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ABSTRACT 

Thermoset resins are used in carbon fiber composites because of their 

superior stiffness and improved thermal resistance over thermoplastics. In the 

manufacturing of these composites, the resin is infused into a carbon textile, and 

cured at a proscribed temperature and pressure. The presence of carbon fibers 

may influence the progress of the cure reaction and the resulting mechanical 

properties of the resin. Mechanical testing of composite structures reveals that 

the resulting composite has mechanical properties that diverge from those 

predicted by assuming bulk mechanical properties of the constituent materials.  

This dissertation describes the investigation of how chemistry and thermal 

history influence the mechanical properties of thermoset polymers. The 

relationship between mechanical properties and molecular structure is probed 

using a novel combination of, Brillouin and Raman light scattering techniques. 

Brillouin scattering yields information about the mechanical and transport 

properties of a material, while Raman scattering is used to detect changes in the 

molecular structure of the material. These techniques are used concurrently, in-

situ during cure, sharing a single optical setup, probing the chemical state and 

mechanical properties of the same focal volume within the sample.  

Using this approach, two archetypical thermoset polymers are studied as 

a function of the initial chemistry and thermal history: Grubb’s catalyzed 

dicyclopentadiene, and an epoxy resin cured with an amine hardener. Raman 
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spectra are used to develop kinetic models of the polymer cure behavior. 

However, the mechanical properties do not map linearly onto the degree of cure, 

but instead require one to account for relaxation processes that occur during and 

after cure. Finally, concurrent micro-Raman and -Brillouin scattering are used to 

resolve the spatial variations of the mechanical properties of the fully cured 

epoxy matrix in between carbon fibers. The elastic modulus decreases linearly 

with fiber density in regions of the matrix with closely packed fibers. Comparing 

Raman and Brillouin data reveals that the observed inhomogeneity of elastic 

properties is not due to residual stresses, but likely results from structural 

reorganization of the polymer in the interphase region. 
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Chapter 1  

Background and Motivation 

1.1 Motivation and Project Overview 

Fiber reinforced polymer matrix composites are a class of materials that 

offer high strength relative to their density. Furthermore, the mechanical 

properties can be tuned by selecting the orientation and arrangement of the 

fibers. This combination of properties makes polymer matrix composites an 

attractive materials group for lightweight structural applications in the 

transportation sector. Thermoset resin reinforced carbon fiber composites are of 

special interest, because the carbon fibers have a particularly high strength to 

density ratio as compared to other types of fibers, and because thermoset reins 

have increased stiffness and improved thermal resistance over thermoplastics.[1] 

Properly manufactured, carbon fiber composites have mechanical properties that 

rival steel, but have dramatically lower densities. Replacing traditional metal 

components with composite ones thus has the potential benefit of realizing 

significant weight savings, which in turn improve vehicle efficiency. 

To form a carbon composite, a thermoset resin and its hardener are mixed 

together and infused into a fabric at a specified temperature and pressure. The 

resin is then allowed to cure, forming a covalently bonded network around the 

fibers of the fabric. Typically the cure reactions for thermoset resins are 
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exothermic. The temperature of the curing resin must therefore be controlled in 

order to compensate for the heat released during cure. The time that it takes to 

cure depends on the chemistry of the polymer system, as well as the processing 

conditions of system. There are few constraints on chemical diffusion or 

shrinkage for resin cured without additives. As a result the mechanical properties 

and cure kinetics of a given polymer system tend to be predictable with simple 

models [2]. When densely packed carbon fibers are added to the polymer, they 

significantly change the curing environment for the resin. 

The physical presence of fibers can obstruct the free flow of the resin 

while it is still in liquid form. Carbon fibers also have a higher thermal conductivity 

than the resin, potentially resulting in a different temperature profile for resin 

curing in different regions of the composite. Finally, carbon fibers often have 

treatments that change the surface chemistry between the fiber and the resin for 

improved bonding characteristics. Together, these changes in the local 

environment of the resin during cure result in changes in the cure kinetics and 

final mechanical properties of the resin. Because the fibers also impede the 

movement of the curing matrix polymer, they can restrict cure shrinkage, which in 

turn can generate significant internal stresses and even induce microcracking of 

the matrix [3, 4]. In order to improve predictions of the mechanical behavior of a 

composite part, it is essential to develop better mechanical models that capture 

the effect of fibers on the cure behavior and final properties of the polymer matrix 

material.  
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One method to improve on existing mechanical models is to explicitly 

simulate the cure behavior of the resin within a composite and predict the 

variation in mechanical properties related to the presence of the fibers. The initial 

structure of the fibers and liquid resin are entered into the model along with 

constraints such as the temperature and pressure of the mold. Accurate 

materials characteristics of both the fibers and the resin are also required as 

input. Using the model one can then simulate the curing of the matrix including 

the heat evolved from the reaction and cure shrinkage. Simulating these effects 

in turn allows one to predict residual stresses in the matrix that result from the 

cure process [5-7]. In order for this type of model to work, it is critical to have an 

accurate model of the cure kinetics of the matrix polymer, and to know how the 

cure kinetics relates to the evolution of the mechanical properties of the matrix. 

Finally there must be a means of directly measuring real composite samples in 

order to refine the model and verify its predictions. 

It is reasonable to believe that the in situ mechanical properties of the 

matrix polymer confined between fibers are not the same as those of the bulk, 

due to the complex geometry and difference in processing conditions due to the 

confinement by fibers in the composite. In fact, based on results from finite 

element modeling, Song et al. have proposed that the mechanical properties of 

an epoxy matrix cured in the presence of carbon fibers is significantly different 

from epoxy cured in bulk. [8] To test the hypothesis, and to provide input for 

improved finite element models, we measure the mechanical properties of an 

epoxy resin within a composite with high spatial resolution. Furthermore, to 
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accurately account for the thermal and chemical processing history of the matrix, 

we measure the thermo-mechanical properties of the epoxy during cure with high 

temporal resolution. In order to carry out these measurements, we have 

developed a new experimental approach, combining Brillouin and Raman light 

scattering techniques to measure the mechanical properties and chemical 

composition of a material.   

1.2 Polymer Rheokinetics  

The cure kinetics of a given polymer system are governed by transport 

and reaction processes. Typically, a resin monomer is mixed with a curing agent 

or catalyst that initiates polymerization. In the case of a resin and hardener 

system, each resin molecule can react with one or more hardener molecules. If 

both the resin and hardener molecules are bi-functional, the resulting polymer will 

consist of long chain molecules and will be a thermoplastic. If the two 

components are at a minimum bi-functional and at least one of the components 

can form three or more linking bonds, then the system has the ability to form 

crosslinks between the chains. These are called thermoset polymers. In the case 

of a monomer polymerized by a catalyst, the functionality of the monomer 

determines whether the resulting polymer will be a thermoset or thermoplastic. 

Typically the degree of cure (α) can be modeled using a reaction rate equation of 

the form: 

1.1                   
𝑑𝛼
𝑑𝑡
= 𝑘 𝑇 𝑓 𝛼 , 

where the rate coefficient k(T) typically exhibits an Arrhenius type temperature 

dependence, 
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1.2                   𝑘 𝑇 = 𝐴𝑒
!𝐸𝑎
𝑅𝑇 , 

A is a constant, Ea is the activation energy required for the reaction, R is the ideal 

gas constant, and T is the temperature of the system[2, 9-12]. The function f(α) 

depends on the nature of the polymerization reaction. It takes into account 

factors such as the number of bonds formed by the monomers, whether the 

bonds are reversible, and the reaction pathway by which the bonds are formed. 

Fundamentally, this type of reaction equation assumes that the monomers are 

free to move within some form of solvent, and their motion is unimpeded by the 

reaction. While this is clearly not the case for a resin that forms a rigid solid as 

result of curing, this type of model generally serves as a good approximation for 

cure behavior [2, 9, 10]. 

While modeling the cure kinetics of a resin has been given extensive 

consideration in the literature, many fewer approaches exist towards relating the 

degree of cure to mechanical characteristics of the polymer network. Two 

polymer networks composed of the same number of bonds can have significantly 

different configurations of those bonds. As a result the rigidity of the two networks 

will be different [13-16]. Historically, much work has been done on the subject of 

network connectivity [17-25]. For this purpose, connectivity is a statistical 

measure of how interconnected the elements of a network are. As more bonds 

are formed in a region of fixed volume, the probability of two network elements 

being connected by a series of bonds increases. Gelation occurs when the 

network structure spans its volume, thus achieving an infinite molecular weight 



 

 6 

[2]. At this point the network structure is capable of supporting finite shear loads. 

This transition is readily observed using standard viscometry techniques. 

Much research has been done on the prediction of the gelation point of 

polymer networks, as it is an important parameter in polymer molding and 

extrusion processes [13-15]. While gelation theory does reasonably well in 

connecting cure behavior to the viscosity of a polymer it does not yet fully 

describe the elastic moduli of the fully cured system. This is in part because to 

predict the elasticity of the network, more details must be known about the 

geometric structure of the network [13-15]. However, the network structure is not 

fully accounted for in typical gelation models. Furthermore, as the system 

transitions from a liquid to a solid, the standard techniques to measure visco-

elastic properties change, making it difficult to capture the full cure behavior 

using one continuous series of measurements [2, 26]. As a result, models for the 

degree of cure, viscosity, and elastic properties of a polymer network tend to be 

empirically determined, and depend on the polymer system and the 

measurement techniques being used.[2]  Because the measurement technique is 

an important factor in modeling visco-elastic properties as a result of cure, the 

most common techniques for measuring cure kinetics and mechanical properties 

of curing polymer systems are briefly outlined in the following. 

1.3 Overview of Rheokinetic Measurement Techniques 

To measure the degree of cure of a reacting system, there are two 

predominant approaches. The first is through calorimetry where the enthalpy of 

reaction is monitored over time. The second is chemical spectroscopy, where 
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chemical signatures of the network are observed optically during the cure 

process. Differential scanning calorimetry (DSC) is the most common calorimetric 

technique for observing cure kinetics. In a DSC experiment, a sample of known 

mass is placed into a calorimeter where its temperature is monitored via a 

thermocouple. The sample is compared to a standard with known thermal 

characteristics installed in an identical sample chamber. The calorimeter 

modulates the temperatures of both the sample and the standard. The 

calorimeter records the relative response of the sample to these modulations. 

The release of heat during polymerization can therefore be recorded, and the 

degree of cure is determined by the cumulative amount of the heat released by a 

sample as a function of time, compared to the total amount of heat released over 

the entire cure process [26, 27]. By careful modulation of the sample temperature 

it is often possible to find the heat of reaction for different processes in the cure 

reaction, and to monitor the heat capacity of the system as it changes with cure 

[27]. Together these data are useful in determining the rate coefficient of the cure 

model. DSC is a reasonably simple method and generally yields consistent 

results. However it is limited in the information that it provides about the 

underlying chemistry of the cure reaction. For example, due to steric hindrances 

imposed by the growing network structure a polymer network rarely incorporates 

all of the potentially reactable network sites of its monomer components. 

Because DSC only monitors the heat released by the system, on its own, it 

cannot determine the number of network bonds formed by the system.[28, 29]  
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Spectroscopic methods, on the other hand, use the optical absorption and 

emission spectra of a substance to measure changes in its chemistry. Typically a 

sample is illuminated by a light source of known character, and the light 

transmitted or scattered by the sample is analyzed. In IR and Raman 

spectroscopy for example, vibrations of molecular functional groups generate a 

characteristic spectrum of the sample. As the concentration of a functional group 

changes, it in turn changes the intensity of the related peaks in the sample’s 

spectrum [30-34]. By monitoring changes in the spectrum during cure it is 

possible to determine then relative concentrations of different functional groups 

during the cure process. In this manner, spectroscopy can yield detailed 

information about the number and types of network bonds formed in a system 

[29, 35-38]. The major drawback to using spectroscopy to monitor cure behavior 

is that the spectra of polymer networks tend to consist of a large number of 

peaks due to the complexity of the polymer structure. It is not always trivial to 

determine which molecular structures give rise to each peak [29].  

While chemical spectroscopy and calorimetry provide information about 

cure kinetics, they reveal little about the elastic properties of a system. One of the 

most common techniques to determine the visco-elastic properties of a polymer 

during the process of gelation is mechanical rheometry. Typically a sample is 

placed between parallel circular plates and an oscillating shear load is applied to 

the sample. A load cell measures the torque transmitted through the sample. 

From this data, the viscosity and shear modulus of the sample can be 

determined. Furthermore, by scanning through a range of oscillation frequencies, 
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the rate dependence of these properties can be determined [2]. Rheometry is 

widely used to capture gelation kinetics because the viscosity data that it collects 

is essential in engineering high throughput polymer molding applications. 

Rheometry is particularly sensitive to the gel point, which has also made it a tool 

of choice for studying network formation in polymers. In some cases it has been 

used as a method to approximate the cure kinetics of a polymer by measuring 

the relative change in the shear modulus over time [9-11]. In some systems this 

method correlates well with cure kinetic measurements made by using DSC, 

however it is at best an approximation of the true state of cure. It is difficult to 

conduct rheometric measurements beyond the gel point for especially rigid 

polymers [26]. Therefore, after gelation other techniques are typically used to 

determine the elastic properties of the polymer. 

Ultrasonic spectroscopy is one technique that can be used to measure 

elastic properties beyond the gel point. Ultrasonic transducers are placed on 

opposite sides of a sample and sound waves are transmitted from one 

transducer to the other. Measuring the velocity and attenuation of the transmitted 

sound waves allows one to calculate the elastic moduli and structural relaxation 

rates of the sample [39, 40]. By properly orienting the transducers, both shear 

and longitudinal modes can be probed. Because the ultrasound transducers only 

impart very small deformations to the sample, it is possible to monitor the elastic 

properties of a curing sample well beyond the gel point. 

All of the methods of mechanical characterization outlined so far have 

limited spatial resolutions, and as such are unsuitable for measuring the 
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mechanical properties of a polymer confined within micron scale regions of a 

composite. Furthermore, these methods require mechanical actuation of the 

material, which may have an effect on a developing network structure. The 

method we selected to measure the elastic properties of a polymer during cure is 

Brillouin light scattering. Unlike the previously described methods, Brillouin 

scattering is a non-contact, optical technique for measuring a substance’s elastic 

properties with high spatial resolution. Furthermore, as an optical method, it can 

be coupled with other spectroscopic techniques that use the same wavelength of 

light, such as Raman spectroscopy. In this way it is possible to simultaneously 

measure changes in both the chemical structure, and the mechanical properties 

of a polymer within the same focal volume. Brillouin light scattering is similar to 

ultrasonic spectroscopy in that it measures the velocity and attenuation of sound 

waves in a sample. However rather than inducing the sound waves, Brillouin 

scattering measures existing, thermally excited sound waves in the sample. To 

do this, monochromatic light is used to illuminate the sample, and scattered light 

is collected and analyzed. Light scattered from thermal phonons in the sample is 

Doppler-shifted in frequency. Using the frequency shift it is possible to calculate 

the speed of sound, and from that the elastic modulus of the sample. Further 

details of this method will be covered in the next chapter. Because it is an optical 

technique, Brillouin scattering does not require any mechanical contact with the 

sample, and as such it can be used through the entire cure process and beyond 

gelation [40-43]. Furthermore, its spatial resolution is limited only by the 

wavelength of light used to illuminate the sample. Therefore, the mechanical 
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properties of very small (~1µm) features of a sample can be measured [44-49]. 

Combined, Brillouin and Raman light scattering is an ideal pair of techniques for 

probing the elastic properties of the matrix material between carbon fibers in a 

composite, and to determine the relationship between cure chemistry and the 

development of mechanical properties in a polymer network.  

1.4 Thesis overview 

In my research, I have studied the relationship between chemical cure 

kinetics and the development of the elastic moduli in thermoset polymers. The 

purpose of this work was to develop a method for measuring and subsequently 

modeling the modulus as a function of cure and time with the intent of 

incorporating the modulus-cure models into finite element simulations of curing 

composite materials. To experimentally measure the cure and mechanical 

properties of the polymers, I chose to use Raman and Brillouin light scattering. 

