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ABSTRACT

New Statistical Issues for Censored Survival Data: High-Dimensionality and
Censored Covariate

by

Shengchun Kong

Chair: Bin Nan

Censored survival data arise commonly in many areas including epidemiology, engi-

neering and sociology. In this dissertation, we explore several emerging statistical

issues for censored survival data.

In Chapter II, we consider finite sample properties of the regularized high-dimensional

Cox regression via lasso. Existing literature focuses on linear or generalized linear

models with Lipschitz loss functions, where the empirical risk functions are the sum-

mations of independent and identically distributed (iid) losses. The summands in

the negative log partial likelihood function for censored survival data, however, are

neither iid nor Lipschitz. We first approximate the negative log partial likelihood

function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic ora-

cle inequalities for the lasso penalized Cox regression, using pointwise arguments to

tackle the difficulties caused by lacking iid Lipschitz losses.

In Chapter III, we consider generalized linear regression analysis with a left-

censored covariate due to the limit of detection. The complete case analysis yields

valid estimates for regression coefficients, but loses efficiency. Substitution meth-
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ods are biased; the maximum likelihood method relies on parametric models for the

unobservable tail probability, thus may suffer from model misspecification. To ob-

tain robust and more efficient results, we propose a semiparametric likelihood-based

approach for the regression parameters using an accelerated failure time model for

the left-censored covariate. A two-stage estimation procedure is considered. The

proposed method outperforms the existing methods in simulation studies. Technical

conditions for asymptotic properties are provided.

In Chapter IV , we consider longitudinal data analysis with a terminal event. The

existing methods include the joint modeling approach and the marginal estimating

equation approach, and both assume that the relationship between the response vari-

able and a set of covariates is the same no matter whether the terminal event occurs

or not. This assumption, however, is not reasonable for many longitudinal studies.

Therefore we directly model event time as a covariate, which provides intuitive in-

terpretation. When the terminal event times are right-censored, a semiparametric

likelihood-based approach similar to Chapter III is proposed for the parameter esti-

mations. The proposed method outperforms the complete case analysis in simulation

studies and its asymptotic properties are provided.
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CHAPTER I

Introduction

This dissertation primarily explores survival analysis and spans several important

areas of statistics including high-dimensional data analysis and longitudinal data

analysis. There are three different topics in this dissertation, and each focuses on a

different problem with its own features. The last two topics concern the censored

covariate issue in two different setups.

1.1 High-dimensional Cox Regression via LASSO

Since it was introduced by Tibshirani (1996), the lasso regularized method for

high-dimensional regression models with sparse coefficients has received a great deal

of attention in the literature; see, for instance, Bickel, Ritov, and Tsybakov (2009)

and van de Geer (2008). Properties of interest for such regression models include

the finite sample oracle inequalities. For censored survival data, the Cox regression

model is the most widely used method and is of great interest whether the oracle

inequalities hold. Unlike the linear models and generalized linear models, however, the

finite sample non-asymptotic statistical properties for the Cox model are extremely

difficult, mainly due to lacking independent and identically distributed (iid) Lipschitz

losses in the partial likelihood.

To address this problem, in Chapter II, we first approximate the negative log
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partial likelihood function by a sum of iid non-Lipschitz terms. With the Lipschitz

condition replaced by a less restrictive boundedness assumption for the regression

parameters, we tackle the problem using pointwise arguments to obtain the oracle

bounds of two types of errors: one is between the empirical loss and the expected

loss, and one is between the negative log partial likelihood and the empirical loss.

We show that the non-asymptotic error bounds for the lasso penalized Cox regression

have the same order as if the set of underlying non-zero coefficients were given ahead

by an oracle, which is typically of the order log m × dimθ/n where m is the number

of covariates, n is the number of observations, and dimθ is the number of non-zero

coefficients.

1.2 Covariate Subject to Limit of Detection

Detection limit is a threshold below which measured values are not considered

significantly different from background noise. Hence, values measured below this

threshold are unreliable. A variety of statistical tools have been developed to tackle

this problem with the response variable subject to limit of detection (LOD). For

example, standard semiparametric survival models can be applied because LOD is in

fact left censoring, which can be easily transformed to right censoring by changing the

sign of the variable. Estimation for regression models with a covariate subject to LOD

is more difficult, and many ad hoc methods have been implemented in practice but

found to be inappropriate. The complete case analysis, which eliminates observations

with covariate values below LOD, yields valid estimates for regression coefficients, but

loses efficiency. Substitution methods are easily implementable, but can yield large

bias. Maximum likelihood methods rely on parametric models for the unobservable

tail probability, and therefore may suffer from model misspecification.

In Chapter III, to obtain more efficient and yet robust results, we propose a semi-

parametric likelihood-based approach to fit generalized linear models with covariate
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subject to LOD. The tail distribution of the covariate beyond its LOD is estimated

from a semiparametric accelerated failure time (AFT) model, conditional on all the

fully observed covariates. A two-stage estimation procedure is considered, where

the conditional distribution of the covariate with LOD given other variables is es-

timated prior to maximizing the likelihood function. The estimation based on the

proposed method is proved to be consistent and asymptotically normal, and outper-

forms existing methods in simulations. In the anti-Mullerian hormone data analysis,

the proposed two-stage method yields similar point estimates with smaller variances

compared to the complete case analysis, indicating the efficiency gain of the proposed

method.

1.3 Longitudinal Data Analysis with Terminal Event

Chapter IV considers the longitudinal data analysis with terminal events. In

longitudinal studies, the collection of information can be stopped at the end of the

study, or at the time of dropout of a study participant, or at the time that a terminal

event occurs. For example, death, the most common terminal event, often occurs in

aging cohort studies and cancer studies. Existing methods include the joint modeling

approach using latent frailty and the marginal estimating equation approach using

inverse probability weighting. Neither approach directly models the effect of terminal

event to the response variable or to the relationship between response variable and

covariates. These type of modeling strategies, however, are not reasonable for many

longitudinal studies, where the explicit effect of terminal event time is of interest.

We propose to directly model event time as a covariate, which provides intuitive

interpretation. When the terminal event times are right-censored, a semiparametric

likelihood-based approach is proposed for the parameter estimation, where the Cox

regression model is used for the censored terminal event time. We consider a two-

stage estimation procedure, where the conditional distribution of the right-censored

3



terminal event time given other variables is estimated prior to maximizing the likeli-

hood function for the regression parameters. The proposed method outperforms the

complete case analysis in simulation studies, which simply eliminates the subjects

with censored terminal event times. Desirable asymptotic properties are provided.
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CHAPTER II

Non-Asymptotic Oracle Inequalities for the

High-Dimensional Cox Regression via Lasso

2.1 Introduction

Since it was introduced by Tibshirani (1996), the lasso regularized method for

high-dimensional regression models with sparse coefficients has received a great deal

of attention in the literature. Properties of interest for such regression models in-

clude the finite sample oracle inequalities. Among the extensive literature of the

lasso method, Bunea, Tsybakov, and Wegkamp (2007) and Bickel, Ritov, and Tsy-

bakov (2009) derived the oracle inequalities for prediction risk and estimation error

in a general nonparametric regression model, including the high-dimensional linear

regression as a special example, and van de Geer (2008) provided oracle inequalities

for the generalized linear models with Lipschitz loss functions, e.g., logistic regression

and classification with hinge loss. Bunea (2008) and Bach (2010) also considered the

lasso regularized logistic regression. For censored survival data, the lasso penalty has

been applied to the regularized Cox regression in the literature, see e.g. Tibshirani

(1997) and Gui and Li (2005), among others. Recently, Bradic, Fan, and Jiang (2011)

studied the asymptotic properties of the lasso regularized Cox model. However, its

finite sample non-asymptotic statistical properties have not yet been established in
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the literature to the best of our knowledge, largely due to lacking iid Lipschitz losses

from the partial likelihood. Nonetheless, the lasso approach has been studied exten-

sively in the literature for other models, see e.g. Martinussen and Scheike (2009) and

Gaiffas and Guilloux (2012), among others, for the additive hazards model.

We consider the non-asymptotic statistical properties of the lasso regularized high-

dimensional Cox regression. Let T be the survival time and C the censoring time.

Suppose we observe a sequence of iid observations (Xi, Yi, ∆i), i = 1, . . . , n, where

Xi = (Xi1, · · · , Xim) are the m-dimensional covariates in X , Yi = Ti ∧ Ci, and

∆i = I{Ti≤Ci}. Due to a large amount of parallel material, we follow closely the

notation in van de Geer (2008). Let

F =

{
fθ(x) =

m∑

k=1

θkxk, θ ∈ Θ ⊂ Rm

}
.

Consider the Cox model (Cox (1972)):

λ(t|X) = λ0(t)e
fθ(X),

where θ is the parameter of interest and λ0 is the unknown baseline hazard function.

The negative log partial likelihood function for θ is

ln(θ) = − 1

n

n∑
i=1

{
fθ(Xi)− log

[
1

n

n∑
j=1

1(Yj ≥ Yi)e
fθ(Xj)

]}
∆i. (2.1)

The corresponding estimator with lasso penalty is denoted by

θ̂n := arg min
θ∈Θ

{ln(θ) + λnI(θ)},

where I(θ) :=
∑m

k=1 σk|θk| is the weighted l1 norm of the vector θ ∈ Rm. van de

Geer (2008) considered σk to be the square-root of the second moment of the k-th
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covariate Xk, either at the population level (fixed) or at the sample level (random).

For normalized Xk, σk = 1. We consider fixed weights σk, k = 1, · · · ,m. The results

for random weights can be easily obtained from the case with fixed weights following

van de Geer (2008), and we leave the detailed calculation to interested readers.

Clearly the negative log partial likelihood (2.1) is a sum of non-iid random vari-

ables. For ease of calculation, consider an intermediate function as a “replacement”

of the negative log partial likelihood function

l̃n(θ) = − 1

n

n∑
i=1

{fθ(Xi)− log µ(Yi; fθ)}∆i (2.2)

that has the iid structure, but with an unknown population expectation

µ(t; fθ) = EX,Y

{
1(Y ≥ t)efθ(X)

}
.

The negative log partial likelihood function (2.1) can then be viewed as a “working”

model for the empirical loss function (2.2). The corresponding loss function is

γfθ
= γ(fθ(X), Y, ∆) := −{fθ(X)− log µ(Y ; fθ)}∆, (2.3)

with expected loss

l(θ) = −EY,∆,X[{fθ(X)− log µ(Y ; fθ)}∆] = Pγfθ
, (2.4)

where P denotes the distribution of (Y, ∆,X). Define the target function f̄ as

f̄ := arg min
f∈F

Pγf := fθ̄,

where θ̄ = arg minθ∈Θ Pγfθ
. It is well-known that Pγfθ

is convex with respect to θ for

the regular Cox model, see for example, Andersen and Gill (1982). Thus, the above
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minimum is unique if the Fisher information matrix of θ at θ̄ is non-singular. Define

the excess risk of f by

E(f) := Pγf − Pγf̄ .

It is desirable to show similar non-asymptotic oracle inequalities for the Cox regression

model as in, for example, van de Geer (2008) for generalized linear models. That is,

with large probability,

E(fθ̂n
) ≤ const.×min

θ∈Θ
{E(fθ) + Vθ} .

Here Vθ is called the “estimation error”, which is typically proportional to λ2
n times

the number of nonzero elements in θ.

Note that the summands in the negative log partial likelihood function (2.1) are

not iid, and the intermediate loss function γ(·, Y, ∆) given in (2.3) is not Lipschitz.

Hence the general result of van de Geer (2008) that requires iid Lipschitz loss func-

tions does not apply to the Cox regression. We tackle the problem using pointwise

arguments to obtain the oracle bounds of two types of errors: one is between empiri-

cal loss (2.2) and expected loss (2.4) without involving the Lipschitz requirement of

van de Geer (2008), and one is between the negative log partial likelihood (2.1) and

empirical loss (2.2) which establishes the iid approximation of non-iid losses. These

steps distinguish our work from that of van de Geer (2008); we rely on the Mean

Value Theorem with van de Geer’s Lipschitz condition replaced by the similar, but

much less restrictive, boundedness assumption for regression parameters in Bühlmann

(2006).

The article is organized as follows. In Section II.2, we provide assumptions that are

used throughout the paper. In Section II.3, we define several useful quantities followed

by the main result. We then provide a detailed proof in Section II.4 by introducing a

series of lemmas and corollaries useful for deriving the oracle inequalities for the Cox
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model. To avoid duplicate material as much as possible, we refer to the preliminaries

and some results in van de Geer (2008) from place to place in the proofs without

providing much detail.

2.2 Assumptions

We impose five basic assumptions. Let ‖ · ‖ be the L2(P ) norm and ‖ · ‖∞ the sup

norm.

Assumption II.A. Km := max1≤k≤m{‖Xk‖∞/σk} < ∞.

Assumption II.B. There exists an η > 0 and strictly convex increasing G, such

that for all θ ∈ Θ with ‖fθ − f̄‖∞ ≤ η, one has E(fθ) ≥ G(‖fθ − f̄‖).
In particular, G can be chosen as a quadratic function with some constant C0, i.e.,

G(u) = u2/C0, then the convex conjugate of function G, denoted by H, such that

uv ≤ G(u) + H(v) is also quadratic.

Assumption II.C. There exists a function D(·) on the subsets of the index set

{1, · · · ,m}, such that for all K ⊂ {1, · · · ,m}, and for all θ ∈ Θ and θ̃ ∈ Θ, we

have
∑

k∈K σk|θk− θ̃k| ≤
√

D(K )‖fθ−fθ̃‖. Here, D(K ) is chosen to be the cardinal

number of K .

Assumption II.D. Lm := supθ∈Θ

∑m
k=1 |θk| < ∞.

Assumption II.E. The observation time stops at a finite time τ > 0, with

ξ := P (Y ≥ τ) > 0.

Assumptions II.A, II.B, and II.C are identical to those in van de Geer (2008) with

her ψk the identity function. Assumptions II.B and II.C can be easily verified for the

random design setting where X is random (van de Geer (2008)) together with the

usual assumption of non-singular Fisher information matrix at θ̄ (and its neighbor-

hood) for the Cox model. Assumption II.D has a similar flavor to the assumption

(A2) in Bühlmann (2006) for the persistency property of boosting method in high-
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dimensional linear regression models, but is much less restrictive in the sense that Lm

is allowed to depend on m in contrast with the fixed constant in Bühlmann (2006).

Here it replaces the Lipschitz assumption in van de Geer (2008). Assumption II.E

is commonly used for survival models with censored data, see for example, Andersen

and Gill (1982). A straightforward extension of Assumption II.E is to allow τ (thus

ξ) to depend on n.

From Assumptions II.A and II.D, we have, for any θ ∈ Θ,

e|fθ(Xi)| ≤ eKmLmσ(m) := Um < ∞ (2.5)

for all i, where σ(m) = max1≤k≤m σk. Note that Um is allowed to depend on m.

2.3 Main result

Let I(θ) :=
∑m

k=1 σk|θk| be the l1 norm of θ. For any θ and θ̃ in Θ, denote

I1(θ|θ̃) :=
∑

k:θ̃k 6=0

σk|θk|, I2(θ|θ̃) := I(θ)− I1(θ|θ̃).

Consider the estimator

θ̂n := arg min
θ∈Θ

{ln(θ) + λnI(θ)}.

2.3.1 Useful quantities

We first define a set of useful quantities that are involved in the oracle inequalities.

• ān = 4an, an =
√

2K2
m log(2m)

n
+ Km log(2m)

n
.

• r1 > 0, b > 0, d > 1, and 1 > δ > 0 are arbitrary constants.

• db := d
(

b+d
(d−1)b

∨ 1
)

.
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• λ̄n,0 = λ̄A
n,0 + λ̄B

n,0, where

λ̄A
n,0 := λ̄A

n,0(r1) := ān

(
1 + 2r1

√
2 (K2

m + ānKm) +
4r2

1 ānKm

3

)
,

λ̄B
n,0 := λ̄B

n,0(r1) := 2KmU2
m

ξ

(
2ānr1 +

√
log(2m)

n

)
.

• λn := (1 + b)λ̄n,0.

• δ1 = (1 + b)−N1 and δ2 = (1 + b)−N2 are arbitrary constants for some N1 and

N2, where N1 ∈ N := {1, 2, . . . } and N2 ∈ N ∪ {0}.

• d(δ1, δ2) = 1 + 1+(d2−1)δ1
(d−1)(1−δ1)

δ2.

• W is a fixed constant given in Lemma II.3 for a class of empirical processes.

• Dθ := D({k : θk 6= 0, k = 1, . . . , m}) is the number of nonzero θk’s, where D(·)
is given in Assumption II.C.

• Vθ := 2δH
(

2λn
√

Dθ

δ

)
, where H is the convex conjugate of function G defined in

Assumption II.B.

• θ∗n := arg minθ∈Θ{E(fθ) + Vθ}.

• ε∗n := (1 + δ)E(fθ∗n) + Vθ∗n .

• ζ∗n := ε∗n
λ̄n,0

.

• θ(ε∗n) := arg minθ∈Θ,I(θ−θ∗n)≤dbζ∗n/b{δE(fθ)− 2λnI1(θ − θ∗n|θ∗n)}.

In the above, the dependence of θ∗n on the sample size n is through Vθ that involves

the tuning parameter λn. We also impose conditions as in van de Geer (2008):

Condition II.I(b, δ). ‖fθ∗n − f̄‖∞ ≤ η.

Condition II.II(b, δ, d). ‖fθ(ε∗n) − f̄‖∞ ≤ η.

In both conditions, η is given in Assumption II.B.
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2.3.2 Oracle inequalities

We now provide our theorem on oracle inequalities for the Cox model lasso esti-

mator, with detailed proof given in the next section. The key idea of the proof is to

find bounds of differences between empirical errors of the working model (2.2) and

between approximation errors of the partial likelihood, denoted as Zθ and Rθ in the

next section.

Theorem II.1. Suppose Assumptions II.A-II.E and Conditions II.I(b, δ) and II.II(b, δ,

d) hold. With

∆(b, δ, δ1, δ2) := d(δ1, δ2)
1− δ2

δb
∨ 1,

we have, with probability at least

1−
{

log1+b

(1 + b)2∆(b, δ, δ1, δ2)

δ1δ2

}

×
{(

1 +
3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp

(−nξ2/2
)}

,

that

E(fθ̂n
) ≤ 1

1− δ
ε∗n and I(θ̂n − θ∗n) ≤ d(δ1, δ2)

ζ∗n
b

.

2.4 Proofs

2.4.1 Preparations

Denote the empirical probability measure based on the sample {(Xi, Yi, ∆i) : i =

1, . . . n} by Pn. Let ε1, · · · , εn be a Rademacher sequence, independent of the training

data (X1, Y1, ∆1), · · · , (Xn, Yn, ∆n). For some fixed θ∗ ∈ Θ and some M > 0, denote

FM := {fθ : θ ∈ Θ, I(θ − θ∗) ≤ M}. Later we take θ∗ = θ∗n, which is the case of

12



interest. For any θ where I(θ − θ∗) ≤ M , denote

Zθ(M) := |(Pn − P ) [γfθ
− γfθ∗ ]| =

∣∣∣
[
l̃n(θ)− l(θ)

]
−

[
l̃n(θ∗)− l(θ∗)

]∣∣∣ .

Note that van de Geer (2008) sought to bound supf∈FM
Zθ(M), thus the contrac-

tion theorem of Ledoux and Talagrand (1991) (Theorem A.3 in van de Geer (2008))

was needed, which holds for Lipschitz functions. We find that the calculation in van

de Geer (2008) does not apply to the Cox model due to the lack of Lipschitz property.

However, the pointwise argument is adequate for our purpose because only the lasso

estimator or the difference between the lasso estimator θ̂n and the oracle θ∗n is of

interest. Note the notational difference between an arbitrary θ∗ in the above Zθ(M)

and the oracle θ∗n.

Lemma II.1. Under Assumptions II.A, II.D, and II.E, for all θ satisfying I(θ−θ∗) ≤
M , we have EZθ(M) ≤ ānM.

Proof. By the symmetrization theorem, see e.g. van der Vaart and Wellner (1996) or

Theorem A.2 in van de Geer (2008), for a class of only one function we have

EZθ(M) ≤ 2E

(∣∣∣∣∣
1

n

n∑
i=1

εi{[fθ(Xi)− log µ(Yi; fθ)]∆i − [fθ∗(Xi)− log µ(Yi; fθ∗)]∆i}
∣∣∣∣∣

)

≤ 2E

(∣∣∣∣∣
1

n

n∑
i=1

εi{fθ(Xi)− fθ∗(Xi)}∆i

∣∣∣∣∣

)

+ 2E

(∣∣∣∣∣
1

n

n∑
i=1

εi{log µ(Yi; fθ)− log µ(Yi; fθ∗)}∆i

∣∣∣∣∣

)

= A + B.

For A we have

A ≤ 2

(
m∑

k=1

σk|θk − θ∗k|
)

E

(
max

1≤k≤m

∣∣∣∣∣
1

n

n∑
i=1

εi∆iXik/σk

∣∣∣∣∣

)
.

13



Applying Lemma A.1 in van de Geer (2008), we obtain

E

(
max

1≤k≤m

∣∣∣∣∣
1

n

n∑
i=1

εi∆i
Xik

σk

∣∣∣∣∣

)
≤ an.

Thus we have

A ≤ 2anM. (2.6)

For B, instead of using the contraction theorem that requires Lipschitz, we use

the Mean Value Theorem:

∣∣∣∣∣
1

n

n∑
i=1

εi{log µ(Yi; fθ)− log µ(Yi; fθ∗)}∆i

∣∣∣∣∣

=

∣∣∣∣∣
1

n

n∑
i=1

εi∆i

m∑

k=1

1

µ(Yi; fθ∗∗)

∞∫

Yi

∫

X

(θk − θ∗k)xke
fθ∗∗ (x)dPX,Y (x, y)

∣∣∣∣∣

=

∣∣∣∣∣
m∑

k=1

σk(θk − θ∗k)
1

n

n∑
i=1

εi∆i

µ(Yi; fθ∗∗)σk

∞∫

Yi

∫

X

xke
fθ∗∗ (x)dPX,Y (x, y)

∣∣∣∣∣

≤
∣∣∣∣∣

m∑

k=1

σk(θk − θ∗k)

∣∣∣∣∣ max
1≤k≤m

∣∣∣∣∣
1

n

n∑
i=1

εi∆iFθ∗∗(k, Yi)

∣∣∣∣∣

≤ M max
1≤k≤m

∣∣∣∣∣
1

n

n∑
i=1

εi∆iFθ∗∗(k, Yi)

∣∣∣∣∣,

where θ∗∗ is between θ and θ∗, and

Fθ∗∗(k, t) =
E

[
1(Y ≥ t)Xke

fθ∗∗ (X)
]

µ(t; fθ∗∗)σk

(2.7)

satisfying

|Fθ∗∗(k, t)| ≤ (‖Xk‖∞/σk)E
[
1(Y ≥ t)efθ∗∗ (X)

]

µ(t; fθ∗∗)
≤ Km.
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Since for all i,

E[εi∆iFθ∗∗(k, Yi)] = 0, ‖εi∆iFθ∗∗(k, Yi)‖∞ ≤ Km, and

1

n

n∑
i=1

E[εi∆iFθ∗∗(k, Yi)]
2 ≤ 1

n

n∑
i=1

E[Fθ∗∗(k, Yi)]
2 ≤ EK2

m = K2
m,

following Lemma A.1 in van de Geer (2008), we obtain

B ≤ 2anM. (2.8)

Combining (2.6) and (2.8), the upper bound for EZθ(M) is achieved.

