sheets under in-plane constrained 

compression.       

 

 

 

2.6. Conclusions 

 In this study, the mechanical behavior of cell RVE specimens was investigated under 

both in-plane constrained and out-of-plane compressive loading conditions.  The designs of the 

cell RVE specimens and the in-plane constrained compression test setup are for cells in the 

middle portion of a module with the lateral constraints in the out-of-plane direction.  For this 

investigation, conclusions can be made in the following. 

1. The deformation process is correlated to the nominal stress-strain curve by carefully 

examining the recorded deformation patterns and the stress-strain curves concurrently.  The 

results indicate the load carrying behavior of cell RVE specimens is characterized by the 

buckling of cells with a wavelength approximately in the order of the thickness of the cells, 

kink and shear band formation, and the final densification of the cell components. 

2. The nominal compressive stress-strain curves of cell RVE specimens under in-plane 

constrained and out-of-plane compression are different.  The different nominal compressive 

stress-strain curves in the in-plane and out-of-plane directions suggest that the cells can be 

modeled as anisotropic foams or cellular materials.  The in-plane and out-of-plane nominal 

compressive stress-strain curves presented in this study can be used to develop macro 

homogenized anisotropic material models for crashworthiness analyses. 
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3. The initial elastic buckling mode of the cell RVE specimen under in-plane constrained 

compression can be correlated to the elastic buckling solution of a beam with lateral 

constraints.  The development of the higher order buckling modes of the component sheets 

and the critical stresses observed in experiments are in agreement with the results of the 

analytical buckling solutions and the corresponding finite element analyses.  The elastic 

buckling analyses also justify the length selection of the cell RVE specimens. 

4. An idealized kinematics model is developed to explain the kink and shear band formation in 

the cell RVE specimens under in-plane constrained compression.  The nominal strains in the 

regions inside and outside of the shear band can be estimated by the idealized model and the 

results give some insight on the physical deformation process observed in experiments.  The 

kinematics model appears to be valid in general for unattached sheets under in-plane 

constrained compression. 
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Appendix A: Effective compressive elastic moduli of cell components under in-plane (y 

direction) constrained compression 

 In-plane constrained compression tests were conducted for the component sheets to 

examine the deformation patterns and to estimate the effective compressive elastic moduli of the 

component sheets.  These effective compressive elastic moduli are then used to estimate the 

effective compressive elastic modulus of the cell RVE specimens based on the composite ROM 

and compared to the value obtained from the test results of the cell RVE specimens under in-

plane constrained compression tests.  The specimens of cell components were made by stacking 

different numbers of sheets of cell components to a total thickness of 5 mm.  The specimens have 

the in-plane dimensions of 25 mm × 25 mm.  The numbers of sheets for the cover sheet, anode, 

cathode, and separator specimens are 45, 25, 25, and 250, respectively, to make the total 

specimen thickness of 5 mm.  The test procedure is the same as stated in section 3.3.1.  

 Figure A1(a) shows the nominal stress-strain curves of cover sheet specimens.  The 

effective compressive elastic modulus is estimated by taking a linear fitting curve for the 

beginning part of the curve.  The fitting curve is indicated by a dashed line shown in the figure.  

The estimated effective compressive elastic modulus is about 575 MPa.  Estimations of the 

effective compressive elastic moduli for all component specimens follow the same procedure.  

Figures A1(b) to A1(d) show the deformation patterns of a cover sheet specimen at different 

nominal strains.  The deformation patterns are similar to those of the cell RVE specimens. 

 Figure A2(a) shows the nominal stress-strain curves of anode specimens.  The estimated 

value of the effective compressive elastic modulus is about 90 MPa.  Figures A2(b) to A2(d) 

show the deformation patterns of an anode specimen at different nominal strains.  It is noted that 

the deformation patterns are similar to those of the cell RVE specimens. 
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 Figure A3(a) shows the nominal stress-strain curve of a cathode specimen.  The estimated 

effective compressive elastic modulus is about 275 MPa.  Figures A3(b) to A3(d) show the 

deformation patterns of the cathode specimen at different nominal strains.  The deformation 

patterns are similar to those of the cell RVE specimens in the beginning of the test.  As the strain 

increases, the deformation pattern deviates from those of the cell RVE specimens. 

 Figure A4(a) shows the nominal stress-strain curves of separator specimens.  The 

estimated effective compressive elastic modulus is about 83 MPa.  Figures A4(b) to A4(d) show 

the deformation patterns of a separator specimen at different nominal strains.  The deformation 

patterns show a much shorter wavelength compared to those of the cell RVE specimens.  The 

effective compressive elastic moduli for the cell component specimens are listed in Table 2.2. 

 The composite ROM is used to estimate the effective compressive elastic modulus of the 

cell RVE specimen based on the effective compressive elastic moduli of the component sheet 

specimens.  The effective compressive elastic modulus of the cell RVE specimen, cellE , can be 

estimated as  

 
iicell EfE           (A1) 

where if  and iE   are the volume fraction and the effective compressive elastic modulus of the i -

th cell component.  The estimated cellE  is 190 MPa, which is close to the effective compressive 

elastic modulus of 188 MPa obtained from the test results of the cell RVE specimens under in-

plane constrained compression tests.  The effective compressive elastic moduli of the cell 

component specimens are then used for the input for the elastic buckling analysis of the cell 

components in this investigation, the simulations of the deformation process of the cell RVE 

specimens [9], and the elastic buckling analysis of the module RVE specimens [8]. 
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Table 2.1. Specifications of cell and module components. 

 Material Thickness Notes 

Cover sheet Polyamide 

(JIS Z1714) 

0.025 mm 0.111 mm  

Adhesive (Polyester-

polyurethane) 

4-5 g/m
2
 

Aluminum foil  

(JIS A8079, A8021) 

0.040 mm 

Adhesive (Urethane-free 

Adhesive) 

2-3 g/m
2
 

Polypropylene 0.040 mm 

Anode Copper foil 9 μm 0.2 mm Double side coated 

Graphite density: 140-

160 g/m
2 

Active material 

proportion in powder: 

95.7% 

Binder: Styrene-

butadiene rubber 

(SBR)+carboxymethyl 

cellulose (CMC) 

Graphite  

Cathode Aluminum foil 15 μm 0.2 mm Double side coated 

LiFePO4 density: 326-

346 g/m
2 

Active material 

proportion in powder: 

91.0% 

LiFePO4  

Separator Polyethylene (PE) 16-25 μm Porosity: 36%-44% 

Pore size: 0.01-0.1 μm 

Aluminum heat 

dissipater sheet 

Aluminum 0.4 mm 0.6 mm Double side painted 

Paint 0.1 mm 

Foam between 

cells 

Typical foam material 1.5 mm  
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Table 2.2. Effective compressive elastic moduli of cell components. 

 
 Effective compressive elastic 

modulus iE   (MPa) 

Cover sheet 575 

Anode 83 

Cathode 275 

Separator 90 
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Table 2.3. Buckling modes, loads, and strains for the component sheets in the middle portion of 

the cell RVE specimen with 7102.9 k N/m
2
 and buckling loads and stresses for the cell RVE 

specimen. 

 
 Cover sheet Anode Cathode Separator 

m  
21.3 

(NA) 

22.2 16.3 124.6 

i

mP  (N) 25.3 

(NA) 

23.3 42.7 0.744 

i

m  0.0159 

(NA) 
0.0562 0.0310 0.0165 

Cell buckling load cellP  

(N) at the component 

buckling strain i

m  

350 

(NA) 

1240 684 364 

Cell buckling stress cell  

(MPa) at the component 

buckling strain i

m  

2.80  

(NA) 

9.90 5.47 2.91 
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Table 2.4. Buckling modes, loads, and strains for the component sheets near the sides of the cell 

RVE specimen with 7106.4 k N/m
2
 and buckling loads and stresses for the cell RVE 

specimen. 

 
 Cover sheet Anode Cathode Separator 

2 n  (for comparison with 

those in Table 2.3) 

23.1 24.1 17.6 137.4 

i

nP  (N) 30.1 27.7 50.5 0.908 

i

n  0.0189 0.0666 0.0367 0.0202 

Cell buckling load cellP  

(N) at the component 

buckling strain i

n  

416 1470 809 445 

Cell buckling stress cell   

(MPa) at the component 

buckling strain i

n  

3.33 11.7 6.47 3.56 
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Figure 2.1. A typical battery module. 
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(a)                                                                  (b) 

 

Figure 2.2. SEM images of (a) graphite and (b) LiFePO4 on the anode and cathode sheets, 

respectively. 
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Figure 2.3. A schematic of (a) a pouch cell and a cell RVE specimen for the in-plane constrained 

compression test, (b) a cell RVE specimen with the dimensions, and (c) a side view of a small 

portion of the cell RVE specimen showing the individual cell components.  The large arrows 

indicate the compressive direction.  
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Figure 2.4. A punch and die setup for in-plane compression tests of cell RVE specimens. 

punch 
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Figure 2.5. The in-plane nominal compressive stress-strain curves of three cell RVE specimens 

tested at a displacement rate of 0.5 mm/min (nominal strain rate of 0.0003 s
-1

).  The in-plane 

nominal compressive stress-strain curve of the cell RVE specimen from the finite element 

analysis using the Gurson’s material model with a void volume fraction f  set to 0.2 for the 

electrode and separator sheets is also shown for comparison.  The images on the top and lower 

right show a real tested specimen and a simulated tested specimen using finite element analyses. 
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(a)        (b) 

   

(c)       (d) 

   

(e)       (f) 



42 
 

Figure 2.6. Deformation patterns of a cell RVE specimen during the in-plane constrained 

compression test at the displacement rate of 0.5 mm/min: (a) at the nominal strain of 1% in the 

initial linear stage, (b) at the nominal strain of 2% where the slope change occurs, (c) at the 

nominal strain of 10%, (d) at the nominal strain of 15%, (e) at the nominal strain of 34% after the 

test (front view), and (f) at the nominal strain of 34% after the test (back view).  
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Figure 2.7. A schematic of (a) a pouch cell and a cell RVE specimen for the out-of-plane 

compression test, (b) a cell RVE specimen with the dimensions, and (c) a side view of a small 

portion of the cell RVE specimen showing the individual cell components.  The large arrows 

indicate the compressive direction. 
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         (a)                 (b) 

Figure 2.8. (a) The out-of-plane nominal compressive stress-strain curves of cell RVE specimens 

tested at a displacement rate of 0.25 mm/min (nominal strain rate of 0.0009 s
-1

) and (b) pictures 

of two specimens before (left) and after (right) compression.  The three in-plane nominal 

compressive stress-strain curves as shown in Figure 2.5 are also shown in (a) for comparison.  
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Figure 2.9. A schematic of a uniform straight beam under end loads and supported by unattached 

elastic foundations. Both ends are hinged and the beam is supported by the elastic foundations 

through the lateral pressure p  proportional to the deflection z  in the z direction.  The elastic 

foundations on two sides of the beam have the spring constants 1k  and 2k . 
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 (d)    (e)       (f) 

Figure 2.10. Schematics of a cell RVE specimen (a) before, (b) during, and (c) after the shear 

band formation. (d) to (f) are detailed schematics corresponding to (a) to (c), respectively. The y 

and z coordinates are the global coordinates and the Y' and z' coordinates are the local material 

coordinates in (d) to (f).  
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   (a)            (b) 

   

   (c)             (d) 

Figure A1.1. (a) The in-plane nominal compressive stress-strain curves of cover sheet specimens 

tested at a displacement rate of 0.5 mm/min (nominal strain rate of 0.0003 s
-1

). (b-d) show the 

deformation patterns of a cover sheet specimen at the nominal strains of 5%, 14% and 14% (after 

test), respectively. 
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    (a)         (b) 

   

   (c)          (d) 

Figure A1.2. (a) The in-plane nominal compressive stress-strain curves of anode specimens 

tested at a displacement rate of 0.5 mm/min (nominal strain rate of 0.0003 s
-1

). (b-d) show the 

deformation patterns of an anode specimen at the nominal strains of 5%, 25%, and 40% (after 

test), respectively.  
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   (a)              (b) 

   

   (c)            (d) 

Figure A1.3. (a) The in-plane nominal compressive stress-strain curve of a cathode specimen 

tested at a displacement rate of 0.5 mm/min (nominal strain rate of 0.0003 s
-1

). (b-d) show the 

deformation patterns of the cathode specimen at the nominal strains of 3%, 15%, and 24% (after 

test), respectively. 
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   (a)           (b) 

  

   (c)            (d) 

Figure A1.4. (a) The in-plane nominal compressive stress-strain curves of separator specimens 

tested at a displacement rate of 0.5 mm/min (nominal strain rate of 0.0003 s
-1

). (b-d) show the 

deformation patterns of a separator specimen at the nominal strains of 5%, 25% and 42% (after 

test), respectively. 
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Chapter 3 

Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Modules 

under Various Loading Conditions 

 

3.1. Introduction 

 In the previous chapter, the mechanical behavior of Li-ion battery cells is investigated by 

conducting various constrained compression tests.  In this chapter, the mechanical behavior of 

Li-ion battery modules is investigated.  First, tensile specimens were made from the individual 

components of modules: anode, cathode, separator, cover sheet, and aluminum heat dissipater 

sheet.  Tensile tests were performed to obtain the nominal stress-strain curves for these 

individual components for development of the nominal tensile stress-strain curves of cells and 

modules based on the composite rule of mixture.  Next, module RVE specimens were tested 

under in-plane constrained compression.  In-plane constrained compression tests of the module 

RVE specimens with different heights and with adhesive were also conducted to understand the 

effects of the specimen height and adhesive.  Compression tests of foam layers were also 

conducted to examine the different mechanical behaviors of the module RVE specimens in the 

in-plane and out-of-plane directions.  The buckling stress of the module RVE specimens was 

then investigated.  The buckling stresses for the cell components and the aluminum heat 

dissipater sheet based on the analytical buckling solution for a thin plate with unattached elastic 

foundations were obtained and compared with the experimental results of the module RVE 

specimens under in-plane constrained compression.  Finally, a constrained punch indentation test 

on a small-scale module specimen with the same layered structure as that of the module RVE 
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specimens was conducted to understand the mechanical behavior of battery modules under non-

uniform in-plane deformation and to provide the necessary experimental data for benchmark and 

validation of the macro homogenized material model development based on the results of in-

plane constrained compression tests and out-of-plane compression tests.  Finally, conclusions 

will be made from the experimental results. 

 

3.2. Specimens 

 The ultimate goal of this investigation is to model the mechanical behavior of battery 

modules.  Hence the mechanical behaviors of the individual components of the battery modules 

should be first examined.  The structure of a typical battery module based on prismatic pouch 

cells is shown in Figure 2.1.  

Each cell consists of five major components: cover sheet, anode, cathode, separator and 

electrolyte.  Since the electrolyte is difficult to handle during assembly due to its toxicity, all the 

module RVE specimens tested in this study were made without electrolyte.  Table 2.1 lists all the 

detailed material and thickness information of the module components.  The anode, cathode, 

separate and cover sheets are the same as those in Chapter 2.  The aluminum heat dissipater sheet 

and the foam sheet were acquired from a battery module.  The aluminum heat dissipater is 

painted on both sides with a total thickness of 0.6 mm.  The thickness of the foam sheet is 1.5 

mm.  They were later machined into different specimens according to the test need. 
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3.3. Quasi-static tensile tests of module components 

3.3.1. Test procedure and results  

 Tensile tests were conducted.  An extensometer was used for all specimens with a gauge 

length of 2 inches.  The ASTM E8/E8M-11 tensile specimen standard for thin sheet materials 

was adopted.  Figure 3.1(a) shows a schematic of a tensile specimen with the dimensions.  Figure 

3.1(b) shows the tensile specimens of the cover sheet, cathode, anode, separator, and aluminum 

heat dissipater sheets from the top to bottom, respectively.  The displacement rate was set at 5.08 

mm/min (nominal strain rate of 0.0017 s
-1

) for all tensile specimens except for that of the 

aluminum heat dissipater sheet (tested at a lower displacement rate of 2.54 mm/min or a nominal 

strain rate of 0.00085 s
-1

) to better observe the deformation patterns near the yield stress.    

Five nominal stress-strain curves of the cover sheets (with aluminum foils) are shown in 

Figure 3.2(a).  The nominal stress-strain curves of the cover sheets do not show a distinct linear 

portion since the cover sheet is a composite made of layers of polymers and an aluminum foil.  

The nominal stress is about 60 to 65 MPa at failure at this nominal strain rate of 0.0017 s
-1

.  The 

total elongation is about 52 to 57%.  The typical canoeing effect for thin composite tensile 

specimens was observed during the test.  Figure 3.2(a) also shows a picture of the failed region 

of a specimen where the canoeing effect of the specimen can be seen.  The failure appears to be 

initiated by the failure of the middle aluminum foil with the polymer layers remained connected.  

The fracture region showed little signs of necking in the width direction.  The fracture surface of 

the composite sheet is perpendicular to the tensile (vertical) loading direction.  

 Four nominal stress-strain curves of the anode sheets (with copper foils) are shown in 

Figure 3.2(b).  The tensile stress is about 11 MPa at failure.  The total elongation is quite small at 

about 1.7 to 3.1% for the four specimens.  The curves show slight load drops after reaching the 
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maximum tensile stresses.  Figure 3.2(b) also shows a picture of the failed region of a specimen.  

The fracture surface of the composite specimen is perpendicular to the tensile (vertical) loading 

direction.  As shown in the picture, no necking in the width direction was observed.  A simple 

calculation was conducted to estimate the contribution of the graphite layers to the load carrying 

capacity and it indicates that the elastic modulus is about 105 GPa by dividing the load by the 

cross sectional area of the copper foil (12.7 mm × 0.009 mm) and the corresponding strain.  This 

elastic modulus of 105 GPa is about the same as that of copper sheets.  This indicates that the 

graphite layers barely have any load carrying capacity when compared to that of the copper foil.  

The elastic modulus of the anode sheets as composites is 4.7 GPa. 

Four nominal stress-strain curves of the cathode sheets (with aluminum foils) are shown 

in Figure 3.2(c).  The nominal stress is about 12 MPa at failure.  The total elongation is quite 

small at about 0.9 to 1.5% for the four specimens.  Figure 3.2(c) also shows a picture of the 

failed region of a specimen.  The fracture surface of the composite specimen is perpendicular to 

the tensile (vertical) loading direction.  As shown in the picture, no necking in the width 

direction was observed.  A simple calculation was conducted to estimate the contribution of the 

LiFePO4 layers to the load carrying capacity.  It indicates that the elastic modulus is about 68 

GPa by dividing the load by the cross sectional area of the aluminum foil (12.7 mm × 0.015 mm) 

and the corresponding strain.  This elastic modulus of 68 GPa is close to the usual elastic 

modulus of 70 GPa of aluminum sheets.  This indicates that the LiFePO4 layers barely have any 

load carrying capacity when compared to that of the aluminum foil.  The elastic modulus of the 

cathode sheets as composites is 5.1 GPa.  

 Five nominal stress-strain curves of the separator sheets are shown in Figure 3.2(d).  The 

tensile yield stress is about 11 MPa at this displacement rate of 5.08 mm/min (nominal strain rate 



57 
 

of 0.0017 s
-1

).  The total elongation varies from 50 to 80% for the five specimens.  The curves 

show approximate linear strain hardening after the apparent elastic response.  Figure 3.2(d) also 

shows a picture of the failed region of a specimen.  Necking in the width direction was observed 

before fracture.  The fracture surface of the separator specimen is perpendicular to the tensile 

(vertical) loading direction.  The elastic modulus for the initial part of the stress-strain curve is 

estimated as 0.5 GPa. 

 Three nominal stress-strain curves of the aluminum heat dissipater sheets are shown in 

Figure 3.3.  The modulus was estimated to be about 53 GPa from the initial linear portion of the 

curves.  Since the modulus of aluminum sheets is about 70 GPa, we can estimate the paint 

thickness with the assumption that the load is carried only by the aluminum portion of the sheet.  

The estimated paint thickness is 0.75 mm, which is close to the direct measurement of 0.1 mm.  