These two techniques are complementary for this purpose because they can 

share the same optical setup to provide concurrent information on the chemical 

and mechanical state of a polymer through out the entire cure process. Chapter 2 

of this thesis presents a detailed overview of the theory and applications of these 

two methods. In Chapter 3, I apply the concurrent Raman-Brillouin scattering 

method to Dicyclopentadiene (DCPD) cured by ring opening metathesis 

polymerization (ROPM) with the aid of Grubs’s catalyst. This is a polymer system 

of interest for developing self-healing composite materials. Furthermore, DCPD is 

a simple organic molecule with distinct Raman peaks associated with each of its 

reactive sites. This makes it an ideal test case for coupling Raman and Brillouin 
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methods to relate degree of cure to the elastic modulus. In Chapter 4, I apply the 

same methods to a system composed of the epoxy resin Epon 862 and the 

aliphatic amine hardener Epikure 9553. This system is used as a matrix polymer 

in carbon fiber composites, and as such is representative of the polymer systems 

that this analysis technique is meant to address. In Chapter 5, I use concurrent 

Raman and Brillouin scattering to survey different regions of a cross-sectioned 

carbon fiber composite in order to directly measure the effect that curing in the 

presence of carbon fibers has on the final mechanical properties of the same 

Epon 862 and Epikure 9553 epoxy system. Finally, Chapter 6 presents a 

conclusion in which the strengths and weaknesses of concurrent Raman-Brillouin 

scattering for this application are presented. Directions for future inquiry will be 

suggested based on the insights obtained from our research.  
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Chapter 2  

Brillouin and Raman Light Scattering Theory  

2.1 Brillouin Light Scattering Theory 

Most methods of characterizing the mechanical properties of materials 

require damaging or destroying the sample. However, this is not always 

desirable, and we turn to nondestructive techniques, typically involving sound or 

light. Thermal motion of atoms and molecules within a material results in 

fluctuations of the local density and dielectric constant of the material. Light 

traveling within the material is effected by these changes in the dielectric 

constant and is scattered as a result of the changing interactions. The 

fluctuations in dielectric properties associated with acoustic phonons induce 

scattering. Furthermore, the plane-wave nature of these phonons enforces a 

diffraction condition on the scattered light. Only the portion of the scattered light 

meeting the diffraction condition will continue to propagate. All other light 

scattered from the phonon will be eliminated due to destructive interference. It is 

therefore possible to establish the wavevector of the selected phonon by 

measuring the angle by which the light is scattered, as shown in Figure 2.1. In an 

isotropic medium, the phonon wavevector (q) is defined as the difference 

between the wavevectors of the incident (ks) and scattered light (ki): 

2.1                 ± 𝒒 = 𝒌𝒔 − 𝒌𝒊 . 
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Figure 2.1 Schematic of light scattering. The incident and scattered light wavevectors 
are ki and ks, the phonon wavevector is q, and the scattering angle θ 

The + sign refers to the case where the phonon is absorbed (anti-Stokes) and the 

– sign denotes the emission of a phonon (Stokes). Because the velocity of sound 

is much smaller than the velocity of light, it is a good approximation to treat the 

magnitudes of ks and ki as being equal: 

2.2                    𝒌𝒔 = 𝒌𝒊 =
𝑛
𝜆!
, 

Here n is the index of refraction of the medium, and λ0 is the wavelength of the 

light in a vacuum. As Figure 2.1 shows, it is easy to calculate the magnitude of q 

using the scattering angle θ, the index of refraction and the wavelength of the 

scattered light: 

2.3                    𝒒 = 2 𝒌𝒔 𝑠𝑖𝑛
𝜃
2 =

2𝑛
𝜆!
𝑠𝑖𝑛

𝜃
2 . 

The phenomenon when the photons are scattered elastically is called 

Rayleigh scattering. The photons can also exchange momentum with the 

acoustic phonons. When this happens, the scattered light is Doppler shifted 

according to the velocity of sound of the medium. This case is called Brillouin 

scattering, and is named after Léon Brillouin who first predicted it in 1922. The 
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shape of the light scattering spectrum is called the dynamic structure factor. For 

an idealized monoatomic liquid, it can be calculated using a generalized 

hydrodynamic formalism. The calculation depends on the viscoelastic and 

thermodynamic properties of the scattering medium. The resulting normalized 

scattering intensity is a function of the scattering wavevector, q, and frequency, 

ω, and is composed of three Lorentzian terms: [1, 2] 

 

2.4                     
𝑆 𝑞,𝜔
𝑆 𝑞 =

2 𝛾 − 1
𝛾

𝑞! 𝜅 𝜌!𝑐!

𝜔! + 𝑞! 𝜅 𝜌!𝑐!
!  	
  

                                                                        +
1
𝛾

𝑞!Γ
𝜔 + 𝜈!𝑞 ! + 𝑞!Γ ! +

𝑞!Γ
𝜔 − 𝜈!𝑞 ! + 𝑞!Γ ! , 

where 𝛾 = 𝑐! 𝑐!, Γ = 1 2 𝜂′ 𝜔 𝜌! + 𝜅 𝜌!𝑐! 𝛾 − 1 , ρ0 is the 

average density, and cp is the heat capacity at constant pressure. The coefficient 

η’(ω) is the dynamic viscosity and (κ/ρ0cp) is the thermal diffusivity of the medium. 

The first term describes the Rayleigh scattered component of the spectrum, while 

the second and third terms are due the Stokes and anti-Stokes components of 

Brillouin scattering. In this case, only longitudinal phonons cause scattering, and 

νL is the longitudinal sound velocity. The light scattered from these longitudinal 

phonons retains its polarization relative to the scattering plane. For materials 

composed of optically anisotropic molecules, a depolarized component of the 

spectrum is introduced. That is to say, in addition to the previously described 

spectrum, there is a component of the scattered light with its polarization rotated 

by 90o relative to the incident light. Figure 2.2 illustrates these differences in 

polarization. The exact structure factor for the depolarized component is difficult 
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to calculate. However, the relevant feature of the depolarized scattering 

component is the addition of another Brillouin peak doublet that depends on the 

shear properties of the medium. These peaks can be approximated as 

Lorentzian in shape, with their centers at ± νsq, where νs is the shear wave 

velocity. The width of these peaks is determined by the shear and reorientational 

relaxation frequencies of the molecules within the material.[3] 

 

Figure 2.2 Schematic of incident and scattered light polarizations: a) VV, b) HH, c) VH. 
The double pointed arrows denote the polarization, and the single pointed arrows denote 
the direction of light propagation. 

The intensities of the polarized and depolarized components of the 

Brillouin spectrum are determined by the magnitude of the dielectric constant 

change as a result of elastic deformations. A linear combination of the elements 

of the elastic strain tensor can be used to describe the changes in the dielectric 

constant of a material. The coefficients of this combination are called the elasto-

optical or Pockels coefficients Pij.[4] The Brillouin scattering intensities depend on 

these coefficients as well as the scattering angle. The power Iαβ of light scattered 

by longitudinal acoustic phonons from polarization α to polarization β per unit 

solid angle is: 

2.5                   𝐼!! = 𝐼!𝑉!"𝜋!𝑘𝑇
𝜖!

𝜆!!
𝑃!" !

𝜌!𝑣!!
, 
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2.6                   𝐼!! = 𝐼!𝑉!"𝜋!𝑘𝑇
𝜖!

𝜆!!
1

𝜌!𝑣!!
𝑃!! + 𝑃!" + 𝑃!! 𝑐𝑜𝑠𝜃 !, 

Likewise for transverse (shear) phonons, the scattering power is: 

2.7                   𝐼!" = 𝐼!" = 𝐼!𝑉!"𝜋!𝑘𝑇
𝜖!

𝜆!!
𝑃!! !

𝜌!𝑣!!
𝑐𝑜𝑠!

𝜃
2 , 

The subscripts V and H refer to vertical and horizontal polarization relative 

to the scattering plane. I0 is the incident light intensity, Vsc is the scattering 

volume, and kT is the thermal phonon energy. The dielectric constant at the laser 

frequency is ε, which is also equal to n2. By combining the equation for dynamic 

structure factor with the equations governing the scattering intensity, we now 

have a detailed description of the Brillouin spectrum from which we can extract 

useful information about material properties.  

2.1.1 Interpretation	
  of	
  the	
  Brillouin	
  spectrum	
  

The most apparent features of the Brillouin spectrum are the two 

Lorentzian doublets corresponding to scattering by the longitudinal and 

transverse phonons. An example Brillouin spectrum is shown in Figure 2.3 The 

frequency by which these peaks are shifted from the central Rayleigh peak can 

be used to determine the adiabatic elastic properties of a material. We will 

denote the frequency corresponding to the peak centers as ΔωL and Δωs for the 

longitudinal and shear peaks respectively. Inspection of the dynamic structure 

factor reveals that these peak centers correspond to ± νTq, and ± νsq. For a 

known scattering angle and index of refraction, we can therefore calculate the 

phonon velocity associated with both modes according to: 
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2.8                   𝑣 =
Δ𝜔
𝒒 =

𝜆!Δ𝜔

2𝑛𝑠𝑖𝑛 𝜃
2
, 

In this equation we dropped the subscript from v and Δω because the calculation 

is the same for both modes. 

 

Figure 2.3 Example Brillouin spectrum with both VV and VH polarized components 
shown 

 Assuming that the mass density ρ0 of a sample is known, the elastic 

modulus associated with each phonon probed can be determined using the 

sound velocity for that phonon.[5, 6] For Brillouin scattering, this means we can 

calculate the longitudinal modulus (M), and the shear (transverse) modulus (G) 

for a given sample using: 

2.9                   𝑀 =   𝜌!𝑣𝐿
! = 𝜌!

𝜆!Δ𝜔𝐿

2𝑛𝑠𝑖𝑛 𝜃
2

!
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2.10                 𝐺 =   𝜌!𝑣𝑠
! = 𝜌!

𝜆!Δ𝜔𝑆

2𝑛𝑠𝑖𝑛 𝜃
2

!

, 

If the sample being measured generates a longitudinal peak as well as a 

measureable shear peak, the Young’s modulus (E), bulk modulus (K), and the 

Poisson’s ratio (ν) can be calculated according to the following relations: 

2.11                 𝐸 =   
𝐺 3𝑀 − 4𝐺
𝑀 − 𝐺 , 

2.12                 𝐾 = 𝑀−
4𝐺
3 , 

2.13                 𝜈 =
𝑀 − 2𝐺
2𝑀 − 2𝐺, 

 

In liquids where there is no appreciable shear modulus, the bulk modulus 

is the same as the longitudinal modulus. The ability to determine these values 

depends on the scattering angle used for the measurements. The shear 

component of the scattering spectrum, IVH, becomes zero when the scattering 

angle is 180o. In this scattering configuration only the longitudinal modulus can 

be determined. An example data set of all four elastic moduli as measured 

concurrently by Brillouin scattering is shown in Figure 2.4. In this case, a highly 

crosslinked epoxy sample was observed over a range of temperatures. As the 

temperature is increased the epoxy softens, and the moduli decrease 

accordingly. 
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Figure 2.4 Elastic moduli of an epoxy sample as a function of temperature 

It is important to note that the moduli measured by this method represent 

the high frequency (adiabatic) modulus. The vibrational modes being probed by 

Brillouin scattering occur much faster than typical thermal transport rates. 

Structural relaxations therefore occur on a slower timescale than the scattering 

phenomenon. As a result, Brillouin scattering measurements of viscous or visco-

elastic materials will tend to produce much larger elastic moduli than a 

conventional tensile test would. This effect is minimized in very stiff, crystalline 

materials, which undergo little or no relaxation. 

The widths of the Brillouin peaks are governed by transport and relaxation 

properties of the medium. In principal, the frequency dependent kinematic 

viscosity, ν’(ω) can be calculated from the widths and intensities of the Brillouin 

and Rayleigh peaks using the formula:[2] 

2.14                 𝜈′ 𝜔 =
1
𝒒 ! Γ!" −

Γ!𝐼!
4𝐼!"
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Where ΓBL and ΓR are the full widths at half maximum of the longitudinal 

Brillouin and Raleigh peaks respectively. Likewise IBL and IR are the integrated 

areas of the longitudinal Brillouin and Rayleigh peaks. The ratio 𝐼𝑅 4𝐼𝐵𝐿 is 

generally small, on the order of 10-2. Furthermore the width of the Rayleigh peak 

tends to be much narrower than that of the Brillouin peak. As a result the second 

term in brackets tends to be smaller than the variation in the experimental data 

and can be neglected from calculations of the viscosity. Therefore the kinematic 

viscosity of the material can be reasonably described using only the scattering 

wavevector and the measured width of the longitudinal Brillouin peak:[2]  

2.15                 𝜈′ 𝜔 =
Γ!"
𝒒 !, 

In practice, this measurement is more difficult than it appears here, 

because the optical configuration of the experiment introduces Gaussian 

broadening of the elements of the Brillouin spectrum. Great care must be taken 

to first determine the broadening function of the experimental setup in order to 

deconvolute the experimental broadening from the true Brillouin spectrum. 

Despite these difficulties, the width of the Brillouin peak serves as a good 

qualitative indicator for the changes in the viscosity of a material under 

observation.  

 The intensity of the polarized and depolarized components of the 

Brillouin spectrum can be used to directly measure the elasto-optic properties of 

the material. It is important to know these properties when designing optical 

components that may experience applied stresses in their regular working 

environments, as is the case with optical fibers. When light passes through a 
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stressed material, the electromagnetic components of the light experience 

different refractive indices relative to the two principal stress directions. The 

difference in refractive indices results in a relative phase retardation between the 

two components. The degree of retardation (Δ) is given by: 

2.16                 Δ =
𝑛!

4𝐺 𝐶 𝜎! − 𝜎! , 

where σ1 and σ2 are the first and second principal stresses, and C is known as 

the stress-optic coefficient. C depends on the value of the elasto-optic coefficient 

P44 according to:[7] 

2.17                 𝐶 =   
𝑛!

4𝐺
𝑃!!, 

To calculate the value of P44 from a Brilouin scattering experiments, one must 

first calculate P12. The Brillouin scattering intensity of an arbitrary sample must be 

calibrated against that of a known standard with the same scattering geometry in 

order to calculate P12. Generally, the standards used for this measurement have 

been toluene and SiO2.[4, 8, 9] The relevant properties of these standards are 

summarized in Table 2.1. Using the Brilliouin scattering intensities of both the 

sample and the standard, the value of P12 can be calculated according to: 

   2.18                 𝑃!"
!"#$ =

𝐼!"#$
𝐼!"#

!
! 𝜌!"#$

𝜌!"#

!
! 𝑣!

!"#$

𝑣!!"#
𝑛!"#
𝑛!"#$

!

𝑃!"!"# , 

Depending on the relative absorptions and indices of refraction of the sample and 

standard, it may be necessary to include corrections for the attenuation of 

scattered light within the sample, and for differences in the solid angle over which 

the scattered light is collected. 
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Standard Formula Density (g/cm3) n P12 
Toluene C7H7 0.87 1.497 0.318 
Quartz 
Glass SiO2 2.21 1.458 0.286 

Table 2.1 Properties of the standards used to calibrate the intensity measurement of 
Brilouin spectra 

Once the value of P12 is known, P44 can be calculated by comparing the 

intensities of the polarized and depolarized components of the Brillouin spectrum. 

From the equations describing the scattering intensity of the Brillouin spectrum 

we can see that for a 90-degree scattering angle, IVV and IVH each depend only 

on one of the two elasto-optic coefficients: 

2.19                 𝐼!! ∝
𝑃!"!

𝜌𝑣!!
, 

2.20                 𝐼!" = 𝐼!" ∝
𝑃!!!

2𝜌𝑣!!
, 

From here we can see that the ratio of P44 to P12 is easily calculated: 

2.21                 
𝑃!!
𝑃!"

=
𝑣!
𝑣!

2𝐼!"
𝐼!!

, 

Combining this ratio with the previously determined value of P44 yields the 

following expression for P12: 

2.22                 𝑃!! = 𝑃!"
𝑣!
𝑣!

2𝐼!"
𝐼!!

, 

Finally the relative sign of P12/P44 can be calculated by comparing the scattering 

intensities of the polarized and depolarized components of the spectrum for 

scattering angles around 90-degrees. The ratio of the IHH and IVH scattering 

intensities depends on scattering angle according to: 
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2.23                 
𝐼!!
𝐼!"