We now can bound the tail probability of Zθ(M) using the Bousquet’s concentra-

tion theorem noted as Theorem A.1 in van de Geer (2008).

Corollary II.1. Under Assumptions II.A, II.D, and II.E, for all M > 0, r1 > 0 and

all θ satisfying I(θ − θ∗) ≤ M , it holds that

P
(
Zθ(M) ≥ λ̄A

n,0M
) ≤ exp

(−nā2
nr

2
1

)
.

Proof. Using the triangular inequality and the Mean Value Theorem, we obtain

|γfθ
− γfθ∗ | ≤ |fθ(X)− fθ∗(X)|∆ + | log µ(Y ; fθ)− log µ(Y ; fθ∗)|∆

≤
m∑

k=1

σk|θk − θ∗k|
|Xk|
σk

+ |log µ(Y ; fθ)− log µ(Y ; fθ∗)|

≤ MKm +
m∑

k=1

σk|θk − θ∗k| · max
1≤k≤m

|Fθ∗∗(k, Y )|

≤ 2MKm,

where θ∗∗ is between θ and θ∗, and Fθ∗∗(k, Y ) is defined in (2.7). So we have

‖γfθ
− γfθ∗‖∞ ≤ 2MKm, and P (γfθ

− γfθ∗ )
2 ≤ 4M2K2

m.
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Therefore, in view of Bousquet’s concentration theorem and Lemma II.1, for all M > 0

and r1 > 0,

P

(
Zθ(M) ≥ ānM

(
1 + 2r1

√
2 (K2

m + ānKm) +
4r2

1ānKm

3

))
≤ exp

(−nā2
nr

2
1

)
.

Now for any θ satisfying I(θ − θ∗) ≤ M , we bound

Rθ(M) : =
∣∣∣
[
ln(θ)− l̃n(θ)

]
−

[
ln(θ∗)− l̃n(θ∗)

]∣∣∣

=
1

n

n∑
i=1

∣∣∣∣∣

[
log

1

n

n∑
j=1

1(Yj ≥ Yi)e
fθ(Xj)

µ(Yi; fθ)
− log

1

n

n∑
j=1

1(Yj ≥ Yi)e
fθ∗ (Xj)

µ(Yi; fθ∗)

]
∆i

∣∣∣∣∣

≤ sup
0≤t≤τ

∣∣∣∣∣ log
1

n

n∑
j=1

1(Yj ≥ t)efθ(Xj)

µ(t; fθ)
− log

1

n

n∑
j=1

1(Yj ≥ t)efθ∗ (Xj)

µ(t; fθ∗)

∣∣∣∣∣.

Here recall that τ is given in Assumption II.E. By the Mean Value Theorem, we have

Rθ(M) ≤ sup
0≤t≤τ

∣∣∣∣∣
m∑

k=1

(θk − θ∗k)

{∑n
j=1 1(Yj ≥ t)efθ∗∗ (Xj)

µ(t; fθ∗∗)

}−1

{∑n
j=1 1(Yj ≥ t)Xjke

fθ∗∗ (Xj)

µ(t; fθ∗∗)

−
∑n

j=1 1(Yj ≥ t)efθ∗∗ (Xj)E
[
1(Y ≥ t)Xke

fθ∗∗ (X)
]

µ(t; fθ∗∗)2

}∣∣∣∣∣

= sup
0≤t≤τ

∣∣∣∣∣
m∑

k=1

σk(θk − θ∗k)

{∑n
j=1 1(Yj ≥ t)(Xjk/σk)e

fθ∗∗ (Xj)

∑n
j=1 1(Yj ≥ t)efθ∗∗ (Xj)

− E
[
1(Y ≥ t)(Xk/σk)e

fθ∗∗ (X)
]

E [1(Y ≥ t)efθ∗∗ (X)]

}∣∣∣∣∣

≤ M sup
0≤t≤τ

[
1

n

n∑
i=1

1(Yi ≥ t)efθ∗∗ (Xi)

]−1

(2.9)

sup
0≤t≤τ

{
max

1≤k≤m

∣∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)(Xik/σk)e
fθ∗∗ (Xi)
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− E
[
1(Y ≥ t)(Xk/σk)e

fθ∗∗ (X)
]
∣∣∣∣∣

+ Km

∣∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)efθ∗∗ (Xi) − E
[
1(Y ≥ t)efθ∗∗ (X)

]
∣∣∣∣∣

}
,

where θ∗∗ is between θ and θ∗ and, by (2.5), we have

sup
0≤t≤τ

[
1

n

n∑
i=1

1(Yi ≥ t)efθ∗∗ (Xi)

]−1

≤ Um

[
1

n

n∑
i=1

1(Yi ≥ τ)

]−1

. (2.10)

Lemma II.2. Under Assumption II.E, we have

P

(
1

n

n∑
i=1

1(Yi ≥ τ) ≤ ξ

2

)
≤ 2e−nξ2/2.

Proof. This is obtained directly from Massart (1990) for the Kolmogorov statistic by

taking r = ξ
√

n/2 in the following:

P

(
1

n

n∑
i=1

1(Yi ≥ τ) ≤ ξ

2

)
≤ P

(
√

n

∣∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ τ)− ξ

∣∣∣∣∣ ≥ r

)

≤ P

(
sup

0≤t≤τ

√
n

∣∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)− P (Y ≥ t)

∣∣∣∣∣ ≥ r

)

≤ 2e−2r2

.

Lemma II.3. Under Assumptions II.A, II.D, and II.E, for all θ we have

P

(
sup

0≤t≤τ

∣∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)efθ(Xi) − µ(t; fθ)

∣∣∣∣∣ ≥ Umānr1

)
≤ 1

5
W 2e−nā2

nr2
1 , (2.11)

where W is a fixed constant.

Proof. For a class of functions indexed by t, F = {1(y ≥ t)efθ(x)/Um : t ∈ [0, τ ], y ∈
R, efθ(x) ≤ Um}, we calculate its bracketing number. For any nontrivial ε satisfying
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1 > ε > 0, let ti be the i-th d1/εe quantile of Y , so

P (Y ≤ ti) = iε, i = 1, · · · , d1/εe − 1,

where dxe is the smallest integer that is greater than or equal to x. Furthermore,

take t0 = 0 and td1/εe = +∞. For i = 1, · · · , d1/εe, define brackets [Li, Ui] with

Li(x, y) = 1(y ≥ ti)e
fθ(x)/Um, Ui(x, y) = 1(y > ti−1)e

fθ(x)/Um

such that Li(x, y) ≤ 1(y ≥ t)efθ(x)/Um ≤ Ui(x, y) when ti−1 < t ≤ ti. Since

{
E[Ui − Li]

2
}1/2 ≤

{
E

[
efθ(X)

Um

{1(Y ≥ ti)− 1(Y > ti−1)}
]2

}1/2

≤ {P (ti−1 < Y ≤ ti)}1/2 =
√

ε,

we have N[ ](
√

ε, F , L2) ≤ d1/εe ≤ 2/ε, which yields

N[ ](ε, F , L2) ≤ 2

ε2
=

(
K

ε

)2

,

where K =
√

2. Thus, from Theorem 2.14.9 in van der Vaart and Wellner (1996), we

have for any r > 0,

P

(
√

n sup
0≤t≤τ

∣∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)efθ(Xi)

Um

− µ(t; fθ)

Um

∣∣∣∣∣ ≥ r

)
≤ 1

2
W 2r2e−2r2

≤ 1

5
W 2e−r2

,

where W is a constant that only depends on K. Note that r2e−r2
is bounded by e−1.

With r =
√

nānr1, we obtain (2.11).
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Lemma II.4. Under Assumptions II.A, II.D, and II.E, for all θ we have

P

(
sup

0≤t≤τ
max

1≤k≤m

∣∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)
Xik

σk

efθ(Xi)

− E

[
1(Y ≥ t)

Xk

σk

efθ(X)

] ∣∣∣∣∣ ≥ KmUm

[
ānr1 +

√
log(2m)

n

])

≤ 1

10
W 2e−nā2

nr2
1 . (2.12)

Proof. Consider the classes of functions indexed by t,

G k =
{
1(y ≥ t)efθ(x)xk/(σkKmUm) : t ∈ [0, τ ], y ∈ R,

∣∣efθ(x)xk/σk

∣∣ ≤ KmUm

}
, k = 1, . . . , m.

Using the argument in the proof of Lemma II.3, we have

N[ ](ε, G
k, L2) ≤

(
K

ε

)2

,

where K =
√

2, and then for any r > 0,

P

(
√

n sup
0≤t≤τ

∣∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)efθ(Xi)Xik

σkKmUm

− E

[
1(Y ≥ t)efθ(X)Xk

σkKmUm

] ∣∣∣∣∣ ≥ r

)

≤ 1

5
W 2e−r2

.

Thus we have

P

(√
n sup

0≤t≤τ
max

1≤k≤m

∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)efθ(Xi)Xik/ (σkUmKm)

− E
[
1(Y ≥ t)efθ(X)Xk/ (σkUmKm)

] ∣∣∣∣ ≥ r

)

≤ P

( m⋃

k=1

√
n sup

0≤t≤τ

∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)efθ(Xi)Xik/ (σkUmKm)
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− E
[
1(Y ≥ t)efθ(X)Xk/ (σkUmKm)

] ∣∣∣∣ ≥ r

)

≤ mP

(√
n sup

0≤t≤τ

∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)efθ(Xi)Xik/ (σkUmKm)

− E
[
1(Y ≥ t)efθ(X)Xk/ (σkUmKm)

] ∣∣∣∣ ≥ r

)

≤ m

5
W 2e−r2

=
1

10
W 2elog(2m)−r2

.

Let log(2m)− r2 = −nā2
nr

2
1, so r =

√
nā2

nr
2
1 + log(2m). Since

√
ā2

nr
2
1 +

log(2m)

n
≤ ānr1 +

√
log(2m)

n
,

we obtain (2.12).

Corollary II.2. Under Assumptions II.A, II.D, and II.E, for all M > 0, r1 > 0,

and all θ that satisfy I(θ − θ∗) ≤ M , we have

P
(
Rθ(M) ≥ λ̄B

n,0M
) ≤ 2 exp

(−nξ2/2
)

+
3

10
W 2 exp

(−nā2
nr

2
1

)
. (2.13)

Proof. From (2.9) and (2.10) we have

P
(
Rθ(M) ≤ λ̄B

n,0 ·M
) ≥ P (Ec

1 ∩ Ec
2 ∩ Ec

3) ,

where the events E1, E2 and E3 are defined as

E1 =

{
1

n

n∑
i=1

1(Yi ≥ τ) ≤ ξ/2

}
,

E2 =

{
sup

0≤t≤τ

∣∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)efθ∗∗ (Xi) − µ(t; fθ∗∗)

∣∣∣∣∣ ≥ Umānr1

}
,
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E3 =

{
max

1≤k≤m
sup

0≤t≤τ

∣∣∣∣∣
1

n

n∑
i=1

1(Yi ≥ t)
Xik

σk

efθ∗∗ (Xi)

− E

[
1(Y ≥ t)

Xk

σk

efθ∗∗ (X)

] ∣∣∣∣∣ ≥ KmUm(ānr1 +

√
log(2m)

n
)

}
.

Thus

P
(
Rθ(M) ≥ λ̄B

n,0 ·M
) ≤ P (E1) + P (E2) + P (E3) ,

and the result follows from Lemmas II.2, II.3 and II.4.

Now with θ∗ = θ∗n, we have the following results.

Lemma II.5. Suppose Conditions II.I(b, δ) and II.II(b, δ, d) are met. Under Assump-

tions II.B and II.C, for all θ ∈ Θ with I(θ − θ∗n) ≤ dbζ
∗
n/b, it holds that

2λnI1(θ − θ∗n) ≤ δE(fθ) + ε∗n − E(fθ∗n).

Proof. The proof is exactly the same as that of Lemma A.4 in van de Geer (2008),

with the λn defined in Subsection 2.3.1.

Lemma II.6. Suppose Conditions II.I(b, δ) and II.II(b, δ, d) are met. Consider any

random θ̃ ∈ Θ with ln(θ̃) + λnI(θ̃) ≤ ln(θ∗n) + λnI(θ∗n). Let 1 < d0 ≤ db. It holds that

P

(
I(θ̃ − θ∗n) ≤ d0

ζ∗n
b

)
≤ P

(
I(θ̃ − θ∗n) ≤

(
d0 + b

1 + b

)
ζ∗n
b

)

+

(
1 +

3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp

(−nξ2/2
)
.

Proof. The idea is similar to the proof of Lemma A.5 in van de Geer (2008). Let

Ẽ = E(fθ̃) and E∗ = E(fθ∗n). We will use short notation: I1(θ) = I1(θ|θ∗n) and I2(θ) =

I2(θ|θ∗n). Since ln(θ̃)+λnI(θ̃) ≤ ln(θ∗n)+λnI(θ∗n), on the set where I(θ̃− θ∗n) ≤ d0ζ
∗
n/b
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and Zθ̃(d0ζ
∗
n/b) ≤ d0ζ

∗
n/b · λ̄A

n,0, we have

Rθ̃(d0ζ
∗
n/b) ≥ [ln(θ∗n) + λnI(θ∗n)]− [ln(θ̃) + λnI(θ̃)]− λnI(θ∗n) + λnI(θ̃)

−[l̃n(θ∗n)− l̃n(θ̃)]

≥ −λnI(θ∗n) + λnI(θ̃)− [l̃n(θ∗n)− l̃n(θ̃)]

≥ −λnI(θ∗n) + λnI(θ̃)− [l(θ∗n)− l(θ̃)]− d0ζ
∗
n/b · λ̄A

n,0

≥ −λnI(θ∗n) + λnI(θ̃)− E∗ + Ẽ − d0λ̄
A
n,0ζ

∗
n/b. (2.14)

By (2.13) we know that Rθ̃(d0ζ
∗
n/b) is bounded by d0λ̄

B
n,0ζ

∗
n/b with probability at

least 1− 3
10

W 2 exp (−nā2
nr

2
1)− 2 exp (−nξ2/2), then we have

Ẽ + λnI(θ̃) ≤ λ̄B
n,0d0ζ

∗
n/b + E∗ + λnI(θ∗n) + λ̄A

n,0d0ζ
∗
n/b.

Since I(θ̃) = I1(θ̃) + I2(θ̃) and I(θ∗n) = I1(θ
∗
n), using the triangular inequality, we

obtain

Ẽ + (1 + b)λ̄n,0I2(θ̃)

≤ λ̄n,0d0ζ
∗
n/b + E∗ + (1 + b)λ̄n,0I1(θ

∗
n)− (1 + b)λ̄n,0I1(θ̃)

≤ λ̄n,0d0ζ
∗
n/b + E∗ + (1 + b)λ̄n,0I1(θ̃ − θ∗n). (2.15)

Adding (1 + b)λ̄n,0I1(θ̃ − θ∗n) to both sides and from Lemma II.5,

Ẽ + (1 + b)λ̄n,0I(θ̃ − θ∗n) ≤ λ̄n,0d0
ζ∗n
b

+ E∗ + 2(1 + b)λ̄n,0I1(θ̃ − θ∗n)

≤ (λ̄n,0d0 + bλ̄n,0)
ζ∗n
b

+ δẼ

= (d0 + b)λ̄n,0
ζ∗n
b

+ δẼ .
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Because 0 < δ < 1, it follows that

I(θ̃ − θ∗n) ≤ d0 + b

1 + b

ζ∗n
b

.

Hence,

P

({
I(θ̃ − θ∗n) ≤ d0

ζ∗n
b

}
∩

{
Zθ̃(d0ζ

∗
n/b) ≤ d0λ̄

A
n,0

ζ∗n
b

}
∩

{
Rθ̃(d0ζ

∗
n/b) ≤ d0λ̄

B
n,0

ζ∗n
b

} )

≤ P

(
I(θ̃ − θ∗n) ≤ d0 + b

1 + b

ζ∗n
b

)
,

which yields the desired result.

Corollary II.3. Suppose Conditions II.I(b, δ) and II.II(b, δ, d) are met. Consider any

random θ̃ ∈ Θ with ln(θ̃) + λnI(θ̃) ≤ ln(θ∗n) + λnI(θ∗n). Let 1 < d0 ≤ db. It holds that

P

(
I(θ̃ − θ∗n) ≤ d0

ζ∗n
b

)

≤ P

(
I(θ̃ − θ∗n) ≤ [

1 + (d0 − 1)(1 + b)−N
] ζ∗n

b

)

+ N

{(
1 +

3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp(−nξ2/2)

}
.

Proof. Repeat Lemma II.6 N times.

Lemma II.7. Suppose Conditions II.I(b, δ) and II.II(b, δ, d) hold. If θ̃s = sθ̂n + (1−
s)θ∗n, where

s =
dζ∗n

dζ∗n + bI(θ̂n − θ∗n)
,

then for any integer N , with probability at least

1−N

{(
1 +

3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp

(−nξ2/2
)}

,
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we have

I(θ̃s − θ∗n) ≤ (
1 + (d− 1)(1 + b)−N

) ζ∗n
b

.

Proof. Since the negative log partial likelihood ln(θ) and the lasso penalty are both

convex with respect to θ, applying Corollary II.3, we obtain the above inequality.

This proof is similar to the proof of Lemma A.6 in van de Geer (2008).

Lemma II.8. Suppose Conditions II.I(b, δ) and II.II(b, δ, d) are met. Let N1 ∈ N :=

{1, 2, . . . } and N2 ∈ N ∪ {0}. With δ1 = (1 + b)−N1 and δ2 = (1 + b)−N2, for any n,

with probability at least

1− (N1 + N2)

{(
1 +

3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp(−nξ2/2)

}
,

we have

I(θ̂n − θ∗n) ≤ d(δ1, δ2)
ζ∗n
b

,

where

d(δ1, δ2) = 1 +
1 + (d2 − 1)δ1

(d− 1)(1− δ1)
δ2.

Proof. The proof is the same as that of Lemma A.7 in van de Geer (2008), with a

slightly different probability bound.

2.4.2 Proof of Theorem II.1

Proof. The proof follows the same ideas in the proof of Theorem A.4 in van de

Geer (2008), with exceptions of pointwise arguments and slightly different probability

bounds. Since this is our main result, we provide a detailed proof here despite the

amount of overlaps.

Define Ê := E(fθ̂n
) and E∗ := E(fθ∗n); use the notation I1(θ) := I1(θ|θ∗n) and

I2(θ) := I2(θ|θ∗n); set c := δb/(1 − δ2). Consider the cases (a) c < d(δ1, δ2) and (b)

c ≥ d(δ1, δ2).

24



(a) c < d(δ1, δ2). Let J be an integer satisfying (1 + b)J−1c ≤ d(δ1, δ2) and (1 +

b)Jc > d(δ1, δ2). We consider the cases (a1) cζ∗n/b < I(θ̂n − θ∗n) ≤ d(δ1, δ2)ζ
∗
n/b and

(a2) I(θ̂n − θ∗n) ≤ cζ∗n/b.

(a1) If cζ∗n/b < I(θ̂n − θ∗n) ≤ d(δ1, δ2)ζ
∗
n/b, then

(1 + b)j−1c
ζ∗n
b

< I(θ̂n − θ∗n) ≤ (1 + b)jc
ζ∗n
b

for some j ∈ {1, · · · , J}. Let d0 = c(1 + b)j−1 ≤ d(δ1, δ2) ≤ db. From Corollary

II.1, with probability at least 1 − exp (−nā2
nr

2
1) we have Zθ̂n

((1 + b)d0ζ
∗
n/b) ≤ (1 +

b)d0λ̄
A
n,0ζ

∗
n/b. Since ln(θ̂n) + λnI(θ̂n) ≤ ln(θ∗n) + λnI(θ∗n), from (2.14) we have

Ê + λnI(θ̂n) ≤ Rθ̂n

(
(1 + b)d0

ζ∗n
b

)
+ E∗ + λnI(θ∗n) + (1 + b)λ̄A

n,0d0
ζ∗n
b

.

By (2.13), Rθ̂n
((1+b)d0ζ

∗
n/b) is bounded by (1+b)λ̄B

n,0d0ζ
∗
n/b with probability at least

1− 3

10
W 2 exp

(−nā2
nr

2
1

)− 2 exp
(−nξ2/2

)
.

Then we have

Ê + (1 + b)λ̄n,0I(θ̂n) ≤ (1 + b)λ̄B
n,0d0

ζ∗n
b

+ E∗ + (1 + b)λ̄n,0I(θ∗n) + (1 + b)λ̄A
n,0d0

ζ∗n
b

≤ (1 + b)λ̄n,0I(θ̂n − θ∗n) + E∗ + (1 + b)λ̄n,0I(θ∗n).

Since I(θ̂n) = I1(θ̂n)+I2(θ̂n), I(θ̂n−θ∗n) = I1(θ̂n−θ∗n)+I2(θ̂n), and I(θ∗n) = I1(θ
∗
n), by

triangular inequality we obtain Ê ≤ 2(1 + b)λ̄n,0I1(θ̂n − θ∗n) + E∗. From Lemma II.5,

Ê ≤ δÊ + ε∗n − E∗ + E∗ = δÊ + ε∗n. Hence, Ê ≤ ε∗n/(1− δ).

(a2) If I(θ̂n − θ∗n) ≤ cζ∗n/b, from (2.15) with d0 = c, with probability at least

1−
{(

1 +
3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp(−nξ2/2)

}
,
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we have

Ê + (1 + b)λ̄n,0I(θ̂n) ≤ δ

1− δ2
λ̄n,0ζ

∗
n + E∗ + (1 + b)λ̄n,0I(θ∗n).