It is noted that the material shows low strain hardening after yielding.  The total elongation 

ranges from 1.6 to 2.3% for the three specimens.  Figure 3.3 also shows a picture of the failed 

region of a specimen.  The failure surface of the specimen is inclined to the tensile (vertical) 

direction and this failure mode is typical for tensile specimens of ductile sheet metals under 

uniaxial loading conditions.  Table 3.1 lists the elastic moduli of all module components and the 

estimated elastic moduli for the metal portions of the anode, cathode and aluminum heat 

dissipater sheets for comparison. 

 

3.3.2. Tensile behavior estimation based on composite rule of mixture (ROM) 

 Conducting tensile tests for individual module components are easier to handle.  

Conducting tensile tests for multi-layered cell specimens can also be done.  However, a battery 

cell and module may contain different numbers of unit of cathode, anode and separator sheets.  
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Therefore, a simple way to estimate the tensile behavior of cells and modules based on the 

composite rule of mixture (ROM) should be useful to understand the tensile behavior of cells and 

modules.  A simple composite ROM estimation scheme may also be useful in the future for the 

development of a user material subroutine for a homogenized material model to represent the 

battery cells and modules. 

 The composite ROM is a method to estimate the properties of composite materials.  

According to the composite ROM, properties of composite materials such as the density, 

coefficient of thermal expansion, modulus of elasticity, shear modulus, and Poisson’s ratio can 

be estimated as the volume weighed averages of those of individual phases (matrix and fibers).  

For a given strain, the composite stress composite  can be estimated from the stress i  of the i -th 

component with the volume fraction iV  as 





n

i

iicomposite V
1


          

(1) 

First, a battery cell with a single unit of anode, cathode and separator, and two cover sheets with 

two additional separator sheets is considered.  Another battery cell with ten units of anode, 

cathode and separator, and two cover sheets with additional separator sheets is also considered.  

Figure 3.4 shows a side view of a portion of the cell RVE with a single unit of anode, cathode 

and separator, and two cover sheets with additional two separator sheets.  Figure 2.3(c) shows a 

side view of a portion of a cell RVE with 10 units of anode, cathode and separator, and two 

cover sheets with additional separator sheets.  The assemblies of the cell components in the 

generic cell RVE specimens as schematically shown in Figures 3.4(c) and 3.4(d) may be slightly 

different from those of the usual lithium-ion cells for the convenience of using the tensile stress-
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strain curves of the available anode, cathode and separator sheets to demonstrate the usefulness 

of the composite ROM.   

 Figure 3.5 shows a comparison of the engineering stress-strain curves obtained from the 

composite ROM for the two battery cells with a single unit and ten units of anode, cathode and 

separator, and two cover sheets with two additional separator sheets.  The cathode failed at about 

the strain of 1% and the anode failed at about the strain of 2.4%.  After the failures of the anode 

and cathode, the loads are carried by the cover sheets and separator sheets.  At about the strain of 

53%, the cover sheets failed.  As shown in the figure, the tensile stress-strain curve is lower for 

the ten unit specimen.  

 Next, we consider a module of two battery cells (each cell consists of 7 units of anode, 

cathode and separator, and two cover sheets with additional separator sheets), and one aluminum 

heat dissipater sheet.  Figure 3.6(a) shows a schematic of a module and a module RVE for the in-

plane test with the x-y-z coordinate system.  Figure 3.6(b) shows a module RVE.  Figure 3.6(c) 

shows a side view of the module RVE with two cells and one aluminum heat dissipater sheet.  

Each cell has 7 units of anode, cathode and separator, and two cover sheets with two additional 

separator sheets.  Note that the foam was not considered for the module RVE since the tensile 

load carrying capacity of a typical foam is very low.  Figure 3.7 shows the nominal stress-strain 

curve obtained from the composite ROM for the module RVE.  Note that the aluminum heat 

dissipater sheet failed at about the strain of 2.3% that is about the same at which the anode sheets 

fail.  As shown in Figure 3.7, the peak stress of the tensile stress-strain curve for the module 

depends on those of the components of the module RVE. 
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3.4. Quasi-static compression of module RVE specimens 

3.4.1. In-plane (y direction) constrained compression tests of module RVE specimens 

Module RVE specimens were made to represent the middle portion of a typical battery 

module shown in Figure 2.1.  The module RVE specimens were designed to be small for test 

convenience.  Figure 3.8(a) shows a schematic of a battery module and a module RVE specimen 

with the x-y-z coordinate system.  A small module RVE specimen is shown in Figure 3.8(b) with 

the dimensions.  Figure 3.8(c) shows a side view of the module RVE specimen with the 

individual components.  The large arrows shown in the figure indicate the in-plane compressive 

direction.  The module RVE specimen is composed of two cells with an aluminum heat 

dissipater sheet between the two cells.  Two foam layers are on the two sides of the module RVE 

specimen, as shown in Figure 3.8(c).  It should be noted that the dimension of the module RVE 

specimen in the out-of-plane (Z) direction is 10.2 mm.  This was designed to account for the pre-

compression condition where a pre-compressive load is applied to the battery module by two 

stainless steel bands.  This dimension was chosen to give the pre-compression in the out-of-plane 

(Z) direction in a typical battery module.  The specimen was then pre-compressed to a 10 mm 

cube such that the foam layer thickness was compressed to the thickness as observed in a real 

module before testing in the die for in-plane constrained compression testing.  The thickness in 

the z direction of the cell RVE specimen in this case was designed to reduce to 3.3 mm, which is 

composed of 7 anode, 7 cathode, 15 separator and 2 cover sheets. It should be noted again that 

the assembly of the cell components in the generic cell RVE specimen as schematically shown in 

Figure 3.8(c) may be slightly different from those of the usual lithium-ion cells for convenience 

of using the available anode, cathode and separator sheets. 
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A set of module RVE specimens with its height doubled in the y direction was also made 

and tested to study the size effect.  Another set of module RVE specimens with adhesive was 

also made and tested to study the effect of the adhesive.  In a typical battery module, the 

adhesive is applied between the cell cover sheet and the foam, and between the cell cover sheet 

and the aluminum heat dissipater sheet.  Instant Krazy®  glue was applied in the positions 

indicated by the small arrows in Figure 3.8(c) for the specimens with different heights (10 mm 

and 20 mm).  The glue was applied as uniform and as thin as possible to maintain consistency 

and reduce imperfections. 

 The setup for module RVE compression tests is shown in Figure 3.9.  The setup is 

composed of a male square punch and a female die.  A square punch is in the die cavity is shown 

in the figure.  A side window was made of PMMA for recording the deformation process during 

the compression.  The module RVE specimen is placed in the die cavity and the punch 

compresses downward with a displacement rate is 0.3 mm/min (nominal strain rate of 0.0005 s
-1

).  

 Figures 3.10(a) and 3.10(b) show the nominal compressive stress-strain curves of 10 mm 

× 10 mm × 10 mm module RVE specimens tested at a displacement rate of 0.3 mm/min 

(nominal strain rate of 0.0005 s
-1

) without and with adhesive, respectively.  Figures 3.10(c) and 

3.10(d) show the nominal compressive stress-strain curves of 10 mm × 10 mm × 20 mm module 

RVE specimens at a displacement rate of 0.6 mm/min (nominal strain rate of 0.0005 s
-1

) without 

and with adhesive, respectively.  The deformation patterns for three selected specimens with the 

nominal stress-strain curves shown in Figure 3.10 are shown in Figures 3.11(a-c), (d-f), and (g-i), 

respectively.   

 As shown in Figure 3.10(a) for the cubic specimens, the nominal stress-strain curves 

show two very distinct stress drops at the nominal strains of about 2% and 5%.  After a carefully 
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examination of the deformation patterns, the first stress drop is believed to be caused by a full 

development of the first buckling mode at a nominal strain of 2% as shown in Figure 3.11(a).  A 

detailed analysis of the buckling stress of the module RVE specimens is presented in the next 

section.  The calculated buckling stress is 4.44 MPa, which is very close to the test result of 

about 5 MPa at the nominal strain of 2%.  The second stress drop was identified to be caused by 

the onset of the top sliding against the punch.  The top sliding can be seen in Figure 3.11(b) at 

the nominal strain of 5%.  After the onset of the top sliding, the specimen managed to fill up the 

vacant space provided by the porosity of the components and the microscopic gaps between the 

components, corresponding to the stage with a relatively low stress increase.  After consuming 

most of the vacant space provided by the porosity of the components and the microscopic gaps 

between the components, the densification started and led to the large stress increase toward the 

end of the test.  The final crushed specimen at a nominal strain of 50% is shown in Figure 

3.11(c). 

 As shown in Figure 3.10(c) for the double height specimens, the nominal stress-strain 

curves show slightly different behaviors from those of the cubic specimens.  A few stress drops 

were observed but they are not too consistent.  A carefully examination of the deformation 

patterns indicates that the first buckling load drop is hard to see due to the specimen height 

increase because it decreases the first buckling stress to about one quarter of the one for the 10 

mm cubic specimen according to the analytical buckling load solution as discussed later.  

Depending on the development of the higher-order buckling modes, the nominal stress-strain 

behavior could be slightly different.  For example, the dotted curve shows the buckling mode 

evolution from the first to the second buckling mode.  The first small load drop corresponds to 

the first buckling mode at a nominal strain of 1% as shown in Figure 3.11(d) and the second load 
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drop corresponds to the second buckling mode at a nominal strain of 2% as shown in Figure 

3.11(e).  The final crushed specimen at a nominal strain of 50% is shown in Figure 3.11(f).  

 The dashed curve as shown in Figure 3.10(c), however, buckled in a different way.  The 

specimen shows the first buckling mode and continues to build up stress on one side of the wall 

as shown in Figure 3.11(g).  Until the point where the stress was too high against the wall, the 

middle portion suddenly buckled to the right and switched to the third buckling mode as shown 

in Figure 3.11(h).  This corresponds to the load drop at about the nominal strain of 20%.  The 

final crushed specimen is then in the third buckling mode, as shown in Figure 3.11(i).  The 

development of different buckling modes is random and most likely related to the geometric and 

materials imperfections of the specimens as well as the local geometric and load variation of the 

test setup.  However, the general shapes of the curves are quite the same.   

 The in-plane constrained compression test results shown in Figures 3.10(a) and 3.10(c) 

for the specimens with different heights (10 mm and 20 mm) can be compared to study the size 

effect.  It is noted that although the nominal stress of the double height specimens is indeed 

higher when the nominal strain approaches 50%, the nominal stress magnitude and the general 

shape of the curves are almost the same when the nominal strain is below 30%.  The effects of 

the adhesive in the module RVE specimens are also shown in Figures 3.10(b) and 3.10(d).  A 

comparison of Figures 3.10(a) to 3.10(d) shows that the nominal stress-strain curves are higher 

when the adhesive was applied, which is possibly due to the volume increase from the adhesive.  

However, the general trends of the nominal stress-strain curves are the same as those without the 

adhesive.   

 An important observation on the shape of the in-plane nominal compressive stress-strain 

curves is that the deformation is highly dominated by the buckling mode initially and the curves 
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resemble the typical behavior of cellular materials, which possess an initial linear region, a 

nearly plateau region, and a final densification region.  This is reasonable since the module 

specimens are comprised of mostly powder-like active materials and the foam layers with a void 

volume fraction of about 30%.  Therefore, the general module compressive behavior could be 

modeled by utilizing proper foam material models such as in [1, 2].    

 

3.4.2. Out-of-plane (z direction) compression of module RVE specimens 

3.4.2.1. Foam 

 Typical foam layers that are used in battery modules were obtained.  The measured 

thickness of these foam layers is 1.5 mm.  A specimen was made by stacking four pieces of 20 

mm × 20 mm × 1.5 mm foam layers to get more accurate test results.  The total thickness of the 

specimen is 6 mm.  The test was conducted with the displacement rate of 1 mm/min (nominal 

strain rate of 0.003 s
-1

).  The nominal compressive stress-strain curve of the foam is shown in 

Figure 3.12.  The final exponential increase of the stress is due to densification.  It is also noted 

that the foam showed extremely low stress below the strain of about 60%.  

 

3.4.2.2. Out-of-plane (z direction) compression of module RVE specimens 

 For module RVE specimens, the nominal stress-strain curve can be obtained by the 

nominal stress-strain curves of the cell, foam and aluminum heat dissipater sheet since the 

Poisson’s ratios of the cell RVE specimens as tested in Lai et al. [3] and the foam specimen as 

tested in this investigation are nearly zero under out-of-plane compression.  Based on the 

composite ROM, the nominal stresses of the cell, foam, aluminum heat dissipater sheet, and 

module, denoted as cell , foam , Al  and ulemod , respectively, are equal.  
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ulemodAlfoamcell  
         

(2)  

 For a given module , the nominal strain of the module specimen can be obtained from the 

component strains weighted by the volume fractions as 

AlAlfoamfoamcellcellulemod VVV  
        

(3) 

where ulemod , cell , foam  and Al  represent the nominal strains of the module, cell, foam, and 

aluminum heat dissipater sheet, respectively.  Here, cellV , foamV  and AlV  represent the volume 

fractions of the cell, foam and aluminum heat dissipater sheet, respectively, for the module RVE 

specimen.  For the nominal stress range considered, the contribution of the aluminum heat 

dissipater sheets to the strain of the module is quite small and the aluminum heat dissipater sheet 

is in the linear elastic range.  The nominal stress-strain relation for the aluminum heat dissipater 

sheet with zero in-plane strains under out-of-plane loading conditions is
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where AlE  and Al  are the Young’s modulus and Poisson’s ratio of the aluminum sheet. 

 Figure 3.13 shows the nominal out-of-plane compressive stress-strain curve of the 

module specimen obtained from Equation (3) based on the data shown in Figure 3.12 for the 

foam specimen, Equation (4) with the value of AlE  from Table 3.1 for the aluminum dissipater 

sheet, and the out-of-plane compression data of the cell RVE specimens reported in [3].  It 

should be noted that the cell RVE specimen in [3] has 10 units of anode, cathode and separator 

sheets whereas the cell RVE specimen in this investigation has 7 units of anode, cathode and 

separator sheets.  However, the nominal stress-strain curves for the two cell RVE specimens 

under out-of-plane compression should be quite similar due to the large numbers of units of 
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anode, cathode and separator sheets.  Figure 3.13 also shows the nominal stress-strain curves of 

the module RVE specimens for the in-plane constrained compression tests.  The results indicate 

that the module RVE specimens show a similar compressive stress-strain behavior in both in-

plane and out-of-plane directions and these curves resemble those for typical foam materials.  

The curves for in-plane compression is higher than the one for out-of-plane compression as 

expected due to the stiffening effects of the aluminum heat dissipater sheet, aluminum and 

copper foils, separator and cover sheets in the module RVE specimens under in-plane 

compression.  It is also noted that both curves from the in-plane and out-of-plane compression 

tests appear to be parallel to each other with a gap around 5 to 8 MPa.  The results indicate that 

the module RVE specimens can be modeled as anisotropic foam materials (for example, see 

Wang and Pan [2]).  

 

3.5. Buckling analysis of module RVE specimens under in-plane (y direction) constrained 

compression 

 When a module RVE specimen was made, the component sheets were first assembled 

and packed together.  The specimen was then put in the slot of the female die and pre-

compressed to the thickness of 10 mm.  When a module RVE specimen is under in-plane 

compression, the component sheets buckle independently with the lateral constraints from the 

neighbor component sheets.  As indicated in the experimental results, the general behaviors for 

the module RVE specimens without and with adhesive under in-plane constrained compression 

are quite similar.  Therefore, the buckling behavior of the module RVE specimens under in-plane 

constrained compression without adhesive is first investigated here.  Since the component sheets 

were only packed together, each component sheet can be treated as an individual sheet or thin 
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plate under in-plane compression with the lateral constraints which can be treated as unattached 

elastic foundations.  

 Figure 2.9 shows a uniform straight beam under end loads and supported by two 

unattached elastic foundations.  Both ends are hinged and the beam is elastically supported by 

the lateral pressure p  proportional to the deflection z
 
in the z direction.  Here, 1k  and 

2k  

represent the spring constants of the softer and harder elastic foundations on the two sides of the 

beam, respectively.  The buckling load solution of the beam can be found in [4].  Based on the 

solution listed in [4], the buckling load i

mP  of the i -th component with the two unattached elastic 

foundations can be expressed as 
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where m  represents the number of half waves in which the component buckles and is equal to 

the lowest integer greater than the m .  Here, m  is defined as 
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In Equation (5), 21 / kk  and   depends upon the value of m .  Here, iI  is the moment of 

inertia for the i -th component.  iE   is the effective elastic modulus for a thin plate under plane 

strain uniaxial compression conditions and is equal to )1/( 2

iiE  , where iE  and 
i  are the 

elastic modulus and Possion’s ratio of the i -th component.  L , b  and ih  are the height, width, 

and the thickness of the i -th component.  The first term on the right hand side of Equation (5) 

represents the buckling load without the lateral constraints or the unattached elastic foundations.  

The second term on the right hand side of Equation (5) is the additional buckling load due to the 

lateral constraints or the unattached elastic foundations.   
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 For the 10 mm × 10 mm × 10 mm module RVE specimen, the lowest or the first mode 

( 1m ) buckling load iP1  of the i -th component without the lateral constraints can be expressed 

as 

2

32

1
12L

hEb
P iii 




           (7) 

Since the aluminum heat dissipater sheet is painted on both sides and the elastic modulus of the 

paint is much smaller than the elastic modulus of the aluminum sheet, only the aluminum portion 

is used for the calculation of the buckling load.  For the aluminum heat dissipater sheet, the 

effective compressive modulus iE   is based on the tensile elastic modulus of 70 GPa and the 

Poisson's ratio of 0.33.  For the other module components, the effective compressive moduli iE   

obtained from the corresponding constrained compression tests as reported in [3] are used.  The 

effective compressive moduli iE   for the cover sheet, anode, cathode and separator sheets are 

listed in Table 3.2.  With the elastic moduli and the values of the thicknesses listed in Table 2.1, 

the first mode buckling loads for the component sheets can be calculated from Equation (7) and 

summarized in Table 3.3.  The corresponding compressive strains at the buckling loads of the 

components can be calculated by 
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where iA  is the cross sectional area of the i -th component.  The results are summarized in Table 

3.3.  The result shows that the buckling load is the highest for the aluminum heat dissipater sheet.  

The other components buckle at very low strains based on the effective compressive and 

estimated Poisson's ratios.  Note that the metal portions of the cover sheet, anode and cathode 
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sheets cannot fully contribute to the effective compressive elastic moduli as for the tensile elastic 

moduli.  

 The nominal strain at which the first buckling mode of the module RVE specimen starts 

is based on the nominal strain Al

1  at which the first buckling mode of the aluminum heat 

dissipater sheet occurs.  The nominal stress of the module RVE specimen at this nominal strain 

3

1 1048.1 Al
 
can be obtained by summing over the loads of all components (listed in Table 

3.3) divided by the cross sectional area of the module RVE specimen.  This value represents the 

first buckling stress of the module RVE specimen.  In this case, the load carried by the foam 

layers is ignored since the elastic modulus of the foam is much smaller than those of the other 

components.  The first mode buckling stress of the module RVE specimen without considering 

the lateral constraints is calculated as 

32.41 
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MPa        (9) 

where in  is the number of the i -th component in the module RVE specimen.  This value is close 

to that of test results (about 5 MPa at the nominal strain of 0.02), as shown in Figure 3.10(a).  It 

is noted that the aluminum heat dissipater sheet contributes to more than 90% of the buckling 

stress.  However, the above calculation does not account for the effect of the small pre-

compression, the friction between the components, and the lateral constraints experienced by the 

aluminum heat dissipater sheet.  