∝
𝑃!! + 𝑃!" + 𝑃!! 𝑐𝑜𝑠𝜃

𝑃!!𝑐𝑜𝑠
𝜃
2

!

, 

Taking the derivative of this ratio with respect to the scattering angle yields: 

2.24                 
𝜕
𝜕𝜃

𝐼!!
𝐼!"

∝ −
2𝑃!"
𝑃!!

+ 1 ≈ −
2𝑃!"
𝑃!!

, 

The final approximation is made because generally 2𝑃!" 𝑃!! ≫ 1.[4] Therefore 

by measuring the slope of IHH/IVH as a function of the scattering angle, the relative 

sign of P12/P44 can be determined. Figure 2.5 (a) shows the measured values of 

P12 and P44 for a series of lead phosphate glass compositions. The stress optic 

coefficient in figure 2.5 (b) is calculated from the Pij values. Materials with a 

stress-optic coefficient near zero are of particular interest in the development of 

optical fibers. 

 

Figure 2.5 (a) Elasto-optic coefficients measured for different compositions of (x)PbO-(1-
x)P2O5 glass, (b) The stress optic coefficient of the same series as calculated from the 
Brillouin scattering measurements 
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2.1.2 Brillouin	
  Scattering	
  Geometries	
  

While theoretically scattering can be done using arbitrary scattering 

angles, and sample geometries, it can quickly become cumbersome to assemble 

an optical path with arbitrary scattering angles, and to calculate desired materials 

properties from the resulting spectra. Experimentally, most Brillouin scattering 

experiments are done using a handful of scattering geometries. These scattering 

geometries take advantage the relationship between scattering angle and 

scattering power as described above, as well as sample geometries that make 

calculating the true scattering angle (θ) within the sample much easier. Several 

of the most common scattering geometries are outlined below. 

The most basic scattering geometry is known as 180 degree or 

backscattering. In this geometry the incident and scattered light pass through the 

same optics to and from the sample [Figure 2.6]. The angle of incidence with the 

sample does not matter, as the optical path of incident and scattered light is the 

same. The magnitude of the wavevector probed by this configuration is: 

2.25                  𝒒 180° =
2𝑛
𝜆!
, 

This is the largest q vector that can be measured by any scattering geometry. 

The magnitude of q makes it easier to probe samples with low densities or low 

elastic moduli. The major drawback to the backscattering geometry is that shear 

modes cannot be probed in this way. 
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Figure 2.6 Schematic of backscattering geometry 

The next common configuration is 90-degree scattering [figure 2.7]. In this 

geometry the incident and scattered light enter and exit the sample normal to the 

sample surface, and perpendicular to one another. The magnitude of q for this 

geometry is: 

2.26                  𝒒 90° =
𝑛 2
𝜆!

, 

While in principal any sample geometry that provides symmetric surfaces at 90° 

to each other will work for this geometry, in general samples are square in profile. 

Because the incident and scattered light are normal to the sample surfaces, the 

optical paths are not skewed by the index of refraction of the sample, thus the 

incident and scattered paths are the same inside and outside of the sample, 

and θ = 90. Furthermore, the shear component of the spectrum is maximized in 

intensity for this geometry. 

 

Figure 2.7 Schematic of 90degree scattering geometry 
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Platelet geometry requires that the sample be transparent and have 

parallel faces which bisect the scattering angle [figure 2.8]. This configuration 

takes advantage of the symmetry of the angles of the incident and scattered light 

with respect to the sample surface in order to eliminate the index of refraction 

from the calculation of the magnitude of q. The scattering wavevector in this 

geometry is in the plane of the sample, and its magnitude is given by: 

2.27                  𝒒𝑷 =
2𝑛
𝜆!
𝑠𝑖𝑛

𝜃!

2 , 

Assuming that the sample is in air, applying Snell’s law gives us: 

2.28                 𝑠𝑖𝑛
𝜃
2 = 𝑛𝑠𝑖𝑛

𝜃′
2 , 

Which, when substituted back into the equation for |qp| yields: 

2.29                  𝒒𝑷 =
2
𝜆!
𝑠𝑖𝑛

𝜃
2 , 

Which is independent of the index of refraction. For the practical purpose of 

constructing a suitable beam path, a 90° scattering angle is most commonly used 

for platelet geometry. In this case the magnitude of the wavevector is: 

2.30                  𝒒𝑷 =
2
𝜆!
. 

Eliminating the need to know the index of refraction is particularly useful in 

situations where the refractive index is difficult to measure. This can be the case 

as during structural transitions within a sample, or in cases where n is too large 

to be measured by common refractometers. 
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Figure 2.8 Schematic of platelet and platelet compliment scattering geometries 

 When the platelet geometry is configured, the light transmitted 

through the sample can be reflected back on its path, thus creating a second 

complimentary scattering geometry as shown in Figure 2.8. We call this 

geometry platelet compliment. In this geometry the wavevector probed is 

perpendicular to the plane of the sample, and the index of refraction is not 

canceled out by symmetry. In this geometry the magnitude of q is: 

2.31                  𝒒𝒄 =
2𝑛
𝜆!

1−
1
𝑛! 𝑠𝑖𝑛

! 𝜃
2

!
!
. 

If the sample is an isotropic material then the speed of sound is the same in all 

directions i.e. vp =vc, and as a result: 

2.32                 
Δ𝜔!
𝒒𝒑

=
Δ𝜔!
𝒒𝒄

, 

where the subscripts p and c denote the platelet and compliment geometries. We 

can then substitute in the expressions for qp and qc and solve to find an 

expression for the index of refraction based entirely on the Brillouin spectrum: 
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2.33                 𝑛 =
Δ𝜔!
Δ𝜔!

!

+ 1 𝑠𝑖𝑛!
𝜃
2 , 

Since platelet geometry is generally used when it is difficult to determine a 

sample’s index of refraction, this complimentary geometry can be a particularly 

useful tool for finding the value of n. Figure 2.9 shows the index of refraction of 

an epoxy sample as a function of degree of cure, as measured using the platelet 

and platelet compliment geometries. It is important to measure the elastic 

properties using the platelet geometry because the index changes along with the 

elastic properties of the epoxy.  

 

Figure 2.9 The index of refraction of a an epoxy sample as a function of cure 

 

2.2 Theory of Raman Light Scattering 

Like Brillouin scattering, Raman scattering is an inelastic light scattering 

phenomenon in which light interacts with a material and either absorbs or excites 

vibrations in the material. Unlike Brillouin scattering, which occurs on the scale of 
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local density fluctuations, the vibrations associated with Raman scattering occur 

on the scale of molecular bonds.  

Vibrations of a molecular structure induce oscillations in the dipole 

moment of the molecule. The oscillating electromagnetic field of a photon can 

interact with the oscillating dipole moment, resulting in scattering. When a 

molecule absorbs a photon, the molecule will enter a higher and unstable energy 

state. Shortly after entering this unstable state, the molecule will transition back 

to a lower energy stable state and radiate a photon. If the energy of the absorbed 

photon corresponds to energy of a higher electronic state of the molecule, this 

process is called fluorescence. If the energy of the photon falls between the 

possible electronic transitions, there are four other possible outcomes as outlined 

in figure 2.10. If the higher energy level happens to correspond to a stable 

vibrational mode of the molecule, no photon will be emitted. This case is called 

infrared (IR) absorption. If the excited state is unstable, the molecule may return 

to its original state and the radiated photon will have the same energy as the 

absorbed photon. This is the elastic case called Rayleigh scattering. 

Furthermore, the molecule could return to a stable vibrational energy state higher 

or lower than its initial state. These cases are known as Raman scattering. In the 

case where the molecule returns to a lower energy state, the emitted photon will 

have greater energy than the incident photon and this case is called anti-Stokes 

scattering. In the opposite case, the emitted photon will have a lower energy, and 

the process is called Stokes scattering. The energy exchanges associated with 
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Raman scattering are larger than those observed for Brillouin scattering, with 

relative frequency shifts on the order of terahertz as opposed to gigahertz.  

 

Figure 2.10 Schematic of the possible energy level transitions in molecular light 
scattering 

A typical Raman spectrum is composed of a number of peaks with 

different energies. Each peak corresponds to a specific molecular vibration and a 

specific vibrational frequency. The structure of a molecule determines the 

number of peaks in its Raman spectrum. An organic molecule composed of n 

atoms will have 3n possible vibrational modes. Three of these modes correspond 

to pure linear translations of the molecule’s position. Three more modes 

correspond to coordinated rotation of the entire molecule. In both of these cases 

the dipole moment of the molecule remains unchanged, and as such, they 

cannot support Raman scattering.[10] Figure 2.11 shows an example of the 

possible vibrations of a simple three-atom molecule. For the remaining 3n-6 

modes, the eligibility for Raman scattering is determined by the manner in which 

the dipole moment of the molecule is. Only vibrational modes that change the 
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polarizability of the molecule can give rise to Raman scattering, and considered 

“Raman-active” modes. Molecular symmetry can further reduce the number of 

observable modes, as symmetrically identical vibrations have the same energies.  

 

Figure 2.11 The nine possible molecular motions of a CO2 molecule: Translations (top) 
Rotations (middle) and vibrations (bottom). Only the symmetric stretch mode of CO2 
(bottom left) is Raman active according to the polarizability selection rule. 

While the structure of the molecule determines the number of Raman 

modes that can be excited, it does not necessarily yield any information about 

the frequencies of those modes. Instead, the mass of the vibrating atoms and the 

stiffness of the bond between them determines their frequency of oscillation. The 

vibrating atoms can be modeled classically as a simple harmonic oscillator joined 

by a spring. Hooke’s law relates the atomic masses and the force constant of the 

bond to the frequency of oscillation (𝜈) according to: 

2.34                 𝜈 =
1
2𝜋

𝑓 𝑀! +𝑀!

𝑀!𝑀!
, 

where is the speed of light, f is the force constant of the bond, and Mx and My are 

the masses of the oscillating atoms.[11] Because Raman measurements analyze 

the change in energy of the scattered light, Raman spectra are presented in 

terms of the scattered light’s relative wavenumber. The relative wavenumber Δω 
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of light scattered from an initial wavelength of λ0 to a new wavelength λR is given 

by: 

2.35                 Δ𝜔 = 𝜔! − 𝜔! =
1
𝜆!
−
1
𝜆!
, 

The relative wavenumber is particularly useful in understanding the modes 

of vibration because, unlike the shift in wavelength, it is directly proportional to 

the vibrational frequency according to: Δ𝜔 = 𝜈 𝑐, where c is the speed of 

light.[12]  

The harmonic oscillator model works surprisingly well for predicting the 

stretching modes between atoms in simple molecules. However, the spectrum of 

more complex molecules will deviate significantly from the simple Hooke’s law 

prediction as a result of coupling between other modes at similar frequencies, as 

well as with the overtones of lower frequency modes. Generally, a Raman 

spectrum can be broken into regions that contain characteristic types of 

vibrational modes. In the low frequency range between ~400 and ~1600 cm-1, the 

vibrations tend to be the result of single bond stretching modes, and bending 

modes in which the bond lengths remain the same but the angle between two 

bonds changes. The next frequency range falls between ~1500 and ~2500 cm-1 

and is comprised of stretching modes of double bonds. Finally in the high 

frequency region above ~2800 cm-1 are the stretching modes between hydrogen 

and other heavier elements like carbon, oxygen and nitrogen. 

Because the Raman spectrum depends on the structure and composition 

of a molecule, it can be a powerful tool in characterizing changes within a 

material. Each peak is associated with a specific bond, and therefore the 
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intensity of the peak is proportional to the concentration of that bond in the 

material. This information can be used to monitor the progress of chemical 

reactions. For example, in the case of a polymer undergoing crosslinking, the 

formation of each new crosslink will result in an increase in the peaks associated 

with the new bond. Likewise, as bonds are broken during a reaction, the intensity 

of the associated peaks will decrease.  

Additionally, shifts in the wavenumber of a given peak indicate changes in 

the force constant of the corresponding bond. This behavior is analogous to the 

change in frequency of a plucked string as the tension on the string is increased 

or decreased. As a material is placed under tension or compression, the 

molecular bonds that are responsible for conveying the load will vibrate at a new 

frequency.[11, 13] Through carefully calibrated experiments, this behavior can be 

used as a molecular scale stress gauge that is intrinsic to the material. When 

combined with the correct optical setup, this can also be used to examine local 

residual stresses.  
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Chapter 3  

Cure Kinetics of DCPD  

3.1 Introduction 

Polymer matrix composites, due to their high strength and low density, are 

attractive material systems for improving vehicle efficiency in transportation 

applications.  Fatigue cracks in these structures shorten the lifespan of 

components, and are difficult to detect and repair.[1] Self-healing polymer 

systems are being developed to remedy fatigue crack formation in composite 

structures. Dicyclopentadiene (DCPD) polymerized by Grubbs’ catalyst has been 

used as such a system to heal cracks in thermoset polymer composites.[2, 3] To 

this end, microencapsulated liquid DCPD is dispersed throughout the polymer 

matrix, along with powdered Grubbs catalyst. When a crack cleaves a DCPD 

filled microcapsule, the liquid monomer discharges into the crack where it engulfs 

the catalyst particles exposed at the crack faces. [4, 5] Upon contact with DCPD, 

the catalyst initiates ring opening metathesis polymerization (ROMP) of the 

monomer, which then seals the crack with a highly cross-linked polymer network. 

The rate at which the network grows to span the crack dictates how effectively 

continued damage is prevented.[4, 6]  



 

 44 

The DCPD monomer is composed of two parts: the norbornene ring and 

the cyclopentene ring shown in Figure 3.1(a). Each of these rings contains an 

unsaturated bond that acts as a reactive site for polymerization. The ruthenium-

based Grubbs’ catalyst engages the C=C double bonds and initiates ROMP at 

these sites.[7, 8] As the ring opens, the ruthenium-bearing moiety is transferred 

to one side of the opened bond, while the rest of the catalyst molecule attaches 

to the other side. The carbon double bond of the norbornene ring is under greater 

strain than the equivalent bond in the cyclopentene ring. This ring strain 

energetically favors opening of the norbornene ring over the cyclopentene ring 

during ROMP.[9, 10] Hence, during the initial stages of ROMP it is primarily the 

norbornene ring that participates in the polymerization, forming extended chains. 

Crosslinks between chains are formed with some delay, as the slower-reacting 

cyclopentene rings partake in the polymerization process. During polymerization, 

the ruthenium catalyst transfers to the most recently attached DCPD monomer, 

and consequently always remains at the end of the polymer chain.[11] This 

leaves it free to engage a new monomer and add it to the chain. Accordingly, the 

resulting polymer structure delineates the trajectory of catalyst units, and the final 

network topology strongly depends on the ability of the catalyst to reach new 

monomers or unreacted network segments. 
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(a)

 

(b)

 

Figure 3.1 Schematic of DCPD and ROMP 

We have used concurrent Raman and Brillouin light scattering methods to 

monitor the curing behavior of DCPD during ROMP in order to construct a kinetic 

model of the cure reaction, and to predict the mechanical properties of the 

resultant DCPD network formed. Because Raman scattering is sensitive to 

chemical bond configurations, we can use it to track the behavior of specific 

reactive sites on the monomer, thus providing us with a more detailed description 

of the cure behavior than could be achieved using calorimetric cure 

measurements. Using the Raman derived results as a guide, we have developed 

a detailed kinetic model that reproduces the cure behavior of DCPD undergoing 

ROMP. While Raman light scattering measurements provide insight as to the 

state of cure of the system, Brillouin scattering measurements yield information 

about the rigidity, and hence, the structural integrity of the DCPD network. 
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Brillouin scattering has been demonstrated to be an effective tool to monitor in-

situ changes in the elastic properties of polymers during cure.[12-14] It is a well-

suited technique for this purpose, because it yields elastic properties of a sample 

without mechanically disturbing the system being probed. By comparing the two 

complementary datasets, we can link the elastic behavior of the network to the 

reaction kinetics that drive network formation. This work is an expansion of our 

prior efforts in characterizing this system.[15] The revised reaction model 

considers the catalyst attachment point in the kinetic cure model, and also 

examines the development of network stiffness as a function of the cure reaction.  

