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ABSTRACT

Controlled Cracking and Shape Recovery in Polymers
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Jiexi Huang
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Cracks and pores in polymers can be used as functional micro/nano structures, enabling

mass-processing fabrication that is simple and cost-effective. Such technologies are espe-

cially popular for biological applications. To unlock the full potential of these technologies,

we need to understand the behaviors and the mechanics behind them. An accurate predic-

tion and precise control of these traditionally stochastic processes are desired to enhance

the precision and repeatability of subsequent experiments and analyses. For this purpose,

a crack control strategy based on a coupling of Linear Elastic Fracture Mechanics (LEFM)

and flaw statistics was developed, addressing the problem for a wide range of materials.

Channels fabricated by cracking can narrow and generate nanoconfinements accompa-

nied by a nanoscale squeezing flow that can facilitate the linearization of DNA and chro-

matin. To develop optimal nanochannel operation parameters and avoid unfavorable partial

collapse, the non-uniform closure of liquid-filled channels was studied. The analyses sug-

gested time scales for different narrowing and closure conditions to occur which can be

used as a reference to tailor the operation parameters. The study of an elliptic channel in

an infinite elastic body reveals the change in shapes and sizes during crack closure, which

helps characterize the channel geometry during the dynamic process and understand the

capabilities and limitations of the technique.
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Pores in viscoelastic polymers can heal spontaneously driven by interfacial tension. A

finite element model was developed to investigate the effect of temperature and geometry

on the healing process. Material characterization was conducted for a specific polymer of

PLGA which is one of the most commonly used biomaterials. In comparisons of simulation

with experimental observations, simulation successfully predicted the various healing time

based on material properties and environment.
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CHAPTER 1

Introduction

Nano-scale cracks can be formed in layered engineering structures when a brittle film is
supported on a compliant substrate. Motivated by using cracking as a reliable and easy
fabrication technique for nanochannels, a precise control mechanism for crack initiation
and propagation must be developed with respect to the properties of the materials in which
the patterns are created. This problem is addressed in Chapter 2, where we demonstrated
different strategies for controlling crack arrays and showed that while precise control is
possible in any materials, the method is more robust in systems with sufficient long flaws.
Nanochannels fabricated by controlled cracking can be closed by relaxation of the strain
that opened the cracks. The confinement and flow generated by closing the channels can fa-
cilitate biological studies including DNA linearization and chromatin analyses. The crack
closure is complicated by the viscous fluid that it contains. In Chapter 3, we analyzed the
time-dependent non-uniform closure of thick-walled channels, and provided strategies for
operation of the channels. The closure of cracks in elastic substrates is a passive process as
a result of the applied compression. Autonomic shape recovery can occur in viscoelastic
materials driven by interfacial tension. Finite element models with interfacial tension were
developed and simulations were conducted with independently measured material proper-
ties to predict the healing time. The effect of temperature and geometry is discussed in
Chapter 4.

When a layered engineering structure of a brittle thin film supported on compliant sub-
strate is subjected to applied tension, parallel arrays of cracks form in the film. Depending
on the material properties, the cracks are contained in the film or penetrate into the sub-
strate. The crack patterns are of sizes ranging from tens of nanometers to micrometers. This
type of cracking has proven to be an easy and low-cost fabrication method for micro and
nano fluidic channels with applications of DNA linearization and chromatin analyses [1,2].
The major limitation is the non-uniformity of cracks. While the cracks occur in parallel
arrays under uniaxial tension, the spacings and sizes vary between individual cracks [3].
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Since the behaviors of biomolecules in the channels strongly depend on the confinement
of the channels, the variation in channel sizes results in fluctuation in the outcome of sub-
sequent experiments [2]. It is important to eliminate or control the stochastic nature of
cracking. Geometrical features can be used to trigger cracks at specific locations. While
the basic idea is intuitive, it is not so obvious how to realize the concept in practice, nor
what the limitations are.

Crack patterns depend on the interaction between intrinsic flaw population and the frac-
ture mechanics of crack channeling. These two factors vary with selection of materials. The
popular substrate materials used in micro/nano fluidic devices include silicon and polymers
such as Poly(dimethylsiloxane) (PDMS) and Poly(methylmethacrylate) (PMMA). To cre-
ate patterns with cracking, film materials are selected accordingly including silicon com-
pounds such as silicon dioxide and silicon nitride [4], metal [3], other polymers that are
more brittle [5] or oxidized surface layer of the substrate polymer [1, 2, 6, 7]. Based on
the intrinsic flaw population, film materials can be categorized into two groups. The first
group are materials with sufficient long cracks. Examples of this group include metal films
by physical vapor deposition, and oxidized PDMS. Published fracture-mechanics analy-
ses of characteristic crack spacings do not reflect the actual spacings. The first part of the
second Chapter of this dissertation uses the energy-based approach to predict the actual
crack spacings and provides guidelines for the design of crack control structures. The other
group of materials have only short defects. The prediction of cracking in these materials re-
quires incorporation of the flaw population. Such a coupling between linear-elastic fracture
mechanics (LEFM) and flaw statistics has not been presented before. In the latter half of
Chapter 2 we predicted the natural crack distribution and proposed a different crack control
strategy for this group of materials.