 In order to understand the effect of the lateral constraints, the second term on the right 

hand side of Equation (5) is evaluated to account for the additional load due to the lateral 

constraints considered as two unattached elastic foundations [4].  In this case, the aluminum heat 

dissipater sheet is considered as the beam and the neighbor cells and foams are considered as the 
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unattached elastic foundations.  For the aluminum heat dissipater sheet, 1k  and 2k  are the same 

and can be expressed as k .  Here, k  represents the lateral force per unit plate length per unit 

deflection of the neighbor cell and foam in the out-of-plane direction.  The spring constant k  can 

be expressed in terms of the elastic modulus E  of the neighbor cell and foam as a composite 

material as 

h

Eb
k             (10) 

where b
 
represents the width of the specimen, and h

 
represents the thickness of the neighbor 

components.  Note that the Possion's ratios for both the cell and the foam are 0 under out-of-

plane compression.  The elastic modulus E
 
of the foam and cell as a homogenous material can 

be estimated from the elastic moduli cellE  and foamE  of the cell and foam, respectively, using the 

composite ROM as 

cellfoamfoamcell
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where cellV  and foamV  represent the volume fractions of the cell and foam, respectively.  The 

elastic moduli of the foam and cell obtained from the out-of-plane compression data of the foam 

specimen and the cell RVE specimen reported in [3] are 0.175 and 8.5 MPa, respectively.  The 

elastic modulus E
 
of the foam and cell is estimated as 0.538 MPa.  The spring constant  k  

becomes 61012.1   N/m
2
.  Based on Equation (6), 15.0m  and therefore 1m .  The 

corresponding value of   is 1.  Therefore, the additional buckling contribution due to the lateral 

constraints calculated from Equation (5) is 12 N.  This load is quite small compared to the first 

mode buckling load of 432 N for the module RVE specimen without consideration of the lateral 
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constraints.  With consideration of the lateral constraints, the first buckling stress is slightly 

increased to 4.44 MPa.  

 For the double height module specimens (10 mm × 10 mm × 20 mm), 45.0m  and 

therefore 1m .  The corresponding value of   is 1.  According to the first term on the right 

hand side of Equation (5), for the double height module RVE specimen, the first mode buckling 

stress is 1.08 MPa which is a quarter of that for the original 10 mm height specimen.  The 

additional buckling contribution due to the lateral constraints calculated from Equation (5) is 48 

N.  With consideration of the lateral constraints, the first buckling stress is 1.56 MPa.  Based on 

the first term on the right hand side of Equation (5), the second mode buckling stress of the 

double height RVE specimen is 4.32 MPa, which is the same as the first mode buckling stress for 

the original 10 mm height specimen.  The additional buckling contribution due to the lateral 

constraints calculated from Equation (5) is 12 N. With consideration of the lateral constraints, the 

first buckling stress is 4.44 MPa.  The second mode bucking stress obtained from the test data 

shown in Figure 3.10(c) at the nominal strain of about 2% compares fairly well to the calculated 

value.  However, the first mode buckling occurs too early and is difficult to observe with the 

current experimental setup.   

The effects of the adhesive can also be examined using Equation (5).  When the cover 

sheets are bonded to the aluminum heat dissipater sheet, the flexural rigidity or bending stiffness 

of the aluminum heat dissipater sheet with the bonded cover sheets increases.  Consequently, the 

buckling load of the aluminum heat dissipater sheet increases and in turns the buckling stress of 

the module RVE specimen increases.  This is in agreement with the experimental results shown 

in Figure 3.10.  Finally, if we consider m  as a real number as in Ali et al. [5] and Lai et al. [3], 

the values of m  can be calculated as 0.407 and 0.813 for the specimens with the length of 10 
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mm and 20 mm, respectively.  The half wavelength for the elastic buckling of the aluminum 

dissipater sheet can be calculated as 24.6 mm.  The half wavelength can be used as a guideline to 

select the length of module RVE specimens.  It appears that module specimens with the length of 

20 mm nearly satisfy the length requirement of module RVE specimens according to the elastic 

buckling analysis.  In this investigation, experiments were conducted for the module specimens 

with the length of 10 mm and 20 mm.  The test results show that the nominal stress-strain curves 

and the general buckling behavior for the module specimens with different lengths are quite 

similar.  Therefore, the test results presented in this study can be used to represent the nominal 

stress-strain curves of module RVE specimens for development of macroscopic homogenized 

material models for simulations of battery modules under compressive loading conditions [6]. 

 

3.6. Quasi-static punch indentation test 

 The in-plane and out-of-plane compression test results can be used to develop macro 

homogenized material models for cell and module RVEs.  However, the macro homogenized 

material models need validations.  A limited validation will be achieved by conducting a punch 

indentation test of a small-scale module specimen and comparing the computational results based 

on the macro homogenized material models with the experimental results.  The layered structure 

of the small-scale module specimen for the punch indentation test is the same as that of the 

module RVE specimens except for the size and shape.  Figure 3.14(a) shows the small-scale 

module specimen and its dimensions.  Figure 3.8(c) shows a side view of the small-scale module 

specimen with the individual components.  The large arrows indicate the compressive direction.  

The specimen length is designed to be 8 times longer than the specimen thickness to create a 

non-uniform stress distribution under the punch.  The punch indentation test setup is shown in 
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Figure 3.15(a).  The setup consists of a male punch of a circular shape and a female die with a 

slot of the same size to fit the specimen (10 mm × 80 mm) such that the specimen is fully 

constrained on its lateral sides with a pre-compression in the out-of-plane direction.  The 

dimensions of the punch are shown in Figure 3.15(b).  The test procedure is the same as that for 

the in-plane constrained compression tests of the module RVE specimens with a displacement 

rate of 0.6 mm/min (nominal strain rate of 0.0005 s
-1

). 

 The load-displacement curve of the punch indentation test is shown in Figure 3.16.  The 

curve shows a relative linear stage in the beginning, followed by a load drop and a slow load 

increase region and a final rapid load increase region due to densification.  The results are similar 

to those of the in-plane constrained compression tests of the module RVE specimens.  Similar 

load drops were observed due to the buckling after the initial linear stage for the module RVE 

specimens.  From the deformation pattern of the small-scale module specimen after the punch 

indentation test as shown in Figure 3.17, the load drop appears to come from the buckling of the 

small-scale module specimen directly under the punch.  The load-displacement curves from the 

corresponding finite element analyses reported in Ali et al. [6] are also plotted in Figure 3.16.  

The finite element analyses are based on a crushable foam material model and the nominal 

compressive stress-strain curve of a module RVE specimen with the dimension of 10 mm × 10 

mm × 20 mm with and without adjustment for softening.  As shown in Figure 3.16, the general 

trends of the results of the finite element analyses agree reasonably well with the test results.  

 The tested specimen shows the similar buckling mode as that of the module RVE 

specimens under in-plane constrained compression tests.  A schematic of the specimen after the 

punch indentation test is shown in Figure 3.17(a).  A top view and a side view of the tested 

specimen are shown in Figures 3.17(b) and 3.17(c), respectively.  At least three half waves of 



74 
 

buckling were developed near the central portion of the specimen, as indicated in Figure 3.17(c) 

by the two concave regions and a convex region on the aluminum heat dissipater sheet.  This is 

in general consistent with the observation for the module RVE specimens under in-plane 

constrained compression tests, as shown in Figure 3.11(i).   

 A schematic of the dimensional changes of the specimen is shown in Figure 3.18.  The 

dashed line represents the final position of the punch.  After removing the punch, the specimen 

shows a 2.2 mm springback near the center.  Small lift-ups of the bottom corners were observed.  

This was expected since the center was compressed and forced the sides to bend toward the 

center.  The load-displacement behavior and the dimensional changes will be used to benchmark 

and validate the macro homogenized material models for the module RVE specimens reported in 

Ali et al. [6]. 

 

3.7. Conclusions 

1. The active materials on the cathode and anode sheets were found to have nearly no load 

carrying capacity in the tensile tests.  The nominal tensile stress-strain curves of cells and 

modules are developed based on the composite ROM.   

2. The nominal stress-strain curves of the module RVE specimens showed stress drops due 

to buckling and then final densification.  The stress drops of the curves were correlated to 

the deformation patterns.  The details of the stress drops depend on the imperfections of 

the specimens and the conditions of the test fixture setup. 

3. No significant size effect was observed for the module RVE specimens of different 

heights under in-plane constrained compression tests when the strain is below 30%.  
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Above the strain of 30%, the nominal stress of the double-height specimens increases 

faster as the strain increases. 

4. The nominal stress-strain curves of the module RVE specimens with adhesive under in-

plane constrained compression are higher than those without adhesive. 

5. The nominal out-of-plane compressive behaviors of the module RVE specimens and the 

foam between cells in a module are similar.  The different nominal compressive stress-

strain curves of module RVE specimens under in-plane and out-of-plane compression 

suggest that the lithium-ion battery modules can be modeled as anisotropic foams or 

cellular materials. This is important information for development of macro homogenized 

anisotropic material models for crashworthiness analyses. 

6. A buckling analysis for the module RVE specimens under in-plane constrained 

compression was conducted based on the analytical solution for a beam with unattached 

elastic foundations, the effective compressive moduli of the cell components, and the 

tensile modulus of the aluminum heat dissipater sheet.  The calculated buckling stress 

agrees well with the experimental results.  The analytical buckling analysis presented in 

this study can be used to determine the yield stresses, corresponding to the buckling 

stresses, in macro homogenized material models based on crushable foam models. 

7. In the constrained punch indentation test on a small-scale module specimen, the tested 

specimen shows the similar buckling mode as observed for the module RVE specimens 

under in-plane constrained compression tests.  The load-displacement curve and the 

dimensional change of the punch indentation test were recorded and used to benchmark 

and validate the macro homogenized material models developed from the nominal stress-

strain curves of the module RVE specimens under in-plane compression.  The 
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experimental results for the small-scale module specimen can be used to benchmark and 

validate new macro homogenized material models.  
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Table 3.1. Tensile elastic moduli of module components. 

 Elastic modulus (GPa)    

(divided by the total cross 

sectional area) 

Elastic modulus (GPa)  

(divided by the cross sectional 

area of the metal portion) 

Cover sheet 5.6 NA 

Anode 4.7 105 

Cathode 5.1 68 

Separator 0.5 NA 

Aluminum heat 

dissipater sheet 

53 70 
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Table 3.2. Effective compressive elastic moduli of module components as reported in [3]. 

 Effective compressive elastic 

modulus iE   (MPa) 

Cover sheet 575 

Anode 83 

Cathode 275 

Separator 90 
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Table 3.3. The first mode buckling loads, the strains of module components at the first mode 

buckling loads, and the loads at the nominal strain of 3

1 1048.1 Al . 

 Cover sheet Anode Cathode Separator Aluminum 

heat 

dissipater 

sheet 

iP1  (N) 0.078 0.056 0.186 5103.6   413 

i

1  41022.1   41038.3   41038.3   6105.3   31048.1   

iP1  (N) at 

3

1 1048.1 Al  

0.94 0.25 0.81 0.027 413 

 



80 
 

 3.34 2.00  2.00

 8.00

 0
.5

0

 0
.7

5

 R 0.50           
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Figure 3.1. (a) A schematic of a tensile specimen with the dimensions (ASTM E8/E8M-11).  (b) 

A picture of the tensile specimens of the cover sheet, cathode, anode, separator and aluminum 

heat dissipater sheets (from the top to bottom).  

Unit: inch 
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Figure 3.2. Nominal tensile stress-strain curves of the (a) cover sheet, (b) anode, (c) cathode, and 

(d) separator sheets tested at a displacement rate of 5.08 mm/min (nominal strain rate of 0.0017 

s
-1

).  
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Figure 3.3. Nominal tensile stress-strain curves of the aluminum heat dissipater sheets tested at a 

displacement rate of 2.54 mm/min (nominal strain rate of 0.00085 s
-1

).  
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Figure 3.4. A side view of a small portion of cell RVEs with a single unit of anode, cathode and 

separator, and two cover sheets with two additional separator sheets.  The large arrows indicate 

the tensile direction.  
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Figure 3.5. A comparison of the nominal stress-strain curves obtained from the composite ROM 

for the battery cells with single unit and ten units of anode, cathode and separator. 
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Figure 3.6. A schematic of (a) a battery module and a module RVE under in-plane tensile 

loading, (b) a module RVE specimen, and (c) a side view of the module RVE specimen showing 

two cells and one aluminum heat dissipater sheet.  The large arrows indicate the tensile direction. 
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Figure 3.7. The nominal stress-strain curve obtained from the composite ROM for a battery 

module RVE shown in Figure 3.6(c). 
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Figure 3.8. A schematic of (a) a battery module and a module RVE specimen for the in-plane 

constrained compression test, (b) a module RVE specimen with the dimensions, and (c) a side 

view of the module RVE specimen showing the individual components.  The large arrows 

indicate the compressive direction. 
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Punch

 

Figure 3.9. A punch and die setup for in-plane compression tests of module RVE specimens. 
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Figure 3.10. Nominal in-plane constrained compressive stress-strain curves of the module RVE 

specimens of the size of 10 mm × 10 mm × 10 mm at a displacement rate of 0.3 mm/min 

(nominal strain rate of 0.0005 s
-1

) (a) without and (b) with adhesive, and of the module RVE 

specimens of the size of 10 mm × 10 mm × 20 mm at a displacement rate of 0.6 mm/min 

(nominal strain rate of 0.0005 s
-1

) (c) without and (d) with adhesive.  

No adhesive With adhesive 

1st mode 

Top sliding 

3rd mode 
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Figure 3.11. (a-c) show the deformation patterns for a 10 mm cubic module RVE specimen.  (d-f) 

show the deformation patterns of the dotted curve in Figure 12(b).  (g-i) show the deformation 

patterns of the dashed curve in Figure 12(c).  The nominal strain corresponding to the 

deformation pattern is marked in each figure.  
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Figure 3.12. A nominal compressive stress-strain curve of the foam used in a battery module.  

The displacement rate is 1 mm/min (nominal strain rate of 0.003 s
-1

).  
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Figure 3.13. A nominal out-of-plane compressive stress-strain curve of a module RVE specimen 

obtained from Equation (3) based on the composite ROM.  The nominal in-plane compressive 

stress-strain curves of module RVE specimens in Figure 12(a) are also shown for comparison. 
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Figure 3.14. A schematic for a small-scale module specimen with the dimensions for a punch 

indentation test.  The large arrows indicate the compressive direction. 
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Figure 3.15. (a) A punch indentation test setup and (b) the punch dimensions (in mm). 

Unit: mm 

punch 
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Figure 3.16. The load-displacement curve of the punch indentation test at a displacement rate of 

0.6 mm/min.  The results of the finite element analyses based on a crushable foam material 

model as reported in [6] are also shown. 
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Figure 3.17. (a) A schematic of the specimen after the punch indentation test.  (b) A top view and 

(c) a side view of the tested specimen.  The foam layers on both sides of the specimen were 

removed for (b) for clarity.  
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Figure 3.18. A schematic of the dimensional changes of the specimen after the punch indentation 

test.  The dashed line represents the final position of the punch during the punch indentation test.  
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Chapter 4 

Failure Mode and Fatigue Behavior of Weld-Bonded Lap-Shear Specimens of Magnesium 

and Steel Sheets 

 

4.1. Introduction 

 Lightweight materials such as advanced high strength steels, aluminum, and magnesium 

alloys have been replacing the low-carbon mild steel in the automotive industry to reduce the 

vehicle weight for better fuel efficiency.  Since magnesium alloys are much lighter than the 

steels commonly used in vehicles, using magnesium alloys could result in a substantial weight 

reduction.  One of the major issues for introducing magnesium alloys into vehicle structures is 

joining magnesium components to the existing steel structures.  Joining magnesium alloys to 

steels is especially difficult due to the extreme difference in their melting temperatures and 

immiscibility of magnesium and iron [1].  If magnesium and steel are melted together, 

vaporization of magnesium would create unacceptable porosity in the weld nugget.  Both friction 

stir spot welding (FSSW) and ultrasonic spot welding (USW) are capable of joining similar and 

dissimilar materials.  A comprehensive review of FSSW on joining similar materials can be 

found in Pan [2].  The research on joining dissimilar materials by FSSW was carried out mostly 

on joining aluminum and steel sheets, for example, see Gendo et al. [3].  Liyanage et al. [4] 

conducted research on joining magnesium to steel sheets by FSSW with tool penetration into the 

lower steel sheets by using a tungsten-based W-25Re tool.  However, it would be difficult to 

implement the technology in the mass production due to tool wear.   
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 Hetrick et al. [5], Jahn et al. [6] and Wright et al. [7] have conducted research on 

processing conditions of joining similar aluminum sheets using USW for automotive 

applications.  For joining dissimilar sheets by USW, research has been done by Watanabe et al. 

[8] on joining aluminum and steel sheets.  Santella et al. [1] successfully joined magnesium to 

zinc-coated steel sheets by USW.  Shakil et al. [9] studied the microstructure and mechanical 

properties of welds of aluminum and stainless steel sheets produced by USW.  Matsuoka and 

Imai [10] conducted research on joining aluminum and copper sheets by USW.  The fatigue 

behavior of dissimilar ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 

and hot-dipped-galvanized mild steel sheets was investigated by Franklin et al. [11].  For joining 

similar materials using ultrasonic weld bonding (USW+adhesive),  Carboni and Moroni [12] 

conducted research on joining aluminum and magnesium sheets by ultrasonic weld bonding and 

found better fatigue performance than the ones made by USW alone.  Lai et al. [13] explored the 

failure mode and fatigue behavior of ultrasonic weld-bonded specimens.  However, no work has 

yet been reported on joining magnesium and steel sheets in details by ultrasonic weld bonding. 

 In this chapter, the failure modes and fatigue behaviors of ultrasonic spot welded, 

adhesive-bonded, and weld-bonded lap-shear specimens of dissimilar magnesium AZ31B-H24 

sheets and galvanized mild steel sheets were examined.  Ultrasonic spot welded, adhesive-

bonded, and weld-bonded lap-shear specimens were first made from dissimilar magnesium 

AZ31B-H24 sheets and galvanized mild steel sheets.  These lap-shear specimens were tested 

under quasi-static and cyclic loading conditions.  Quasi-static and fatigue strengths of the three 

types of joints in lap-shear specimens were then obtained.  Optical micrographs and SEM images 

of the failed joints after testing are also examined to identify the failure modes of the joints.  

Finally, conclusions are made based on the experimental results. 
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4.2. Experiment 

 Magnesium AZ31B-H24 and hot-dip-galvanized (HDG) mild steel sheets with the 

thicknesses of 1.6 mm and 0.8 mm, respectively, were used in this investigation.  First, tensile 

tests were conducted.  An extensometer was used for all specimens with a gauge length of 2 

inches.  The ASTM E8/E8M-11 tensile specimen standard for sheet materials was adopted.  

Figure 4.1(a) shows a schematic of a tensile specimen with the dimensions.  Figure 4.1(b) shows 

the tensile specimens of the magnesium and steel sheets from the top to the bottom, respectively.  

The displacement rate was set at 2.54 mm/min (nominal strain rate of 0.00085 s
-1

) for all tensile 

specimens.  Three specimens were tested for each material.  The stress-strain curves of the 

magnesium and steel sheets are shown in Figure 4.2.  It is noted that the magnesium shows low 

strain hardening after yielding.  The total elongation ranges from 11 to 21% for the three 

specimens.  The steel sheet shows higher strain hardening after yielding.  However, due to the 

strain limit of the extensometer, the tests were conducted up to the nominal strain of 40% for the 

steel sheets.  Table 4.1 lists the elastic moduli, yield strengths, and tensile strengths of the 

magnesium and steel sheets. 

 Ultrasonic spot welded (USW), adhesive-bonded, and ultrasonic spot welded and 

adhesive-bonded (weld-bonded) lap-shear specimens were prepared for this study.  Each lap-

shear specimen was made by a 30 mm   100 mm magnesium sheet and a 30 mm   100 mm 

HDG steel sheet with a 30 mm   40 mm overlap area.  Figure 4.3(a) shows the top views of the 

USW, adhesive-bonded, and weld-bonded lap-shear specimens from the top to the bottom. 

Figures 4.3(b) to 4.3(d) show schematics of the top and the side views of USW, adhesive-bonded, 

and weld-bonded lap-shear specimens with doublers.  The loading direction is shown by the 
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arrows.  The adhesive is shown as the red lines in Figures 4.3(c) and 4.3(d) for the adhesive-

bonded and weld-bonded lap-shear specimens.   

 For the USW lap-shear specimens, a Sonobond CLF 2500 single-transducer, wedge-reed 

ultrasonic welder was used for the ultrasonic spot welding.  The sonotrode tip has a square face 

of 7 mm   7 mm and the face has a grooved pattern.  The ultrasonic spot welding was done with 

a power of 1500 W, an impedance setting of 6, and a welding time of 2.1 s.  The spot welding 

was centered in the overlap area.  Figure 4.3(a) shows the indentation of the sonotrode tip on the 

upper magnesium of the USW specimen.  The microstructures of the sheets, the specimen 

preparation procedure, and the processing conditions for the USW lap-shear specimens were 

detailed in Santella et al. [1].   

