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ABSTRACT

Robust Methods for Program Evaluation

by

Sebastian Calonico

My dissertation research focuses on different approaches to conduct robust estimation

and inference in the context of program evaluation.

In Chapter 1, I look at the effects of teacher and peer characteristics on student

achievement in the STAR Project conducted in Tennessee in the late 1980s. As in

standard linear models, the proposed approach considers two types of unobservables:

school-specific effects and idiosyncratic disturbances. It generalizes previous empir-

ical research by allowing both effects to enter the structural function nonseparably.

No functional form assumptions are needed for identification. Instead, it uses an

exchangeability condition in the way that covariates affect the distribution of the

school-specific effects. The model permits nonparametric distributional and counter-

factual analysis of heterogeneous effects: it extends policy analysis beyond marginal

or discrete changes to consider distributional effects originating from a counterfactual

change in the distribution of characteristics of classrooms, peers and teachers. Also,

these impacts can be analyzed on any feature of the distribution of student achieve-

ment, such as quantiles and inequality measures. The empirical analysis looks at

the effects of class size, teacher experience and gender composition of the classroom
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on test scores. Findings suggest that nonseparable heterogeneity is an important

source of individual-level variation in academic performance. The impact of class size

is considerably larger using my approach: students in smaller classes benefit about

0.3 standard deviations, compared to a 0.16 effect obtained using a standard linear

model. Also, teacher experience has a stronger, nonlinear impact. Still, the distri-

butional analysis suggests that these gains are hard to achieve when facing resource

constraints.

In Chapter 2, a joint work with Matias Cattaneo and Rocio Titiunik, we study

robust inference in the context of regression discontinuity (RD) design. In the RD

approach, units are assigned to treatment based on whether their value of an ob-

served covariate exceeds a known cutoff. Local polynomial estimators are routinely

employed to construct confidence intervals for treatment effects. The performance

of these confidence intervals in applications, however, may be seriously hampered by

their sensitivity to the specific bandwidth employed. Available bandwidth selectors

typically yield a “large” bandwidth, leading to data-driven confidence intervals that

may be severely biased, with empirical coverage well below their nominal target. We

propose new theory-based, more robust confidence interval estimators for average

treatment effects at the cutoff in sharp RD, sharp kink RD, fuzzy RD and fuzzy kink

RD designs. Our proposed confidence intervals are constructed using a bias-corrected

RD estimator together with a novel standard error estimator. For practical implemen-

tation, we discuss mean-square error optimal bandwidths, which are by construction

not valid for conventional confidence intervals but valid with our robust approach,

and consistent standard error estimators based on our new variance formulas. Among

other possibilities, our results give formal justification to simple inference procedures

based on increasing the order of the local polynomial estimators employed. We find

in a simulation study that our confidence intervals exhibit close-to-correct empirical

coverage and good empirical interval length on average, remarkably improving upon
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the alternatives available in the literature.

Finally, in Chapter 3, also written jointly with Matias Cattaneo and Rocio Titiu-

nik, we present new results regarding RD plots. Exploratory data analysis plays a

central role in applied statistics and econometrics. Specially in the RD approach,

the use of graphical analysis has been advocated because it provides both easy pre-

sentation and transparent validation of the design [e.g., Imbens and Lemieux (2008,

Section 3) and Lee and Lemieux (2010, Section 4.1)]. RD plots are nowadays widely

used in applications, despite its formal properties being unknown: these plots are typ-

ically presented employing ad hoc choices of tuning parameters, which makes these

procedures less automatic and more subjective. We formally study the most common

RD plot based on an evenly-spaced binning of the data, and propose an optimal data-

driven choice for the number of bins. This leads to an RD plot that is constructed

objectively using the data available. In addition, we introduce an alternative RD

plot based on quantile-spaced binning, study its formal properties, and propose the

corresponding optimal data-driven choice for the number of bins. The main proposed

data-driven selectors employ spacings-based estimators, which are simple and easy to

implement in applications because they do not require additional choices of tuning

parameters. Altogether, our results offer two alternative RD plots that are objective

and automatic when implemented, thereby providing a reliable benchmark for em-

pirical work using RD designs. We illustrate the performance of our automatic RD

plots using two empirical applications and a Monte Carlo study.
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CHAPTER I

Identifying Distributional Effects of Teachers and

Peers in Nonseparable Models

1.1 Introduction

The effects of educational inputs such as class size, teaching quality and school

resources on student achievement have long been studied in the economic literature.

In a highly influential work, Hanushek (1986) concludes that the literature does not

provide strong evidence of a consistent relationship between school resources and stu-

dent performance. A positive effect of school inputs, particularly teaching quality,

has instead been highlighted in more recent work. For example, Card and Krueger

1992; 1996 find a positive relationship between school resources and student achieve-

ment, showing that both low pupil-teacher ratios and high quality school systems

lead to higher future earnings for students. Mixed conclusions have been reached

on the effect of class size on student performance: while some studies conclude that

small classes do not improve student achievement (e.g., (Hanushek, 2003), (Hoxby,

2000)), others find evidence of a positive impact (e.g., Krueger (1999), Krueger and

Whitmore (2001), Angrist and Lavy (1999)).

These contrasting results have usually been attributed to econometric problems

that make it difficult to recover the causal effect of educational inputs on student
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performance, especially those related to omitted variable bias and reverse causality.

Early studies have often relied on data in which the allocation of students to classes

was not the result of an exogenous assignment. For example, schools might assign

less able students to smaller classes, or better teachers to larger ones. In other cases,

the allocation of students to classes is not exogenous due to parent decisions, for

example parents more concerned about the education of their children may choose

schools with a smaller class size or more experienced teachers.

With the aim to provide more reliable estimates, recent studies have relied on con-

trolled randomized experiments or natural experiments. Most notably, a number of

works have used data from the STAR Project, conducted in Tennessee from 1985-89.

This was a large-scale, longitudinal experimental study of reduced class size, where

students and teachers were randomly allocated to different class sizes. It motivated

a large body of research on the effects of different classroom characteristics (not only

class size, but also other factors such as teacher experience) on student performance

both in the short and long-run. Most of the studies conclude that smaller classes in-

crease student achievement, even after controlling for school fixed effects and teacher

characteristics (e.g., Krueger (1999), Krueger and Whitmore (2001), Nye, Konstan-

topoulos, and Hedges (2004)).

Besides relying on an experimental setting, a common feature of all these studies

is that they are based on linear models, where we can account for unobserved school

heterogeneity by including school dummies, which can be handled with standard lin-

ear panel methods such as within-group transformations. I propose to extend this

approach by considering a more general, nonseparable model that does not impose

any functional form or parametric assumptions. In particular, no additivity or mono-

tonicity assumptions are required for identification. Using the STAR Project data,

I look at the influence of teacher experience, class size and gender composition of

the classroom on student performance on standardized tests. The main motivation
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behind this analysis is based on several important limitations of the standard model,

which usually assumes a linear specification of the form:

Yics = µs + Pcsβ + Z ′icsγ + εics (1.1)

where Yics is a measure of achievement (e.g., kindergarten test scores) for student

i assigned to classroom c in school s, Pcs is a classroom characteristic (e.g., class

size or teacher experience). Finally, Zics accounts for other student and teacher

characteristics that affect student performance. The main interest is on the parameter

β, e.g, the impact of class size or teacher experience on test scores. The model

also includes two types of unobserved heterogeneity: a school fixed effect µs and an

individual specific component, εics.

The model presents several limitations, mostly derived from the linearity assump-

tion. This is crucial for identification, since the school fixed effect µs is usually differ-

enced out. Besides being subject to model misspecification, this imposes important

limitations for the analysis of heterogeneity in terms of the relationship between the

impact of the covariates and µs. The marginal effect of Pcs on Yics (e.g., a marginal

change in the gender composition of the classroom) is: ∂Yics/∂Pcs = β, or β (p1 − p0)

for a discrete change (e.g., a reduction in class size). Given the additively separable

assumption, the model fails to capture the heterogeneity that comes from µs, such as

unobserved school characteristics or other attributes that affect all members of the

school but cannot be observed in the data. Additionally, it rules out the possibility

of heterogeneous treatment effects, which is often an important feature of the data

(e.g., Heckman, Smith, and Clements (1997) and Djebbari and Smith (2008)). For

example, it does not account for the possibility that the effect of the same reduction

in class size could be larger for schools with better reputations.

Additionally, the linearity assumption limits other aspects of the analysis. First,

regarding what features of the distribution of student achievement are considered.
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Usually the analysis focuses on average outcomes; that is, the effects on the condi-

tional expectation of Yics. Heterogeneity is most commonly accounted for by looking

at subgroup impacts based on demographic characteristics. A small number of stud-

ies also look at quantile treatment effects (e.g., Jackson and Page (2013)), but the

inclusion of fixed-effects is not straightforward as they can no longer be differenced

out and additional assumptions are required. Second, it also limits the type of pol-

icy analysis that can be conducted. In a linear model, β measures the impact of

a marginal or discrete change in Pcs. This might not be very informative in terms

of policy implementation. For example, if we care about reallocations of individuals

across groups as opposed to infeasible increases in the population. These realloca-

tions can be characterized by obeying a particular feasibility constraint that should

be accounted for. For example, one might be interested on the distributional effects

of a policy that reduces gender segregation in the classroom, while keeping the total

number of students of both genders fixed.

I propose a general method trying to account for these limitations. First, I use a

nonseparable model of the form:

Yics = m (µs, Pcs, Zics, εics) .

where them (·) function is assumed unknown and left completely unspecified. Nonsep-

arable models have been widely studied in the econometrics literature (e.g., Matzkin

2007; 2013). In the model I employ, no additivity or monotonicity assumptions are

required for identification of certain parameters related to the effect of teacher and

peer characteristics on student achievement. In addition, both µs and εics can be of

any dimension and interact with the covariates in general ways, in particular allowing

for heterogeneous treatment effects. For example, for a marginal change:
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∂Yics
∂Pcs

=
∂m (p, z, µ, ε)

∂p
.

Now the effect is allowed to be different even for students with the same observed

characteristics. The same is true for a discrete change:

m (µs, p1, Zics, εics)−m (µs, p0, Zics, εics)

The method I propose goes beyond the effect of marginal and discrete changes of

the covariates. In particular, I extend the analysis to consider counterfactual changes

in the marginal distribution of Pcs, and their effect on the unconditional distribution

of the outcome. For example, my method allows me to study the effects of a policy

that modifies the distribution of teacher experience by reducing the number of less

experienced teachers. Additionally, the impact of these counterfactual policies can be

identified on any feature of the distribution of Yics. This includes, for example, the

mean, quantiles and other functionals such as inequality measures.

The identification strategy is based on a control function approach that disen-

tangles the direct effect of Pcs on Yics by keeping the distribution of unobservables

fixed. The main concern is the possible correlation between the school fixed effects

µs and the policy variable Pcs. This is handled via an exchangeability assumption

(Altonji and Matzkin (2005)) on the conditional distribution of µs given observable

class characteristics, which imposes that they cannot be ordered in a particular way

in each school.

Using data from the STAR Project, I look at the influence of class size, teacher

experience and gender composition of the class on test scores. My findings suggest

that nonseparable heterogeneity is an important source of individual-level variation in

the academic performance of kindergarten students. Using the nonseparable model,

the impact of class size is considerably larger: students in smaller classes benefit

5



about 0.3 standard deviations, compared to a 0.16 effect obtained with a linear model.

Also, teacher experience has a stronger, nonlinear impact: students assigned to more

experienced teachers perform better in standardized test scores, and the gain increases

with years of experience. Still, conducting a counterfactual distributional analysis I

find that these gains in student performance are hard to achieve when facing resource

constraints. For example, I find that a policy that reduces the size of some classes

while keeping the number of students and teachers fixed generates a lower impact on

test scores.

The remainder of the chapter is organized as follows. Section 2 describes the

STAR Project and discusses some of the related literature. Identification, estimation

and implementation of the proposed model are discussed in Section 3. Section 4

presents my empirical findings, comparing them with previous approaches. Finally, I

discuss the main conclusions in Section 5. Proofs to the theorems are included in the

appendix.

1.2 STAR Project

The Student/Teacher Achievement Ratio (STAR) Project was conducted in Ten-

nessee during 1985-89. It was a large-scale, 4-year, longitudinal, experimental study

of reduced class size, where students and teachers were randomly assigned to classes

of different sizes. It included 79 schools from inner-city, rural, urban, and suburban

locations, and over 6,000 students per grade level (for students in kindergarten and

grades 1 to 3).

A large body of research has looked at the relationship between class size and

student performance in nonexperimental settings, but the STAR Project was the first

large-scale experiment to address this issue. In the absence of an experiment, the

effect of a policy may be confounded by other observed or unobserved factors that

may be correlated with the policy. In this case, the experiment only manipulated
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class size and did not provide additional teacher training, new curriculum, or any

other intervention.

In the original implementation of the experiment, students were to remain with

the same randomly assigned class type from kindergarten through the end of the

third grade. In practice, however, there were several deviations. Students who en-

tered a participating school after the first year of the program were added to the

experiment and randomly assigned to a class type. There was a substantial number

of new entrants: 45 percent of eventual participants entered after kindergarten, due

in part because, at the time, kindergarten was not required in Tennessee. A relatively

large fraction of students exited the STAR Project schools (45 percent of overall par-

ticipants) due to school moves, grade retention, or grade skipping. In addition, in

response to parental concerns about fairness to students, all students in regular and

regular-aide classes were randomized again in the first grade. Finally, a smaller num-

ber of students (about 10 percent of participants) were moved from one type of class

to another in a nonrandom manner. Most of these moves reportedly were due to

student misbehavior and not typically the result of parental requests to move their

child to a small class. Still, if families felt that their child would be better served

by attending smaller classes (or were upset that their child was randomly assigned

to a regular class), this might yield a differential attrition rate or better attendance

rate by class type. For these reasons, in this chapter I focus only on the sample of

students who entered the project in kindergarten.

Ideally one would check randomization with a pretest to ensure that there are no

measurable differences in the dependent variable by class type before the program

began. Unfortunately, no baseline survey was collected. Still, several authors (e.g.,

Krueger (1999)) investigated this issue by comparing student characteristics that are

related to student achievement but cannot be manipulated in response to treatment,

such as student race, gender and age, finding no systematic differences in observable
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characteristics across class type. Another drawback is that initial random assignment

was not recorded, but instead initial enrollment was measured. This could be a

concern if, for example, parents successfully lobbied for a class change in the days

between class assignments and the beginning of school. Krueger (1999) presented

evidence from a subset of the data suggesting that this was very unlikely. Finally, it

is also important that teachers were randomly assigned. If the most effective teachers

were disproportionately placed with small (or regular) classes, then the class-size

effect would pick up this effect as well. Based on the data available, Krueger (1999)

finds no observed within-school differences across observed characteristics of teachers,

such as race, gender, experience level, or highest level of education.

In terms of external validity, there are a few aspects of the sample that may limit

the validity of generalizing the STAR Project findings to other settings. In order to be

eligible to participate in the program, schools were required to have a minimum-size

cohort of fifty-seven students, enough to sustain both a regular and a regular-aide

classroom of twenty-two students and one small class of fifteen students. As a result,

the schools that participated were about 25 percent larger, on average, than other

Tennessee schools. Because of requirements imposed by the legislature for geographic

diversity, schools in inner cities were overrepresented, and the students included were

more economically disadvantaged and more likely to be African-American than those

in the state overall. Even though the percentage of non-white participants closely

mirrors the percentage in the United States overall (33 versus 31 percent), there were

very few Hispanic and Asian students in Tennessee at the time compared to the

rest of the nation. Finally, average school spending in Tennessee was about three-

fourths of the nationwide average, and teachers were less likely to have a master’s

degree. Krueger (1999) and Schanzenbach (2006) provide additional details on the

implementation of the programs.

Numerous studies have used the STAR Project to show that class size, teacher
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quality, and peer characteristics have significant (both in a statistical sense and in

magnitude) causal impacts on test scores (e.g., Schanzenbach (2006)). In addition,

there is a large literature about their long-term impacts. Krueger (1999) finds that, on

average, performance on standardized tests increases by four percentile points the first

year students attend small classes, and this advantage expands by about one percentile

point per year in subsequent years. The effects are larger for minority students

and those on free/reduced lunch programs. Other studies have shown that students

assigned to small classes are more likely to complete high school Finn, Gerber, and

Boyd-Zaharias (2005), take the SAT or ACT college entrance exams and less likely

to be arrested (Krueger and Whitmore (2001)).

Chetty, Friedman, Hilger, Saez, Schanzenbach, and Yagan (2011) analyze the

long-term impacts of the STAR Project on college attendance, earnings, retirement

savings, home ownership, and marriage by linking the original data to administrative

data from tax returns.

More recently, Dynarski, Hyman, and Schanzenbach (2011) also find that students

in small classes are more likely to enroll and complete college. However, very few

studies look at distributional impacts beyond subgroup analysis in the STAR Project.

Jackson and Page (2013) find heterogeneity across achievement quantiles, with the

largest test score gains being at the top of the achievement distribution.

I contribute to this literature by providing a nonparametric, distributional evalua-

tion of the impact of teachers, peers, and other class attributes on student performance

in standardized tests. By looking at the effect of some classmate characteristics, the

approach also relates to the peer effects literature, in particular to “contextual” effects

models as described in Manski (1993).1

1 See, e.g., Durlauf (2004) and Sacerdote (2011) for reviews, and Bramoulle, Djebbari, and Fortin
(2009), Boucher, Bramoullé, Djebbari, and Fortin (2012) for recent empirical applications.
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1.3 The Model

The performance on a standardized test for student i in classroom c from school

s, Yics, is assumed to be generated through the nonseparable model:

Yics = m (µs, Pcs, Zics, εics) (1.2)

for i = 1, · · · , Ics, c = 1, · · · , Cs and s = 1, · · · , S, where (Pcs, Zics) is a dx-dimensional

vector of covariates, with Pcs a scalar that could be any classroom, teacher or peer

characteristic whose effect on test scores we want to study. This flexible specification

allows for general types of interaction between µs and Pcs, since no assumption is

made on the functional form of m (·). This could be either a structural equation that

describes the causal relationship between the variables, or a reduced form equation

from a general structural system.

I consider several features of the relationship between test scores Yics and the

class charateristic Pcs. First, I look at two parameters that have a straightforward

interpretation and can be compared to the β coefficient from the linear model (1.1):

a Weighted Average Derivative Function for continuous variables Pcs, and a Discrete

Changes Function that evaluates Pcs at different points, useful for discrete random

variables such as class size or teacher experience. Finally, I introduce a Counterfactual

Distribution Function that measures the effect of general changes in the distribution

of Pcs on the marginal distribution of Yics.

Definition I.1. When m(µ, p, z, ε) is differentiable in p and p is continuously dis-

tributed, the Local Average Response is:

δics (p, z) =

∫
∂m (p, z, µ, ε)

∂p
dFµs,εics|Pcs,Zics

(µ, ε|p, z) (1.3)

where Fµs,εics|Pcs,Zics
(µ, ε|p, z) is the distribution function of (µs, εics) conditional on
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Pcs = p and Zics = z.

That is, δics (p, z) is the partial effect of Pcs on the expected value of Yics, evaluated

at given values of Pcs and Zics, averaged over the distribution of unobservables. For

example, this could measure the average effect on test scores of a marginal change in

the gender composition of the class, when the proportion of females is 0.5. Note that,

without assumptions on the dependence relationship among students, classrooms and

schools, the average derivative function is indexed by (i, c, s). I will discuss this issue

in more detail in Section 3.2.

One concern with the Local Average Response is that most common nonparamet-

ric estimators of (1.3) will exhibit low rates of convergence, especially when Zics is

high-dimensional. Besides, in some contexts the objective of the analysis is not to

predict the entire derivative curve of a conditional expectation function at each data

point. Instead, we might be interested in an average version of (1.3) over all values

of (Pcs, Zics). Then, I also consider Weighted Average Derivatives.

Definition I.2. The Weighted Average Derivative Function is

δωics = E
[
∂m (p, z, µ, ε)

∂p
ω(p, z)

]
(1.4)

where ω(p, z) is some specified weight function.

The weighted average derivative function is a well known parameter, and its iden-

tification and estimation have been extensively studied in the nonparametric and

semiparametric literature, in part because it is possible to construct nonparametric

estimators of (1.4) that attain parametric convergence rates. Certain regularity con-

ditions are usually required on the regression functions, the data and the weights ω,

such as compact support on (Pcs, Zics), bounded higher moments of Yics and deriva-

tives of the m(·) function. See, e.g., Cattaneo, Crump, and Jansson (2010), Cattaneo,

Crump, and Jansson (2013a), Cattaneo, Crump, and Jansson (2013b) and references

11



therein for a more detailed discussion. Also, see Newey and Stoker (1993) for effi-

ciency results for average derivative estimators. I discuss implementations issues of

(1.4) in section 3.2.

For discrete variables such as class size or years of teacher experience, we are

instead interested in finite changes rather than infinitesimal ones. In this case, we

can use:

Definition I.3. A Discrete Changes Function

∆ics (p′′, p′) =

∫
[m (p′′, z, µ, ε)−m (p′, z, µ, ε)] dFZics,µs,εics|Pcs (z, µ, ε|p′) (1.5)

is defined for a change between Pcs = p′′ to Pcs = p′.

Finally, I discuss a Counterfactual Distributions Function that measures the effect

of a counterfactual change in the distribution of Pcs on the marginal distribution of

Yics. The parameter of interest in this case is:

Definition I.4. The Counterfactual Distribution Function

FY ∗ics (y) ≡ P [m(µs, P
∗
cs, Zics, εics) ≤ y] (1.6)

is the marginal distribution of Y ∗ics ≡ m(µs, P
∗
cs, Zics, εics) obtained by evaluating the

function m(·) at values P ∗cs, where the distribution of Pcs changed from FPcs to FP ∗cs .

Now the research question is: how would the unconditional distribution of student

performance Yics change if a policy maker could exogenously shift the values of Pcs to

some P ∗cs, i.e., what is the difference between the distribution of Yics and that of the

counterfactual random variable Y ∗ics. This new distribution can be obtained in differ-

ent ways. For example, it could come from a transformation of the original random

variable (such as a policy that consists of reducing the number of less experienced

teachers), or from a different population (e.g. the distribution of teacher experience
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from another state, different demographic groups or time periods, etc.). This type

of counterfactual analysis have been extensively studied in other areas of economics

(see, e.g., Fortin, Lemieux, and Firpo (2011)).

Note also that P ∗cs can be dependent or independent of Pcs. Both cases can be

considered in the same framework, with only different implications in terms of im-

plementation, as I discuss in the next section. Finally, the proposed approach also

works for the case in which Pcs is different for each student, Pics. For example, Dee

(2004) looks at the effect of attending a class with teachers of similar characteristics

as the students. Also, it does not have to consist only of classroom means (e.g. av-

erage age of peers). Glewwe (1997) points out the limitations associated with using

the mean of peer characteristics without taking into account their overall distribu-

tion and how failure to do so can yield seriously misleading results. For example,

Pics =
(
I−1

∑I
i=1 Z

1−ζ
ics

)1−ζ
accounts for other characteristics of the distribution ac-

cording to the parameter ζ.

In all cases, the object of interest is the distribution FY ∗ics and how it compares to

FYics . The difference between them is called a distributional policy effect. In general,

this approach can be used to conduct inference on FY ∗ics as a whole, its moments and

quantiles, or some functionals of it, such as inequality measures. The next section

discusses the assumptions required for identification of all three parameters.

1.3.1 Identification

The main identification concern is the possible correlation between Pcs and µs.

There are basically two ways in which Pcs affects Yics: a direct effect through the

function m(·), and an indirect effect through the distribution of µs. In a linear

approach, one could simply remove the effect of µs by differencing it out. This is no

longer possible in a nonseparable model, so additional assumptions are required. In

particular, I assume the existence of a vector Vs including information at the school
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level, such that the school fixed effect is independent of Pcs once we condition on Vs.

Then, we can isolate the direct effect of Pcs on Yics. For example, one approach would

be to rely on a selection on observables type of assumption, and then construct the Vs

vector with a rich set of school characteristics. Instead, I employ an exchangeability

assumption that fits well in the context of the STAR Project. I develop this idea in

more detail in the next section. For identification purposes, it is only required that

the vector Vs satisfies:

Assumption I.5. µs ⊥ (Zics , Pcs) |Vs

Note that Vs has the role of a control function, and there could be many choices

of Vs satisfying this condition, each implying different restrictions on the model (see,

e.g., Matzkin 2007; 2013 and references therein). I discuss a particular strategy to

construct Vs in Section 3.1.1. The main idea is that, by controlling for Vs, I can

isolated the direct effec of Pcs on Yics without the influence of µs.

The next assumption refers to the individual specific heterogeneity, εics. In the

context of the STAR Project, the random allocation of teachers and students to

classroom ensures that εics ⊥ Pcs. For example, let εics represent family involvement

in their children’s education. Given random assignment of students and teachers into

classrooms, it is expected that this student-specific characteristic is uncorrelated with

the class size assigned to the student. More generally, I allow the independence of

εics and Pcs to be conditional:

Assumption I.6. εics ⊥ Pcs|(µs , Zics , Vs)

The first two assumptions are sufficient for identification of the average derivative

and discrete changes functions, and have been previously proposed in a similar context

by Altonji and Matzkin (2005). The result is given in Theorems 1 and 2.
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Theorem I.7 (Identification of Weighted Average Derivatives). Under (A.1)-(A.2):

δωics = E
[
∂E (Yics|Pcs = p, Zics = z, Vs = v)

∂Pcs
ω(p, z)

]
(1.7)

which also requires E[|∂E (Yics|Pcs = p, Zics = z, Vs = v) /∂Pcs|] <∞.

The idea behind the identification of δωics is straightforward. First, we calculate

the partial effect of Pcs on Yics holding Vs constant. This holds the distribution of un-

observables constant. Second, we compute the conditional distribution of Vs|Pcs, Zics

and recover δics (p, z) by integrating out Vs. From this result, identification of the

density weighted average derivatives follows directly by integrating over the joint dis-

tribution of (Pcs, Zis). A similar identification strategy can be used for the discrete

changes function:

Theorem I.8 (Identification of Discrete Changes). Under (A.1)-(A-2):

∆ics (p′′, p′) =

∫
E (Yics|Pcs = p′′, Zics = z, Vs = v) dFZics,Vs|Pcs (z, v|p′) (1.8)

− E (Yics|Pcs = p′)

The next two assumptions are specific to the counterfactual distribution analysis,

and concern the type of distributions that can be considered for P ∗cs. A general

assumption regarding the relationship between the counterfactual random variable

and the unobservables is:

Assumption I.9. µs ⊥ (Zics , Pcs , P
∗
cs) |Vs and εics ⊥ (Pcs, P

∗
cs)|(µs , Zics , Vs)

This would be satisfied, for example, if P ∗cs is originated from a transformation of

Pcs, P
∗
cs = Γ(Pcs). Finally, I also impose a common support condition:

Assumption I.10. sup(P ∗cs) ⊆ sup(Pcs)
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This is required to achieve nonparametric identification due to the inability to

extrapolate beyond the range observed in the data, restricting the policy experiments

that can be considered to ones for which there is already some experience in the

data. It could still be possible to give meaningful bounds on the counterfactual

distribution when P ∗cs is allowed to take values outside of the support of Pcs with

moderate probability. Identification follows:

Theorem I.11 (Identification of Counterfactual Distributions). Under (A.1)−(A.4):

FY ∗ics (y) = E
[
FYics|Pcs ,Zics ,Vs (y , P ∗cs , Zics , Vs)

]
(1.9)

That is, we can identify the unobserved marginal distribution of Y ∗ics by first

computing the conditional CDF of Yics given Pcs , Zics and Vs. As in the previous

cases, holding Vs holds the distribution of the fixed effects constant. Finally, the

unconditional distribution can be obtained by integrating over the distribution of

(P ∗cs , Zics , Vs). Also note that, from these results, functionals such as quantiles and

inequality measures are also identified.

Remark I.12. In all cases, an implicit assumption is the nonparametric identification

of the regression function E (Yics|Pcs, Zics, Vs) for values of (Pcs, Zics, Vs) for which the

conditional density of (Vs, Zics) given Pcs is positive. I discuss this issue in more detail

in Section 3.1.1, after introducing the choice of Vs.

The methodological contribution of this chapter is to extend some previous re-

sults from the literature on distributional counterfactual effects and on nonseparable

models, especially some recent contributions in a panel data context. Rothe 2010;

2012 proposes a nonparametric procedure to analyze counterfactual distributions us-

ing nonseparable models, but without accounting for group-invariant fixed effects.

Recently, Chernozhukov, Fernández-Val, and Melly (2013) consider policy interven-

tions that correspond to either changes in the distribution of covariates, or changes
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in the conditional distribution of the outcome given covariates, or both. This idea

also contributes to research on nonseparable models, especially to some recent work

for panel data. For a review of earlier contributions in a cross-sectional context, see

Matzkin 2007; 2013. One important difference is that these models usually focus

on the identification of local average structural derivatives (LASD), for which addi-

tional assumptions are required. For example, monotonicity on the unobservables

(e.g., Altonji and Matzkin (2005), Evdokimov (2010)). Su, Hoderlein, and White

(2010) discuss several limitations of this assumption. Alternatively, other papers re-

strict the analysis to a subpopulation for which the covariates do not change over

time (e.g., Hoderlein and White (2012), Chernozhukov, Fernández-Val, Hahn, and

Newey (2013)). None of these assumptions are employed in the identification results

in Theorems 1 to 3.

1.3.1.1 Exchangeability

To find a vector Vs satisfying (A.1) I use the notion of exchangeability, first intro-

duced in the nonseparable models literature by Altonji and Matzkin (2005). Graham,

Imbens, and Ridder (2010) also use an exchangeability assumption but at the stu-

dent level, and in a different model, to study segregation by gender in kindergarten.

Without loss of generality, I assume that there are two classrooms for each school,

C = 2. In the present context, exchangeability is defined as:

Definition I.13. The conditional distribution of µs given (X1s , X2s) is exchangeable

in (X1s , X2s) if Fµs|X1s ,X2s (µ|x1 , x2) = Fµs|X1s ,X2s (µ|x2 , x1), where Xcs = (Pcs , Zcs)

is a vector of classroom characteristics.

This means that the conditional distribution Fµs|X1s ,X2s (µ|x1 , x2) is invariant to

permutations of its arguments. That is, the subscript c is uninformative, and the

information that (X1s, X2s) provides is independent of the order in which the elements

are collected. This does not imply that there are no classroom effects, but that
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classrooms cannot be ordered in a particular way for all schools. The order could be

natural in other contexts, such as in panel data (if, for example, we were following

classroom over time). In that context, it rules out any type of dynamic behavior. Here

I assume that there are no a priori reasons for the first classroom to have a different

effect than the second one on the distribution of µs. An important restriction is the

implication that the same equality holds for any subset of the data.2 For C = 2 this

implies Fµs|X1s(µ|x1) = Fµs|X2s (µ|x2) which means that observable characteristics of

each classroom provide the same information regarding the distribution of the school

fixed effects. As opposed to a conditional independence assumption where we need to

find a rich enough set of variables to include in Vs such that Assumption 1 is satisfied,

the exchangeability assumption can hold for any of the elements in Xcs.