3.2 Experimental Methods 

A series of DCPD samples were prepared with different concentrations of 

first generation Grubbs’ catalyst. In order to ensure optimal performance, the 

catalyst was first dissolved in benzene, and freeze-dried. This process reduces 

the size of catalyst particles, which improves the dissolution rate of the catalyst in 

liquid DCPD.[16, 17] The DCPD samples were prepared using four different 

catalyst concentrations: 0.50, 0.45, 0.40 and 0.35 wt%. Using higher 

concentrations resulted in samples that cured at such a high rate that we were 

unable to collect sufficient Raman and Brillouin spectra for useful analyses. 

Samples mixed with catalyst concentrations below 0.35 wt% produced erratic 

cure behavior, often failing to fully harden. The desired amount of catalyst was 

weighed and added to a glass vial for each sample. In order to break up any 

clumps of catalyst particles, each vial containing powdered catalyst was 

immersed in a sonication bath and sonicated for one minute. Next, 2 ml of DCPD 
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were mixed with the powdered catalyst. Each mixture of DCPD and catalyst was 

sonicated for an additional minute in order to mix the catalyst uniformly with the 

DCPD and to further break up any remaining clumps of catalyst particles. Finally, 

each sample was injected into a sample holder and placed in the optical path of a 

532 nm Coherent Verdi laser. A nominal laser output power of 80 mW was used 

for all measurements. 

We collect the scattered light using platelet geometry, in which the sample 

is sandwiched between two parallel windows, and the plane of the windows 

bisects the angle formed by the incident and the scattered light. This geometry 

has been developed for Brillouin scattering to cancel out any effects of the index 

of refraction on the observed frequency shift in the Brillouin spectrum.[18] The 

scattered light from the sample is collected using a 150 mm collimating lens. The 

focal volume for this setup is about 50 µm in diameter. A set of moveable mirrors 

is used to direct the collimated light to each of our spectrometers.  

Our Raman spectra are measured using a Princeton Instruments TriVista 

triple monochrometer fitted with a Spec 10 liquid nitrogen cooled CCD detector. 

Raman spectra are centered at 1600 cm-1 in order to observe the peaks 

corresponding to C=C stretching modes in the DCPD monomer. Each Raman 

spectrum is collected for one minute. Our Brillouin spectra are collected using a 

Sandercock six-pass tandem Fabry-Perot interferometer. Brillouin spectra are 

collected for about three minutes using 512 binning channels in order to improve 

the collection time. 
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In order to assign the experimentally observed Raman peaks, we used 

density functional theory (DFT) calculations to determine the vibrational modes of 

specific molecular structures formed as a results of the curing process in DCPD. 

Further calculations were performed to predict the respective enthalpies of the 

two reactive sites on the DCPD monomer. The molecular structure of each 

configuration was optimized in the Cartesian coordinate systems without 

symmetry constraints in Gaussian 03 [19], using the B3LYP exchange correlation 

functional [20] and the 6-31G* contracted basis set with polarization 

functions.[21, 22]  

The Raman spectra cover the spectral range from 1440 to 1750 cm-1. In 

this region of the Raman spectra, seven peaks are observed over the course of 

the curing process as shown in Figure 3.2. The vibrational modes associated 

with these peaks are determined using DFT calculations and crosschecked 

against available experimentally determined mode assignments.[10, 23] The two 

peaks at 1445 and 1455 cm-1 are associated with C-H bending modes. The 

concentration of these bonds is unaffected by the cure reaction and as such, 

remains constant throughout all measurements. We observe three peaks 

associated with stretching modes of the C=C bonded reactive sites. The 1575 

cm-1 peak is attributed to stretching of the C=C bond in the norbornene ring. 

During ROMP, the norbornene rings are opened, eliminating this bond geometry. 

As a result, the intensity of the 1575 cm-1 peak decreases proportionally. The two 

peaks at 1619 and 1625 cm-1 are attributed to the C=C stretching mode of the 

cyclopentene ring. In unreacted DCPD, only the 1619 cm-1 peak is present. As 
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the norbornene opens, ring strain in the cyclopentene portion of the monomer is 

relaxed, which results in a shift of the 1619 cm-1 mode to 1625 cm-1. Therefore, 

the intensity of the 1619 cm-1 peak decreases as the norbornene rings are 

opened, while the 1625 cm-1 peak grows. Our experimental spectra agree with 

this prediction from the DFT calculations, showing that the 1575 and 1619 cm-1 

peak intensities decrease at the same rate over the course of the curing process. 

Finally, the 1655 and 1666 cm-1 peaks do not appear until the cure process 

begins. They form as a result of the cure and are attributed to C=C stretch modes 

in the developing polymer chains. Specifically, the 1655 cm-1 peak is associated 

with cis-conformed C=C bonds while the 1666 cm-1 peak is associated with trans-

conformed bonds. A summary of the Raman mode assignments is given in Table 

3.1. 

 

Figure 3.2 Raman spectra of DCPD at three times during the curing process 
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Raman Mode Assignment Raman Shift (cm-1) 
C-H bending 1445 
C-H bending 1455 
Norbornene C=C stretch 1575 
Cyclopentene C=C stretch 
(norbornene ring intact) 

1619 

Cyclopentene C=C stretch 
(norbornene ring open) 

1625 

Cis-conformed C=C stretch 1655 
Trans-conformed C=C 
stretch 

1666 

Table 3.1 Raman mode assignments for DCPD 

Brillouin scattering measures the Doppler shifted frequency of light 

scattered by propagating thermal phonons in a sample medium. This yields 

mechanical information from the sample without interfering with the formation of 

the polymer network. It is possible to observe scattering for both longitudinal and 

shear phonons using Brillouin scattering. However, the intensity of scattering 

from shear phonons is much weaker, and in the case of DCPD, we do not 

observe peaks related to shear waves. The wave vector, q, of the scattering 

phonon is the difference between the incident and scattered light wave vectors 

as required by wave vector conservation rules.[24] From this information we can 

calculate the velocity of sound in the sample according to: 𝑐𝐿 =
!!𝐵

𝑞
, where Δ𝜔𝐵 

is the measured frequency shift of the scattered light from the incident light 

frequency. For platelet geometry the magnitude of the wave vector is given by 

𝑞 = 2𝑠𝑖𝑛 𝜃 𝜆!.[18] Here θ is the angle between the incident light, and a vector 

normal to the sample plane, and λ0 is the wavelength of the incident light. Using 

both the measured phonon velocity and the sample density, ρ, we can calculate 

the adiabatic longitudinal elastic modulus according to  
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3.1                   𝑀! = 𝜌𝑐𝐿
! =

𝐸 1− 𝜈
1+ 𝜈 1− 2𝜈  

where E is the Young’s modulus, and ν is the Poisson’s ratio. 

3.3 DCPD Reaction Kinetics 

In order to model the reaction of DCPD, we initially consider all of the 

possible species that could form or be consumed during ROMP process. First, 

we note that there are two reactive sites that can undergo ROMP: the C=C bonds 

in the norbornene and cyclopentene rings. It has been shown that the 

norbornene ring is energetically favored to open first because the corresponding 

double bond is under greater strain than the equivalent double bond in the 

cyclopentene ring. [10] Isothermal DSC investigations of DCPD cured by ROMP 

show that the glass transition temperature as a function of cure is independent of 

the reaction temperature. This behavior implies that the norbornene and 

cyclopentene rings open sequentially. [25] Therefore, in our model, we use the 

assumption that the norbornene ring will always open first. Secondly, we assume 

that a reactive site will undergo ROMP only when it reacts with a catalyst 

molecule. The catalyst can exist freely in solution or attached to a monomer unit 

after an initial ROMP reaction. Because there are two possible reactive sites on 

the DCPD monomer, there can be up to two catalyst moieties attached to a given 

monomer unit. We therefore define the species present in the reaction as Qij, 

where i enumerates the number of sites on the monomer that have undergone 

ROMP, and j enumerates the number of attached catalyst moieties. Assuming 

the norbornene ring always opens first, Q1j always refers to a monomer unit with 
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the cyclopentene ring intact. Finally, the species C denotes the free catalyst 

molecules in the solution. These species may all react with one another at 

different rates to form the DCPD network, as described in Table 3.2.  

Reaction description Rate of reaction 

€ 

Q00 + C⇒
k1
Q11  

€ 

r1 = k1 Q00[ ] C[ ]  

€ 

Q00 +Q11⇒
k2
Q11 +Q10 

€ 

r2 = k2 Q00[ ] Q11[ ]  

€ 

Q00 +Q21⇒
k3
Q11 +Q20 

€ 

r3 = k3 Q00[ ] Q21[ ]  

€ 

Q00 +Q22⇒
k4
Q11 +Q21 

€ 

r4 = k4 Q00[ ] Q22[ ] 

€ 

Q10 + C⇒
k5
Q21  

€ 

r5 = k5 Q10[ ] C[ ]  

€ 

Q10 +Q11⇒
k6
Q21 +Q10 

€ 

r6 = k6 Q10[ ] Q11[ ]  

€ 

Q10 +Q21⇒
k7
Q21 +Q20 

€ 

r7 = k7 Q10[ ] Q21[ ]  

€ 

Q10 +Q22⇒
k8
Q21 +Q21 

€ 

r8 = k8 Q10[ ] Q22[ ] 

€ 

Q11 + C⇒
k9
Q22  

€ 

r9 = k9 Q11[ ] C[ ]  

€ 

Q11 +Q11⇒
k10
Q22 +Q10 

€ 

r10 = k10 Q11[ ] Q11[ ] 

€ 

Q11 +Q21⇒
k11
Q22 +Q20 

€ 

r11 = k11 Q11[ ] Q21[ ] 

€ 

Q11 +Q22⇒
k12
Q22 +Q21 

€ 

r12 = k12 Q11[ ] Q22[ ]  

Table 3.2 Possible reactions within the DCPD system 

The brackets around the species symbols denote the molar concentration of 

each species. The reaction rates ki are assumed to be temperature dependent 

according to a standard Arrhenius form: 𝑘𝑖 = 𝐴𝑖𝑒
!𝐸𝑎𝑖

𝑅𝑇 . Here Ai is a rate constant, 

and Eai is the activation energy of the reaction i. These reaction rates can be 

combined to describe the rates of formation of each reactive species as follows: 

3.2                    𝐶 = − 𝑟! + 𝑟! + 𝑟!  

3.3                    𝑄!! = − 𝑟! + 𝑟! + 𝑟! + 𝑟!  
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3.5                    𝑄!" = 𝑟! + 𝑟! + 𝑟!" − 𝑟! + 𝑟! + 𝑟! + 𝑟!  

3.6                    𝑄!" = 𝑟! + 𝑟! + 𝑟! + 𝑟! + 2𝑟! + 𝑟!" − 𝑟! + 𝑟! + 𝑟!!  

3.7                    𝑄!! = 𝑟! + 𝑟!" + 𝑟!! + 𝑟!" − 𝑟! + 𝑟! + 𝑟!"  

3.8                    𝑄!" = 𝑟! + 𝑟! + 𝑟!!  

Because the ROMP of DCPD is exothermic and the reaction rates are 

temperature dependent, we also include the following equation to describe the 

changes in temperature as a function of cure: 

3.9                     𝑇 =
1

𝑚𝑐𝑝
−ℎ𝐴 𝑇− 𝑇𝑎 +    𝑟𝑖∆𝐻𝑖

𝑖

 

Here m is the sample mass, cp is the heat capacity, h is the heat transfer 

coefficient between the sample container and air, A is the surface are of the 

sample, Ta is the ambient temperature for the experiment, and ΔHi is the enthalpy 

of the reaction denoted by its subscript. 

Together, these equations describe all of the possible chemical 

interactions between the catalyst and the monomer, including the positions on 

the monomer units where the catalyst is attached. However, given that each 

reaction rate, ri, contains two constants, this system contains seven equations 

with 22 unknowns, making it impractical to solve numerically. In order to 

condense these equations into a more manageable package, we must take into 
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account the information contained in our chemical probe, namely the Raman 

spectrum of the reacting DCPD system. 

As previously discussed, the Raman spectrum of DCPD contains three 

peaks associated with stretching of the C=C bonded reactive sites. The 1575 cm-

1 peak is attributed to C=C stretching in the norbornene ring. During ROMP, the 

concentration of norbornene rings decreases. As a result of this, the intensity of 

the 1575 cm-1 peak decreases proportionally. The two peaks at 1619 and 1625 

cm-1 are attributed to the C=C stretching mode of the cyclopentene ring. Initially 

only the 1619 cm-1 peak is present, but as the norbornene ring opens, it relaxes 

the strain in the cyclopentene portion of the monomer, which causes the 1619 

cm-1 mode to shift to1625 cm-1. Therefore, as the number of norbornene rings 

decreases, so too does the intensity of the 1619 cm-1 peak, while the 1625 cm-1 

peak grows. Together these peaks give us enough information to calculate the 

concentration of each DCPD reactive site in our system. The Raman spectrum 

does not, however, let us determine where on the monomer the catalyst may be 

attached. Using the observable Raman modes as a guide, an alternate set of 

reactive species can be defined that only takes into account experimentally 

observable quantities: 

3.10                  Φ! = 𝑄!!  

3.11                  Φ! = 𝑄!𝑗
𝑗
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3.12                  Φ! = 𝑄!𝑗
𝑗

 

3.13                  C𝑅 = 𝐶+ 𝑄!! + 𝑄!" + 2 𝑄!! . 

Experimentally these concentrations can be calculated based on the 

intensities of the 1575, 1619, and 1625 cm-1 Raman peaks according to: 

3.14                Φ! =
𝐼!"#"
𝐼!"#"!  

3.15                  Φ! =
𝐼!"#$
𝐼!"!#!  

3.16                  Φ! = 1− Φ! − Φ! . 

Here I0 and I are the Raman peak intensities of the designated peak for 

the start of the reaction and for any point thereafter, respectively. Furthermore, 

we can calculate the degree of cure, defined as the fraction of reactive sites that 

have undergone ROMP, from the species concentrations as follows: 

3.17                 𝛼 = 1− Φ! −
Φ!

2 . 

Using these equations, we can therefore determine the time dependence 

of the cure process. The symbols in Figure 3.3 (a) represent the experimentally 

measured degree of cure vs time for all four catalyst concentrations tested, while 

the symbols in Figure 3.3 (b) represent the species concentrations and degree of 

cure as a function of time for the system with 0.4 wt% catalyst concentration. 
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(a)  

(b)  

Figure 3.3 (a) DCPD degree of cure as a function of time. Inset: rate constants as a 
function of catalyst loading. (b) Species concentrations as a function of time for 0.4 wt% 
catalyst concentration 
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Because the experimentally observable reactive species do not contain 

information about the catalyst location, the rate equations that describe their 

concentrations should also be independent of catalyst position. To develop these 

equations, we define: k1 = k3 = k3 = k4 = kN, and k5 = k6 =…= k12 = kC.  We also 

assume that the enthalpy of reaction for norbornene and cyclopentene each 

remain unaffected by the location of the catalyst, i.e. ΔH1 = ΔH2 = ΔH3 = ΔH4 = 

ΔHN, and ΔH5 = ΔH6 =…= ΔH12 = ΔHC. These simplifications yield a condensed 

set of rate equations: 

3.18                  Φ! = −𝐾𝑁 Φ! C𝑅 , 

3.19                  Φ! = 𝐾𝑁 Φ! C𝑅 −𝐾𝐶 Φ! C𝑅 , 

3.20                  Φ! = 𝐾𝐶 Φ! C𝑅 , 

3.21                  C𝑅 = 0, 

3.22                 𝑇 =
1

𝑚𝑐𝑝
−ℎ𝐴 𝑇− 𝑇𝑎 +   𝐾𝑁∆𝐻𝑁 𝑄! 𝐶𝑅 +𝐾𝐶∆𝐻𝐶 𝑄! 𝐶𝑅 . 

The Raman spectra show that the peaks at 1575, 1619, and 1625 cm-1 do not 

completely disappear at the end of the curing process. This demonstrates 

significant reactive site functionality remains at the end of the cure process as is 

observed in Figure 3.3 (b). This occurs because the mobility of the catalyst is 

reduced as the network density increases. At some point, the catalyst mobility 

decreases to the point where it can no longer access the remaining reactive 

sites, and ROMP stops. We take this development into account by gradually 
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lowering the concentration of active catalyst with increasing degree of cure 

according to 

3.23                  𝐶𝑅 = −𝐾𝑆 𝐶𝑅 Φ! + Φ!
! 