 For the adhesive-bonded lap-shear specimens, the magnesium and steel sheets were 

bonded by BETAMATE™ 73305, a one-part heat-curing epoxy adhesive.  Prior to applying the 

adhesive, two tapes were placed on the magnesium and steel sheets to form two pre-cracks 

between the sheets and the adhesive, as shown in Figure 4.3(a).  The locations of the tape tips are 

indicated in Figure 4.3(c).  The tape tips extend 5 mm from the edges of the overlap region.  The 

adhesive thickness is controlled by placing a few 0.3-mm zirconia balls on the bonded surfaces.  

The specimen was heated to cure the epoxy.  The area joined by the adhesive is 30 mm  30 mm 

which is smaller than the overlap area of the two sheets.  

 For the weld-bonded lap-shear specimens, the adhesive was first applied and then the 

sheets were ultrasonic spot welded.  The ultrasonic spot welding procedure is the same as that for 

the USW lap-shear specimens.  Figure 4.3(a) also shows the indentation of the sonotrode tip on 

the upper magnesium sheet of the weld-bonded specimen.  Two tapes were also placed on the 

magnesium and steel sheets to form two pre-cracks between the sheets and the adhesive, as those 
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for the adhesive-bonded specimen.  Each welded specimen was then heated to the curing 

temperature to further join the rest of the overlap region. 

 Prior to testing, all three types of lap-shear specimens were sectioned through the center 

line parallel to the loading direction to observe the cross sections of the bonded regions.  The lap-

shear specimens were first tested with doublers under quasi-static loading conditions at a 

displacement rate of 5 mm/min.  The average failure loads, defined as the averages of the 

maximum loads of the load-displacement curves obtained from the three types of lap-shear 

specimens, are listed in Table 4.2.  The failure loads were used as the reference loads to 

determine the applied loads for the fatigue tests.  The lap-shear specimens were then tested with 

doublers under cyclic loading conditions using an Instron servo-hydraulic fatigue testing 

machine with the load ratio of 0.1.  The test frequency was 10 Hz.  The tests were terminated 

when specimens were separated or transverse cracks from the welds became clearly visible.  

Figure 4.4 shows the load range as a function of the fatigue life for the three types of lap-shear 

specimens under cyclic loading conditions.  

    

4.3. Quasi-static and fatigue test results 

 The results of the quasi-static tests indicate that the failure load per bonded area for USW 

lap-shear specimens is higher than that for adhesive-bonded lap-shear specimens.  However, the 

adhesive-bonded and weld-bonded lap-shear specimens have almost the same failure load.  This 

means the ultrasonic spot welds do not provide significant extra strength to the weld-bonded 

joints.  This is possibly due to the poor weld quality since the thickness of the adhesive layer was 

controlled and limited by the zirconia balls between the magnesium and steel sheets such that the 

sheets cannot have good surface contact during the welding process.  Under cyclic loading 
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conditions, the adhesive-bonded and weld-bonded specimens have longer fatigue lives than those 

of the USW specimens for given load ranges.  Also, adhesive-bonded and weld-bonded lap-shear 

specimens have the same load range-life curves.  This confirms that the ultrasonic spot weld in 

the weld-bonded lap-shear specimen does not contribute to additional fatigue lives for given load 

ranges. 

  

4.4. Failure mode 

4.4.1. USW lap-shear specimen 

 An overview of the failure modes of ultrasonic spot welds in the lap-shear specimen is 

schematically shown in Figure 4.5.  Figure 4.5(a) shows the cross section near the ultrasonic spot 

weld.  The thin solid lines represent the fracture surface or fatigue crack.  Figure 4.5(b) is a table 

that summarizes the failure modes under quasi-static, low-cycle and high-cycle loading 

conditions.  As schematically shown in the figure, the weld fails in a partial nugget pullout 

failure mode with the fracture surfaces A and B1 through the magnesium sheet under quasi-static 

loading conditions.  Under low-cycle loading conditions, the weld fails in a kinked crack failure 

with a crack C growing through the magnesium sheet and partial nugget pullout with the fracture 

surface B2.  Under high-cycle high-load loading conditions, the weld fails from a kinked crack C 

growing through the magnesium sheet and finally fails along the interface D.  Under high-cycle 

low-load loading conditions, the weld fails in a kinked crack failure with a crack E and finally 

fails in a transverse crack growing through the specimen width. 

 Figure 4.6(a) shows the cross section of an untested specimen.  As shown in the figure, 

the weld is asymmetric since the specimen was no constrained during the welding (Santella et al. 

[1]).  Under quasi-static loading conditions, the ultrasonic spot welds failed in a partial nugget 
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pullout failure.  Figure 4.6(b) shows the top view of the upper magnesium sheet and the top view 

of the lower steel sheet near a failed weld under quasi-static loading conditions from the top to 

the bottom.  These failed welds have a partial nugget of the upper magnesium remaining on the 

lower steel sheets.  Figure 4.6(c) shows the cross section of the failed weld in Figure 4.6(b) with 

a nearly full nugget remaining on the lower steel sheet.  It is noted that the fracture took the 

shortest path from the interfacial crack tip to the corner of the indentation.   

 Under low-cycle loading conditions for the fatigue lives from 3×10
2
 to 3×10

3
 cycles, the 

specimens mainly failed in a kinked crack failure with the kink angle close to 90º.  These failed 

welds also have partial nuggets of the upper magnesium remaining on the lower steel sheets.  

Figure 4.6(d) shows the top view of the upper magnesium sheet and the top view of the lower 

steel sheet near a failed weld under low-cycle loading conditions at the fatigue life of 1.2×10
3
 

cycles under the load range of 2,844 N from the top to the bottom.  Figure 4.6(e) shows the cross 

section of the failed weld in Figure 4.6(d) with a partial nugget remaining on the lower steel 

sheet.  It is noted that the 90º kinked crack did not grow all the way up through the magnesium 

sheet.  It turned to the corner of the indentation in the half way due to the final fracture.   

 Under both low-cycle and high-cycle loading conditions, the dominant failure mode of 

the lap-shear specimens is the kinked fatigue cracks growing through the upper right magnesium 

sheets.  Note that the low-cycle and high-cycle loading conditions in this study are defined based 

on the failure modes.  Under high-cycle high-load loading conditions, the failure occurred from a 

kinked crack growing through the upper magnesium sheet but later failed along the interface 

without nugget pullout.  Figure 4.6(f) shows the top view of the upper magnesium sheet and the 

top view of the lower steel sheet near a failed weld under high-cycle high-load loading 

conditions at the fatigue life of 8.0×10
3
 cycles under the load range of 2,152 N from the top to 
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the bottom.  Figure 4.6(g) shows the cross section of the failed weld in Figure 4.6(f).  The kinked 

crack grew through the magnesium sheet but finally failed along the weld interface.   

 Under high-cycle low-load loading conditions for the fatigue lives from 5×10
4
 to 10

5
 

cycles, the specimens mainly failed in a kinked crack failure.  The kinked crack first grew 

through the magnesium sheet and then grew as two transverse cracks to the sides of the 

magnesium sheet.  The welds finally failed with a transverse crack.  Figure 4.6(h) shows the 

bottom view of the upper magnesium sheet and the top view of the lower steel sheet near a failed 

weld under high-cycle low-load loading conditions at the fatigue life of 5.6×10
4
 cycles under the 

load range of 1,450 N from the top to the bottom.  Figure 4.6(i) shows the cross section of the 

failed weld in Figure 4.6(h).  As indicated from the experimental results, a kinked crack grew 

through the upper magnesium sheet and then the specimens failed in the transverse crack growth 

mode. 

 

4.4.2. Adhesive-bonded lap-shear specimen 

 An overview of the failure modes of adhesive-bonded lap-shear specimens is 

schematically shown in Figure 4.7.  Figures 4.7(a) and 4.7(b) show the cohesive failure near the 

interface between the steel and adhesive and the interfacial failure of the ultrasonic spot weld 

under quasi-static and low-cycle loading conditions, respectively.  Cohesive failure means the 

adhesive-bonded specimen fails in the adhesive.  Figure 4.7(c) shows the kinked crack failure in 

the magnesium sheet under high-cycle loading conditions.   

 Figure 4.8(a) shows the cross section of an untested specimen.  Under quasi-static 

loading conditions, the adhesive-bonded joint failed in a cohesive failure near the interface 

between the steel and adhesive and the interfacial failure of the ultrasonic spot weld.  Figure 
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4.8(b) shows the bottom view of the upper magnesium sheet and the top view of the lower steel 

sheet for a failed joint under quasi-static loading conditions from the top to the bottom.  Figure 

4.8(c) shows the cross section of the failed joint in Figure 4.8(b).  A test on an adhesive-bonded 

lap-shear specimen under quasi-static loading conditions was interrupted at the load of 5,500 N 

(85% of the failure load).  Figures 4.9(a) and 4.9(b) show the cross sections near the left and 

right tape tips, respectively, of the partially failed specimen.  In Figure 4.9(a), the crack grew 

from the left tape tip due to the extensive plastic deformation of the steel sheet.  As indicated in 

Figure 4.9(b), no crack growth is observed near the right tape tip.  Figure 4.7(a) shows a 

schematic of the near interface cohesive failure of the specimen under quasi-static loading 

conditions.  The crack appears to grow in the adhesive but close to the interface between the steel 

and adhesive. 

 Under low-cycle loading conditions for the fatigue lives from 3×10
3
 to 10

4
 cycles, the 

joints also failed in a near interface cohesive failure.  Figure 4.8(d) shows the bottom view of the 

upper magnesium sheet and the top view of the lower steel sheet for a failed joint under low-

cycle loading conditions at the fatigue life of 6.3×10
3
 cycles under the load range of 5,200 N 

from the top to the bottom.  In Figure 4.8(d), the crack on the left side grew initially about 10 

mm in the partial cohesive failure due to the high maximum load of the first cycle.  The failure 

mode due to the first cycle shows the partial cohesive failure (partial interfacial and partial 

cohesive failure) possibly due to the strain rate effect because the feature of the fracture surface 

is different from that of the near interface cohesive failure observed in the specimen under quasi-

static loading conditions.  During the following fatigue cycles, the crack grew from the new 

crack front which corresponds to the starter crack tip as marked in Figure 4.7(b).  Figure 4.8(e) 

shows the cross section of the failed joint in Figure 4.8(d).  An interrupted test of an adhesive-
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bonded lap-shear specimen was conducted under low-cycle loading conditions at the fatigue life 

of 1,500 cycles under the load range of 5,200 N.  Figures 4.9(c) and 4.9(d) show the cross 

sections near the left and right tape tips, respectively, of the partially failed specimen.  In Figure 

4.9(c), the crack grew from the left tape tip.  As indicated in Figure 4.9(d), no crack growth is 

observed near the right tape tip.  Figure 4.7(b) shows a schematic of the near interface cohesive 

failure of the specimen under low-cycle loading conditions.  Note the failure mode changes from 

partial cohesive failure to near interface cohesive failure near the beginning of the cyclic crack 

growth.  

 Under high-cycle loading conditions for the fatigue lives from 10
4
 to 10

5
 cycles, the 

specimens failed in a kinked crack failure.  Figure 4.8(f) shows the bottom view of the upper 

magnesium sheet and the top view of the lower steel sheet for a failed joint under high-cycle 

loading conditions at the fatigue life of 3.6×10
4
 cycles under the load range of 4,222 N from the 

top to the bottom.  Figure 4.8(g) shows the cross section of the failed joint in Figure 4.8(f).  A 

kinked crack was initiated from the tape tip and grew up at an angle of about 30º.  Once it 

reached a critical kink length, the kinked crack turned to 90º and grew into the upper magnesium 

sheet.  The 30º kinked crack was observed in all the specimens failed in the magnesium sheet. 

 Figures 4.10(a) to 4.10(d) show the fracture surfaces of the upper right magnesium sheets 

of four failed specimens under different load ranges.  Note that significant variation in the 

geometries of the kinked cracks was observed from these fracture surfaces.  However, there is a 

general trend of increasing kink length with decreasing load range, as indicated by the red arrows 

in the figure.  Also, the 90º crack after the 30º kinked crack was observed for all the specimens, 

as indicated by the white arrows in the figure.  Note that the geometries of the 90º cracks also 

vary significantly across the fracture surfaces.  Finally, when the average stress in the remaining 
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magnesium cross section reached about the tensile strength of the magnesium, the magnesium 

sheets appeared to fail in shear with various angles inclined to the surface of the specimen sheets 

as observed in those of the failed magnesium sheet specimen under uniaxial tensile loading 

conditions.   

 Figures 4.11(a) and 4.11(b) show SEM images of the 30º kinked crack surface of the 

upper right magnesium sheet of a failed specimen at low and high magnifications, respectively, 

under cyclic loading conditions at the fatigue life of 2.5×10
4
 cycles under the load range of 4,080 

N.  The fatigue striations can be clearly seen in Figure 4.11(b) and are in general perpendicular 

to the crack growth direction.  Figures 4.11(c) and 4.11(d) show SEM images of the 90º crack 

surface of the upper right magnesium sheet of a failed specimen at low and high magnifications, 

respectively, under cyclic loading conditions at the fatigue life of 2.5×10
4
 cycles under the load 

range of 4,080 N.  It is noted that no dimple was observed on the fracture surface.  The formation 

of the 90º crack is possibly due to reaching the fracture resistance of the magnesium [14].  Figure 

4.11(e) shows an SEM image of the final fracture surface of the upper right magnesium sheet of 

a failed specimen under cyclic loading conditions at the fatigue life of 2.5×10
4
 cycles under the 

load range of 4,080 N.  Figure 4.11(e) shows dimpled ductile fracture surface.  

 Note that Figure 4.7(c) shows a schematic of the kinked crack failure under high-cycle 

loading conditions.  It was observed that the left crack on the steel side also grew a bit but did 

not cause the final failure for the load ranges that are close to those under low-cycle loading 

conditions.  Note that the low-cycle and high-cycle loading conditions in this study are defined 

based on the failure modes.   

 Under both quasi-static and cyclic loading conditions, large plastic deformation in the 

steel sheet due to bending near the crack tip was observed.  As the crack grew, the deformed 
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region moved along with the crack front under both quasi-static and cyclic loading conditions.  

Figures 4.12(a) and 4.12(b) show the bottom views of the lower steel sheets under quasi-static 

and low-cycle loading conditions, respectively.  Figure 4.12(a) shows the plastic deformation 

patterns of the steel sheets along the crack fronts in the failed and partially failed specimens 

under quasi-static loading conditions.  The partially failed specimen was under the load at 85% 

of the failure load.  Figure 4.12(b) shows the plastic deformation patterns of the steel sheets 

along the crack fronts in the failed specimen under low-cycle loading conditions at the fatigue 

life of 3,462 cycles under the load range of 5,560 N and a partially failed specimens under low-

cycle loading conditions at the fatigue life of 1,500 cycles under the load range of 5,200 N.  As 

shown in both figures, the plastic deformation along the crack fronts of the failed specimens is 

closer to the right compared to that for the partially failed specimen.  Note that the crack grew 

from the left tape tip to the right tape tip for both cases.  Finally, it is noted that a small amount 

of necking was also observed in the steel sheets of the failed specimens in the width direction.   

 

4.4.3. USW + adhesive (weld-bonded) lap-shear specimen 

 An overview of the failure modes of weld-bonded lap-shear specimens is schematically 

shown in Figure 4.13.  Figures 4.13(a) and 4.13(b) show the cohesive failure near the interface 

between the steel and adhesive under quasi-static and low-cycle loading conditions, respectively.  

Figure 4.13(c) shows the kinked crack failure in the magnesium sheet under high-cycle loading 

conditions.   

 Figure 4.14(a) shows the cross section of the joint of an untested specimen.  Under quasi-

static loading conditions, the weld-bonded joint failed in a cohesive failure near the interface 

between the steel and adhesive.  Figure 4.14(b) shows the bottom view of the upper magnesium 
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sheet and the top view of the lower steel sheet for a failed joint under quasi-static loading 

conditions from the top to the bottom.  The failure mode is similar to that for the adhesive-

bonded lap-shear specimen in Figure 4.8(b).  Figure 4.14(b) shows the residual adhesive on the 

interface of the ultrasonic spot weld.  The residual adhesive suggests that the weld quality was 

not good and did not provide good bonding.  Figure 4.14(c) shows the cross section of the failed 

joint in Figure 4.14(b).  A test on a weld-bonded lap-shear specimen under quasi-static loading 

conditions was interrupted at the load of 5,500 N (85% of the failure load).  Figures 4.15(a) and 

4.15(b) show the cross sections near the left and right tape tips, respectively, of the partially 

failed specimen.  In Figure 4.15(a), the crack grew from the left tape tip toward the right due to 

the extensive plastic deformation of the steel sheet.  As indicated in Figure 4.15(b), no crack 

growth is observed near the right tape tip.  Figure 4.13(a) shows a schematic of the near interface 

cohesive failure of the specimen under quasi-static loading conditions.  The crack grows in the 

adhesive but close to the interface between the steel and adhesive.  Figure 4.13(a) also shows an 

interfacial failure for the ultrasonic spot weld. 

 Under low-cycle loading conditions for the fatigue lives from 3×10
3
 to 3×10

4
 cycles, the 

adhesive failed in a near interface cohesive failure and the ultrasonic spot weld failed in an 

interfacial failure.  Figure 4.14(d) shows the bottom view of the upper magnesium sheet and the 

top view of the lower steel sheet for a failed joint under low-cycle loading conditions at the 

fatigue life of 1.4×10
4
 cycles under the load range of 5,138 N from the top to the bottom.  Figure 

4.14(d) shows that the crack on the left side grew initially about 10 to 20 mm in the partial 

cohesive failure due to the high maximum load of the first cycle.  The failure mode due to the 

first cycle shows the partial cohesive failure (partial interfacial and partial cohesive failure) 

possibly due to the strain rate effect because the feature of the fracture surface is different from 
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that of the near interface cohesive failure observed in the specimen under quasi-static loading 

conditions as discussed earlier.  During the following fatigue cycles, the crack grew from the 

new crack front which corresponds to the starter crack tip as marked in Figure 4.14(b).  Figure 

4.14(e) shows the cross section of the failed joint in Figure 4.14(d).  Note that some residual 

adhesive on the interface of the ultrasonic spot weld can be seen.  An interrupted test of a weld-

bonded lap-shear specimen was conducted under low-cycle loading conditions at the fatigue life 

of 2,000 cycles under the load range of 5,240 N.  Figures 4.15(c) and 4.15(d) show the cross 

sections near the left and right tape tips, respectively, of the partially failed specimen.  In Figure 

4.15(c), the crack grew from the left tape tip.  As indicated in Figure 4.15(d), no crack growth is 

observed on the right tape tip.  Figure 4.13(b) shows a schematic of the near interface cohesive 

failure and the interfacial failure of the ultrasonic spot weld of the specimen under low-cycle 

loading conditions.  Note the failure mode changes from the partial cohesive failure to the near 

interface cohesive failure near the beginning of the cyclic crack growth.  

 Under high-cycle loading conditions for the fatigue lives from 10
4
 to 10

5
 cycles, the 

specimens failed in a kinked crack failure.  Figure 4.14(f) shows the bottom view of the upper 

magnesium sheet and the top view of the lower steel sheet for a failed joint under high-cycle 

loading conditions at the fatigue life of 7.1×10
5
 cycles under the load range of 3,202 N from the 

top to the bottom.  Figure 4.14(g) shows the cross section of the failed joint in Figure 4.14(f).  A 

kinked crack was initiated from the tape tip and grew up into the magnesium sheet.  A kinked 

crack initiated from the tape tip and grew up at an angle of about 30º.  Once it reached a critical 

kink length, the kinked crack turned to 90º and grew into the upper magnesium sheet.  Note that 

Figure 4.13(c) shows a schematic of the kinked crack failure under high-cycle loading conditions.  

It is observed that the left crack on the steel side also grew a bit but did not cause the final failure 
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for the load ranges close to those under low-cycle loading conditions.  Note that the low-cycle 

and high-cycle loading conditions in this study are defined based on the failure modes.    