Example I.14. Let µs ∈ {H,L}, so schools can be either low or high quality type.

Also, Xcs ∈ {1, 2} represents years of teacher experience. One possible scenario

where the exchangeability assumption would not hold is when high quality schools

always assign more experienced teachers to classroom 1. Then, it might be that

P (µs = H|X1s = 1, X2s = 2) = 0 while P (µs = H|X1s = 2, X2s = 1) > 0.

Example I.15. Suppose classrooms are numbered by the extend of external dis-

traction (e.g., nice views out the window, external noise, broken chairs, etc). Then,

teacher assignment should be invariant to these choices.

Example I.16. We can also gain some intuition by looking at types of distribu-

tional assumptions that would lead to exchangeability. Let Pcs = Ps + P̃cs and

µs = θPs + µ̃s, where Ps v N(0, 1), P̃cs v N(0, 1), and µ̃s v N(0, 1), all i.i.d. Then,

Fµs|P1s,P2s(µ|p1, p2) = Fµs|Vs(µ|p1 + p2) by properties of the normal distribution.

To sum up, exchangeability is a reasonable assumption in the context of the STAR

Project, where teachers and students were randomly assigned to each classroom,

2 Note that i.i.d.⇒ exchangeability ⇒ stationarity ⇒ identically distributed.
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which, even though classrooms were of different size, this is observed and can be

accounted for by including class size as one of the elements of Xcs. This assumption

can be used to construct a vector Vs satisfying (A.1). First, the Fundamental Theorem

of Symmetric Polynomial Functions states that any symmetric polynomial can be

written in terms of elementary symmetric functions. Together with the Weierstrass

approximation theorem, this implies that if Fµs|X1s ,X2s (µ|x1 , x2) is exchangeable in

(X1s , X2s), it can be approximated arbitrarily close by a function of the form:

Fµs|X1s ,X2s (µ|x1 , x2) = Fµs|Vs (µ|v) (1.10)

where Vs ≡ (V 1
s , V

2
s ) are elementary symmetric polynomials of (X1s, X2s). For exam-

ple, when Xcs is a scalar, Vs = (X1s +X2s , X1sX2s). Finally, note that (1.10) implies

(A.1): µs ⊥ Xcs|Vs.

As mentioned before, an implicit assumption for the results in Theorems 1-3 is

the nonparametric identification of E [Yics|Pcs, Zics, Vs] for values of (Pcs, Zics, Vs) for

which the conditional density of (Vs, Zics) given Pcs is positive. This requires enough

variability on Pcs|Zics, Vs. Altonji and Matzkin (2005) discuss several alternatives to

guarantee this condition, but most of them require imposing additional restrictions

to the model. Instead, I propose exploiting the additional variability arising from the

inclusion of more elements in the vector of classroom characteristics Xcs (which could

also be at the student level). I use the results for elementary symmetric functions

for vectors developed in Weyl (1939). For example, let Xs = (X1s, X2s), with Xcs =

(Pcs, Zcs). Then, Vs = (P1sZ1s + P2sZ2s, P1sZ1sP2sZ2s).

1.3.2 Implementation

The estimation of all parameters of interest can be based on the identification

results in Theorems 1 to 3. First, I impose assumptions on the dependence across
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students, classrooms and schools.

Assumption I.17. (a) The sequence {Ys, Xs}Ss=1 is i.i.d., where (Ys, Xs) is a vector

including information for all classrooms and students in school s: Ys ≡ (Y1s, · · · , YCs)

and Xs ≡ ((P1s, Z1s), · · · , (PCs, ZCs)), where Ycs ≡ (Y1cs, · · · , YIcs) and Zcs ≡ (Z1cs, · · · , ZIcs).

(b) Additionally, I assume that observations are identically distributed across i =

1, · · · , Ics and c = 1, · · · , Cs.

Assumption 5 (b) arises naturally in a context of exchangeability of classrooms

across schools, as stated in Definition 5. Then, we can omit the indexes (i, c, s)

from the left hand side of (1.4), (1.5) and (1.6). To estimate the Counterfactual

Distribution Function Estimator I use:

F̂Y ∗(y) =
1

S

S∑
s=1

[
1

Cs

Cs∑
c=1

(
1

Ics

Ics∑
i=1

F̂Yics|Pcs ,Zics ,Vs (y , P ∗cs , Zics , Vs)

)]
(1.11)

where F̂Yics|Pcs ,Zics ,Vs(y|p, z, v) is an estimator of the conditional distribution of Yics

given (Pcs = p, Zics = z, Vs = v). This conditional distribution function can be es-

timated by either a semi-parametric approach (e.g., inverting a conditional quantile

model), or by fully nonparametric methods (e.g., a kernel CDF estimator). I choose a

semi-parametric approach with a prominent role in empirical work: a Distribution Re-

gression Model. This approach was first developed in Foresi and Paracchi (1992) and

recently extended by Chernozhukov, Fernández-Val, and Melly (2013). The estimator

of the conditional CDF is:

F̂Yics|Pcs ,Zics ,Vs(y|p, z, v) = Λ
(
ρ(p, z, v)

′
θ̂(y)

)
(1.12)

where Λ (·) is a link function (such as probit or logit), and θ̂ is obtained by fitting a
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binary choice model of the event 1 {Yi ≤ y} on ρ (Pcs, Zics, Vs)

θ̂ (y) = arg max
b∈Rdx+dv

S∑
s=1

Cs∑
c=1

Ics∑
i=1

(
1 {Yics ≤ y} ln

[
Λ
(
ρ (Pcs, Zics, Vs)

′ b
)]

(1.13)

+1 {Yics > y} ln
[
1− Λ

(
ρ (Pcs, Zics, Vs)

′ b
)])

with (Pcs, Zics) ∈ Rdx , Vs ∈ Rdv and ρ(·) is a vector of transformations (polynomials

or b-splines). The distribution regression model is flexible in the sense that, for

any given link function Λ, we can approximate the conditional distribution function

arbitrarily well by using a rich enough ρ(·). It generalizes location regression by

allowing the slope coefficients β(y) to depend on the threshold index y. As opposed

to other semiparametric alternatives (such as a quantile regression model), it does

not require smoothness of the conditional density, since the approximation is done

pointwise in the threshold y, and thus handles continuous, discrete, or mixed Y

without any special adjustment (see Chernozhukov, Fernández-Val, and Melly (2013)

for further details). In summary, the counterfactual distributions are estimated using

the following algorithm:

Algorithm 1. (Estimation of Counterfactual Distributions) (i) Apply the distribution

regression model (1.12) to obtain estimates F̂Yics|Pcs ,Zics ,Vs using data on (Yics, Pcs, Zics, Vs)

for i = 1, · · · , Ics, c = 1, · · · , Cs and s = 1, · · · , S. (ii) Compute the unconditional

distribution F̂Y ∗(y) in (1.11) by evaluating the estimator in (i) on (y, P ∗cs, Zics, Vs) and

taking the average over students, classrooms and schools.

Next, to estimate average derivatives I employ a simple unweighted version

δ = E
[
∂m (p, z, µ, ε)

∂p

]
(1.14)
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that can be compared with β in (1.1). An estimator of Average Derivatives is:

δ̂ =
1

S

S∑
s=1

[
1

Cs

Cs∑
c=1

(
1

Ics

Ics∑
i=1

∂Ê (Yics|Pcs, Zics, Vs)
∂Pcs

)]
(1.15)

where ∂Ê (Yics|Pcs, Zics, Vs) /∂Pcs is a nonparametric series estimators of the first

derivative of the regression function E (Yics|Pcs, Zics, Vs) with respect to Pcs. Let

X̃ics = (Pcs, Zics, Vs) and g0(x) = E[Yics|X̃ics = x] denote the true conditional ex-

pectation. Series methods approximate the unknown g0(x) with a flexible para-

metric function gK(x.ϑ) where ϑ is an unknown coefficient vector. The integer

K is the dimension of ϑ and indexes the complexity of the approximation. Let

πK(x) = (π1K(x), · · · , πKK(x))′ be a vector of approximating (basis) functions hav-

ing the property that a linear combination can approximate g0(x), then a Linear

Series Estimator of g0(x) takes the form:

ĝ(x) = πK(x)′ϑ̂ (1.16)

with ϑ̂ = (Π′Π)−Π′Y , where Y is the vector containing all values of Yics and Π is a

vector including πK(x) for all values of X̃ics. From (1.16), we can construct a series

estimator of the derivative of the regression function as:

̂∂g(x)

∂x
=
∂πK(x)

∂x

′

ϑ̂ (1.17)

Two popular choices for series estimators are power series and splines. Let r be the

dimension of x, and λ = (λ1, · · · , λr)′ a vector of nonnegative integers, i.e. a multi-

index, with norm |λ| =
∑r

j=1 λj, and let zλ ≡
∏r

j=1(zj)
λj . For a sequence (λ(k))∞l=1

of distinct such vectors, a power series approximation has πkK(x) = xλ(k). Regression

splines are linear combinations of functions that are smooth piecewise polynomials

of a given order with fixed knots (joint points). For additional references on series
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estimators, see, e.g., Newey (1997a), Chen (2007a), and Cattaneo and Farrell (2013a).

To sum up, the Average Derivative Estimator can be implemented using the following

procedure:

Algorithm 2. (Estimation of Density Weighted Average Derivatives) (i) Estimate

the derivative of the regression function E (Yics|Pcs, Zics, Vs) using the series estimator

(1.17) with data on (Yics, Pcs, Zics, Vs) for i = 1, · · · , Ics, c = 1, · · · , Cs and s =

1, · · · , S. (ii) Compute (1.15) averaging over students, classrooms and schools.

Finally, for the Discrete Changes Estimator:

∆̂ (p′′, p′) =

∫
Ê (Yics|Pcs = p′′, Zics = z, Vs = v) f̂Zics,Vs|Pcs (z, v|p′) dzdv

− Ê (Yics|Pcs = p′) (1.18)

where Ê (Yics|Pcs = p′′, Zics = z, Vs = v) and Ê (Yics|Pcs = p′) are nonparametric series

estimators of the regression function, and f̂Zics,Vs|Pcs (z, v|p) is a nonparametric kernel

estimator for the joint density of (Vs, Zics) conditional on Pcs = p, given by:

f̂Zics,Vs|Pcs (z, v|p) =
S−1

∑S
s=1C

−1
s

∑Cs

c=1 I
−1
cs

∑Ics
i=1Kh0(Pcs − p)Kh1(Zics − z)Kh2(Vs − v)

S−1
∑S

s=1 C
−1
s

∑Cs

c=1 I
−1
cs

∑Ics
i=1Kh0(Pcs − p)

(1.19)

withKh(u) = h−1K(u/h) and (h0, h1, h2) the bandwidths associated with (Pcs, Zics, Vs).

The bandwidths can be obtained via cross-validation methods proposed in Fan and

Yim (2004) and Hall, Racine, and Li (2004). The procedure can be summarized by:

Algorithm 3. (Estimation of Discrete Changes) (i) Use the series estimator (1.16)

to estimate the regression function E (Yics|Pcs = p′′, Zics = z, Vs = v) using data on

(Yics, Pcs, Zics, Vs) for i = 1, · · · , Ics, c = 1, · · · , Cs and s = 1, · · · , S. (ii) Estimate the

conditional density of (Vs, Zics) given Pcs using (1.19). (iii) Integrate the conditional

expectation in (i) with respect to the density in (ii) to obtain the first term in (1.8).

This can be done, for example, using Monte Carlo integration. (iv) Use the series
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estimator (1.16) to estimate the regression function E (Yics|Pcs = p) and substract it

from (iii) to obtain the final estimator.

In all cases, I construct uniform confidence bands via nonparametric bootstrap

with clusters at the school level.

1.4 Empirical Results

The primary Project STAR data consist of 11,601 students who participated for

at least one year. It includes students demographic information, school and class

identifiers, school and teacher information, experimental condition (class type) and

achievement test scores. Achievement data continued to be collected through high

school. This includes achievement test scores in grades 4 to 8, teachers’ ratings of

student behavior in grades 4 and 8, students’ self-report of school engagement and

peer effects in grade 8, mathematics, science, and foreign language courses taken in

high school, SAT/ACT participation and scores and graduation/dropout information.

The study also collected data on 1780 students in grades 1 to 3 in 21 comparison

schools, matched with STAR schools but not participating in the experiment.

Table 1 presents the summary statistics of the final sample used for the empirical

analysis. It consists of 5,781 students who started the project in kindergarten and have

valid information on demographic characteristics and test scores. Females constitute

48 percent of the sample, average age at the beginning of 1985 is 4.7 years, 32 percent

of the students are black, and 47 percent are eligible for the free/reduced lunch

program. Mean years of teacher experience is 9.2, and classes have on average 19

students.

For all the analyses conducted below, the outcome Yics consists of standardized

(to have mean zero and standard deviation one) SAT scores averaged across subjects

(math, reading, listening and word study skills), as is common in the literature. The
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policy variables Pcs are class size, teacher experience and proportion of females in the

classroom. In all the models, I include additional control variables Zics accounting

for student gender, race, age and free/reduced lunch status. I start by comparing

the results obtained using a standard, linear fixed effects panel data model with the

nonparametric estimates of density weighted average derivatives (1.4) and the discrete

changes estimators (1.5). Tables 3 to 6 present these results for each policy variable,

and for different implementations of the nonparametric series estimators.

The empirical analysis also includes a counterfactual study of the effect of different

policies related to class size, teacher experience and proportion of females in the class-

room, using the Counterfactual Distribution function (1.6). Results are presented in

Figures 1 to 8. For each figure, the left panel (Panel (a)) displays the original dis-

tribution of the policy variable and the resulting counterfactual change. The right

one (Panel (b)) reports Quantile Treatment Effects (QTE) for that policy, together

with uniformly valid confidence intervals. The QTE estimator measures the impact

of the counterfactual policy for quantile q as the difference in outcomes between the

q−th student in the countefactual (treatment) distribution and the q−th student in

the original (control) one. For instance, we can compare the median test score for

the students in the original distribution and subtract from it the median test score

for the students under the counterfactual policy to estimate the effect at the median

of the achievement distribution. Note that this estimator will not identify the impact

of the policy on a particular student who would have been at the q−th percentile

in the absence of the policy. This interpretation is only appropriate if the policy

causes no re-ordering of achievement ranks within the distribution. As discussed in

Heckman, Smith, and Clements (1997) and more recently in Djebbari and Smith

(2008), quantile treatment effects are simply differences between the treatment and

control distributions, and recovering quantiles of the treatment effect distribution re-

quires specific assumptions about the joint distribution of outcomes in the treatment
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and control states (such as perfect positive or perfect negative dependence). Never-

theless, the QTE estimator provides substantial information about treatment effects

heterogeneity.

1.4.1 Class Size

Empirical analyses in the STAR Project usually conclude that smaller classes

increase student achievement, even after controlling for school fixed effects and teacher

characteristics. Table 3 presents estimates of the effect of moving from a class size

of 22 to 15 students (the median class sizes for regular and small classrooms in the

STAR Project, respectively). In the linear model, this effect is simply β̂(22 − 15),

where β is the coefficient associated with class size in the linear model (1.1). Instead,

the estimated effect using the discrete changes estimator (1.5) is:

∆̂ (15, 22) =

∫
Ê (Yics|Pcs = 15, Zics = z, Vs = v) f̂Zics,Vs|Pcs (z, v|22) dzdv

− Ê (Yics|Pcs = 22)

Using a fixed-effects linear panel data model (Column 1), I find that students benefit

about 0.16 standard deviations from assignment to a small class. This is in line with

previous findings. However, the nonparametric estimates are actually larger and sta-

tistically significant for all the specifications. For example, the effect of assignment to

a small class is between 0.3 and 0.43 standard deviations using power series estimators

of the regression function. This suggests that unobserved heterogeneity at the school

level plays an important role on the impact of class size on student performance.

In turn, it could help explain previous findings of different impact estimates for de-

mographic groups, as in Schanzenbach (2006). Still, now the effect is more general

since unobservable factor are also accounted for. For instance, it is possible that the

positive effect of a smaller class size is larger in a school with a better management.
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Next, I extend the analysis by looking at distributional effects of class size policies

using the counterfactual distribution estimator (1.6). The goal here is to see what

policies regarding class size would be able to generate the gains in students’ perfor-

mance obtained in the previous analysis. I start with a policy that simply reduces

class size in the largest classroom (Policy 1 ):

P ∗cs =

 Pcs if Pcs ≤ 21

Pcs − 5 if Pcs > 21

The QTE results are presented in Figure 1.1. The effect is positive throughout

the achievement distribution, but heterogeneous, with the biggest impacts among

children with scores near the top of the distribution. For example, the test score of

a student at the 90th percentile in the counterfactual distribution is almost a third

of a standard deviation higher than the test score of a 90th percentile student in the

original distribution, whereas the difference at the 10th percentile of the distribution

are less than a tenth of a standard deviation. These estimates are in line with,

although lower in magnitude, the estimates comparing small versus large class sizes

in Jackson and Page (2013). High achievers could benefit more from smaller classes

if, for instance, teachers in small classes are better able to identify high achievers and

use instructional approaches that work well for them.

One potential concern with the previous policy is that it does not take into account

feasibility or resource constraints. For example, in order to reduce class size according

to Policy 1, the school would need to hire additional teachers or to enroll some

students in additional classrooms. For this reason, I also look at Policy 2 which

keeps the number of students fixed by constructing the counterfactual variable as:

P ∗cs =

 Pcs + 5 if Pcs ≤ 21

Pcs − 5 if Pcs > 21
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From the results in Figure 1.2 we can see that the QTE estimates are close to zero and

statistically insignificant over the achievement distribution. This can be explained by

the improvements in performance by the students in smaller classes being compen-

sated by the worsening in performance by those in larger classes.

Overall, I conclude that the estimated impacts of class size are larger when using

a nonseparable model, highlighting the relevance of accounting for heterogeneous

treatment effects. The distributional analysis of counterfactual changes also suggests

that the impacts are much smaller once we take into account feasibility constrains.

1.4.2 Teacher Experience

Teacher experience has traditionally been an important component of teacher

policies in the U.S. school systems. Although recent debates have focused on the

development and use of more direct measures of teacher performance (e.g., value-

added models, standards-based evaluation), teacher experience continues to play a

dominant role in most human resource policies. The underlying assumption is that

experience promotes effectiveness and that experience gained over time enhances the

knowledge, skills, and productivity of teachers.

Experience is among the most commonly studied teacher characteristic. Several

studies find that the impact of experience is strongest during the first few years

of teaching: on average, brand-new teachers are less effective than those with some

experience (e.g., Rockoff (2004), Rivkin, Hanushek, and Kain (2005), Clotfelter, Ladd,

and Vigdor 2007; 2010, Kane, Rockoff, and Staiger (2008), Harris and Sass (2011)),

but the greatest productivity gains occur during their first few years on the job,

after which their performance tends to level off. Empirical evidence suggests that, on

average, students with teachers in their fifth year of teaching score between 5 and 15

percent of a standard deviation higher than students with teachers in their first year

on the job (Atteberry, Loeb, and Wyckoff (2013)). There is also evidence that this
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effect is stronger than the effects of teacher licensure tests scores, and even class size

(e.g., Clotfelter, Ladd, and Vigdor (2007), Rivkin, Hanushek, and Kain (2005)).

In the STAR Project, Krueger (1999) finds small but positive effects of teacher

experience, with a peak at about twenty years: students in classes where the teacher

has twenty years of experience tend to score about three percentile points higher

than those in classes where the teacher has zero experience, all else being equal. As a

whole, however, he concludes that measured teacher characteristics explain relatively

little of student achievement on standardized tests. More recently, Chetty, Friedman,

Hilger, Saez, Schanzenbach, and Yagan (2011) finds that students randomly assigned

to more experienced kindergarten teachers have higher test scores, with the effect

being roughly linear. Schanzenbach (2006) analyze the indirect effect of teacher ex-

perience by comparing the performance of students in small versus regular class size

with teachers of different experience, finding considerable heterogeneity of impacts:

students with more experienced teachers show large, stat other observable teacher

characteristics such as advanced degrees,istically significant gains from reduced class

size. In contrast, students who have a teacher with fewer than five years of experience

show smaller and often not statistically significant gains from small classes. Recently,

Mueller (2013) finds that this pattern exists at all deciles of the achievement distri-

bution, but is less pronounced at lower deciles.

In Tables 4 and 5, I compare the estimates from a linear panel data model (with

a quadratic term for the experience variable) to the discrete changes estimator. The

goal is to study nonlinear effects of teacher experience on student performance by

comparing students with teachers of different years of experience. First, I look at a

change from 5 to 10 years of experience (Table 4). Then, I consider a change from 10
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to 15 years in Table 5. Using the nonseparable model (1.2), the effects are:

∆̂ (10, 05) =

∫
Ê (Yics|Pcs = 10, Zics = z, Vs = v) f̂Zics,Vs|Pcs (z, v|05) dzdv

− Ê (Yics|Pcs = 05)

∆̂ (15, 10) =

∫
Ê (Yics|Pcs = 15, Zics = z, Vs = v) f̂Zics,Vs|Pcs (z, v|10) dzdv

− Ê (Yics|Pcs = 10)

From Table 4, we can see that the estimate for ∆ (10, 05) is around 0.13. That is,

students with a teacher with 10 years of experience perform 0.13 standard deviations

higher than those with a teacher with only 5 years of experience. We can also see that

the point estimates are precisely estimated. This effect is considerably larger than

the one obtained using a quadratic model (0.027). Also, in Table 5, changing teacher

experience from 10 to 15 years yields a larger impact (between 0.23 and 0.55), which

is also larger than the one obtained from a quadratic model (0.063). That is, using

the nonseparable model we find evidence of a strong and nonlinear effect of teacher

experience. Again, this points to the importance of accounting for unobserved factors

in the impact of teacher experience on student performance.

Finally, I look at distributional effects. Policy 1 consists of a general increase of

five years in teacher experience,

P ∗cs = Pcs + 5

From Figure 1.3, we can see that the effect is positive for all percentiles, but is slightly

larger for those at the top quantiles. More importantly, the magnitude of the effect

is considerably lower than what is obtained with the discrete changes estimator. To

examine whether this could be due to a differential effect coming from teachers of

different experience, the next two policies look at the differential effect of teacher
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experience for relatively new versus more experienced teachers. Policy 2 only affects

classrooms with less experienced teachers:

P ∗cs =

 Pcs if Pcs > 5

Pcs + 5 if Pcs ≤ 5

Results are presented in Figure 1.4. The effect of Policy 2 is roughly constant over

the achievement distribution. Overall, as with class size, the impacts of these policies

are smaller than those obtained with the discrete changes estimators. This could be

due to, for example, the impact of teacher experience coming from their interaction

with other classrooms characteristics, such as class size (Mueller (2013)).

1.4.3 Proportion of Females

The idea that peers can affect student achievement is based on the assumption

that students do not only learn from teachers but also from classmates. For example,

students might teach one another by working in groups or having casual discussions,

generating knowledge spillovers (see, e.g., Sacerdote (2011) for a review of this liter-

ature). One aspect of particular relevance in this context is the gender composition

of the classroom. For example, the study of gender peer effects can shed light on the

debate single-sex versus coeducational schools (Whitmore (2005)). Gender composi-

tion of the classroom could affect student performance in many ways. For example, a

higher proportion of girls could improve classroom behavior, reduce classroom disrup-

tion and affect the level of violence, creating a better atmosphere for learning (Lavy

and Schlosser (2011)). The presence of boys could intimidate girls from speaking up

and influence student self-concepts or affect engagement with certain subjects. Fi-

nally, classroom composition could also affect the attitude and expectations of teach-

ers towards the class, influencing the pace of teaching or their instructional methods

(Cunningham and Andrews (1988)).
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Several studies have examined the empirical role of gender composition of the

classroom. Hoxby (2000) exploits gender variation in cohort composition in Texas

elementary schools and finds that a higher share of girls raises student achievement

in math and reading, both for boys and girls. Lavy and Schlosser (2011) find that, in

Israeli middle-schools, a 10 percent point increase in the proportion of female students

increases girls’ math test scores by 3.7 percent of a standard deviation and boys’ scores

by 2.2 percent.

Let Pcs be the proportion of females in classroom c in school s. Table 6 compares

the fixed effect estimator of β from model (1.1) to the density weighted average

derivative estimator (1.3), for different choices of the series estimator of the derivative

of the regression function. We can see that the impacts are considerably larger and

statistically significant when we use the nonseparable model.

Next, I look at distributional impacts. First, Policy 1 implies a 10 percent increase

in the proportion of females for all classrooms,

P ∗cs = (1 + 0.1)× Pcs

From the results in Figure 1.5, we can see that the effect of this policy is positive for

all quantiles. There is some heterogeneity (with larger point estimates at the top of

the distribution), but with wide confidence intervals. Overall, the impacts are smaller

than those obtained in Table 6.

The next policy try to disentangle the mechanism behind the positive effect of

the proportion of females on student performance. For example, the effect could

be coming from either having more girls in the classroom or more students of the

same gender. Then, Policy 2 increases the proportion of females in a classroom with

majority of girls, and decreases the proportion in the classrooms with majority of
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boys:

P ∗cs =

 (1 + 0.1)× Pcs if Pcs > 0.5

(1− 0.1)× Pcs if Pcs ≤ 0.5

From Figure 1.6 we can see that the impacts are now close to zero for all quantiles,

suggesting that the effect is actually coming from a larger proportion of females, in

line with previous findings in the literature. As with class size, imposing feasibility

constraints affects the magnitude of the impacts, suggesting that the implementation

of policies regarding gender composition of the classrooms should take into account

additional interactions and explore additional channels through which gender peer

effects influence student performance.

1.4.4 Tables and graphs

Table 1.1: Summary Statistics - Students

Variable Mean Std. Dev. N
Age 4.71 0.34 5,847
Race (Black) 0.32 0.46 5,847
Female 0.48 0.51 5,847
Free Lunch Eligible 0.48 0.52 5,847
Rural School 0.46 0.49 5,847
Total Math Score SAT 485 47.7 5,844
Total Reading Score SAT 436 31.7 5,763

Table 1.2: Summary Statistics - Classrooms

Variable Mean Std. Dev. N
Teacher Race (Black) 0.16 0.36 302
Teacher has Master Degree 0.36 0.48 302
Teacher Experience (years) 9.32 5.75 302
Class Size 19.4 4.14 302

Note: Original Sample Size: 6325, Sample with non-missing score information: 5907, Sample with

non-missing values of class size, teacher experience and gender: 5886. The final sample excludes

those with missing values in any of the covariates.
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Table 1.3: Class Size

OLS Power Series Regression Splines
Fixed Effects (1) (2) (3) (1) (2) (3)

Coefficient 0.167 0.296 0.399 0.432 0.226 0.224 0.321
Std. Error (0.028) (0.043) (0.063) (0.065) (0.064) (0.064) (0.043)
Parameter - K = 2 K = 4 K = 6 TP 1 TP 2 ThP

Table 1.4: Teacher Experience - 5 to 10 years

OLS Power Series Regression Splines
Fixed Effects (1) (2) (3) (1) (2) (3)

Coefficient 0.027 0.125 0.160 0.127 0.137 0.138 0.135
Std. Error (0.012) (0.022) (0.035) (0.045) (0.040) (0.040) (0.022)
Parameter - K = 2 K = 4 K = 6 TP 1 TP 2 ThP

Table 1.5: Teacher Experience - 10 to 15 years

OLS Power Series Regression Splines
Fixed Effects (1) (2) (3) (1) (2) (3)

Coefficient 0.063 0.228 0.390 0.554 0.339 0.335 0.247
Std. Error (0.013) (0.025) (0.041) (0.062) (0.054) (0.053) (0.031)
Parameter - K = 2 K = 4 K = 6 TP 1 TP 2 ThP

Table 1.6: Proportion of Females

OLS Power Series
Fixed Effects (1) (2) (3)

Coefficient 0.376 0.580 0.555 0.592
Std. Error (0.013) (0.122) (0.126) (0.129)
Parameter - K = 2 K = 4 K = 6

Notes: Regression Splines obtained using mgcv R-package

1.5 Conclusion

In this chapter, I look at the effects of teacher and peer characteristics on stu-

dent achievement in the STAR Project conducted in Tennessee in the late 80s. As in

standard linear models, I consider two types of unobservables: school-specific effects

and idiosyncratic disturbances. The model generalizes previous empirical research
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by allowing both effects to enter the structural function nonseparably. In particu-

lar, no functional form assumptions are needed for identification. Thus, the model

permits nonparametric distributional and counterfactual analysis of heterogeneous

effects. The main identification result uses an exchangeability assumption on the way

that covariates affect the distribution of the school fixed effects. The model also ex-

tends policy analysis beyond marginal or discrete changes, to consider distributional

effects originating from a counterfactual change in the distribution of characteristics

of classrooms, peers and teachers. These impacts can also be analyzed on any feature

of the distribution of student achievement, such as quantiles and inequality measures.

In the empirical analysis, I look at the effects of class size, teacher experience and

gender composition of the classroom on student test scores. Findings suggest that

nonseparable heterogeneity is an important source of individual-level variation in the

academic performance of kindergarten students in the STAR Project. Compared to

previous results, the impact of class size is larger in magnitude and teacher experi-

ence has a stronger nonlinear impact. Still, conducting a counterfactual distributional

analysis I find that these gains in student performance are hard to achieve when facing

resource constraints.
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Figure 1.1: Class Size - Policy I
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Figure 1.2: Class Size - Policy II
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Figure 1.3: Teacher Experience - Policy I

Panel (a): Distributions
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Figure 1.4: Teacher Experience - Policy II
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Figure 1.5: Proportion of Females - Policy I
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Figure 1.6: Proportion of Females - Policy II
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CHAPTER II

Robust Nonparametric Confidence Intervals for

Regression- Discontinuity Designs

2.1 Introduction

The regression discontinuity (RD) design has become one of the leading quasi-

experimental empirical strategies in economics, political science, education and many

other social and behavioral sciences (see van der Klaauw (2008), Imbens and Lemieux

(2008), Lee and Lemieux (2010) and Dinardo and Lee (2011) for reviews). In this

design, units are assigned to treatment based on their value of an observed covari-

ate (also known as score or running variable), with the probability of treatment

assignment jumping discontinuously at a known cutoff. For example, in its original

application, Thistlethwaite and Campbell (1960) used this design to study the effects

of receiving an award on future academic achievement, where the award was given to

students whose test scores were above a cutoff. The idea of the RD design is to study

the effects of the treatment using only observations near the cutoff to control for

smoothly varying unobserved confounders. In the simplest case, flexible estimation

of RD treatment effects approximates the regression function of the outcome given

the score near the cutoff for control and treated groups separately, and computes the

estimated effect as the difference of the values of the regression functions at the cutoff
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for each group.

Nonparametric local polynomial estimators have received great attention in the

recent RD literature, becoming the standard choice for estimation of RD treatment ef-

fects. This estimation strategy involves approximating the regression functions above

and below the cutoff by means of weighted polynomial regressions, typically of order

one or two, with weights computed by applying a kernel function on the distance of

each observation’s score to the cutoff. These kernel-based estimators require a choice

of bandwidth for implementation, and several bandwidth selectors are now available

in the literature. These bandwidth selectors are obtained by balancing squared-bias

and variance of the RD estimator, a procedure that typically leads to bandwidth

choices that are too “large” to ensure the validity of the distributional approxima-

tions usually invoked; that is, these bandwidth selectors lead to a non-negligible bias

in the distributional approximation of the estimator. As a consequence, the result-

ing confidence intervals for RD treatment effects may be biased, having empirical

coverage well below their nominal target. This implies that conventional confidence

intervals may substantially over-reject the null hypothesis of no treatment effect.