Nanochannels fabricated by tunneling cracking have tunable cross-sectional areas. This
allows the flexibility to load the bio-molecules in the channel when it is in the widely open
state to avoid damages, and to manipulate the molecules in nano confinements provided by
closed channels. The crack closure of cracks in elastic substrates is usually considered as
a reversed process of crack opening that is time-independent. When used as nanochannels,
the cracks are filled with viscous substances that impede the closing, generating a flow and
resulting in non-uniform closing along the length of the channel. The combination of flow
and nano-confinement has proven to be more effective for DNA linearization compared
with the traditional methods [2]. To understand the DNA and chromatin linearization pro-
cess, the flow parameters and the channel dimensions under different strain conditions are
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desired. More importantly, we need to develop optimal nanochannel operation parameters
to avoid unfavorable conditions such as partial collapse of the channel that are sometimes
observed in experiments [2]. Channels made by cracking have elliptic cross-section. The
non-uniform crack closure also include shape change, which affect the level of confinement
it can provide. In Chapter 3 an analysis of flow generated during channel narrowing using
a uniform cylindrical tube is presented as a first approximation, followed by the study of
non-uniform closure of axisymmetric thick-walled and elliptic channels in thick substrates.

Another type of healing of deformations in polymer is discussed in Chapter 4. The ma-
terials of interest are Poly(lactic-co-glycolic acid) (PLGA), which is one of the most popu-
lar biomaterials used in sutures, cadiovascular stents [8], and drug delivery devices [9–12].
The autonomic healing of pores in PLGA microspheres plays an important role in the drug
release process [13] and can be used for microencapsulation of drugs and proteins [12].
The healing of intrinsic pores in PLGA microsphere are at a very small scale ( nm) and
occur both on and beneath the surface. Therefore, direct visualization is very difficult. As
a simplified model, healing of surface indentation in PLGA films was measured and mon-
itored by light microscopy [14], where the size of indentations was limited to be much
larger (µm) than the pores in microspheres. We will use computational methods to obtain
a better understanding and predict the healing time in porous PLGA microspheres. The
healing process is modeled by viscous flow of materials driven by high surface tensions. In
order to test the validity of the model, properties of thin PLGA films were measured and
used in numerical calculations to compare the predicted healing time with experimental
observations. The effect of temperature and geometries of the pores are studied.
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CHAPTER 2

The control of crack arrays in thin films

2.1 Introduction

Quasi-periodic arrays of occurs in layered engineering structures when a brittle film is
supported on a substrate. The general formation of these arrays depends on the geometry,
the properties of the film, interface and substrate, and the tensile strain. However, the details
of the arrays are governed by stochastic factors such as the distribution of the intrinsic flaws,
and the sequence in which cracks initiate from these flaws. Crack arrays can be used for
nano-fabrication purposes, and some recent experimental examples have been presented in
the literature [1, 2, 15–17]. However, for the potential of these fabrication techniques to be
fully realized, the stochastic nature of the cracking has to be eliminated or controlled. Such
controlled cracking has been demonstrated in a silicon nitride film deposited on a silicon
wafer [4], in a gold film on a poly(dimethylsiloxane) (PDMS) [7], and in the surface layer
of oxidized PDMS [7]. While these examples show that it is possible to control crack
patterns under some conditions, it is not clear the extent to which these patterns can be
robustly controlled. In this paper, we use the mechanics of crack propagation to elucidate
the answers to this question, and to provide strategies for controlling crack patterns in
different types of materials.