By the triangular inequality and Lemma II.5,

Ê ≤ δ

1− δ2
λ̄n,0ζ

∗
n + E∗ + (1 + b)λ̄n,0I1(θ̂n − θ∗n)

≤ δ

1− δ2
λ̄n,0

ε∗n
λ̄n,0

+ E∗ +
δ

2
Ê +

1

2
ε∗n −

1

2
E∗

=

(
δ

1− δ2
+

1

2

)
ε∗n +

1

2
E∗ +

δ

2
Ê

≤
(

δ

1− δ2
+

1

2

)
ε∗n +

1

2(1 + δ)
ε∗n +

δ

2
Ê .

Hence,

Ê ≤ 2

2− δ

[
δ

1− δ2
+

1

2
+

1

2(1 + δ)

]
ε∗n =

1

1− δ
ε∗n.

Furthermore, by Lemma II.8, we have with probability at least

1− (N1 + N2)

{(
1 +

3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp

(−nξ2/2
)}

that I(θ̂n − θ∗n) ≤ d(δ1, δ2)
ζ∗n
b
, where

N1 = log1+b

(
1

δ1

)
, N2 = log1+b

(
1

δ2

)
.

(b) c ≥ d(δ1, δ2). On the set where I(θ̂n−θ∗n) ≤ d(δ1, δ2)ζ
∗
n/b, from equation (2.15)

we have with probability at least

1−
{(

1 +
3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp

(−nξ2/2
)}
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that

Ê + (1 + b)λ̄n,0I(θ̂n) ≤ λ̄n,0d(δ1, δ2)
ζ∗n
b

+ E∗ + (1 + b)λ̄n,0I(θ∗n)

≤ δ

1− δ2
λ̄n,0ζ

∗
n + E∗ + (1 + b)λ̄n,0I(θ∗n),

which is the same as (a2) and leads to the same result.

To summarize, let

A =

{
Ê ≤ 1

1− δ
ε∗n

}
, B =

{
I(θ̂n − θ∗n) ≤ d(δ1, δ2)

ζ∗n
b

}
.

Note that

J + 1 ≤ log1+b

(
(1 + b)2d(δ1, δ2)

c

)
.

Under case (a), we have

P (A ∩B) = P (a1)− P (Ac ∩ a1) + P (a2)− P (Ac ∩ a2)

≥ P (a1)− J

{(
1 +

3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp(−nξ2/2)

}

+ P (a2)−
{(

1 +
3

10
W 2

)
exp(−nā2

nr
2
1) + 2 exp

(−nξ2/2
)}

= P (B)− (J + 1)

{(
1 +

3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp

(−nξ2/2
)}

≥ 1− (N1 + N2 + J + 1)

{(
1 +

3

10
W 2

)
exp

(−nā2
nr

2
1

)
2 exp

(−nξ2/2
)}

≥ 1− log1+b

{
(1 + b)2

δ1δ2

· d(δ1, δ2)(1− δ2)

δb

}

{(
1 +

3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp(−nξ2/2)

}
.
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Under case (b),

P (A ∩B) = P (B)− P (Ac ∩B)

≥ P (B)−
{(

1 +
3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp

(−nξ2/2
)}

≥ 1− (N1 + N2 + 2)

{(
1 +

3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp

(−nξ2/2
)}

= 1− log1+b

{
(1 + b)2

δ1δ2

}

×
{(

1 +
3

10
W 2

)
exp

(−nā2
nr

2
1

)
+ 2 exp(−nξ2/2)

}
.

We thus obtain the desired result.
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CHAPTER III

Semiparametric Approach for Regression with

Covariate Subject to Limit of Detection

3.1 Introduction

Detection limit is a threshold below which measured values are not considered

significantly different from background noise (Helsel, 2005). Hence, values measured

below this threshold are unreliable. In environmental epidemiology, particularly ex-

posure analysis, when exposure levels are low, measurement of chemicals has a large

percentage falling below the limit of detection L due to inadequate instrument sen-

sitivity. For example, in the National Health and Nutrition Examination Survey

(Crainiceanu et al., 2008), the limit of detection for blood cadmium was 2.67 nmol/L

in Nutrition Examination Survey 1999-2002 and 1.78 nmol/L in Nutrition Exami-

nation Survey 2003-2004, and 21.6% and 13.4% of the subjects had blood cadmium

levels below limit of detection, respectively. Similar limit of detection issue exists in

other studies, for example, the Diabetes Prevention Program, where of the 301 eligible

participants 66 had a testosterone level below a detection limit of 8.0 ng/dl (Kim et

al., 2012). In this article, we consider an analysis for the Michigan Bone Health and

Metabolism Study, which examines the relationship between anti-Mullerian hormone

and time to the final menstrual period (Sowers et al., 2008). The data set consists
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of fifty women that had six consecutive annual visits. The levels of anti-Mullerian

hormone were recorded during the time period with a limit of detection of 0.05ng/ml

that is the smallest available anti-Mullerian hormone value in Sowers et al. (2008).

As a result, 6% of the 50 study participants had anti-Mullerian hormone below limit

of detection in the first visit and the percentage increases in later visits, with 66%

below limit of detection in the last visit. For illustration purpose, we focus on visit

3 where 18% of participants had anti-Mullerian hormone measures below limit of de-

tection. Several other covariates were also recorded, including age, body mass index

and Follicle-Stimulating Hormone.

A variety of statistical tools have been developed to deal with the problem of

response variable subject to limit of detection, see for examples Thompsonand and

Nelson (2003), Lubin et al. (2004) and Helsel (2005). Limit of detection is in fact

left censoring, which can be easily transformed to right censoring by multiplying the

variable by −1. As a result, standard semiparametric survival models can be applied.

Statistical methods for regression models with a covariate subject to limit of de-

tection, however, are yet to be thoroughly studied (Schisterman and Little, 2010),

even though many ad hoc methods have been implemented in practice. The complete

case analysis, of simply eliminating observations with values below limit of detection,

yields consistent estimates of the regression coefficients (Nie et al., 2010; Little and

Rubin, 2002), but loses efficiency. Substitution methods are frequently used, see for

examples, Hornung and Reed (1990), Moulton et al. (2002), Richardson and Ciampi

(2003), and Nie et al. (2010), among many others, where the values below limit of

detection L are substituted by L, or L/
√

2, or zero, or E(X|X ≤ L) that is obtained

from an assumed distribution of X. These methods are easily implementable, but

found to be inappropriate and can yield large biases, see for example Helsel (2006).

Another widely used method is the maximum likelihood estimation based on a

parametric distributional assumption to the unobservable tail probability of the co-
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variate that is subject to limit of detection. For examples, Cole et al. (2009) and

Nie et al. (2010) considered logistic and linear regression, respectively, based on a

normal distribution for the tail probability of the covariate subject to limit of de-

tection; D’Angelo and Weissfeld (2008) applied this approach to the Cox regression.

In practice, however, the underlying covariate distribution is unknown. Both Lynn

(2001) and Nie et al. (2010) noted that a parametric assumption can yield large bias

if misspecified and argued that such an approach should not be attempted. Nie et al.

(2010) recommended the complete case analysis despite the fact that simply dropping

data below the limit of detection can lose a significant amount of information.

To obtain more efficient and yet robust results, we propose a semiparametric

likelihood-based approach to fit generalized linear models with covariate subject to

limit of detection. The tail distribution of the covariate beyond its limit of detection

is estimated from a semiparametric accelerated failure model, conditional on all the

fully observed covariates. Model checking can be done using martingale residuals

for semiparametric accelerated failure time models. The proposed method is shown

to be consistent and asymptotically normal, and outperforms existing methods in

simulations. The proofs of the asymptotic properties rely heavily on empirical process

theory.

3.2 A semiparametric approach

For a single observation, denote the response variable by Y , the covariate subject

to limit of detection by Z, and the fully observed covariates by X = (X1, . . . , Xp)
′,

where p is the number of fully observed covariates. For simplicity, we only consider

one covariate that is subject to limit of detection. Consider a generalized linear model

with

E(Y ) = µ = g−1(D′θ), (3.1)
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where g is the link function, D′θ is the linear predictor with D = (1, X ′, Z)′ and

θ = (β′, γ)′, here β is a (p + 1)-dimensional vector and γ is a scalar. The variance V

is typically a function of the mean denoted by

var(Y ) = W (µ) = W{g−1(D′θ)}.

We consider the exponential dispersion family in the natural form (Agresti, 2002;

McCullagh and Nelder , 1989) given (Z, X)

f$,φ(Y |Z, X) = exp

{
Y $ − b($)

a(φ)
+ c(Y, φ)

}
, (3.2)

where φ is the dispersion parameter and $ is the natural parameter. We have µ =

E(Y ) = ḃ($), and var(Y ) = b̈($)a(φ), where ḃ is the first derivative of b and b̈ is the

second derivative of b.

The actual value of Z is not observable when Z < L, where the constant L

denotes the limit of detection, which is an example of left-censoring. In practice Z

is a concentration measure of certain substance and thus non-negative. Consider a

monotone decreasing transformation h that yields Z = h(T ), for example, h(T ) =

exp(−T ). Denote D(T ) = (1, X ′, h(T ))′. If T ≤ C = h−1(L), then T is observed;

otherwise T is right-censored by C. We denote the observed value by V = min(T, C)

and the censoring indicator by ∆ = I(T ≤ C).

The proposed methodology works for a broad family of link functions defined

by the regularity conditions given in Subsection 3.6.1. For notational simplicity, we

present the main material using canonical link function g, where g = (ḃ)−1. Then,

when T is observed, model (3.2) becomes

fθ,φ(Y |T, X) = exp

{
Y D′(T )θ − b(D′(T )θ)

a(φ)
+ c(Y, φ)

}
. (3.3)
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Denote the conditional cumulative distribution function of T given X by F1(t|X)

with density f1(t|X). The likelihood function for the observed data (V, ∆, Y,X) can

be factorized into

f(V, ∆, Y,X) = f2(V, ∆|Y, X)f3(Y |X)f4(X),

where f denotes the joint density of (V, ∆, Y,X), f2 denotes conditional density of

(V, ∆) given (Y, X), f3 denotes conditional density of Y given X, and f4 denotes

marginal density of X. Going through conditional arguments using the Bayes’ rule

and dropping f4(X), we obtain the likelihood function

L(V, ∆, Y,X) = {fθ,φ(Y |T, X)f1(T |X)}∆





∞∫

C

fθ,φ(Y |t,X)dF1(t|X)





1−∆

, (3.4)

where only fθ,φ contains the parameter of interest θ, whereas f1 is a nuisance para-

meter in addition to φ.

There are two parts in (4.4): (i) {fθ,φ(Y |T, X)f1(T |X)}∆ for fully observed sub-

ject, and (ii)
{∫∞

C
fθ,φ(Y |t,X)dF1(t|X)

}1−∆
for subject with covariate below limit of

detection. Complete case analysis is only based on the first part and, although it

yields a consistent estimate of θ, it clearly loses efficiency. We see from the second

part of (4.4) that the efficiency gain comparing to the complete case analysis depends

on how well we can recover the right tail of the conditional distribution F1(t|X) be-

yond C. Parametric models for F1(t|X) are often considered in the literature, see

Nie et al. (2010), but it may suffer from model misspecification. The nonparametric

method degenerates to the complete case analysis because there is no actual observa-

tion beyond censoring time C. We consider a semiparametric approach that allows

reliable extrapolation beyond C and is robust against any parametric assumption.

Among all the commonly used semiparametric models for right-censored data,
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only the accelerated failure time model allows extrapolation beyond C, and model

checking can be done by visualizing the cumulative sums of the martingale-based

residuals (Lin et al., 1993, 1996; Peng and Fine, 2006). We hence propose a semi-

parametric accelerated failure time model for the transformed covariate subject to

limit of detection given by

T = X ′α + ς, (3.5)

where ς follows some unknown distribution, denoted by η, and is independent of X.

We only consider a fixed h for T in this article. More flexible transformation, for

example, the Box-Cox transformation (Box and Cox, 1964; Foster et al., 2001; Cai

et al., 2005), is worth further investigation. Note that X appears in both models

(3.1) and (3.5), but it may refer to different forms of covariates in these models. For

example, X1 is a covariate in (3.1) whereas X2
1 is a covariate in (3.5). We use the same

X to denote all fully observed covariates for notational simplicity. The log-likelihood

function then becomes

log L = ∆ log fθ,φ(Y |T, X) + ∆ log η̇(T −X ′α)

+(1−∆) log





τ∫

C−X′α

fθ,φ(Y |t + X ′α, X)dη(t)



 , (3.6)

where τ is a truncation time at the residual scale defined in Condition III.4 in Sub-

section 3.6.1.

3.3 The pseudo-likelihood method

The log likelihood function (3.6) involves an unknown distribution function η and

its derivative, hence a maximum likelihood estimation, if it exists, can be complicated.

We propose a tractable two-stage pseudo-likelihood approach in which the nuisance

parameters (φ, α, η) are estimated in stage 1 and the parameter of interest θ is then
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estimated by maximizing the data version of (3.6) in stage 2 with nuisance parameters

replaced by their estimators obtained in stage 1 before maximization. Details are

given below:

Stage 1. Nuisance parameter estimation. Dispersion parameter φ is estimated by

the complete case analysis of the generalized linear model (3.2); the accelerated failure

time model regression coefficient α is estimated by either the rank based methods,

see Wei et al. (1990), Jin et al. (2003), Nan et al. (2009) or the sieve maximum

likelihood method, see Ding and Nan (2011); and the accelerated failure time model

error distribution η is estimated by the Kaplan-Meier estimator from the censored

residuals.

Stage 2. Pseudo-likelihood estimation of θ. Replacing (φ, α, η) by their Stage 1

estimates (φ̂n, α̂n, η̂n,α̂n) in the log likelihood function yields the following log pseudo-

likelihood function for a random sample of n observations:

pln(θ) =
1

n

n∑
i=1

{
∆i log fθ,φ̂n

(Yi|Xi, Ti)

+(1−∆i) log

τ∫

C−X′
iα̂n

fθ,φ̂n
(Yi|Xi, t + X ′

iα̂n)dη̂n,α̂n(t)

}
, (3.7)

where

fθ,φ̂n
(Yi|Ti, Xi) = exp

[
Yi{D′

i(Ti)θ} − b{D′
i(Ti)θ}

a(φ̂n)
+ c(Yi, φ̂n)

]
.

Note that the term ∆ log η̇(T ) in (3.6) is dropped because it does not involve θ. We

maximize (3.7) by setting its derivative to be zero and then solving the equation for

the pseudo-likelihood estimator θ̂n.

Since θ̂n is obtained by solving an estimating equation, its asymptotic properties

can be obtained from Z-estimation theory. It can be shown that all the estimates

obtained in Stage 1 have desirable statistical properties for Stage 2. In particular,

35



φ̂n obtained from the complete case analysis is n1/2−consistent by Little and Rubin

(2002); α̂n is n1/2−consistent by Nan et al. (2009) or Ding and Nan (2011); and η̂n,α̂n

is also n1/2−consistent in a finite interval, and its proof is provided in the Appendices.

3.4 Asymptotic properties

Define a random map as follows

Ψθ,n(φ, α, η) =
1

n

n∑
i=1

ψθ(Yi, Xi, Vi, ∆i; φ, α, η), (3.8)

where

ψθ(Y, X, V, ∆; φ, α, η)

= ∆{Y − ḃ(D′(T )θ)}D(T ) + (1−∆)





τ∫

C−X′α

fθ,φ(Y |t + X ′α, X)dη(t)





−1

×
τ∫

C−X′α

fθ,φ(Y |t + X ′α,X){Y − ḃ(D′(t + X ′α)θ)}D(t + X ′α)dη(t),

which is the derivative of (3.6) with respect to θ. Then with (φ, α, η) replaced by

(φ̂n, α̂n, η̂n,α̂n) in (3.8), Ψθ,n(φ̂n, α̂n, η̂n,α̂n) = 0 becomes the pseudo-likelihood estimat-

ing equation for θ, and its solution θ̂n is called the pseudo-likelihood estimator.

A set of regularity conditions is introduced in Subsection 3.6.1. Some conditions

are commonly assumed for the accelerated failure time models, and other conditions

are for the generalized linear models, which are easily verifiable for linear, logistic and

Poisson regression models. We then have the following asymptotic results for θ̂n.

Theorem III.1. (Consistency and asymptotic normality.) Denote the true value of

θ by θ0. Suppose all the regularity conditions given in Subsection 3.6.1 hold. Then

for the two-stage pseudo-likelihood estimator θ̂n satisfying Ψθ̂n,n(φ̂n, α̂n, η̂n,α̂n) = 0,

we have: (i) θ̂n converges in outer probability to θ0, and (ii) n1/2(θ̂n − θ0) converges
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weakly to a mean zero normal random variable with variance A−1BA−1, where A and

B are provided in Subsection 3.6.4.

Because the asymptotic variance of θ̂n has a very complicated expression that

prohibits the direct calculation of its estimate from observed data, we recommend

using the bootstrap variance estimator.

The proof of Theorem III.1 is based on the general Z-estimation theory of Nan

and Wellner (2013). Define a deterministic function

Ψθ(φ, α, η) = E

{
ψθ(Y, X, V, ∆; φ, α, η)

}
, (3.9)

and denote the true values of (φ, α, η) by (φ0, α0, η0). We can show that Ψθ,n(φ̂n, α̂n,

η̂n,α̂n) converges uniformly to Ψθ(φ0, α0, η0) as n → ∞. Then the consistency is

achieved given that θ0 is the unique solution of Ψθ(φ0, α0, η0) = 0. The asymptotic

normality is derived by showing the asymptotic linear representation of n1/2(θ̂n− θ0).

The detailed proofs rely heavily on empirical process theory and can be found in the

Appendices, where we only provide the analytic form of the asymptotic variance for

the Gehan weighted estimate of α. The analytic forms of the asymptotic variance for

other rank based estimates and the sieve maximum likelihood estimate as well can

be obtained similarly.

3.5 Numerical results

3.5.1 Simulations

We conduct simulations to investigate the finite sample performance of the pro-

posed method. Simulation data sets are generated from the generalized linear model

g(E(Y )) = β0 + β1X1 + β2X2 + γZ,
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where β0 = −1, β1 = 0.5, β2 = −1, γ = 2, and g is chosen to be the canonical link

function for normal, bernoulli and poisson distributions, respectively. The normal

error variance is chosen to be 1 for the linear regression model. The three covari-

ates are: X1 ∼ Bernoulli(0.5), X2 is normal with mean 1 and standard deviation 1

truncated at ±3, and Z = exp (−T ) is generated from the following linear model

T = α0 + α1X1 + α2X2 + ς,

where α0 = 0.25, α1 = 0.25, α2 = −0.5, ς ∼ 0.5N(0, 1/82) + 0.5N(0.5, 1/102), and

T is subject to right-censoring. The limit of detection L for covariate Z is chosen to

yield 30% censoring.

We simulate 1000 replications for each scenario, and compare the biases and vari-

ances of the proposed method with full data analysis, complete case analysis, and

four different substitution methods. The full data analysis represents the case that

all data are available, in other words, there is no limit of detection, which serves as a

benchmark. For linear regression, we conduct simulations with three different sample

sizes: 50, 200 and 400, where the sample size of 50 mimics the Michigan Bone Health

and Metabolism anti-Mullerian hormone study. For logistic and Poisson regression

models, we only consider sample sizes of 200 and 400. The four substitution methods

for Z < L are: (i) replacing Z by L, (ii) replacing Z by L/
√

2, (iii) replacing Z by

zero, and (iv) replacing Z by E(Z|Z < L). We only report biases for these sub-

stitution method. For the proposed two-stage method, we report the 90% coverage

proportions for which the variances are obtained from 200 bootstrap samples. The

results are presented in Table 3.1-3.3.

The results suggest that all the substitution methods yield biased estimates, in-

cluding substituting Z by E(Z|Z < L). The biases for the proposed two-stage method

are minimal, which are comparable to both the full data analysis and the complete
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case analysis. Clearly, the proposed method is much more efficient than the complete

case analysis, and the bootstrap method performs well in estimating the variance,

which yields reasonable coverage rate of the confidence intervals for all considered

sample sizes.

3.5.2 The hormone data analysis

We revisit the anti-Mullerian hormone data set analyzed by Sowers et al. (2008)

and Sowers et al. (2010) as an illustrative example for the regression with a covariate

subject to limit of detection. In particular, we focus on the effect of left-censored

anti-Mullerian hormone on the time to final menstrual period.

The data set contains a subsample of 50 study participants of the Michigan Bone

Health and Metabolism Study (Sowers et al., 2010). For each woman in this subsam-

ple, blood samples collected at six consecutive annual visits before her subsequent

final menstrual period were assayed for hormone measures. The limit of detection

was taken to be 0.05ng/ml for anti-Mullerian hormone. The percentage of subjects

below this limit of detection increases over time and varies from 6% to 66%.

For illustration purpose, we focus on the 3rd visit where 18% subjects had anti-

Mullerian hormone below limit of detection. Age, body mass index and follicle-

stimulating hormone, all measured at visit 3, are used as covariates to fit the ac-

celerated failure time model for − log(AMH), here AMH stands for anti-Mullerian

hormone. The final linear model for the time to final menstrual period only includes

age and log(AMH) as covariates. Table 3.4 shows the regression coefficient estimates,

where we see that the proposed two-stage method yields similar point estimates with

smaller variances comparing to the complete case analysis, indicating the efficiency

gain of the proposed method. Figure 3.1 shows the plots of 50 realizations from the

distributions of the score processes with dotted lines. The observed score processes

are presented with solid lines which randomly fluctuated around zero. From Figure
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Table 3.1: Simulation results for linear regression.