To address this drawback in conventional RD inference, we propose new confi-

dence intervals for RD treatment effects that offer robustness to “large” bandwidths

such as those usually obtained from cross-validation or asymptotic mean-square-error

minimization. 1 Our proposed confidence intervals are constructed as follows. We

first bias-correct the RD estimator to account for the effect of a “large” bandwidth

choice; that is, we recenter the usual t-statistic with an estimate of the leading bias.

As it is well-known, however, conventional bias-correction alone delivers very poor

finite-sample performance because it relies on a low-quality distributional approxi-

mation. Thus, in order to improve the quality of the distributional approximation

1For example, for the local-linear RD estimator, “small” and “large” bandwidths refer, respec-
tively, to nh5n → 0 and nh5n 6→ 0 (e.g., nh5n → c ∈ R++), where hn is the bandwidth and n is the
sample size. Section 2.2 discusses this case in detail, while the general case is given in the appendix.
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of the bias-corrected t-statistic, we rescale it with a novel standard error formula

that accounts for the additional variability introduced by the estimated bias. The

new standardization is theoretically justified by a non-standard large-sample distribu-

tional approximation of the bias-corrected estimator, which explicitly accounts for the

potential contribution that bias-correction may add to the finite-sample variability of

the usual t-statistic.

Altogether, our proposed confidence intervals are demonstrably more robust to

the bandwidth choice (“small” or “large”), as they are not only valid when the usual

bandwidth conditions are satisfied (being asymptotically equivalent to the conven-

tional confidence intervals in this case), but also continue to offer correct coverage

rates in large samples even when the conventional confidence intervals do not (see

Remarks II.5 and II.6 below). These properties are illustrated with an empirically

motivated simulation study, which shows that our proposed data-driven confidence

intervals exhibit close-to-correct empirical coverage and good empirical interval length

on average.

Our discussion focuses on the construction of robust confidence intervals for the

RD average treatment effect at the cutoff in four settings: sharp RD, sharp kink RD,

fuzzy RD and fuzzy kink RD designs. These are special cases of our main theorems

given in the appendix. In all cases, the bias-correction technique follows the standard

approach in the nonparametrics literature (e.g., (Fan and Gijbels, 1996, Section 4.4,

p. 116)), but our standard error formulas are different because they incorporate

additional terms not present in the conventional formulas currently used in practice.

The resulting confidence intervals allow for mean-square optimal bandwidth selectors

and, more generally, enjoy demonstrable improvements in terms of allowed bandwidth

sequences, coverage error rates and, in some cases, interval length (see Remarks II.5,

II.7 and II.8 below). As a particular case, our results also justify confidence intervals

estimators based on a local polynomial estimator of an order higher than the order
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of the polynomial used for point estimation, a procedure that is easy to implement

in applications (see Remark II.10 below). The new confidence intervals may be used

both for inference on treatment effects (when the outcome of interest is used as an

outcome in the estimation) as well as for falsification tests that look for null effects

(when pretreatment or “placebo” covariates are used as outcomes in the estimation).

This chapter contributes to the emerging methodological literature on RD de-

signs. See Hahn, Todd, and van der Klaauw (2001) and Lee (2008) for identification

results, Porter (2003) for optimality results of local polynomial estimators, McCrary

(2008) for specification testing, Lee and Card (2008) for inference with discrete run-

ning variables, Imbens and Kalyanaraman (2012) for bandwidth selection procedures

for local-linear estimators, Otsu and Xu (2013) for empirical likelihood methods,

Frandsen, Frölich, and Melly (2012) for quantile treatment effects, Card, Lee, Pei,

and Weber (2012), Dong (2012) and Dong and Lewbel (2012) for kink RD designs,

Marmer, Feir, and Lemieux (2012) for weak-IV robust inference in fuzzy RD designs,

Cattaneo, Frandsen, and Titiunik (2014) for randomization-inference methods, and

Calonico, Cattaneo, and Titiunik (2014a) for RD plots. More broadly, our results

also contribute to the literature on asymptotic approximations for nonparametric lo-

cal polynomial estimators (Fan and Gijbels (1996)), which are useful in econometrics

(Ichimura and Todd (2007)) – see Remark II.11 and Calonico, Cattaneo, and Farrell

(2014) for further discussion.

The rest of the chapter is organized as follows. Section 2.2 describes the sharp

RD design, reviews conventional results and outlines our proposed robust confidence

intervals. Section 2.3 discusses extensions to kink RD, fuzzy RD and fuzzy kink

RD designs. Mean-square-error optimal bandwidths and their validity are examined

in Section 2.4, while valid standard-errors are discussed in Section 2.5. Section 2.6

presents our simulation study, and Section 3.6 concludes. In the appendix, we sum-

marize our general theoretical results, including extensions to arbitrary polynomial
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orders, higher-order derivatives and related results for bandwidth selection, while in

the online supplemental appendix (Calonico, Cattaneo, and Titiunik (2014d)) we

collect the main mathematical proofs, other methodological and technical results,

additional simulation evidence, and an empirical illustration employing household

data from Progresa/Oportunidades. Companion R and STATA software packages are

described in Calonico, Cattaneo and Titiunik 2014e; 2014b.

2.2 Sharp RD Design

In the canonical sharp RD design, (Yi(0), Yi(1), Xi)
′, i = 1, 2, . . . , n, is a random

sample with f(x) the Lebesgue density of Xi. Given a known threshold x̄, set to

x̄ = 0 without loss of generality, the observed score or forcing variable Xi determines

whether unit i is assigned treatment (Xi ≥ 0) or not (Xi < 0), while the random

variables Yi(1) and Yi(0) denote the potential outcomes with and without treatment,

respectively. The observed random sample is (Yi, Xi)
′, i = 1, 2, . . . , n, where Yi =

Yi(0) · (1− Ti) + Yi(1) · Ti with Ti = 1(Xi ≥ 0) and 1(·) is the indicator function.

The parameter of interest is τSRD = E[Yi(1)−Yi(0)|Xi = x̄], the average treatment

effect at the threshold. Under a mild continuity condition, Hahn, Todd, and van der

Klaauw (2001) show that this parameter is nonparametrically identifiable as the dif-

ference of two conditional expectations evaluated at the (induced) boundary point

x̄ = 0:

τSRD = µ+ − µ−, µ+ = lim
x→0+

µ(x), µ− = lim
x→0−

µ(x), µ(x) = E[Yi|Xi = x].

Throughout the chapter, we drop the evaluation point of functions whenever possible

to simplify notation. Estimation in RD designs naturally focuses on flexible approx-

imation, near the cutoff x̄ = 0, of the regression functions µ−(x) = E[Yi(0)|Xi = x]

(from the left) and µ+(x) = E[Yi(1)|Xi = x] (from the right). We employ the following
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assumption on the basic sharp RD model.

Assumption II.1. For κ0 > 0, the following holds in the neighborhood (−κ0, κ0)

around the cutoff x̄ = 0:

(a) E[Y 4
i |Xi = x] is bounded, and f(x) is continuous and bounded away from zero.

(b) µ−(x) = E[Yi(0)|Xi = x] and µ+(x) = E[Yi(1)|Xi = x] are S-times continuously

differentiable.

(c) σ2
−(x) = V[Yi(0)|Xi = x] and σ2

+(x) = V[Yi(1)|Xi = x] are continuous and

bounded away from zero.

Part (a) in Assumption III.1 imposes existence of moments, requires that the

running variable Xi be continuously distributed near the cutoff, and ensures the

presence of observations arbitrarily close to the cutoff in large samples. Part (b)

imposes standard smoothness conditions on the underlying regression functions, which

is the key ingredient used to control the leading biases of the RD estimators considered

in this chapter. Part (c) puts standard restrictions on the conditional variance of the

observed outcome, which may be different at either side of the threshold. We set σ2
+ =

limx→0+ σ
2(x) and σ2

− = limx→0− σ
2(x), where σ2(x) = V[Yi|Xi = x]. Higher-order

derivatives of the unknown regression functions are denoted by µ
(ν)
+ (x) =dνµ+(x)/dxν

and µ
(ν)
+ (x) =dνµ+(x)/dxν , for ν < S (with S in Assumption III.1(b)). We also set

µ
(ν)
+ = limx→0+ µ

(ν)
+ (x) and µ

(ν)
− = limx→0− µ

(ν)
− (x); by definition, µ+ = µ

(0)
+ and

µ− = µ
(0)
− .

Remark II.2 (Discrete running variable). Assumption III.1(a) rules out discrete-valued

running variables. In applications where Xi exhibits many mass points near the cut-

off, this assumption may still give a good approximation and our results might be

used in practice. However, when Xi exhibits few mass points, our results do not ap-

ply directly without further assumptions and modifications, and other assumptions

and inference approaches may be more appropriate; e.g., Cattaneo, Frandsen, and

Titiunik (2014).
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Throughout the chapter, we employ local polynomial regression estimators of var-

ious orders to approximate unknown regression functions (Fan and Gijbels (1996)).

These estimators are particularly well-suited for inference in the RD design because

of their excellent boundary properties (Cheng, Fan, and Marron (1997)). Section

B.1.1 in the appendix describes these estimators in full generality and introduces de-

tailed notation not employed in the main text to ease the exposition. We impose the

following assumption on the kernel function employed to construct these estimators.

Assumption II.3. For some κ > 0, the kernel function k(·) : [0, κ] 7→ R is bounded

and nonnegative, zero outside its support, and positive and continuous on (0, κ).

Assumption II.3 permits all kernels commonly used in empirical work, including

the triangular kernel k(u) = (1 − u)1(0 ≤ u ≤ 1) and the uniform kernel k(u) =

1(0 ≤ u ≤ 1). Our results apply when different kernels are used on either side of the

threshold, but we set K(u) = k(−u) · 1(u < 0) + k(u) · 1(u ≥ 0) for concreteness.

This implies that, for κ > 0 in Assumption II.3, K(·) is symmetric, bounded and

nonnegative on [−κ, κ], zero otherwise, and positive and continuous on (−κ, κ). For

simplicity, we employ the same kernel function k(·) to form all estimators in the

chapter.

2.2.1 Robust Local-Linear Confidence Intervals

Following Hahn, Todd, and van der Klaauw (2001) and Porter (2003), we consider

confidence intervals based on the popular local-linear estimator of τSRD, which is the

difference in intercepts of two first-order local polynomial estimators, one from each

side of the threshold. Formally, for a positive bandwidth hn,

τ̂SRD(hn) = µ̂+,1(hn)− µ̂−,1(hn),

(µ̂+,1(hn), µ̂
(1)
+,1(hn))′ = arg min

b0,b1∈R

n∑
i=1

1(Xi ≥ 0)(Yi − b0 −Xib1)2 K(Xi/hn),
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(µ̂−,1(hn), µ̂
(1)
−,1(hn))′ = arg min

b0,b1∈R

n∑
i=1

1(Xi < 0)(Yi − b0 −Xib1)2 K(Xi/hn).

Conventional approaches to constructing confidence intervals for τSRD using the

local-linear estimator rely on the following large-sample approximation for the stan-

dardized t-statistic (see Lemma B.1(D) in the appendix for the general result): if

nh5
n → 0 and nhn →∞, then

TSRD(hn) =
τ̂SRD(hn)− τSRD√

VSRD(hn)
→d N (0, 1)

VSRD(hn) = V[τ̂SRD(hn)|Xn], Xn = [X1, · · · , Xn]′.

This justifies the conventional (infeasible) 100(1 − α)-percent confidence interval

for τSRD given by

ISRD(hn) =
[
τ̂SRD(hn)± Φ−1

1−α/2

√
VSRD(hn)

]
,

with Φ−1
α the upper α-quantile of the standard normal distribution (e.g., Φ−1

0.95 ≈ 1.96).

In practice, a standard error estimator is needed to construct feasible confidence

intervals because the variance VSRD(hn) involves unknown quantities, but for now

we assume VSRD(hn) is known and postpone the issue of standard error estimation

until Section 2.5. Even in this simplified known-variance case, the choice of the

bandwidth hn is crucial. The condition nh5
n → 0 is explicitly imposed to eliminate the

contribution of the leading bias to the distributional approximation, which depends

on the unknown second derivatives µ
(2)
+ and µ

(2)
− as described in Lemma B.1(B) in

the appendix. This means that, in general, the confidence intervals ISRD(hn) will have

correct asymptotic coverage only if the bandwidth hn is “small” enough to satisfy the

bias-condition nh5
n → 0.

Several approaches are available in the literature to select hn, including plug-in

rules and cross-validation procedures; see Imbens and Kalyanaraman (2012) for a

recent account of the state-of-the-art in bandwidth selection for RD designs. Unfor-
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tunately, these approaches lead to bandwidths that are too “large” because they do

not satisfy the bias-condition nh5
n → 0: minimizing the asymptotic mean squared

error (MSE) of τ̂SRD(hn) gives the optimal plug-in bandwidth choice hMSE = CMSE n
−1/5

with CMSE a constant, which by construction implies that n(hMSE)
5 → c ∈ (0,∞)

and hence leads to a first-order bias in the distributional approximation. This is

a well-known problem in the nonparametric curve estimation literature. Moreover,

implementing this MSE-optimal bandwidth choice in practice is likely to introduce

additional variability in the chosen bandwidth that may lead to “large” bandwidths

as well. Similarly, cross-validation bandwidth selectors tend to have low convergence

rates, and thus also typically lead to “large” bandwidth choices; see, e.g., Ichimura

and Todd (2007) and references therein. These observations suggest that commonly

used local-linear RD confidence intervals may not exhibit correct coverage in appli-

cations due to the presence of a potentially first-order bias in their construction,

as illustrated by the simulation evidence we present in Section 2.6. Since applied

researchers often estimate RD treatment effects using local-linear regressions with

MSE-optimal bandwidths and implicitly ignore the asymptotic bias of the estimator,

the poor coverage of conventional confidence intervals we highlight potentially affects

many RD empirical applications.

We propose a novel approach to inference based on bias correction to address this

problem. Conventional bias correction seeks to remove the leading bias term of the

statistic by subtracting off a consistent bias estimate, thus removing the impact of

the potentially first-order bias. While systematic and easy to justify theoretically,

this approach usually delivers poor performance in finite samples. We propose an

alternative large-sample distributional approximation that takes bias correction as a

starting point, but improves its performance in finite samples by accounting for the

added variability introduced by the bias estimate.

To describe our approach formally, consider first the conventional bias correction
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approach. The leading asymptotic bias of the local-linear estimator is

E[τ̂SRD(hn)|Xn]− τSRD = h2
nBSRD(hn) {1 + op(1)}

BSRD(hn) =
µ

(2)
+

2!
B+,SRD(hn)− µ

(2)
−

2!
B−,SRD(hn),

where B+,SRD(hn) and B−,SRD(hn) are asymptotically bounded, observed quantities

(function of Xn, k(·) and hn) explicitly given in Lemma B.1(B) in the appendix.

Therefore, a plug-in bias-corrected estimator is

τ̂ bcSRD(hn, bn) = τ̂SRD(hn)− h2
nB̂SRD(hn, bn)

B̂SRD(hn, bn) =
µ̂

(2)
+,2(bn)

2!
B+,SRD(hn)−

µ̂
(2)
−,2(bn)

2!
B−,SRD(hn),

with µ̂
(2)
+,2(bn) and µ̂

(2)
+,2(bn) denoting conventional local-quadratic estimators of µ

(2)
+

and µ
(2)
− , as described in Section B.1.1 in the appendix. Here, bn is the so-called

pilot bandwidth sequence, usually larger than hn. As shown in the appendix for the

general case, if nh7
n → 0 and hn/bn → 0, and other regularity conditions hold, then

the bias-corrected (infeasible) t-statistic satisfies

T bc
SRD(hn, bn) =

τ̂ bcSRD(hn, bn)− τSRD√
VSRD(hn)

→d N (0, 1),

which justifies confidence intervals for τSRD of the form:

IbcSRD(hn, bn) =
[(
τ̂SRD(hn)− h2

nB̂SRD(hn, bn)
)
± Φ−1

1−α/2

√
VSRD(hn)

]
.

That is, in the conventional bias-correction approach, the confidence intervals are re-

centered to account for the presence of the bias. This approach allows for potentially

“larger” bandwidths hn, such as the MSE-optimal choice, because the leading asymp-

totic bias is manually removed from the distributional approximation. In practice, bn
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may also be selected using an MSE-optimal choice, denoted bMSE, which can be im-

plemented by a plug-in estimate, denoted b̂MSE; see Section 2.4 for details. While bias

correction is an appealing theoretical idea, a natural concern with the conventional

large-sample approximation for the bias-corrected local-linear RD estimator is that

it does not account for the additional variability introduced by the bias estimates

µ̂
(2)
+,2(bn) and µ̂

(2)
−,2(bn) and thus the distributional approximation given above tends

to provide a poor characterization of the finite-sample variability of the statistic.

This large-sample approximation relies on the carefully tailored condition hn/bn → 0,

which makes the variability of the bias-correction estimate disappear asymptotically.

However, hn/bn is never zero in finite samples.

Our alternative asymptotic approximation for bias-corrected local polynomial es-

timators removes the restriction hn/bn → 0, leading to alternative confidence intervals

for RD treatment effects capturing the (possibly first-order) effect of the bias correc-

tion to the distributional approximation. The alternative large-sample approximation

we propose for the (properly centered and scaled) estimator τ̂ bcSRD(hn, bn) allows for the

more general condition ρn = hn/bn → ρ ∈ [0,∞], which in particular permits a pi-

lot bandwidth bn of the same order of (and possibly equal to) the main bandwidth

hn. This approach implies that the bias-correction term may not be asymptotically

negligible (after appropriate centering and scaling) in general, in which case it will

converge in distribution to a centered at zero normal random variable, provided the

asymptotic bias is small. Thus, the resulting distributional approximation includes

the contribution of both the point estimate τ̂SRD(hn) and the bias estimate, leading

to a different asymptotic variance in general. This idea is formalized in the following

theorem.

Theorem II.4. Let Assumptions III.1–II.3 hold with S ≥ 3. If nmin{h5
n, b

5
n}max{h2

n, b
2
n} →
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0 and nmin{hn, bn} → ∞, then

T rbc
SRD (hn, bn) =

τ̂ bcSRD(hn, bn)− τSRD√
Vbc
SRD(hn, bn)

→d N (0, 1), Vbc
SRD(hn, bn) = VSRD(hn)+Cbc

SRD(hn, bn),

provided κmax{hn, bn} < κ0. The exact form of Vbc
SRD(hn, bn) is given in Theorem

B.2(V) in the appendix.

Theorem II.4 shows that by standardizing the bias-corrected estimator by its (con-

ditional) variance, the asymptotic distribution of the resulting bias-corrected statistic

T rbc
SRD (hn, bn) is Gaussian even when the condition hn/bn → 0 is violated. The stan-

dardization formula Vbc
SRD(hn, bn) depends explicitly on the behavior of ρn = hn/bn,

and Cbc
SRD(hn, bn) may be interpreted as a correction to account for the variability of

the estimated bias-correction term. The key practical implication of Theorem II.4 is

that it justifies the more robust, theory-based 100(1−α)-percent confidence intervals:

IrbcSRD (hn, bn) =
[(
τ̂SRD(hn)− h2

nB̂SRD(hn, bn)
)
± Φ−1

1−α/2

√
VSRD(hn) + Cbc

SRD(hn, bn)
]

.

We summarize important features of our main result in the remarks below.

Remark II.5 (Robustness). The distributional approximation in Theorem II.4 per-

mits one bandwidth (but not both) to be fixed, provided this bandwidth is not too

“large”; i.e., both must satisfy κmax{hn, bn} < κ0 for all n large enough, but only

one needs to vanish. This theorem allows for all conventional bandwidth sequences

and, in addition, permits other bandwidth sequences that would make ISRD(hn) and

IbcSRD(hn, bn) invalid (i.e., P[τSRD ∈ ISRD(hn)] 6→ 1− α and P[τSRD ∈ IbcSRD(hn)] 6→ 1− α).

Remark II.6 (Asymptotic variance). Three limiting cases are obtained depending on

ρn → ρ ∈ [0,∞].

Case 1 : ρ = 0. In this case hn = o(bn) and Cbc
SRD(hn, bn) = op(VSRD(hn)), thus making

our approach asymptotically equivalent to the standard approach to bias-correction:

50



Vbc
SRD(hn, bn)/VSRD(hn)→p 1.

Case 2 : ρ ∈ (0,∞). In this case hn = ρbn, a knife-edge case, where both τ̂SRD(hn) and

B̂SRD(hn, bn) contribute to the asymptotic variance.

Case 3 : ρ = ∞. In this case bn = o(hn) and VSRD(hn) = op(Cbc
SRD(hn, bn)), implying

that the bias-estimate is first-order while the actual estimator τ̂SRD(hn) is of smaller

order:

Vbc
SRD(hn, bn)/V[h2

nB̂SRD(hn, bn)|Xn]→p 1

Remark II.7 (Higher-order implications). If hn and bn are chosen so that the con-

fidence intervals have correct asymptotic coverage, then IrbcSRD (hn, bn) will have faster

coverage error rates than ISRD(hn) (given the smoothness assumptions imposed). See

Calonico, Cattaneo, and Farrell (2014) for further details.

Remark II.8 (Interval length). If ρn = hn/bn → ρ ∈ [0,∞), then IrbcSRD (hn, bn) and

ISRD(hn) have interval length proportional to 1/
√
nhn. If, in addition, hn and bn

are chosen so that the confidence intervals have correct asymptotic coverage, then

IrbcSRD (hn, bn) will have shorter interval length than ISRD(hn) for n large enough. How-

ever, because the proportionality constant is larger for IrbcSRD (hn, bn) than for ISRD(hn),

the interval ISRD(hn) may be shorter than IrbcSRD (hn, bn) in small samples. See Section

2.6 for simulation evidence, and Calonico, Cattaneo, and Farrell (2014) for further

details.

Remark II.9 (Bootstrap). Bootstrapping τ̂SRD(hn) or TSRD(hn) will not improve the

performance of the conventional confidence intervals because the bootstrap distribu-

tion is centered at E[τ̂SRD(hn)|Xn]. Bootstrapping τ̂ bcSRD(hn, bn) or T bc
SRD(hn, bn) is possible

but not advisable because these quantities are not asymptotically pivotal in general.

Bootstrapping the asymptotically pivotal statistic T rbc
SRD (hn, bn) is possible, as an al-

ternative to the Gaussian approximation. See Horowitz (2001) for further details.

Remark II.10 (Special case hn = bn). If hn = bn (and the same kernel function
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k(·) is used), then τ̂ bcSRD(hn, hn) is numerically equivalent to the (not bias-corrected)

local-quadratic estimator of τSRD, and Vbc
SRD(hn, hn) coincides with the variance of the

latter estimator. This is true for any polynomial order used (see appendix and online

supplemental appendix), which gives a simple connection between local polynomial

estimators of order p and p+1 and manual bias-correction. Thus, this result provides a

formal justification for an inference approach based on increasing the order of the RD

estimator: choose hn to be the MSE-optimal bandwidth for the local-linear estimator,

but construct confidence intervals using a t-test based on the local-quadratic estimator

instead. This approach corresponds to the case hn = bn in Theorem II.4.

Remark II.11 (Nonparametrics and undersmoothing). Our results apply more broadly

to nonparametric kernel-based curve estimation problems, and also offer a new the-

oretical perspective on the trade-off and connection between undersmoothing (i.e.,

choosing an ad-hoc “smaller” bandwidth) and explicit bias-correction. See Calonico,

Cattaneo, and Farrell (2014) for further details.

Remark II.12 (Different bandwidths). All our results may be extended to allow for

different bandwidths entering the estimators for control and treatment units. In this

case, the different bandwidth sequences should satisfy the conditions imposed in the

theorems.

2.3 Other RD Designs

We discuss three extensions of our approach to other empirically relevant settings:

sharp kink RD, fuzzy RD and fuzzy kink RD designs. The result presented are special

cases of Theorems B.2 and B.4 in the appendix. In all cases, the construction follows

the same logic: (i) the conventional large-sample distribution is characterized, (ii)

the leading bias is presented and a plug-in bias-correction is proposed, and (iii)

the alternative large-sample distribution is derived to obtain the robust confidence
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intervals.

2.3.1 Sharp Kink RD

In the sharp kink RD design, interest lies on the difference of the first derivative

of the regression functions at the cutoff, as opposed to the differences in the levels of

those functions (see, e.g., Card, Lee, Pei, and Weber (2012), Dong (2012), Dong and

Lewbel (2012) and references therein). The estimand is τSKRD = µ
(1)
+ − µ

(1)
− .

Although a local-linear estimator could still be used in this context, it is more

appropriate to employ a local-quadratic estimator due to boundary-bias considera-

tions. Thus, we focus on the local-quadratic RD estimator τ̂SKRD(hn) = µ̂
(1)
+,2(hn) −

µ̂
(1)
−,2(hn), where µ̂

(1)
+,2(hn) and µ̂

(1)
−,2(hn) denote local-quadratic estimators of µ

(1)
+ and

µ
(1)
− , respectively; see Section B.1.1 in the appendix. Lemma B.1(D) in the ap-

pendix gives TSKRD(hn) = (τ̂SKRD(hn)− τSKRD)/
√

VSKRD(hn)→d N (0, 1) with VSKRD(hn) =

V[τ̂SKRD(hn)|Xn], which corresponds to the conventional distributional approximation.

The MSE-optimal bandwidth choice for τ̂SKRD(hn) is derived in Lemma II.17 in Section

2.4. This choice, among others, will again lead to a non-negligible first-order bias.

Proceeding as before, we have E[τ̂SKRD(hn)|Xn]− τSKRD = h2
nBSKRD(hn) {1 + op(1)} with

BSKRD(hn) = µ
(3)
+ B+,SKRD(hn)/3!−µ(3)

− B−,SKRD(hn)/3!, where B+,SKRD(hn) and B−,SKRD(hn)

are asymptotically bounded observed quantities (function of Xn, k(·) and hn), also

given in Lemma B.1(B).

A bias-corrected local-quadratic estimator of τSKRD is τ̂ bcSKRD(hn, bn) = τ̂SKRD(hn) −

h2
nB̂SKRD(hn, bn) with B̂SKRD(hn, bn) = µ̂

(3)
+,3(bn)B+,SKRD(hn)/3! − µ̂

(3)
−,3(bn)B−,SKRD(hn)/3!,

where µ̂
(3)
+,3(bn) and µ̂

(3)
−,3(bn) are the local-cubic estimators of µ

(3)
+ and µ

(3)
− , respectively;

see Section B.1.1 in the appendix for details.

Theorem II.13. Let Assumptions III.1–II.3 hold with S ≥ 4. If nmin{h7
n, b

7
n}max{h2

n, b
2
n} →
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0 and nmin{hn, bn} → ∞, then

T rbc
SKRD(hn, bn) =

τ̂ bcSKRD(hn, bn)− τSKRD√
Vbc
SKRD(hn, bn)

→d N (0, 1),

provided κmax{hn, bn} < κ0. The exact form of Vbc
SKRD(hn, bn) is given in Theorem

B.2(V) in the appendix.

This theorem is analogous to Theorem II.4 for the sharp kink RD design, and

derives the new variance formula Vbc
SKRD(hn, bn) capturing the additional contribution

of the bias-correction to the sampling variability. The new variance also takes the

form Vbc
SKRD(hn, bn) = VSKRD(hn) + Cbc

SKRD(hn, bn), where Cbc
SKRD(hn, bn) is the correction

term. This result theoretically justifies the following more robust 100(1− α)-percent

confidence interval for τSKRD: I
rbc
SKRD(hn, bn) =

[
τ̂ bcSKRD(hn, bn)± Φ−1

1−α/2

√
Vbc
SKRD(hn, bn)

]
.

2.3.2 Fuzzy RD

In the fuzzy RD design, actual treatment status may differ from treatment as-

signment and is thus only partially determined by the running variable. We in-

troduce the following notation: (Yi(0), Yi(1), Ti(0), Ti(1), Xi)
′, i = 1, 2, . . . , n, is a

random sample where in this case treatment status for each unit is Ti = Ti(0) ·

1(Xi < 0) + Ti(1) · 1(Xi ≥ 0), with Ti(0), Ti(1) ∈ {0, 1}. The observed ran-

dom sample now is {(Yi, Ti, Xi)
′ : i = 1, 2, . . . , n}. The estimand of interest is

τFRD = (E[Yi(1)|X = 0] − E[Yi(0)|X = 0])/(E[Ti(1)|X = 0] − E[Ti(0)|X = 0]), pro-

vided that E[Ti(1)|X = 0]− E[Ti(0)|X = 0] 6= 0. Under appropriate conditions, this

estimand is nonparametrically identifiable as

τFRD =
τY,SRD
τT,SRD

=
µY+ − µY−
µT+ − µT−

where here, and elsewhere as needed, we make explicit the outcome variable underly-

ing the population parameter. That is, τY,SRD = µY+−µY− with µY+ = limx→0+ µY (x)
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and µY− = limx→0− µY (x), µY (x) = E[Yi|Xi = x], and τT,SRD = µT+ − µT− with

µT+ = limx→0+ µT (x) and µT− = limx→0− µT (x), µT (x) = E[Ti|Xi = x]. We employ

the following additional assumption.

Assumption II.14. For κ0 > 0, the following holds in the neighborhood (−κ0, κ0)

around the cutoff x̄ = 0:

(a) µT−(x) = E[Ti(0)|Xi = x] and µT+(x) = E[Ti(1)|Xi = x] are S-times continuously

differentiable.

(b) σ2
T−(x) = V[Ti(0)|Xi = x] and σ2

T+(x) = V[Ti(1)|Xi = x] are continuous and

bounded away from zero.

A popular estimator in this setting is the ratio of two reduced form, sharp local-

linear RD estimators:

τ̂FRD(hn) =
τ̂Y,SRD(hn)

τ̂T,SRD(hn)
=
µ̂Y+,1(hn)− µ̂Y−,1(hn)

µ̂T+,1(hn)− µ̂T−,1(hn)
,

again now making explicit the outcome variable being used in each expression. That

is, for a random variable U (equal to either Y or T ) we set µ̂U+,1(hn) and µ̂U−,1(hn)

to be the local-linear estimators employing Ui as outcome variable; see Section B.1.1

in the appendix for details.

Under Assumptions III.1–II.14, and appropriate bandwidth conditions, the con-

ventional large-sample properties of τ̂FRD are characterized by noting that τ̂FRD(hn) −

τFRD = τ̃FRD(hn) + Rn with τ̃FRD(hn) = (τ̂Y,SRD(hn) − τY,SRD)/τT,SRD − τY,SRD(τ̂T,SRD(hn) −

τT,SRD)/τ
2
T,SRD and Rn a higher-order reminder term. This shows that, to first-order,

the fuzzy RD estimator behaves like a linear combination of two sharp RD estimators.