While this is a strictly empirical expression, it adequately models the premature 

end of cure that we observe experimentally. This equation takes into account the 

proportion of DCPD monomer incorporated into the network Φ! + Φ! , so 

that as the network grows, the catalyst availability becomes increasingly limited. 

In our experiments, the sample mass m is 0.831g, and the heat capacity 

cp is 1.112 J/gK. The heat transfer term hA is 0.02J/K. The ambient temperature 

for the experiments is 295 K. We obtained values for the enthalpies of reaction 

from DFT calculations.[15] The ground state energies of each species are 

compared to one another to find the total change in energy for each reaction. 

This method yields –140.85 kJ/mol and –38.59 kJ/mol as the values of ΔH1 and 

ΔH2 respectively. The system of reaction equations for the experimentally 

observable species was numerically fitted to the measured species 

concentrations using a least squares fitting method. To further reduce the 

number of free variables to be solved, we fixed the rate constant elements AN 

and AC of the reaction rates to be equal. This is a reasonable assumption, 

because the geometry and frequency of interaction between the catalyst 

molecules and norbornene and cyclopentene sites should be similar. A difference 

in reaction rates between the two sites is accounted for as a result of their 

activation energies being different.[10, 26] As a result of our assumptions, the 
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remaining fitting parameters for the reacting DCPD system are EaN, EaC, AN, and 

KS. In Figure 3.3 (a) we compare the degree of cure as a function of time 

predicted by the model with the data derived from the analysis of the Raman 

spectra for all catalyst concentrations. Figure 3.3 (b) compares the modeled 

species concentrations to the experimentally determined values for the system 

containing 0.4 wt% catalyst. The best-fit values for these parameters are 

summarized in Table 3. While the activation energies appear to be independent 

of the catalyst concentration, the rate constants depend linearly on it, as shown 

in the inset of Figure 3.3 (a). The equation for the line describing this 

dependence is 𝐴𝑁 = 𝐴𝐶 = −32.6+ 106.5 C𝑅 . This equation suggests that a 

minimum catalyst loading of about 0.3 wt% is required to drive the ROMP 

reaction. This threshold likely explains the erratic curing behavior that we 

observed for samples with catalyst concentrations below 0.35 wt%. Furthermore 

this linear dependence means that for concentrations above the 0.3 wt% 

threshold, the rate equations for [Φ0], [Φ1], and [Φ2] are dependent on the square 

of the catalyst concentration. This suggests that there may be a more complex 

interaction between the catalyst and the monomer during ROMP than has been 

generally assumed. However, the information in this dataset cannot help us 

identify precisely how this interaction may work. 

Parameter 0.35 wt% 0.40 wt% 0.45 wt% 0.50 wt% 
EaN (J/mol) 5995 6497 5979 6001 
EaC (J/mol) 5494 5953 5478 5499 
AN, AC (s-1) 5.5 8.7 15.5 21.0 
KS 0.00140 0.00144 0.00426 0.00661 
Table 3.3 Best Fit parameters for DCPD cure reaction 
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It is also worth noting that the rate coefficient for the reaction of the 

norbornene (Kn) is about 19% lower than for the cyclopentene rings (Kc). This is 

unexpected because the norbornene is known to react before the cyclopentene 

ring. We believe that the opening of the norbornene ring during ROMP affects the 

reactivity of the cyclopentene ring, causing it to increase. The Raman mode of 

the cyclopentene reactive site at 1619 cm-1 moves to a higher energy at 1625 

cm-1 during the reaction. This increased vibrational energy could serve to lower 

the activation barrier towards reaction, and could explain the observed higher 

reaction rate for the cyclopentene ring. 

3.4 Elastic modulus 

We measured the longitudinal elastic modulus of the curing DCPD 

concurrently with the degree of cure data as described in the Methods section. 

These measurements allow us to analyze the modulus as a function of time and 

degree of cure during polymerization. Figure 3.4 shows the measured modulus 

as a function of time. This plot is similar to the cure as a function of time, given 

that as the Grubbs’s catalyst concentration is increased, the rate of reaction 

increases proportionally, and that the modulus asymptotically approaches its final 

value. However the initial and final elastic moduli of the system also show a 

dependence on the catalyst concentration, namely increasing linearly with the 

catalyst concentration as shown in Figure 3.4 (inset).  
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Figure 3.4 Longitudinal elastic modulus as a function of time Inset: initial and final moduli 
as a function of catalyst concentration 

The most striking feature of the evolution of the elastic modulus, however, 

only becomes apparent when it is plotted as a function of cure as in Figure 3.5. 

Here we see that once the maximum cure has been reached at slightly past 50% 

conversion, the modulus continues to increase. This effect is most significant for 

the higher catalyst concentrations, for which the increase in modulus is roughly 

0.5 GPa, whereas the 0.35 wt% system only shows a minimal effect. It is likely 

that during polymerization the initial structure imposed on the network by the cure 

process does not correspond to a local energy minimum. For example, Van der 
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then relax to a more stable configuration over a longer time scale than the cure 

reaction.  

 

Figure 3.5 Elastic modulus as a function of degree of cure 
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of the same atoms, under different configurations, we assume that their specific 

volumes are similar, and accordingly weigh their contributions to the total elastic 

modulus by their molar concentrations. The total elastic modulus then is the sum 

of the contributions from each component i.e.: 

3.24                 𝑀! Φ! , Φ! , Φ! =   𝑀′ Φ! +𝑀′ Φ! +𝑀′ Φ! . 

Up to the time when the catalyst is added to the DCPD, no network 

formation has occurred, and the only contributions to the elastic modulus are the 

catalyst molecules, and the Φ0 monomer species. We can therefore use the 

linear fit from Figure 3.4 to define the Φ0 contribution to the elastic modulus as: 

3.25                 𝑀! Φ! = −1.594+ 928 C𝑅 Φ!  

The contributions of Φ1 and Φ2 are not obvious from the data comparing 

the modulus to the degree of cure. A first approximation would be to simply 

weigh their contributions to the final modulus linearly with respect to their 

concentrations as follows: 

3.26                 𝑀′ Φ! , Φ! =   𝐴 Φ! + 𝐵 Φ!  

This approximation lacks any non-covalent contributions to the modulus, and 

results in the best-fit curves shown in Figure 3.6.  Accordingly, there are some 

fundamental discrepancies between the experimental data and the model of eq. 

3.26.  In particular, the measured modulus continues to increase well after 

changes in the reactive species concentrations have stopped. In fact, for the 
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highest catalyst loading, the modulus increases for nearly two hours after the 

cure reaction has ended.  

 

Figure 3.6 The experimentally observed elastic modulus is poorly fit as a simple linear 
combination of the reactive species concentrations 

In order to address this observed difference in the modulus and cure time 

scales, we introduce a term to the Φ1 and Φ2 contributions to the elastic modulus 

that accounts for network relaxation without change in the bonding pattern.  Not 
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difference in the relaxation behavior for three model systems with different 

numbers of intermediate relaxation states.  With increasing number of 

consecutive relaxation steps, the curves exhibit a more pronounced inflection, 

reflecting an initial delay and subsequent acceleration in the relaxation behavior. 

Therefore, a generalized term that can account for multiple relaxation steps 

should be sigmoidal in shape. It is not practical to find a closed form solution for a 

relaxation term that can accommodate an unknown number of relaxations. 

Instead we use a simplified sigmoidal function that approximates this behavior. 

After investigating a series of common functional forms, we found that using a 

stretched exponential function to model the relaxation behavior works best.  We 

also found that, when modifying both the φ1 and φ2 terms with such a stretched 

exponential, the role of the φ1 term is relatively inconsequential compared to the 

φ2 term, i.e., linear chains relax much faster than the cross-linked network 

segments.  Hence, for the sake of simplicity, our revised model is 

3.27                 𝑀! Φ! , Φ! , 𝑡 =   𝐴 Φ! + 𝐵 Φ! 𝑒!
!
!
!
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Figure 3.7 Relaxation behavior for systems with increasing numbers of intermediate 
relaxation steps  

Best fits of the data using eq. (27) are shown in Figs. (3.4) and (3.6). The 

values for A and B are the same within their error, namely 6.85 ±0.21 GPa and 

6.79 ±0.11 GPa, respectively. These results suggest that the incorporation of the 
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than the number of bonds by which each element is connected to the network. 

The time dependent term increases the influence of the Φ2 species as time 
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continue to asymptotically approach its maximum value. In a stretched 

exponential, the stretching parameter of the exponential, β, is constrained 
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faster rate, also reaches equilibrium faster. However, the increase in relaxation 

rate lags behind the increase in cross-link rate.  The fact that the rate-limiting 

mechanism in this structural relaxation is associated with the Φ2 term supports 

the idea that this phenomenon is a form of structural relaxation. The crosslinked 

components of the network are more constrained in their movement than the 

linearly bonded components. As a result, the crosslinks impede relaxation into a 

preferred structural configuration, resulting in a delay in the development of the 

elastic modulus. The sigmoidal shape of the time dependent component 

suggests an accelerating nature of this relaxation process. It is possible that once 

a certain number of network units have reached a relaxed state, the constraints 

on relaxation for the rest of the cross-linked units are reduced, and the relaxation 

process proceeds more quickly.  

 

Figure 3.8 Coefficient H as a function of catalyst concentration 
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3.5 Conclusion 

We have used concurrent Raman and Brillouin light scattering techniques 

to monitor the in situ change in elastic properties as well as the chemical 

configuration of DCPD during ROMP. Combining these methods has allowed us 

to construct a model of the cure kinetics of DCPD, as well as a model of how the 

elastic properties depend on the underlying chemical reactions taking place. The 

kinetic reaction model shows that the reaction rate of the DCPD depends on the 

square of the catalyst concentration, and that there is a minimum threshold for 

the catalyst concentration below which the reaction will not occur. It also shows 

that the reaction rates for the cyclopentene and norbornene sites are similar, with 

the cyclopentene appearing to react more quickly. We believe that this occurs 

because the opening of the norbornene ring lowers the activation barrier for the 

cyclopentene ring reaction. This mechanism is suggested by the observed 

frequency shift in the Raman mode associated with the cyclopentene reactive 

site. The elastic modulus data show that once the cure reaction has ended, the 

DCPD network continues to stiffen by a significant amount. The specific 

mechanism for this behavior is unclear: however, it seems that the network 

structure undergoes a multistep relaxation process before reaching an 

equilibrium state. This process appears to be governed by the crosslinking 

species, likely because the crosslinks impose greater constraints on the mobility 

of network elements. The elastic modulus of the network can be modeled by a 

linear combination of the reactive species concentrations. Interestingly, Φ1 and 
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Φ2 both seem to contribute an equal amount to the final elastic modulus of the 

network.  
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Chapter 4  

Epoxy Cure Kinetics 

4.1 Chapter Synopsis 

In this study, the cure kinetics of epoxy cured with an amine hardener are 

investigated using a combination of light scattering techniques.  Concurrent 

Raman and Brillouin scattering are used to monitor the formation of epoxy 

networks over time both in terms of the structural connectivity of the network as 

well as the evolution of chemical bonding configurations.  The relationship 

between the elastic properties of the network and the degree of cure was found 

to depend on the cure temperature and the resin-hardener stoichiometry.  A 

numerical model was created to determine the degree of cure and elastic 

modulus as a function of time and cure conditions.  Accordingly, the modulus of 

the epoxy comprises two contributions: one directly related to the concentration 

of covalent bonds that form and another one due to non-bonding interactions that 

arise as the network relaxes into an optimally packed configuration. 

 

4.2 Introduction 

Epoxy resins are commonly used in many industrial applications, 

particularly as adhesives, protective coatings, and as the matrix material for fiber-
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reinforced composites.  These applications require a variety of different blends of 

resins and hardeners and different processing environments (temperature, 

pressure, etc.) to ensure optimal material characteristics.[1-5]  Thermal history, 

chemical composition, and interfacial effects can all influence the cure behavior 

of the epoxy, and result in changes in the final chemical and mechanical 

properties of the cured resin.[6-8]  Therefore, it is critical to understand the 

connection between the processing conditions and the final material properties of 

the resin in order to ensure optimal performance of the resin in its application.  

Ideally, these properties should be measurable in-situ so that the manufacturing 

process can be monitored in real time for quality assurance. 

Common methods used to determine the cure kinetics and evolution of 

mechanical properties include differential scanning calorimetry (DSC) and 

mechanical viscometery.[9-11]  Both of these are invasive measurement 

techniques, and cannot be used to monitor cure in-situ under normal 

manufacturing conditions.  DSC places the sample under artificially maintained 

thermal conditions while viscometers place the sample under external shearing 

forces, which are not generally present in a curing composite part, and which can 

cause changes in the structure of a developing polymer network.  

Spectroscopic methods, however, are well suited to monitoring polymer 

cure processes, as they can measure detailed chemical and structural 

characteristics in-situ and without mechanical contact to the sample.  Raman 

light scattering (RLS) measurements allow one to monitor the cure process of 

epoxy resins.  These resins have many active Raman modes, some of which 
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remain constant during reaction and can be used to normalize spectra and others 

that change as a result of cure reactions and can be used to monitor 

polymerization and cross-linking processes that underlie network formation.[12-

14]  Meanwhile, Brillouin light scattering (BLS) is an invaluable tool in the 

analysis of network formation, because it is a non-destructive micro-scale probe 

of the interconnectedness of network components.[15-17]  Specifically, it 

provides a direct optical means to probe the visco-elastic properties of polymer 

networks under curing conditions.  Combining both methods makes it possible to 

relate the evolution of mechanical properties with the underlying chemical 

processes that drive polymer network formation.[18] 

In this paper, we explore the use of Raman spectroscopy in conjunction 

with Brillouin spectroscopy as non-destructive in-situ methods to analyze the 

relationship between the chemical degree of cure and the elastic properties of an 

epoxy resin as it cures under different thermal conditions, and with different 

epoxy resin-hardener stoichiometric ratios in the initial mixture. 

4.3 Experimental Methods 

Primary and secondary amines are widely used as curing agents for 

epoxy resins.  The epoxide ring group of an epoxy resin readily reacts with a 

primary amine.  The resulting molecule, now a secondary amine, retains one 

active hydrogen atom that is free to react with a second epoxide group (Figure 

4.1).[19]  Therefore when a resin with two or more epoxide groups, reacts with a 

hardener that has two or more primary amines, or a combination of primary or 

secondary amines, the result is a highly crosslinked polymer network.  
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Figure 4.1 Schematic of epoxy reacting with primary and secondary amines 

We investigated the cure behavior of epoxy resin as a function of ambient 

curing temperature, and as a function of the resin to hardener ratio, using a 

concurrent Raman and Brillouin light scattering.  The epoxy system used for this 

study are Epon 862 resin (Diglycidyl Ether of Bisphenol F, Hexion Specialty 

Chemicals) mixed with Epikure 9553 amine hardener (proprietary formulation, 

Hexion Specialty Chemicals).  For the temperature dependent measurements, all 

samples are mixed using the stoichiometric epoxide to amine ratio recommended 

by the manufacturer.  When varying the ratio of resin to hardener, all 

measurements are carried out at the fixed temperature of 40oC. 

To prepare each sample for the light scattering measurements, resin and 

hardener are added to a glass vial such that the desired concentrations of amine 

and epoxide are available for reaction.  The components are mixed by hand for 

one minute at room temperature.  The mixture is then allowed to stand for an 

additional minute to allow any trapped gas bubbles that formed during the mixing 

process to escape.  Next, the sample is injected into a sample holder composed 

of a perforated spacer separating two glass coverslips.  The sample fills a 
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circular aperture with a 20 mm diameter and 2 mm thickness. Finally, the sample 

holder containing the epoxy is placed in a heating cell on the optical table, which 

has been pre-heated to the desired reaction temperature. The temperature of the 

heating cell is monitored using a thermocouple placed less than a millimeter from 

the sample holder window.  The heating cell temperature is controlled using a 

Eurotherm PID controller. The heating cell is mounted on the optical table such 

that the center of the sample is positioned in the path of the 532 nm probing laser 

(Coherent Verdi) and at the focal point of the spectrometer collection optics.  The 

laser power output is fixed at 100 mW for all measurements.  