Sample size β0 = −1 β1 = 0.5 β2 = −1 γ = 2

Full data 50 bias 0.020 -0.008 0.010 -0.020
var 1.860 0.230 0.166 1.684

Two-stage bias 0.024 -0.006 0.009 -0.023
var 2.059 0.248 0.188 1.883

bootstrap var 2.275 0.262 0.206 2.091
90% coverage rate (%) 90.1 89.1 91.1 90.3
95% coverage rate (%) 93.9 94.0 94.7 94.2

Complete case bias 0.042 -0.013 0.014 -0.038
var 2.571 0.398 0.325 2.487

L bias 0.443 -0.232 0.236 -0.524
L/
√

2 bias 0.740 -0.149 0.160 -0.657
Zero bias 1.840 -0.423 0.433 -1.689
E(Z|Z < L) bias 0.460 -0.146 0.154 -0.456

Full data 200 bias -0.030 0.011 -0.006 0.024
var 0.414 0.051 0.036 0.374

Two-stage bias -0.029 0.010 -0.005 0.022
var 0.438 0.053 0.038 0.395

bootstrap var 0.465 0.058 0.043 0.421
90% coverage rate (%) 89.0 90.7 91.2 89.0
95% coverage rate (%) 94.9 94.8 95.6 95.3

Complete case bias -0.018 0.004 0.000 0.010
var 0.531 0.082 0.066 0.507

L bias 0.399 -0.220 0.228 -0.491
L/
√

2 bias 0.701 -0.136 0.147 -0.620
Zero bias 1.837 -0.417 0.427 -1.684
E(Z|Z < L) bias 0.415 -0.133 0.143 -0.418

Full data 400 bias -0.019 0.007 -0.003 0.014
var 0.212 0.028 0.019 0.192

Two-stage bias -0.019 0.008 -0.003 0.015
var 0.225 0.029 0.020 0.204

bootstrap var 0.226 0.028 0.021 0.205
90% coverage rate (%) 89.4 89.2 90.4 89.9
95% coverage rate (%) 95.0 93.8 95.0 95.0

Complete case bias -0.019 -0.001 0.004 0.008
var 0.273 0.043 0.033 0.255

L bias 0.404 -0.221 0.230 -0.495
L/
√

2 bias 0.724 -0.144 0.155 -0.642
Zero bias 1.850 -0.426 0.436 -1.700
E(Z|Z < L) bias 0.433 -0.138 0.148 -0.434

40



Table 3.2: Simulation results for logistic regression.

Sample size β0 = −1 β1 = 0.5 β2 = −1 γ = 2

Full data 200 bias -0.030 0.013 -0.033 0.060
var 2.157 0.268 0.216 2.033

Two-stage bias -0.041 0.016 -0.037 0.071
var 2.313 0.278 0.230 2.191

bootstrap var 2.424 0.299 0.235 2.260
90% coverage rate (%) 91.4 91.7 90.7 91.0
95% coverage rate (%) 96.2 96.3 95.9 96.2

Complete case bias -0.076 0.021 -0.045 0.106
var 2.822 0.413 0.381 2.842

L bias 0.309 -0.185 0.171 -0.368
L/
√

2 bias 0.690 -0.122 0.110 -0.570
Zero bias 1.880 -0.453 0.441 -1.716
E(Z|Z < L) bias 0.350 -0.100 0.087 -0.313

Full data 400 bias -0.033 0.007 -0.016 0.041
var 0.930 0.123 0.096 0.881

Two-stage bias -0.043 0.011 -0.020 0.052
var 1.013 0.129 0.104 0.964

bootstrap var 1.101 0.138 0.107 1.022
90% coverage rate (%) 90.8 91.2 90.5 90.6
95% coverage rate (%) 95.8 96.3 95.8 95.2

Complete case bias -0.037 0.005 -0.018 0.048
var 1.169 0.190 0.159 1.160

L bias 0.319 -0.193 0.190 -0.398
L/
√

2 bias 0.651 -0.119 0.117 -0.553
Zero bias 1.841 -0.442 0.440 -1.691
E(Z|Z < L) bias 0.332 -0.103 0.101 -0.317
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Table 3.3: Simulation results for Poisson regression.

Sample size β0 = −1 β1 = 0.5 β2 = −1 γ = 2

Full data 200 bias 0.022 -0.009 0.008 -0.026
var 0.225 0.024 0.018 0.198

Two-stage bias 0.034 -0.011 0.011 -0.037
var 0.250 0.026 0.020 0.221

bootstrap var 0.249 0.027 0.020 0.218
90% coverage rate (%) 90.9 89.9 90.0 90.6
95% coverage rate (%) 94.5 94.8 94.7 94.8

Complete case bias 0.025 -0.011 0.010 -0.031
var 0.351 0.053 0.041 0.325

L bias 0.589 -0.288 0.286 -0.660
L/
√

2 bias 0.885 -0.200 0.210 -0.801
Zero bias 1.867 -0.380 0.396 -1.691
E(Z|Z < L) bias 0.637 -0.213 0.217 -0.628

Full data 400 bias 0.018 -0.003 0.005 -0.020
var 0.105 0.012 0.008 0.092

Two-stage bias 0.019 -0.003 0.005 -0.021
var 0.119 0.013 0.009 0.104

bootstrap var 0.121 0.013 0.010 0.105
90% coverage rate (%) 90.1 90.7 90.5 90.7
95% coverage rate (%) 95.2 95.3 94.8 95.0

Complete case bias 0.016 -0.004 0.007 -0.022
var 0.175 0.027 0.022 0.163

L bias 0.578 -0.281 0.283 -0.649
L/
√

2 bias 0.886 -0.196 0.208 -0.800
Zero bias 1.870 -0.373 0.391 -1.689
E(Z|Z < L) bias 0.633 -0.208 0.215 -0.623
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3.1 we see that the accelerated failure time model for anti-Mullerian hormone fits the

data reasonably well, with respective goodness-of-fit empirical p-values 0.48, 0.664

and 0.602 for age, body mass index and follicle-stimulating hormone based on 500

simulated martingale residual score processes.

Table 3.4: Regression analysis results for the time to final menstrual period with co-
variate anti-Mullerian hormone subject to limit of detection: the Michigan
Bone Health Metabolism Study.

Intercept Age log(AMH)
Two-stage estimate 19.59 -0.27 0.71

bootstrap var 12.04 0.0064 0.032
Complete case estimate 19.15 -0.25 0.74

var 14.28 0.0073 0.078

AMH = anti-Mullerian hormone.
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Figure 3.1: Accelerated failure time model for anti-Mullerian hormone: graphical
checking for goodness of fit.
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3.6 Appendix

3.6.1 Regularity Conditions

Denote the sample space of response variable Y by Y , the sample space of covariate

X by X , the parameter space of θ by Θ, the parameter space of α by A, and the

parameter space of η by H. In addition to the assumptions of bounded support

for (X,Z) and compact parameter spaces Θ and A, we provide a set of regularity

conditions for Theorem III.1 in the following.

Condition III.1. Ψθ(φ0, α0, η0,α0) has a unique root θ0.

Condition III.2. For any constant U < ∞, supt∈[C,U ] |h(t)| ≤ E0 < ∞ supt∈[C,U ] |ḣ(t)| ≤
E1 < ∞, and supt∈[C,U ] |ḧ(t)| ≤ E2 < ∞, where ḣ and ḧ are the first and second deriv-

atives of h respectively, and E0, E1 and E2 are constants.

Condition III.3. Error ς has bounded density f = η̇0,α0 with bounded derivative ḟ ,

in other words, f ≤ E3 < ∞, |ḟ | ≤ E4 < ∞ for constants E3 and E4, and

∞∫

−∞

(ḟ(t)/f(t))2f(t)dt < ∞.

Condition III.4. There is a constant τ < ∞ such that pr(V − X ′α ≥ τ) > ξ > 0

for all x ∈ X and α ∈ A.

Condition III.5. a(φ) is a monotone function satisfying |1/a(φ)| ≤ l < ∞ for a

constant l with bounded derivatives ȧ(·) and ä(·).

Condition III.6. ḃ(·) is a bounded monotone function.

Condition III.7. b̈(·) is a bounded Lipschitz function.
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Condition III.8. There exist constants Ci, i = 1, . . . , 5, such that for any constant

U < ∞,

sup
y∈Y,θ∈Θ,|1/a(φ)|≤l,x∈X ,t∈[C,U ]

∣∣∣fθ,φ(y|t, x){y − ḃ(D′(t)θ)}
∣∣∣ ≤ C1 < ∞,

sup
y∈Y,θ∈Θ,|1/a(φ)|≤l,x∈X ,t∈[C,U ]

∣∣∣∣
∂fθ,φ(y|t, x)

∂φ
{y − ḃ(D′(t)θ)}

∣∣∣∣ ≤ C2 < ∞,

sup
y∈Y,θ∈Θ,|1/a(φ)|≤l,x∈X ,t∈[C,U ]

∣∣∣∣∣∣
∂

[
fθ,φ(y|t, x){y − ḃ(D′(t)θ)}

]

∂t

∣∣∣∣∣∣
≤ C3 < ∞,

sup
y∈Y,θ∈Θ,|1/a(φ)|≤l,x∈X ,t∈[C,U ]

∣∣∣∣
∂fθ,φ(y|t, x)

∂φ

∣∣∣∣ ≤ C4 < ∞,

sup
y∈Y,θ∈Θ,|1/a(φ)|≤l,x∈X ,t∈[C,U ]

∣∣∣∣∣∣
∂

[
fθ,φ(y|t, x){y − ḃ(D′(t)θ)}

]

∂θ

∣∣∣∣∣∣
≤ C5 < ∞.

Condition III.9. There exist constants δ1 > 0 and δ2 > 0, such that
∫ τ

C−X′α fθ,φ(Y |t+
X ′α, X)dη(t) ≥ δ1 with probability 1 for any θ ∈ Θ and |φ−φ0|+ |α−α0|+‖η−η0‖ <

δ2.

Remark: Condition III.1 is for the consistency, which may be unnecessarily

strong for the proposed two-stage method. Direct calculation yields

Ψ̇θ0 =
∂Ψθ(φ0, α0, η0)

∂θ

∣∣∣∣
θ=θ0

= E

{
−∆b̈{D′(T )θ0}D(T )⊗2 − (1−∆)

( τ∫

C−X′α0

fθ0,φ0(Y |t + X ′α0, X)dη0(t)

)−2

( τ∫

C−X′α0

fθ0,φ0(Y |t + X ′α0, X)[Y − ḃ{D′(t + X ′α0)θ0}]D(t + X ′α0)dη0(t)

)⊗2}
,

which is negative definite. Thus Ψ̇θ, a continuous matrix with θ, is also negative

definite in a neighborhood of θ0, which guarantees that θ0 is the unique solution of

Ψθ(φ0, α0, η0) = 0 in a neighborhood of θ0. The initial value we use in the Newton-

Raphson algorithm for solving Ψθ,n(φ̂n, α̂n, η̂n,α̂n) = 0 is obtained from the complete
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case analysis, which is consistent, thus the solution of the proposed two-stage method

should also be consistent.

Condition III.2 holds for many commonly used transformations, for example,

h(t) = exp(−t) and polynomial functions. Condition III.3 and III.4 are usual assump-

tions for accelerated failure time models (Tsiatis, 1990; Nan et al., 2009). Conditions

III.5-III.8 automatically hold for common generalized linear models, for example,

linear, logistic or poisson regression.

Condition III.9 is mainly for technical convenience. One way to obtain Condition

III.9 might be to truncate response variable Y such that |Y | ≤ M < ∞ for a large

constant M . In our simulations, however, we do not implement such truncations but

still obtain satisfactory results.

3.6.2 General Z-estimation theory

The proof of Theorem III.1 in the main text is based on the general Z-estimation

theory of Nan and Wellner (2013), which is provided in the following Lemmas III.1

and III.2 for our problem setting. Detailed discussion and proofs of these two lemmas

can be found in Nan and Wellner (2013). Let |·| be the Euclidian norm and ‖η−η0‖ =

supt |η(t) − η0(t)|. Define ρ{(φ, α, η), (φ0, α0, η0)} = |φ − φ0| + |α − α0| + ‖η − η0‖.
We use P ∗ to denote outer probability, which is defined as P ∗(A) = inf{pr(B) : B ⊃
A,B ∈ B} for any subset A of Ω in a probability space (Ω,B, P ).

Lemma III.1. (Consistency.) Suppose θ0 is the unique solution to Ψθ(φ0, α0, η0) = 0

in the parameter space Θ and (φ̂n, α̂n, η̂n,α̂n) are estimators of (φ0, α0, η0) such that

ρ{(φ̂n, α̂n, η̂n,α̂n), (φ0, α0, η0)} = op∗(1). If

sup
θ∈Θ,ρ{(φ,α,η),(φ0,α0,η0)}≤δn

|Ψn,θ(φ, α, η)−Ψθ(φ0, α0, η0)|
1 + |Ψn,θ(φ, α, η)|+ |Ψθ(φ0, α0, η0)| = op∗(1) (3.10)

for every sequence {δn ↓ 0}, then θ̂n satisfying Ψn,θ̂n
(φ̂n, α̂n, η̂n,α̂n) = op∗(1) converges
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in outer probability to θ0.

Lemma III.2. (Rate of convergence and asymptotic representation.) Suppose that

θ̂n satisfying Ψn,θ̂n
(φ̂n, α̂n, η̂n,α̂n) = op∗(n

−1/2) is a consistent estimator of θ0 that

is a solution to Ψθ(φ0, α0, η0) = 0 in Θ, and that (φ̂n, α̂n, η̂n,α̂n) is an estimator

of (φ0, α0, η0) satisfying ρ{(φ̂n, α̂n, η̂n,α̂n), (φ0, α0, η0)} = Op∗(n
−1/2). Suppose the

following four conditions are satisfied:

(i) (Stochastic equicontinuity.)

|n1/2(Ψn,θ̂n
−Ψθ̂n

)(φ̂n, α̂n, η̂n,α̂n)− n1/2(Ψn,θ0 −Ψθ0)(φ0, α0, η0)|
1 + n1/2|Ψn,θ̂n

(φ̂n, α̂n, η̂n,α̂n)|+ n1/2|Ψθ̂n
(φ̂n, α̂n, η̂n,α̂n)| = op∗(1).

(ii) n1/2Ψn,θ0(φ0, α0, η0) = Op∗(1).

(iii) (Smoothness.) There exist continuous matrices Ψ̇1,θ0(φ0, α0, η0), Ψ̇2,θ0(φ0, α0, η0),

Ψ̇3,θ0(φ0, α0, η0), and a continuous linear functional Ψ̇4,θ0(φ0, α0, η0) such that

|Ψθ̂n
(φ̂n, α̂n, η̂n,α̂n)−Ψθ0(φ0, α0, η0)

−Ψ̇1,θ0(φ0, α0, η0)(θ̂n − θ0)− Ψ̇2,θ0(φ0, α0, η0)(φ̂n − φ0)

−Ψ̇3,θ0(φ0, α0, η0)(α̂n − α0)− Ψ̇4,θ0(α0, η0)(η̂n,α̂n − η0)|

= o(|θ̂n − θ0|) + o[ρ{(φ̂n, α̂n, η̂n,α̂n), (φ0, α0, η0)}]. (3.11)

Here the subscripts 1, 2, 3, and 4 correspond to θ, φ, α, and η in Ψθ(φ, α, η), respec-

tively, and we assume that the matrix Ψ̇1,θ0(φ0, α0, η0) is nonsingular.

(iv) n1/2Ψ̇2,θ0(φ0, α0, η0)(φ̂n−φ0) = Op∗(1), n1/2Ψ̇3,θ0(φ0, α0, η0)(α̂n−α0) = Op∗(1),

and n1/2Ψ̇4,θ0(φ0, α0, η0)(η̂n,α̂n − η0) = Op∗(1).
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Then θ̂n is n1/2 -consistent and further we have

n1/2(θ̂n − θ0) = {−Ψ̇1,θ0(φ0, α0, η0)}−1n1/2{(Ψn,θ0 −Ψθ0)(φ0, α0, η0)

+Ψ̇2,θ0(φ0, α0, η0)(φ̂n − φ0) + Ψ̇3,θ0(φ0, α0, η0)(α̂n − α0)

+Ψ̇4,θ0(φ0, α0, η0)(η̂n,α̂n − η0)}+ op∗(1). (3.12)

3.6.3 Technical lemmas

Now we provide technical preparations for the proof of Theorem III.1, some of

which are from Ying Ding’s 2010 University of Michigan Ph.D. thesis. We adopt the

empirical process notation of van der Vaart and Wellner (1996).

Let εα = V −X ′α and ε0 = V −X ′α0. Define

h(0)(α, s) = P{1(εα ≤ s, ∆ = 1)},

h(1)(α, s) = P{1(εα ≥ s)},

h(2)(α, s) = P{1(εα ≥ s)X},

and

H(1)
n (α, s) = Pn{1(εα ≥ s)}.

The Kaplan-Meier estimator of the distribution function of T − αX is given by

η̂n,α(t) = 1−
∏

i:Vi−X′
iα≤t

{
1− ∆i/n

H
(1)
n (α, Vi −X ′

iα)

}
.

Define

F (α, t) = 1− exp

{
−

∫

u≤t

dh(0)(α, u)

h(1)(α, u)

}
,

and denote Ḟα(α, t) = ∂F (α, t)/∂α. For function c in the exponential family, denote
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ċφ(Y, φ0) = ∂c(Y, φ)/∂φ|φ=φ0 .

Let Φ{α, h(1), h(2)} = P
[{

h(1)(α, εα)X − h(2)(α, εα)
}

∆
]
, which corresponds to the

limiting Gehan weighted estimating function, and define

m1(α0, s; t) = −P

{
∆1(s ≥ ε0)1(t ≥ ε0)

h(1)(α0, ε0)2

}
, m2(α0, s; t, ∆) =

∆1(t ≥ s)

h(1)(α0, s)
, (3.13)

m3(α0, ε0; ∆, X) (3.14)

=

[
− Φ̇α{α0, h

(1)(α0, ·), h(2)(α0, ·)}
]−1[{

h(1)(α0, ·)X − h(2)(α0, ·)
}
∆

−
∫
{1(ε0 ≥ t)X}dPε0,∆(t, 1) +

∫
{1(ε0 ≥ t)}xdPε0,∆,X(t, 1, x)

]
.

Lemma III.3. Suppose Conditions III.3-III.4 hold, and let α̂n be the Gehan weighted

estimator for α0, we have

sup
t∈[C−E5,τ ]

|η̂n,α̂n(t)− η0(t)| = Op∗(n
−1/2),

where C is transformed L and E5 = supα∈A,x∈X |x′α| < ∞.

Proof. From the proof of Ying Ding’s Theorem 2.2.3 in her 2010 University of Michi-

gan Ph.D. thesis, for t in a bounded interval, we have for t ∈ [C − E5, τ ],

sup
t

n1/2{η̂n,α̂n(t)− η0(t)} = sup
t
Gn[{1− η0(t)}{m1(α0, ε0; t) + m2(α0, ε0; t, ∆)}

+Ḟα(α0, t)m3(α0, ε0; X, ∆)] + op(1), (3.15)

where m1(α0, s; t), m2(α0, ε0; t, ∆), m3(α0, ε0; X, ∆) are defined in (3.13) and (3.14).

We first calculate the bracket numbers for F1 = {m1(α0, ε0; t), t ∈ [C − E5, τ ]}
and F2 = {m2(α0, ε0; t, ∆), t ∈ [C−E5, τ ]}. For any nontrivial ε satisfying 1 > ε > 0,

let ti be the i-th d1/εe quantile of ς0 = T −X ′α0, i.e.

pr(ς0 ≤ ti) = iε, i = 1, · · · , d1/εe − 1,
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where dxe is the smallest integer that is greater than or equal to x. Furthermore,

denote t0 = 0 and td1/εe = +∞. For i = 1, · · · , d1/εe, define brackets [Li, Ui] with

Li(s) = −P

{
∆1(s ≥ ε0)1(ti ≥ ε0)

h(1)(α0, ε0)2

}
, Ui(s) = −P

{
∆1(s ≥ ε0)1(ti−1 ≥ ε0)

h(1)(α0, ε0)2

}

such that Li(s) ≤ −P
{

∆1(s≥ε0)1(t≥ε0)

h(1)(α0,ε0)2

}
≤ Ui(s) when ti−1 < t ≤ ti. Since

E|Ui − Li| ≤ pr(ti−1 < ς0 ≤ ti)/{h(1)(α0, τ)}2 = ε/ξ2

from Condition III.4, we have N[ ](ε/ξ
2,F1, L1) ≤ 2/ε which yields

N[ ](ε,F1, L1) ≤ K1/ε,

where K1 = 2ξ2. Similarly, we have

N[ ](ε,F2, L1) ≤ K2/ε,

where K2 = 2ξ. From Theorem 2.14.9 in van der Vaart and Wellner (1996), we have

P ∗
(

sup
t∈[C−E5,τ ]

|Gn{(1− η0(t))m1(α0, ε0; t)}| > q

)

≤ P ∗
(

sup
t∈[C−E5,τ ]

|Gn{m1(α0, ε0; t)}| > q

)
≤ D1qe

−2q2

, (3.16)

P ∗
(

sup
t∈[C−E5,τ ]

|Gn{(1− η0(t))m2(α0, ε0; t, ∆)}| > q

)

≤ P ∗
(

sup
t∈[C−E5,τ ]

|Gn{m2(α0, ε0; t, ∆)}| > q

)
≤ D2qe

−2q2

(3.17)

for some constant D1 depends on K1 and constant D2 depends on K2. We now show
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supt∈[C−E5,τ ] |Ḟα(α0, t)| is bounded. Direct calculation yields

sup
t∈[C−E5,τ ]

|Ḟα(α0, t)|

= sup
t∈[C−E5,τ ]

e
− Ru≤t

dh(0)(α0,u)

h(1)(α0,u)

∣∣∣∣∣∣

∫

u≤t

dḣ
(0)
α (α0, u)

h(1)(α0, u)
−

∫

u≤t

ḣ
(1)
α (α0, u)dh(0)(α0, u)

{h(1)(α0, u)}2

∣∣∣∣∣∣
≤ {h(1)(α0, τ)}−1 sup

t∈[C−E5,τ ]

|ḣ(0)
α (α0, t)|

+{h(1)(α0, τ)}−2 sup
u∈(−∞,∞)

∣∣∣ḣ(0)
u (α0, u)

∣∣∣ sup
t∈[C−E5,τ ]

∫

u≤t

|ḣ(1)
α (α0, u)|du,

where ḣ
(0)
α (α0, t) = ∂

∂α
h(0)(α, t)

∣∣
α=α0

, ḣ
(1)
α (α0, t) = ∂

∂α
h(1)(α, t)

∣∣
α=α0

and ḣ
(0)
u (α0, u) =

∂
∂u

h(0)(α0, u). Since

h(0)(α, t) =

∫
η0(min(t + x′α− x′α0, C − x′α0))dFX(x)

=

∫

x′α≥C−t

η0(C − x′α0)dFX(x) +

∫

x′α<C−t

η0(t + x′α− x′α0)dFX(x),

h(1)(α, t) =

∫

x′α≤C−t

{1− η0(t + x′α− x′α0)}dFX(x),

where FX(x) is the distribution function of X, from Condition III.3 we have

sup
t∈[C−E5,τ ]

|ḣ(0)
α (α0, t)| = sup

t∈[C−E5,τ ]

∣∣∣∣η̇0,α0(t)

∫

t+x′α0<C

xdFX(x)

∣∣∣∣ ≤ E3E|X| < ∞,

sup
u∈(−∞,∞)

∣∣∣ḣ(0)
u (α0, u)

∣∣∣ ≤ sup
u∈(−∞,∞)

|η̇0,α0(u)| ≤ E3,

sup
t∈[C−E5,τ ]

∫

u≤t

|ḣ(1)
α (α0, u)|du

≤ sup
t∈[C−E5,τ ]

∫

u≤t

∣∣∣∣
∫

t+x′α0≤C

xdFX(x)

∣∣∣∣η̇0,α0(u)du +

∞∫

−∞

|x|dFX(x)

≤ E|X|E3 + E|X| < ∞.
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Since it can be shown that m3(α0, ε0; X, ∆) has finite second moment, we have

supt∈[C−E5,τ ]Gn[Ḟα(α0, t)m3(α0, ε0; X, ∆)] = Op∗(1), thus obtain the desired result.