Thus, as Lemma B.3(D) in the appendix shows,

TFRD(hn) =
τ̂FRD(hn)− τFRD√

VFRD(hn)
→d N (0, 1), VFRD(hn) = V[τ̃FRD(hn)|Xn].
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The bias of the local-linear fuzzy RD estimator τ̂FRD(hn) is E[τ̃FRD(hn)|Xn] = h2
nBFRD(hn) {1+

op(1)} with

BFRD(hn) =

(
1

τT,SRD

µ
(2)
Y+

2!
− τY,SRD
τ 2
T,SRD

µ
(2)
T+

2!

)
B+,FRD(hn)−

(
1

τT,SRD

µ
(2)
Y−

2!
− τY,SRD
τ 2
T,SRD

µ
(2)
T−

2!

)
B−,FRD(hn),

where B+,FRD(hn) and B−,FRD(hn) are also asymptotically bounded observed quantities

(function of Xn, k(·) and hn) and given in Lemma B.3(B). A bias-corrected estimator

of τSRD employing a local-quadratic estimate of the leading biases is τ̂ bcFRD(hn, bn) =

τ̂FRD(hn)− h2
nB̂FRD(hn, bn) with

B̂FRD(hn, bn) =

(
1

τ̂T,SRD(hn)

µ̂
(2)
Y+,2(bn)

2!
− τ̂Y,SRD(hn)

τ̂ 2
T,SRD(hn)

µ̂
(2)
T+,2(bn)

2!

)
B+,FRD(hn)

−

(
1

τ̂T,SRD(hn)

µ̂
(2)
Y−,2(bn)

2!
− τ̂Y,SRD(hn)

τ̂ 2
T,SRD(hn)

µ̂
(2)
T−,2(bn)

2!

)
B−,FRD(hn).

We propose to bias-correct the fuzzy RD estimator using its first-order linear approx-

imation, as opposed to directly bias-correct τ̂Y,SRD(hn) and τ̂T,SRD(hn) separately in the

numerator and denominator of τ̂FRD(hn). The former approach seems more intuitive

as it captures the leading bias of the actual estimator of interest.

Theorem II.15. Let Assumptions III.1–II.14 hold with S ≥ 3, and τT,SRD 6= 0. If

nmin{h5
n, b

5
n}max{h2

n, b
2
n} → 0 and nmin{hn, bn} → ∞, then

T rbc
FRD (hn, bn) =

τ̂ bcFRD(hn, bn)− τFRD√
Vbc
FRD(hn, bn)

→d N (0, 1),

provided that hn → 0 and κbn < κ0. The exact form of Vbc
FRD(hn, bn) is given in

Theorem B.4(V).
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2.3.3 Fuzzy Kink RD

We retain the notation and assumptions introduced above for the fuzzy RD de-

sign. In the fuzzy Kink RD, the parameter of interest and plug-in estimators are,

respectively,

τFKRD =
τY,SKRD
τT,SKRD

=
µ

(1)
Y+ − µ

(1)
Y−

µ
(1)
T+ − µ

(1)
T−

and τ̂FKRD(hn) =
τ̂Y,SKRD(hn)

τ̂T,SKRD(hn)
=
µ̂

(1)
Y+,2(hn)− µ̂(1)

Y−,2(hn)

µ̂
(1)
T+,2(hn)− µ̂(1)

T−,2(hn)
,

where τ̂FKRD(hn) is based on two local-quadratic (reduced form) estimates; see

Section B.1.1 in the appendix.

The linearization argument given for the fuzzy RD estimator applies here as well.

Employing Lemma B.3(D) in the appendix once more, we verify that

TFKRD(hn) = (τ̂FKRD(hn)− τFKRD)/
√

VFKRD(hn)→d N (0, 1)

with VFKRD(hn) = V[τ̃FKRD(hn)|Xn], and E[τ̃FKRD(hn)|Xn] = h2
nBFKRD(hn) {1 + op(1)} with

BFKRD(hn) = (µ
(3)
Y+/τT,SKRD − τY,SKRDµ

(3)
T+/τ

2
T,SKRD)B+,FKRD(hn)/3!

− (µ
(3)
Y−/τT,SKRD − τY,SKRDµ

(3)
T−/τ

2
T,SKRD)B−,FKRD(hn)/3!

where B−,FKRD(hn) and B−,FKRD(hn) are also given in Lemma B.3. A plug-in bias-

corrected estimator of τFKRD employing local-cubic estimates of the leading biases is

τ̂ bcFKRD(hn, bn) = τ̂FKRD(hn)− h2
nB̂FKRD(hn, bn), where

B̂FKRD(hn, bn) = (µ̂
(3)
Y+,3(bn)/τ̂T,SKRD(hn)− τ̂Y,SKRD(hn)µ̂

(3)
T+,3(bn)/τ̂ 2

T,SKRD(hn))B+,FKRD(hn)/3!

− (µ̂
(3)
Y−,3(bn)/τ̂T,SKRD(hn)− τ̂Y,SKRD(hn)µ̂

(3)
T−,3(bn)/τ̂ 2

T,SKRD(hn))B−,FKRD(hn)/3!

Theorem II.16. Let Assumptions III.1–II.14 hold with S ≥ 4, and τT,SKRD 6= 0. If
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nmin{h7
n, b

7
n}max{h2

n, b
2
n} → 0 and nmin{h3

n, bn} → ∞, then

T rbc
FKRD(hn, bn) =

τ̂ bcFKRD(hn, bn)− τFKRD√
Vbc
FKRD(hn, bn)

→d N (0, 1),

provided that hn → 0 and κbn < κ0. The exact form of Vbc
FKRD(hn, bn) is given in

Theorem B.4(V).

2.4 Validity of MSE-Optimal Bandwidth Selectors

Following Imbens and Kalyanaraman (2012), we derive MSE-optimal bandwidth

choices for hn and bn that apply to all the RD settings discussed previously. These

bandwidth choices are not valid when conventional distributional approximations are

used, but they are fully compatible with our distributional approach. Let

Γp =

∞∫
0

K(u)rp(u)rp(u)′du

ϑp,q =

∞∫
0

K(u)uqrp(u)du

Ψp =

∞∫
0

K(u)2rp(u)rp(u)′du

where rp(x) = (1, x, · · · , xp)′ and eν is the conformable (ν + 1)-th unit vector (e.g.,

e1 = (0, 1, 0)′ if p = 2). See Section B.1.1 in the appendix for more details.

2.4.1 Sharp Designs

To handle the sharp RD and shark kink RD designs together, as well as the choice

of pilot bandwidths, we introduce more general notation. The estimands in the sharp

RD designs may be written as τν = µ
(ν)
+ −µ

(ν)
− with, in particular, τSRD = τ0 and τSKRD =

τ1. The p-th order local-polynomial RD estimators are τ̂ν,p(hn) = µ̂
(ν)
+,p(hn)− µ̂(ν)

−,p(hn)
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with ν ≤ p with, in particular, τ̂SRD(hn) = τ̂0,1(hn) and τ̂SKRD(hn) = τ̂1,2(hn).

Lemma II.17. Suppose Assumptions III.1–II.3 hold with S ≥ p + 1, and ν ≤ p. If

hn → 0 and nhn →∞, then

E[(τ̂ν,p(hn)− τν)2|Xn] = h2(p+1−ν)
n

[
B2
ν,p,p+1 + op(1)

]
+ n−1h−1−2ν

n [Vν,p + op(1)] ,

where Bν,p,r = (µ
(r)
+ −(−1)ν+rµ

(r)
− )e′νΓ

−1
p ϑp,r/r! and Vν,p = (σ2

−+σ2
+)ν!2e′νΓ

−1
p ΨpΓ

−1
p eν/f .

If, in addition, Bν,p,p+1 6= 0, then the (asymptotic) MSE-optimal bandwidth is

hMSE,ν,p = C
1

2p+3

MSE,ν,p n
− 1

2p+3 , CMSE,ν,p =
(1 + 2ν)Vν,p

2(p+ 1− ν)B2
ν,p,p+1

.

This lemma is a generalization of Imbens and Kalyanaraman (2012) to include kink

RD designs, among other possibilities. It justifies a set of MSE-optimal (infeasible)

choices for hn and bn: hn = hMSE,0,1 and bn = hMSE,2,2 for Theorem II.4, and hn = hMSE,1,2

and bn = hMSE,3,3 for Theorem II.13.

Remark II.18 (Bandwidths validity). The MSE-optimal bandwidth choices for the

sharp designs are fully compatible with our confidence intervals because they satisfy

the rate-restrictions in Theorems II.4–II.13. For example, nmin{hMSE,0,1, bMSE,2,2} → ∞

and nmin{h5
MSE,0,1, b

5
MSE,2,2}max{h2

MSE,0,1, b
2
MSE,2,2} → 0 in Theorem II.4.

Remark II.19 (Estimated bandwidths). Section B.1.4 in the appendix describes new

data-driven direct plug-in (DPI) bandwidth selectors for sharp RD designs based on

Lemma II.17. Following Imbens and Kalyanaraman (2012), our proposed bandwidths

incorporate “regularization” to avoid small denominators. However, relative to the

selectors proposed by Imbens and Kalyanaraman (2012), our bandwidth selectors have

two distinct features: (i) our estimator of Vν,p that does not require a choice of pilot

bandwidth and avoids estimating σ2
+, σ2

− and f directly, and (ii) pilot bandwidths are

chosen to be MSE-optimal and thus the final bandwidth selectors are of the `-stage
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DPI variety ((Wand and Jones, 1995, Section 3.6)). Our final bandwidth selectors are

consistent and optimal in the sense of Li (1987); see Theorem B.5 in the appendix.

Remark II.20 (Optimal ρn). The MSE-optimal bandwidth choices imply ρn → 0.

In research underway we are investigating whether this is an optimal choice from a

distributional approximation perspective. See Remarks II.7 and II.8, and Calonico,

Cattaneo, and Farrell (2014) for related discussion.

2.4.2 Fuzzy Designs

Let ςν = τY,ν/τT,ν with τY,ν = µ
(ν)
Y+ − µ

(ν)
Y− and τT,ν = µ

(ν)
T+ − µ

(ν)
T−. In partic-

ular, τFRD = ς0 and τFKRD = ς1. The p-th order local-polynomial estimators are

ς̂ν,p(hn) = τ̂Y,ν(hn)/τ̂T,ν(hn) with ν ≤ p, τ̂Y,ν(hn) = µ̂
(ν)
Y+,p(hn) − µ̂

(ν)
Y−,p(hn) and

τ̂T,ν(hn) = µ̂
(ν)
T+,p(hn) − µ̂

(ν)
T−,p(hn); see Section B.1.1 in the appendix. In particu-

lar, τ̂FRD(hn) = ς̂0,1(hn) and τ̂FKRD(hn) = ς̂1,2(hn). The first-order linear approximation

of ς̂ν,p(hn) is ς̃ν,p(hn) = (τ̂Y,ν,p(hn) − τY,ν)/τT,ν − τY,ν(τ̂T,ν,p(hn) − τT,ν)/τ 2
T,ν , which we

employ to construct the (approximate) MSE objective function.

Lemma II.21. Suppose Assumptions III.1–II.14 hold with S ≥ p+ 1, and ν ≤ p. If

hn → 0 and nhn →∞, then

E[(ς̃ν,p(hn))2|Xn] = h2(p+1−ν)
n

[
B2
F,ν,p,p+1 + op(1)

]
+

1

nh1+2ν
n

[VF,ν,p + op(1)] ,

where

BF,ν,p,r = ((µ
(r)
Y+ − (−1)ν+rµ

(r)
Y−)/τT,ν − τY,ν(µ(r)

T+ − (−1)ν+rµ
(r)
T−)/τ 2

T,ν)e
′
νΓ
−1
p ϑp,r/r!

VF,ν,p = ((σ2
Y Y− + σ2

Y Y+)/τ 2
T,ν

− 2τY,ν(σ
2
Y T− + σ2

Y T+)/τ 3
T,ν + τ 2

Y,ν(σ
2
TT− + σ2

TT+)/τ 4
T,ν)ν!2e′νΓ

−1
p ΨpΓ

−1
p eν/f
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If, in addition, BF,ν,p,p+1 6= 0, then the (asymptotic) MSE-optimal bandwidth is

hMSE,F,ν,p = C
1

2p+3

MSE,F,ν,p n
− 1

2p+3 , CMSE,F,ν,p =
(2ν + 1)VF,ν,p

2(p+ 1− ν)B2
F,ν,p,p+1

.

Valid bandwidth choices of hn and bn for Theorems II.15–II.16 are also readily

available using Lemma II.21: hn = hMSE,F,0,1 and bn = hMSE,F,2,2 for Theorem II.15, and

hn = hMSE,F,1,2 and bn = hMSE,F,3,3 for Theorem II.16. This lemma generalizes Imbens

and Kalyanaraman (2012) to account for fuzzy kink RD designs. Feasible versions

can be developed along the lines of Section B.1.4 in the appendix. Importantly, just

as in the sharp RD cases (Remark II.18), these MSE-optimal bandwidth choices are

fully compatible with our asymptotics.

2.5 Standard Errors

The exact formulas for the new variances Vbc
SRD(hn, bn) [sharp RD], Vbc

SKRD(hn, bn)

[sharp kink RD], Vbc
FRD(hn, bn) [fuzzy RD] and Vbc

FKRD(hn, bn) [fuzzy kink RD] in Theo-

rems II.4–II.16, respectively, are straightforward to derive but notationally cumber-

some. They all have the same structure because they are derived by computing the

conditional variance of (linear combinations of weighted) linear least-squares estima-

tors. The only unknowns in these variance matrices are (depending on the setting un-

der consideration, sharp or fuzzy RD designs) the diagonal matrices: ΨY Y+,p,q(hn, bn),

ΨY T+,p,q(hn, bn), ΨTT+,p,q(hn, bn), ΨY Y−,p,q(hn, bn), ΨY T−,p,q(hn, bn) and ΨTT−,p,q(hn, bn),

with p, q ∈ N+ and the generic notation

ΨUV+,p,q(hn, bn) =
∑n

i=1
1(Xi ≥ 0)Khn(Xi)Kbn(Xi)rp(Xi/hn)rq(Xi/bn)′σ2

UV+(Xi)/n,

ΨUV−,p,q(hn, bn) =
∑n

i=1
1(Xi < 0)Khn(Xi)Kbn(Xi)rp(Xi/hn)rq(Xi/bn)′σ2

UV−(Xi)/n,
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where σ2
UV+(x) = Cov[U(1), V (1)|X = x] and σ2

UV−(x) = Cov[U(0), V (0)|X = x],

and U and V are placeholders for either Y or T . This generality is required to handle

the fuzzy designs, where the covariances between Yi and Ti arise naturally. Theorems

B.2 and B.4 in the appendix give the exact standard error formulas, showing how the

matrices ΨUV+,p,q(hn, bn) and ΨUV−,p,q(hn, bn) are employed.

The (p+1)×(q+1) matrices ΨUV+,p,q(hn, bn) and ΨUV−,p,q(hn, bn) are a generaliza-

tion of the middle matrix in the traditional Huber-Eicker-White heteroskedasticity-

robust standard error formula for linear models, and thus an analogue of these stan-

dard error estimator can be constructed by plugging in the corresponding estimated

residuals. This choice, although simple and convenient, may not perform well in

finite-samples because it implicitly employs the bandwidth choices used to construct

the estimates of the underlying regression functions. As an alternative, following

Abadie and Imbens (2006), we propose standard error estimators based on nearest-

neighbor estimators with a fixed tuning parameter, which may be more robust in

finite-samples. Specifically, we define:

Ψ̂UV+,p,q(hn, bn) =
∑n

i=1
1(Xi ≥ 0)Khn(Xi)Kbn(Xi)rp(Xi/hn)rq(Xi/hn)′σ̂2

UV+(Xi)/n,

Ψ̂UV−,p,q(hn, bn) =
∑n

i=1
1(Xi < 0)Khn(Xi)Kbn(Xi)rp(Xi/hn)rq(Xi/hn)′σ̂2

UV−(Xi)/n,

with

σ̂2
UV+(Xi) = 1(Xi ≥ 0)

J

J + 1

(
Ui −

∑J

j=1
U`+,j(i)/J

)(
Vi −

∑J

j=1
V`+,j(i)/J

)
,

σ̂2
UV−(Xi) = 1(Xi < 0)

J

J + 1

(
Ui −

∑J

j=1
U`−,j(i)/J

)(
Vi −

∑J

j=1
V`−,j(i)/J

)
,

where `+
j (i) is the j-th closest unit to unit i among {Xi : Xi ≥ 0} and `−j (i) is the

j-th closest unit to unit i among {Xi : Xi < 0}. (“Local sample covariances” could

be used instead; see Abadie and Imbens (2010).)
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In the supplemental appendix (Calonico, Cattaneo, and Titiunik (2014d)), we

show that these estimators are asymptotically valid for any choice of J ∈ N+,

because they are approximately conditionally unbiased (even though inconsistent

for fixed nearest-neighbors J ≥ 1). This justifies employing Ψ̂UV+,p,q(hn, bn) and

Ψ̂UV−,p,q(hn, bn) in place of ΨUV+,p,q(hn, bn) and ΨUV−,p,q(hn, bn) to construct the es-

timators V̂bc
SRD(hn, bn), V̂bc

SKRD(hn, bn), V̂bc
FRD(hn, bn) and V̂bc

FKRD(hn, bn). For example, in

Theorem II.4, feasible confidence intervals are

ÎrbcSRD (hn, bn) =

[
τ̂ bcSRD(hn, bn)± Φ−1

1−α/2

√
V̂bc
SRD(hn, bn)

]
,

where V̂bc
SRD(hn, bn) is constructed using Ψ̂Y Y+,1,1(hn, bn), Ψ̂Y Y+,1,2(hn, bn), Ψ̂Y Y+,2,1(hn, bn),

Ψ̂Y Y+,2,2(hn, bn), Ψ̂Y Y−,1,1(hn, bn), Ψ̂Y Y−,1,2(hn, bn), Ψ̂Y Y−,2,1(hn, bn) and Ψ̂Y Y−,2,2(hn, bn).

The other confidence intervals are constructed analogously.

2.6 Simulation Evidence

We report the main results of a Monte Carlo experiment. We conducted 10, 000

replications, and for each replication we generated a random sample {(Xi, εi)
′ : i =

1, ..., n} with size n = 500, Xi ∼ 2B(2, 4) − 1 with B(p1, p2) denoting a beta dis-

tribution with parameters p1 and p2, and εi ∼ N (0, σ2
ε) with σε = 0.1295. Three

regression functions are considered (Figure 2.1), denoted µ1(x), µ2(x) and µ3(x), and

labeled Model 1, 2 and 3, respectively. The outcome is generated as Yi = µj(Xi) + εi,

i = 1, 2, · · · , n, for each regression model j = 1, 2, 3. The exact functional form of

µ1(x) and µ2(x) was obtained from the data in Lee (2008) and Ludwig and Miller

(2007), respectively, while µ3(x) was chosen to exhibit more curvature. All other

features of the simulation study are held fixed, matching exactly the data generat-

ing process in Imbens and Kalyanaraman (2012). For further details see (Calonico,

Cattaneo, and Titiunik, 2014d, Section 3).
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Figure 2.1: Regression Functions for Models 1–3 in simulations.

We consider confidence intervals for τSRD (sharp RD), employing a local-linear RD

estimator (p = 1) with local-quadratic bias-correction (q = 2), denoted τ̂ rbcSRD (hn, bn)

as in Section 2.2. We report empirical coverage and interval length of conventional

(based on TSRD(hn)) and robust (based on T rbc
SRD (hn, bn)) 95% confidence intervals for

different bandwidth choices:

ÎSRD(hn) =

[
τ̂SRD(hn)± 1.96

√
V̂SRD(hn)

]

ÎrbcSRD (hn, bn) =

[
τ̂ bcSRD(hn, bn)± 1.96

√
V̂bc
SRD(hn, bn)

]
,

where the estimators V̂SRD(hn) and V̂bc
SRD(hn, bn) are constructed using the nearest-

neighbor procedure discussed in Section 2.5 with J = 3. For comparison, we also

report infeasible confidence intervals employing infeasible standard errors (VSRD(hn)

and Vbc
SRD(hn, bn)), and those constructed using the standard “plug-in estimated resid-

uals” approach, which we denote V̌SRD(hn) and V̌bc
SRD(hn, bn).

Table 1 presents the main simulation results. The main bandwidth hn is chosen in

four different ways: (i) infeasible MSE-optimal choice hMSE,0,1, denoted hMSE; (ii) plug-

in, regularized MSE-optimal selector as described in (Imbens and Kalyanaraman,

2012, Section 4.1), denoted ĥIK; (iii) cross-validation as described in (Imbens and

Kalyanaraman, 2012, Section 4.5), denoted ĥCV; and (iv) plug-in choice proposed in

64



Section 2.4 (Remark II.19), denoted ĥCCT. Similarly, to choose the pilot bandwidth bn,

we construct modified versions of the choices enumerated above, with the exception

of ĥCV because cross-validation is not readily available for derivative estimation; these

choices are denoted bMSE, b̂IK and b̂CCT, respectively. For further results, including other

bandwidth selectors and test statistics, see (Calonico, Cattaneo, and Titiunik, 2014d,

Section 3).

The simulation results show that the robust confidence intervals lead to important

improvements in empirical coverage (EC) with moderate increments in average empir-

ical interval length (IL). The empirical coverage of the interval estimator IrbcSRD (hn, bn)

exhibits an improvement of about 10-15 percentage points on average with respect to

the conventional interval ISRD(hn), depending on the particular model, standard error

estimator and bandwidth choices considered. As expected, the feasible versions of the

confidence intervals exhibit slightly more empirical coverage distortion and longer in-

tervals than their infeasible counterparts. The conventional plug-in residual standard

error estimators (V̌SRD(hn) and V̌bc
SRD(hn, bn)) tend to exhibit more undercoverage in

our simulations than the proposed fixed-neighbor standard error estimators (V̂SRD(hn)

and V̂bc
SRD(hn, bn)). The choice ρn = 1 is not only simple and intuitive (Remark II.10),

but also performed well in our simulations. Although not the main goal of this chap-

ter, we also found that our two-stage direct plug-in rule selector of hn performs well

relative to the other plug-in selectors, and on par with the cross-validation bandwidth

selector.

2.7 Conclusion

We introduced new confidence interval estimators for several regression-discontinuity

estimands that enjoy demonstrably superior robustness properties. The results cover

the sharp (level or kink) and fuzzy (level or kink) RD designs. Our confidence inter-

vals were constructed using an alternative asymptotic theory for bias-corrected local

65



polynomial estimators in the context of RD designs, which leads to a different asymp-

totic variance in general and thus justifies a new standard-error estimator. We found

that the resulting data-driven confidence intervals performed very well in simulations,

suggesting in particular that they provide a robust (to the choice of bandwidths) al-

ternative when compared to the conventional confidence intervals routinely employed

in empirical work.
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(ĥ

C
V
,b̂

C
V
)

9
4
.6

9
4
.1

9
1
.8

0
.4

0
1

0
.4

5
1

0
.3

7
7

0
.1

2
4

0
.1

2
4

I S
R
D
(ĥ
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CHAPTER III

Optimal Data-Driven Regression Discontinuity

Plots

3.1 Introduction

The regression discontinuity (RD) design, originally introduced by Thistlethwaite

and Campbell (1960), is by now among the most popular quasi-experimental empirical

strategies to estimate (local) causal treatment effects in Economics, Political Science

and many other social, behavioral and natural sciences. In this research design, for

each unit i = 1, 2, · · · , n, researchers observe an outcome variable Yi and a continuous

covariate Xi, and units are assigned to treatment or control depending on whether

their observed covariate exceeds a known cutoff. Provided the units of analysis cannot

systematically sort around the cutoff, the RD design employs observations just below

and just above the cutoff as control and treatment groups to conduct inference on the

(local) causal effect of the treatment. The underlying idea, and crucial assumption, is

that units around the cutoff do not differ in their unobservable characteristics, thereby

offering valid counterfactual comparisons between control and treatment groups. For

recent reviews on the RD design, including references to a large number of empirical

applications employing RD designs, see van der Klaauw (2008), Cook (2008), Imbens

and Lemieux (2008), Lee and Lemieux (2010) and Dinardo and Lee (2011).
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A key feature of the RD design is its simplicity and transparency. The empirical

analysis relies on simple and easy to interpret identifying assumptions to study the ef-

fect of a policy, intervention or other treatment for units near the threshold, involving

only a univariate outcome Yi and a univariate continuous covariate Xi (which deter-

mines treatment assignment). Estimation and inference of RD treatment effects is

usually conducted using local polynomial estimators, and great attention has been de-

voted to these estimators in the recent methodological RD literature (see, for example,

Hahn, Todd, and van der Klaauw, 2001; Porter, 2003; Imbens and Kalyanaraman,

2012; Calonico, Cattaneo, and Titiunik, 2014c, and references therein). Other ap-

proaches are also possible, such as those employing randomization inference methods

(Cattaneo, Frandsen, and Titiunik, 2014). No matter the inference approach em-

ployed in empirical work, formal exploratory data analysis and graphical falsification

tests are essential when employing RD designs. These methods have been strongly

advocated in the literature because they play an important role in both presentation

and validation of RD research designs (e.g., Imbens and Lemieux (2008, Section 3)

and Lee and Lemieux (2010, Section 4.1)).

So called RD plots are nowadays used in almost all RD empirical applications to

illustrate the research design. These popular plots are constructed using two main

ingredients. First, the plot shows two smooth polynomial approximations of the

underlying conditional expectations of the outcome variable Yi given the observed

covariate Xi, for control and treatment units separately. These polynomial fits seek

to present graphically the behavior of the underlying conditional expectations in a

smooth fashion and from a global perspective. The second ingredient in the RD plots

concerns a collection of local sample means of the outcome variable: first, the support

of the covariate Xi is partitioned into disjoint bins for control and treatment units

separately, and then sample means of the outcome variable Yi are computed for each

bin using, in each case, only observations that have covariate Xi within each bin. This
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collection of local sample means are then plotted on top of the smooth polynomial fits,

with the goal of (i) highlighting potential discontinuities in the underlying conditional

expectations and (ii) providing a sense of the local behavior of the data for different

values of covariate Xi. Figure 3.1 shows four examples of RD plots employing the data

of Lee (2008), and using different choices for the number of bins. In this empirical

example, Lee studies the incumbency advantage in U.S. House elections, and his

identification strategy is based on the discontinuity generated by the rule that assigns

electoral victory to the party that obtains the most votes. The forcing variable is

the margin of victory in a given election—the difference in vote share between the

Democratic candidate and her strongest opponent— and the threshold is x̄ = 0,

since the the party wins the election when its margin of victory is positive and loses

otherwise. The outcome variable is the Democratic vote share in the following U.S

House election. We further discuss this empirical application in Section 3.5.

While RD plots are a well established and commonly used tool in empirical analy-

sis of RD designs, their formal properties remain unknown. In particular, these plots

are constructed using an ad hoc choice of the partitions’ size (i.e., the number of

bins used to construct the partitions), making the procedure less automatic and more

subjective than is ideal for a tool whose main role is to provide objective evidence

about the plausibility of the design’s main assumptions. Given the absence of concrete

guidance on these choices, practitioners typically experiment and select an arbitrary

number of bins, which may misrepresent the actual behavior of the data. In this

chapter, we study the properties of the most common RD plot used in the literature,

one that employs an evenly-spaced binning of the data, and propose an integrated

mean-square error (IMSE) optimal choice for the number of bins. We then propose

several data-driven, nonparametric implementations of this IMSE-optimal partition

size selector and show that they are consistent under simple and easy-to-interpret

assumptions. The resulting optimal data-driven selector provides the first fully auto-
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Figure 3.1: RD Plots - House Elections Data from Lee (2008).
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(b) 10 bins on each side.
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matic and objective benchmark in the RD literature, offering concrete guidance for

empirical work employing RD plots.

In addition to studying RD plots with evenly-spaced bins, we also introduce an

alternative RD plot based on quantile-spaced binning. This approach forces each

bin to have approximately the same number of observations, a feature that may be

appealing when the data is too sparse. This alternative partitioning scheme for the

construction of the local sample means may be viewed as (covariate) design adaptive.

For this case, we also derive an expansion of the IMSE, propose the corresponding

optimal choice of number of bins, and develop data-driven nonparametric consistent

implementations thereof.

Our main implementations employ spacings estimation techniques to construct

the data-driven IMSE-optimal partition size choices because these estimators do not

require additional tuning parameter choices, and thus are more robust in applications.

However, this technique requires continuity of the outcome variable, and hence is not

applicable in all possible empirical settings. To handle non-continuous outcomes, we

also propose and formally analyze IMSE-optimal partition size data-driven choices

employing nonparametric polynomial estimators, which can be used broadly under

mild assumptions.

Finally, we also analyze the performance of our automatic RD plots numerically.

First, we apply our results to two empirical illustrations studying incumbency advan-

tage in the U.S., and find that our optimal data-driven RD-plots perform well when

using real data. Second, we study the finite-sample properties of our results in a

Monte Carlo experiment employing several data generating processes, and find that

our RD-plots tuning parameter selectors perform extremely well. Third, we compare

numerically the two RD plotting alternatives analyzed in this chapter: evenly-spaced

vs. quantile-spaced. Our results highlight the fact that neither approach dominates

the other in general, because features of the underlying (unknown) data generating
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process (i.e., distribution of Xi and shapes of the conditional expectation and condi-

tional heteroskedasticity) ultimately determine which RD plot is best from a IMSE

perspective. Nonetheless, we offer some intuitive discussion on the relative merits of

each approach.

The rest of the chapter is organized as follows. Section 3.2 presents the RD

design and reviews basic results and concepts, including a generic formal description

of the RD plots. Section 3.3 introduces the popular evenly-spaced RD plot, derives

a weighted IMSE expansion and presents our results for this case, while Section 3.4

proceeds analogously but for the alternative RD plot based on quantile-spaced bins.

Section 3.5 compares the two RD plots approach using our IMSE expansions, and also

showcases how the exploratory data devices perform numerically using simulated and

real data. Section 3.6 describes some potential extensions of our work and concludes.

Companion R and STATA software packages are described in Calonico, Cattaneo, and

Titiunik (2014e,b).

3.2 Setup and RD plots

In the regression discontinuity design, the observed data is a random sample

(Yi, Xi)
′, i = 1, 2, . . . , n, from a large population, with Xi a continuous random vari-

able with (possibly restricted) support [xl, xu] and density f(x). All units with a value

of the observed “score” or “forcing” variable Xi greater than a known threshold x̄ are

assigned to the treatment group (Ti = 1), while all units with Xi < x̄ are assigned to

the control group (Ti = 0). Thus, under perfect compliance, treatment assignment is

defined as Ti = 1(Xi ≥ x̄) with 1(·) denoting the indicator function. As is common in

the program evaluation literature (e.g., Imbens and Wooldridge (2009)), we employ

potential outcomes notation to characterize the two underlying counterfactual states

(control or treatment). Letting Yi(1) and Yi(0) denote the potential outcome with
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and without treatment, respectively, the observed outcome is

Yi = Yi(0) · (1− Ti) + Yi(1) · Ti =

 Yi(0) if Xi < x̄

Yi(1) if Xi ≥ x̄
.