 Under both quasi-static and cyclic loading conditions, large plastic deformation in the 

steel sheet due to bending near the crack tip was observed.  As the crack grew, the deformed 

region moved along with the crack front under both quasi-static and cyclic loading conditions.  

Figures 4.16(a) and 4.16(b) show the bottom views of the lower steel sheets under quasi-static 

and low-cycle loading conditions, respectively.  Figure 4.16(a) shows the plastic deformation 

patterns of the steel sheets along the crack fronts in the failed and partially failed specimens 

under quasi-static loading conditions.  The partially failed specimen was under the load at 85% 

of the failure load.  Figure 4.16(b) shows the plastic deformation patterns of the steel sheets 

along the crack fronts in the failed specimen under low-cycle loading conditions at the fatigue 

life of 4,628 cycles under the load range of 5,140 N and a partially failed specimens under low-

cycle loading conditions at the fatigue life of 2,000 cycles under the load range of 5,240 N.  As 

shown in both figures, the plastic deformation along the crack fronts of the failed specimens is 

closer to the right compared to that for the partially failed specimen.  Note that the crack grew 

from the left tape tip to the right tape tip for both cases.  Finally, it is noted that a small amount 

of necking was also observed in the steel sheets of the failed specimens in the width direction.   

    

4.5. Conclusion 

 The ultrasonic spot weld appeared not to provide extra strength to the weld-bonded lap-

shear specimen under quasi-static and cyclic loading conditions.  The quasi-static and fatigue 

strengths of adhesive-bonded and weld-bonded lap-shear specimens appeared to be the same.  

For the ultrasonic spot welded lap-shear specimens, the optical micrographs indicated that failure 
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mode changes from the partial nugget pullout mode under quasi-static and low-cycle loading 

conditions to the kinked crack failure under high-cycle loading conditions.  For the adhesive-

bonded lap-shear specimens, the optical micrographs indicated that failure mode changes from 

the near interface cohesive failure under quasi-static and low-cycle loading conditions to the 

kinked crack growth mode under high-cycle loading conditions.  For the weld-bonded lap-shear 

specimens, the optical micrographs indicated that failure mode changes from the near interface 

cohesive failure through the adhesive and interfacial failure through the spot weld under quasi-

static and low-cycle loading conditions to the kinked crack failure under high-cycle loading 

conditions.   
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Table 4.1. Elastic moduli, yield strengths, and tensile strengths of the magnesium and steel sheets 

tested under quasi-static loading conditions at a displacement rate of 5 mm/min. 

 Elastic modulus (GPa) Yield strength (MPa) Tensile strength (MPa) 

AZ31 45 260 318 

HDG mild steel 210 145 293 
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Table 4.2. Failure loads of the lap-shear specimens tested under quasi-static loading conditions at 

a displacement rate of 5 mm/min. 

 Failure load (N) 

USW 4,040 ± 13 

Adhesive-bonded 6,524 ± 65 

Weld-bonded 6,403 ± 61 
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Figure 4.1. (a) A schematic of a tensile specimen with the dimensions (ASTM E8/E8M-11) and 

(b) a picture of the tensile specimens of the magnesium and steel sheets from the top to the 

bottom.  
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Figure 4.2. Nominal tensile stress-strain curves of the magnesium and steel sheets tested at a 

displacement rate of 2.54 mm/min (nominal strain rate of 0.00085 s
-1

). 
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Figure 4.3. (a) A top view of USW, adhesive-bonded, and weld-bonded lap-shear specimens, 

from the top to the bottom.  (b)-(d) Schematics of the top and the side views of the USW, 

adhesive-bonded, and weld-bonded specimens with the loading directions shown by the arrows.  

The red lines represent the adhesive.  
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Figure 4.4. The experimental results of the fatigue tests for the three types of lap-shear 

specimens and the fatigue life estimations based on a kinked fatigue crack growth model for the 

adhesive-bonded and weld-bonded lap-shear specimens. 
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 Failure mode 

Quasi-static (QS) A→B1, partial nugget pullout 

Low-cycle (LC) C→B2, kinked crack and partial nugget pullout 

High-cycle high-load (HC-HL) E→D, kinked crack and interfacial failure 

High-cycle low-load (HC-LL) E, kinked crack and transverse crack 

 

(b) 

Figure 4.5. (a) A schematic of the cross section near the ultrasonic spot weld and (b) the failure 

modes of ultrasonic spot welds under quasi-static, low-cycle, high-cycle high-load, and high-

cycle low-load loading conditions. 
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Figure 4.6. (a) An optical micrograph of the symmetry cross section near an ultrasonic weld in an 

untested USW lap-shear specimen.  Images near the failed welds and the corresponding optical 

micrographs of the symmetry cross sections of the welds in the USW lap-shear specimens (b, c) 

under quasi-static loading condition, (d, e) under low-cycle loading conditions at the fatigue life 

of 1.2×10
3
 cycles under the load range of 2,844 N, (f, g) under high-cycle high-load loading 

conditions at the fatigue life of 8.0×10
3
 cycles under the load range of 2,152 N, and (h, i) under 

high-cycle low-load loading conditions at the fatigue life of 5.6×10
4
 cycles under the load range 

of 1,450 N.  The arrows indicate the loading directions. 
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Figure 4.7. Schematics of the cohesive failure mode between the steel and the adhesive (a) under 

quasi static loading conditions and (b) under low-cycle loading conditions and (c) the kinked 

crack failure mode in the magnesium sheet under high-cycle loading conditions for adhesive-

bonded lap-shear specimens.  The blue lines indicate the tapes. 
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Figure 4.8. (a) An optical micrograph of the symmetry cross section near the joint in an untested 

adhesive-bonded lap-shear specimen.  Images near the failed joints and the corresponding optical 

micrographs of the symmetry cross sections of the joints in the adhesive-bonded lap-shear 

specimens (b, c) under quasi-static loading condition, (d, e) under low-cycle loading conditions 

at the fatigue life of 6.3×10
3
 cycles under the load range of 5,200 N, and (f, g) under high-cycle 

loading conditions at the fatigue life of 3.6×10
4
 cycles under the load range of 4,222 N.  The 

arrows indicate the loading directions. 
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Figure 4.9. The cross sections near the (a) left and (b) right tape tips of a partially failed 

adhesive-bonded lap-shear specimen under quasi-static loading conditions at the load of 5,500 N 

(85% of the failure load) and the cross sections near the (c) left and (d) right tape tips of a 

partially failed adhesive-bonded lap-shear specimen under cyclic loading conditions at the 

fatigue life of 1,500 cycles under the load range of 5,200 N.  The black arrows indicate the 

loading directions. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.10. Fracture surfaces of the upper right magnesium sheets of failed adhesive-bonded 

lap-shear specimens under load ranges of (a) 4,630 N, (b) 4,080 N, (c) 3,480 N, and (d) 2,900 N.  

The red arrows indicate the 30º kinked cracks and the white arrows indicate the 90º cracks.  
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4.11(c) 
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4.11(e) 

Figure 4.11. SEM images of (a, b) the 30º kinked crack surface, (c, d) the 90º crack surface, and 

(e) the final fracture surface of a failed specimen under cyclic loading conditions at the fatigue 

life of 2.5×10
4
 under the load range of 4,080 N.  

20 μm 



139 
 

   

4.12(a) 

 

Plastic deformation 

Failed specimen 

Partially failed specimen 

QS 

10 mm 



140 
 

 

4.12(b) 

Figure 4.12. (a) Bottom views of the plastic deformation patterns of the steel sheets along the 

crack fronts in the failed and partially failed specimens under quasi-static loading conditions.  (b) 

Bottom views of the plastic deformation patterns of the steel sheets along the crack fronts in the 

failed specimen under low-cycle loading conditions at the fatigue life of 3,462 cycles under the 

load range of 5,560 N and a partially failed specimen at the fatigue life of 1,500 cycles under the 

load range of 5,200 N under low-cycle loading conditions. 
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Figure 4.13. Schematics of the cohesive failure mode between the steel and the adhesive and the 

interfacial failure mode of the ultrasonic spot weld (a) under quasi-static loading conditions and 

(b) under low-cycle loading conditions and (c) the kinked crack failure mode in the magnesium 

sheet under high-cycle loading conditions for the weld-bonded lap-shear specimens.  The blue 

lines indicate the tapes. 
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4.14(f) 
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Figure 4.14. (a) An optical micrograph of the symmetry cross section near the joint in an 

untested weld-bonded lap-shear specimen.  Images near the failed joints and the corresponding 

optical micrographs of the symmetry cross sections of the joint in the weld-bonded lap-shear 

specimens (b, c) under quasi-static loading conditions, (d, e) under low-cycle loading conditions 

at the fatigue life of 1.4×10
4
 cycles under the load range of 5,138 N, and (f, g) under high-cycle 

loading conditions at the fatigue life of 7.1×10
5
 cycles under the load range of 3,202 N.  The 

arrows indicate the loading directions. 
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4.15(a) 

 

 

 

 

4.15(b) 

 

 

Mg 

Mg 

Adhesive 

Adhesive 

Steel 

Steel 

Tape tip 

Tape tip 

QS 

QS 

Left 

Right 

Crack tip 

1 mm 

1 mm 



147 
 

 

4.15(c) 

 

 

 

  

4.15(d) 

Figure 4.15. The cross sections near (a) the left and (b) right tape tips of a partially failed weld-

bonded lap-shear specimen under quasi-static loading conditions at the load of 5,500 N (85% of 

the failure load) and the cross sections near the (c) left and (d) right tape tips of a partially failed 

weld-bonded lap-shear specimen under cyclic loading conditions at the fatigue life of 2,000 

cycles under the load range of 5,240 N.  The black arrows indicate the loading directions. 
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4.16(b) 

Figure 4.16. (a) Bottom views of the plastic deformation patterns of the steel sheets along the 

crack fronts in the failed and partially failed specimens under quasi-static loading conditions.  (b) 

Bottom views of the plastic deformation patterns of the steel sheets along the crack fronts in the 

failed specimen under low-cycle loading conditions at the fatigue life of 4,628 cycles under the 

load range of 5,140 N and a partially failed specimen at the fatigue life of 2,000 cycles under the 

load range of 5,240 N under low-cycle loading conditions. 
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Chapter 5 

Stress Intensity Factor Solutions for Adhesive-Bonded Lap-Shear Specimens of 

Magnesium and Steel Sheets with and without Kinked Cracks for Fatigue Life Estimations 

 

5.1. Introduction 

 The results in the previous chapter indicate that the adhesive-bonded and weld-bonded 

specimens of magnesium and steel sheets failed from the kinked fatigue crack growth through 

the magnesium sheet under high-cycle loading conditions.  Also, the ultrasonic spot welds in lap-

shear specimens of magnesium and steel sheets also failed from the kinked fatigue crack growth 

through the magnesium sheets.  Franklin [1] machined the lap-shear specimens of ultrasonic spot 

welds of the magnesium and steel sheets into a dog-bone shaped profile.  The ultrasonic spot 

welds in these dog-boned lap-shear specimens of magnesium and steel sheets also failed from the 

kinked fatigue crack growth through the magnesium sheets.  For fatigue life estimations of these 

ultrasonic spot welded and adhesive bonded specimens based on the kinked fatigue crack growth 

model using the Paris law, one needs to obtain the stress intensity factor solutions for kinked 

cracks at various kink lengths including zero kink length.  For a kink crack growing out from a 

main crack between similar materials, the analytical solutions of Cotterell and Rice [2] can be 

used to calculate the stress intensity factors at zero kink length.  However, analytical solutions 

for interfacial cracks between dissimilar sheets of He and Hutchinson [3] are functions of the 

kink length, and the stress intensity factor solutions for kinked cracks growing out from a main 

crack between dissimilar sheets at "zero" kink length cannot be determined.   



153 
 

In order to determine the fatigue life of the adhesive-bonded lap-shear specimen of 

dissimilar sheets based on a kinked fatigue crack growth model for kinked cracks growing out 

from an interface between dissimilar sheets, stress intensity factor solutions for kinked cracks 

with zero (or small) and various kink lengths are needed.  In this chapter, the analytical global J  

integral and effective stress intensity factor solutions for main cracks in lap-shear specimens of 

three dissimilar sheets under plane strain conditions were developed based on the beam bending 

theory.  The global stress intensity factor solutions for the main cracks in the lap-shear specimens 

from the corresponding finite element analyses were then presented and compared with the 

analytical solutions.  Next, the local stress intensity factor solutions for kinked cracks with the 

experimentally observed kink angle as functions of the kink length from the corresponding finite 

element analyses were presented.  The computational results were also compared with the 

analytical solutions at small kink lengths.  The experimentally observed kink angle was then 

compared with the analytical solution.  Based on the computational results, the local stress 

intensity factor solutions at a small kink length of microstructural significance, used as the initial 

stress intensity factor solutions at zero kink length, and the computational local stress intensity 

factor solutions at various kink lengths were adopted to estimate the fatigue lives of the lap-shear 

specimens based on a kinked crack growth model.  The fatigue life estimations were then 

compared with the experimental results.  Finally, some conclusions were made. 

 

5.2. Analytical global J integral solutions for main cracks 

 Figure 5.1 shows a schematic of the adhesive-bonded lap-shear specimen with the 

applied loads shown as the bold arrows.  The specimen has a width b  and an overall length L  

for the magnesium and steel sheets.  The specimen has the thickness ut  for the upper magnesium 
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sheet, thickness 1lt  for the adhesive layer, and thickness 2lt  for the steel sheet.  The specimen has 

an overlap length V .  The bonded width w  is defined as the distance between two crack tips.   

 The analytical J  integral solutions for main cracks between two dissimilar sheets was 

derived by Zhang [4] using the beam bending theory.  However, one of the two preformed main 

cracks in the adhesive-bonded specimens is between the upper magnesium sheet and the middle 

adhesive layer.  The other preformed main crack is between the lower steel sheet and the middle 

adhesive layer.  Therefore, the analytical J  integral solutions for main cracks between two 

dissimilar sheets of Zhang [4] are not applicable.  In this investigation, the J  integral solutions 

for a main crack in three dissimilar sheets are developed.  Figure 5.2(a) shows a main crack 

between sheets u  and 1l  in three dissimilar sheets of u , 1l  and 2l .  The three sheets are well 

bonded with each other and are assumed to be isotropic and linear elastic with Young's modulus 

uE , shear modulus uG  and Poisson's ratio u  for the upper sheet u  with the thickness ut , 1lE , 

1lG  and 1l  for the lower sheet 1l  with the thickness 1lt , and 2lE , 2lG  and 2l  for the lower 

sheet 2l  with the thickness 2lt .  For the normal stresses ui , uo , il1 , ol1 , il 2  and ol 2  as 

shown in Figure 5.2(a), the subscripts u , 1l  and 2l  indicate the upper sheet, the lower sheet 1 

and the lower sheet 2, respectively, and the subscripts i and o indicate the inner and outer 

surfaces of the sheets, respectively, with respect to the main crack.  The coordinate system is also 

shown in the figure.  The bonded width w is assumed to be much larger than the thicknesses of 

the sheets so that the beam bending theory is applicable.  

 According to Rice [5], the J  integral solutions can be expressed as    

  


 s

x

u
TWnJ i

ix d)( , yxi ,         (1) 
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where   represents a contour counterclockwise from the lower crack face to the upper crack 

face, sd  represents the differential arc length of the contour  , xn  represents the x  component 

of the unit outward normal n  to the differential arc length sd , iT  ( jijn ) represents the 

components of the traction vector T  on the differential arc length sd , and iu  represents the 

components of the displacement vector u .  In Equation (1), the strain energy density W  is 

defined as 


ij

ijijW



0

d  ( yxji ,,  )         (2) 

where ij  are the stress components and ij  are the strain components.  Consider a main crack 

on the right side as shown in Figure 5.2(a), the path-independent integration contour   is 

selected as ABCDEFGHI in this case.  The J  integral is 0 on the segments BC and FG because 

0xn  and 0iT .  Recently, the three-dimensional finite element computational results of 

Wang et al. [6, 7] and Lin and Pan [8] for various types of spot weld specimens indicate that the 

structural stresses from the bending moments and the membrane forces provide the dominant 

contributions to the stress intensity factors along the nugget circumference whereas the structural 

stresses from the transverse shear forces may not have significant contributions.  The J  integral 

on the segments AB, CD, DE, EF, GH and HI can therefore be written as 

   
AB HIGHEFDECD

yWyWyWyWyWyWJ dddddd    (3) 

with 

2

'2

1
x

jE
W   ( j  = u , 1l , 2l )        (4) 

where jj EE '  under plane stress conditions and  21' jjj EE   under plane strain conditions.  

The stresses x  on segments AB, GH and HI can be determined directly from the applied load 
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using the beam bending theory.  The stresses x  on the segments CD, DE and EF are determined 

by the six stresses *

ui , *

uo , *

1il , *

1ol , *

2il  and *

2ol  which can be determined from the linear 

strain distribution in the three dissimilar sheets according to the beam bending theory.  To solve 

for the six stresses, six equations are derived based on the beam bending theory with the 

thickness ratios defined as 

ttuu             (5) 

ttll 11             (6) 

ttll 22             (7) 

where 

21 llu tttt             (8) 

The Young's modulus ratios are defined as 

11 '' luu EE            (9)  

2112 '' ll EE            (10) 

The six equations based on the beam bending theory are 

     ***

1
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2
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*

11

*

iluui              (15) 

*

212

*

1 ilol              (16) 

 Equations (11) and (12) are from the force and moment equilibrium conditions, 

respectively.  Equations (13) and (14) are from the linear strain distribution in the three 

dissimilar sheets.  Equations (15) and (16) are from the strain continuity conditions along the two   

 surfaces.  Solving Equations (11) to (16) gives the six normal structural stresses *

ui , *

uo , *

1il , 

*

1ol , *

2il  and *

2ol .  Substituting the six normal structural stresses *

ui , *

uo , *

1il , *

1ol , *

2il  and 

*

2ol  into Equation (4) and integrating over the contour  , the J  integral solutions for the main 

crack in three dissimilar sheets can be expressed as 
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where 
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 Figure 5.2(b) shows a schematic of the lap-shear specimen near the crack tips.  Figure 

5.3(a) shows a schematic of the lap-shear specimen with the applied load bF .  The positions of 

the two main crack tips are also shown in Figures 5.2(b) and 5.3(a).  For the loading conditions 

shown in Figures 5.2(b) and 5.3(a), the normal structural stresses ui , uo , il1 , ol1 , il 2  and 

ol 2  for the right crack tip are   
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          (41) 

2,

sin6cos2
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rightuo
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F 
          (42) 

0,1 rightil            (43) 

0,1 rightol            (44) 

0,2 rightil            (45) 

0,2 rightol            (46) 

where   is the angle between the loading direction and the x direction, d  is the distance from 

the load application point to the nearest main crack tip, and bF  is the applied load per unit 

width as shown in Figure 5.3(a).  The first and second terms in Equations (41) and (42) are due 

to the decomposed forces, cosF  and sinF , in the horizontal and vertical directions, 

respectively.  Substituting Equations (41) to (46) into Equation (17) gives the value of the J  

integral for the right crack tip.  
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 The asymptotic in-plane stress field around a main crack tip is an oscillatory field that 

can be characterized by a complex stress intensity factor K ( 21 iKK  , 1i ) (Rice and Sih 

[9]).  The stresses y  and xy  at a small distance r  ahead of a main crack tip are characterized 

by K as 
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For the right crack as shown in Figure 5.2(b), the bimaterial constant   is defined as 
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where 

uu  43             (49) 

and 

11 43 ll               (50) 

under plane strain conditions.  For the left crack as shown in Figure 5.2(b), the bimaterial 

constant   is defined as  
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where 

22 43 ll               (52) 

under plane strain conditions.  In Equation (47), ct  represents a characteristic length [4, 10].  It 

should be noted that when the two materials are identical, 0 .  In this case, 1K  and 2K  in 

Equation (47) for the main crack become the conventional stress intensity factors IK  and IIK , 

respectively.  
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 The J  integral solutions is directly related to the effective stress intensity factor eK  for 

both the right and left cracks as 

  *cosh22
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1 EJKKKe          (53) 
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for the right crack and  
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for the left crack.    