Lemma III.4. Suppose Condition III.7 holds, we have that

{
∆{Y − ḃ(D′(t)θ)}D(t), θ ∈ Θ, t ∈ T ⊂ R

}
(3.18)

is Donsker.

Proof. From Condition III.7 we know that b̈(·) is bounded, hence ḃ(·) is a Lipschitiz

function. From Theorem 2.10.6 in van der Vaart and Wellner (1996), we know that

D(t) and ḃ(D′(t)θ) are Donsker, hence (3.18) is Donsker.

Lemma III.5. Suppose X and A be the bounded covariate and parameter spaces.

Let H be a collection of distribution functions satisfying Condition III.3. We have

F = {η(t− x′α), t ∈ T ⊂ R, x ∈ X , α ∈ A, η ∈ H} is Donsker.

Proof. Let F1 = {η(t)}. From Theorem 2.7.5 in van der Vaart and Wellner (1996),

the number of brackets [Li, Ui] such that Li(t) ≤ η(t) ≤ Ui(t) for any nontrivial ε

with 1 > ε > 0 and
∫ |Ui(t)− Li(t)|dη0(t) ≤ ε satisfies log N[ ](ε,F1, L1(P )) ≤ K1/ε,

where K1 < ∞ is a constant.

For notational simplicity, we consider 1-dimensional A. Because A is bounded,

we partition A by a set of intervals [lk, uk) such that |uk− lk| ≤ ε. Hence the number

of such intervals is bounded by K2/ε with a constant K2 < ∞. Now we construct

brackets for F ≡ {η(t− xα)}. Define

Oik(t, x) = min(Li(t− xuk), Li(t− xlk)), Sik(t, x) = max(Ui(t− xuk), Ui(t− xlk)).
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We have

Oik(t, x) ≤ min(η(t− xlk), η(t− xuk))

≤ η(t− xα)

≤ max(η(t− xlk), η(t− xuk)) ≤ Sik(t, x).

Since

P | Sik −Oik |

≤
∞∫

−∞

∞∫

−∞

| Ui(t− xuk)− Li(t− xuk) | dη0(t + xα0)dFX(x) (3.19)

+

∞∫

−∞

∞∫

−∞

| Ui(t− xlk)− Li(t− xlk) | dη0(t + xα0)dFX(x) (3.20)

+

∞∫

−∞

∞∫

−∞

| Ui(t− xlk)− Li(t− xuk) | dη0(t + xα0)dFX(x) (3.21)

+

∞∫

−∞

∞∫

−∞

| Ui(t− xuk)− Li(t− xlk) | dη0(t + xα0)dFX(x). (3.22)

Since [Li, Ui] are brackets for F1, we have (3.19) ≤ ε and (3.20) ≤ ε. Furthermore,

by integration by parts and change of variables we obtain

(3.21) ≤ 2ε +

∞∫

0

∞∫

−∞

{η(t− xlk)− η(t− xuk)}dη0(t + xα0)dFX(x)

+

0∫

−∞

∞∫

−∞

{η(t− xuk)− η(t− xlk)}dη0(t + xα0)dFX(x)

= 2ε +

∞∫

0

∞∫

−∞

{η0(t + xα0 + xuk)− η0(t + xα0 + xlk)}dη(t)dFX(x)

+

0∫

−∞

∞∫

−∞

{η0(t + xα0 + xlk)− η0(t + xα0 + xuk)}dη(t)dFX(x)
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≤ 2ε +

∞∫

0

∞∫

−∞

E3x(uk − lk)dη(t)dFX(x)−
0∫

−∞

∞∫

−∞

E3x(uk − lk)dη(t)dFX(x)

≤ 2ε + E3E|X|ε = K3ε,

where E3 is defined in Condition III.3, and K3 = 2 + E3E|X| < ∞. Similarly, we

have (3.22) ≤ K3ε. Hence we have N[ ]((2 + 2K3)ε,F , L1(P )) ≤ exp(K1/ε)K2/ε, i.e.

N[ ](ε,F , L1(P )) ≤ exp(K1(2+2K3)/ε)K2(2+2K3)/ε ≤ exp((K1 +K2)(2+2K3)/ε).

Hence, F is Donsker.

Lemma III.6. Suppose Conditions III.2, III.5-III.9 hold, we have

{∫ τ

C−x′α fθ,φ(y | t + x′α, x){y − ḃ(D′(t + x′α)θ)}D(t + x′α)dη(t)∫ τ

C−x′α fθ,φ(y | t + x′α, x)dη(t)
: (3.23)

θ ∈ Θ, |1/a(φ)| < l, α ∈ A, η ∈ H, ρ{(φ, α, η), (φ0, α0, η0)} < δ2, x ∈ X , y ∈ Y
}

is Donsker.

Proof. From Condition III.9, we have {∫ τ

C−x′α fθ,φ(y | t + x′α, x)dη(t)} bounded away

from zero. From Section 2.10.2 of van der Vaart and Wellner (1996), we only need to

show that both the numerator and denominator in (3.23) belong to Donsker classes.

By integration by parts, we have

τ∫

C−x′α

fθ,φ(y | t + x′α, x)dη(t)

= fθ,φ(y | τ + x′α, x)η(τ)− fθ,φ(y | C, x)η(C − x′α)

−
τ∫

C−E5

1(t ≥ C − x′α)η(t)fθ,φ(y | t + x′α, x)

γ{y − ḃ(D′(t + x′α)θ)}ḣ(t + x′α)/a(φ)dt.

In the above, ḣ(·) is Lipschitz by Condition III.2 and fθ,φ(y | t + x′α, x) is Lipschitz

function for θ, φ and α by Conditions III.2, III.5 and III.8, thus both belong to
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Donsker classes by Theorem 2.10.6 in van der Vaart and Wellner (1996). By Lemma

III.5 we know that {η(C − x′α)} is Donsker. Since the class of indicator functions of

half spaces is a VC-class, see e.g. Exercise 9 on page 151 and Exercise 14 on page

152 in van der Vaart and Wellner (1996), thus the set of functions {1(t ≥ C − x′α)}
is a Donsker class. By Theorem 2.10.3 in van der Vaart and Wellner (1996), the

permanence of the Donsker property for the closure of the convex hull, we have{ ∫ τ

C−E5
1(t ≥ C−x′α)η(t)fθ,φ(y | t+x′α, x)γ{y− ḃ(D′(t+x′α)θ)}/a(φ)ḣ(t+x′α)dt

}

is Donsker. Hence the denominator of (3.23) belongs to a Donsker class.

Similarly, by integration by parts,

τ∫

C−x′α

fθ,φ(y | t + x′α, x){y − ḃ(D′(t + x′α)θ)}D(t + x′α)dη(t)

= fθ,φ(y | τ + x′α, x){y − ḃ(D′(τ + x′α)θ)}D(τ + x′α)η(τ)

−fθ,φ(y | C, x){y − ḃ(D′(C)θ)}D(C)η(C − x′α)

−
τ∫

C−E5

1(t ≥ C − x′α)η(t)fθ,φ(y | t + x′α, x)

(γ{y − ḃ(D′(t + x′α)θ)}2D(t + x′α)/a(φ)− b̈(D′(t + x′α)θ)γD(t + x′α)

+{y − ḃ(D′(t + x′α)θ)}Jp+2)ḣ(t + x′α)dt,

where Jp+2 = (0, · · · , 0, 1)′1×(p+2). Similar to the denominator, we can show that the

above function, which is the numerator of (3.23), belongs to a Donsker class provided

that {b̈(D′(t + x′α)θ)} is Donsker from Condition III.7.

Lemma III.7. Under Conditions III.5-III.9, when θ → θ0 and ρ{(φ, α, η), (φ0, α0, η0)}
→ 0, we have that E|ψθ(φ, α, η)− ψθ0(φ0, α0, η0)|2 → 0.

Proof. The proof follows straightforward algebraic calculations based on the Mean

Value Theorem. The details are thus omitted.

Lemma III.8. Suppose Conditions III.2, III.5-III.9 hold, we have E|ψθ0(φ0, α0, η0)|2 <
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∞.

Proof. Again, the proof is based on direct calculation.

3.6.4 Proof of Theorem III.1

3.6.4.1 Proof of consistency

Proof. We prove consistency using Lemma III.1. Since φ̂n and α̂n are n1/2 -consistent,

see the last paragraph of Section 3.3, and η̂n,α̂n is also n1/2 -consistent in a finite

interval from Lemma III.3, we have

ρ{(φ̂n, α̂n, η̂n,α̂n), (φ0, α0, η0)} = op∗(1).

Given that θ0 is the unique solution to Ψθ(φ0, α0, η0) = 0 from Condition III.1, we

only need to show that

sup
θ∈Θ,ρ{(φ,α,η),(φ0,α0,η0)}≤δn

|Ψθ,n(φ, α, η)−Ψθ(φ0, α0, η0)| = op∗(1) (3.24)

for every sequence δn ↓ 0. Now

sup
θ∈Θ,ρ{(φ,α,η),(φ0,α0,η0)}≤δn

|Ψθ,n(φ, α, η)−Ψθ(φ0, α0, η0)|

≤ sup
θ∈Θ

|(Pn − P )[∆{Y − ḃ(D(T )θ)}D(T )]| (3.25)

+ sup
θ∈Θ,ρ{(φ,α,η),(φ0,α0,η0)}≤δn

(3.26)

P

∣∣∣∣∣

∫ τ

C−X′α fθ,φ(Y | t + X ′α,X){Y − ḃ(D′(t + X ′α)θ)}D(t + X ′α)dη(t)∫ τ

C−X′α fθ,φ(Y | t + X ′α, X)dη(t)

−
∫ τ

C−X′α0
fθ,φ0(Y | t + X ′α0, X){Y − ḃ(D′(t + X ′α0)θ)}D(t + X ′α0)dη0(t)∫ τ

C−X′α0
fθ,φ0(Y | t + X ′

iα0, X)dη0(t)

∣∣∣∣∣
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+ sup
θ∈Θ,ρ{(φ,α,η),(φ0,α0,η0)}≤δn

∣∣∣∣(Pn − P )(1−∆) (3.27)

∫ τ

C−X′α fθ,φ(Y | t + X ′α, X){Y − ḃ(D′(t + X ′α)θ)}D(t + X ′α)dη(t)∫ τ

C−X′α fθ,φ(Y | t + X ′α, X)dη(t)

∣∣∣∣ = op∗(1),

where (3.25) and (3.27) equal to op∗(1) are from Lemma III.4 and Lemma III.6,

respectively, and (3.26) equal to op∗(1) follows a direct calculation similar to Lemma

III.7 using the Mean Value Theorem.

3.6.4.2 Proof of asymptotic normality

Proof. We now verify all the conditions in Lemma III.2. Condition (i) holds because

{ψθ(φ, α, η)} is Donsker by Lemmas III.4 and III.6, together with the result in Lemma

III.7. Condition (ii) holds by the classical central limit theorem for independent and

identically distributed data with E|ψθ0(φ0, α0, η0(α0))|2 < ∞ from Lemma III.8.

For Condition (iii), given that ρ{(φ̂n, α̂n, η̂n,α̂n), (φ0, α0, η0)} = Op∗(n
−1/2), taking

the Taylor expansion for θ, φ and α we obtain

Ψθ̂n
(φ̂n, α̂n, η̂n,α̂n)−Ψθ0(φ0, α0, η0)

= Ψ̇1,θ̃(φ̂n, α̂n, η̂n,α̂n)(θ̂n − θ0)− Ψ̇2,θ0(φ̃, α̂n, η̂n,α̂n)(φ̂n − φ0)

−Ψ̇3,θ0(φ0, α̃, η0)(α̂n − α0)−R(θ0, φ0, α̂n, η̂n,α̂n , η0),

where θ̃ is between θ0 and θ̂n, φ̃ is between φ0 and φ̂n, α̃ is between α0 and α̂n, and

the remainder has the following form

R(θ0, φ0, α, η, η0)

= P

[
(1−∆)

{∫ τ

C−X′α A(t, θ0, φ0, α)dη(t)∫ τ

C−X′α B(t, θ0, φ0, α)dη(t)
−

∫ τ

C−X′α A(t, θ0, φ0, α)dη0(t)∫ τ

C−X′α B(t, θ0, φ0, α)dη0(t)

}]

57



with

A(t, θ0, φ0, α) = fθ0,φ0(Y | t + X ′α, X){Y − ḃ(D′(t + X ′α)θ0)}D(t + X ′α),

B(t, θ0, φ0, α) = fθ0,φ0(Y | t + X ′α, X).

It can be show by direct calculation that |Ψ̇1,θ̃(φ̂n, α̂n, η̂n,α̂n) − Ψ̇1,θ0(φ0, α0, η0)| =

op∗(1), |Ψ̇2,θ0(φ̃, α̂n, η̂n,α̂n)−Ψ̇2,θ0(φ0, α0, η0)| = op∗(1) and |Ψ̇3,θ0(φ0, α̃, η0)−Ψ̇3,θ0(φ0, α0,

η0)| = op∗(1).

Define

Ψ̇4,θ0(φ0, α0, η0)(η̂n,α̂n − η0) (3.28)

= P

[
(1−∆)

{∫ τ

C−X′α0
A(t, θ0, φ0, α0)d[η̂n,α̂n(t)− η0(t)]∫ τ

C−X′α0
B(t, θ0, φ0, α0)dη0(t)

−
∫ τ

C−X′α0
A(t, θ0, φ0, α0)dη0(t)

∫ τ

C−X′α0
B(t, θ0, φ0, α0)d[η̂n,α̂n(t)− η0(t)]∫ τ

C−X′α0
B(t, θ0, φ0, α0)dη0(t)2

}]

= P

[
(1−∆)

{∫ τ

C−X′α0
A(t, θ0, φ0, α0)dη̂n,α̂n(t)∫ τ

C−X′α0
B(t, θ0, φ0, α0)dη0(t)

−
∫ τ

C−X′α0
A(t, θ0, φ0, α0)dη0(t)

∫ τ

C−X′α0
B(t, θ0, φ0, α0)dη̂n,α̂n(t)∫ τ

C−X′α0
B(t, θ0, φ0, α0)dη0(t)2

}]
.

Then we have

|R(θ0, φ0, α̂n, η̂n,α̂n , η0)− Ψ̇4,θ0(φ0, α0, η0)(η̂n,α̂n − η0)|

≤ |R(θ0, φ0, α̂n, η̂n,α̂n , η0)−R(θ0, φ0, α0, η̂n,α̂n , η0)|

+|R(θ0, φ0, α0, η̂n,α̂n , η0)− Ψ̇4,θ0(φ0, α0, η0)(η̂n,α̂n − η0)|

= D1 + D2.
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Now D1 = o(|α̂n − α0|+ ‖η̂n,α̂n − η0‖) can be shown by

A1

B1

− A2

B2

− A3

B3

+
A4

B4

=
A1

B1B2

(B2 −B1 −B4 + B3) +
A1

B1B2B3B4

(B3B4 −B1B2)(B4 −B3)

+
A1 − A3

B3B4

(B4 −B3) +
A1 − A2

B2B4

(B4 −B2) +
A1 − A2 − A3 + A4

B4

,

and D2 = o(|α̂n − α0|+ ‖η̂n,α̂n − η0‖) can be shown by

A1

B1

− A2

B2

− A1

B2

+
A2B1

B2
2

=
1

B1B2
2

{A1(B1 −B2)
2 −B1(A2 − A1)(B2 −B1)}.

Since φ̂n, α̂n and η̂n are all root-n consistent, under Conditions (i)-(iii), Condition

(iv) holds automatically. Then by Lemma III.2 we have that θ̂n is n1/2 -consistent

and (3.12) holds with

Ψ̇1,θ0(φ0, α0, η0)

= E[∆b̈{D′(T )θ0}D(T )D′(T )]

−E

[
(1−∆)

{ τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X)dη0(t)

}−2

( τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X){Y − ḃ(D′(t + X ′α0)θ0)}

D(t + X ′α0)dη0(t)

)⊗2]
,
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Ψ̇2,θ0(φ0, α0, η0)

= −E

[
(1−∆)

{ τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X)dη0(t)

}−1

{ τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X){Y − ḃ(D′(t + X ′α0)θ0)}D(t + X ′α0)

(
[Y {D′(t + X ′α0)θ0} − b(D′(t + X ′α0)θ0)]a

′(φ0)/a(φ0)
2 − ċφ(Y, φ0)

)
dη0(t)

}

−
{ τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X)dη0(t)

}−2{ τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X)

(
[Y {D′(t + X ′α0)θ0} − b(D′(t + X ′α0)θ0)]a

′(φ0)/a(φ0)
2 − ċφ(Y, φ0)

)
dη0(t)

τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X){Y − ḃ(D′(t + X ′α0)θ0)}D(t + X ′α0)dη0(t)

}]
,

and

Ψ̇3,θ0(φ0, α0, η0)

= −E

[
(1−∆)

{ τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X)dη0(t)

}−2

τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X){Y − ḃ(D′(t + X ′α0)θ0)}D(t + X ′α0)dη0(t)

{ τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X){Y − ḃ(D′(t + X ′α0)θ0)}

γ0X
′ḣ(t + X ′α0)/a(φ0)dη0(t) + fθ0,φ0(Y | C, X)η̇0(C −X ′α0)X

′
}]

.
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Finally, we obtain

n1/2{(Ψn,θ0 −Ψθ0)(φ0, α0, η0)} = Gn

(
∆{Y − ḃ(D′(T )θ0)}D(T ) (3.29)

+(1−∆)

{ τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X)dη0(t)

}−1

τ∫

C−X′α0

fθ0,φ0(Y | t + X ′α0, X){Y − ḃ(D′(t + X ′α0)θ0)}D(t + X ′α0)dη0(t)

)
,

= Gn{G1(θ0, φ0, α0, η0, ∆, Y,X, V )}

and

n1/2Ψ̇2,θ0(φ0, α0, η0)(φ̂n − φ0)} (3.30)

= Gn

{
Ψ̇2,θ0(φ0, α0, η0)m4(θ0, ∆, Y,X, V )

}
+ op(1),

where n1/2(φ̂n − φ0) = Gnm4(θ0, φ0, Y,X) + op(1) with m4(θ0, φ0, Y,X) = ∆{Y −
D′(T )θ0}2 for linear regression and m4 = 0 for the logistic and Poisson regressions.

For Gehan weighted estimate α̂n, we have

n1/2Ψ̇3,θ0(φ0, α0, η0)(α̂n − α0) = Gn

{
Ψ̇3,θ0(φ0, α0, η0)m3(α0, ε0; ∆, X)

}
+ op(1).(3.31)

Furthermore, from (3.15) and (3.28) we obtain

n1/2Ψ̇4,θ0(φ0, α0, η0)(η̂n,α̂n − η0) (3.32)

= Gn

[
−

∫

X

∞∫

−∞

(1−∆)

{
fθ0,φ0(y | τ + x′α0, x)

(
{1− η0(τ)}{m1(α0, ε0; τ)

+m2(α0, ε0; τ, ∆)}+ Ḟα(α, τ)m3(α0, ε0; x, ∆)

)

−fθ0,φ0(y | C, x)

(
{1− η0(C − x′α0)}{m1(α0, ε0; C − x′α0)
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+m2(α0, ε0; C − x′α0, ∆)}+ Ḟα(α, C − x′α0)m3(α0, ε0; x, ∆)

)

−
τ∫

C−x′α0

fθ0,φ0(y | t + x′α0, x)γ0ḣ(t + x′α0){y − ḃ(D′(t + x′α0)θ0)}/a(φ0)

(
{1− η0(t)}{m1(α0, ε0; t) + m2(α0, ε0; t, ∆)}+ Ḟα(α, t)m3(α0, ε0; x, ∆)

)
dt

}

( τ∫

C−x′α0

fθ0,φ0(y | t + x′α0, x){y − ḃ(D′(t + x′α0)θ0)}D(t + x′α0)dη0(t)

)

( τ∫

C−x′α0

fθ0,φ0(y | t + x′α0, x)dη0(t)

)−2

dydFX(x)

]
+ op(1)

= Gn{G2(θ0, φ0, α0, η0, ∆, Y,X, V )}

Hence, (Ψn,θ0 −Ψθ0)(φ0, α0, η0)+ Ψ̇2,θ0(φ0, α0, η0)(φ̂n−φ0)+ Ψ̇3,θ0(φ0, α0, η0)(α̂n−
α0)+Ψ̇4,θ0(φ0, α0, η0)(η̂n,α̂n−η0) is the sum of independent and identically distributed

terms and the classical central limit theorem applies. We have
√

n(θ̂n− θ0) converges

weakly to a mean zero normal random variable with variance A−1BA−1, where

A = −Ψ̇1,θ0(φ0, α0, η0),

B =

{
G1(θ0, φ0, α0, η0, ∆, Y,X, V ) + Ψ̇2,θ0(φ0, α0, η0)m4(θ0, ∆, Y,X, V )

+Ψ̇3,θ0(φ0, α0, η0)m3(α0, ε0; ∆, X) + G2(θ0, φ0, α0, η0, ∆, Y,X, V )

}⊗2

.

Note that for other rank based estimates of α, m3 in B is the corresponding

influence function with different forms; For the sieve maximum likelihood estimates

(Ding and Nan, 2011), m3 is the efficient influence function (Ritov and Wellner, 1988).

It is clearly seen that the analytic form of the asymptotic variance is too complicated

to be useful for the asymptotic variance estimation. Hence in our numerical studies

we use bootstrap to obtain the variance estimator.
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CHAPTER IV

Conditional Modeling of Longitudinal Data with

Terminal Event

4.1 INTRODUCTION

In longitudinal studies, the collection of information can be stopped at the end of

the study, or at the time of dropout of a study participant, or at the time of a terminal

event. Death, the most common terminal event, often occurs in aging cohort studies

and fatal disease follow-up studies, e.g., organ failure or cancer studies. Other types

of terminal events also exist, for example, the final menstrual period is a terminal

event for menstrual cycle data.