RLS and BLS are similar spectroscopic techniques.  Both are inelastic 

light scattering methods, which measure the shift in energy of scattered light from 

its incident energy.  Both techniques require the sample to be irradiated with 

monochromatic laser light, and the scattered light to be collected using 

collimating optics.  Once the scattered light is collimated, it can easily be directed 

to a spectrometer for measurement.  Our experimental setup takes advantage of 

this ability to direct the collimating light, by placing a rotating mirror between the 

collection lens and the spectrometers.  By rotating this mirror we direct the 

scattered light into either the Raman spectrometer or Brillouin spectrometer.  

During an experiment, for each time increment, a Raman spectrum is first 

collected, followed by a Brillouin spectrum.  The time logged for each pair of 

measurements, corresponds to the time at the end of the Brillouin spectrum 

collection.  In this manner, we can attribute measurements from both instruments 
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to the same 50 µm diameter scattering volume.  As a result, we can precisely 

relate the evolving visco-elastic properties of the sample to its chemical state.  

For BLS measurements, we analyze light that inelastically scatters from 

periodic density waves associated with thermally excited phonons in the sample.  

The frequency of the scattered light is Doppler-shifted from that of the incident 

light by an amount ωb. This shift is related to the speed of sound in the scattering 

medium, cL, by the relation 𝜔! = 𝑞𝑐, where q is the wavevector of the scattering 

phonon, and the subscript associated with the velocity denotes the mode of 

elastic deformation.  Using Brillouin scattering we can detect shear (S) and 

longitudinal (L) wave modes, though the particular modes observed depend upon 

the scattering geometry. [20] The planar periodic nature of the elastic 

deformation waves establishes a refractive grating, and only scattered light 

satisfying Bragg’s law can be detected, as all other scattered light interferes 

destructively.  This property allows us to select a specific phonon wave vector for 

measurement, by simply defining the scattering geometry of the incident and 

collected light.  For our experiment, we chose to measure light scattered 

according to the platelet geometry.[20, 21]  In this configuration the incident and 

scattered light enters and light exists the sample through parallel faces, at an 

angle that is bisected by a plane parallel to the sample faces (Figure 4.2). This 

configuration is convenient in that it eliminates the need to know the refractive 

index of the sample when determining the wavevector of the scattering phonon.  

In this case, the phonon wavevector is given by 𝑞 = 2𝑠𝑖𝑛 𝜃 𝜆!, where λ0 is the 

wavelength of the incident light, and θ is half the angle between the incident and 



 

 79 

scattered light.  From the wave vector and the Brillouin frequency shift, we 

calculate the phonon velocity for the sample as 

4.1                   𝑐! =
𝜔!𝜆!
2𝑠𝑖𝑛 𝜃 . 

From this velocity we can calculate the longitudinal elastic modulus according to  

4.2                   𝑀! = 𝜌𝑐!! = 𝜌
𝜔!𝜆!
2𝑠𝑖𝑛 𝜃  

where ρ is the average density of the sample.  All Brillouin spectra were 

recorded using a Sandercock tandem Fabry-Perot interferometer (TFPI).  The 

mirror spacing used was 5 mm and the scanning range was 200 nm over 512 

channels for greater collection speeds.  The density of the epoxy system is 1.17 

g/cm3, and is assumed to remain constant during cure.  

 

Figure 4.2 Schematic of platelet scattering geometry 
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Raman scattering is caused by changes in polarizability of the electron 

density associated with specific chemical bonding configurations while subject to 

vibrational modes of deformation.  The frequency shifts associated with this 

phenomenon depend on the molecular symmetries and the stresses that the 

vibrating bonds are subject to, whereas the intensity of the spectral peaks is a 

measure of the relative abundance of the underlying molecular species.  Analysis 

of the Raman spectra therefore allows us to identify specific molecular structures 

within a sample and measure their concentrations.  For our analysis, we used a 

Princeton Instruments TriVista triple monochrometer with Princeton Instruments 

Spec10 liquid nitrogen cooled CCD detector.  All spectra are centered at 1275 

cm-1, corresponding to the breathing mode of the epoxide ring.[22-24] 

Once acquired, Raman spectra are normalized with respect to the 1053 

cm-1 peak attributed to the phenol rings of the resin, which remain at a constant 

concentration throughout the cure process.  As the epoxide and amine groups 

react, the epoxide rings are opened resulting in a decrease in the 1275 cm-1 peak 

intensity with respect to the 1053 cm-1 phenol peak (Figure 4.3).  We therefore 

calculate the degree of cure (α) using the complement of ratio of the remaining 

epoxide to the initial epoxide peak intensities, i.e., 

4.3                   𝛼 = 1−
𝐼!"#$
𝐼!"#$! . 



 

 81 

 

Figure 4.3 Raman spectra are shown for different cure times. The epoxide peak at the 
marked position shrinks with increasing cure. 

4.4 Results and Discussion 

To examine the temperature dependence of the cure behavior, 

experiments were conducted on samples with a 1:1 amine-to-epoxide ratio at 

four different temperatures (22, 30, 40, and 50 °C).  The light scattering results 

show that the degree of cure exhibits the characteristic S-shaped dependence on 

time, common to curing systems (Figures 4.4a). As expected, the rate of cure 

increases with temperature.  It is important to note that the degree of cure 

reaches a maximum slightly above 70% cure. At this point, the remaining 

reactive groups lack the mobility required to continue the reaction.  Furthermore, 

the initial upward curvature of the cure curve, especially noticeable at lower 
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temperatures, suggests that the reaction is self-accelerating. This behavior could 

be attributed to local thermal changes due to the exothermic nature of the 

reaction, chemical self-catalysis, formation of local inhomogeneities, and the 

manifestation of gel effects within the sample. [25] Local heating in our sample is 

not a likely cause of self-acceleration due to the high surface area to volume ratio 

of our sample. Indeed, simulations of cure temperatures of a sample with the 

same composition and similar dimensions to ours show negligible variation 

during cure.[7] 

 

Figure 4.4 Degree of cure is shown as a function of time, along with best-fit curves for 
different cure temperatures (a) and different stoichiometries (b). 

In order to quantify the reaction kinetics of the system, we analyzed the 

cure curves using several reaction models.  The generalized form of these kinetic 

models is 

4.4                   
𝑑𝛼
𝑑𝑡 = 𝑘 𝑡 𝑓 𝛼  
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where α is the degree of cure and k is a temperature dependent rate constant 

that follows Arrhenius’s equation: 

4.5                   𝑘 = 𝐻𝑒 !!!!"  

with H being a constant, Ea  the activation energy, and R the ideal gas constant. 

This can be rewritten as 

4.6                   𝑙𝑛 𝑘 = −
𝐸!
𝑅

1
𝑇 + 𝑙𝑛 𝐻  

Accordingly, when plotting ln(k) vs. 1/T, the quantities H and Ea/R emerge as the 

intercept with the ordinate and the slope of a linear fit to the data points. 

Several forms of f(α) have been demonstrated to satisfactorily describe 

epoxy cure behavior.[10, 25-29]  A summary of these models is given in Table 

4.1.  As a basis of inquiry, we systematically fit our cure data using each of the 

models described in this table, and determined the reaction order, acceleration 

term, and inhibition terms needed to best describe our data.  In all of models α∞ 

is the degree of cure at t = ∞.  With values of less than 1 it acts as a limiting term 

reflecting the fact that complete cure cannot be achieved due to the loss of 

mobility of reactive groups at high degrees of cure.  Our analysis reveals that, 

based on the value of the correlation coefficient R2, the cure reaction is best 

described as a first order reaction with self accelerating properties.  This confirms 

the mechanism suggested by the general shape of the cure curve.  The 

Arrhenius behavior of ln(k) vs. 1/T is evident in Figure 4.5.  From this plot we 

extracted the rate constant and activation energy, the values of which are 

summarized in Table 4.2.  The acceleration constant, C, is not temperature 
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dependent, and has an average value of 8.12.  The final degree of cure is also 

temperature independent, with an average value of 0.75. 

 

Reaction Model F(α) R2 
1st order 

€ 

α∞ −α( ) 0.954 
2nd order 

€ 

α∞ −α( )2 0.912 

nth order 

€ 

α∞ −α( )n  0.954 

Self accelerated 1st order 

€ 

α∞ −α( ) 1+Cα( ) 0.984 
Self accelerated 2nd order 

€ 

1−α( ) α∞ −α( ) 1+Cα( ) 0.980 
Table 4.1 Summary of cure models and qualities of fit 

 

 

Figure 4.5 Arrhenius plot for the reaction rate coefficient k and the relaxation rate 
coefficient B. The values of the relaxation rate coefficient have been normalized by the 
change in modulus due to relaxation at each temperature. This normalization allows us 
to compare the reaction and relaxation rates on the same scale. 

 

 Ln(H) Ea α∞ C 
Cure Model 33.165 107.3 kJ/mol 0.75 8.12 

Table 4.2 Cure model parameters 
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We used the same first order self-accelerating cure model to fit the cure 

data for the measurements conducted with different amine concentrations.  The 

amine to hardener ratios that we investigated are 0.5:1, 0.75:1, 1:1, 1.5:1, and 

2:1.  All of these experiments were conducted at a temperature of 40oC.  In fitting 

this data we used the value for k determined by the Arrhenius fit from the 

temperature study, because the underlying chemistry of the reaction should 

remain the same for different reactant concentrations.  The final degree of cure,	
  

α∞,	
  depends strongly on the resin-to-hardener ratios, as is shown in Figure 4.6.  

For amine concentrations less than 1:1, the final degree of cure increases 

linearly with amine concentration.  In these reactions the process is limited by the 

availability of amine, and as such, when the amine is used up, the reaction stops.  

Above the stoichiometric ratio, the final degree of cure is roughly constant.  In 

this case the epoxy availability limits the reaction, and so the final degree of cure 

no longer depends on the amine concentration.  
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Figure 4.6 Final degree of cure (α∞)	
  as	
  a	
  function	
  of	
  hardener	
  to	
  epoxide	
  ratio 

The value of the acceleration constant, C, changes both above and below 

the 1:1 amine-to-epoxide ratio.  For the 1:1 ratio, the value of C is the same as 

observed for the samples cured at different temperatures.  Below 1:1 the value of 

C becomes small, with an average value of 0.75.  This value effectively 

minimizes the self-accelerating effect and causes the reaction to behave much 

like a typical first order reaction. Above the 1:1 ratio the value of C is also 

decreased, though not by as much as the below-stoichiometric hardener 

concentrations.  Again, the value of C remains roughly constant for the above 

stoichiometric hardener concentrations and averages at 5.33.  The behavior of 

the self-acceleration coefficient C observed for off-stoichiometric resin-hardener 

ratios supports the notion that this this effect is due to steric accessibility of 

reacting partners within the sample rather than local heating. The hardener has a 
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higher reaction site concentration per unit volume than the epoxy resin, so 

significantly increasing the hardener concentration does less to dilute the active 

reaction than increasing the relative amount of epoxy does. 

Using Brilluoin scattering we monitor the longitudinal modulus of the epoxy 

as it cures.  The overall behavior of the modulus appears comparable to the cure 

behavior for samples both at different temperatures and different stoichiometries 

as seen in Figures 4.7,a-b.  Because we collected our cure and modulus data 

concurrently from the same scattering volume, we can directly relate these two 

quantities.  In Figures 4.8 a-b we plot the longitudinal modulus vs. the degree of 

cure for both different cure temperatures and for different resin-hardener 

stoichiometries.  We note that the elastic modulus depends almost linearly on 

cure for the samples when cured at the slowest reaction rates, whether this rate 

is controlled via the temperature or the hardener-to-resin ratios.  Note that in the 

latter case, i.e., at low hardener concentrations, the final degree of cure varies, 

but the end points in the modulus vs. degree of cure data still fall onto a line 

connecting the modulus of pure resin with that of the most rigid network.  At 

faster reaction rates the elastic modulus appears to lag behind the formation of 

the polymer network structure, as judged by the degree of cure. 
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Figure 4.7 Longitudinal elastic modulus as a function of time for different cure 
temperatures (a) and different sample stoichiometries (b). 

 

 

Figure 4.8 Longitudinal elastic modulus as a function of cure for different cure 
temperatures (a) and different sample stoichiometries (b). 

During cure, the reacting epoxy forms a covalently bonded network that is 

responsible for part of the observed change in elastic properties.  Based on our 

findings, the elastic modulus of this network depends not only on the number and 
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topology of its constituent bonds, but also on the configuration and packing 

efficiency of network segments, possibly, the sequence by which the linkages 

between these segments are formed.  It is reasonable to assume that during 

cure, the location in which any given bond forms is not necessarily optimal for the 

overall network configuration.  Instead, the network structure likely reorganizes 

during and even after the cure reaction until it reaches an equilibrium state.[30]  

This reorganization may facilitate the formation of additional covalent bonds, or 

simply result in an optimized molecular packing that provides for stronger overall 

non-bonded dispersive interactions.  In the case of our epoxy system, we submit 

that the nonlinearity in the modulus as a function of the degree of cure for the 

faster polymerization is evidence for this reorganization process, and in the 

following present evidence for this process to predominantly consist of structural 

relaxation that leads to improved van der Waals and hydrogen bonding between 

polymer segments.  Indeed, when polymerization reactions are slow, this post-

polymerization structural reorganization occurs at a rate similar to or faster than 

the cure process itself.  In this case, the network structure remains roughly at 

equilibrium throughout the cure process.  Conversely, when the polymerization 

reaction occurs quickly, the network formation outpaces the structural 

reorganization resulting in the observed nonlinear relationship between the 

modulus and the degree of cure.  The fact that the modulus increases during this 

relaxation process means that additional stabilizing molecular interactions 

develop.  To gain further information about the nature of these interactions, we 

develop a model that describes the observed time-dependence of the elastic 
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modulus relative to that of the degree of cure.  A priori, this model does not 

require specification of the type of this secondary bonding, but we rather deduce 

this from the ensuing fit parameters.  The model therefore describes equally well 

the network formation resulting from two or more competing chemical reaction 

mechanisms or from locally sequential network evolution processes such as 

bond formation followed by network relaxation towards an optimally packed 

structure. 

Our objective in developing this model is to capture how a variation in 

reaction-rate, as monitored using Raman scattering, affects the mechanical 

behavior of the resulting network.  We assume that for a given degree of cure, 

the network will reach the same modulus given enough time for the structure to 

fully develop and relax to a local energy minimum.  This is based on the 

observation that the modulus of fully cured samples is the same for all curing 

rates.  Furthermore, we assume that the equilibrium (or fully relaxed) modulus is 

a linear function of the degree of cure, i.e.,   M ' = M '0+ M '∞− M '0( ) α α∞( ) . This is 

based on the observation that for the low-temperature curing reactions and for 

the hardener ratios below 1:1, the moduli evolve nearly linearly with the degree of 

cure.  We then let the rate of change of the modulus depend on a linear 

combination of two terms: one is linked to the rate of formation of covalent bonds 

and the other is proportional to the difference between the instantaneous 

modulus and the equilibrium modulus for the current degree of cure.  The rate 

equation describing this behavior is 
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4.7                       
𝑑𝑀!

𝑑𝑡
= 𝐴

𝑑𝛼
𝑑𝑡
+ 𝐵 𝑀′! +

𝛼(𝑀!
! −𝑀!

! )
𝛼!

−𝑀′ . 

Here A reflects the contribution of the network of covalent bonds to the 

epoxy stiffness, and B is a measure of the network relaxation rate.  M’0 and M’∞ 

denote elastic modulus of the system at the beginning and at the end of the cure 

process, and α∞ is the final degree of cure for the system. 

 Both the initial and final longitudinal moduli of our epoxy system decrease 

linearly with increasing temperature.  Fully cured samples that have been 

allowed to cool to room temperature all exhibit the same modulus, within 

measurement error, regardless of the temperature at which they were cured.  