The most popular parameter of interest is the average treatment effect at the

threshold, given by τSRD = E[Yi(1)− Yi(0)|Xi = x̄]. This parameter is nonparametri-

cally identifiable under a mild continuity condition (Hahn, Todd, and van der Klaauw,

2001), and RD estimators employing local polynomial techniques have become the

default choice in the literature (Imbens and Kalyanaraman, 2012; Calonico, Catta-

neo, and Titiunik, 2014c, and references therein). In the so called sharp RD design,

Ti is a deterministic function of treatment assignment (perfect compliance), while in

the so called fuzzy RD design treatment take-up and treatment assignment may dif-

fer. This distinction, however, is irrelevant for our purposes because we do not focus

on estimation and inference for RD treatment effects, but rather on the RD plots

commonly encountered in empirical work. These plots may be used for presentation

and falsification of both sharp and fuzzy RD research designs. These RD plots are

described in great detail in the upcoming section, but first we introduce the main

notation and assumptions employed throughout the chapter.

We set

µ−(x) = E[Yi(0)|Xi = x], σ2
−(x) = V[Yi(0)|Xi = x],

µ+(x) = E[Yi(1)|Xi = x], σ2
+(x) = V[Yi(1)|Xi = x],

and impose the following assumption through the chapter.

Assumption III.1. For xl, xu ∈ R with xl < x̄ < xu, and all x ∈ [xl, xu]:

(a) E[Y 4
i |Xi = x] is bounded, and f(x) is continuous and bounded away from zero.

(b) µ−(x) and µ+(x) are S-times continuously differentiable.

(c) σ2
−(x) and σ2

+(x) are continuous and bounded away from zero.
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Part (a) in Assumption III.1 imposes existence of moments and requires that the

running variable Xi be continuously distributed. Part (b) imposes smoothness on the

underlying regression functions, while part (c) requires that the conditional variance

be continuous; all these functions may be different at either side of the threshold.

Notice that µ−(x) = E[Yi|Xi = x] for all x < x̄ and µ+(x) = E[Yi|Xi = x] for all

x ≥ x̄, enabling (consistent) estimation of these conditional expectations for control

and treatment units, respectively.

3.2.1 RD Plots

The main features of an RD design are easily summarized employing RD plots

[Imbens and Lemieux (2008, Section 3) and Lee and Lemieux (2010, Section 4.1)]. As

mentioned in the Introduction, these plots include two main ingredients: (i) smooth

polynomial estimation, and (ii) local sample-means estimation. We now formalize

the underlying estimation approaches used to construct the RD plots, which provides

the basis for our analysis. Our main focus is on tuning parameter selection for the

construction of the collection of local sample means under two distinct partitioning

schemes: evenly-spaced and quantile-spaced partitions of [xl, x̄) and [x̄, xu].

3.2.1.1 Global Polynomial Estimation

In the RD plots the unknown functions µ−(x) = E[Yi(0)|Xi = x] and µ+(x) =

E[Yi(1)|Xi = x] are estimated using global polynomials for control and treatment ob-

servations separately. To formalize this approach, let k ∈ Z+ and rk(x) = (1, x, x2, · · · , xk)′,

and define

µ̂−,k(x) = rk(x)′β̂−,k, β̂−,k = arg min
β∈Rk+1

n∑
i=1

1(Xi < x̄)(Yi − rk(x)′β)2,

µ̂+,k(x) = rk(x)′β̂+,k, β̂+,k = arg min
β∈Rk+1

n∑
i=1

1(Xi ≥ x̄)(Yi − rk(x)′β)2,
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with p ∈ Z++ = {1, 2, · · · }. In words, µ̂−,k(x) and µ̂+,k(x) are k-th order polynomial

fits of Yi on Xi employing only control and treatment units, respectively.

These polynomial regressions may be viewed as a nonparametric approach, usually

called series or (linear) sieve estimation, for the approximation of the underlying

population conditional expectations when k = kn → ∞ as n → ∞ (see, e.g., Newey

(1997b), Chen (2007b) and Belloni, Chernozhukov, Chetverikov, and Kato (2013) for

reviews). Below we will exploit this interpretation explicitly to construct consistent

plug-in rules for the optimal tuning parameter choices. Employing results from the

nonparametric literature, it is possible to select kn using some data-driven approach

such as (plug-in) IMSE minimization or cross-validation. In practice, however, k = 4

or k = 5 are almost always the preferred choices. Either way, we do not discuss further

the choice of k for RD plots because this is a well understood problem. Instead, our

main focus is on choosing the partition size for the local means as discussed next, a

result that is not currently available in the literature.

3.2.1.2 Local Mean Estimation

The second ingredient in the RD plots are a collection of local sample means of

the outcome variable computed over a disjoint partition of the support of the running

variable, for control and treatment units separately. To describe this construction for-

mally, we employ ideas from the nonparametric literature on partitioning estimators

(for further details see Cattaneo and Farrell, 2013b, and references therein).

Set 1A(x) = 1(x ∈ A) to save notation. The partitioning estimators (of order 1),

sometimes called binning estimators or local-mean estimators, are formally described

as follows:

µ̂−(x; J−,n) =

J−,n∑
j=1

1P−,j
(x)Ȳ−,j, Ȳ−,j =

1(N−,j > 0)

N−,j

n∑
i=1

1P−,j
(Xi)Yi
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µ̂+(x; J+,n) =

J+,n∑
j=1

1P+,j
(x)Ȳ+,j, Ȳ+,j =

1(N+,j > 0)

N+,j

n∑
i=1

1P+,j
(Xi)Yi

with

N−,j =
n∑
i=1

1P−,j
(Xi), N− =

J−,n∑
j=1

N−,j, N+,j =
n∑
i=1

1P+,j
(Xi), N+ =

J+,n∑
j=1

N+,j,

and where P−,n = {P−,j : j = 1, 2, · · · , J−,n} and P+,n = {P+,j : j = 1, 2, · · · , J+,n}

are generic disjoint partitions of the support of the running variable Xi, which vary

with the sample size n. More precisely,

[xl, x̄] =

J−,n⋃
j=1

P−,j, P−,j =


[xl , p−,1) j = 1

[p−,j−1 , p−,j) j = 2, · · · , J+,n − 1

[p−,J−,n−1 , x̄) j = J−,n

and

[x̄, xu] =

J+,n⋃
j=1

P+,j, P+,j =


[x̄ , p+,1) j = 1

[p+,j−1 , p+,j) j = 2, · · · , J+,n − 1

[p+,J+,n−1 , xu] j = J+,n

with J−,n, J+,n ∈ Z++ denoting the partition sizes for control and treatment groups,

respectively.

The estimators µ̂−(x; J−,n) and µ̂+(x; J+,n) collect the sample means of the out-

comes Yi for observations with covariate Xi taking values within each bin in the

partitions P−,n and P+,n, and may be interpreted as nonparametric estimators of

µ−(x) and µ+(x), respectively. As for other nonparametric procedures, these binning-

type estimators involve a choice of tuning and smoothing parameters. In this case,

(J−,n, J+,n) may be regarded as the tuning parameters (e.g., similar to a bandwidth

for conventional kernel estimators) and (P−,n,P+,n) may be viewed as the smoothing
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parameters (e.g., similar to the shape of kernel function for conventional kernel esti-

mators). Under Assumption III.1, and provided a well-behaved partitioning scheme is

used, it is not difficult to show that µ̂−(x; J−,n)→P µ−(x) and µ̂+(x; J+,n)→P µ+(x),

provided that J−,n → ∞ and J+,n → ∞ as n → ∞ and some regularity conditions

hold.

The behavior of these estimators is dependent on how the partitions are con-

structed and, as mentioned above, this chapter considers two approaches for choos-

ing the partitions: evenly-spaced partitions and quantile-spaced partitions. Given a

chosen partitioning scheme, the parameters J−,n and J+,n control the rate of approx-

imation of the partitioning estimators, capturing the usual bias-variance trade-off:

smaller (J−,n, J+,n) imply more variance but less bias (more smaller bins), while larger

(J−,n, J+,n) imply less variance but more bias (fewer larger bins). The main contri-

bution of this chapter is to derive optimal choices of (J−,n, J+,n) based on an IMSE

objective function for each of the two partitioning schemes, and to develop consistent

data-driven implementations thereof.

As we briefly discuss in Section 3.6, these choices can also be used to conduct

inference and to construct falsification tests in the context of RD designs. We plan

to formally investigate the properties of these inferential procedures in upcoming

research work.

3.3 Evenly-Spaced RD Plots

In this section we consider evenly-spaced (ES) bins for the construction of the

partitioning scheme underlying the RD plots. Thus, we set

p−,j = xl + j · x̄− xl
J−,n

and p+,j = x̄+ j · xu − x̄
J+,n

,
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leading to the evenly-spaced partitioning estimators denoted by µ̂ES,−(x; J−,n) and

µ̂ES,+(x; J+,n), with (nonrandom) partitioning schemes denoted by PES,−,n and PES,+,n,

respectively.

3.3.1 Optimal Choice of ES Partition Size

To select the number of bins J−,n and J+,n we consider an approximation of the

IMSE loss function of these estimators:

IMSEES,−(J−,n) =

x̄∫
xl

E
[
(µ̂ES,−(x; J−,n)− µ−(x))2

∣∣Xn

]
w(x)dx,

IMSEES,+(J+,n) =

xu∫
x̄

E
[
(µ̂ES,+(x; J+,n)− µ+(x))2

∣∣Xn

]
w(x)dx,

where Xn = (X1, X2, · · · , Xn)′. The following theorem gives our main result. Through-

out the chapter all limits are taken as n→∞ unless otherwise stated.

Theorem III.2. Suppose Assumption III.1 holds with S ≥ 2, and w : [xl, xu] 7→ R+

is continuous.

(−) If J−,n log(J−,n)/n→ 0 and J−,n →∞, then

IMSEES,−(Jn,−) =
J−,n
n

VES,−{1 + oP(1)}+
1

J2
−,n

BES,−{1 + oP(1)},

VES,− =
1

x̄− xl

x̄∫
xl

σ2
−(x)

f(x)
w(x)dx and BES,− =

(x̄− xl)2

12

x̄∫
xl

(
µ

(1)
− (x)

)2

w(x)dx,

where µ
(1)
− (x) = ∂µ−(x)/∂x.

(+) If J+,n log(J+,n)/n→ 0 and J+,n →∞, then

IMSEES,+(Jn,+) =
J+,n

n
VES,+{1 + oP(1)}+

1

J2
+,n

BES,+{1 + oP(1)},
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VES,+ =
1

xu − x̄

xu∫
x̄

σ2
+(x)

f(x)
w(x)dx and BES,+ =

(xu − x̄)2

12

xu∫
x̄

(
µ

(1)
+ (x)

)2

w(x)dx,

where µ
(1)
+ (x) = ∂µ+(x)/∂x.

This theorem gives the result for a family of IMSE loss functions, depending on

the choice of weight function w(x). This result remains valid if w(x) = w+(x)1(x ≥

x̄) +w−(x)1(x < x̄), thus allowing for w(x) discontinuous at x̄, though for notational

simplicity we do not discuss this case. In general, assuming that BES,− 6= 0 and

BES,+ 6= 0, the expansions of IMSEES,−(Jn,−) and IMSEES,+(Jn,+) can be used to derive

optimal choices of J−,n and J+,n:

JES,−,n =

⌊(
2BES,−

VES,−

)1/3

n1/3

⌋
and JES,+,n =

⌊(
2BES,+

VES,+

)1/3

n1/3

⌋
(3.1)

with bxc denoting the smallest integer part of x ∈ R++. (This “optimal” choice

implies a slight undersmoothing in finite samples.)

3.3.2 Data-Driven Implementations of JES,−,n and JES,+,n

Employing some reference model, we could easily construct rule-of-thumb esti-

mates of the unknown constants VES,−, BES,−, VES,+ and BES,+ to estimate empirically

the IMSE-optimal size of evenly-spaced partitions given in (3.1), for a given choice of

weighting function w(x)—see, e.g., Wand and Jones (1995) for further discussion in

the context of kernel-based estimation. In this chapter, we propose easy-to-implement

consistent nonparametric estimators of JES,−,n and JES,+,n instead. First, we outline

a general approach allowing for a user-chosen known weighting function w(x). We

then also discuss the special case of w(x) = f(x) in a follow-up remark because this

choice simplifies the estimation approach. In all cases, we estimate µ
(1)
− (x) and µ

(1)
+ (x)

using global polynomial approximations, trying to mimic as close as possible current

empirical practices: these polynomial approximations are already available as part of
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the RD plots. Our approaches are not only theoretically justified, but also arguably

simple, easy-to-interpret and more robust than the usual nonparametric alternatives

in some cases, as we discussed further below.

Taking w(x) as given, we estimate the constants VES,−, BES,−, VES,+ and BES,+ us-

ing ideas related to spacings estimators (see, e.g., Ghosh and Jammalamadaka, 2001;

Lewbel and Schennach, 2007; Baryshnikov, Penrose, and Yurich, 2009, and references

therein). These estimators are closely related to nearest neighbor estimators with

fixed neighbors (e.g., Abadie and Imbens, 2006, 2010), and are more robust than

other nonparametric estimators such as kernel-based estimators because they do not

require additional tuning parameter choices in their implementation. To describe the

spacings estimators, we need to introduce notation for order statistics and concomi-

tants. For a collection of continuous random variables {(Zi,Wi) : i = 1, 2, · · · , n} we

let W(i) be the i-th order statistic of Wi and Z[i] its corresponding concomitant. That

is, W(1) < W(2) < · · · < W(n) and (Z[i],W(i)) = (Zi,W(i)) for all i = 1, 2, · · · , n. For

further details on order statistics and their associated concomitants see David and

Nagaraja (1998, 2003).

Letting {(Y−,i, X−,i) : i = 1, 2, · · · , N−} and {(Y+,i, X+,i) : i = 1, 2, · · · , N+} be

the subsamples of control (Xi < x̄) and treatment (Xi ≥ x̄) units, respectively, and

with the above notation, we propose the following generic estimators:

V̂ES,− =
1

x̄− xl
n

4

N−∑
i=2

(X−,(i) −X−,(i−1))
2(Y−,[i] − Y−,[i−1])

2w(X̄−,(i)), (3.2)

B̂ES,− =
(x̄− xl)2

12

N−∑
i=2

(X−,(i) −X−,(i−1))
(
µ̂

(1)
−,k(X̄−,[i])

)2

w(X̄−,(i)), (3.3)

and

V̂ES,+ =
1

xu − x̄
n

4

N+∑
i=2

(X+,(i) −X+,(i−1))
2(Y+,[i] − Y+,[i−1])

2w(X̄+,(i)), (3.4)
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B̂ES,+ =
(xu − x̄)2

12

N+∑
i=2

(X+,(i) −X+,(i−1))
(
µ̂

(1)
+,k(X̄+,[i])

)2

w(X̄+,(i)), (3.5)

with

X̄−,(i) =
X−,(i) +X−,(i−1)

2
, i = 2, 3, · · · , N−, µ̂

(1)
−,k(x) = r

(1)
k (x)′β̂−,k,

X̄+,(i) =
X+,(i) +X+,(i−1)

2
, i = 2, 3, · · · , N+, µ̂

(1)
+,k(x) = r

(1)
k (x)′β̂+,k,

and r
(1)
k (x) = ∂rk(x)/∂x = (0, 1, 2x, 3x2, · · · , kxk−1)′. The intuition behind these

constructions comes from observing that, conditional on N+,

X+,(i) −X+,(i−1) ≈
1

N+f+(X̄−,(i))
, f+(x) =

1(x ≥ x̄)f(x)

P+

, P+ = P[Xi ≥ x̄],

and

E[(Y+,[i] − Y+,[i−1])
2|X+,(1), · · · , X+,(N+)] ≈ σ2

+(X+,(i)) + σ2
+(X+,(i−1)) ≈ 2σ2

+(X̄+,[i]),

which, after plugging in, leads to the results in Theorem III.3 below when combined

with an appropriate limit theorem for the resulting averages. Lemma C.2 in the

appendix gives more general results along these lines. As mentioned above, these es-

timators are particularly well suited for our purposes, and are arguably more robust

in practice, because they (i) avoid explicit estimation of the density f(x) appear-

ing in the denominators and (ii) do not require specific choices of tuning parameters

(e.g. bandwidths in kernel-based estimation). For these reasons, and given their sim-

ple implementation, we recommend employing the above spacings-based estimators

whenever possible.
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To summarize, in the case of ES partitions, our proposed selectors are

ĴES,−,n =

(2B̂ES,−

V̂ES,−

)1/3

n1/3

 and ĴES,+,n =

(2B̂ES,+

V̂ES,+

)1/3

n1/3

 , (3.6)

using the estimators in (3.2)-(3.3) and (3.4)-(3.5), respectively. The following theorem

shows that, when the polynomial fits are viewed as nonparametric approximations

with k = kn →∞, these partition size selectors are nonparametric consistent.

Theorem III.3. Suppose Assumption III.1 holds with S ≥ 5, w : [xl, xu] 7→ R+

is continuous, and Yi(0) and Yi(1) are continuously distributed. If k7
n/n → 0 and

kn →∞, then

ĴES,−,n
JES,−,n

→P 1 and
ĴES,+,n
JES,+,n

→P 1.

This theorem gives formal justification for employing ĴES,−,n and ĴES,+,n in appli-

cations, whenever the outcome variable is continuous and the weight function w(·)

is known. A particularly convenient and easy-to-implement choice of the latter is

w(x) = 1, but other choices are also covered by theorem.

Remark III.4 (Discontinuous Outcomes). When Yi(0) and Yi(1) are not continuously

distributed, the concomitant-based estimation method becomes invalid. In this case,

we need to employ other more standard nonparametric techniques. For example,

assuming that E[Yi(t)
2|Xi = x], t = 0, 1, are twice continuously differentiable, we can

use the following estimators:

V̌ES,− =
1

x̄− xl
n

2

N−∑
i=2

(X−,(i)−X−,(i−1))
2σ̂2
−(X̄−,(i))w(X̄−,(i)), σ̂2

−(x) = µ̂−,k,2(x)−(µ̂−,k,1(x))2,

V̌ES,+ =
1

xu − x̄
n

2

N+∑
i=2

(X+,(i)−X+,(i−1))
2σ̂2

+(X̄+,(i))w(X̄+,(i)), σ̂2
+(x) = µ̂+,k,2(x)−(µ̂+,k,1(x))2,
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where

µ̂−,k,p(x) = rk(x)′β̂−,k,p, β̂−,k,p = arg min
β∈Rk+1

n∑
i=1

1(Xi < x̄)(Y p
i − rk(x)′β)2,

µ̂+,k,p(x) = rk(x)′β̂+,k,p, β̂+,k,p = arg min
β∈Rk+1

n∑
i=1

1(Xi ≥ x̄)(Y p
i − rk(x)′β)2,

and note that µ̂−,k(x) = µ̂−,k,1(x) and µ̂+,k(x) = µ̂+,k,1(x) with our notation.

We show in the appendix that the resulting partition-size selectors using the above

estimators,

J̌ES,−,n =

(2B̂ES,−

V̌ES,−

)1/3

n1/3

 and J̌ES,+,n =

(2B̂ES,+

V̌ES,+

)1/3

n1/3

 , (3.7)

are also consistent in the sense of Theorem III.3, under the conditions imposed in

that theorem.

Remark III.5 (Density-Weighted IMSE). Taking w(x) = f(x), with f(x) unknown,

leads to the simplified constants:

V dw
ES,− =

1

x̄− xl

x̄∫
xl

σ2
−(x)dx, V dw

ES,+ =
1

xu − x̄

xu∫
x̄

σ2
+(x)dx,

Bdw
ES,− =

(x̄− xl)2

12
E[1(Xi < x̄)(µ

(1)
− (Xi))

2] Bdw
ES,+ =

(xu − x̄)2

12
E[1(Xi ≥ x̄)(µ

(1)
− (Xi))

2].

The biases can now be estimated by a simple plug-in procedure,

B̂dw
ES,− =

(x̄− xl)2

12n

n∑
i=1

1(Xi < x̄)
(
µ̂

(1)
−,k(Xi)

)2

, B̂dw
ES,+ =

(xu − x̄)2

12n

n∑
i=1

1(Xi ≥ x̄)
(
µ̂

(1)
+,k(Xi)

)2

.

The variances can be estimated employing either (i) spacings estimators,

V̂ dw
ES,− =

1

x̄− xl
1

2

N−∑
i=2

(X−,(i) −X−,(i−1))(Y−,[i] − Y−,[i−1])
2
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and

V̂ dw
ES,+ =

1

xu − x̄
1

2

N+∑
i=2

(X+,(i) −X+,(i−1))(Y+,[i] − Y+,[i−1])
2,

or (ii) polynomial approximations,

V̌ dw
ES,− =

1

x̄− xl

x̄∫
xl

σ̂2
−(x)dx and V̌ dw

ES,+ =
1

xu − x̄

xu∫
x̄

σ̂2
+(x)dx,

using the notation introduced in Remark III.4. The results in the appendix can be

used to show that the corresponding partition-size selectors are also consistent in the

sense of Theorem III.3.

Computer software implementing all the approaches described above to construct

ES-RD plots is available in R and STATA, as described in Calonico, Cattaneo, and

Titiunik (2014e,b).

3.4 Quantile-Spaced RD Plots

In addition to the popular ES-RD plot, we also study an alternative plotting

approach based on quantile-spaced (QS) bins. This approach takes into account the

sparsity of the data, forcing each bin to have approximately the same number of

observations. This feature may be appealing because with QS bins the variability of

the local sample means will change across bins only due to nonconstant conditional

variances (i.e., due to the presence of heteroskedasticity), but not due to different

sample sizes in each bin (as it occurs with an evenly-spaced partition).

In this case, we construct the partitioning scheme as follows:

p−,j = F̂−1
−

(
j

J−,n

)
and p+,j = F̂−1

+

(
j

J+,n

)
,
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with

F̂−1
− (y) = inf{x : F̂−(x) ≥ y}, F̂−(x) =

1

N−

n∑
i=1

1(Xi < x̄)1(Xi ≤ x),

F̂−1
+ (y) = inf{x : F̂+(x) ≥ y}, F̂+(x) =

1

N+

n∑
i=1

1(Xi ≥ x̄)1(Xi ≤ x).

In words, the QS-RD plot sets p−,j and p+,j to be the approximately 100(j/J−,n)-

th quantiles of the subsample {Xi : Xi < x̄} and the approximately 100(j/J+,n)-th

quantile of the subsample {Xi : Xi ≥ x̄}, respectively. This construction leads to the

quantile-spaced partitioning estimators denoted by µ̂QS,−(x; J−,n) and µ̂QS,+(x; J+,n),

with now random partitioning schemes denoted by PQS,−,n and PQS,+,n, respectively.

3.4.1 Optimal Choice of QS Partition Size

We study again the integrated mean-square error loss functions of the QS-based

estimators, which in this case are given by

IMSEQS,−(J−,n) =

x̄∫
xl

E
[
(µ̂QS,−(x; J−,n)− µ−(x))2

∣∣Xn

]
w(x)dx

and

IMSEQS,+(J+,n) =

xu∫
x̄

E
[
(µ̂QS,+(x; J+,n)− µ+(x))2

∣∣Xn

]
w(x)dx.

The following theorem gives the corresponding asymptotic expansion of the IMSE

for the QS-RD plots, which we will use to develop optimal choices of J−,n and J+,n.

Theorem III.6. Suppose Assumption III.1 holds with S ≥ 2, and w : [xl, xu] 7→ R+

is continuous.

(−) If J−,n log(J−,n)/n→ 0 and J−,n/ log(n)→∞, then

IMSEQS,−(Jn,−) =
J−,n
n

VQS,−{1 + oP(1)}+
1

J2
−,n

BQS,−{1 + oP(1)},
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VQS,− =
1

P−

x̄∫
xl

σ2
−(x)w(x)dx and BQS,− =

P 2
−

12

x̄∫
xl

(
µ

(1)
− (x)

f(x)

)2

w(x)dx

where P− = P[Xi < x̄].

(+) If J+,n log(J+,n)/n→ 0 and J+,n/ log(n)→∞, then

IMSEQS,+(Jn,+) =
J+,n

n
VQS,+{1 + oP(1)}+

1

J2
+,n

BQS,+{1 + oP(1)},

VQS,+ =
1

P+

xu∫
x̄

σ2
+(x)w(x)dx and BQS,+ =

P 2
+

12

xu∫
x̄

(
µ

(1)
+ (x)

f(x)

)2

w(x)dx,

where P+ = P[Xi ≥ x̄].

The conclusion in this theorem is similar to Theorem III.2, but its proof is differ-

ent because the estimators are constructed using a random partitioning scheme. The

partitioning scheme used in the ES-RD plots (PES,−,n and PES,+,n) requires J−,n →∞

and J+,n → ∞ but could lead to empty bins in finite samples (this possibility dis-

appears asymptotically; see Lemma C.1 in the appendix). In contrast, the partition-

ing schemes underlying the QS-RD plots (PQS,−,n and PQS,+,n) guarantee roughly the

same number of observations (≈ N−/J−,n and ≈ N+/J+,n) in each bin. The slightly

stronger rate conditions J−,n/ log(n)→∞ and J+,n/ log(n)→∞ are imposed to en-

sure consistency of the sample quantiles functions at the appropriate rate; see Mason

(1984) for further details.

For the QS-RD plots, the expansions of IMSEQS,−(Jn,−) and IMSEQS,+(Jn,+) imply

the following optimal choice of partition sizes:

JQS,−,n =

⌊(
2BQS,−

VQS,−

)1/3

n1/3

⌋
and JQS,+,n =

⌊(
2BQS,+

VQS,+

)1/3

n1/3

⌋
(3.8)
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3.4.2 Data-Driven Implementations of JQS,−,n and JQS,+,n

Paralleling the discussion in Section 3.3, we propose consistent estimators for

JQS,−,n and JQS,+,n using the idea of spacings estimators, which are simple, more robust

and easy-to-implement but require continuous outcomes; Remark III.8 below discusses

the case of non-continuous outcomes. We retain all the notation introduced for the

implementation of ES-RD plots, including that of control and treatment subsamples,

order statistics and their concominats.

Our proposed estimators of the optimal QS partition sizes are the following:

V̂QS,− =
n

2N−

N−∑
i=2

(X−,(i) −X−,(i−1))(Y−,[i] − Y−,[i−1])
2w(X̄−,(i)), (3.9)

B̂QS,− =
N2
−

72

N−∑
i=2

(X−,(i) −X−,(i−1))
3
(
µ̂

(1)
−,k(X̄−,(i))

)2

w(X̄−,(i)), (3.10)

and

V̂QS,+ =
n

2N+

N+∑
i=2

(X+,(i) −X+,(i−1))(Y+,[i] − Y+,[i−1])
2w(X̄+,(i)), (3.11)

B̂QS,+ =
N2

+

72

N+∑
i=2

(X+,(i) −X+,(i−1))
3
(
µ̂

(1)
+,k(X̄+,(i))

)2

w(X̄+,(i)), (3.12)

with, as introduced above, X̄−,(i) = (X−,(i) +X−,(i−1))/2, i = 2, 3, · · · , N−, µ̂
(1)
−,k(x) =

r
(1)
k (x)′β̂−,k, X̄+,(i) = (X+,(i) + X+,(i−1))/2, i = 1, 2, · · · , N+, µ̂

(1)
+,k(x) = r

(1)
k (x)′β̂+,k,

and r
(1)
k (x) = ∂rk(x)/∂x.

Therefore, in the QS partitions case, our data-driven, IMSE-optimal selectors take

the form:

ĴQS,−,n =

(2B̂QS,−

V̂QS,−

)1/3

n1/3

 and ĴQS,+,n =

(2B̂QS,+

V̂QS,+

)1/3

n1/3

 , (3.13)

using the estimators in (3.9)-(3.10) and (3.11)-(3.12), respectively. As in the case of
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Theorem III.7 for ES-RD plots, the following theorem shows that these automatic

partition-size selectors are nonparametric consistent if the polynomial fits are viewed

as nonparametric approximations with k = kn →∞.

Theorem III.7. Suppose Assumption III.1 holds with S ≥ 5, w : [xl, xu] 7→ R+

is continuous, and Yi(0) and Yi(1) are continuously distributed. If k7
n/n → 0 and

kn →∞, then

ĴQS,−,n
JQS,−,n

→P 1 and
ĴQS,+,n
JQS,+,n

→P 1.

In practice, the choice w(x) = 1 is arguably the simplest one, and this is the one

we implement by default in our companion software.

Remark III.8 (Non-continuous Outcomes). As mentioned in Remark III.4, the concomitant-

based estimation approach cannot be used when Yi(0) and Yi(1) are not continuously

distributed. For the latter cases, alternatively, we can use the series polynomial esti-

mation approach already introduced above. Assuming that E[Yi(t)
2|Xi = x], t = 0, 1,

are twice continuously differentiable, we may use the following estimators:

V̌QS,− =
n

N−

N−∑
i=2

(X−,(i) −X−,(i−1))σ̂
2
−(X̄−,(i))w(X̄−,(i)),

V̌QS,+ =
n

N+

N+∑
i=2

(X+,(i) −X+,(i−1))σ̂
2
−(X̄+,(i))w(X̄+,(i)),

where σ̂2
−(x) and σ̂2

+(x) are the polynomial approximations discussed in Remark III.4.

The corresponding data-driven partition-size selectors in this case are

J̌QS,−,n =

(2B̂QS,−

V̌QS,−

)1/3

n1/3

 and J̌QS,+,n =

(2B̂QS,+

V̌QS,+

)1/3

n1/3

 , (3.14)

which we show in the appendix are also consistent in the sense of Theorem III.7,

provided the conditions in that theorem hold.
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Remark III.9 (Density-Weighted IMSE). Taking w(x) = f(x) in the case of QS-RD

Plots leads to the following constants:

V dw
QS,− =

1

P−
E[1(Xi < x̄)σ2

−(Xi)], V dw
QS,+ =

1

P+

E[1(Xi ≥ x̄)σ2
+(Xi)],

Bdw
QS,− =

P 2
−

12

x̄∫
xl

(
µ

(1)
− (x)

)2

f(x)
dx, Bdw

QS,+ =
P 2

+

12

xu∫
x̄

(
µ

(1)
+ (x)

)2

f(x)
dx.

These constants, which are not as simple as in the ES-RD Plot case, may also be esti-

mated using either the spacings approach or the polynomial approximations approach.

The results in the appendix can be used to show that the resulting partition-size se-

lectors are consistent in the sense of Theorem III.7, under appropriate assumptions

(c.f., Remark III.5).

In Calonico, Cattaneo, and Titiunik (2014e,b) we also describe computer software

implementations in R and STATA of several EQ-RD Plots, using the results discussed

above.

3.5 Numerical Results

This section reports numerical evidence on the performance of our proposed meth-

ods employing real data from two empirical applications, and data from a Monte Carlo

experiment. We also compare numerically the two partitioning schemes studied in

this chapter (evenly-spaced and quantile-spaced) in terms of their asymptotic IMSE.

3.5.1 Empirical Illustration

We illustrate our proposed methods using data from two RD empirical applica-

tions. We first look at the data from Lee (2008) already mentioned in the Introduc-

tion. As previously discussed, Lee studies the incumbency advantage in U.S. House

elections; the forcing variable is the margin of victory of the Democratic party in a
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given U.S. House election, the threshold is x̄ = 0, and the outcome variable is the

Democratic vote share in the following U.S. House election, which occurs two years

later. The unit of observation is the U.S. House district. All U.S. House elections

between 1948 and 2008 are included, with the exception of years when district bound-

aries change; the dataset we employ has a total of n = 6, 558 complete district-year

observations —see Lee (2008) for details.