On primary focus of the current literature is how longitudinal measures affect sur-

vival time, and a popular method is the joint modeling approach using latent frailty,

see e.g. Tsiatis and Davidian (2004) and Albert and Shih (2010). Such joint modeling

strategy has been applied to longitudinal analysis with terminal event, see e.g. Huang

and Wang (2004) and Ding and Wang (2008). Another widely used approach is the

marginal estimating equation approach using inverse probability weighting, see e.g.

Ghosh and Lin (2002). In either case, the relationship between the response variable

and the covariates described by the fixed effects is the same no matter whether the

terminal event occurs or not. In other words, an implicit assumption of such analyses
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is that the longitudinally measured response variable and covariates are stochastic

processes holding the same relationship (i.e. fixed effects in the regression model) as

would exist if not stopped by the terminal event. Thus the observed data terminated

by the terminal event time is more or less treated as incomplete data.

These type of modeling strategies, however, are not reasonable for many longi-

tudinal studies, where the explicit effect of terminal event time is of interest. For

example, medical payments in dialysis patients (Liu et al., 2007) increase when pa-

tients approach death; functional limitations in an aging population (Sowers et al.,

2007) become more severe when people are closer to the end of life; and menstrual

cycles become longer and more variable when women approach the end of their repro-

ductive life – menopause (Harlow et al., 2008). Consequently, the longitudinal data

observed up to the terminal event time should be considered as complete data rather

than incomplete data.

Therefore, we directly model event time as an additional covariate for repeated

measures which provides much more intuitive and meaningful interpretation. The

proposed model has the usual relationship of interest between the longitudinally mea-

sured response variable and covariates when the data collection time is far away from

the terminal event time; whereas, the regression parameters become increasingly re-

lated to the terminal event time when the data collection time is closer to the terminal

event. The parameter estimation in such models can be complicated when the ter-

minal event times can be right censored. We propose a semiparametric likelihood

based approach to a nonlinear regression model with a censored covariate. The tail

distribution of the terminal event beyond each observed censoring time is estimated

from the Cox regression model, conditional on all other covariates. Model checking

is implemented by using martingale residuals. The proposed method is shown to be

consistent and asymptotically normal, and outperforms complete case analysis in sim-

ulations, which simply eliminates subjects with censored terminal event times. The
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proofs of the asymptotic properties rely heavily on empirical process theory.

4.2 NONLINEAR REGRESSION MODEL WITH MIXED

EFFECTS AND CENSORED COVARIATE

4.2.1 Complete data model with observed terminal event time

For a subject i, denote the terminal event time by Si, the baseline covariates by

a vector ~Xi with length p, the response by Yij, and the prespecified visit time by tij,

where i = 1, · · · , n, j = 1, · · · , ni. When Si is observed, we can model Yij by the

following nonlinear model with mixed effects for longitudinal data:

Yij = ~Xi

′
β + γe−(Si−tij−µ)2ξ + ~Zi

′
bi + Ui(tij) + εij, (4.1)

where β is a vector of regression coefficients with length p, bi are independent random

effects (vectors with length q1) associated with covariates ~Zi, Ui(t) are independent

stochastic processes, and εij are independent measurement errors.

We further assume that, for each subject i, (i) bi follows a normal distribution

N(0, D(ϕ)), where D is a positive definite matrix depending on a parameter vector

ϕ with length q2; (ii) Ui(t) is a mean zero Gaussian process with covariance func-

tion cov(Ui(t1), Ui(t2)) = κ(ν, ρ; t1, t2), where κ(·) is a given function that depends

on a parameter vector ν with length q3 and a scalar ρ; for example, Ui(t) can be

the nonhomogeneous Ornstein-Uhlenbeck (NOU) process satisfying var(Ui(t)) = ν(t)

with log(ν(t)) = ν0 + ν1t and corr(Ui(t1), Ui(t2)) = ρ|t1−t2|; (iii) εij follows a normal

distribution N(0, σ2); and (iv) bi, Ui(t), and εij are mutually independent.

For a vector b = (b1, · · · , bm), denote ab = (ab1, · · · , abm) for a scalar a, b2 =

(b2
1, · · · , b2

m) and exp(b) = (exp(b1), · · · , exp(bm)). Let Yi = (Yi1, · · · , Yini
)′, ti =

(ti1, · · · , tini
), Xi = ( ~Xi, · · · , ~Xi)

′
p×ni

and Zi = ( ~Zi, · · · , ~Zi)
′
q1×ni

. When Si is observed,
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from (4.1) we have

fθ,φ(Yi|Si, Xi) =
1

(2π)ni/2|Σi|1/2
(4.2)

exp

{
− 1

2

(
Yi −Xiβ − γe−(Si1i−ti−µ1i)

2ξ
)′

Σ−1
i

(
Yi −Xiβ − γe−(Si1i−ti−µ1i)

2ξ
)}

,

where 1i = (1, · · · , 1)′ with length ni, θ = (β, µ, γ, ξ)′ with length p + 3, φ =

(ϕ, ν, ρ, σ2)′ with length q = q2 + q3 + 2, and Σi = ZiDZ ′
i + Γi + σ2Ii, where Ii

is the ni×ni identity matrix and Γi is the covariance matrix of (U(ti1), · · · , U(tini
))′.

In model (4.1), the nonlinear predictor is the normal kernel, which is minimal

when Si − tij is large; and the regression parameters become increasingly related to

the terminal event when tij is close to the terminal event Si. More general regression

models can be considered, for example, time-dependent covariates and the semipara-

metric mixed effect model with a nonparametric smooth function of the terminal

event time and the data collection time. We focus on the simpler model (4.1) to bet-

ter illustrate the proposed methodology. The time-dependent covariate case involves

predicting censored covariate process, which will be explored elsewhere.

4.2.2 Observed data model with potentially censored terminal event time

We denote the censoring time for ith subject by Ci. If Si ≤ Ci ≡ tini
, then

Si is observed; otherwise Si is right-censored by Ci. We denote the observed time

by Vi = min(Si, Ci) and the censoring indicator by ∆i = 1(Si ≤ Ci). Note that

tij ≤ Vi, for all i = 1, · · · , n, j = 1 · · · , ni. Here, we assume that Ci and (Si, Yi) are

conditionally independent given Xi.

For notational simplicity, assume that random effect Z is a sub-vector of X. For a

single subject, we observe (V, ∆, Y,X). Denote the conditional cumulative distribu-

tion function of S given X by F1(s|X) with density f1(s|X). The likelihood function
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for the observed data (V, ∆, Y,X) can be factorized into

f(V, ∆, Y,X) = f2(V, ∆|Y, X)f3(Y |X)f4(X),

where f denotes the joint density of (V, ∆, Y,X), f2 denotes the conditional density of

(V, ∆) given (Y, X), f3 denotes the conditional density of Y given X, and f4 denotes

the marginal density of X. Since the conditional independence of C and (S, Y ) given

X implies that C and S are conditionally independent given (Y, X), we have

f2(V, ∆|Y, X) = {fS(S|Y, X)ḠC(S|Y, X)}∆{F̄S(C|Y, X)gC(C|Y, X)}1−∆,(4.3)

where fS denotes the conditional density of S given (Y, X), gC denotes the conditional

density of C given (Y, X), with F̄S and ḠC as the corresponding conditional survival

function. Further assuming noninformative censoring, we can drop gC(C|Y, X) and

GC(C|Y, X). Going through conditional arguments using the Bayes’ rule and drop-

ping f4(X), we obtain the likelihood function

L(V, ∆, Y,X) = {fθ,φ(Y |S, X)f1(S|X)}∆





∞∫

C

fθ,φ(Y |s,X)dF1(s|X)





1−∆

,(4.4)

where only fθ,φ contains the parameter of interest θ and nuisance parameter φ, whereas

f1 is an additional nuisance parameter in addition to φ.

In (4.4), {fθ,φ(Y |S, X)f1(S|X)}∆ is for a subject with observed terminal event

time, which yields the fully observed data, and
{∫∞

C
fθ,φ(Y |s,X)dF1(s|X)

}1−∆
is

for a subject with the terminal event time being censored. Later we show that the

complete case analysis by dropping the second part in (4.4) yields consistent and

asymptotically normally distributed estimator, but it loses efficiency. Making use

of censored data can improve efficiency. We see from the second part of (4.4) that

the amount efficiency gain depends on how well we can recover the right tail of the
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conditional distribution F1(s|X) beyond C. We consider a semiparametric approach

that allows reliable extrapolation beyond C and is robust against any parametric

assumption.

Due to the randomness of C, all the commonly used semiparametric models for

right-censored data allow extrapolation beyond C. Here, we propose the most widely

used Cox regression model (Cox, 1972). Other viable models include accelerated

failure time model, additive hazard model, and transformation model (Kalbfleisch

and Prentice, 2002). Suppose the hazard function of S given X has the following

form:

λ(s|X) = λ(s) exp(α′X), (4.5)

where α is the regression parameter with an unknown true value α0, and λ(·) is the

baseline hazard function. The conditional survival function is then given by

η(s; X) ≡ F1(s|X) = 1− exp{−Λ(s) exp(α′X)},

where Λ(s) =
∫ s

0
λ(u)du is the cumulative baseline hazard function with an unknown

true value Λ0. Note that X appears in both models (4.2) and (4.5), but it may refer to

different forms of covariates in these models. For example, X1 is a covariate in (4.2)

whereas X2
1 is a covariate in (4.5). We use the same X to denote all fully observed

covariates for notational simplicity. The log-likelihood function then becomes

log L = ∆ log fθ,φ(Y |S, X) + ∆ log η̇(S; X)

+(1−∆) log

τ∫

C

fθ,φ(Y |u,X)dη(u; X), (4.6)

where τ is the truncation time defined in Condition IV.5 provided in Section 4.4.

A similar idea has been used by Lu et al. (2010), but for a different problem. Lu

et al. (2010) considered longitudinal data analysis with an event time, which does not
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terminate the observed data.

4.3 THE PSEUDO-LIKELIHOOD METHOD

The log likelihood function (4.6) involves an unknown distribution function η

and the corresponding density function η̇, hence a maximum likelihood estimation,

if it exists, can be complicated. We propose a tractable two-stage pseudo-likelihood

approach in which the nuisance parameters (φ, η(α, Λ)) are estimated in stage 1 and

the parameter of interest θ is then estimated by maximizing the data version of (4.6)

in stage 2, with nuisance parameters replaced by their estimators obtained in stage 1

before maximization. Details are given below:

Stage 1. Nuisance parameter estimation. The dispersion parameter φ is estimated

by the complete case analysis of the nonlinear regression model (4.2); the Cox model

regression coefficient α is estimated by maximizing the partial likelihood, denoted

by α̃n; and the cumulative baseline hazard Λ is estimated by Breslow estimates Λ̃n

(Breslow and Crowley, 1974). The c.d.f η(s; X) is estimated by η̃n(s; X) = 1 −
exp{−Λ̃n(s) exp(α̃′nX)}, which is asymptotically equivalent to the product integral

expression. It can be shown that all the estimates obtained in Stage 1 have desirable

statistical properties. In particular, η̃n is n1/2 -consistent in a finite interval, see

Lemma IV.3 in Subsection 4.6.2; φ̃n obtained from the complete case analysis is n1/2

-consistent, see Lemma IV.5 in Subsection 4.6.2.

Stage 2. Pseudo-likelihood estimation of θ. Replacing (φ, η) by their Stage 1 esti-

mates (φ̃n, η̃n) in the log likelihood function yields the following log pseudo-likelihood
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function for a random sample of n subjects:

pln(θ) =
1

n

n∑
i=1

{
∆i log fθ,φ̃n

(Yi|Si, Xi)

+(1−∆i) log

τ∫

Ci

fθ,φ̃n
(Yi|u,Xi)dη̃n(u; Xi)

}
. (4.7)

Note that the term ∆ log η̇ in (4.6) is dropped because it does not involve θ. How-

ever, if we want to maximize the log-likelihood directly without using the two-stage

approach, then this term can not be omitted.

Let θ̂n denote the pseudo-likelihood estimator. Since it is obtained by maxi-

mizing the objective function (4.7), its asymptotic properties can be obtained from

M-estimation theory, see van der vaart (2002), Wellner and Zhang (2007) and Li and

Nan (2011).

The estimates (η̃n, Λ̃n) are obtained using a standard package for the Cox re-

gression model. The estimates (θ̃n, φ̃n) from complete case analysis are obtained by

maximizing 1
n

∑n
i=1

{
∆i log fθ,φ(Yi|Si, Xi)

}
using Newton-Raphson algorithm, where

multiple initial values are tried. The two-stage estimator θ̂n is also obtained by

Newton-Raphson algorithm with the initial value θ̃n gained from complete case analy-

sis.

4.4 ASYMPTOTIC PROPERTIES

Define

l0(θ, φ; Y, X, ∆, V ) = ∆ log fθ,φ(Y |S, X), (4.8)

70



which is the first part in the following log-likelihood for the observed data:

l(θ, φ, η; Y, X, ∆, V ) ≡ l(θ, φ, η(α, Λ); Y, X, ∆, V )

= ∆ log fθ,φ(Y |S, X) + (1−∆) log

τ∫

C

fθ,φ(Y |u,X)dη(u; X)

= ∆ log fθ,φ(Y |S, X)

+(1−∆) log

τ∫

C

fθ,φ(Y |u,X)d[1− exp{−Λ(u) exp(α′X)}], (4.9)

which is (4.6) with ∆ log η̇ dropped.

Denote the true value of θ by θ0, the true value of φ by φ0, the sample space of

response variable Y by Y , the sample space of covariate X by X , the sample space

of random effect Z by Z ⊂ X , the parameter space of θ by Θ, the parameter space

of φ by Φ, and the parameter space of η by F . In addition to the assumptions

of bounded support for X, bounded parameter spaces Θ and Φ, and conditional

independence between C and (S, Y ) given X, we provide a set of regularity conditions

in the following:

Condition IV.1. (a) El0(θ, φ; Y, X, ∆, V ) has a unique maximizer (θ0, φ0); (b) El(θ,

φ0, η0; Y, X, ∆, V ) has a unique maximizer θ0.

Condition IV.2. The eigenvalues for Σ(φ) are bounded between [λ1, λ2], where 0 <

λ1 < λ2 < ∞ for any φ ∈ Φ and Z ∈ Z.

Condition IV.3. The absolute values of all the elements in ∂Σ(φ)
∂φk

and ∂2Σ(φ)
∂φj∂φk

are

bounded uniformly for all φ ∈ Φ and Z ∈ Z.

Condition IV.4. The absolute values of all the elements in ∂3Σ(φ)
∂φi∂φj∂φk

are bounded

uniformly for all φ ∈ Φ and Z ∈ Z.

Condition IV.5. The study stops at a finite time τ > 0 such that infx∈X P (C ≥
τ |X = x) = ω1 > 0 and infx∈X P (S ≥ τ |X = x) = ω2 > 0 for constants ω1 and ω2.
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Condition IV.6. The condition distribution of S given X possesses a continuous

Lebesgue density.

Condition IV.7. The information matrix of the Cox regression model at the true

parameter values is positive definite.

Condition IV.8. There exist constants δ1 > 0 and δ2 > 0, such that
∫ τ

C
fθ,φ(Y |s,X)

dη(s) ≥ δ1 with probability 1 for any θ ∈ Θ and |φ− φ0|+ ‖η − η0‖ < δ2.

REMARK: Condition IV.1(a) implies γ0ξ0 6= 0; it holds by Theorem 2.1 of

Lehmann (1998) provided model (4.1) is identifiable. Condition IV.1(b) is for the con-

sistency of the proposed two-stage estimator θ̂n, which may be unnecessarily strong

and can be seen from the following. In the proof of Theorem IV.2 in Subsection

4.6.3.2, we can show P l̈11(θ0, φ0, η0; Y, X, ∆, V ) = P

{
∂2l(θ,φ0,η0;Y,X,∆,V )

∂θ∂θ′

∣∣∣∣
θ=θ0

}
is neg-

ative definite by Condition IV.1(a). Thus P l̈11(θ, φ0, η0; Y, X, ∆, V ), a continuous

matrix of θ, is also negative definite in a neighborhood of θ0, which guarantees that

θ0 is a unique maximizer of Pl(θ, φ0, η0; Y, X, ∆, V ) in a neighborhood of θ0. The

initial value we use in the algorithm for maximizing (4.7) is obtained from the com-

plete case analysis, which is shown to be n1/2 -consistent; thus, the solution of the

proposed two-stage method is likely to be in the same neighborhood, and therefore

also consistent without the uniqueness requirement in Condition IV.1(b).

Conditions IV.2-IV.4 automatically hold for model (4.1) with NOU process if

|ρ| ≤ 1 − δ, and ti,k+1 − ti,k ≥ ε, i = 1, · · · , n, k = 1, · · · , ni − 1, where δ > 0 and

ε > 0. And they are parallel to the conditions of bounded derivatives of the log

likelihood in Theorem 1.1 and Theorem 2.3 of Lehmann (1998).

Conditions IV.5-IV.7 are usual assumptions for Cox regression models (Andersen

and Gill, 1982; Nan and Wellner, 2013). Condition IV.8 is mainly for technical con-

venience. One way to obtain Condition IV.8 might be to truncate response variable

Y such that |Y | ≤ M < ∞ for a large constant M . In our simulations, however, we

do not implement such truncations but still obtain satisfactory results.
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We now have the following asymptotic results for θ̂n:

Theorem IV.1. (Consistency) Under Conditions IV.1-IV.3 and IV.5-IV.8, the two-

stage pseudo-likelihood estimator θ̂n that maximizes (4.7) converges in outer probabil-

ity to θ0.

The proof of Theorem IV.1 is similar to Li and Nan (2011) and van der vaart

(2002). Details are provided in Subsection 4.6.3.1.

Theorem IV.2. (Asymptotic normality) Under Conditions IV.1-IV.8,
√

n(θ̂n − θ0)

converges weakly to a mean zero normal random variable with variance A−1BA−1,

where A and B are provided in Subsection 4.6.3.2.

The proof of Theorem IV.2 is based on the general M-estimation theory similar

to Li and Nan (2011) and Wellner and Zhang (2007) which is given in Subsection

4.6.1. The detailed proof relies heavily on empirical process theory and is given in

the Subsection 4.6.3.2.

Because the asymptotic variance of θ̂n has a very complicated expression that pro-

hibits the direct calculation of its estimate from observed data, we use the bootstrap

variance estimator.

4.5 SIMULATIONS

We conduct simulations to investigate the finite sample performance of the pro-

posed method. Simulation data sets are generated from the nonlinear model with

mixed effects:

Yij = β0 + β1X1i + β2X2i + γe−(Si−Tij−µ)2ξ + bi + Ui(Tij) + εij,

where β0 = 1, β1 = 1, β2 = −3, µ = 1, and γ = 4. The random effect bi ∼
N(0, exp(−0.5)), the error term εij ∼ N(0, exp(−0.1)), and Ui(t) is an NOU process
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with ν0 = 1, ν1 = −1 and ρ = exp(−1)/(1 + exp(−1)). The two fully observed

covariates are X1i and X2i, where X1i ∼ Bernoulli(0.5) and X2i follows N(0, 1) dis-

tribution truncated at ±3. Terminal event time Si = 4 + S0i, where S0i follows an

exponential distribution with a conditional hazard function exp(−1 − 6X1i + 4X2i).

To generate the censoring time Ci, we first generate C0i = κC∗
0i, where C∗

0i follows

an exponential distribution with a conditional hazard function exp(−3−X1i + X2i),

then set Ci = tij, where j satisfies tij ≤ Ci and tij+1 > Ci assuming tini+1 = ∞. The

constant κ is chosen to yield 40% censoring. For each subject i, there are 10 sched-

uled visit times, and the first visit time ti1 is 0. There are two different settings to

generate the subsequent visit times: (1) equally spaced time intervals with tij = j−1,

j = 2, · · · , 10; (2) non-equally spaced time intervals with the subsequent visit times

generated recursively from tij = tij−1 +min(4,Wi) for j = 2, · · · , 10, where Wi follows

an exponential distribution with a conditional hazard function exp(−3−X1i + X2i).

In each setting, ξ takes two different values 1.2 and 0.2, corresponding to a flat and

a sharp nonlinear predictor in the regression model, respectively.

We conduct simulations with sample size 300, which mimic a medical payment

study in Liu et al. (2007), and simulate 500 replications for each scenario. The

proposed method is compared to full data analysis and complete case analysis in

terms of biases and variances. The full data analysis represents the case that all

data are available; in other words, there is no censoring, which has more visits and

serves as a benchmark. The complete case analysis simply eliminates subjects with

censored terminal event time. For the proposed two-stage method, we report the 90%

and 95% coverage proportions for which the variances estimators are obtained from

100 bootstrap samples. The results are presented in Tables 4.1-4.4.

The results suggest that the biases for the proposed two-stage method are minimal,

which is comparable to both the full data analysis and the complete case analysis.