Similarly, when taking a sample that was first fully cured at room temperature 

and heating it to various elevated temperatures, its modulus drops to the same 

value as that of a sample cured and held at these elevated temperatures.  This is 

illustrated in Figure 4.9, which shows both the M’0 and M’∞ measured for samples 

cured at different temperatures, as well as the modulus of a sample cured at 

room temperature and afterwards heated to 50oC.  The moduli coincide within 

measurement error, independent of thermal history.  This demonstrates that the 

decrease in modulus of the samples cured at higher temperature is solely due to 

the increased thermal motion of network components and entirely reversible 

structural changes, rather than to an irreversible change in the intrinsic bonding 

pattern within the polymer network. The optimal value for the network modulus, 

A, has been determined as 1.625 GPa.  At maximum cure this value accounts for 

an increase of about 1.14 GPa beyond the bulk modulus, K = 5.22 GPa, which 

we assume to be the only contribution to M’ at zero cure.  Hence, using the value 
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of 6.36 GPa for   M 'T   of the fully cured epoxy, we obtain for the Young’s modulus 

  ET = 9K M 'T− K( ) M 'T+ 3K( )  = 2.43 GPa, which is close to the literature value of 

2.55 GPa (as per specification by Hexion Specialty Chemicals).  Note that in our 

model the covalent bond contributions to the elastic response can be almost 

entirely attributed to the isothermal modulus, as is discussed in more detail 

below.  Hence, the subscript T in the above formulas refers to isothermal elastic 

constants.  The quantities measures using Brillouin scattering are adiabatic 

constants.  (We omit a subscript with these quantities for simplicity sake.) 

 

 

Figure 4.9 Initial and final longitudinal moduli (M’0 and M’∞) as functions of temperature, 
as well as the longitudinal modulus of a sample cured at room temperature and heated 
to 50 oC 

Figure 4.5 shows the relaxation rate, B, compared to the reaction rate 

coefficient k.  Because B and k each describe the rate of change of two 

quantities with different units and magnitudes of overall change, they each have 

been normalized with respect to the total change in modulus and degree of cure, 

respectively, that occur at each temperature. This normalization allows us to 
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compare B with k in terms of the relative changes they effect.  Note that this 

normalization does not affect the temperature dependence of these factors.  We 

observe that the rate constant B increases with temperature, following Arrhenius 

behavior with an activation energy of EaR = 57.1 kJ/mol.  Accordingly, the 

network reorganization rate is higher at increased temperatures, which allows the 

network to access an equilibrium state more rapidly.  Importantly, however, with 

an activation energy of 107.3 kJ/mol, the temperature dependence of the 

reaction rate coefficient is much stronger than that of the relaxation rate 

coefficient, which accounts for the fact that at room temperature the relaxation 

rate is much higher than the reaction rate, and the measured modulus therefore 

closely adheres to that of an ideally relaxed structure.  With increasing 

temperature the two rates become more closely matched, and thus gradually 

revealing the relaxation process.  At the highest temperature the reaction rate 

slightly surpasses the relaxation rate, exposing the latter process as the rate-

limiting step in network formation. 

The initial modulus of the amine-epoxy resin mixture decreases linearly 

with increasing hardener concentration, which reflects the thinning effect of the 

hardener.  Pure resin is very viscous, and as hardener is added it reduces the 

viscosity of the system, which explains the lower initial modulus.  Conversely, the 

behavior of the final longitudinal modulus exhibits two regimes with respect to the 

hardener concentration.  Below the stoichiometric ratio, the network connectivity 

is limited by amine availability.  As a result, the final degree of cure increases 

linearly with increasing amine concentration, and so does the final elastic 
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modulus.  Above the stoichiometric ratio, increasing the amount of amine no 

longer advances network connectivity, and only a small increase in the final 

modulus is observed.  The initial and final moduli for each hardener 

concentration examined are shown in Figure 4.10.  Eq. (4.7) also fits the modulus 

data for the samples cured with different resin-to-hardener ratios.  Since these 

systems were all cured at the same temperature, rate changes are only affected 

by structural mobility and the probability of juxtaposition of reactive sites.  We 

observe that the relaxation rate constant B remains constant with an average 

value of 10–3 s-1 over the range of hardener concentrations tested.  When fitting 

the reaction rate coefficient, k, within experimental error we find for all 

compositions the same value as the one determined at 40˚C when investigating 

the effect of temperature on cure at the stoichiometric resin-to-hardener ratio. 

 

 

Figure 4.100 Initial and final longitudinal moduli (M’0 and M’∞) as functions of sample 
stoichiometry 
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 In the series for different resin-to-hardener ratios we control the reaction 

rates by changing the probabilities for steric encounter, without affecting the 

magnitude of the reaction rate coefficients.  The relaxation rate, on the other 

hand, may be affected due to the change in mobility of the molecular 

constituents, depending on the mixing ratio.  When the system cures with a resin-

to-hardener ratio below 1:1 the reaction is amine limited resulting in a less 

densely bonded network structure and reduced mechanical properties.  Above 

the stoichiometric ratio, only modest changes in the reaction kinetics or the 

elastic properties are observed.  Similar to the effect of temperature, when 

accelerating the cure rate by increasing the hardener concentration, the 

relaxation process, whose rate is little or not at all affected by the concentration 

of hardener, eventually becomes apparent at high cure rates.  Not tested were 

stoichiometries where the volume of the epoxy and hardener are similar, and 

there are a vastly greater number of amine groups than epoxides.  In this regime 

it is likely that both the cure kinetics and the elastic properties will be dramatically 

different as the hardener will act as a solvent for the epoxy network as well as a 

reaction component.  However, such a scenario is unlikely and less relevant in 

practice. 

To successfully describe the evolution of the elastic modulus as a function 

of the degree of cure, it was necessary to account for two contributions: that of a 

network of covalent bonds and that due to optimized packing of polymer 

segments.  The latter can be modeled as a relaxation process.  It is important to 

note that the reason why these two mechanisms are discernable in this 
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investigation is the high frequency of the phonon probed with Brillouin scattering.  

Accordingly, we measure the adiabatic elastic modulus, whereas static tensile 

testing measures the isothermal modulus.  The latter corresponds to that of the 

fully disentangled structure under the influence of an applied stress.  The 

difference between adiabatic and isothermal modulus is called relaxational 

modulus.  For the epoxy system investigated here, the relaxational longitudinal 

modulus amounts to approximately 3.1 GPa.  This additional capacity to store 

elastic energy can be attributed to the optimization of polymer packing, 

maximizing non-covalent interactions between network segments.  This packing 

relaxation does not affect the network topology and is reversible.  Hence the fully 

relaxed network exhibits the highest (adiabatic) modulus, as probed by Brillouin 

scattering.  Conversely, static tensile testing probes a lower (isothermal) 

modulus, which corresponds to a non-relaxed network (or network constrained 

by the applied stress). 

4.5 Conclusion 

This work demonstrates the use of concurrent Raman-Brillouin light 

scattering measurements to characterize the relationship between the cure 

kinetics of an epoxy resin and the mechanical properties that develop as a result 

of the cure process. From these measurements we have developed a numerical 

model that captures the observed curing behavior. Our results show that for a 

given maximum degree of cure, the resulting epoxy network exhibits the same 

mechanical properties.  The elastic modulus of the epoxy network consist of two 

contributions: that of a network of covalent bonds and that of non-bonded 
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interactions between network segments, which arise when the structure relaxes 

into an optimally packed configuration.  The latter is associated with the so-called 

relaxational modulus in visco-elastic theory.  By probing high-frequency phonons, 

Brillouin scattering allows one to resolve this relaxational modulus, which is an 

attribute of a structure in its energy minimum.  Static tensile testing, on the other 

hand, does not resolve the relaxational modulus, as it measures the elastic 

properties of a structure constrained by the applied stress.  Structural changes 

between relaxed and strained networks are reversible.  With increasing rate of 

cure, the relaxational aspects of network formation become more apparent, 

because the relaxation process becomes rate limiting in reaching the equilibrium 

configuration of the network structure. 
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Chapter 5  

In-situ elastic modulus of epoxy between carbon fibers 

5.1 Chapter Synopsis 

The mechanical properties of thermoset resins used in carbon fiber 

composites depend on their processing conditions. The inclusion of fibers into 

the resin locally affects the thermal balance, creates chemical inhomogeneities, 

and templates structural developments in the polymer near the fiber surface. In 

this study we use Raman and Brillouin light scattering to investigate the effect of 

carbon fibers on the mechanical properties of an epoxy matrix. Our results show 

that the longitudinal modulus of epoxy within a fiber tow is about 3.75% lower 

than the modulus of the epoxy outside of the tow. Furthermore, within a fiber tow, 

the modulus depends on the local packing density of the carbon fibers. 

Comparison between our Brillouin and Raman measurements suggest that the 

observed spatial inhomogeneity in elastic properties of the matrix is not a result 

of residual stresses within the matrix but more likely due to structural 

reorganization in the interfacial region. 

5.2 Introduction 

Polymer matrix composites are becoming materials of choice for 

constructing stiff, lightweight parts for a range of applications from aerospace and 
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automotive components, to sporting goods. However, designing a composite part 

is significantly more challenging than for an equivalent part made of a single 

material. The mechanical properties of the composite are determined according 

to the properties of constituent materials and the processing conditions, such as 

mixing procedure, forming rates, temperature, and pressure used in 

manufacturing the composite. It is vital to understand how these processing 

conditions affect the final properties of the composite in order to optimize the 

performance of a manufactured part. 

In the case of a thermoset matrix textile composite, a liquid polymer resin 

is forced into the interstitial spaces of the reinforcing textile and cured under 

controlled temperature and pressure conditions. In the bulk, a resin cures with 

limited constraints on shrinkage or diffusion. However when inclusions in the 

form of textile fibers are added to the polymer, they obstruct the free flow of the 

resin while it is still in liquid form. The surface of the reinforcing constituent has 

been demonstrated to alter the cure kinetics and final mechanical properties of 

the polymer network.[1, 2] Volumetric constraints cause significant stress 

formation during the cure of thermoset resins.[3] Furthermore, fiber bundles 

within a composite can constrict the curing resin so that it causes microcracking 

of the resin matrix by the end of cure.[4, 5] Finally, if the fibers have different heat 

conduction characteristics than the resin, thermal conditions for the curing of the 

resin will also be different from those observed in the bulk. [6, 7]  

A good representative system for exemplifying this behavior is a carbon 

fiber textile composite with an epoxy matrix material. In this system the matrix is 
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composed of two parts: an epoxy resin, and an amine hardener. These 

components are mixed and polymerize exothermically to produce a highly 

crosslinked network around the carbon fibers. In these systems, it has already 

been observed that the mechanical behavior of the composites is not well 

modeled using the bulk properties of the constituent epoxy and carbon fibers.[8] 

Finite element modeling of both metal and polymer matrix composites has shown 

that the shape and packing of fibers has an effect on the mechanical properties 

of a tow. [9-11] All of these studies demonstrate the need for further mechanical 

characterization of the matrix material within a fiber tow. 

The small length scale at which the mechanical properties must be 

measured complicates characterization of the epoxy matrix within a composite. 

Common measurements of the elastic properties of polymer matrices rely on 

mechanically probing the sample surface. However, mechanical probes can be 

difficult to use in the confined spaces of a fiber tow. For example, 

nanoindentation close to the fiber-polymer interface is affected by the 

confinement of the matrix material near the interface, resulting in an artificially 

higher measured stiffness. [12] Brilluoin light scattering measurements using 

microscope optics has been shown to resolve the mechanical behavior of 

materials at the micron scale.[13, 14] Brillouin scattering probes the propagation 

and attenuation of thermal phonons that exist in all condensed matter at finite 

temperature. Therefore, no physical actuation is necessary to measure the 

elastic modulus. Additionally, the thermodynamic equilibrium of the sample is not 

disturbed because the momentum exchanged between the phonon and probing 
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photon is small compared with the original phonon momentum. Deformations that 

would interfere with the mechanical constraints of material near fibers are not 

required, and thus, confinement of matter in narrow spaces is not an issue for 

this technique. Furthermore, this technique can easily be combined with other 

optical analyses such as micro-Raman scattering, which is widely used as a tool 

for measuring structural deformations due to imposed or residual stress within a 

sample.[15-17] Because both methods are based on light scattering, their spatial 

resolution is primarily limited by the wavelength of light used. This enables 

measurements to be made in tightly confined regions and near interfaces. 

In this investigation, we use Brillouin and Raman light scattering to 

measure the longitudinal modulus and residual stresses in the epoxy matrix of a 

carbon fiber reinforced composite. Our measurements reveal that the elastic 

response of the epoxy depends on its location relative to the fibers. Outside of 

fiber tows, the elastic modulus is close to that of bulk epoxy, cast without fibers, 

whereas within a fiber tow the modulus is linearly correlated with the local density 

of fibers surrounding the measurement spot. At the same time, our Raman 

measurements show that there is little connection between these changes and 

any existing residual stresses within the sample. 

5.3 Methods and underlying formalisms 

The composite system we chose for our study consists of eight layers of 

45° braided carbon fibers embedded in a matrix of epoxy resin. The resin used is 

Epon 862, which was hardened with Epikure 9553, both manufactured by Hexion 

Specialty Chemicals. The average fiber diameter in our samples is 6 µm. Cubic 
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samples were cut from the composite and mounted for polishing such that the 

axial tows lay parallel to the polishing plane. The sample was then polished using 

progressively finer compounds, ending with 0.25 µm SiC. The result of the 

polishing is a sample surface that appears smooth at 100x magnification on our 

microscope. For comparison, we also prepared bulk epoxy samples that were cut 

and polished in the same manner as the composite samples.  

Our samples were imaged with an Olympus IX71 inverted microscope 

using a 100x objective lens. The field of view on the sample at this magnification 

measures 49 µm by 37 µm. Laser illumination for light scattering is provided by a 

532 nm Coherent Verdi V2 laser through the objective lens. The laser spot size 

has a diameter of ~1.5 µm. Laser power at the sample is set to 0.5 mW. 

Scattered light is collected by the objective lens and exits through the back of the 

microscope. The scattered light is then directed to either the Brillouin 

spectrometer or the Raman spectrometer by repositioning a motorized mirror. 

The Brillouin light scattering measurement consists of analyzing the light 

scattered from thermal phonons that naturally exist within matter at finite 

temperature. A small fraction of these scattering events occur inelastically, 

emitting photons with a frequency shift proportional to the phonon propagation 

velocity. Moreover, considering that phonons constitute a density, and 

consequently a periodic and planar refractive index grating, light scattered from 

this grating must obey the Bragg diffraction condition, ±𝒒 = 𝒌𝒔 − 𝒌𝒊  (Eq. 2.1), 

where q is the wavevector that describes the wavelength and propagation 

direction of the phonons probed, also called the scattering vector, and ks, and ki, 



 

 107 

are wavevectors of the scattered and incident light, respectively. Accordingly, the 

choice of scattering geometry allows one to single out phonons that propagate in 

a particular direction, and thereby ascertain the orientation of the underlying 

longitudinal and shear deformation. Because the velocity of sound is much 

smaller than the velocity of light, we can approximate 𝒌𝒔 = 𝒌𝒊 = 𝑛
!!

 (EQ. 2.2). 

Here, n is the index of refraction of the sample and λ0 is the wavelength of the 

incident light. From this approximation we calculate the magnitude of q as 

𝒒 = !𝑛
!!

𝑠𝑖𝑛 !
!

 (Eq. 2.3) where θ is the angle between ks and ki. Experimentally 

the scattering vector is determined by the laser wavelength and the angle 

between the illumination and collection optical paths. Because we use the same 

objective to illuminate the sample and to collect the scattered light, the scattering 

angle for our measurements is 180°. The phonon velocity of the medium can be 

calculated using the scattering vector, and the measured the frequency shift of 

the scattered light using   𝑣 = !!
𝒒
= !!!!

!!"#! !
!

 (Eq. 2.8), where Δω is the frequency 

shift of the scattered light. From this calculation we can then directly determine 

the longitudinal elastic modulus using the relation 

5.1                   𝑀′ = 𝜌𝑣! =
𝐸 1− 𝜈

1+ 𝜈 1− 2𝜈 , 

Here E is the Young’s modulus, ν is the Poisson’s ratio, and ρ is the sample 

mass density. We collected all of our Brillouin spectra using a Sandercock six-

pass tandem Fabry-Perot interferometer. [18] The spectrum of scattered light 

was analyzed by fitting the collected data with the appropriate expression of the 

dynamic structure factor using the open source peak fitting software package 
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Fityk. [19, 20] This yields peak position, i.e., the frequency shift , the peak 

intensity, and its full width at half maximum. 