 

5.3. Computational global stress intensity factor solutions for main cracks 

 Figure 5.3(a) shows a schematic of a two-dimensional finite element model of a lap-shear 

specimen and the boundary conditions.  The specimen has the upper sheet thickness ut , the lower 

sheet 1 thickness 1lt , and the lower sheet 2 thickness 2lt , the length L , the overlap length V , 

and the bonded width w .  The yx   coordinate system is shown in the figure.  The left edge is 

fixed at the middle surface while the right edge has a concentrated force per unit width, bF / , 

applied at the middle surface.   

 The two-dimensional plane strain finite elemental model has 6.1ut  mm, 3.01 lt  mm, 

8.02 lt  mm, 100L  mm and 40V  mm.  The width b  of the specimen is 30 mm, the angle 

  between the loading direction and the x direction is 0.107º, and the distance d  from the load 

application point to the crack tip is 65 mm based on the specimen geometry and the test setup in 
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Chapter 4.  Note that the ratio of the bonded width w  to the upper sheet thickness ut  is 37.5 for 

the specimens used in the experiments.  The two-dimensional plane strain finite element model is 

used to obtain the global stress intensity factor solutions for calculating the local stress intensity 

factor solutions for kinked cracks.  Figures 5.3(b) and 5.3(c) show the closed-up views of the 

mesh near the right and left main crack tips, respectively.  All the materials are assumed to be 

isotropic and linear elastic.  The top AZ31-H24 sheet is modeled with the Young's modulus 

uE 45 GPa and the Poisson's ratio u 0.35.  The middle adhesive layer is modeled with the 

Young's modulus 1lE 4.1 GPa and the Poisson's ratio 1l 0.36.  The bottom steel sheet is 

modeled with the Young's modulus 2lE 207 GPa and the Poisson's ratio 2l 0.3.  Second-

order, isoparametric, quadrilateral, reduced integration, plane strain elements (CPE8R) were used 

in the model.  The crack-tip elements were modified with collapsed nodes at the crack tip and the 

midside nodes on the sides were moved to the quarter points from the crack tip to model the 

r/1  singularity near the crack tip.  The commercial finite element program ABAQUS [11] was 

employed to perform the computation.   

 It should be noted that the 
AK1  and 

AK2  of the complex stress intensity factor K
A
 

( AA iKK 21  ) obtained directly from ABAQUS [11] are defined such that the stresses y  and 

xy  at a small distance r  ahead of a main crack tip are characterized by K
A
 ( AA iKK 21  ) as  
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                (56) 

By comparing Equations (47) and (56), the 1K  and 2K  solutions can be related to the 
AK1  and 

AK2  solutions as 
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It is noted that the global effective stress intensity factor eK  (    22

2

1

2

2

2

1

AA KKKK  ) is 

independent of the selection of a characteristic length ct .  In this investigation, the computational 

1K  and 2K  solutions for the interfacial cracks are obtained from Equations (57) and (58) with 

the 
AK1  and 

AK2  solutions obtained from ABAQUS [11].    

 The computational results are compared with the analytical results derived from the beam 

bending theory in Equation (17) in a normalized form as 

 
u

ulluee
tb

F
FK  12121 ,,,,          (59) 

where eF  is a dimensionless geometric function which depends on the thickness ratios and 

modulus ratios of the three sheets.  The normalized stress intensity factor eF  solutions obtained 

from the finite element analyses and the analytical solutions in Equations (17) and (53) are 0.830 

and 0.828, respectively, for the right main crack (as shown in Figure 5.2(b)).  The normalized 

stress intensity factor eF  solutions obtained from the finite element analyses and the analytical 

solutions in Equations (17) and (53) are 0.625 and 0.622, respectively, for the left main crack (as 

shown in Figure 5.2(b)).  The results show that the analytical solution agrees very well with the 

computational results with less than a small difference of 0.5%.  

 

5.4. Analytical local stress intensity factor solutions for kinked cracks 

 Figure 5.4 shows a schematic of a main crack and a kinked crack with the kink length a  

and the kink angle  .  The schematic of the kinked crack is consistent with the kinked crack 

shown in Figure 4.8(g) by rotating 180º either clockwise or counterclockwise.  Here, Ik  and IIk  
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represent the local stress intensity factor solutions for the kinked crack.  The arrows shown in the 

figure represent the positive values of the local stress intensity factors Ik  and IIk .  The selection 

of the x-y coordinate system with respect to the main crack tip is consistent with that in He and 

Hutchinson [3]. 

 For kinked cracks that kink out from a main interfacial crack between dissimilar sheets, 

the Ik  and IIk  solutions can be expressed as functions of the kink angle  , the Dundurs' 

parameters  and  , and the global 
AK1  and 

AK2  solutions for the main crack when the kink 

length approaches to 0.  The local stress intensity factors Ik  and IIk  are expressed in the 

complex form (He and Hutchinson [3]) as 

       iAA

IR

iAA

IRIII aiKKiddaiKKiccikk  2121     (60) 

where Rc , Ic , Rd  and Id  are the real and imaginary parts of the complex function c  and d .  

Both c  and d  are complex functions of  ,   and  .  The Dundur's parameters   and   are 

defined as  
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where the subscripts u  and l  represent the upper and lower sheets, respectively, following the 

notation shown in Figure 5.4.  Equation (60) indicates that Ik  and IIk  depend on the kink length 

a  and the bimaterial constant  .  Note that Equation (60) is only applicable when the kink 

length approaches to 0.  Based on Equation (60), Ik  and IIk  can be expressed as 

         A

RIRII Kadadacack 1lncoslnsinlncoslnsin    

         A

RIRI Kadadacac 2lnsinlncoslnsinlncos       (63) 
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         A

RIRIII Kadadacack 1lnsinlncoslnsinlncos    

         A

RIRI Kadadacac 2lncoslnsinlncoslnsin       (64) 

The global stress intensity factors 
AK1  and 

AK2  are obtained computationally as mentioned in the 

previous section.  The functions Rc , Ic , Rd  and Id  are tabulated in He and Hutchinson [12].  

The values for c  and d  are extrapolated from that report.  Based on the material properties used 

in the finite element analyses in section 4, 026.1Rc , 016.1Ic , 467.0Rd  and 

352.0Id  for 832.0 , 181.0  and 058.0  for the right crack.  As indicated in 

Equations (63) and (64), the values for the local stress intensity factor solutions depend on the 

kink length a  when the kink length approaches to 0 for 0 .  The dependence of the solutions 

on the kink length a  presents a challenge to evaluate the local stress intensity factors Ik  and IIk  

at zero kink length for estimation of fatigue lives based on a fatigue crack growth model, even 

though the oscillation is well within the kink length that is too small to be of concern.  This 

challenge prevents the evaluation of Ik  and IIk  at zero kink length ( 0a ) in Equations (63) and 

(64). 

 For cracks between similar materials, Equations (63) and (64) can be reduced to those of 

Cotterell and Rice [2] as  

    A

IIII

A

IRRI KdcKdck          (65) 

    A

IIRR

A

IIIII KdcKdck          (66) 

It should be noted that the stresses at the crack tip recover the traditional r/1  singularity in this 

case. 
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 The local stress intensity factor solutions Ik  and IIk  for kinked cracks with finite kink 

lengths in lap-shear specimens can be expressed in the normalized forms based on the beam 

bending theory as 
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and the local effective stress intensity factor solution ek  can be expressed as 
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(69) 

where If , IIf  and ef  are dimensionless geometric functions which depend on the normalized 

kink length uta /  for this particular set of the geometry and material combination in the lap-shear 

specimen.  The analytical local stress intensity factor Ik  and IIk  solutions for the kinked cracks 

in the lap-shear specimens can be obtained using Equations (63) and (64) with the values of 1K  

and 2K  obtained from the finite element analyses.  The results will be presented in the 

normalized form in the following section. 

 

5.5. Computational local stress intensity factor solutions for kinked cracks 

 In this investigation, two-dimensional plane strain finite element analyses were 

conducted for the adhesive-bonded lap-shear specimen to investigate the local stress intensity 

factor solutions for kinked cracks with different kink lengths.  It should be mentioned that the 

analytical local stress intensity factor solutions based on the global stress intensity factor 

solutions in Equations (63) and (64) are only valid when the kink length a  is small.  Figure 
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5.5(a) shows a schematic of a two-dimensional finite element model of an adhesive-bonded lap-

shear specimen and the boundary conditions.  The geometry, the loading and the boundary 

conditions of the specimen are the same as those shown in Figure 5.3(a).  In Figure 5.5(a), a 

kinked crack is shown to grow from the right main crack tip into the upper magnesium sheet.  

Based on the micrograph in Figure 4.8(g), the kink angle is selected to be 30 .  Figure 5.5(b) 

shows a close-up view of the finite element mesh near the kinked crack for 1.0/ uta .  The 

procedure of the finite element analyses is the same as that stated in section 4.  Thirteen 

normalized kink lengths, uta / 51025.1  , 
310125.3  , 

31025.6  , 0.0125, 0.025, 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 are used in this study since the maximum normalized kink length as 

observed in the experiment in Chapter 4 is about 0.7.  First, the local stress intensity factor 

solutions are obtained computationally for the adhesive-bonded lap-shear specimen with the 

material properties as specified in section 5.3.  These computational results are then compared 

with the analytical solutions in Equations (63) and (64) with the values of 
AK1  and 

AK2  obtained 

from the finite element analyses.   

 Figures 5.6(a) and 5.6(b) show the computational results and the analytical solutions for 

the dimensionless geometric function If  (normalized Ik ) as a function of the normalized kink 

length uta /  in the linear and semi-log scales, respectively.  As shown in Figure 5.6(b), the 

computational results approach to the analytical solution as the normalized kink length decreases 

to a very small value.  Also, the computational local stress intensity factor Ik  increases 

significantly as the kink length increases while the analytical local stress intensity factor stays 

almost the same at large kink lengths.  
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 Figures 5.6(c) and 5.6(d) show the computational results and the analytical solutions for 

the dimensionless geometric function IIf  (normalized IIk ) as a function of the normalized kink 

length uta /  in the linear and semi-log scales, respectively.  It is noted that the magnitude of the 

local stress intensity factor IIk  is small compared to that of the local stress intensity factor Ik .  

As shown in Figure 5.6(d), the computational results approach to the analytical solution as the 

normalized kink length decreases to a very small value.  Also, the computational local stress 

intensity factor IIk  increases significantly as the kink length increases while the analytical local 

stress intensity factor just increases slightly at large kink lengths.  

 Figures 5.6(e) and 5.6(f) show the computational results and the analytical solutions for 

the dimensionless geometric function ef  (normalized ek ) as a function of the normalized kink 

length uta /  in the linear and log-log scales, respectively.  As shown in Figure 5.6(f), the 

computational results approach to the analytical solution as the kink length decreases.   Also, the 

computational local stress intensity factor ek  increases as the kink length increases while the 

analytical local stress intensity factor stays almost the same at large kink lengths.  It is noted that 

both the computational results and the analytical solutions for ek  are similar to those for Ik  

because the magnitudes of the IIk  solutions are small compared to those of the Ik  solutions. The 

results in Figure 5.6 indicate that the analytical solution may be used to estimate the effective 

local stress intensity factors when the kink length is very small.   

 For fatigue life estimation, the local effective stress intensity factor at zero kink length is 

needed for a kinked fatigue crack growth model.  Based on the results presented earlier, a simple 

way to estimate the local stress intensity factor solution at zero kink length in lap-shear specimen 

of dissimilar sheet materials under plane strain conditions is to choose a kink length that is 
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reasonably small from Equations (63) and (64).  A suggested kink length is the average grain 

size.  Using a kink length smaller than the average grain size for Equations (63) and (64) may not 

be practical since the material can no longer be treated as homogeneous linear elastic.  The 

magnesium sheet used in this study contains highly deformed grain structure due to the rolling 

process.  The microstructure consists of small broken grains and twins in larger grains.  The 

grain size of the magnesium sheet ranges from 2 to 15 μm with an average grain size of 5 μm in 

Santella et al. [13].  As shown in Figure 5.6(f), the effective stress intensity factor solution 

obtained from the analytical solution is 20% smaller than that obtained from the finite element 

analysis for the kink length equal to the average grain size.  This value may be considered for the 

solution for zero kink length.  The method provides an easy and yet reasonable approach for 

evaluating the stress intensity factor solutions for zero or near zero kink length and is useful for 

fatigue life estimations since the fatigue crack growth model needs the local stress intensity 

factors at zero kink length.   

 The increasing stress intensity factor solutions with the increasing kink length as shown 

from the results of the finite element analyses also explain the increasing kink length with the 

decreasing load range observed in the failed specimens under cyclic loading conditions.  Since 

the stress intensity factors at the kinked crack tip increase as the kinked crack grows, it can 

eventually reach the critical fracture resistance of the magnesium sheet and causes the kinked 

crack to grow through the magnesium sheet.  The maximum kink length calculated using the 

stress intensity factor solutions obtained from the finite element analyses and the fracture 

toughness of the magnesium ( IcK = 17.6 mMPa  in Somekawa and Mukai [14]) are 0.91 and 

1.37 mm at the load ranges of 4,630 and 2,900 N, respectively, for the kinked crack failure 

observed in the experiment.  The critical maximum kink lengths observed in the magnesium 
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sheets are 0.3 and 0.9 mm at the upper and lower bounds of load ranges of 4,630 and 2,900 N, 

respectively.  The general trends of the predicted and observed maximum kink lengths are in 

agreement.  When the fracture toughness of IcK = 10.8 mMPa  is selected, the predicted 

maximum kink lengths at these two load ranges exactly match the experimental results.  This 

suggests that the sharp turning of the kinked crack from 30º to 90º is due to reaching the critical 

fracture resistance of the magnesium sheet.   

 

5.6. Fatigue life estimation 

 The fatigue life estimations for the lap-shear specimens are based on the Paris law for 

crack growth and the stress intensity factor solutions obtained from the finite element analyses.  

For the kinked crack failures in the lap-shear specimens, the fatigue crack growth is under local 

combined mode I and mode II loading conditions.  An equivalent stress intensity factor eqk  is 

defined in Broek [15] as 

     22
akakak IIIeq           (70) 

where   is an empirical constant to account for the sensitivity of materials to the mode II 

loading conditions.  For lack of any further information,   is assumed 1 in this study.  Now the 

Paris law is used to describe the fatigue crack growth for the kinked crack as 

  meq akC
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          (71) 

where N  is the life or number of cycles, C  and m  are material constants, and eqk  is the range 

of the equivalent stress intensity factor as a function of the kink length a .   

 Since the local stress intensity factors are functions of the kink length a , the fatigue life 

of the lap-shear specimens can be obtained by integrating Equation (71) as 
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where 1a , 2a ,…, 1ia  and ia  represent the values of different kink lengths.  Here, ia  represents 

the crack length when the maximum equivalent or effective stress intensity factor reaches the 

fracture toughness value of 17.6 mMPa  (which represents the fracture toughness of the 90º 

specimens in Somekawa and Mukai [14]).  The stress intensity factor solutions for different kink 

lengths obtained from finite element analyses were used to estimate the fatigue lives.  Since the 

material constants for the Paris law for the rolled AZ31B-H24 used in this study are not available, 

the material constants were chosen from the AZ31B with a similar grain size and load ratio.  The 

values of C  and m  used to estimate the fatigue life are 4×10
-7

  mmMPacycle/mm/  and 2.7, 

respectively, as presented in Ishihara et al. [16].  It should be noted that the fatigue crack growth 

rate varies with the grain size, load ratio, texture and test condition for AZ31B.  Uematsu et al. 

[17] studied the fatigue crack growth rate for extruded AZ31B and found the fatigue crack 

growth rate decreases with the decreasing grain size.  Zheng et al. [18] conducted tests to obtain 

the fatigue crack growth rates under different load ratios for extruded AZ31B and found the 

fatigue crack growth rate increases with the increasing load ratio.  Ishihara et al. [19] studied the 

fatigue crack growth rates for extruded and rolled AZ31 and found a significant texture effect on 

the fatigue crack growth rate for both extruded and rolled AZ31.  Tokaji et al. [20] conducted the 

fatigue tests under dry and humid air conditions for rolled AZ31 and found an order of 

magnitude difference in fatigue crack growth rate. 

 Figure 5.7 shows the experimental results and fatigue life estimations for adhesive-

bonded lap-shear specimens of magnesium and steel sheets.  Under low-cycle loading conditions, 

the crack grew in an interfacial failure between the epoxy layer and the steel sheet during the 

initial load.  As cyclic loads continued, the interfacial failure gradually changed to near interface 
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cohesive failure in the epoxy layer.  Under high-cycle loading conditions, the specimens failed in 

the kinked crack failure.  The estimated fatigue lives for the kinked crack failure for the 

adhesive-bonded lap-shear specimens are shown as the dash line in Figure 5.7.  It appears that 

the fatigue life estimations are lower than the experimental results.   However, the trend of the 

fatigue life estimations in general agrees well with that of the experimental results.  It is noted 

that the values of C  and m  used to estimate the fatigue lives in this study are from an extruded 

AZ31.  The distinct texture feature in the rolled AZ31 compared to that of the extruded AZ31 

can change the values of C  and m  and, in turn, change the corresponding fatigue lives.  It 

should be mentioned that the computational results of the local stress intensity factor solutions at 

the kinked crack length of 5 μm was used for the fatigue life estimation from the crack length of 

0 μm to 5 μm.  When the computational stress intensity factor solutions are not available, the 

analytical solution at the kinked crack length of 5 μm may be used for fatigue life estimation in 

this crack length range. 

 Based on the linear elastic fracture mechanics, the plastic zone size of the kinked crack in 

the magnesium sheet under cyclic loading conditions at the time when the effective local stress 

intensity factor reaches the fracture toughness of 17.6 mMPa  or 10.8 mMPa  are small 

compared to the crack lengths of interest.  Therefore, the use of linear elastic fracture mechanics 

and the kinked crack growth model for the fatigue life estimations is reasonable in this study.  

Based on the beam bending theory, the magnesium sheet is yielded substantially at the maximum 

load of 5,144 N of the load range of 4,630 N due to the combined tension and bending.  However, 

the magnesium sheet near the right main crack tip was under elastic loading and unloading 

condition after the initial loading sine the stress range for elastic loading and unloading is quite 

large.  The plastic flow near the crack tip is due to the singular behavior near the crack tip.  
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Therefore, the fatigue life estimations based on the kinked crack growth model is reasonable 

with the stress intensity factor solutions.  

 

5.7. Conclusions 

 In this chapter, stress intensity factor solutions for adhesive-bonded lap-shear specimens 

of magnesium alloy AZ31 and hot-dip-galvanized (HDG) mild steel sheets with and without 

kinked cracks are investigated for fatigue life estimations.  First, the analytical global J  integral 

and effective stress intensity factor solutions for main cracks in lap-shear specimens of three 

dissimilar sheets under plane strain conditions are developed based on the beam bending theory.  

The global stress intensity factor solutions for the main cracks in the lap-shear specimens from 

the corresponding finite element analyses are then presented to validate the analytical solutions.   

Next, the local stress intensity factor solutions for kinked cracks with the experimentally 

observed kink angle as functions of the kink length from the corresponding finite element 

analyses are presented and the computational solutions are also compared with the analytical 

solutions at small kink lengths.  The results indicate that the computational local stress intensity 

factor solutions for kinked cracks appear to approach to the analytical solutions as the kink 

length decreases to a very small kink length and the kinked crack is under dominant mode I 

loading conditions.  The experimentally observed kink angle in general agrees with the analytical 

solution.  The computational results also indicate that the local stress intensity factor solutions at 

a small kink length of microstructural significance may be used as the initial stress intensity 

factor solutions for zero kink length for fatigue life estimations when the computational results 

are not available.   
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Finally, the computational local stress intensity factor solutions are adopted to estimate 

the fatigue lives of the lap-shear specimens based on a kinked crack growth model and available 

material constants for the Paris law.  The general trend of fatigue life estimations agrees with that 

of the experimental results but the fatigue life estimations are lower than the experimental results.  
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Table 5.1.  The normalized local stress intensity factor solutions obtained from ABAQUS for 

different kink lengths at a kink angle of  30 .  