Second, we employ an extract of the dataset constructed by Cattaneo, Frandsen,

and Titiunik (2014), who study several measures of incumbency advantage in U.S.

Senate elections for the period 1914–2010. In particular, we focus here on the RD

effect of the Democratic party winning a U.S. Senate seat on the vote share obtained

in the following election for that same seat. This empirical illustration is analogous to

the one presented by Lee (2008) for U.S. House elections: the running variable is the

state-level margin of victory of the Democratic party in an election for a Senate seat,

the threshold is x̄ = 0 and the outcome is the vote share of the Democratic party in

the following election for the same Senate seat in the state, which occurs six years

later. The unit of observation is the state, and the data set has a total of n = 1, 297

state-year complete observations.

The resulting data-driven RD plots using the above empirical illustrations are

presented in Figures 3.2 and 3.3, respectively. These figures are constructed using

the command/function rdbinselect in our companion software packages (Calonico,

Cattaneo, and Titiunik, 2014e,b). Using the notation introduced above, the command

estimates the number of optimal bins for control and treatment units given in formulas

(3.6), (3.7), (3.13) and (3.14), while the global polynomial are constructed using

a 4-th degree polynomial (i.e., µ̂−,4(x) and µ̂+,4(x)). The default bin choices are

explicitly constructed to approximate the underlying regression function. As the

figures show, the local, binned sample means indeed seem to approximate well the

underlying regression function (taking the global polynomial fit as benchmark). It is
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Figure 3.2: Optimal Data-Driven RD Plots for House Elections Data
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(a) ES RD-Plot, ĴES,−,n = 10, ĴES,+,n =
11.
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(b) ES RD-Plot, J̌ES,−,n = 10, J̌ES,+,n =
13.
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(c) QS RD-Plot, ĴQS,−,n = 48, ĴQS,+,n =
16.
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(d) QS RD-Plot, J̌QS,−,n = 95, J̌QS,+,n =
22.

also interesting to note that the QS RD plots tend to have more bins than the ES

RD plots in these empirical applications.

3.5.2 Simulations

We report the results from a Monte Carlo experiment to study the finite-sample

behavior of our proposed methods. We consider several data generating processes,

which vary in the distribution of the running variable, the conditional variance and

the distribution of the unobserved error term in the regression function.

Specifically, the data is generated as i.i.d. draws, {(Yi, Xi)
′ : i = 1, 2, ..., n}
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Figure 3.3: Optimal Data-Driven RD Plots for Senate Elections Data
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(a) ES RD-Plot, ĴES,−,n = 3, ĴES,+,n = 6.
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(b) ES RD-Plot, J̌ES,−,n = 4, J̌ES,+,n = 6.
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(c) QS RD-Plot, ĴQS,−,n = 17, ĴQS,+,n =
14.
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(d) QS RD-Plot, J̌QS,−,n = 42, J̌QS,+,n =
22.
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Figure 3.4: Data Generating Processes
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(a) Regression function, µ(x).
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(b) Xi’s distribution, B(p1, p2).

following

Yi = µ(Xi) + εi, Xi ∼ (2B(p1, p2)− 1), εi ∼ σ(Xi)F ,

where

µ(x) =

 0.48 + 1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5 if x < 0

0.52 + 0.84x− 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 if x ≥ 0
,

B(p1, p2) denotes a Beta distribution with parameters p1 and p2, σ(x) is either equal

to 1 (homoskedasticity) or equal to exp(−|x|/2) (heteroskedasticity), and F is either

N (0, 1) or (χ4 − 4)/
√

8. The functional form of µ(x) is obtained by fitting a 5-th

order global polynomial with different coefficients for control and treatment units

separately using the original data of Lee (2008), after discarding observations with

past vote share differences greater than 0.99 and less than −0.99. Figure 3.4 plots

the regression function µ(x) and the two choices for the density of Xi. This simula-

tion setup generalizes the one considered in Imbens and Kalyanaraman (2012) and

Calonico, Cattaneo, and Titiunik (2014c).

Our Monte Carlo experiment considers 8 models that combine different choices

of (p1, p2), σ(x) and F , as described in Table 3.1. For each model in Table 3.1, we
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Table 3.1: Data Generating Processes

Model p1 p2 σ(x) F
1 1 1 1 N (0, 1)
2 1/2 1/2 1 N (0, 1)
3 1/5 4/5 exp(−|x|/2) N (0, 1)
4 4/5 1/5 exp(−|x|/2) N (0, 1)

5 1/5 4/5 1 (χ4 − 4)/
√

8

6 4/5 1/5 1 (χ4 − 4)/
√

8

7 1/5 4/5 exp(−|x|/2) (χ4 − 4)/
√

8

8 4/5 1/5 exp(−|x|/2) (χ4 − 4)/
√

8

set n = 1, 000 and generate 5, 000 simulations to compute the IMSEs of both ES and

QS partitioning schemes, with w(x) = 1 or w(x) = f(x), and different choices of

partition sizes. In each case considered, we also computed the different estimators of

the corresponding optimal-partition size introduced in the chapter. [We experimented

with other sample sizes and data generating processes and, in all cases, we found

qualitative similar results to those reported here.]

The simulation results are presented in Tables C.1-C.8, which corresponds to

simulation models 1–8, respectively. Each table includes results for both ES and QS

partitioning organized in two distinct panels as follows.

• Panel A: Reports results for normalized IMSEs using both nonrandom partition sizes

and estimated partition sizes for ES and QS RD-Plots. All IMSEs are normalized

relative to the IMSE evaluated at the optimal partition-size choice. The first part

of this panel reports (normalized) IMSEs with w(x) = 1 across different values of

partition size Jn, for each RD plot, where the grid of Jn is centered at the optimal

(infeasible) choice in each case. The second part of the panel reports (normalized)

IMSEs with w(x) = 1 when the partition size is estimated using either the spacings-

based (Ĵ·,·,n) or the polynomial-based (J̌·,·,n) approaches. Finally, for completeness,

the last part of this panel reports the (normalized) IMSE with w(x) = f(x), for both

ES and QS RD-plots, when using the optimal (infeasible) partition size as well as

when using the estimated spacings-based partition size.
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• Panel B: Reports several features of the empirical distribution across simulations

of the different estimators of the optimal partition size. Specifically, our simulations

consider 6 distinct estimators: (i) spacings-based for ES partitions with w(x) = 1 (see

(3.6)), (ii) polynomial-based for ES partitions with w(x) = 1 (see (3.7)), (iii) spacings-

based for ES partitions with w(x) = f(x) (see Remark III.5), (iv) spacings-based for

QS partitions with w(x) = 1 (see (3.13)), (v) polynomial-based for QS partitions with

w(x) = 1 (see (3.14)), (vi) spacings-based for QS partitions with w(x) = f(x) (see

Remark III.9).

In sum, our Monte Carlo results reported in Tables C.1-C.8 are meant to capture

the finite-sample performance of Theorems III.2 and III.6 (Panel A), and the finite-

sample performance of Theorems III.3 and III.7 and the other consistency results

discussed in the Remarks above (Panel B). In term of actual results, our simulation

findings are very encouraging. First, in all cases the IMSEs are minimized at the

corresponding optimal choice of partition size, suggesting that the Theorems III.2 and

III.6 provide a good finite-sample approximation. Second, in all cases our proposed

estimators of the optimal partition size perform quite well, exhibiting a concentrated

finite-sample distribution centered at the population optimal choice for partition size.

Put together, these results suggest that our proposed optimal data-driven tuning

parameter choices for constructing RD-plots perform excellent in samples of moderate

size.

3.5.3 Comparison of Partitioning Schemes

We proposed two alternative ways of constructing RD plots, one employing ES

partitioning while the other employing QS partitioning. While developing a general

theory for optimal partitioning scheme selection is well beyond the scope of this

chapter, we can employ our IMSE expansions to compare the two partitioning schemes

theoretically in order to assess their relative IMSE-optimality properties. [Here IMSE-
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optimality is understood as point estimation optimality in the IMSE sense.]

Without loss of generality we focus on the IMSE for the treatment group (“+”

subindex). Assuming the regularity conditions imposed above hold, we obtain (up to

the floor operator for selecting the optimal partition sizes):

IMSEES,+(JES,+,n) =
3
√

3

4
CES,+n

−2/3{1+oP(1)}, IMSEQS,+(JQS,+,n) =
3
√

3

4
CQS,+n

−2/3{1+oP(1)},

where

CES,+ =

 xu∫
x̄

(
µ

(1)
+ (x)

)2

w(x)dx

1/3 xu∫
x̄

σ2
+(x)

f(x)
w(x)dx

2/3

,

CQS,+ =

 xu∫
x̄

(
µ

(1)
+ (x)

f(x)

)2

w(x)dx

1/3 xu∫
x̄

σ2
+(x)w(x)dx

2/3

.

Thus, in order to compare the performance of the partition-size selectors for ES

and QS RD plots we need to compare the two DGP constants CES,+ and CQS,+. It

follows that when f(x) ∝ κ (i.e., the running variable is uniformly distributed),

then CES,+ = CQS,+ and therefore both partitioning schemes have equal (asymptotic)

IMSE when the corresponding optimal partition size is used. Unfortunately, when

the density f(x) is not constant on the support [xl, xu] it is not possible to obtain

a unique ranking between IMSEES,+(JES,+,n) and IMSEQS,+(JQS,+,n). Heuristically, the

QS RD-plots should perform better in cases where the data is sparse because the

estimated quantile-spaced partition should adapt to this situation better, but we

have been unable to provide a formal ranking along these lines.

Nonetheless, in Table C.9 we explore the ranking between the two partitioning

schemes using the eight data generating processes discussed in our simulation study

(Table 3.1). As expected, this table shows that when f(x) is uniform both IMSE

are equal, while when f(x) is not uniform either IMSE may dominate the other.

This depends on the shape of the regression function (different for control and treat-

97



ment sides) and conditional heteroskedasticity in the underlying true data generating

process.

3.6 Conclusions

This chapter introduced several optimal data-driven partition-size selectors for RD

Plots, focusing on both the popular and commonly used evenly-spaced RD plot and

also on an alternative quantile-space RD plot. The resulting selectors lead to practical

RD plots that are constructed in an automatic and objective way using the available

data. More generally, they also provide a benchmark for empirical work employing

RD plots: because the IMSE-optimal choices of number of bins are obtained balancing

(integrated) squared-bias and variance of a partitioning estimator of the underlying

conditional expectations, empirical researcher may use the selectors presented in this

chapter to construct undersmoothed (more bins) or oversmoothed (fewer bins) RD

plots.

In addition to improve the construction of RD plots in empirical applications, the

selectors introduced in this chapter could be used to conduct data-driven inference

in the RD design. Using the data-driven bins, it is possible to construct confidence

intervals and testing procedures for interesting hypotheses concerning the underly-

ing regression functions µ−(x) and µ+(x). For example, as discussed in Imbens and

Lemieux (2008), it is possible to use the partitioning estimation approach together

with the optimal partition size selectors introduced herein to test for “discontinuities”

of µ−(x) and µ+(x) as a form of falsification test of the RD design. In research under-

way we plan to investigate this and related inference problems employing partitioning

estimation for RD designs.
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APPENDIX A

Appendix to Chapter 1

A.1 Appendix Chapter 1

Proof Theorem I. Let

δics (p, z) =

∫
∂m (p, z, µ, ε)

∂p
dFµs,εics|Pics,Zics

(µ, ε|p, z)

Next, note that:

∂E (Yics|Pcs, Zics, Vs)
∂Pcs

=
∂

∂p

[∫
m (p, z, µ, ε) dFµs,εics|Pcs,Zics,Vs (µ, ε|p, z, v)

]
=

∫
∂

∂p

[
m (p, z, µ, ε) dFµs,εics|Pcs,Zics,Vs (µ, ε|p, z, v)

]
=

∫
∂

∂p

[
m (p, z, µ, ε) dFεics|µs,Pcs,Zics,Vs (ε|µ, p, z, v) dFµs|Pcs,Zics,Vs (µ|p, z, v)

]
=

∫
∂

∂p

[
m (p, z, µ, ε) dFεics|µs,Zics,Vs (ε|µ, z, v) dFµs|Zics,Vs (µ|z, v)

]
=

∫
∂m (p, z, µ, ε)

∂p
dFµs,εics|Pcs,Zics,Vs (µ, ε|p, z, v)

+

∫
m (p, z, µ, ε)

∂

∂p

[
dFεics|µs,Zics,Vs (ε|µ, z, v) dFµs|Zics,Vs (µ|z, v)

]
︸ ︷︷ ︸

=0

=

∫
∂m (p, z, µ, ε)

∂p
dFµs,εics|Pcs,Zics,Vs (µ, ε|p, z, v)
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Then,

∫
∂E (Yics|Pcs, Zics, Vs)

∂Pcs
dFVs|Pcs,Zics

(v|p, z) =

∫
∂m (p, z, µ, ε)

∂p
dFµs,εics|Pcs,Zics,Vs (µ, ε|p, z, v) dFVs|Pcs,Zics

(v|p, z)

=

∫
∂m (p, z, µ, ε)

∂p
dFµs,εics|Pcs,Zics

(µ, ε|p, z)

= δics (p, z)

From this result, identification of the density weighted average derivatives follows

directly:

δωics =

∫ ∫
∂E (Yics|Pcs, Zics, Vs)

∂Pics
ω(p, z)dFVs|Pcs,Zics

(v|p, z) dFPcs,,Zics
(p, v)

= E
[
∂E (Yics|Pcs, Zics, Vs)

∂Pics
ω(p, z)

]

Proof Theorem II. Let

∆ (p′′, p′) =

∫
[m (p′′, z, µ, ε)−m (p′, z, µ, ε)] dFZics,µs,εics|Pcs (z, µ, ε|p′)

≡ A−B

First, note that

B =

∫
m (p′, z, µ, ε) dFZics,µs,εics|Pcs (z, µ, ε|p′) = E (Yics|Pcs = p′)
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and so is identified directly from the data. For the other term:

A =

∫
m (p′′, z, µ, ε) dFZics,µs,εics|Pcs (z, µ, ε|p′)

=

∫
m (p′′, z, µ, ε) dFZics,µs,εics|Pcs,Vs (v, z, µ, ε|p′) dFVs|Pcs (v|p′)

=

∫
m (p′′, z, µ, ε) dFµs,εics|Pcs,Vs,Zics

(µ, ε|p′, v, z)︸ ︷︷ ︸
(1)

dFZics,|Pcs,Vs (z|p′, v) dFVs|Pcs (v|p′)

where

(1) =

∫
m (p′′, z, µ, ε) dFµs,εics|Pcs,Vs,Zics

(µ, ε|p′, v, z)

=

∫
m (p′′, z, µ, ε) dFεics|µs,Pcs,Vs,Zics

(µ, ε|p′, v, z) dFµs|Pcs,Vs,Zics
(µ, ε|p′, v, z)

=

∫
m (p′′, z, µ, ε) dFεics|µs,Vs,Zics

(µ, ε|v, z) dFµs|Vs,Zics
(µ, ε|v, z)

=

∫
m (p′′, z, µ, ε) dFεics|µs,Pcs,Vs,Zics

(µ, ε|p′′, v, z) dFµs|Pcs,Vs,Zics
(µ, ε|p′′, v, z)

=

∫
m (p′′, z, µ, ε) dFµs,εics|Pcs,Vs,Zics

(µ, ε|p′′, v, z)

= E (Yics|Pcs = p′′, Zics = z, Vs = v)

so, finally

A =

∫
E (Yics|Pcs = p′′, Zics = z, Vs = v) dFZics,|Pcs,Vs (z|p′, v) dFVs|Pcs (v|p′)

=

∫
E (Yics|Pcs = p′′, Zics = z, Vs = v) dFZics,Vs|Pcs (z, v|p′)
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Proof Theorem III. Let φ(y) be any function of y. Then,

E [φ(Y ∗ics)] = E [E [φ(m (P ∗ics, Zics, µs, εics))|P ∗ics, Zics]]

=

∫ ∫
φ(m (p, z, µ, ε))dFµs,εics|P ∗ics,Zics

(µ, ε|p, z)︸ ︷︷ ︸
(1)

dFP ∗cs,Zics
(p, z)

where

(1) =

∫ ∫
φ(m (p, z, µ, ε))dFµs,εics|P ∗ics,Zics,Vs (µ, ε|p, z, v)︸ ︷︷ ︸

(2)

dFVs|P ∗ics,Zics
(v|p, z)

and

(2) =

∫
φ(m (p, z, µ, ε))dFεics|µs,P ∗ics,Zics,Vs (ε|µ, p, z, v) dFµs|P ∗ics,Zics,Vs (µ|p, z, v)

=

∫
φ(m (p, z, µ, ε))dFεics|µs,Zics,Vs (ε|µ, z, v) dFµs|Zics,Vs (µ|z, v)

=

∫
φ(m (p, z, µ, ε))dFεics|µs,Pics,Zics,Vs (ε|µ, p, z, v) dFµs|Pics,Zics,Vs (µ|p, z, v)

=

∫
φ(m (p, z, µ, ε))dFµs,εics|Pcs,Zics,Vs (µ, ε|p, z, v) = E [Yics|Pics, Zics, Vs]

Then, finally

E [φ(Y ∗ics)] =

∫ ∫
E [φ(Yics)|Pics, Zics, Vs] dFVs|P ∗ics,Zics

(v|p, z) dFP ∗cs,Zics
(p, z)

= E [E [φ(Yics)|Pics, Zics, Vs]]
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APPENDIX B

Appendix to Chapter 2

B.1 Appendix Chapter 2

In this appendix we summarize our main results for arbitrary order of local poly-

nomials. Here p denotes the order of main RD estimator, while q denotes the order

in the bias correction. All the results stated in this appendix are proven in the online

supplemental appendix (Calonico, Cattaneo, and Titiunik (2014d)).

B.1.1 Local Polynomial Estimators and Other Notation

For ν, p ∈ N with ν ≤ p, the p-th order local polynomial estimators of the ν-

th order derivatives µ
(ν)
Y+ and µ

(ν)
Y− are µ̂

(ν)
Y+,p(hn) = ν!e′ν β̂Y+,p(hn) and µ̂

(ν)
Y−,p(hn) =

ν!e′ν β̂Y−,p(hn), where

β̂Y+,p(hn) = arg min
β∈Rp+1

n∑
i=1

1(Xi ≥ 0)(Yi − rp(Xi)
′β)2Khn(Xi)

β̂Y−,p(hn) = arg min
β∈Rp+1

n∑
i=1

1(Xi < 0)(Yi − rp(Xi)
′β)2Khn(Xi)
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where rp(x) = (1, x, · · · , xp)′, eν is the conformable (ν + 1)-th unit vector (e.g., e1 =

(0, 1, 0)′ if p = 2), Kh(u) = K(u/h)/h, and hn is a positive bandwidth sequence.

(We drop the evaluation point of functions at x̄ = 0 to simplify notation.) Let Y =

(Y1, · · · , Yn)′, Xp(h) = [rp(X1/h), · · · , rp(Xn/h)]′, Sp(h) = [(X1/h)p, · · · , (Xn/h)p]′,

W+(h) = diag(1(X1 ≥ 0)Kh(X1), · · · ,1(Xn ≥ 0)Kh(Xn)), W−(h) = diag(1(X1 <

0)Kh(X1), · · · ,1(Xn < 0)Kh(Xn)), Γ+,p(h) = Xp(h)′W+(h)Xp(h)/n and Γ−,p(h) =

Xp(h)′W−(h)Xp(h)/n, with diag(a1, ..., an) denoting the (n×n) diagonal matrix with

diagonal elements a1, ..., an. It follows that

β̂Y+,p(hn) = Hp(hn)Γ−1
+,p(hn)Xp(hn)′W+(hn)Y/n

and

β̂Y−,p(hn) = Hp(hn)Γ−1
+,p(hn)Xp(hn)′W+(hn)Y/n

with Hp(h) = diag(1, h−1, · · · , h−p). We set µ̂Y+,p(hn) = µ̂
(0)
Y+,p(hn) and µ̂Y+,p(hn) =

µ̂
(0)
Y+,p(hn) and, whenever possible, we also drop the outcome variable subindex nota-

tion. Under conditions given below,

β̂+,p(hn)→p β+,p = (µ+, µ
(1)
+ /1!, µ

(2)
+ /2!, · · · , µ(p)

+ /p!)′

β̂−,p(hn)→p β−,p = (µ−, µ
(1)
− /1!, µ

(2)
− /2!, · · · , µ(p)

− /p!)
′

implying that local polynomial regression estimates consistently the level of the un-

known regression function (µ+ and µ−) as well as its first p derivatives (up to a known

scale).

We also employ the following notation: ϑ+,p,q(h) = Xp(h)′W+(h)Sq(h)/n and

ϑ−,p,q(h) = Xp(h)′W−(h)Sq(h)/n, and ΨUV+,p,q(h, b) = Xp(h)′W+(h)ΣUVW+(b)Xq(b)/n

and ΨUV−,p,q(h, b) = Xp(h)′W−(h)ΣUVW−(b)Xq(b)/n with ΣUV = diag(σ2
UV (X1), · · · , σ2

UV (Xn))

with σ2
UV (Xi) = Cov[Ui, Vi|Xi], where U and V placeholders for Y or T . We set
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ΨUV+,p(h) = ΨUV+,p,p(h, h) and ΨUV−,p(h) = ΨUV−,p,p(h, h) for brevity, and drop the

outcome variable subindex notation whenever possible.

B.1.2 Sharp RD Designs

As in the main text, in this section we drop the notational dependence on the

outcome variable Y . The general estimand is τν = µ
(ν)
+ − µ

(ν)
− with µ

(ν)
+ = ν!e′νβ+,p

and µ
(ν)
− = ν!e′νβ−,p, ν ≤ p. Recall that τSRD = τ0 and τSKRD = τ1. For any ν ≤ p,

the conventional p-th order local polynomial RD estimator is τ̂ν,p(hn) = µ̂
(ν)
+,p(hn) −

µ̂
(ν)
−,p(hn) with µ̂

(ν)
+,p(hn) = ν!e′ν β̂+,p(hn) and µ̂

(ν)
−,p(hn) = ν!e′ν β̂−,p(hn). Recall that

τ̂SRD(hn) = τ̂0,1(hn) and τ̂SKRD(hn) = τ̂1,2(hn).

The following lemma describes the asymptotic bias, variance and distribution of

τ̂ν,p(hn).

Lemma B.1. Suppose Assumptions III.1–II.3 hold with S ≥ p + 2, and nhn → ∞.

Let r ∈ N and ν ≤ p.

(B) If hn → 0, then E[τ̂ν,p(hn)|Xn] = τν + hp+1−ν
n Bν,p,p+1(hn) + hp+2−ν

n Bν,p,p+2(hn) +

op(h
p+2−ν
n ), where

Bν,p,r(hn) = µ
(r)
+ B+,ν,p,r(hn)/r!− µ(r)

− B−,ν,p,r(hn)/r!

B+,ν,p,r(hn) = e′νΓ
−1
+,p(hn)ϑ+,p,r(hn) = e′νΓ

−1
p ϑp,r + op(1)

B−,ν,p,r(hn) = e′νΓ
−1
−,p(hn)ϑ−,p,r(hn) = (−1)ν+re′νΓ

−1
p ϑp,r + op(1)

(V) If hn → 0, then Vν,p(hn) = V[τ̂ν,p(hn)|Xn] = V+,ν,p(hn) + V−,ν,p(hn) with:

V+,ν,p(hn) = n−1h−2ν
n ν!2e′νΓ

−1
+,p(hn)Ψ+,p(hn)Γ−1

+,p(hn)eν

= n−1h−1−2ν
n σ2

+ν!2e′νΓ
−1
p ΨpΓ

−1
p eν/f {1 + op(1)}

V−,ν,p(hn) = n−1h−2ν
n ν!2e′νΓ

−1
−,p(hn)Ψ−,p(hn)Γ−1

−,p(hn)eν

= n−1h−1−2ν
n σ2

−ν!2e′νΓ
−1
p ΨpΓ

−1
p eν/f {1 + op(1)}
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(D) If nh2p+5
n → 0, then (τ̂ν,p(hn)− τν − hp+1−ν

n Bν,p,p+1(hn))/
√

Vν,p(hn)→d N (0, 1).

A q-th order (p < q) local polynomial bias-corrected estimator is

τ̂ bcν,p,q(hn, bn) = τ̂p(hn)− hp+1
n B̂ν,p,q(hn, bn)

with B̂ν,p,q(hn, bn) = (e′p+1β̂+,q(bn))B+,ν,p,p+1(hn) − (e′p+1β̂−,q(bn))B−,ν,p,p+1(hn). The

following theorem gives the asymptotic bias, variance and distribution of τ̂ bcν,p,q(hn, bn).

Theorems II.4 and II.13 are special cases with (ν, p, q) = (0, 1, 2) and (ν, p, q) =

(1, 2, 3), respectively.

Theorem B.2. Suppose Assumptions III.1–II.3 hold with S ≥ q+1, and nmin{hn, bn} →

∞. Let ν ≤ p < q.

(B) If max{hn, bn} → 0, then

E[τ̂ bcν,p,q(hn, bn)|Xn] = τ+hp+2−ν
n Bν,p,p+2(hn) {1+op(1)}−hp+1−ν

n bq−pn Bbc
ν,p,q(hn, bn) {1+op(1)}

where

Bbc
ν,p,q(h, b) = [µ

(q+1)
+ B+,p+1,q,q+1(b)B+,ν,p,p+1(h)−µ(q+1)

− B−,p+1,q,q+1(b)B−,ν,p,p+1(h)]/[(q+1)!(p+1)!]

(V) Vbc
ν,p,q(hn, bn) = V[τ̂ bcν,p,q(hn, bn)|Xn] = Vbc

+,ν,p,q(hn, bn) + Vbc
−,ν,p,q(hn, bn) with
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Vbc
+,ν,p,q(h, b) = V+,ν,p(h)

− 2hp+1−νC+,ν,p,q(h, b)B+,ν,p,p+1(h)/(p+ 1)!

+ h2(p+1−ν)V+,p+1,q(b)B2
+,ν,p,p+1(h)/(p+ 1)!2

Vbc
−,ν,p,q(h, b) = V−,ν,p(h)

− 2hp+1−νC−,ν,p,q(h, b)B−,ν,p,p+1(h)/(p+ 1)!

+ h2(p+1−ν)V−,p+1,q(b)B2
−,ν,p,p+1(h)/(p+ 1)!2

C+,ν,p,q(h, b) = n−1h−νb−p−1ν!(p+ 1)!e′νΓ
−1
+,p(h)Ψ+,p,q(h, b)Γ

−1
+,q(b)ep+1,

C−,ν,p,q(h, b) = n−1h−νb−p−1ν!(p+ 1)!e′νΓ
−1
−,p(h)Ψ−,p,q(h, b)Γ

−1
−,q(b)ep+1.

(D) If nmin{h2p+3
n , b2p+3

n }max{h2
n, b

2(q−p)
n } → 0, and κmax{hn, bn} < κ0, then

T rbc
ν,p,q(hn, bn) = (τ̂ bcν,p,q(hn, bn)− τν)/

√
Vbc
ν,p,q(hn, bn)→d N (0, 1).

Thus, Vbc
SRD(hn, bn) = Vbc

0,1,2(hn, bn) and Vbc
SKRD(hn, bn) = Vbc

1,2,3(hn, bn) in Theorems

II.4 and II.13, respectively.

B.1.3 Fuzzy RD Designs

The ν-th fuzzy RD estimand is ςν = τY,ν/τT,ν with τY,ν = µ
(ν)
Y+ − µ

(ν)
Y− and τT,ν =

µ
(ν)
T+ − µ

(ν)
T−, provided that ν ≤ S. Note that τFRD = ς0 and τFKRD = ς1. The fuzzy

RD estimator based on the p-th order local polynomial estimators τ̂Y,ν,p(hn) and

τ̂T,ν,p(hn) is ς̂ν,p(hn) = τ̂Y,ν,p(hn)/τ̂T,ν,p(hn) with τ̂Y,ν,p(hn) = µ̂
(ν)
Y+,p(hn) − µ̂

(ν)
Y−,p(hn)

and τ̂T,ν,p(hn) = µ̂
(ν)
T+,p(hn)−µ̂(ν)

T−,p(hn), where µ̂
(ν)
Y+,p(hn) = ν!e′ν β̂Y+,p(hn), µ̂

(ν)
Y−,p(hn) =

ν!e′ν β̂Y−,p(hn), µ̂
(ν)
T+,p(hn) = ν!e′ν β̂T+,p(hn) and µ̂

(ν)
T−,p(hn) = ν!e′ν β̂T−,p(hn). Note that

τ̂FRD(hn) = ς̂0,1(hn) and τ̂FKRD(hn) = ς̂1,2(hn).

The following lemma gives an analogue of Lemma B.1 for fuzzy RD designs. Note

that ς̂ν,p(hn)−ςν = ς̃ν,p(hn)+Rn with ς̃ν,p(hn) = (τ̂Y,ν,p(hn)−τY,ν)/τT,ν−τY,ν(τ̂T,ν,p(hn)−
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τT,ν)/τ
2
T,ν andRn = τY,ν(τ̂T,ν,p(hn)−τT,ν)2/(τ 2

T,ν τ̂T,ν,p(hn))−(τ̂Y,ν,p(hn)−τY,ν)(τ̂T,ν,p(hn)−

τT,ν)/(τT,ν τ̂T,ν,p(hn)).

Lemma B.3. Suppose Assumptions III.1–II.14 hold with S ≥ p+ 2, and nhn →∞.

Let r ∈ N and ν ≤ p.

(R) If hn → 0 and nh1+2ν
n →∞, then Rn = Op(n

−1h−1−2ν
n + h2p+2−2ν

n ).

(B) If hn → 0, then E[ς̃ν,p(hn)|Xn] = hp+1−ν
n BF,ν,p,p+1(hn) + hp+2−ν

n BF,ν,p,p+2(hn) +

op(h
p+2−ν
n ), where

BF,ν,p,r(hn) = BY,ν,p,r(hn)/τT,ν − τY,νBT,ν,p,r(hn)/τ 2
T,ν,

BY,ν,p,r(hn) = µ
(r)
Y+B+,ν,p,r(hn)/r!− µ(r)

Y−B−,ν,p,r(hn)/r!,

BT,ν,p,r(hn) = µ
(r)
T+B+,ν,p,r(hn)/r!− µ(r)

T−B−,ν,p,r(hn)/r!.