Existing analyses for the formation of crack arrays fall into two groups: shear-lag and
linear-elastic fracture mechanics (LEFM) analyses. The shear-lag analyses that consider
the statistics of flaw populations [18–20] were generally developed for studies of crack
arrays in laminated composites and the fragmentation of fibers embedded in a matrix, but
also apply to the fracture of films on ductile substrates. A characteristic feature of shear-lag
analyses is that once a pair of neighboring cracks are close enough to interact, it is impos-
sible to introduce a third crack between them, no matter what level of strain is applied. If a
fully-populated crack array is generated at one unique level of stress (Fig. 2.1a), these anal-
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Figure 2.1: (a) If there is a single value for the cracking stress. a shear-lag model predicts
the formation of a crack array at a single value of stress, with the crack spacing given by the
solution to the ”car parking” problem. (b) If there are multiple cracking strengths, a shear-
lag model predicts an increasing density of cracks until a saturated array is formed. (c) In
an elastic problem, the stresses can continue increasing between two cracks, and further
cracks can always channel between them, provided there is a suitable flaw to inititiate the
crack.
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yses result in the well-known solution to the “car-parking problem” [21, 22] that predicts a
crack array with a spacing that varies by a factor of two, and a mean spacing of 1.337 times
the smallest spacing. However, this simple result is not valid if the flaws are of different
sizes, so that they can be activated by different stress levels (Fig. 2.1b) [19]. Furthermore,
under conditions in which LEFM is appropriate, when there is so little delamination or in-
terfacial slip that it occurs over distances much less than the crack spacing and the the shear
stress on the interface is essentially unbounded, the maximum stress between two cracks
can always be increased by additional loading (Fig. 2.1c). This means that it is always
possible to introduce a third crack between two neighboring cracks, no matter how close
they might be.

Published fracture-mechanics analyses of crack arrays have all been predicated on the
assumption that there is a very high density of long flaws. Furthermore, only characteristic
spacings have been obtained [23–27], with various assumptions about how these might be
related to the average spacing. The analyses consider problems in which the cracks are
limited to the thickness of the film [23–26], and those in which they can extend into the
substrate [3, 27–29]. The mechanics of both situations is similar. When the strain in the
film is equal to εo, the characteristic spacing of the array, sch, is of the form:

sch

h
= f2

α,β, Γ f

Γs
,
εo

2Ē f h
Γ f

 . (2.1)

In this expression, h is the film thickness, Γ is the toughness, the subscripts f and s denote
the film and substrate respectively, the Dundurs’ parameters for the modulus mismatch
across the interface, α and β are given by [30]

α =
Ē f − Ēs

Ē f + Ēs
(2.2)

and

β =
Ē f f (νs)− Ēs f (ν f )

Ē f + Ēs
, (2.3)

where Ē = E/(1− ν2) and f (ν) = (1−2ν)/[2(1− ν)] in plane strain, E is Young’s modulus,
and ν is Poisson’s ratio. However, the relationship between the characteristic spacing that
can be calculated by LEFM and the actual spacings in an array have not be established.
It depends on the interaction of two effects: the distribution of the intrinsic flaws respon-
sible for initiating cracks, and the fundamental mechanics of the problem. In particular,
LEFM dictates how the energy-release rate for a given flaw depends on both its length and
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Figure 2.2: The energy-release rate for channeling a crack across the surface of a film
depends on the distance to its two nearest neighbors (assumed to be equi-distant in this
plot).

distance from longer neighboring cracks. The energy-release rate for a crack that is rela-
tively short compared to the film thickness increases linearly with crack length; whereas,
the energy-release rate for a relatively long crack scales linearly with film thickness (and is
independent of crack length). Similarly, as illustrated in Fig. 2.2, cracks that are very close
to their neighbors have reduced energy-release rates, while cracks that are further away
have energy-release rates that are independent of spacing.

The underlying motivation of this chapter is to understand possible strategies for con-
trolling crack arrays. The structure of this chapter consists of two parts. The first part con-
tains analyses of the creation of uniform arrays, based only on fracture-mechanics concepts
and ignoring statistical aspects of the problem. The analyses assume a sufficient density
of long flaws, and further assume that the role of any artificial features is to project flaws
at their tips sufficiently far to ensure that they will channel preferentially. These analyses
are performed for crack arrays confined to a surface layer, and also for crack arrays that
can penetrate into the substrate, as appropriate for stiff films on very compliant substrates.
In the second part of this paper, the interaction of thin-film fracture mechanics with the
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statistics of an intrinsic flaw population is addressed. The model is first used to analyze
how natural crack patterns evolve with strain in the absence of geometrical features. It is
subsequently used to analyze how artificial geometrical features, the statistics of an intrin-
sic flaw population, and LEFM can interact to create uniform crack arrays.