 

uta /   51025.1   
310125.3   

31025.6   0.0125 0.025 0.05 

If  1.346 1.486 1.529 1.590 1.680 1.808 

IIf  -0.241 0.073 0.146 0.243 0.372 0.545 

ef  1.368 1.488 1.536 1.609 1.720 1.888 

 

Table 5.1. continued 

uta /   0.1 0.2 0.3 0.4 0.5 0.6 0.7 

If  1.999 2.312 2.618 2.956 3.346 3.810 4.368 

IIf  0.767 1.066 1.300 1.520 1.750 2.004 2.299 

ef  2.141 2.546 2.923 3.324 3.776 4.305 4.936 
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Figure 5.1. A schematic of an adhesive-bonded lap-shear specimen.  The applied force F  is 

shown as the bold arrows. 
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Figure 5.2. (a) A schematic of the right crack tip in an adhesive-bonded lap-shear specimen 

showing the normal stresses ui , uo , il1 , ol1 , il 2  and ol 2  at the inner (i) and outer (o) 

surfaces of the upper sheet (u), lower sheet 1 (l1) and lower sheet 2 (l2), respectively.  (b) A 

schematic of an adhesive-bonded lap-shear specimen near the crack tips showing the positions of 

the two main crack tips with the applied load per unit width, bF / .   
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Figure 5.3. (a) A schematic of a two-dimensional adhesive-bonded lap-shear specimen with the 

boundary and loading conditions.  Close-up views of the finite element meshes near (b) the right 

crack tip and (c) the left crack tip.  
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Figure 5.4. A schematic of a main crack and a kinked crack with the kink length a  and the kink 

angle  . 
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Figure 5.5. (a) A schematic of a two-dimensional finite elemental model of an adhesive-bonded 

lap-shear specimen with a kinked crack with the boundary and loading conditions.  (b) A close-

up view of the finite element mesh near the right crack tip showing the preformed crack and the 

kinked crack.  
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Figure 5.6. The computational results and analytical solutions for (a) If  in the linear scale, (b) 

If  in the semi-log scale, (c) IIf  in the linear scale, (d) IIf  in the semi-log scale, (e) ef  in the 

linear scale, and (f) ef  in the log-log scale as a function of the normalized kink length uta /  for 

 30  for the adhesive-bonded lap-shear specimen. 



187 
 

10
2

10
3

10
4

10
5

10
6

2000

3000

4000

5000

6000

 cohesive failure in epoxy

 kinked crack failure in Mg

 kinked crack growth model

L
o
ad

 r
an

g
e 

(N
)

Life cycle

 
Figure 5.7. Experimental results of the fatigue tests at the load ratio R of 0.1 and fatigue life 

estimations for the adhesive-bonded lap-shear specimens. 
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Chapter 6 

Graphical Stress Intensity Factor Solutions for Welds between Two Dissimilar Sheets with 

Different Thicknesses under Plane Strain Conditions 

 

6.1. Introduction 

 Incorporating lightweight materials into the steel vehicle structure requires joining of 

these dissimilar materials.  Therefore, fracture and fatigue analyses of dissimilar welds between 

steel, aluminum and magnesium sheets are of interest.  For lithium-ion battery packs in electric 

and hybrid vehicles, the electrodes of these batteries are made of aluminum and copper.  Joining 

the aluminum and copper tabs in battery packs is also needed.  Therefore, fracture and fatigue 

analyses of dissimilar welds between aluminum and copper sheets are also of interest.  

 In many cases, analyses of continuous dissimilar welds can be treated as two-dimensional 

plane strain problems.  Franklin [1] machined the lap-shear specimens of ultrasonic spot welds of 

dissimilar magnesium and steel sheets into a dog-bone shaped profile.  Figures 6.1(a) and 6.1(b) 

show the lap-shear specimens with ultrasonic spot welds of magnesium and steel sheets before 

and after being machined into a dog-bone shape, respectively.  Figure 4.6(a) shows an optical 

micrograph of the cross section near the ultrasonic spot weld in the lap-shear specimen of 

magnesium and steel sheets.  Two-dimensional plane strain analyses can be used to model the 

fatigue and fracture behavior of the dissimilar welds in this kind of dog-bone lap-shear 

specimens [1].  Two dimensional plane strain analysis were also conducted to analyze similar 

laser welds in dog-bone shaped lap-shear specimens in Sripichai et al. [2].  The structural stress 

and stress intensity factor and J  integral solutions for similar and dissimilar welds in lap-shear 
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specimens are quite important for fracture and fatigue analyses since lap-shear specimens are 

commonly used to test the fracture and fatigue of the welds.  Based on the work of Zhang [3], 

Tran and Pan [4] recently presented analytical stress intensity factor and J  integral solutions for 

dissimilar spot welds in lap-shear specimens of different materials and thicknesses in the 

normalized forms.  The solutions are presented in the graphical form and they are quite 

conveniently used as references for fracture and fatigue analyses.   

In this chapter, the analytical stress intensity factor solutions for welds in lap-shear 

specimens for two dissimilar sheets based on the beam bending theory are first reviewed.  The 

analytical solutions are then presented in the normalized forms.  Next, two-dimensional finite 

element analyses were selectively conducted to validate the analytical solutions based on the 

beam bending theory.  The interfacial crack parameters, the stress intensity factor solutions, and 

the J  integral solutions for welds in lap-shear specimens of different combinations of steel, 

aluminum, and magnesium, and the combination of aluminum and copper sheets of different 

thickness ratios are then presented for convenient fracture and fatigue analyses.   The transition 

thickness ratios for critical crack locations for different combinations of dissimilar materials are 

then determined from the analytical solutions.  The transition weld widths for applicable ranges 

of the weld widths for the analytical solutions based on the beam bending theory are also 

presented.  Finally, fracture and fatigue behaviors of dissimilar ultrasonic magnesium/steel, 

dissimilar laser aluminum/copper, and similar laser steel welds in lap-shear specimens are 

examined and demonstrate the usefulness of the graphical stress intensity factor solutions 

presented.    
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6.2. Analytical stress intensity factor solutions based on the beam bending theory 

 Figure 6.2 shows a schematic of a lap-shear specimen.  The applied force per unit width, 

bF / , is shown as the bold arrows.  Here, b  represents the specimen width.  For the lap-shear 

specimen considered here, the weld width w  is much larger than the upper and lower sheet 

thicknesses so that the beam bending theory is applicable.  The upper and lower sheets are 

assumed to be isotropic linear elastic materials with the Young’s modulus uE , shear modulus uG , 

and Poisson’s ratio u  for the upper sheet material, and the Young’s modulus lE , shear modulus 

lG , and Poisson’s ratio l  for the lower sheet material.  The upper and lower sheets have the 

nominal thicknesses ut  and lt , respectively.  The thickness and modulus ratios   and   are 

defined, respectively, as 

lu tt              (1)                                                                                                                               

and 

lu EE ''            (2)                                                                                                                             

where 

)1/(' 2

uuu EE            (3)                                                                                                                             

and  

)1/(' 2

lll EE            (4)                                                                                                                           

 Figure 6.3 shows a two-dimensional model of two infinite strips made of dissimilar 

materials with different thicknesses and connection under plane strain conditions.  The strip 

model can be used to represent the left or right portion of the specimen provided that the weld 

width w  is large compared to the thicknesses of the upper and lower sheets.  The normal 
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structural stresses u

x  and l

x  for the strip model with respect to the Cartesian coordinate system 

are schematically shown in Figure 6.3.   

 Figure 6.4 shows a schematic of the strip model near the crack tip.  The normal stresses 

ui , uo , li , lo , *

ui , *

uo , *

li  and *

lo  represent the normal structural stresses at the inner (i) 

and outer (o) surfaces of the upper (u) and lower (l) strips, respectively.  Note also that the 

normal structural stresses *

ui , *

uo , *

li  and *

lo  can be derived from the normal structural 

stresses ui , uo , li  and lo  based on the equilibrium equations and the continuity conditions 

of the strain and the strain gradient along the bond line as presented in Zhang [3] and Zuo and 

Hutchinson [5].  

 The asymptotic in-plane stress field around an interfacial crack tip is an oscillatory field 

that can be characterized by a complex stress intensity factor K 21 iKK   ( 1i ) (Rice and 

Sih [6]).  The stresses y and xy  at a small distance r  ahead of the interfacial crack tip are 

characterized by K as 






i

xyy
t

r

r

iKK
i 










2

21          (5) 

where 1K  and 2K  are mode 1 and mode 2 stress intensity factors of a crack at the interface of 

two dissimilar materials.  Here, the bimaterial constant   is defined as  

ull

luu

GG

GG

/1/

/1/
ln

2

1











          (6) 

where u  and l  are defined as 

uu  43             (7) 

and 
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ll  43             (8) 

In Equation (5), t  represents a characteristic length [3, 5, 7].  In this investigation, t  is taken as 

the smaller value of the upper sheet thickness ut  as in Suo and Hutchinson [5] and Zhang [3].  It 

should be noted that when the two materials are identical, 0 .  In this case, 1K  and 2K  in 

Equation (5) for the interfacial crack become the conventional stress intensity factors IK  and 

IIK , respectively.    

 Based on the J  integral solution for the strip model and the analytical solutions for 

interfacial cracks in Suo and Hutchinson [5], Zhang [3] derived the stress intensity factor 

solutions 1K  and 2K  (as defined in Equation (5)) for welds joining sheets of different materials 

and thicknesses in terms of the structural stresses ui , uo , li  and lo  as  
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Note that the expressions shown in Equations (9) and (10) are for welds joining sheets with 1 .  

For welds joining sheets with 1 , one should rotate the strip model by an angle of 180º to 

represent the same physical system but with 1 .  The values of the angular quantity   in 

Equations (9) and (10) can be found in Suo and Hutchinson [5] and Zhang [3]. 

The normal structural stresses for the left and right cracks in a lap-shear specimen under plane 

strain conditions can be obtained using a simple beam bending theory.  For the left crack, the 

normal structural stresses are  
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For the right crack, the normal structural stresses are 
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The normal structural stresses in Equations (11) to (18) can then be substituted into Equations (9) 

and (10) to calculate 1K  and 2K  for both cracks in a lap-shear specimen of different materials 

and thicknesses.  It should be noted for the right crack, the signs for the stress intensity factor 2K  

solutions are changed to be consistent with those of the left crack.   

 Under plane strain conditions, for an interfacial crack between two dissimilar linear 

elastic materials, the J  integral is related to the stress intensity factors 1K , 2K  and 3K  as [6] 
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Here, 3K  is the mode 3 stress intensity factor.  Since 03 K  at the left and right cracks in a lap-

shear specimen under plane strain conditions, Equation (19) can be reduced to  
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 For welds joining sheets of identical materials ( 0 , 1 ), Equation (22) becomes 

'
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and Equations (9) and (10) become  
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6.3. Normalized analytical solutions based on the beam bending theory 

 The stress intensity factor solutions for dissimilar welds based on the beam bending 

theory can be written in the normalized forms as 
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where 1k  and 2k  are the dimensionless geometric functions for a given set of   and  .  For 

welds joining sheets of identical materials ( 0  and 1 ), Equations (26) and (27) become 
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where Ik  and IIk  are the dimensionless geometric functions for a given  .  

The in-plane effective stress intensity factor eK  ( 2

2

2

1 KK  ) and J  integral solutions 

can be written in the normalized forms as 
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where ek  and j  are the dimensionless geometric functions for a given set of   and  .  ek  and 

j  can be expressed by 1k  and 2k  as 
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For welds joining sheets of identical materials ( 0  and 1 ), Equations (30) and (31) 

become 
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6.4. Computational model 

 In order to validate the analytical stress intensity factor solutions, two-dimensional finite 

element analyses for welds in lap-shear specimens of selected different material combinations 

and thickness ratios were conducted under plane strain conditions.  In the finite element analyses, 

the materials are assumed to be linear elastic isotropic materials.  The commercial finite element 

program ABAQUS [8] is employed to perform the computations.  Second-order quarter point 

crack-tip elements with collapsed nodes are used to model the r/1  singularity near the crack 

tip.  Here, r  represents the radial distance to the crack tip.  The stress intensity factor and J  

integral solutions are directly computed by ABAQUS.  The computational stress intensity factor 

solutions are obtained based on the interaction integral method for cracks under mixed-mode 

loading conditions (Shih and Asaro [9]).   
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 It should be noted that AK1  and AK2  of the complex stress intensity factor K
A
 

( AA iKK 21  ) obtained directly from ABAQUS are defined such that the stresses y  and xy  at a 

small distance r  ahead of an interfacial crack tip are characterized by K
A
 as 
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21 
               (38) 

The 1K  and 2K  solutions as defined in Equation (5) are related to the AK1  and AK2  solutions as 

defined in Equation (38) as 

)lnsin()lncos( 211 tKtKK AA                 (39) 

and 

)lncos()lnsin( 212 tKtKK AA                 (40) 

In this investigation, the computational 1K  and 2K  solutions for welds joining two sheets of 

dissimilar materials are obtained from Equations (39) and (40) with the AK1  and AK2  solutions 

computed by ABAQUS. 

 The schematic of the finite element model is shown in Figure 6.2.  For the finite element 

analyses, the length L  (= 100 mm), the overlap length V  (= 40 mm), the specimen width b  (= 

30 mm) and the weld width w  (= 9 mm) are based on the lap-shear specimens used in Franklin 

[1].  The upper sheet thickness ut  is 0.8 mm for different thickness ratios.  In this investigation, 

10 thickness ratios, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, were modeled.  Four 

commonly used metallic materials, steel, aluminum, magnesium and copper sheets, denoted as 

Fe, Al, Mg, and Cu, are considered for the analytical stress intensity factor solutions and their 

elastic constants are listed in Table 6.1.  Two combinations of steel, aluminum, and magnesium 

are selectively considered for the finite element analyses to validate the analytical stress intensity 
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factor solutions.  The interfacial crack parameters  ,  ,  , and the Dundur's parameters need to 

be calculated first to obtain the stress intensity factor solutions listed in Equations (9) and (10).  

The Dundur's parameters   and   are defined as  
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The interfacial crack parameters for the 8 material combinations are listed in Table 6.2.  Note 

that in Table 6.2, for example, Al/Fe is denoted for a weld joining upper aluminum and lower 

steel sheets.  For the weld joining sheets of similar materials, the material property of steel was 

selected for the finite element model.  

 Figures 6.5(a) and 6.5(b) show a two-dimensional finite element mesh and a close-up 

view of the mesh near the weld, respectively, of a lap-shear specimen with a weld joining two 

sheets of the identical thickness.  The boundary conditions are also schematically shown in 

Figure 6.5(a).  Two crack tips, marked as A and B, are also shown in Figure 6.5(b).  It should be 

noted that the results presented in the following were obtained from the same applied lap-shear 

loads. 

 

6.5. Analytical solutions and computational results 

 Figures 6.6(a) and 6.6(b) show the dimensionless geometric functions Ik , IIk , ek  and j  

as functions of the thickness ratio   for the left and right cracks of a weld joining sheets of 

identical materials based on the analytical solutions in Equations (24), (25) and (35), presented as 

various types of lines and the corresponding finite element analyses, presented as symbols.  The 

results of the selected finite element analyses are reasonably in agreement with those of the 



202 
 

analytical solutions as shown in Figures 6.6(a) and 6.6(b).  Figures 6.7 to 6.14 show the 

dimensionless geometric functions 1k , 2k , ek  and j  as functions of the thickness ratio   for the 

left and right cracks of Al/Fe, Fe/Al, Al/Mg, Mg/Al, Fe/Mg, Mg/Fe, Al/Cu and Cu/Al welds 

based on the analytical solutions in Equations (9), (10) and (31), presented as various types of 

lines, and the corresponding finite element analyses, presented as symbols.   

 In the finite element analyses, the ratio of the weld width to the upper sheet thickness is 

selected to be as large as 11.25.  When the ratio of the weld width to the upper sheet thickness 

becomes smaller than 2, the use of the analytical solutions based on the beam bending theory 

should be careful as indicated in Sripichai et al. [2] for welds in lap-shear specimens of identical 

materials.  As shown in Figures 6.7 to 6.14, the thickness ratio   can have significant effects on 

the stress intensity factor solutions and their mode mixities.  Also, the stress intensity factor 

solutions and the mode mixities are different for the left and right cracks.  The analytical 

solutions were verified by the corresponding finite element analyses using ABAQUS for the 

Al/Fe and Fe/Mg welds for different thickness ratios  , as shown in Figures 6.7 and 6.11, 

respectively.  The results from the analytical solutions and finite element analyses in these 

figures agree well with each other.   

 It is noted that the 1k  and 2k  obtained from the finite element analyses are slightly 

different from the ones obtained from the analytical solutions at small thickness ratios   in 

Figures 6.6, 6.7 and 6.11.  The difference could attribute to two factors.  First, the ratio of 1k  and 

2k  is solely and strongly dependent on the angular quantity   in Equations (9) and (10).  

However, the values of   for all the material combinations are interpolated linearly from the 

values listed in the tables in Suo and Hutchinson [5].  It is also found that a few degree 
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adjustment of   (1º to 2º) can make 1k  and 2k  almost perfectly match the ones obtained from 

the finite element analyses (< 0.5% difference).  This indicates that the interpolated values of   

are just estimated values, which could introduce error in calculating analytical 1k  and 2k .  The 

other possible reason which causes the difference of 1k  and 2k  between the ones obtained from 

the finite element analyses and the analytical solutions might be that the values of   reported in 

Suo and Hutchinson [5] are for the large ratios of the weld width to the thickness where the beam 

bending theory is applicable.  As shown in Figure 6.6, small difference was found in the weld 

joining sheets of identical materials for small thickness ratios which correspond to the small 

ratios of the weld width to the lower sheet thickness in the corresponding finite element analyses.  

However, the analytical stress intensity factor solutions are still in reasonable agreement with the 

results of the finite element analyses. 

 Based on the results presented in Figures 6.7 to 6.14, crack initiation in lap-shear 

specimens can be predicted.  For example, for the Al/Fe welds considered here, crack initiation 

and growth, either growing along the interface or kinking out of the interface, can occur at the 

right crack tip for all thickness ratios since the geometric functions 1k  and 2k  or the stress 

intensity factor solutions for the right crack are much larger than those of the left crack as shown 

in Figures 6.7(a) and 6.7(b).  The location of the crack initiation and growth from the right crack 

tip, the left crack tip, or both, depends on the material combination, the thickness ratio, and the 

fracture and fatigue properties of the weld along the interface and/or the upper and lower sheet 

materials.  
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6.6. Transition thickness ratio 

 For the lap-shear specimen with the stronger material (higher Young's modulus) being 

thicker than the weaker material (lower Young's modulus), the effective stress intensity factor is 

always higher at the crack tip on the loading side of the weaker material.  For example, the right 

cracks in Mg/Al, Al/Fe, Mg/Fe and Al/Cu all have higher values of ek , as shown in Figures 6.7, 

6.8, 6.9 and 6.13, respectively.  Therefore, the crack growth will take place at the right crack tip, 

if the stress intensity factor is the dominant driving force for fracture and fatigue.  However, for 

the lap-shear specimen with weaker material (lower Young's modulus) being thicker than the 

stronger material (higher Young's modulus), the effective stress intensity factor will be higher at 

the crack tip on the loading side of the stronger material if the thickness ratio is higher than the 

transition thickness ratio, T .  The values of the transition thickness ratios for Al/Mg, Fe/Al, 

Fe/Mg and Cu/Al are listed in Table 6.3.  The transition thickness ratio has significant 

implication for weld design since it could be a major parameter to indicate the potential failure 

location of the welds joining dissimilar materials.  

 

6.7. Analytical solution for connection between two dissimilar half planes 

 When the weld width w  becomes small compared to the upper or lower sheet thicknesses 

ut  and lt , the stress intensity factors solutions for cracks in lap-shear specimen of two dissimilar 

materials should approach to that presented in Erdogan [10] for two half planes with a 

connection under remote shear loading conditions.   Figure 6.15 shows a schematic of two 

dissimilar half planes with a weld width w  under remote shear and normal loads.  The remote 

shear forces per unit width, bF / , are applied along the x  axis at x  and x  of the 

upper and lower planes, respectively.  The remote normal forces per unit width, bN /  , are 
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applied along the y  axis at y  and y  of the upper and lower planes, respectively.  