From the tables, it can be clearly seen that the proposed method is much more
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Table 4.1: Simulation results for equally spaced time interval with sharp nonlinear
term. varb=boostrap variance estimator; CR=coverage rate

β0 = 1 β1 = 1 β2 = −3 µ = 1 γ = 4 ξ = 1.2

Full data bias -0.0064 0.0011 -0.0002 0.0001 -0.0032 0.0031
var 0.0801 0.0115 0.0082 0.0002 0.0140 0.0032

Two-stage bias -0.0153 0.0045 0.0003 -0.0010 -0.0030 0.0039
var 0.0973 0.0144 0.0098 0.0003 0.0166 0.0040

varb 0.1094 0.0161 0.0102 0.0003 0.0151 0.0043
90% CR 0.904 0.876 0.898 0.918 0.896 0.912
95% CR 0.966 0.944 0.960 0.972 0.952 0.946

Complete case bias -0.0092 0.0010 0.0041 -0.0008 -0.0024 0.0024
var 0.1217 0.0208 0.0130 0.0003 0.0242 0.0053

Table 4.2: Simulation results for equally spaced time interval with flat nonlinear term.
varb=boostrap variance estimator; CR=coverage rate

β0 = 1 β1 = 1 β2 = −3 µ = 1 γ = 4 ξ = 0.2

Full data bias 0.0081 -0.0116 0.0209 -0.0007 0.0009 0.0001
var 0.1279 0.0130 0.0455 0.0009 0.0121 0.0005

Two-stage bias 0.0090 -0.0121 0.0229 0.0003 -0.0046 0.0010
var 0.1599 0.0161 0.0561 0.0014 0.0152 0.0007

varb 0.1745 0.0166 0.0641 0.0015 0.0152 0.0007
90% CR 0.902 0.890 0.912 0.904 0.910 0.902
95% CR 0.958 0.948 0.946 0.950 0.964 0.952

Complete case bias 0.0044 -0.0196 0.0463 -0.0004 -0.0062 -0.0004
var 0.2248 0.0239 0.0821 0.0017 0.0236 0.0008

efficient than the complete case analysis, and the bootstrap method performs well

in estimating the variance, which yields reasonable coverage rates of the confidence

intervals for all the scenarios. Note that, in the case of non-equally spaced time

intervals, the variance estimates for parameters in the flat nonlinear predictor is less

accurate, see Table 4.4. However, the coverage rates of their confidence intervals

become more accurate when sample size increases (additional simulation results not

provided).
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Table 4.3: Simulation results for non-equally spaced time interval with sharp nonlin-
ear term varb=boostrap variance estimator; CR=coverage rate

β0 = 1 β1 = 1 β2 = −3 µ = 1 γ = 4 ξ = 1.2

Full data bias -0.0045 0.0020 0.0068 0.0016 -0.0051 0.0059
var 0.1474 0.0203 0.0187 0.0005 0.0177 0.0084

Two-stage bias -0.0238 0.0089 0.0111 0.0015 -0.0046 0.0090
var 0.1675 0.0235 0.0253 0.0007 0.0229 0.0113

varb 0.1550 0.0220 0.0276 0.0007 0.0213 0.0135
90% CR 0.866 0.884 0.884 0.888 0.914 0.910
95% CR 0.942 0.936 0.938 0.944 0.950 0.960

Complete case bias -0.0295 0.0093 0.0217 0.0004 0.0002 0.0120
var 0.2480 0.0366 0.0353 0.0010 0.0340 0.0161

Table 4.4: Simulation results for non-equally spaced time interval with flat nonlinear
term. varb=boostrap variance estimator; CR=coverage rate

β0 = 1 β1 = 1 β2 = −3 µ = 1 γ = 4 ξ = 0.2

Full data bias -0.0291 -0.0050 0.0459 -0.0048 -0.0083 0.0005
var 0.2087 0.0198 0.0875 0.0038 0.0189 0.0014

Two-stage bias -0.0521 -0.0018 0.0642 -0.0052 -0.0076 0.0014
var 0.2609 0.0253 0.1102 0.0055 0.0235 0.0019

varb 0.3059 0.0224 0.1416 0.0062 0.0216 0.0017
90% CR 0.894 0.886 0.882 0.892 0.874 0.868
95% CR 0.944 0.938 0.924 0.940 0.910 0.910

Complete case bias -0.0749 -0.0026 0.0984 -0.0025 -0.0104 0.0015
var 0.3471 0.0363 0.1563 0.0064 0.0314 0.0024
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4.6 Appendix

4.6.1 General M-theorems

Lemma IV.1 is a general M-estimation theory for parametric model , see van der

Geer (2000); and it is a special case of Wellner and Zhang (2007), thus its proof is

omitted. Lemma IV.2, which is used for the proof of Theorem IV.2, is similar to

Theorem A.1 of Li and Nan (2011), but the former focuses on infinite-dimensional

nuisance parameters; while the latter focuses on finite-dimensional nuisance parame-

ters. Note that Lemma IV.2 reduces to Lemma IV.1 with the nuisance parameters

fixed at true parameters. We provide Lemma IV.1 here for the ease of reference in

the proofs for complete case analysis which is given in Lemma IV.5. Let | · | be the

Euclidian norm and ‖η − η0‖ = sups,x |η(s; x) − η0(s; x)|. We adopt the empirical

process notation of van der Vaart and Wellner (1996).

Lemma IV.1. (Asymptotic normality for M-estimation) Given i.i.d. observation

Xi, i = 1, · · · , n. Suppose that the estimates ψ̃n of unknown parameters ψ are set

to be maximizer of the objective function Pnm(ψ;X). Let ṁ(ψ;X) = ∂m(ψ;X)
∂ψ

and

m̈(ψ;X) = ∂2m(ψ;X)
∂ψψ′ . Consider the following conditions:

A1. |ψ̃n − ψ0| = op(1).

A2. A = −P{m̈(ψ;X)} is non-singular.

A3. Pṁ(ψ0;X) = 0.

A4. The estimates ψ̃n satisfy Pnṁ(ψ;X) = op(n
−1/2).

A5. For any δn > 0, let Ψn = {ψ : |ψ−ψ0| ≤ δn}, we have supψ∈Ψn
|Gn{ṁ(ψ;X)−

ṁ(ψ0;X)}| = op(1).

A6. For ψ ∈ Ψn, |P{ṁ(ψ;X)− ṁ(ψ0;X)− m̈(ψ0;X)(ψ − ψ0)}| = o(|ψ − ψ0|).
Suppose that Conditions A1-A6 hold, then we have

√
n(ψ̃n − ψ0) = A−1

√
nPnṁ(ψ0;X) + op∗(1).
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Lemma IV.2. (Asymptotic normality for pseudo M-estimation) Given i.i.d. ob-

servation Xi, i = 1, · · · , n. Suppose that the estimates θ̂n of unknown parame-

ters θ are set to be maximizer of the objective function Pnm(θ, φ̃n, η̃n;X), where

φ̃n is an estimator of true parameter φ0 ∈ Φ ⊂ Rd, and η̃n is an estimator of

the true parameter η0 ∈ H, which is an infinite dimensional Banach space. Sup-

pose that ηt is a parametric submodel in F passing through η, that is, ηt ∈ F
and ηt=0 = η. Let H =

{
h : h = ∂ηt

∂t

∣∣∣∣
t=0

}
be the collection of all directions

to approach η. Let ṁ1(θ, φ, η;X) = ∂m(θ,φ,η;X)
∂θ

, ṁ2(θ, φ, η;X) = ∂m(θ,φ,η;X)
∂φ

, and

ṁ3(θ, φ, η;X)[h] = ∂m(θ,φ,η;X)
∂t

along the direction of h. Let m̈ij be the second order

derivatives of m with respect to corresponding arguments defined in a similar way,

i, j ∈ {1, 2, 3}. Consider the following conditions:

B1. |φ̃n − φ0| = op(1), |θ̂n − θ0| = op(1) and ‖η̃n − η0‖ = Op(n
−ν) for some ν > 0

and some norm ‖ · ‖.
B2. A = −P{m̈11(θ0, φ0, η0;X)} is non-singular.

B3. Pṁ1(θ0, φ0, η0;X) = 0.

B4. The estimator θ̂n satisfy Pnṁ1(θ̂n, φ̃n, η̃n;X) = op(n
−1/2).

B5. For any δn ↓ 0 and constant C > 0, let Θn = {(θ, φ, η) : |(θ, φ) − (θ0, φ0)| ≤
δn, ‖η̃n−η0‖2 ≤ Cn−ν}, we have sup(θ,φ,η)∈Θn

|Gn{ṁ1(θ, φ, η;X)−ṁ1(θ0, φ0, η0;X)}| =
op(1).

B6. For some ς > 1 satisfying ςν > 1/2, and for (θ, φ, η) ∈ Θn,

|P{ṁ1(θ, φ, η;X)− ṁ1(θ0, φ0, η0;X)

−m̈11(θ0, φ0, η0;X)(θ − θ0)}| − m̈12(θ0, φ0, η0;X)(φ− φ0)

−m̈13(θ0, φ0, η0;X)[η − η0]}|

= o(|θ − θ0|) + o(|φ− φ0|) + O(‖η − η0‖ς).
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Suppose that Conditions B1-B6 hold, then we have

√
n(θ̂n − θ0)

= A−1
√

nPnṁ1(θ0, φ0, η0;X) + A−1
√

nP{m̈12(θ0, φ0, η0;X)}(φ̃n − φ0)

+A−1
√

nP{m̈13(θ0, φ0, η0;X)[η̃n − η0]}+ op(1).

Proof. By B1, B3 and B5, we have

Pnṁ1(θ̂n, φ̃n, η̃n;X)− Pṁ1(θ̂n, φ̃n, η̃n;X)− Pnṁ1(θ0, φ0, η0;X) = op(n
−1/2)

In view of B4, this reduces to

Pṁ1(θ̂n, φ̃n, η̃n;X) + Pnṁ1(θ0, φ0, η0;X) = op(n
−1/2).

Then by B6, it follows that

Pm̈11(θ0, φ0, η0;X)(θ̂n − θ0) + Pm̈12(θ0, φ0, η0;X)(φ̃n − φ0)

+Pm̈13(θ0, φ0, η0;X)[η̃n − η0] + Pnṁ1(θ0, φ0, η0;X)

+o(|θ̂n − θ0|) + o(|φ̃n − φ0|) + O(‖η̃n − η0‖µ) = op(n
−1/2).

Thus,

−(A + op(1))(θ̂n − θ0)

= −P{m̈12(θ0, φ0, η0;X)(φ̃n − φ0) + m̈13(θ0, φ0, η0;X)[η̃n − η0]}

−Pnṁ1(θ0, φ0, η0;X) + op(n
−1/2).
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4.6.2 Technical Lemmas

Now we provide technical preparations for the proofs of Theorem IV.1 and IV.2.

In order to obtain the influence function of the conditional survival function given

X in the Cox regression model, we introduce the following notation:

Wi(s) = 1(Vi ≥ s), Ni(s) = 1(Vi ≤ s, ∆i = 1),

dAi(s; α) = Wi(s) exp(α′Xi)dΛ0(s), dMi(s; α) = dNi(s)− dAi(s; α)

M̄(s) =
n∑

i=1

Mi(s), J(s) = 1

(
n∑

i=1

Wi(s) > 0

)

S(0)(u; α) = Pn{W (u) exp(α′X)}, s(0)(u; α) = P{W (u) exp(α′X)},

S(1)(u; α) = Pn{XW (u) exp(α′X)}, s(1)(u; α) = P{XW (u) exp(α′X)},

S(2)(u; α) = Pn{X⊗2W (u) exp(α′X)}, s(2)(u; α) = P{X⊗2W (u) exp(α′X)},

ζ(u; α) = s(1)(u; α)/s(0)(u; α).

Lemma IV.3. Under Conditions IV.5-IV.7, we have

√
n(η̃n(t; X̃)− η0(t; X̃))

= [1− η0(t; X̃)] exp(α′0X̃)Gn{A1(η0; t, X̃; X, ∆, V )}+ op(1),

where

A1(η0; t, X̃; X, ∆, V )

=
[
X̃ ′ + h(t; α0)

′
]
e(α0)

−1

[
−

τ∫

0

{X − ζ(u; α0)} exp(α′0X)W (u)dΛ0(u)

+
1(V ≤ t)∆

s(0)(V ; α0)
+ {X − ζ(V ; α0)}∆−

t∫

0

1

s(0)(u; α0)
exp(α′0X)W (u)dΛ0(u)

]
,

with h(t; α0) = − ∫ t

0
ζ(u; α0)dΛ0(u), and e(α) = E

[
∆ s(2)(V ;α)s(0)(V ;α)−s(1)(V ;α)⊗2

s(0)(V ;α)2

]
which
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is the Fisher information matrix for the Cox regression.

Proof. From Nan and Wellner (2013) or Theorem 8.3.2 of Fleming and Harrington

(2005), we have

√
n(α̃n − α0) (4.10)

= e(α0)
−1Gn

[
{X − ζ(V ; α0)}∆−

τ∫

0

{X − ζ(u; α0)} exp(α′0X)W (u)dΛ0(u)

]

+op(1).

From the proof of Theorem 8.3.3 in Fleming and Harrington (2005), we have

√
n(Λ̃n(t)− Λ0(t)) = h(t; α0)

′√n(α̃n − α0) + n−1/2

t∫

0

J(u)dM̄(u)

S(0)(u; α0)
+ op(1). (4.11)

The second term in the right hand side of equation (4.11) equals

n−1/2

t∫

0

J(u)

[
1

S(0)(u; α0)
− 1

s(0)(u; α0)

]
dM̄(u)

+n−1/2

t∫

0

J(u)− 1

s(0)(u; α0)
dM̄(u) + n−1/2

t∫

0

dM̄(u)

s(0)(u; α0)
.

Define

A(t) = n−1/2

t∫

0

J(u)

[
1

S(0)(u; α0)
− 1

s(0)(u; α0)

]
dM̄(u),

B(t) = n−1/2

t∫

0

J(u)− 1

s(0)(u; α0)
dM̄(u),
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and the martingales A(t) and B(t) have predictable variation process:

< A(t), A(t) >

=
1

n

n∑
i=1

t∫

0

{
J(u)

[
1

S(0)(u; α0)
− 1

s(0)(u; α0)

]}2

Wi(u) exp(α′0X)dΛ0(u)

=

t∫

0

{
J(u)

[
1

S(0)(u; α0)
− 1

s(0)(u; α0)

]}2

S(0)(u; α0)dΛ0(u)
p−→ 0,

< B(t), B(t) >=
1

n

n∑
i=1

t∫

0

[J(u)− 1]2

s(0)(u; α0)2
Wi(u) exp(α′0Xi)dΛ0(u)

=

t∫

0

[J(u)− 1]2

s(0)(u; α0)2
S(0)(u; α0)dΛ0(u)

p−→ 0.

Hence, A(t) → 0 and B(t) → 0 for any t, and

√
n(Λ̃n(t)− Λ0(t)) = h(t; α0)

′√n(α̃n − α0) +
n∑

i=1

t∫

0

n−1/2dMi(u)

s(0)(u; α0)
+ op(1).

From Taylor expansion,

√
n(η̃n(t; X̃)− η0(t; X̃))

= −√n
[
exp{−Λ̃n(t) exp(α̃′nX̃)} − exp{−Λ0(t) exp(α′0X̃)}

]

= −√n

[
− exp{−Λ0(t) exp(α′0X̃)} exp(α′0X̃)(α̃n − α0)

′X̃

− exp{−Λ0(t) exp(α′0X̃)} exp(α′0X̃)[Λ̃n(t)− Λ0(t)]

+o(|α̃n − α0|) + o(‖Λ̃n − Λ0‖)
]
.

Now we want to derive the asymptotic properties for φ̃n from the complete case

analysis.
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Lemma IV.4. Under Conditions IV.1(a), IV.2, IV.3 and IV.5, the estimators (θ̃n, φ̃n)

that maximize Pnl0(θ, φ; Y, X, ∆, V ), where l0(θ, φ; Y, X, ∆, V ) is defined in (4.8), con-

verge in outer probability to (θ0, φ0).

Proof. From Corollary 3.2.3 in van der Vaart and Wellner (1996), we need to show

that (i)El0(θ0, φ0; Y, X, ∆, V ) > sup(θ,φ) 6∈G El0(θ, φ; Y, X, ∆, V ) for any open set G

that contains (θ0, φ0); (ii) sup(θ,φ) ‖(Pn−P )l0(θ, φ; Y, X, ∆, V )‖ → 0. Condition (i) is

satisfied from Condition IV.1(a) and non-informative censoring assumption. Condi-

tion (ii) is satisfied if the class of functions {−1
2
∆(Y −Xβ−γe−(S1−t−µ1)2ξ)′Σ(φ)−1(Y −

Xβ− γe−(S1−t−µ1)2ξ)− 1
2
log |Σ(φ)| : θ ∈ Θ, φ ∈ Φ} belongs to Glivenko-Cantelli. Un-

der Conditions IV.2, IV.3 and IV.5, we have e−(S1−t−µ1)2ξ is Lipschitz function for ξ

and µ, log |Σ(φ)| and all the elements in Σ(φ) are Lipschitz functions for φ, thus all

belong to Donsker by Theorem 2.10.6 of van der Vaart and Wellner (1996); hence

belong to Glivenko-Cantelli.

Denote the element-wise product of two matrices A and B by A ∗B. Let

Aj(φ) =
∂Σ(φ)

∂φj

, Ajk(φ) =
∂2Σ(φ)

∂φjφk

, r(θ; V, Y, X) = Y −Xβ − γe−(V 1−t−µ1)2ξ,

we obtain the influence function for φ̃n as follows:

Lemma IV.5. Under Conditions IV.1(a), and IV.2 -IV.5,

√
n(φ̃n − φ0) = D(φ0)

−1
√

nPnC(θ0, φ0; Y, X, ∆, V ),

where

D(φ0) = −1

2
P

{
∆D1(φ0; X)′D1(φ0; X)

}
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with

D1(φ0; X)′ =




vec
(
Σ(φ0)

−1/2A1(φ0)Σ(φ0)
−1/2

)′
...

vec
(
Σ(φ0)

−1/2Aq(φ0)Σ(φ0)
−1/2

)′




,

and

C(θ0, φ0; Y, X, ∆, V ) = (C1(θ0, φ0; Y, X, ∆, V ), · · · , Cq(θ0, φ0; Y, X, ∆, V ))′

with

Cj(θ0, φ0; Y, X, ∆, V ) = −1

2
∆tr

[
Σ(φ0)

−1Aj(φ0)
]

(4.12)

+
1

2
∆r(θ0; V, Y, X)′Σ(φ0)

−1Aj(φ0)Σ(φ0)
−1r(θ0; V, Y, X).

Proof. The proof follows Lemma IV.1 with ψ = (θ, φ). Here

m(θ, φ; Y, X, ∆, V ) = l0(θ, φ; Y, X, ∆, V ).

The first order derivative of m(θ, φ; Y, X, ∆, V ) equals

ṁ(θ, φ; Y, X, ∆, V ) =




ṁ1(θ, φ; Y, X, ∆, V )

ṁ2(θ, φ; Y, X, ∆, V )


 ,

where

ṁ1(θ, φ; Y, X, ∆, V ) =
∂m(θ, φ; Y, X, ∆, V )

∂θ
= ∆D2(θ; V, X)′Σ(φ)−1r(θ; V, Y, X)
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with

D2(θ; V, X) = (D21(θ; V, X), D22(θ; V, X), D23(θ; V, X), D24(θ; V, X)),(4.13)

where

D21(θ; V, X) = X

D22(θ; V, X) = 2γξ(V 1− t− µ1) ∗ e−(V 1−t−µ1)2ξ

D23(θ; V, X) = e−(V 1−t−µ1)2ξ

D24(θ; V, X) = −γ(V 1− t− µ1)2 ∗ e−(V 1−t−µ1)2ξ

and

ṁ2(θ, φ; Y, X, ∆, V ) =
∂m(θ, φ; Y, X, ∆, V )

∂φ

= (C1(θ, φ; Y, X, ∆, V ), · · · , Cq(θ, φ; Y, X, ∆, V ))′

with Cj(θ, φ; Y, X, ∆, V ) defined in (4.12).

The second order derivative of m(θ, φ; Y, X, ∆, V ) equals

m̈(θ, φ; Y, X, ∆, V ) =




m̈11(θ, φ; Y, X, ∆, V ) m̈21(θ, φ; Y, X, ∆, V )′

m̈21(θ, φ; Y, X, ∆, V ) m̈22(θ, φ; Y, X, ∆, V )


 ,

where

m̈11(θ, φ; Y, X, ∆, V ) =
∂2m(θ, φ; Y, X, ∆, V )

∂θ∂θ′

= −∆D2(θ; V, X)′Σ−1(φ)D2(θ; V, X) + ∆D3(θ, φ; V, Y, X)
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with

D3(θ, φ; V, Y, X) (4.14)

=




0p×p 0p×1 0p×1 0p×1

01×p D311(θ, φ; V, Y, X) D312(θ, φ; V, Y, X) D313(θ, φ; V, Y, X)

01×p D312(θ, φ; V, Y, X) D322(θ, φ; V, Y, X) D323(θ, φ; V, Y, X)

01×p D313(θ, φ; V, Y, X) D323(θ, φ; V, Y, X) D333(θ, φ; V, Y, X)




,

D311(θ, φ; V, Y, X) = 2γξ
([

2ξ(V 1− t− µ1)2 − 1
] ∗ e−(V 1−t−µ1)2ξ

)′

Σ(φ)−1r(θ; V, Y, X),

D312(θ, φ; V, Y, X) = 2ξ
(
(V 1− t− µ1) ∗ e−(V 1−t−µ1)2ξ

)′
Σ(φ)−1r(θ; V, Y, X),

D313(θ, φ; V, Y, X) = 2γ
(
(V 1− t− µ1) ∗ [

1− ξ(V 1− t− µ1)2
] ∗ e−(V 1−t−µ1)2ξ

)′

Σ(φ)−1r(θ; V, Y, X),

D322(θ, φ; V, Y, X) = 0,

D323(θ, φ; V, Y, X) = −((V 1− t− µ1)2 ∗ e−(V 1−t−µ1)2ξ)′Σ(φ)−1r(θ; V, Y, X),

D333(θ, φ; V, Y, X) = ((V 1− t− µ1)4 ∗ e−(V 1−t−µ1)2ξ)′Σ(φ)−1r(θ; V, Y, X);

m̈21(θ, φ; Y, X, ∆, V ) =
∂2m(θ, φ; Y, X, ∆, V )

∂φ∂θ′

= (m̈211(θ, φ; Y, X, ∆, V ), · · · , m̈21q(θ, φ; Y, X, ∆, V ))′

with

m̈21j(θ, φ; Y, X, ∆, V ) = −∆D2(θ; V, X)′Σ(φ)−1Aj(φ)Σ(φ)−1r(θ; V, Y, X),
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and

m̈22(θ, φ; Y, X, ∆, V ) =
∂2m(θ, φ; Y, X, ∆, V )

∂φ∂φ′

=




m̈2211(θ, φ; Y, X, ∆, V ) · · · m̈221q(θ, φ; Y, X, ∆, V )

...
...

...

m̈22q1(θ, φ; Y, X, ∆, V ) · · · m̈22qq(θ, φ; Y, X, ∆, V )




with

m̈22jk(θ, φ; Y, X, ∆, V ) = −1

2
∆tr

[−Σ(φ)−1Aj(φ)Σ(φ)−1Ak(φ) + Σ(φ)−1Ajk(φ)
]

−1

2
∆r(θ; V, Y, X)′Σ(φ)−1

{
Aj(φ)Σ(φ)−1Ak(φ)− Ajk(φ) + Ak(φ)Σ(φ)−1Aj(φ)

}

Σ(φ)−1r(θ; V, Y, X).

A1 holds from Lemma IV.4. A2 holds since

∞∫

−∞

fθ0,φ0(y|u, x)r(θ0; u, y, x)dy = 0, (4.15)

∞∫

−∞

fθ0,φ0(y|u, x)r(θ0; u, y, x)r(θ0; u, y, x)′dy = Σ(φ0). (4.16)

We have

Pm̈(θ0, φ0; Y, X, ∆, V ) =




D4(θ0, φ0) 0

0 D(φ0)


 ,
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where

D4(θ0, φ0) = −P{∆D2(θ0; V, X)′Σ(φ0)
−1D2(θ0; V, X)},

D(φ0) =




D11(φ0) · · · D1q(φ0)

...
...

...