(V) If hn → 0, then VF,ν,p(hn) = V[ς̃ν,p(hn)|Xn] = VF,+,ν,p(hn) + VF,−,ν,p(hn) with

VF,+,ν,p(hn) = (1/τ 2
T,ν)VY Y+,ν,p(hn)−(2τY,ν/τ

3
T,ν)VY T+,ν,p(hn)+(τ 2

Y,ν/τ
4
T,ν)VTT+,ν,p(hn),

VF,−,ν,p(hn) = (1/τ 2
T,ν)VY Y−,ν,p(hn)−(2τY,ν/τ

3
T,ν)VY T−,ν,p(hn)+(τ 2

Y,ν/τ
4
T,ν)VTT−,ν,p(hn),

where, for U = Y, T and V = Y, T

VUV+,ν,p(hn) = n−1h−2ν
n ν!2e′νΓ

−1
+,p(hn)ΨUV+,p(hn)Γ−1

+,p(hn)eν

= n−1h−1−2ν
n σ2

UV+ν!2e′νΓ
−1
p ΨpΓ

−1
p eν/f {1 + op(1)}

VUV−,ν,p(hn) = n−1h−2ν
n ν!2e′νΓ

−1
−,p(hn)ΨUV−,p(hn)Γ−1

−,p(hn)eν

= n−1h−1−2ν
n σ2

UV−ν!2e′νΓ
−1
p ΨpΓ

−1
p eν/f {1 + op(1)}

(D) If nh2p+5
n → 0 and nh1+2ν

n →∞, then

(ς̂ν,p(hn)− ςν − hp+1−ν
n BF,ν,p,p+1(hn))/

√
VF,ν,p(hn)→d N (0, 1)

The following theorem gives an analogue of Theorem B.2 for fuzzy RD designs;

Theorems II.15 and II.16 are special cases with (ν, p, q) = (0, 1, 2) and (ν, p, q) =

(1, 2, 3), respectively. This theorem summarizes the asymptotic bias, variance and
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distribution of the bias-corrected fuzzy RD estimator: ς̂bcν,p,q(hn, bn) = ς̂ν,p(hn) −

hp+1−ν
n B̂F,ν,p,q(hn, bn),

B̂F,ν,p,q(hn, bn) = [(e′p+1β̂Y+,q(bn))B+,ν,p,p+1(hn)−(e′p+1β̂Y−,q(bn))B−,ν,p,p+1(hn)]/τ̂T,ν,p(hn)

−τ̂Y,ν,p(hn)[(e′p+1β̂T+,q(bn))B+,ν,p,p+1(hn)− (e′p+1β̂T−,q(bn))B−,ν,p,p+1(hn)]/τ̂T,ν,p(hn)2.

Linearizing the estimator we obtain: ς̂bcν,p,q(hn, bn)− ςν = ς̃bcν,p,q(hn, bn) +Rn −Rbc
n ,

ς̃bcν,p,q(hn, bn) = (τ̂ bcY,ν,p,q(hn, bn)− τY,ν)/τT,ν − τY,ν(τ̂ bcT,ν,p,q(hn, bn)− τT,ν)/τ 2
T,ν ,

Rn = τY,ν(τ̂T,ν,p(hn)−τT,ν)2/(τ 2
T,ν τ̂T,ν,p(hn))−(τ̂Y,ν,p(hn)−τY,ν)(τ̂T,ν,p(hn)−τT,ν)/(τT,ν τ̂T,ν,p(hn)),

Rbc
n = hp+1−ν

n (B̂F,ν,p,q(hn, bn)− B̌F,ν,p,q(hn, bn)),

B̌F,ν,p,q(hn, bn) = [(e′p+1β̂Y+,q(bn))B+,ν,p,p+1(hn)− (e′p+1β̂Y−,q(bn))B−,ν,p,p+1(hn)]/τT,ν

−τY,ν [(e′p+1β̂T+,q(bn))B+,ν,p,p+1(hn)− (e′p+1β̂T−,q(bn))B−,ν,p,p+1(hn)]/τ 2
T,ν .

Theorem B.4. Suppose Assumptions III.1–II.14 hold with S ≥ p+2, and nmin{hn, bn} →

∞. Let ν ≤ p < q.

(Rbc) If hn → 0 and nh1+2ν
n → ∞, and provided that κbn < κ0, then Rbc

n =

Op(n
−1/2h

p+1/2
n + h2p+2−2ν

n )Op(1 + n−1/2b
−3/2−p
n ).

(B) If max{hn, bn} → 0, then

E[ς̃bcν,p,q(hn, bn)|Xn] = hp+2−ν
n BF,ν,p,p+2(hn){1+op(1)}+hp+1−ν

n bq−pn Bbc
F,ν,p,q(hn, bn){1+op(1)}

where Bbc
F,ν,p,q(h, b) = Bbc

Y,ν,p,q(hn, bn)/τT,ν − τY,νBbc
T,ν,p,q(hn, bn)/τ 2

T,ν

Bbc
Y,ν,p,q(h, b) = [µ

(q+1)
Y+ B+,p+1,q,q+1(b)B+,ν,p,p+1(h)− µ(q+1)

Y− B−,p+1,q,q+1(b)B−,ν,p,p+1(h)]/[(q + 1)!(p+ 1)!]

Bbc
T,ν,p,q(h, b) = [µ

(q+1)
T+ B+,p+1,q,q+1(b)B+,ν,p,p+1(h)− µ(q+1)

T− B−,p+1,q,q+1(b)B−,ν,p,p+1(h)]/[(q + 1)!(p+ 1)!]
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(V) Vbc
F,ν,p,q(hn, bn) = V[ς̃bcν,p,q(hn, bn)|Xn] = Vbc

F,+,ν,p,q(hn, bn) + Vbc
F,−,ν,p,q(hn, bn) with

Vbc
F,+,ν,p,q(h, b) = VF,+,ν,p(h)− 2hp+1−νCF,+,ν,p,q(h, b)B+,ν,p,p+1(h)/(p+ 1)!

+ h2p+2−2νVF,+,p+1,q(b)B2
+,ν,p,p+1(h)/(p+ 1)!2

Vbc
F,−,ν,p,q(h, b) = VF,−,ν,p(h)− 2hp+1−νCF,−,ν,p,q(h, b)B−,ν,p,p+1(h)/(p+ 1)!

+ h2p+2−2νVF,−,p+1,q(b)B2
−,ν,p,p+1(h)/(p+ 1)!2

CF,+,ν,p,q(h, b) = (1/τ 2
T,ν)CY Y+,ν,p,q(h, b)−(2τY,ν/τ

3
T,ν)CY T+,ν,p,q(h, b)+(τ 2

Y,ν/τ
4
T,ν)CTT+,ν,p,q(h, b),

CF,−,ν,p,q(h, b) = (1/τ 2
T,ν)CY Y−,ν,p,q(h, b)−(2τY,ν/τ

3
T,ν)CY T−,ν,p,q(h, b)+(τ 2

Y,ν/τ
4
T,ν)CTT−,ν,p,q(h, b),

where, for U = Y, T and V = Y, T ,

CUV+,ν,p,q(h, b) = n−1h−νb−p−1ν!(p+ 1)!e′νΓ
−1
+,p(h)ΨUV+,p,q(h, b)Γ

−1
+,q(b)ep+1,

CUV−,ν,p,q(h, b) = n−1h−νb−p−1ν!(p+ 1)!e′νΓ
−1
−,p(h)ΨUV−,p,q(h, b)Γ

−1
−,q(b)ep+1.

(D) If nmin{h2p+3
n , b2p+3

n }max{h2
n, b

2(q−p)
n } → 0 and nmin{h1+2ν

n , bn} → ∞, and

hn → 0 and κbn < κ0, then

T rbc
F,ν,p,q(hn, bn) = (ς̂bcν,p,q(hn, bn)− ςν)/

√
Vbc
F,ν,p,q(hn, bn)→d N (0, 1).

Thus, Vbc
FRD(hn, bn) = Vbc

F,0,1,2(hn, bn) and Vbc
FKRD(hn, bn) = Vbc

F,1,2,3(hn, bn) in Theorems

II.15 and II.16, respectively.

B.1.4 Sharp RD Bandwidth Selectors

For any ν ≤ p, let V̂ν,p(hn) = V̂+,ν,p(hn) + V̂−,ν,p(hn), with

V̂+,ν,p(hn) = ν!2e′νΓ
−1
+,p(hn)Ψ̂Y Y+,p(hn)Γ−1

+,p(hn)eν/nh
2ν
n

V̂−,ν,p(hn) = ν!2e′νΓ
−1
−,p(hn)Ψ̂Y Y−,p(hn)Γ−1

−,p(hn)eν/nh
2ν
n

where Ψ̂Y Y+,p(hn) and Ψ̂Y Y−,p(hn) as in Section 2.5.

Plug-in Bandwidths Selectors. Fix p, q ∈ N with q ≥ p+1. Let Bν,p = e′νΓ
−1
p ϑp,p+1.
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Step 0: Initial Bandwidths (vn, cn).

(i) Suppose vn →p 0 and nvn →p ∞. In particular, let vn = 2.58 · ω · n−1/5 with

ω = min {SX , IQRX/1.349}, where S2
X denotes the sample variance of Xi, and

IQRX is the interquartile range of Xi.

(ii) Suppose cn →p 0 and nc2q+3
n →p ∞. In particular, let cn = Ĉ

1/(2q+5)
q+1,q+1 n−1/(2q+5)

with Ĉq+1,q+1 = (2q+3)nv2q+3
n V̂q+1,q+1(vn)/{2B2

q+1,q+1(e′q+2β̌+,q+2+e′q+2β̌−,q+2)2},

where β̌+,p and β̌−,p denote the estimated coefficients of a (p+1)-th order global

polynomial fit at either side of the threshold; i.e., β̌+,p = arg minβ∈Rp

∑n
i=1 1(Xi ≥

0)(Yi − rp(Xi)
′β)2 and β̌−,p = arg minβ∈Rp

∑n
i=1 1(Xi < 0)(Yi − rp(Xi)

′β)2.

Step 1: Pilot Bandwidth bn. Compute b̂p+1,q = Ĉ
1/(2q+3)
p+1,q n−1/(2q+3) with Ĉp+1,q =

(2p+3)nv2p+3
n V̂p+1,q(vn)/{2(q−p)B2

p+1,q[(e
′
q+1β̂+,q+1(cn)−(−1)p+q+2e′q+1β̂−,q+1(cn))2+

3V̂q+1,q+1(cn)]}.

Step 2: Main Bandwidth hn. Let bn = b̂p+1,q, and compute ĥν,p = Ĉ
1/(2p+3)
ν,p n−1/(2p+3)

with Ĉν,p = (2ν+1)nvnV̂p,0(vn)/{2(p+1−ν)B2
ν,p[(e

′
p+1β̂+,q(bn)−(−1)ν+p+1e′p+1β̂−,q(bn))2+

3V̂p+1,q(bn)]}.

Theorem B.5. Suppose Assumptions III.1–II.3 hold with S ≥ q + 1 and p < q. In

addition, suppose e′q+2β̌+,q+2 + e′q+2β̌−,q+2 →p c 6= 0 and ν ≤ p. Let MSEν,p(hn) =

E[(τ̂ν,p(hn)− τν)2|Xn] to save notation.

(Step 1) If Bp+1,q,q+1 6= 0, then b̂p+1,q/bMSE,p+1,q →p 1 and

MSEp+1,q(b̂p+1,q)/MSEp+1,q(bMSE,p+1,q)→p 1.

(Step 2) If Bν,p,p+1 6= 0, then ĥν,p/hMSE,ν,p →p 1 and

MSEν,p(ĥν,p)/MSEν,p(hMSE,ν,p)→p 1.
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APPENDIX C

Appendix to Chapter 3

C.1 Appendix Chapter 3

We state and prove results only for the treatment group (subindex “+”) because

all the proofs for the control group are analogous. We offer short proofs of the

main results, and provide references to the underlying results not reproduced here

to conserve space. Recall that the lower and upper end points of P+,j are denoted,

respectively, by p+,j−1 and p+,j for j = 1, 2, · · · , J+,n, which are nonrandom under

ES partitioning (Section 3.3) and random under QS partitioning (Section 3.4). Let

p̄+,j = (p+,j + p+,j−1)/2 be the middle point of bin P+,j. Throughout the appendix

C denotes a positive, bounded constant that may take different values in different

places.

We provide three lemmas that will be used to prove our main results. The first

lemma holds for any nonrandom partition P+,n satisfying C1J+,n ≤ min1≤j≤J+,n |p+,j−

p+,j−1| ≤ max1≤j≤J+,n |p+,j−p+,j−1| ≤ C2J+,n, for fixed positive constants C1 and C2.

Thus, it holds for PES,+,n in particular.

Lemma C.1. Let Assumption III.1 hold. Consider PES,+,n with J+,n log(J+,n)/n→ 0

and J+,n →∞.
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(i) max1≤j≤J+,n |1(N+,j > 0)− 1| = oP(1).

(ii) max1≤j≤J+,n |n−1N+,j − P[Xi ∈ P+,n,j]| = oP(J−1
+,n).

(iii) max1≤j≤J+,n

∣∣∣n−1
∑n

i=1 1P+,n,j
(Xi)

Xi−p̄+,j

p+,j−p+,j−1
− E

[
1P+,n,j

(Xi)
Xi−p̄+,j

p+,j−p+,j−1

]∣∣∣ = oP(J−1
+,n).

(iv) max1≤j≤J+,n

∣∣∣E [1P+,n,j
(Xi)

Xi−p̄+,n,j

p+,n,j−p+,n,j−1

]∣∣∣ = o(J−1
+,n).

Proof of Lemma C.1. Parts (i)-(iii) follow by Hoeffding exponential inequality,

while part (iv) follows by change of variables and standard bounding arguments. See

Cattaneo and Farrell (2013b) for details. �

Lemma C.1(i) shows that 1(N+,j > 0)→P 1 uniformly in j, which guarantees that

the estimators for the ES partitioning scheme are well-behaved in large samples.

Our second lemma characterizes the properties of the random partitioning scheme

based on quantile estimates. These results will be used when handling the partitioning

scheme PQS,+,n: recall that p+,j = F̂−1
+ (j/J+,n) in this case, j = 1, 2, · · · , J+,n, and

thus set q+,j = F−1
+ (j/J+,n) with F−1

+ (y) = inf{x : F+(x) ≥ y} with F+(x) = P[Xi ≤

x,Xi ≥ x̄]/P[Xi ≥ x̄] = F (x|Xi ≥ x̄).

Lemma C.2. Let Assumption III.1 hold. Consider PQS,+,n with J+,n log(J+,n)/n→ 0

and J+,n/ log(n)→∞.

(i) max1≤j≤J+,n |N+,j/N+ − 1/J+,n| = oP(J−1
+,n).

(ii) max1≤j≤J+,n |p+,j − p+,j−1 − (q+,n,j − q+,j−1)| = oP(J−1
+,n).

Proof of Lemma C.2. Because the sample size N+ is random, we employ the

following result: if N+ →as ∞ and Zn →as Z∞, then ZN+ →as Z∞. In our case,

N+ =
∑n

i=1 1(Xi ≥ x̄) and thus N+/n→as P+. Hence, it suffices to assume N+ →∞

is not random, but we need to prove the statements in an almost sure sense. The rest

of the proof takes limits as N+ →∞.
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Part (i) now follows from properties of distribution function and quantile processes

(e.g., Shorack and Wellner, 2009). Using continuity and boundedness of f(x), we have

N+,j =
n∑
i=1

1

(
F̂−1

+

(
j − 1

J+,n

)
≤ Xi < F̂−1

+

(
j

J+,n

))
= N+F̂+

(
F̂−1

+

(
j

J+,n

))
−N+F̂+

(
F̂−1

+

(
j − 1

J+,n

))
{1 + oas(1)} =

N+

J+,n

{1 + oas(1)},

uniformly in j = 1, 2, · · · , J+,n, under the rate restrictions imposed.

Similarly, part (ii) follows from properties of the modulus of continuity of the

sample quantile process (e.g., Shorack and Wellner, 2009, Chapter 14). We have

max
1≤j≤J+,n

|p+,j − p+,j−1 − (q+,n,j − q+,j−1)|

= max
1≤j≤J+,n

∣∣∣∣F̂−1
+

(
j

J+,n

)
− F−1

+

(
j

J+,n

)
−
(
F̂−1

+

(
j − 1

J+,n

)
− F−1

+

(
j − 1

J+,n

))∣∣∣∣ = oas(J
−1
+,n),

under the rate restrictions imposed. �

Our final lemma gives the main convergence results for the spacings estimators

used to construct data-driven choices of partition sizes.

Lemma C.3. Let Assumption III.1 hold. Suppose Yi(1) is continuously distributed

and g : [x̄, xu]→ R+ is continuous. Set k ∈ Z+.

(i) Nk−1
+

∑N+

i=2(X+,(i) −X+,(i−1))
kg(X̄+,(i))→P k!P k−1

+

∫ xu
x̄
f(x)1−kg(x)dx.

(ii) Nk−1
+

∑N+

i=2(X+,(i)−X+,(i−1))
k(Y+,[i]−Y+,[i−1])

2g(X̄+,(i))→P k!P k−1
+ 2

∫ xu
x̄
f(x)1−kσ2

+(x)g(x)dx.

Proof of Lemma C.3. We prove the result assuming that N+ is nonrandom,

and thus limits are taken as N+ → ∞. Set Ui = F+(X+,i) ∼ Uniform(0, 1) and

U(i) = F+(X+,(i)), i = 1, · · · , N+. Recall that {N+(U(i) − U(i−1)) : i = 2, · · · , N+} =d

{Ei/Ē : i = 2, · · · , N+}, where {Ei : i = 2, · · · , N+} i.i.d. random variables with

Ei ∼ Exponential(1) and Ē =
∑N+

i=2Ei/N+, and where Z1 =d Z2 denotes that

115



Z1 and Z2 have the same probability law. Set ūi = (i − 1/2)/N+ and recall that

max2≤i≤N+ supU(i−1)≤u≤U(i)
|u− ūi| →P 0.

For part (i), using the above, N−1
+

∑N+

i=2E
k
i →P E[Ek

i ] = k!, and uniform continuity

of g(·) and f(·),

Nk−1
+

N+∑
i=2

(X+,(i) −X+,(i−1))
kg(X̄+,(i))

=
1

N+

N+∑
i=2

(N+(U(i) − U(i−1)))
k g(F−1

+ (un,i))

f+(F−1
+ (un,i))k

{1 + oP(1)}

=d
1

N+

N+∑
i=2

(
Ei
Ē

)k
g(F−1

+ (un,i))

f+(F−1
+ (un,i))k

{1 + oP(1)}

=
1

N+

N+∑
i=2

E[Ek
i ]

g(F−1
+ (un,i))

f+(F−1
+ (un,i))k

{1 + oP(1)}

→P k!

1∫
0

g(F−1
+ (u))

f+(F−1
+ (u))p

du,

and the result follows by change of variables and because f+(x) = f(x)1(x ≥ x̄)/P+.

This result implies, in particular,
∑N+

i=2(X+,(i) −X+,(i−1))
kg(X̄+,(i)) = OP(N1−k

+ ).

For part (ii), let X(+) = (X+,(1), X+,(2), · · · , X+,(N+)). Recall that (Y+,[1], Y+,[2], · · · , Y+,[N+])

are independent conditional on X(+) and E[g(Y+,[i])|X(+)] = E[g(Y+,[i])|X+,(i)] =

G(X+,(i)) with G(x) = E[g(Y+,i)|X+,i = x]. Therefore, E[(Y+,[i] − Y+,[i−1])
2|X(+)] =

σ2
+(X+,(i))+σ

2
+(X+,(i−1))+(E[Y+,[i]|X(+)]−E[Y+,[i−1]|X(+)])

2 = σ2
+(X+,(i))+σ

2
+(X+,(i−1))+

OP(N−2
+ ), uniformly in i. This gives

Nk−1
+

N+∑
i=2

(X+,(i) −X+,(i−1))
k(Y+,[i] − Y+,[i−1])

2g(X̄+,(i)) = T1 + T2,

with

T1 = Nk−1
+

N+∑
i=2

(X+,(i) −X+,(i−1))
k(σ2

+(X+,[i]) + σ2
+(X+,[i−1]))g(X̄+,(i)) + oP(1),
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T2 = Nk−1
+

N+∑
i=2

(X+,(i)−X+,(i−1))
k
[
(Y+,[i] − Y+,[i−1])

2 − E[(Y+,[i] − Y+,[i−1])
2|X[+]]

]
g(X̄+,(i)).

Noting that σ2
+(X+,(i)) + σ2

+(X+,(i−1)) = 2σ2
+(X̄+,(i)){1 + oP(1)}, uniformly in i, it

follows that T1 →P k!P k−1
+ 2

∫ xu
x̄
f(x)1−kσ2

+(x)g(x)dx, as in part (i). Thus, it remains

to show that T2 →P 0. To this end, first define Ỹi = (Y+,[i] − Y+,[i−1])
2 − E[(Y+,[i] −

Y+,[i−1])
2|X(+)], and note that E[Ỹi, Ỹi−s|X(+)] = 0 whenever s ≥ 2, which implies

V[T2|X(+)] ≤ N
2(k−1)
+

N+∑
i=2

(X+,(i) −X+,(i−1))
2kV[Ỹi|X(+)]g(X̄+,(i))

2

+ 2N
2(k−1)
+

N+∑
i=2

(X+,(i) −X+,(i−1))
k(X+,(i−1) −X+,(i−2))

kE[ỸiỸi−1|X(+)]g(X̄+,(i))g(X̄+,(i−1))

≤ CN−1
+ ,

and the result follows by the dominated convergence theorem.

The random sample size case (N+ =
∑n

i=1 1(Xi ≥ x̄)) can be handled, for exam-

ple, using the approach described in Aras, Jammalamadaka, and Zhou (1989) and

references therein. �

Proof of Theorem III.2. Note that

E[(µ̂ES,+(x; J+,n)−µ+(x))2|Xn] = V[µ̂ES,+(x; J+,n)|Xn]+(E[µ̂ES,+(x; J+,n)|Xn]−µ+(x))2.

For the variance part, we have

V[µ̂+(x; J+,n)|Xn] =

J+,n∑
j=1

1(N+,j > 0)1P+,j
(x)

N2
+,j

n∑
i=1

1P+,j
(Xi)σ

2
+(Xi),
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and using uniform continuity of w(·) and σ2
+(·) on [x̄, xu] and Lemma C.1, we obtain

xu∫
x̄

V[µ̂+(x; J+,n)|Xn]w(x)dx

=

J+,n∑
j=1

1(N+,j > 0)

N2
+,j

 xu∫
x̄

1P+,n,j
(x)w(x)dx

 n∑
i=1

1P+,j
(Xi)σ

2
+(Xi)

=

J+,n∑
j=1

1(N+,j > 0)

N+,j

(p+,j − p+,j−1)σ2
+(p̄+,j)w(p̄+,j){1 + oP(1)}

=
1

n

J+,n∑
j=1

σ2
+(p̄+,j)w(p̄+,j)

f(p̄+,j)
{1 + oP(1)},

because P[Xi ∈ P+,j] =
∫ p+,j

p+,j−1
f(x)dx = (p+,j − p+,j−1)f(p̄+,j){1 + o(1)} uniformly in

j. Using properties of the Riemann integral it then follows that

xu∫
x̄

V[µ̂ES,+(x; J+,n)|Xn]w(x)dx

=
J+,n

n

1

xu − x̄

J+,n∑
j=1

(p+,j − p+,j−1)
σ2

+(p̄+,j)w(p̄+,j)

f(p̄+,j)
{1 + oP(1)}

=
J+,n

n

1

xu − x̄

xu∫
x̄

σ2
+(x)

f(x)
w(x)dx{1 + oP(1)}

=
J+,n

n
VES,+{1 + oP(1)},

because p+,j+1 − p+,j = (xu − x̄)/J+,n for the evenly-spaced partition.

Next, for the bias term, note that
∫ xu
x̄

(E[µ̂+(x; Jn)|Xn] − µ+(x))2w(x)dx = T1 +

T2 + T3 with

T1 =

xu∫
x̄

T1(x)2w(x)dx, T2 =

xu∫
x̄

T2(x)2w(x)dx, T3 = 2

xu∫
x̄

T1(x)T2(x)w(x)dx,
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T1(x) =

J+,n∑
j=1

1P+,j
(x)(1(N+,j > 0)µ+(p̄+,j)− µ+(x)),

T2(x) =

J+,n∑
j=1

1P+,j
(x)

1(N+,j > 0)

N+,j

(
n∑
i=1

1P+,j
(Xi)(µ+(Xi)− µ+(p̄+,j))

)
.

Using uniform continuity of µ+(·) and w(·) on [x̄, xu] and Lemma C.1, we obtain

T1 =
1

12

J+,n∑
j=1

(
µ

(1)
+ (p̄+,j)

)2

w(p̄+,j)

xu∫
x̄

1P+,j
(x)(p̄+,j − x)2dx{1 + oP(1)}

=
1

12

J+,n∑
j=1

(p+,j − p+,j−1)3
(
µ

(1)
+ (p̄+,j)

)2

w(p̄+,j){1 + oP(1)}

=
1

J2
+,n

(xu − x̄)2

12

xu∫
x̄

(
µ

(1)
+ (x)

)2

w(x)dx{1 + oP(1)} = J−2
+,nBES,+ {1 + oP(1)},

because
∫ b
a
((a+ b)/2− x)2dx = (b− a)3/12 and p+,j+1 − p+,j = (xu − x̄)/J+,n for the

evenly-spaced partition. This implies that T1 = OP(J−2
+,n). Thus, to finish the proof,

we show that T2 = oP(J−2
+,n) and T3 = oP(J−2

+,n). For T2, using uniform continuity of

µ+(·) and w(·) on [x̄, xu] and Lemma C.1 we have

|T2| ≤ C

J+,n∑
j=1

1(N+,j > 0)

J2
+,nN

2
+,j/n

2

(
1

n

n∑
i=1

1P+,j
(Xi)

Xi − p̄+,j

p+,j − p+,j−1

)2

{1 + oP(1)} = oP(J−2
+,n),

while, for T3, Cauchy-Swartz inequality implies |T3| ≤
√
T1

√
T2 = OP(J−1

+,n)oP(J−1
+,n) =

oP(J−2
+,n).

Putting the results together we verify the result for IMSEES,+(J+,n). �
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Proof of Theorem III.3. Using Lemma C.3 and N+/n→P P+,

V̂ES,+ =
1

xu − x̄
n

4

N+∑
i=2

(X+,(i) −X+,(i−1))
2(Y+,[i] − Y+,[i−1])

2w(X̄+,(i))

=
1

xu − x̄
N+

4P+

N+∑
i=2

(X+,(i) −X+,(i−1))
2(Y+,[i] − Y+,[i−1])

2w(X̄+,(i)) + oP(1)

=
1

xu − x̄

xu∫
x̄

σ2
+(x)

f+(x)
w(x)dx+ oP(1),

which gives V̂ES,+ →P VES,+.

For power series estimators, Newey (1997b, Theorem 4) gives supx∈[x̄,xu] |µ̂
(1)
+,kn

(x)−

µ
(1)
+ (x)|2 = OP(k7

n/n + k−2S+8
n ) = oP(1). Using this uniform consistency result, and

Lemma C.3, we have

B̂ES,+ =
(xu − x̄)2

12

N+∑
i=2

(X+,(i) −X+,(i−1))
(
µ̂

(1)
+,kn

(X̄+,(i))
)2

w(X̄+,(i))

=
(xu − x̄)2

12

N+∑
i=2

(X+,(i) −X+,(i−1))
(
µ

(1)
+ (X̄+,(i))

)2

w(X̄+,(i)) + oP(1)

=
(xu − x̄)2

12

xu∫
x̄

(
µ

(1)
+ (x)

)2

w(x)dx+ oP(1),

which gives B̂ES,+ →P BES,+.

Putting the above together, ĴES,+/JES,+ →P 1. �

Proof of Remark III.4. For power series estimators, Newey (1997b, Theorem

4) gives supx∈[x̄,xu] |µ̂+,kn,p(x) − E[Y (1)p|Xi = x]|2 = OP(k3
n/n + k−2S+2

n ) = oP(1) for

p = 1, 2, under the assumptions imposed, which implies supx∈[x̄,xu] |σ̂2
+(x) − σ2

+|2 =
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OP(k3
n/n+ k−2S+2

n ) = oP(1). Using this result, Lemma C.3 and N+/n→P P+,

V̌ES,+ =
1

xu − x̄
n

2

N+∑
i=2

(X+,(i) −X+,(i−1))
2σ̂2

+(X̄+,(i))w(X̄+,(i))

=
1

xu − x̄
N+

2P+

N+∑
i=2

(X+,(i) −X+,(i−1))
2σ2

+(X̄+,(i))w(X̄+,(i)) + oP(1)

=
1

xu − x̄

xu∫
x̄

σ2
+(x)

f+(x)
w(x)dx+ oP(1),

which gives V̌ES,+ →P VES,+

Combining this with Theorem III.3, it follows that J̌ES,+/JES,+ →P 1. �

Proof of Remark III.5. The results follow immediately from Lemma C.3,

N+/n →P P+, uniform consistency of power series estimators, and proceeding as

in the proofs of Theorem III.3 and Remark III.4. �

Proof of Theorem III.6. Recall that p+,j = F̂−1
+ (j/J+,n) and q+,j = F−1

+ (j/J+,n).

If J+,n < N+, then 1(N+,j > 0) = 1, but now the partitioning scheme PQS,+,n is ran-

dom.

As in the proof of Theorem III.2, note that E[(µ̂QS,+(x; J+,n) − µ+(x))2|Xn] =

V[µ̂QS,+(x; J+,n)|Xn] + (E[µ̂QS,+(x; J+,n)|Xn]− µ+(x))2. For the variance part, letting
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q̄+,j = (q+,j + q+,j−1)/2, we have

xu∫
x̄

V[µ̂QS,+(x; J+,n)|Xn]w(x)dx

=

J+,n∑
j=1

1

N2
+,j

 xu∫
x̄

1P+,j
(x)w(x)dx

 n∑
i=1

1P+,j
(Xi)σ

2
+(Xi)

=
J+,n

N+

J+,n∑
j=1

(p+,j − p+,j−1)σ2
+(p̄+,j)w(p̄+,j){1 + oP(1)}

=
J+,n

N+

J+,n∑
j=1

(q+,j − q+,j−1)σ2
+(q̄+,j)w(q̄+,j){1 + oP(1)}

=
J+,n

n

1

P+

xu∫
x̄

σ2
+(x)w(x)dx{1 + oP(1)} =

J+,n

n
VQS,+{1 + oP(1)},

using Lemma C.2 and properties of the Riemann integral.

For the bias part, using the previous results and proceeding as in the proof of

Theorem III.2, we have

xu∫
x̄

(E[µ̂QS,+(x; Jn)|Xn]− µ+(x))2w(x)dx

=
1

12

J+,n∑
j=1

(p+,j − p+,j−1)3
(
µ

(1)
+ (p̄+,j)

)2

w(p̄+,j){1 + oP(1)}

=
1

12

J+,n∑
j=1

(q+,j − q+,j−1)3
(
µ

(1)
+ (q̄+,j)

)2

w(q̄+,j){1 + oP(1)}

=
1

J2
+,n

P 2
+

12

xu∫
x̄

(
µ

(1)
+ (x)

f(x)

)2

w(x)dx{1 + oP(1)} = J−2
+,nBQS,+{1 + oP(1)},

because, for quantile-spaced partitions, expanding F−1
+ (u) around ū = F+(q̄+,j) ∈

[(j − 1)/J+,n, j/J+,n]),

q+,j − q+,j−1 = F−1
+

(
j

J+,n

)
− F−1

+

(
j − 1

J+,n

)
=

1

f+(q̄+,j)

1

J+,n

{1 + oP(1)},
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uniformly in j = 1, 2, · · · , J+,n, where f+(x) = ∂F+(x)/∂x = f(x)1(x ≥ x̄)/P+.