Under these loading conditions, the stresses y and xy  at a small distance r  ahead of the 

interfacial crack tip are characterized by the stress intensity factor solutions, EK1 and EK2 , as 






iEE

xyy
w

r

r

iKK
i 










2

21          (43) 

The stress intensity factor EK1 and EK2  solutions developed by Erdogan's [10] are rewritten in the 

forms that are consistent with the form in Equation (43) as  
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As shown in Figure 6.2 and Figure 6.15, when 0N  for lap-shear loading considered here, 

01 EK .  Equation (43) can be rewritten again to be consistent with the form in Equation (5) as  
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Substituting Equation (45) into Equation (46) and comparing with Equation (5), the stress 

intensity factor solutions can be expressed in Equation (5) as 
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The amplitude of the complex stress intensity factor K can be written as 
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6.8. Transition weld width 

 As investigated in Sripichai et al. [2] and Franklin [1], when the weld width utw /  

becomes small, the analytical stress intensity factor solutions in Equations (9) and (10) for the 

lap-shear specimens are not applicable anymore.  Sripichai et al. [2] defined the transition weld 

width such that when the weld width is larger than the transition weld width, the stress intensity 

factor solutions based on the beam bending theory can be used, whereas, when the weld width is 

smaller than the transition weld width, the stress intensity factor solutions based on the small 

connection of two half planes can be used for approximations.  Sripichai et al. [2] developed 

more accurate stress intensity factor solutions for the range of weld widths near the transition 

crack length for the lap-shear specimen of equal thickness based on finite element analyses.  

However, it is quite tedious to develop a set of accurate stress intensity factor solution near the 

transition weld width for all possible combinations of dissimilar materials.  Here, the normalized 

transition weld widths utw /  for several combinations of dissimilar welds in lap-shear specimens 

can be obtained to determine the lower bound for the normalized weld width that the stress 

intensity factor solutions based on the beam bending theory presented in this study can be 

applicable.  

 Since the stress intensity factor solutions for interfacial cracks are in the complex form, 

the magnitude of the stress intensity factors are used to define the transition weld width.  

Substitute Equations (28) and (29) into Equation (49) gives  
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The normalized transition weld width can be derived as 
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The normalized transition weld widths utw /  for different material combinations are 

listed in Table 6.4 for 0.1 .  Note that the characteristic length t  is taken as the smaller value 

of the upper sheet thicknesses.  Since the right crack tips always have higher effective stress 

intensity factors in the lap-shear specimens with the softer material (lower Young's modulus) 

being the thinner sheet, only the right cracks in Mg/Al, Al/Fe, Mg/Fe and Al/Cu are considered 

here.  As listed in Table 6.4, the values of the normalized transition weld width utw /  are quite 

small in the range of 0.2 to 0.4 for 0.1 .  Figure 6.16 shows the values of the normalized 

transition weld widths utw /  for the right crack tip of the Mg/Al, Al/Fe, Mg/Fe and Al/Cu welds 

as functions of the thickness ratio  .  As shown in the figure, the values of the normalized 

transition weld width utw /  decrease slightly as   decreases.  However, the values of the 

normalized transition weld widths utw /  are still quite small.  The result indicates that the 

applicable weld width ranges of the stress intensity factor solutions (Equations (9) and (10)) for 

dissimilar welds based on the beam bending theory are more than that for similar welds.  

 

6.9. Discussions 

 Examples are given here to demonstrate the usefulness of the normalized stress intensity 

factor solutions presented in this study.  The first example is an ultrasonic spot welded lap-shear 

specimen of magnesium and steel sheets of equal thickness ( 0.1 ).  Figure 6.17 shows an 

optical micrograph of the cross section of a failed ultrasonic spot welded lap-shear specimen of 

magnesium and steel sheets of equal thickness under cyclic loading conditions (Franklin [1]).  It 
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can be seen that the left crack grows into the magnesium sheet while the right crack stays intact.  

The normalized effective stress intensity factor of the left crack of 1.76 is higher than that of the 

right crack of 0.73 based on the analytical stress intensity factor solutions shown in Figures 

6.11(a) and 6.11(b) for 0.1 .  The normalized effective stress intensity factor solutions based 

on the finite element analyses are 1.82 for the left crack and 0.72 for the right crack with 

consideration of indentation for the lower magnesium sheet also show consistent results. 

 The second example is also the lap-shear specimen of magnesium and steel sheets 

mentioned in the first example with a different thickness ratio of 5.0 .  Figure 6.18 shows an 

optical micrograph of the cross section of a failed ultrasonic spot welded lap-shear specimen of 

magnesium and steel sheets under cyclic loading conditions.  It can be seen that the left crack 

grows into the magnesium sheet while the right crack stays intact.  The normalized effective 

stress intensity factor of the left crack of 1.24 is higher than that of the right crack  of 0.79 based 

on the analytical stress intensity factor solutions shown in Figures 6.11(a) and 6.11(b) for 

5.0 .  The normalized effective stress intensity factor solutions based on the finite element 

analyses are 1.21 for the left crack and 0.80 for the right crack with consideration of the 

indentation on the lower magnesium sheet also show consistent results. 

Lai et al. [11] machined laser welded lap-shear specimens of dissimilar aluminum and 

copper sheets into a dog-bone shaped profile.  Figure 6.19(a) shows a lap-shear specimen of 

aluminum and copper sheets with two parallel laser welds after being machined into a dog-bone 

shape.  Figures 6.19(b) and 6.19(c) show optical micrographs of the cross sections near two 

failed laser welds in the lap-shear specimen of aluminum and copper sheets under cyclic loading 

conditions.   As shown in the figures, the fracture occurs from cracks growing from the right and 

left cracks.  For the thickness ratio 5.0 , the normalized transition weld width utw /  is 0.28 as 
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shown in Figure 6.16.  The stress intensity factor solutions for both cracks of the laser weld 

based on the beam bending theory should be applicable.  Using the two parallel laser welds to 

increase the effective weld width to lower the stress intensity factors at both cracks is not 

necessary.   Also, the stress intensity factor solutions presented in Figure 6.13 can be used.  The 

normalized effective stress intensity factor of the right crack of 1.5 is higher than that of the left 

crack of 0.74 based on the analytical stress intensity factor solutions shown in Figure 6.13 for 

5.0 .  However, crack growth occurred for both cracks.  The experimental observations 

indicate that crack growth also depends on the mode mixities of the stress intensity factors, the 

fatigue strength of interfacial cracks, and the fatigue strength of the upper and lower sheet 

materials. 

Figures 6.20(a) and 6.20(b) show a laser-welded lap-shear specimen of high strength low 

alloy steel sheets and an optical micrograph of the etched cross section of a partially failed laser 

weld in a lap-shear specimen of high strength low alloy steel sheets under cyclic loading 

conditions, respectively.  It can be seen that the right crack grows longer than the left crack.  The 

original thickness ratio   of the lap-shear specimen is 1.0.  However the weld bead on the 

bottom sheet decreases the effective thickness ratio such that 0.1 .  As shown in Figures 6.6(a) 

and 6.6(b), the normalized effective stress intensity factor for the right crack is always higher 

than that of the left crack for 0.1 .  The normalized effective stress intensity factor solutions 

calculated from the finite element analyses are 1.29 for the right crack and 1.14 for the left crack 

reported by Asim et al. [12], which are consistent with the results shown in Figures 6.6(a) and 

6.6(b). 

  



210 
 

6.10. Conclusions 

In this chapter, the analytical stress intensity factor and J  integral solutions for welds in 

lap-shear specimens for two dissimilar sheets based on the beam bending theory are presented in 

the normalized forms and validated by two-dimensional finite element analyses.  The interfacial 

crack parameters, the stress intensity factor solutions, and the J  integral solutions for welds in 

lap-shear specimens of different combinations of steel, aluminum, and magnesium, and the 

combination of aluminum and copper sheets of different thickness ratios are then presented for 

convenient fracture and fatigue analyses.  The transition thickness ratios for critical crack 

locations for different combinations of dissimilar materials are then determined from the 

analytical solutions.  The transition weld widths for applicable ranges of the weld widths for the 

analytical solutions based on the beam bending theory are also presented.  Finally, fracture and 

fatigue behaviors of dissimilar ultrasonic magnesium/steel, dissimilar laser aluminum/copper, 

and similar laser steel welds in lap-shear specimens are examined and demonstrate the usefulness 

of the graphical stress intensity factor solutions presented in this chapter. 
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Table 6.1. The elastic constants for steel, aluminum, magnesium and copper sheets. 

 E (GPa) ν G (GPa) 

Fe 207 0.30 79.6 

Al 69.0 0.33 25.9 

Mg 45.0 0.35 16.7 

Cu 110 0.34 41.0 

 

Table 6.2. The values of interfacial crack parameters for dissimilar welds. 

 α β ε η ω 

(δ=0.1) 

ω 

(δ=0.5) 

ω 

(δ=1.0) 

Al/Fe -0.492 -0.117 0.037 0.340 52.8 51.9 51.2 

Fe/Al 0.492 0.117 -0.037 2.938 54.0 49.8 47.9 

Al/Mg 0.203 0.038 -0.012 1.510 54.2 49.9 49.0 

Mg/Al -0.203 -0.038 0.012 0.662 53.7 50.1 49.4 

Fe/Mg 0.632 0.136 -0.043 4.436 55.8 50.9 48.5 

Mg/Fe -0.632 -0.136 0.043 0.225 53.0 52.2 51.3 

Al/Cu -0.233 -0.063 0.020 0.623 54.0 51.0 50.3 

Cu/Al 0.233 0.063 -0.020 1.606 53.1 49.2 48.1 
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 Table 6.3. Transition thickness ratios T  for different material combinations. 

 
T  

Fe/Mg 0.23 

Fe/Al 0.34 

Al/Mg 0.66 

Cu/Al 0.62 

Similar material 0.78 

 

Table 6.4. Normalized Transition weld widths utw /  for different material combinations when 

0.1 . 

 
utw /  

Mg/Fe 0.209 

Al/Fe 0.231 

Mg/Al 0.295 

Al/Cu 0.287 

similar material 0.364 
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(a) 

 
 

(b) 

 

Figure 6.1. An ultrasonic spot welded lap-shear specimen of magnesium and steel sheets (a) 

before being machined and (b) after being machined into a dog-bone shape [1].   
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Figure 6.2. A schematic of a lap-shear specimen. The applied force per unit width, bF / ,  is 

shown as the bold arrows.  
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Figure 6.3. A two-dimensional model of two infinite strips made of dissimilar materials with 

different thicknesses and connection under plane strain conditions. 
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Figure 6.4. A schematic showing the strip model near the crack tip.  The normal stresses ui , 

uo , li , lo , *

ui , *

uo , *

li  and *

lo  represent the normal structural stresses at the inner (i) and 

outer (o) surfaces of the upper (u) and lower (l) strips, respectively. 
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(a) 

 

 

 

 
 

 

 

(b) 

Figure 6.5. (a) A two-dimensional finite element mesh for a lap-shear specimen with a weld 

joining two sheets of different materials with the same thickness  lu tt  0.8 mm, (b) a close-up 

view of the mesh near the weld. 

crack tip B crack tip A llE ,

uuE ,

llE ,

uuE ,

Pre-existing crack Pre-existing crack 

bF /
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(b) 

Figure 6.6. The dimensionless geometric functions Ik , IIk , ek  and j  as functions of the 

thickness ratio   for (a) the left and (b) the right cracks of a weld joining sheets of identical 

materials based on the analytical solutions and the corresponding finite element analyses using 

steel . 
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(b) 

Figure 6.7. The dimensionless geometric functions 1k , 2k , ek  and j  as functions of the 

thickness ratio   for (a) the left and (b) the right cracks of an Al/Fe weld based on the analytical 

solutions and the corresponding finite element analyses. 
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Figure 6.8. The dimensionless geometric functions 1k , 2k , ek  and j  as functions of the 

thickness ratio   for (a) the left and (b) the right cracks of an Fe/Al weld based on the analytical 

solutions. 
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Figure 6.9. The dimensionless geometric functions 1k , 2k , ek  and j  as functions of the 

thickness ratio   for (a) the left and (b) the right cracks of an Al/Mg weld based on the 

analytical solutions. 
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Figure 6.10. The dimensionless geometric functions 1k , 2k , ek  and j  as functions of the 

thickness ratio   for (a) the left and (b) the right cracks of a Mg/Al weld based on the analytical 

solutions. 
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(b) 

Figure 6.11. The dimensionless geometric functions 1k , 2k , ek  and j  as functions of the 

thickness ratio   for (a) the left and (b) the right cracks of an Fe/Mg weld based on the 

analytical solutions and the corresponding finite element analyses. 
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Figure 6.12. The dimensionless geometric functions 1k , 2k , ek  and j  as functions of the 

thickness ratio   for (a) the left and (b) the right cracks of a Mg/Fe weld based on the analytical 

solutions. 
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Figure 6.13. The dimensionless geometric functions 1k , 2k , ek  and j  as functions of the 

thickness ratio   for (a) the left and (b) the right cracks of an Al/Cu weld based on the analytical 

solutions. 
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(b) 

Figure 6.14. The dimensionless geometric functions 1k , 2k , ek  and j  as functions of the 

thickness ratio   for (a) the left and (b) the right cracks of a Cu/Al weld based on the analytical 

solutions. 
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Figure 6.15.  A schematic diagram of two half planes of dissimilar materials with connection of 

the length w .  The Cartesian yx   coordinate system is shown.  The shear forces per unit width, 

bF / , are applied along the x  axis at x  and   of the upper solid and lower solid, 

respectively.  The normal forces per unit width, bN / , are applied along the y  axis at y  

and   of the upper plane and lower plane, respectively.   
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Figure 6.16. Normalized transition weld width as a function of   for welds joining dissimilar 

and similar materials. 
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Figure 6.17. An optical micrograph of the cross section of a failed ultrasonic spot welded lap-

shear specimen of magnesium and steel sheets under cyclic loading conditions [1]. The thickness 

ratio 0.1 . 
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Figure 6.18. An optical micrograph of the cross section of a failed ultrasonic spot welded lap-

shear specimen of magnesium and steel sheets under cyclic loading conditions [1]. The thickness 

ratio 5.0 . 
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Figure 6.19. (a) A laser welded lap-shear specimen of copper and aluminum sheets which has 

been machined into a dog-bone shape.  Optical micrographs of the cross sections of failed laser 

welded lap-shear specimens of copper and aluminum sheets under (b) low-cycle and (c) high-

cyclic loading conditions, respectively [11].  The thickness ratio 5.0 . 
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(a) 

 

(b) 

Figure 6.20. (a) A laser welded lap-shear specimen of high strength low alloy steels sheets which 

has been machined into a dog-bone shape. (b) An optical micrograph of the etched cross section 

of a partially failed laser welded lap-shear specimen of high strength low alloy steel sheets under 

cyclic loading conditions [12].   
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Chapter 7 

Conclusion 

 

 In Chapter 2, the quasi-static in-plane constrained compression test results indicate that 

the load carrying behavior of cell RVE specimens is characterized by the buckling of cells with a 

wavelength on the order of the thickness of the cells, kink and shear band formation, and the 

final densification of the cell components.  The different nominal compressive stress-strain 

curves in the in-plane and out-of-plane directions suggest that the cells can be modeled as 

anisotropic foams or cellular materials.  This is important information for development of macro 

homogenized anisotropic material models for crashworthiness analyses.  The initial elastic 

buckling mode of the cell RVE specimen under in-plane constrained compression can be 

correlated to the elastic buckling solution of a beam with lateral constraints.  The development of 

the higher order buckling modes of the component sheets and the critical stresses observed in 

experiments are in agreement with the results of the analytical buckling solutions and the 

corresponding finite element analyses.  The elastic buckling analyses also justify the length 

selection of the cell RVE specimens.  An idealized kinematics model is developed to explain the 

kink and shear band formation in the cell RVE specimens under in-plane constrained 

compression.  The nominal strains in the regions inside and outside of the shear band can be 

estimated by the idealized model and the results give some insight on the physical deformation 

process observed in experiments.   
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 In Chapter 3, the quasi-static tensile test results of the module components indicate that 

the active materials on the cathode and anode sheets have nearly no load carrying capacity.  In 

the quasi-static in-plane constrained compression tests of the module RVE specimens, the 

nominal stress-strain curves show stress drops due to buckling and then final densification.  The 

stress drops of the curves were correlated to the deformation patterns.  It is noted that no 

significant size effect was observed for the module RVE specimens of different heights under in-

plane constrained compression tests when the strain is below 30%.  Above the strain of 30%, the 

nominal stress of the double-height specimens increases faster as the strain increases.  The 

different nominal compressive stress-strain curves of module RVE specimens under in-plane and 

out-of-plane compression suggest that the lithium-ion battery modules can be modeled as 

anisotropic foams or cellular materials. This is important information for development of macro 

homogenized anisotropic material models for crashworthiness analyses.  The calculated buckling 

stress agrees well with the experimental results based on the buckling analyses.  Finally, the 

results of a constrained punch indentation test on a small-scale module specimen indicate that the 

tested specimen shows the similar buckling mode as observed for the module RVE specimens 

under in-plane constrained compression tests.  The experimental results for the small-scale 

module specimen can be used to benchmark and validate new macro homogenized material 

models.  

 In Chapter 4, the test results indicate that the ultrasonic spot weld appears not to provide 

extra strength to the weld-bonded lap-shear specimen under quasi-static and cyclic loading 

conditions.  The quasi-static and fatigue strengths of adhesive-bonded and weld-bonded lap-

shear specimens appear to be the same.  For the ultrasonic spot welded lap-shear specimens, the 

optical micrographs indicate that failure mode changes from the partial nugget pullout mode 
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under quasi-static and low-cycle loading conditions to the kinked crack failure under high-cycle 

loading conditions.  For the adhesive-bonded lap-shear specimens, the optical micrographs 

indicate that failure mode changes from the near interface cohesive failure under quasi-static and 

low-cycle loading conditions to the kinked crack growth mode under high-cycle loading 

conditions.  For the weld-bonded lap-shear specimens, the optical micrographs indicate that 

failure mode changes from the near interface cohesive failure through the adhesive and 

interfacial failure through the spot weld under quasi-static and low-cycle loading conditions to 

the kinked crack failure under high-cycle loading conditions.   

 In Chapter 5, the stress intensity factor solutions for adhesive-bonded lap-shear 

specimens of magnesium and steel sheets with and without kinked cracks are investigated first.  

The analytical global J  integral and effective stress intensity factor solutions for main cracks in 

lap-shear specimens of three dissimilar sheets under plane strain conditions are developed based 

on beam bending theory.  Next, the global stress intensity factor solutions for the main cracks in 

the lap-shear specimens are validated by the corresponding finite element analyses.  The 

computational local stress intensity factor solutions for kinked cracks appear to approach to the 

analytical solutions as the kink length decreases to a very small kink length and the kinked crack 

is under dominant mode I loading conditions.  The experimentally observed kink angle in 

general agrees with the analytical solution.  The computational results also indicate that the local 

stress intensity factor solutions at a small kink length of microstructural significance may be used 

as the initial stress intensity factor solutions for zero kink length for fatigue life estimations when 

the computational results are not available.  Finally, the general trend of fatigue life estimations 

agrees with that of the experimental results, but the fatigue life estimations are lower than the 

experimental results. 
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In Chapter 6, the analytical stress intensity factor and J  integral solutions for welds in 

lap-shear specimens for two dissimilar sheets based on beam bending theory are presented in the 

normalized forms and validated by two-dimensional finite element analyses.  The interfacial 

crack parameters, the stress intensity factor solutions, and the J  integral solutions for welds in 

lap-shear specimens of different combinations of steel, aluminum, and magnesium, and the 

combination of aluminum and copper sheets of different thickness ratios are then presented for 

convenient fracture and fatigue analyses.  The transition thickness ratios for critical crack 

locations for different combinations of dissimilar materials are then determined from the 

analytical solutions.  The transition weld widths for applicable ranges of the weld widths for the 

analytical solutions based on the beam bending theory are also presented.  Finally, fracture and 

fatigue behaviors of dissimilar ultrasonic magnesium/steel, dissimilar laser aluminum/copper, 

and similar laser steel welds in lap-shear specimens are examined and demonstrate the usefulness 

of the graphical stress intensity factor solutions. 

 

 