Whereas Brillouin scattering yields a measure of the stiffness of a sample, 

Raman scattering provides information about the deformation of the polymer 

network in a sample. Studies have demonstrated that the symmetrical stretching 

mode of phenylene around 1600 cm-1 is sensitive to the state of stress in a 

polymer. [15-17] As the tensile stress applied to the ring is increased, the peak 

shifts monotonically to a lower wavenumber. Furthermore, it has been found that 

the D and G bands in the Raman spectrum of carbon fiber shift to lower 

wavenumbers under the application of tensile stress. [17, 21] The epoxy that we 

chose for our composite, Epon 862, contains two phenylene groups, which yield 

a cluster of three peaks between 1585 cm-1 and 1618 cm-1 (Figure 5.1 (a) ). By 

analyzing the position of these peaks along with the locations of the D and G 

peaks of the carbon fiber spectrum (Figure 5.1 (b)), we can determine the state 

of stress of our sample relative to bulk epoxy and loose carbon fibers. We 

collected the Raman spectra using a Princeton Instruments TriVista triple 

monochrometer with a 750 mm focal length, paired with a Princeton Instruments 

Spec 10 liquid nitrogen cooled CCD detector. Collections were centered at 1600 

cm-1 for regions composed both of epoxy and carbon fibers. 
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Figure 5.1 (a) The three components of the phenelyne peak for the Epon862 and 
Epikure 9553 composite matrix. (b) The D band (dotted) and G band of the carbon 
reinforcing fibers. 

5.4 Results and discussion 

For the first part of our investigation, we defined three types of epoxy 

containing regions within the composite and surveyed them using both Brillouin 

and Raman scattering. One region is the area between the braided layers of 

carbon. This region contains the largest volumes of epoxy that do not contain any 

fibers. The average thickness of this layer is around 300 µm. Because of the way 

we cut and polished our samples we can observe fibers in two orientations at the 

sample surface (Figure 5.2). The axial tows lay parallel to the sample surface so 

Brillouin scattering in the region between these fibers yields a modulus 

perpendicular to the fiber axis and tangential to its circumference. Finally, 

Brillouin measurements of the epoxy within the bias tows yield moduli in the 

direction 45° to the fiber axis. In addition to these three regions we also collected 
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Brillouin and Raman spectra from the bulk epoxy sample, and Raman spectra 

from lose carbon fibers. 

 

Figure 5.2 40X magnification light microscopy image showing the three types of regions 
that we analyzed: fibers 45° to the surface (top), parallel to the surface (middle), and 
epoxy regions between layers of fibers (bottom) 

After analyzing the Brillouin spectra from this survey, we observe that both 

the epoxy between layers and the bulk epoxy have nearly the same average 

longitudinal modulus, 8.81 GPa and 8.77 GPa, respectively. Moreover the epoxy 

within a fiber tow, both measured at 90° and 45° to the fiber axis, shows a 

reduced longitudinal modulus (Figure 5.3). The modulus measured tangential to 

the fiber circumference and at 90° to the fiber axis averaged at 8.63 GPa. This 

corresponds to a 2.04% decrease in modulus as compared to the epoxy between 
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layers. When measured at 45° the average modulus was found to be 8.48 GPa, 

corresponding to a decrease of 3.75% from the between layer value.  

 

Figure 5.3 Box plot of the elastic moduli for three regions within the composite as 
compared to bulk epoxy 

To determine the reason for this decrease, for example whether the 

observed differences in modulus result from residual stresses, we examine the 

positions of the three Raman peaks in the 1600 cm-1 region of the spectra 

obtained for the epoxy phase, which are attributed to phenylene rings, and 

compare them with the variation of the elastic moduli measured by Brillouin 

scattering. Straining the phenylene groups would cause the Raman peaks to 

shift, but we observe that the Raman peak positions remain essentially 

independent of the elastic modulus (Figure 5.4). Similarly, measurements of the 

D and G bands of the carbon fibers embedded in the composite do not reveal 

any conclusive information in terms of their state of strain, compared to that of 
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loose carbon fibers (Figure 5.5). The D and G bands of embedded fibers slightly 

shift compared to their positions in unconstrained fibers, but in opposite 

directions. If indeed bond straining caused such shifts, it would have to be in the 

same direction for both bands. These results suggest that the difference in 

modulus between bulk epoxy and epoxy contained within a fiber tow is not 

primarily related to residual stresses.  

 

Figure 5.4 Raman Shifts vs M’ for the three phenylene peaks of the epoxy matrix 
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Figure 5.5 Raman shifts for the D and G bands of loose and embedded carbon fibers. 
No consistent shift is observed for which suggests that there is minimal difference in 
their states of stress. 

The data in Figure 5.3 reveal the differences between the elastic 

responses of epoxy inside and outside of fiber tows, but do not correlate this 

response with the proximity to the fiber-epoxy interface. We therefore measured 

the longitudinal modulus of the epoxy as a function of the distance to the nearest 

interface. The results, summarized in Figure 5.6., reveal an apparent, albeit 

uncertainty-laden trend: the average value of the modulus decreases noticeably 

in close proximity of the fiber surface. However, the variance in the modulus 

increases significantly within about 5 µm of the interface. Inside a fiber tow, 

however, the distance to the surface of a given carbon fiber proves to be an 

incomplete metric. This measure fails to account for the influence fibers other 

than the one nearest to the laser spot. In a densely, yet somewhat irregularly 
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packed region of a tow, considering only the distance to the nearest fiber does 

not differentiate whether there is only one or several fibers close by the 

measurement location. Ultimately, we found the Gaussian-weighted local number 

density of fibers surrounding a given measurement point to yield the most 

consistent analysis. For this investigation, we chose to look only at the region 

containing fibers 45° to the sample surface, for which it is straightforward to count 

all fibers in the vicinity of a measurement point. We did not perform this analysis 

in regions where fibers are oriented parallel to the polished surface, as we cannot 

ascertain the arrangement of fibers beneath this surface. 

 

Figure 5.6 Longitudinal modulus as a function of the distance between the laser spot and 
the surface of the nearest carbon fiber 

In this set of micro-Brillouin scattering experiments, we recorded the 

position of the laser spot and the locations of all visible fibers for each Brillouin 

spectrum we collected, allowing us to determine the distances from each position 
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of the Brillouin measurement to the centers of surrounding fibers. To calculate a 

local fiber density based on these distances, we must delineate the region of 

influence using a gradually decaying radial windowing function. A flat windowing 

function that truncates the region of influence at an arbitrary maximum distance 

can result in abrupt density fluctuations. Instead, we use a Gaussian windowing 

function,   e
−r2 2σ 2 2πσ 2( ) , where r is the spatial coordinate, and σ is the standard 

deviation of the Gaussian. This windowing function smoothly decays with 

increasing distance from the point of measurement, weighing nearby fibers 

strongly while the effect of more distant ones fades rapidly. Accordingly, we 

calculate the local fiber density by integrating the windowing function multiplied 

with the Dirac delta function,  δ r − ri( ) , where ri is the distance from the laser spot 

to the center of fiber i, and by summing over all fibers in the field of vision, i.e., 

5.2                   𝜌! =
1

2𝜋𝜎! 𝛿 𝑟 − 𝑟! 𝑒 !!! !!! 𝑑𝑟
!

!
.

!

 

We can now relate the elastic modulus measured at a particular location 

with the local fiber density at that location. The result will depend to some extent 

on the choice of σ, which can be considered a measure of the extent of the 

region of influence. The data in Figure 5.6 already suggests that the observed 

effect of carbon fiber on the elastic properties of the epoxy matrix is localized 

roughly within 5 µm of the interface. Bracketing this value, we calculated ρF for 

each measurement point for a range of values of σ. For each value of σ, we 

calculated a linear regression of M’ as a function of ρF. The inset of Figure 5.7 

shows the correlation coefficient R2 of the regressions as a function of σ. As σ is 
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increased, more fibers are accounted for by the windowing function, resulting in a 

sharp increase in correlation between M’ and ρF. A maximum correlation is 

attained at σ = 3.9 µm. When σ is increased further, the correlation drops again 

and plateaus as σ approaches the size of our microscope’s field of view. 

Accordingly, a window with a diameter of about 9.5 µm, assuming the full width at 

half maximum as a measure, most sensitively accounts for the effect the 

presence of fibers have on the final modulus of the epoxy matrix. A smaller 

window does not include all fibers that affect the elastic properties in their midst, 

and a larger window appears to encompass fibers that have no influence, i.e., the 

fluctuations in the local density arising from inhomogeneities in fiber packing 

needlessly causes scatter in the local density value. For σ = 3.9 µm 90% of the 

property changes have on average occurred within about 8.4 µm from the center 

of any given fiber, or 5.4 µm from its surface, which compares very well with the 

observed relationship between M’ and the distance to the nearest fiber shown in 

fig 6. For this region, our data shows that the modulus decreases with increasing 

fiber number density as shown in Figure 5.7. The equation for the best fit line 

through the data is: 𝑀′ =   8.55− 13.37𝜌!. This data covers regions within a tow 

containing no fibers within the windowing function, to regions approaching the 

close packing limit, which for fibers 6 µm in diameter corresponds to a density of 

about 0.03 fibers/µm2. 
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Figure 5.7 Longitudinal modulus vs fiber density (ρF) calculated with a σ = 3.9 µm. Inset: 
R2 values for linear regressions of longitudinal modulus as a function of local fiber 
density for different values of σ. 

5.5 Conclusions 

Through our light scattering experiments we have demonstrated that the 

epoxy matrix within a fiber tow has a consistently lower elastic modulus than 

matrix epoxy found outside a tow. Furthermore we have determined that the 

modulus of the epoxy within a tow is correlated to the number density of nearby 

carbon fibers. The effect of fiber packing is most pronounced for regions of epoxy 

within 4.8 µm of a fiber’s surface. Raman measurements suggest that the 

observed difference in modulus is not caused by stresses in the matrix. This 

leaves either chemical inhomogeneity of the epoxy, and/or structural 

reconfigurations of the epoxy network structure in the vicinity of the interface 

between fiber and polymer matrix as likely sources of the observed difference in 
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modulus. Future work with other matrix materials would shed more light on 

resolving these issues more definitively. 
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Chapter 6  

Conclusions and Future Work 

 

The mechanical behavior of polymer matrix material in carbon fiber 

composites depends in part on the cure kinetics of the polymer, as well as the 

local arrangement of carbon fibers within the composite structure. By determining 

to what extent these attributes affect the mechanical properties of the matrix 

polymer, we can design new models that better represent the mechanical 

behavior of the composite material as a whole. Through the work presented in 

this thesis, we have developed a technique of concurrent Raman and Brillouin 

light scattering to concurrently measure the chemical and mechanical properties 

of a material. This technique was then applied to two curing polymer systems, 

DCPD and epoxy, to determine how their elastic properties evolve as a result of 

their curing processes. Concurrent Raman and Brillouin scattering was also 

applied to sectioned carbon fiber epoxy composite samples in order to measure 

the effect of the presence of carbon fibers on elastic properties of the epoxy 

matrix material. Together, these studies underline the effectiveness of combining 

Raman and Brillouin scattering to determine the relationship between chemistry 

and mechanical properties in evolving polymer systems. The results of both cure 

studies revealed an interesting mechanical equilibration behavior where the 
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mechanical modulus of the polymer continues to increase after the cure reaction 

has ended. Furthermore, the survey of sectioned carbon fiber samples revealed 

that the elastic modulus of the epoxy matrix depends on the packing density of 

the surrounding fibers.  

DCPD polymerized with the aid of Grubbs catalyst was a good test case 

for using concurrent Raman and Brillouin scattering because the DCPD 

monomer is a fairly small organic molecule, with a limited number of Raman 

modes. More importantly, DCPD has a set of distinctive Raman modes 

associated with each of its reactive sites. Tracking the intensity of these peaks 

allows us to determine the degree of cure of the system and measure the 

contribution of each reactive site to the overall state of cure. Using this data, we 

constructed a kinetic model that describes the cure process as a function of the 

concentrations of reactive species in the system. The model suggests that the 

reaction rate of the DCPD depends on the square of the catalyst concentration, 

and that there is a minimum concentration below which the reaction will not 

progress. By combining the reaction information with the elastic modulus 

obtained by Brillouin scattering, we demonstrate that once the cure reaction has 

ended, the network continues to stiffen for some time. This phenomenon was 

modeled well by letting the species Φ1 directly contribute to the modulus, and by 

attaching a time dependent term to the contribution to the modulus by the 

species Φ2. 

Using the same light scattering methods on curing a curing epoxy system 

yielded similar results to the DCPD. A lag in the development of the elastic 
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modulus was also observed when Epon 862 epoxy is cured with Epikure 9552 

amine hardener. With the epoxy system, however, the lag in development of the 

elastic modulus appears to be dependent on the rate of reaction. This was tested 

by curing samples both at different temperatures and with different amine to 

epoxy ratios in order to change the reaction rate. We observe that for slow 

reactions, the relationship between modulus and cure is linear, while increasing 

the rate of reaction induces a deviation from linearity in this relationship. 

Modeling of the modulus to cure relationship suggests that, for a given degree of 

cure, there is an equilibrium value of the elastic modulus. When the system 

reacts quickly, changes in the network structure as a result of the cure reaction 

happen more quickly than the rate at which network equilibrates. For slow 

reaction conditions the network equilibrates at an equal with the cure reaction 

yielding a linear relationship between modulus and degree of cure. Heinrich et al. 

used an early version of this cure model to simulate the generation of heat and 

stress in a composite during cure.[1-3] In that model, the relationship between 

modulus and cure is considered to independent of reaction rate. By incorporating 

the rate dependent effects observed for the evolution of the elastic modulus, it 

should be possible to develop more accurate model of the stresses induced in 

the matrix during cure. 

Finally, we surveyed sectioned and polished carbon fiber composite 

samples and measured the elastic modulus of regions between fiber tows as well 

as within them. This study confirmed that the inclusion of carbon fibers changes 

the elastic properties of the cured epoxy system. Our initial survey revealed that 



 

 124 

the epoxy matrix between fiber tows has the same elastic modulus as bulk 

epoxy. However, epoxy within a tow, and therefore in close proximity to carbon 

fibers, has a modulus that is on average 3.75% lower than the bulk. Raman 

spectra of the same sample sites showed no correlation between the frequency 

shift of strain-sensitive peaks and the elastic modulus, suggesting that the 

observed difference in modulus is not due to residual stresses in the matrix. By 

analyzing images of the fibers around the location of each measurement, we 

determined that the packing density of the fibers in closest proximity to the 

measurement was well correlated to the observed elastic modulus. The effect of 

a given fiber only extends for about 5.4 µm from the fiber’s surface. This result 

explains why the effect is only observed within a fiber tow, and not throughout all 

regions of the composite. The exact cause of the decreased modulus near the 

fiber surface remains undetermined, and could be related to such factors as: 

thermal gradients during cure, limited chemical diffusion and mixing between 

fibers, and chemical interactions between the epoxy and the fiber surface. 

Further experiments with other epoxy systems, other fiber compositions, and 

different processing conditions, may help determine the ultimate cause of this 

discrepancy in modulus.  

These three studies have demonstrated the potential benefits of 

combining Raman and Brillouin light scattering methods. Together, they enable 

measurement of both mechanical properties and chemical structure in samples 

at both the bulk and micro scale. These techniques in combination with the 

carefully controlled chain growth and crosslinking reactions enabled by the 
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growing application of “click chemistry” may allow us to further probe the 

relationship between crosslinking and elastic modulus in polymer systems.[4] In 

the field of nano-composites, it may be possible to determine the mechanisms by 

which loads are transferred between polymers and reinforcing nanoparticles. 

Raman measurements of Pu/MTM clay films have shown that a strong Raman 

peak forms at 1150 cm-1 as strain is applied to the film.[5] This peak formation 

suggests a change in the structural configuration of the clay, the polymer or both. 

By straining samples and observing the changes in their Raman and Brillouin 

spectra, it may be possible to better understand how mechanical actuation can 

induce changes in both the chemistry and the mechanical properties of a 

material.  
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