Dq1(φ0) · · · Dqq(φ0)




with

Djk(φ0) = −1

2
P

{
∆tr

[
Σ(φ0)

−1Ak(φ0)Σ(φ0)
−1Aj(φ0)

]}

= −1

2
P

{
∆tr

[
Σ(φ0)

−1/2Ak(φ0)Σ(φ0)
−1Aj(φ0)Σ(φ0)

−1/2
]}

.

Hence,

D(φ0) = −1

2
P

{
∆D1(φ0; X)′D1(φ0; X)

}
.

We have Pm̈(θ0, φ0; Y, X, ∆, V ) is negative definite from Condition IV.1(a).

From (4.15), we have Condition A3 holds. A4 holds automatically. A5 holds if the

class of functions
{− 1

2
∆tr [Σ(φ)−1Aj(φ)]+ 1

2
∆r(θ; V, Y, X)′Σ(φ)−1Aj(φ)Σ(φ)−1r(θ; V,

Y, X) : j = 1, · · · , q, |θ− θ0| < δ, |φ−φ0| < δ
}

is Donsker for some δ > 0 and satisfies

E|ṁ(θ, φ; Y, X, ∆, V ) − ṁ(θ0, φ0; Y, X, ∆, V )|2 → 0 as |(θ, φ) − (θ0, φ0)| ≤ δn ↓ 0.

The two conditions hold from Conditions IV.2-IV.5, and Theorem 2.10.6 of van der

Vaart and Wellner (1996). A6 holds from Taylor expansion and Conditions IV.2-IV.5.

Hence,

√
n((θ̃n, φ̃n)− (θ0, φ0))

= −[Pm̈(θ0, φ0; Y, X, ∆, V )]−1Pnṁ(θ0, φ0; Y, X, ∆, V ) + op∗(1).
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We focus on φ and obtain the influence function for φ̃n.

Lemma IV.6. Under Conditions IV.2, IV.3and IV.5, the class of functions {l(θ, φ,

η(α, Λ); Y, X, ∆, V ) : θ ∈ Θ, φ ∈ Φ, η ∈ F} defined in (4.9) belongs to Donsker class.

Proof. In the proof of Lemma IV.4, we have shown that {log fθ,φ(Y |u,X) : θ ∈ Θ, φ ∈
Φ} is Donsker; from Condition IV.2 and Theorem 2.10.6 of van der Vaart and Wellner

(1996), we have {fθ,φ(Y |u,X)} is Donsker. From integration by parts,

τ∫

C

fθ,φ(Y |u,X)d[1− exp{−Λ(u) exp(α′X)}]

= fθ,φ(Y |τ,X)[1− exp{−Λ(τ) exp(α′X)}]

−fθ,φ(Y |C, X)[1− exp{−Λ(C) exp(α′X)}]

+

τ∫

C

fθ,φ(Y |u,X)(2γξ(u1− t− µ1) ∗ e−(u1−t−µ1)2ξ)′

Σ(φ)−1r(θ)[1− exp{−Λ(u) exp(α′X)}]du.

In the above, exp{−Λ(u) exp(α′X)} is Lipschitz for Λ and α from Condition IV.5,

and e−(u1−t−µ1)2ξ is Lipschitz function for ξ and µ, thus belong to Donsker classes

by Theorem 2.10.6 of van der Vaart and Wellner (1996). By Theorem 2.10.3 of

van der Vaart and Wellner (1996), the permanence of the Donsker property for the

closure of the convex hull, we have {∫ τ

C
fθ,φ(Y |u,X)d[1 − exp{−Λ(u) exp(α′X)}] :

θ ∈ Θ, φ ∈ Φ, η ∈ F} is Donsker. By Condition IV.8, δ1 ≤
∫ τ

C
fθ,φ(Y |u,X)d[1 −

exp{−Λ(u) exp(α′X)}] ≤ supY,u,X fθ,φ(Y |u,X), which is bounded from Condition

IV.2. Hence, {log
∫ τ

C
fθ,φ(Y |u,X)d[1− exp{−Λ(u) exp(α′X)}] : θ ∈ Θ, φ ∈ Φ, η ∈ F}

is Donsker from Theorem 2.10.6 of van der Vaart and Wellner (1996).

Lemma IV.7. Under Conditions IV.1(b), IV.2-IV.3 and IV.8, we have

sup
θ∈Θ

|Pl(θ, φ̃n, η̃n; Y, X, ∆, V )− Pl(θ, φ0, η0; Y, X, ∆, V )| = op(1).
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Proof. From triangular inequality,

sup
θ∈Θ

|Pl(θ, φ̃n, η̃n; Y, X, ∆, V )− Pl(θ, φ0, η0; Y, X, ∆, V )|

≤ 1

2
|P{log |Σ(φ̃n)| − log |Σ(φ0)|

+
1

2

∣∣∣∣P
{

r(θ0; V, Y, X)′
[
Σ(φ̃n)−1 − Σ(φ0)

−1
]
r(θ0; V, Y, X)

}∣∣∣∣

+ sup
θ∈Θ

1

2

∣∣∣∣P
{

d(θ; V, X)′
[
Σ(φ̃n)−1 − Σ(φ0)

−1
]
d(θ; V, X)

}∣∣∣∣

+ sup
θ∈Θ

∣∣∣∣∣∣
P



log

τ∫

C

fθ,φ̃n
(Y |u,X)dη̃n(u; X)− log

τ∫

C

fθ,φ0(Y |u,X)dη̃n(u; X)





∣∣∣∣∣∣

+ sup
θ∈Θ

∣∣∣∣∣∣
P



log

τ∫

C

fθ,φ0(Y |u,X)dη̃n(u; X)− log

τ∫

C

fθ,φ0(Y |u,X)dη0(u; X)





∣∣∣∣∣∣
≤ O(|φ̃n − φ0|)

+ sup
θ∈Θ

∣∣∣∣∣∣
P



log

τ∫

C

fθ,φ0(Y |u,X)dη̃n(u; X)− log

τ∫

C

fθ,φ0(Y |u,X)dη0(u; X)





∣∣∣∣∣∣
,

where d(θ; V, X) = X(β − β0) +
[
γe−(V 1−t−µ1)2ξ − γ0e

−(V 1−t−µ01)2ξ0

]
, which is uni-

formly bounded for any (V, X) and θ ∈ Θ. The last inequality is obtained from the

mean value theorem and Conditions IV.2-IV.3 and IV.8. Again, from the mean value

theorem and Condition IV.8,

sup
θ∈Θ

∣∣∣∣P


log

τ∫

C

fθ,φ0(Y |u,X)dη̃n(u; X)− log

τ∫

C

fθ,φ0(Y |u,X)dη0(u; X)

∣∣∣∣





≤ δ1 sup
θ∈Θ

P

∣∣∣∣
{ τ∫

C

fθ,φ0(Y |u,X)d[η̃n(u; X)− η0(u; X)]

}∣∣∣∣.
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By integration by parts,

sup
θ∈Θ

P

∣∣∣∣
τ∫

C

fθ,φ0(Y |u,X)dη̃n(u; X)−
τ∫

C

fθ,φ0(Y |u,X)dη0(u; X)

∣∣∣∣

≤ sup
u∈[0,τ ]

(
2 + τP

{ (
2γξ|u1− t− µ1| ∗ e−(u1−t−µ1)2ξ

)′
Σ(φ0)

−1 |r(θ; u, Y,X)|
})

× sup
θ∈Θ,Y ∈Y,X∈X ,u∈[0,τ ]

fθ,φ0(Y |u,X)× ‖η̃n − η0‖ = O(‖η̃n − η0‖).

The last equality holds because all the elements in
∫∞
−∞ |y|fθ0,φ0(y|u, x)dy are bounded

uniformly for all u ∈ [0, τ ] and X ∈ X from Kamart (1953). Hence,

sup
θ∈Θ

|Pl(θ, φ̃n, η̃n; Y, X, ∆, V )− Pl(θ, φ0, η0; Y, X, ∆, V )|

≤ O(|φ̃n − φ0|) + O(‖η̃n − η0‖) = op(1).

4.6.3 Proofs of Theorem IV.1 and IV.2

4.6.3.1 Proof of Theorem IV.1

Proof. From Condition IV.1, we have

sup
d(θ,θ0)>δ

Pl(θ, φ0, η0; Y, X, ∆, V ) < Pl(θ0, φ0, η0; Y, X, ∆, V ) (4.17)

holds for every δ > 0. By the definition of θ̂n, we have

Pnl(θ̂n, φ̃n, η̃n; Y, X, ∆, V ) ≥ Pnl(θ0, φ̃n, η̃n; Y, X, ∆, V ) (4.18)

= Pnl(θ0, φ0, η0; Y, X, ∆, V ) + op(1),

where the equality is obtained by Lemma IV.6 and Lemma IV.7. The class of functions

{l(θ, φ, η; Y, X, ∆, V ) : θ ∈ Θ, φ ∈ Φ, η ∈ F} is Donsker from Lemma IV.6, hence is
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Glivenko-Cantelli, we have

0 ≤ Pl(θ0, φ0, η0; Y, X, ∆, V )− Pl(θ̂n, φ0, η0; Y, X, ∆, V )

= Pnl(θ0, φ0, η0; Y, X, ∆, V )− Pnl(θ̂n, φ0, η0; Y, X, ∆, V ) + op(1)

≤ Pnl(θ̂n, φ̃n, η̃n; Y, X, ∆, V )− Pnl(θ̂n, φ0, η0; Y, X, ∆, V ) + op(1) (4.19)

= Pl(θ̂n, φ̃n, η̃n; Y, X, ∆, V )− Pl(θ̂n, φ0, η0; Y, X, ∆, V ) + op(1)

= op(1). (4.20)

where (4.19) is obtained from (4.18), and (4.20) is obtained by Lemma IV.7. By

inequality (4.17), for every δ > 0 we have

{d(θ̂n, θ0) ≥ δ} ⊂ {Pl(θ̂n, φ0, η0; Y, X, ∆, V ) < Pl(θ0, φ0, η0; Y, X, ∆, V )}

with the sequence of the events on the right going to a null event in view of inequality

(4.20), which yields the almost sure (thus in probability) convergence of θ̂n. This

argument is taken from the proof of Theorem 5.8 in van der vaart (2002) and the

proof of Theorem 3 in Li and Nan (2011).

4.6.3.2 Proof of Theorem IV.2

Proof. The proof follows Lemma IV.2. Here

m(θ, φ, η; Y, X, ∆, V ) = l(θ, φ, η; Y, X, ∆, V ).

Note that the function m(θ, φ, η; Y, X, ∆, V ) is different from the function m(θ, φ; Y,

X, ∆, V ) in Lemma IV.5.
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The partial derivative of m(θ, φ, η; Y, X, ∆, V ) with respect to θ equals

ṁ1(θ, φ, η; Y, X, ∆, V )

= ∆D2(θ; V, X)′Σ(φ)−1r(θ; V, Y, X) + (1−∆)

[ τ∫

C

fθ,φ(Y |u,X)dη(u; X)

]−1

[ τ∫

C

fθ,φ(Y |u,X)D2(θ; u,X)′Σ(φ)−1r(θ; u, Y,X)dη(u; X)

]
,

where D2(θ; u,X) is defined in (4.13).

The second order derivative of m(θ, φ, η; Y, X, ∆, V ) with respect to θ equals

m̈11(θ, φ, η; Y, X, ∆, V )

= −∆D2(θ; V, X)′Σ(φ)−1D2(θ; V, X) + ∆D3(θ, φ; V, Y, X) + (1−∆)

×
{[ τ∫

C

fθ,φ(Y |u,X)

{
−D2(θ; u,X)′Σ(φ)−1D2(θ; u,X) + D3(θ, φ; u, Y,X)

+
[
D2(θ; u,X)′Σ(φ)−1r(θ; u, Y,X)

]⊗2
}

dη(u; X)

][ τ∫

C

fθ,φ(Y |u,X)dη(u; X)

]−1

−
[ τ∫

C

fθ,φ(Y |u,X)D2(θ; u,X)′Σ(φ)−1r(θ; u, Y,X)dη(u; X)

]⊗2

[ τ∫

C

fθ,φ(Y |u,X)dη(u; X)

]−2}
,

where D3(θ, φ; V, Y, X) is defined in (4.14).

B1 holds from Lemma IV.3, Lemma IV.4 and Theorem IV.1. From (4.15) and
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(4.16),

Pm̈11(θ0, φ0, η0; Y, X, ∆, V ) (4.21)

= −P

{
∆D2(θ0; V, X)′Σ−1(φ0)D2(θ0; V, X)

+(1−∆)

[ τ∫

C

fθ0,φ0(Y |u,X)dη0(u; X)

]−2

[ τ∫

C

fθ0,φ0(Y |u,X)D2(θ0; u,X)′Σ(φ0)
−1r(θ0; u, Y,X)dη0(u; X)

]⊗2}
,

which is negative definite from Condition IV.1(a), thus B2 holds. From (4.15), we

have B3 holds. And B4 holds automatically.

Since

A1

B1

− A2

B2

=
A1(B2 −B1)

B1B2

+
A1 − A2

B2

,

under Conditions IV.2-IV.5 and IV.8, we have

E|ṁ1(θ, φ, η; Y, X, ∆, V )− ṁ1(θ0, φ0, η0; Y, X, ∆, V )|2 → 0

as |(θ, φ) − (θ0, φ0)| ≤ δn ↓ 0, since the denominator of the censored subject part is

bounded away from zero by Condition IV.8 and the numerator goes to zero from

continuity. Similar to the proof of Lemma IV.6, we have the class of functions

{∫ τ

C
fθ,φ(Y |u,X)D2(θ; u,X)′Σ(φ)−1r(θ; u, Y,X)dη(u; X) : θ ∈ Θ, φ ∈ Φ, η ∈ F} be-

longs to Donsker. Hence, {ṁ1(θ, φ, η; Y, X, ∆, V ) : θ ∈ Θ, φ ∈ Φ} is Donsker from

Section 2.10.2 of van der Vaart and Wellner (1996) and Condition IV.8. Furthermore,

from Corollary 2.3.12 of van der Vaart and Wellner (1996), we have B5 holds. Under

Conditions IV.2-IV.5 and IV.8, similar to the proof of Theorem III.1 in Chapter III,
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we can show that B6 holds. Particularly in B6,

Pm̈12(θ0, φ0, η0; Y, X, ∆, V )

= (Pm̈121(θ0, φ0, η0; Y, X, ∆, V ), · · · , P m̈12q(θ0, φ0, η0; Y, X, ∆, V ))

with

Pm̈12j(θ0, φ0, η0; Y, X, ∆, V )

= −1

2
P

(
(1−∆)

[ τ∫

C

fθ0,φ0(Y |u,X)D2(θ0; u,X)′Σ(φ0)
−1r(θ0; u, Y,X)dη0(u; X)

]

[ τ∫

C

fθ0,φ0(Y |u,X)

{
r(θ0; u, Y,X)′Σ(φ0)

−1Aj(φ0)Σ(φ0)
−1r(θ0; u, Y,X)

−tr

[
Σ(φ0)

−1Aj(φ0)

]}
dη0(u; X)

][ τ∫

C

fθ0,φ0(Y |u,X)dη0(u; X)

]−2)
,

and

Pm̈13(θ0, φ0, η0; Y, X, ∆, V )[η̃n − η0]

= −P

(
(1−∆)

[ τ∫

C

fθ0,φ0(Y |u,X)D2(θ0; u,X)′Σ(φ0)
−1r(θ0; u, Y,X)dη0(u; X)

]

[ τ∫

C

fθ0,φ0(Y |u,X)d{η̃n(u; X)− η0(u; X)}
][ τ∫

C

fθ0,φ0(Y |u,X)dη0(u; X)

]−2)

= −P

(
(1−∆)

[ τ∫

C

fθ0,φ0(Y |u,X)D2(θ0; u,X)′Σ(φ0)
−1r(θ0; u, Y,X)dη0(u; X)

]

[
fθ0,φ0(Y |τ,X){η̃n(τ ; X)− η0(τ ; X)} − fθ0,φ0(Y |C, X){η̃n(C; X)− η0(C; X)}

+

τ∫

C

fθ0,φ0(Y |u,X)(2γ0ξ0(u1− t− µ01) ∗ e−(u1−t−µ01)2ξ0)′Σ(φ0)
−1r(θ0; u, Y,X)

{η̃n(u; X)− η0(u; X)}du

][ τ∫

C

fθ0,φ0(Y |u,X)dη0(u; X)

]−2)
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= −Gn{G(θ0, φ0, η0; X̃, ∆̃, Ṽ )}+ op(1),

where

G(θ0, φ0, η0; X̃, ∆̃, Ṽ )

= P
{

E1(θ0, φ0, η0; Y, X, ∆, V )E2(θ0, φ0, η0; Y, X, τ)A1(η0; τ,X; X̃, ∆̃, Ṽ )
}

−P
{

E1(θ0, φ0, η0; Y, X, ∆, V )E2(θ0, φ0, η0; Y, X,C)A1(η0; C, X; X̃, ∆̃, Ṽ )
}

+P

{ τ∫

C

E1(θ0, φ0, η0; Y, X, ∆, V )E2(θ0, φ0, η0; Y, X, u)

E3(θ0, φ0; Y, X, u)A1(η0; u,X; X̃, ∆̃, Ṽ )du

}

with

E1(θ0, φ0, η0; Y, X, ∆, V ) = (1−∆)

[ τ∫

C

fθ0,φ0(Y |u,X)dη0(u; X)

]−2

,

[ τ∫

C

fθ0,φ0(Y |u,X)D2(θ0; u,X)′Σ(φ0)
−1r(θ0; u, Y,X)dη0(u; X)

]
,

E2(θ0, φ0, η0; Y, X, u) = fθ0,φ0(Y |u,X)[1− η0(u; X)] exp(α′0X),

E3(θ0, φ0; Y, X, u) = (2γ0ξ0(u1− t− µ01) ∗ e−(u1−t−µ01)2ξ0)′Σ(φ0)
−1r(θ0; u, Y,X),

and A1(η0; u,X; X̃, ∆̃, Ṽ ) is defined in Lemma IV.3.

Hence by Lemma IV.2 and the central limit theorem,

√
n(θ̂n − θ0)

= A−1
√

nPnṁ1(θ0, φ0, η0;X) + A−1
√

nP{m̈12(θ0, φ0, η0;X)}(φ̃n − φ0)

+A−1
√

nP{m̈13(θ0, φ0, η0;X)[η̃n − η0]}+ op(1),

which converges weakly to a mean zero normal random variable with variance
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A−1BA−1, where

A = −P{m̈11(θ0, φ0, η0; Y, X, ∆, V )},

B = P

[
ṁ1(θ0, φ0, η0; Ỹ , X̃, ∆̃, Ṽ ) + G(θ0, φ0, η0; X̃, ∆̃, Ṽ )

+P {m̈12(θ0, φ0, η0; Y, X, ∆, V )}D(φ0)
−1C(θ0, φ0; Ỹ , X̃, ∆̃, Ṽ )

]⊗2

with D(φ0) and C(θ0, φ0; Ỹ , X̃, ∆̃, Ṽ ) defined in Lemma IV.5.
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CHAPTER V

Future Work

In this dissertation, we derived the oracle inequalities for the high-dimensional

Cox regression model via Lasso in Chapter II, and developed novel approaches to

address censored covariate issues in Chapter III and Chapter IV.

The semiparametric likelihood-base estimates proposed in Chapter III allows more

efficient and robust estimates of the regression parameters when a covariate is subject

to limit of detection. This is an important issue, especially when the covariate sub-

ject to limit of detection is significantly associated with the response variable. The

amount of efficiency gain of the proposed two-stage method depends on how far we

can estimate F (t|X) reasonably well beyond the limit of detection. We truncate the

residuals with some finite value τ in this article. In practice, the upper limit of the

integral in the pseudo-likelihood function can go as far as the largest observed residual

in the fitted accelerated failure time model maxi(Ti − X ′
iα̂n), and theoretically, this

upper limit is ∞ when the support of X ′α0 is unbounded. In the latter case, it can

be shown that F̂n converges to F on the entire real line with a polynomial rate, e.g.,

n−1/8, see Lai and Ying (1991) and the 2010 University of Michigan PhD thesis by

Y. Ding. We may still be able to obtain consistent estimates for the parameters of

interest. The asymptotic normality, however, will largely remain unknown.

The extrapolation of F (t|X) beyond C depends on the semiparametric AFT
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model. New data with lower limit of detection can be used to check whether the AFT

model is valid. For example, Study of Women’s Health Across the Nation (SWAN)

proposed a study to further investigate the the relationship between anti-Mullerian

hormone and time to final menstrual period, where anti-Mullerian hormone is more

accurately measured with lower limit of detection. We can predict the mean/medium

of the anti-Mullerian hormone below the old limit of detection from the AFT model,

see Yin Ding’s 2010 University of Michigan Ph.D. thesis, and compare it to the mea-

sures in the new data. Furthermore, a AFT model can be fitted to the new data to

see if it yields the same results. To evaluate the robustness of the proposed method,

a sensitivity analysis can be considered where T is generated from a model that does

not satisfy the AFT model assumptions.

We only consider the case with one covariate subject to limit of detection in this

article for simplicity. Regression with multiple covariates subject to limits of detection

may occur in practice. Parametric models have been considered for such problems

(May et al., 2011; D’Angelo and Weissfeld, 2008). To achieve robust results, the

proposed semiparametric approach can be generalized to tackle the problem with

multiple covariates subject to limits of detection. The critical step is to provide

an valid nonparametric estimate for the multivariate survival function, for which

available methods include Dabrowska (1988), Prentice and Cai (1992), van der Laan

(1996), and Prentice and Moodie (2004). The constant limit of detection assumption

considered in this article, though commonly seen in practice, also can be relaxed to

cases with random limit of detection.

Limit of detection issue can be viewed as a missing data problem. Multiple im-

putation (Little and Rubin, 2002) may be considered as an alternative method if the

tail distribution of the covariate subject to limit of detection conditional on all other

variables, including the response variable, can be estimated reasonably well.

More general regression models in Chapter IV could be considered, for example,
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the semiparametric mixed effect model with a nonparametric smooth function of

terminal event time and the data collection time. Time-dependent covariates are

common in longitudinal studies. The major challenge for handling time-dependent

covariates is to provide a valid estimate of F (s|X̄(v)) beyond censoring time, which

needs valid extrapolation of covariate history. The proposed methodology may also

apply to recurrent event data with terminal events.

In the medical payment cohort study, if the terminal event time is known, the

prediction of medical payment is straightforward given the nonlinear regression model.

However, when a new patient participated in the study, the prediction of the future

medical payment given that the patient is still alive could be challenging and it is

also of future interest.
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