Putting the results together we verify the result for IMSEQS,+(J+,n). �

Proofs of Theorem III.7 and Remark III.8. Proceeding as in the proofs

of Theorem III.3 and Remark III.4, the results are established using Lemma C.3,

N+/n →P P+ and uniform consistency of power series estimators, as appropriate

depending on the case. �

123



Table C.1: Simulations Results for Model 1

Panel A: Integrated MSE for different partition sizes

J−,n
IMSEES,−(J−,n)

IMSEES,−(JES,−,n)

6 1.558

7 1.295

8 1.146

9 1.061

10 1.017

11 1.000

12 1.001

13 1.014

14 1.037

15 1.067

16 1.102

ĴES,−,n 1.005

J̌ES,−,n 0.998

Jdw
ES,−,n 1.000

Ĵdw
ES,−,n 1.005

J+,n
IMSEES,+(J+,n)

IMSEES,+(JES,+,n)

2 4.621

3 2.246

4 1.474

5 1.166

6 1.040

7 1.000

8 1.006

9 1.039

10 1.088

11 1.149

12 1.216

ĴES,+,n 1.020

J̌ES,+,n 1.016

Jdw
ES,+,n 1.000

Ĵdw
ES,+,n 1.020

J−,n
IMSEQS,−(J−,n)

IMSEQS,−(JQS,−,n)

6 1.558

7 1.295

8 1.146

9 1.061

10 1.017

11 1.000

12 1.001

13 1.014

14 1.037

15 1.067

16 1.102

ĴQS,−,n 1.030

J̌QS,−,n 1.027

Jdw
QS,−,n 1.000

Ĵdw
QS,−,n 1.022

J+,n
IMSEQS,+(J+,n)

IMSEQS,+(JQS,+,n)

2 4.621

3 2.246

4 1.474

5 1.166

6 1.040

7 1.000

8 1.006

9 1.039

10 1.088

11 1.149

12 1.216

ĴQS,+,n 1.029

J̌QS,+,n 1.024

Jdw
QS,+,n 1.000

Ĵdw
QS,+,n 1.028

Panel B: Summary Statistics for the Estimated Partition Sizes

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES,−,n = 11 ĴES,−,n 7 10 11 11.39 12 17 1.42

J̌ES,−,n 7 11 11 11.4 12 16 1.25

Jdw
ES,−,n = 11 Ĵdw

ES,−,n 7 10 11 11.15 12 16 1.30

JES,+,n = 7 ĴES,+,n 5 6 7 7.052 8 12 0.93

J̌ES,+,n 5 7 7 7.034 7 11 0.78

Jdw
ES,+,n = 7 Ĵdw

ES,+,n 5 6 7 7.006 7 11 0.84

JQS,−,n = 11 ĴQS,−,n 6 10 11 10.84 12 16 1.37

J̌QS,−,n 6 10 11 10.66 11 15 1.20

Jdw
QS,−,n = 11 Ĵdw

QS,−,n 7 10 11 11.32 12 16 1.32

JQS,+,n = 7 ĴQS,+,n 4 6 7 7.096 8 12 1.04

J̌QS,+,n 5 7 7 7.128 8 11 0.92

Jdw
QS,+,n = 7 Ĵdw

QS,+,n 5 6 7 6.939 7 11 0.85

Notes:

(i) Population quantities:
JES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = 1 (Theorem III.2),
Jdw
ES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = f(x) (Remark III.5),
JQS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = 1 (Theorem III.6),
Jdw
QS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = f(x) (Remark III.9).

(ii) Estimators:
ĴES,·,n = spacings estimator of JES,·,n (Theorem III.3),
J̌ES,·,n = polynomial regression estimator of JES,·,n (Remark III.4),

Ĵdw
ES,·,n = spacings estimator of Jdw

ES,·,n (Remark III.5),

ĴQS,·,n = spacings estimator of JQS,·,n (Theorem III.7),
J̌QS,·,n = polynomial regression estimator of JQS,·,n (Remark III.8),

Ĵdw
QS,·,n = spacings estimator of Jdw

QS,·,n (Remark III.9).
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Table C.2: Simulations Results for Model 2

Panel A: Integrated MSE for different partition sizes

J−,n
IMSEES,−(J−,n)

IMSEES,−(JES,−,n)

5 1.820

6 1.421

7 1.206

8 1.088

9 1.026

10 1.000

11 0.997

12 1.009

13 1.033

14 1.064

15 1.102

ĴES,−,n 1.042

J̌ES,−,n 1.028

Jdw
ES,−,n 1.096

Ĵdw
ES,−,n 1.194

J+,n
IMSEES,+(J+,n)

IMSEES,+(JES,+,n)

1 15.305

2 3.995

3 1.979

4 1.336

5 1.090

6 1.000

7 0.984

8 1.008

9 1.054

10 1.115

11 1.185

ĴES,+,n 1.014

J̌ES,+,n 1.007

Jdw
ES,+,n 0.994

Ĵdw
ES,+,n 1.017

J−,n
IMSEQS,−(J−,n)

IMSEQS,−(JQS,−,n)

6 1.538

7 1.283

8 1.137

9 1.056

10 1.015

11 1.000

12 1.003

13 1.018

14 1.042

15 1.072

16 1.108

ĴQS,−,n 1.055

J̌QS,−,n 1.036

Jdw
QS,−,n 1.038

Ĵdw
QS,−,n 1.030

J+,n
IMSEQS,+(J+,n)

IMSEQS,+(JQS,+,n)

3 3.158

4 1.946

5 1.425

6 1.175

7 1.053

8 1.000

9 0.987

10 0.998

11 1.025

12 1.064

13 1.110

ĴQS,+,n 1.053

J̌QS,+,n 1.019

Jdw
QS,+,n 1.055

Ĵdw
QS,+,n 1.053

Panel B: Summary Statistics for the Estimated Partition Sizes

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES,−,n = 10 ĴES,−,n 7 9 10 10.15 11 16 1.21

J̌ES,−,n 7 9 10 9.834 10 13 0.85

Jdw
ES,−,n = 14 Ĵdw

ES,−,n 10 14 15 14.82 16 22 1.59

JES,+,n = 6 ĴES,+,n 4 6 6 6.536 7 11 0.93

J̌ES,+,n 5 6 6 6.526 7 10 0.79

Jdw
ES,+,n = 7 Ĵdw

ES,+,n 4 6 7 6.873 7 12 1.10

JQS,−,n = 11 ĴQS,−,n 6 9 10 9.761 11 17 1.45

J̌QS,−,n 7 10 10 10.44 11 17 1.26

Jdw
QS,−,n = 10 Ĵdw

QS,−,n 7 10 10 10.35 11 15 1.05

JQS,+,n = 8 ĴQS,+,n 5 7 7 7.588 8 13 1.13

J̌QS,+,n 6 7 8 8.14 9 13 1.02

Jdw
QS,+,n = 7 Ĵdw

QS,+,n 5 7 7 7.486 8 12 1.00

Notes:

(i) Population quantities:
JES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = 1 (Theorem III.2),
Jdw
ES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = f(x) (Remark III.5),
JQS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = 1 (Theorem III.6),
Jdw
QS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = f(x) (Remark III.9).

(ii) Estimators:
ĴES,·,n = spacings estimator of JES,·,n (Theorem III.3),
J̌ES,·,n = polynomial regression estimator of JES,·,n (Remark III.4),

Ĵdw
ES,·,n = spacings estimator of Jdw

ES,·,n (Remark III.5),

ĴQS,·,n = spacings estimator of JQS,·,n (Theorem III.7),
J̌QS,·,n = polynomial regression estimator of JQS,·,n (Remark III.8),

Ĵdw
QS,·,n = spacings estimator of Jdw

QS,·,n (Remark III.9).
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Table C.3: Simulations Results for Model 3

Panel A: Integrated MSE for different partition sizes

J−,n
IMSEES,−(J−,n)

IMSEES,−(JES,−,n)

8 1.324

9 1.180

10 1.091

11 1.039

12 1.011

13 1.000

14 1.002

15 1.013

16 1.031

17 1.055

18 1.083

ĴES,−,n 1.007

J̌ES,−,n 1.006

Jdw
ES,−,n 1.000

Ĵdw
ES,−,n 1.019

J+,n
IMSEES,+(J+,n)

IMSEES,+(JES,+,n)

3 2.907

4 1.816

5 1.352

6 1.136

7 1.037

8 1.000

9 0.999

10 1.021

11 1.057

12 1.103

13 1.157

ĴES,+,n 1.013

J̌ES,+,n 1.003

Jdw
ES,+,n 1.000

Ĵdw
ES,+,n 1.006

J−,n
IMSEQS,−(J−,n)

IMSEQS,−(JQS,−,n)

8 1.324

9 1.180

10 1.091

11 1.039

12 1.011

13 1.000

14 1.002

15 1.013

16 1.031

17 1.055

18 1.083

ĴQS,−,n 1.006

J̌QS,−,n 1.003

Jdw
QS,−,n 1.000

Ĵdw
QS,−,n 0.988

J+,n
IMSEQS,+(J+,n)

IMSEQS,+(JQS,+,n)

3 2.907

4 1.816

5 1.352

6 1.136

7 1.037

8 1.000

9 0.999

10 1.021

11 1.057

12 1.103

13 1.157

ĴQS,+,n 1.022

J̌QS,+,n 1.010

Jdw
QS,+,n 1.000

Ĵdw
QS,+,n 1.016

Panel B: Summary Statistics for the Estimated Partition Sizes

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES,−,n = 13 ĴES,−,n 9 13 14 13.6 14 19 1.31

J̌ES,−,n 10 13 14 13.53 14 17 1.00

Jdw
ES,−,n = 13 Ĵdw

ES,−,n 11 13 14 14.27 15 19 1.22

JES,+,n = 8 ĴES,+,n 5 7 8 7.753 8 12 0.98

J̌ES,+,n 6 7 8 7.719 8 11 0.79

Jdw
ES,+,n = 8 Ĵdw

ES,+,n 6 7 8 7.864 8 12 0.96

JQS,−,n = 13 ĴQS,−,n 8 10 11 10.9 12 15 1.05

J̌QS,−,n 9 10 11 10.73 11 14 0.80

Jdw
QS,−,n = 13 Ĵdw

QS,−,n 9 11 12 12.14 13 16 1.00

JQS,+,n = 8 ĴQS,+,n 5 7 8 8.07 9 13 0.91

J̌QS,+,n 6 8 8 8.218 9 11 0.69

Jdw
QS,+,n = 8 Ĵdw

QS,+,n 6 8 8 8.129 9 12 0.80

Notes:

(i) Population quantities:
JES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = 1 (Theorem III.2),
Jdw
ES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = f(x) (Remark III.5),
JQS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = 1 (Theorem III.6),
Jdw
QS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = f(x) (Remark III.9).

(ii) Estimators:
ĴES,·,n = spacings estimator of JES,·,n (Theorem III.3),
J̌ES,·,n = polynomial regression estimator of JES,·,n (Remark III.4),

Ĵdw
ES,·,n = spacings estimator of Jdw

ES,·,n (Remark III.5),

ĴQS,·,n = spacings estimator of JQS,·,n (Theorem III.7),
J̌QS,·,n = polynomial regression estimator of JQS,·,n (Remark III.8),

Ĵdw
QS,·,n = spacings estimator of Jdw

QS,·,n (Remark III.9).
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Table C.4: Simulations Results for Model 4

Panel A: Integrated MSE for different partition sizes

J−,n
IMSEES,−(J−,n)

IMSEES,−(JES,−,n)

7 1.387

8 1.207

9 1.101

10 1.040

11 1.010

12 1.000

13 1.004

14 1.019

15 1.042

16 1.070

17 1.103

ĴES,−,n 1.024

J̌ES,−,n 1.011

Jdw
ES,−,n 1.062

Ĵdw
ES,−,n 1.141

J+,n
IMSEES,+(J+,n)

IMSEES,+(JES,+,n)

2 5.131

3 2.460

4 1.580

5 1.219

6 1.061

7 1.000

8 0.990

9 1.010

10 1.048

11 1.099

12 1.158

ĴES,+,n 1.012

J̌ES,+,n 1.007

Jdw
ES,+,n 0.971

Ĵdw
ES,+,n 1.001

J−,n
IMSEQS,−(J−,n)

IMSEQS,−(JQS,−,n)

8 1.310

9 1.170

10 1.085

11 1.035

12 1.009

13 1.000

14 1.003

15 1.016

16 1.035

17 1.060

18 1.089

ĴQS,−,n 1.035

J̌QS,−,n 1.010

Jdw
QS,−,n 1.000

Ĵdw
QS,−,n 1.007

J+,n
IMSEQS,+(J+,n)

IMSEQS,+(JQS,+,n)

5 1.771

6 1.391

7 1.187

8 1.077

9 1.022

10 1.000

11 1.001

12 1.016

13 1.043

14 1.077

15 1.117

ĴQS,+,n 1.040

J̌QS,+,n 1.011

Jdw
QS,+,n 1.009

Ĵdw
QS,+,n 1.044

Panel B: Summary Statistics for the Estimated Partition Sizes

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES,−,n = 12 ĴES,−,n 9 12 12 12.41 13 17 1.27

J̌ES,−,n 10 12 12 11.99 12 15 0.77

Jdw
ES,−,n = 16 Ĵdw

ES,−,n 13 17 18 17.54 19 24 1.48

JES,+,n = 7 ĴES,+,n 5 7 7 7.555 8 12 1.07

J̌ES,+,n 5 7 7 7.5 8 13 0.91

Jdw
ES,+,n = 8 Ĵdw

ES,+,n 5 7 8 7.705 8 12 0.97

JQS,−,n = 13 ĴQS,−,n 8 10 11 10.92 12 16 1.10

J̌QS,−,n 9 11 11 11.25 12 14 0.69

Jdw
QS,−,n = 13 Ĵdw

QS,−,n 9 11 12 11.72 12 15 0.87

JQS,+,n = 10 ĴQS,+,n 5 8 9 8.933 10 14 1.25

J̌QS,+,n 7 9 9 9.547 10 15 1.09

Jdw
QS,+,n = 9 Ĵdw

QS,+,n 6 8 9 8.663 9 14 1.05

Notes:

(i) Population quantities:
JES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = 1 (Theorem III.2),
Jdw
ES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = f(x) (Remark III.5),
JQS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = 1 (Theorem III.6),
Jdw
QS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = f(x) (Remark III.9).

(ii) Estimators:
ĴES,·,n = spacings estimator of JES,·,n (Theorem III.3),
J̌ES,·,n = polynomial regression estimator of JES,·,n (Remark III.4),

Ĵdw
ES,·,n = spacings estimator of Jdw

ES,·,n (Remark III.5),

ĴQS,·,n = spacings estimator of JQS,·,n (Theorem III.7),
J̌QS,·,n = polynomial regression estimator of JQS,·,n (Remark III.8),

Ĵdw
QS,·,n = spacings estimator of Jdw

QS,·,n (Remark III.9).
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Table C.5: Simulations Results for Model 5

Panel A: Integrated MSE for different partition sizes

J−,n
IMSEES,−(J−,n)

IMSEES,−(JES,−,n)

6 1.558

7 1.295

8 1.146

9 1.061

10 1.017

11 1.000

12 1.001

13 1.014

14 1.037

15 1.067

16 1.102

ĴES,−,n 1.012

J̌ES,−,n 1.009

Jdw
ES,−,n 1.000

Ĵdw
ES,−,n 1.008

J+,n
IMSEES,+(J+,n)

IMSEES,+(JES,+,n)

2 4.621

3 2.246

4 1.474

5 1.166

6 1.040

7 1.000

8 1.006

9 1.039

10 1.088

11 1.149

12 1.216

ĴES,+,n 1.029

J̌ES,+,n 1.022

Jdw
ES,+,n 1.000

Ĵdw
ES,+,n 1.024

J−,n
IMSEQS,−(J−,n)

IMSEQS,−(JQS,−,n)

6 1.558

7 1.295

8 1.146

9 1.061

10 1.017

11 1.000

12 1.001

13 1.014

14 1.037

15 1.067

16 1.102

ĴQS,−,n 1.030

J̌QS,−,n 1.033

Jdw
QS,−,n 1.000

Ĵdw
QS,−,n 1.022

J+,n
IMSEQS,+(J+,n)

IMSEQS,+(JQS,+,n)

2 4.621

3 2.246

4 1.474

5 1.166

6 1.040

7 1.000

8 1.006

9 1.039

10 1.088

11 1.149

12 1.216

ĴQS,+,n 1.028

J̌QS,+,n 1.019

Jdw
QS,+,n 1.000

Ĵdw
QS,+,n 1.025

Panel B: Summary Statistics for the Estimated Partition Sizes

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES,−,n = 11 ĴES,−,n 7 11 12 12 13 19 1.51

J̌ES,−,n 8 11 12 11.74 13 17 1.22

Jdw
ES,−,n = 11 Ĵdw

ES,−,n 7 11 12 11.53 12 17 1.35

JES,+,n = 7 ĴES,+,n 4 6 7 7.099 8 11 1.00

J̌ES,+,n 5 7 7 7.041 7 11 0.82

Jdw
ES,+,n = 7 Ĵdw

ES,+,n 4 6 7 6.99 8 11 0.91

JQS,−,n = 11 ĴQS,−,n 6 9 10 10.15 11 15 1.22

J̌QS,−,n 7 9 10 9.649 10 14 0.96

Jdw
QS,−,n = 11 Ĵdw

QS,−,n 7 10 11 10.88 12 16 1.21

JQS,+,n = 7 ĴQS,+,n 4 6 7 6.781 7 11 0.90

J̌QS,+,n 4 6 7 6.672 7 10 0.70

Jdw
QS,+,n = 7 Ĵdw

QS,+,n 4 6 7 6.782 7 10 0.80

Notes:

(i) Population quantities:
JES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = 1 (Theorem III.2),
Jdw
ES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = f(x) (Remark III.5),
JQS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = 1 (Theorem III.6),
Jdw
QS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = f(x) (Remark III.9).

(ii) Estimators:
ĴES,·,n = spacings estimator of JES,·,n (Theorem III.3),
J̌ES,·,n = polynomial regression estimator of JES,·,n (Remark III.4),

Ĵdw
ES,·,n = spacings estimator of Jdw

ES,·,n (Remark III.5),

ĴQS,·,n = spacings estimator of JQS,·,n (Theorem III.7),
J̌QS,·,n = polynomial regression estimator of JQS,·,n (Remark III.8),

Ĵdw
QS,·,n = spacings estimator of Jdw

QS,·,n (Remark III.9).
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Table C.6: Simulations Results for Model 6

Panel A: Integrated MSE for different partition sizes

J−,n
IMSEES,−(J−,n)

IMSEES,−(JES,−,n)

5 1.820

6 1.421

7 1.206

8 1.088

9 1.026

10 1.000

11 0.997

12 1.009

13 1.033

14 1.064

15 1.102

ĴES,−,n 1.010

J̌ES,−,n 1.008

Jdw
ES,−,n 1.084

Ĵdw
ES,−,n 1.112

J+,n
IMSEES,+(J+,n)

IMSEES,+(JES,+,n)

1 15.305

2 3.995

3 1.979

4 1.336

5 1.090

6 1.000

7 0.984

8 1.008

9 1.054

10 1.115

11 1.185

ĴES,+,n 1.020

J̌ES,+,n 1.013

Jdw
ES,+,n 0.988

Ĵdw
ES,+,n 1.011

J−,n
IMSEQS,−(J−,n)

IMSEQS,−(JQS,−,n)

6 1.538

7 1.283

8 1.137

9 1.056

10 1.015

11 1.000

12 1.003

13 1.018

14 1.042

15 1.072

16 1.108

ĴQS,−,n 1.076

J̌QS,−,n 1.045

Jdw
QS,−,n 1.051

Ĵdw
QS,−,n 1.044

J+,n
IMSEQS,+(J+,n)

IMSEQS,+(JQS,+,n)

3 3.158

4 1.946

5 1.425

6 1.175

7 1.053

8 1.000

9 0.987

10 0.998

11 1.025

12 1.064

13 1.110

ĴQS,+,n 1.066

J̌QS,+,n 1.046

Jdw
QS,+,n 1.046

Ĵdw
QS,+,n 1.043

Panel B: Summary Statistics for the Estimated Partition Sizes

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES,−,n = 10 ĴES,−,n 5 9 10 10.26 11 15 1.38

J̌ES,−,n 7 9 10 10.08 11 14 1.01

Jdw
ES,−,n = 14 Ĵdw

ES,−,n 8 14 15 14.84 16 21 1.81

JES,+,n = 6 ĴES,+,n 3 6 7 6.612 7 11 1.09

J̌ES,+,n 4 6 6 6.508 7 11 0.88

Jdw
ES,+,n = 7 Ĵdw

ES,+,n 4 6 7 6.946 8 13 1.11

JQS,−,n = 11 ĴQS,−,n 5 9 9 9.563 10 17 1.48

J̌QS,−,n 7 9 10 10.21 11 19 1.31

Jdw
QS,−,n = 10 Ĵdw

QS,−,n 6 9 10 10.17 11 16 1.16

JQS,+,n = 8 ĴQS,+,n 4 7 8 8.447 10 19 2.19

J̌QS,+,n 5 7 9 9.031 10 19 2.08

Jdw
QS,+,n = 7 Ĵdw

QS,+,n 5 7 7 7.723 8 14 1.36

Notes:

(i) Population quantities:
JES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = 1 (Theorem III.2),
Jdw
ES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = f(x) (Remark III.5),
JQS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = 1 (Theorem III.6),
Jdw
QS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = f(x) (Remark III.9).

(ii) Estimators:
ĴES,·,n = spacings estimator of JES,·,n (Theorem III.3),
J̌ES,·,n = polynomial regression estimator of JES,·,n (Remark III.4),

Ĵdw
ES,·,n = spacings estimator of Jdw

ES,·,n (Remark III.5),

ĴQS,·,n = spacings estimator of JQS,·,n (Theorem III.7),
J̌QS,·,n = polynomial regression estimator of JQS,·,n (Remark III.8),

Ĵdw
QS,·,n = spacings estimator of Jdw

QS,·,n (Remark III.9).
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Table C.7: Simulations Results for Model 7

Panel A: Integrated MSE for different partition sizes

J−,n
IMSEES,−(J−,n)

IMSEES,−(JES,−,n)

8 1.324

9 1.180

10 1.091

11 1.039

12 1.011

13 1.000

14 1.002

15 1.013

16 1.031

17 1.055

18 1.083

ĴES,−,n 0.995

J̌ES,−,n 0.992

Jdw
ES,−,n 1.000

Ĵdw
ES,−,n 1.006

J+,n
IMSEES,+(J+,n)

IMSEES,+(JES,+,n)

3 2.907

4 1.816

5 1.352

6 1.136

7 1.037

8 1.000

9 0.999

10 1.021

11 1.057

12 1.103

13 1.157

ĴES,+,n 1.021

J̌ES,+,n 1.012

Jdw
ES,+,n 1.000

Ĵdw
ES,+,n 1.014

J−,n
IMSEQS,−(J−,n)

IMSEQS,−(JQS,−,n)

8 1.324

9 1.180

10 1.091

11 1.039

12 1.011

13 1.000

14 1.002

15 1.013

16 1.031

17 1.055

18 1.083

ĴQS,−,n 1.063

J̌QS,−,n 1.061

Jdw
QS,−,n 1.000

Ĵdw
QS,−,n 1.023

J+,n
IMSEQS,+(J+,n)

IMSEQS,+(JQS,+,n)

3 2.907

4 1.816

5 1.352

6 1.136

7 1.037

8 1.000

9 0.999

10 1.021

11 1.057

12 1.103

13 1.157

ĴQS,+,n 0.987

J̌QS,+,n 0.973

Jdw
QS,+,n 1.000

Ĵdw
QS,+,n 0.990

Panel B: Summary Statistics for the Estimated Partition Sizes

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES,−,n = 13 ĴES,−,n 7 12 13 12.89 14 20 1.71

J̌ES,−,n 9 12 12 12.2 13 15 0.92

Jdw
ES,−,n = 13 Ĵdw

ES,−,n 9 13 14 14.35 15 20 1.45

JES,+,n = 8 ĴES,+,n 4 7 8 8.106 9 12 1.12

J̌ES,+,n 6 7 8 7.963 8 11 0.81

Jdw
ES,+,n = 8 Ĵdw

ES,+,n 5 7 8 8.199 9 13 1.07

JQS,−,n = 13 ĴQS,−,n 6 10 11 11.37 12 18 1.53

J̌QS,−,n 8 11 11 11.11 12 15 0.91

Jdw
QS,−,n = 13 Ĵdw

QS,−,n 8 12 13 12.59 13 17 1.22

JQS,+,n = 8 ĴQS,+,n 4 8 9 8.822 10 13 1.11

J̌QS,+,n 6 8 9 8.913 9 11 0.74

Jdw
QS,+,n = 8 Ĵdw

QS,+,n 5 8 8 8.149 9 11 0.80

Notes:

(i) Population quantities:
JES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = 1 (Theorem III.2),
Jdw
ES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = f(x) (Remark III.5),
JQS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = 1 (Theorem III.6),
Jdw
QS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = f(x) (Remark III.9).

(ii) Estimators:
ĴES,·,n = spacings estimator of JES,·,n (Theorem III.3),
J̌ES,·,n = polynomial regression estimator of JES,·,n (Remark III.4),

Ĵdw
ES,·,n = spacings estimator of Jdw

ES,·,n (Remark III.5),

ĴQS,·,n = spacings estimator of JQS,·,n (Theorem III.7),
J̌QS,·,n = polynomial regression estimator of JQS,·,n (Remark III.8),

Ĵdw
QS,·,n = spacings estimator of Jdw

QS,·,n (Remark III.9).
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Table C.8: Simulations Results for Model 8

Panel A: Integrated MSE for different partition sizes

J−,n
IMSEES,−(J−,n)

IMSEES,−(JES,−,n)

7 1.387

8 1.207

9 1.101

10 1.040

11 1.010

12 1.000

13 1.004

14 1.019

15 1.042

16 1.070

17 1.103

ĴES,−,n 1.026

J̌ES,−,n 1.007

Jdw
ES,−,n 1.081

Ĵdw
ES,−,n 1.131

J+,n
IMSEES,+(J+,n)

IMSEES,+(JES,+,n)

2 5.131

3 2.460

4 1.580

5 1.219

6 1.061

7 1.000

8 0.990

9 1.010

10 1.048

11 1.099

12 1.158

ĴES,+,n 1.011

J̌ES,+,n 1.000

Jdw
ES,+,n 0.981

Ĵdw
ES,+,n 1.001

J−,n
IMSEQS,−(J−,n)

IMSEQS,−(JQS,−,n)

8 1.310

9 1.170

10 1.085

11 1.035

12 1.009

13 1.000

14 1.003

15 1.016

16 1.035

17 1.060

18 1.089

ĴQS,−,n 1.093

J̌QS,−,n 1.041

Jdw
QS,−,n 1.000

Ĵdw
QS,−,n 1.040

J+,n
IMSEQS,+(J+,n)

IMSEQS,+(JQS,+,n)

5 1.771

6 1.391

7 1.187

8 1.077

9 1.022

10 1.000

11 1.001

12 1.016

13 1.043

14 1.077

15 1.117

ĴQS,+,n 1.050

J̌QS,+,n 1.008

Jdw
QS,+,n 1.025

Ĵdw
QS,+,n 1.038

Panel B: Summary Statistics for the Estimated Partition Sizes

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES,−,n = 12 ĴES,−,n 7 11 12 12.44 13 18 1.56

J̌ES,−,n 9 12 12 12.39 13 16 1.03

Jdw
ES,−,n = 16 Ĵdw

ES,−,n 12 16 18 17.63 19 24 1.75

JES,+,n = 7 ĴES,+,n 4 7 7 7.393 8 14 1.12

J̌ES,+,n 5 7 7 7.341 8 11 0.84

Jdw
ES,+,n = 8 Ĵdw

ES,+,n 5 7 8 7.806 8 13 1.07

JQS,−,n = 13 ĴQS,−,n 6 10 11 10.61 11 16 1.34

J̌QS,−,n 9 11 11 11.24 12 15 0.87

Jdw
QS,−,n = 13 Ĵdw

QS,−,n 8 11 11 11.46 12 16 1.03

JQS,+,n = 10 ĴQS,+,n 4 8 9 8.737 10 16 1.29

J̌QS,+,n 6 9 9 9.471 10 14 1.01

Jdw
QS,+,n = 9 Ĵdw

QS,+,n 5 8 9 8.79 9 14 1.07

Notes:

(i) Population quantities:
JES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = 1 (Theorem III.2),
Jdw
ES,·,n = optimal partition size for evenly-spaced (ES) RD-plot with w(x) = f(x) (Remark III.5),
JQS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = 1 (Theorem III.6),
Jdw
QS,·,n = optimal partition size for quantile-spaced (ES) RD-plot with w(x) = f(x) (Remark III.9).

(ii) Estimators:
ĴES,·,n = spacings estimator of JES,·,n (Theorem III.3),
J̌ES,·,n = polynomial regression estimator of JES,·,n (Remark III.4),

Ĵdw
ES,·,n = spacings estimator of Jdw

ES,·,n (Remark III.5),

ĴQS,·,n = spacings estimator of JQS,·,n (Theorem III.7),
J̌QS,·,n = polynomial regression estimator of JQS,·,n (Remark III.8),

Ĵdw
QS,·,n = spacings estimator of Jdw

QS,·,n (Remark III.9).
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Table C.9: Comparison of Partitioning Schemes

BES,−
BQS,−

VES,−
VQS,−

IMSEES,−(JQS,−,n)
IMSEES,−(JQS,−,n)

BES,+

BQS,+

VES,+

VQS,+

IMSEES,+(JQS,+,n)
IMSEES,+(JQS,+,n)

Model 1 1.000 1.000 1.000 1.000 1.000 1.000

Model 2 1.031 1.234 1.166 0.541 1.234 0.940

Model 3 1.000 1.000 1.000 1.000 1.000 1.000

Model 4 1.031 1.321 1.216 0.541 1.321 0.990

Model 5 1.000 1.000 1.000 1.000 1.000 1.000

Model 6 1.031 1.234 1.166 0.541 1.234 0.940

Model 7 1.000 1.000 1.000 1.000 1.000 1.000

Model 8 1.031 1.321 1.216 0.541 1.321 0.990

(a) IMSE with uniform weighting (w(x) = 1).

BES,−
BQS,−

VES,−
VQS,−

IMSEES,−(JQS,−,n)
IMSEES,−(JQS,−,n)

BES,+

BQS,+

VES,+

VQS,+

IMSEES,+(JQS,+,n)
IMSEES,+(JQS,+,n)

Model 1 1.000 1.000 1.000 1.000 1.000 1.000

Model 2 2.290 1.000 1.309 0.784 1.000 0.908

Model 3 1.000 1.000 1.000 1.000 1.000 1.000

Model 4 2.290 1.137 1.438 0.784 1.137 1.004

Model 5 1.000 1.000 1.000 1.000 1.000 1.000

Model 6 2.290 1.000 1.309 0.784 1.000 0.908

Model 7 1.000 1.000 1.000 1.000 1.000 1.000

Model 8 2.290 1.137 1.438 0.784 1.137 1.004

(b) IMSE with design/density weighting (w(x) = f(x)).
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