2.2 Fracture mechanics of controlling crack patterns

Fracture-mechanics models without including statistical effects are first used to illustrate
a simple strategy for controlling crack patterns. The first case considered is a simple one
where the modulus of the film and substrate are equal, and the cracks are confined to a sur-
face layer of thickness, h. The second case considered is one in which the film has a much
higher modulus than the substrate, so that the cracks penetrate into the substrate. This sec-
ond case is complicated by the fact that an increase in strain can either drive existing cracks
deeper into the substrate, or cause additional cracks of unknown depth to channel across
the system. However, it will be seen that the two processes occur in sequence, so only when
existing cracks have reached a critical depth (relative to their spacing) do additional cracks
channel between them.

We used cracking of a stiff brittle oxidized layer on a compliant elastomeric (PDMS)
substrate upon an applied remote tensile strain to fabricate nanochannel devices for biolog-
ical applications. As shown in Fig. 2.3, two parallel reservoirs of 100 µm size are patterned
in a PDMS slab by ordinary soft lithography. A remote tensile strain is applied to create
parallel cracks connecting the reservoirs [2] . The size of these nanochannels can be ad-
justed by adjusting the applied strain. Biomolecules such as DNA and chromatin are added
in reservoirs and can flow into the nanochannels. Once loaded in the nanochannels, the
biopolymer can be linearized by gradually releasing the strain and narrowing the cracks.
The uniformity of the nanochannels affects the quality of DNA linearization. This is a mo-
tivation for the following analyses.

In the following analyses, it is assumed that cracks are initiated from flaws along a free
edge. The lengths of the flaws are sufficient to ensure that the energy-release rates are in-
dependent of crack length, and the density of the flaws is sufficient to ensure that cracks
will propagate preferentially from wherever the local stress is a maximum. Periodic geo-
metrical features separated by a distance S o serve to provide locations where the intrinsic
flaws extend well beyond their neighbors. A schematics of the patterned specimen used
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Figure 2.3: Schematics showing nanochannel device fabricated by cracking of thin brittle
film supported on compliant substrate. Cracks form nanochannels connecting the reser-
voirs. Biopolymers loaded in the channels can be linearized by narrowing the cracks.

in the experiment is shown in Fig. 2.4. If the applied strain is sufficiently small, so that
the exclusion length between cracks is greater than S o, cracks will channel from the tips
of only some of the geometrical features. In particular, flaws along the straight edges of
the structure will be in the shadow of the geometrical features, and will not initiate cracks.
As the strain is increased, more of the geometrical features will be associated with channel
cracks. Eventually, the strain will be so large that the exclusion distance will be less than
S o, and at this point defects along the edge can initiate channel cracks. Therefore, tailor-
ing the structure so that the spacing of the geometrical features corresponds to the desired
spacing of the crack array requires a delicate balance between the applied strain and the
properties of the film and substrate. Too low a strain will result in a random array of cracks
initiated from only a limited set of features. Too high a strain will result in random cracks
being initiated from flaws away from the features. This concept is first illustrated by rel-
atively simple analyses corresponding to cases when the cracks do not penetrate into the
substrate.
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Figure 2.4: A schematic showing the patterned substrate with controlled cracking as
nanochannels. The geometrical features are the sawtooth structure along the edge of the
lower reservoir. Controlled crack array propagates from the tip geometrical features con-
necting the two reservoirs. The geometrical features are separated by a distance S o and are
with dimensions a and b.

2.2.1 Crack arrays limited to the film

The calculations were done by computing the energy change associated with introducing a
steady-state crack in the middle of two existing cracks separated by a distance of 2s. Al-
though standard fracture-mechanics results from Tada et al. [31] can be used to analyze a
homogeneous system, numerical calculations are required when the effects of a modulus
mismatch are included.

The numerical calculations were done in two steps (Fig. 2.5). In the first step, the stress
distribution σ(y) along the mid-plane between two cracks at a distance 2s apart was cal-
culated for a given value of strain, εo. In the second step, a crack was introduced along
this plane, with surface tractions corresponding to −σ(y) applied along the new crack sur-
face. The resultant crack-opening displacements u(y) were computed, and the steady-state
energy-release rate, Gss, calculated from [32]

Gss =

∫ h

0
σ(y)u(y)dy/h. (2.4)

The condition for whether a crack can channel was calculated by comparing this energy-
release rate to the toughness of the film, Γ f . The final step of the calculations involved
equating the separation, S o, of the geometrical features to 2s. When S o is sufficiently large
to permit a new crack to propagate, a random crack array will be generated, because cracks
can be formed away from the geometrical features. Conversely, if 2S o is smaller than the
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Figure 2.5: A schematic showing the process by which the energy changes associated
with introducing a steady-state crack between two pre-existing cracks are calculated. In
(a), the stress distribution σ(y) along the mid-plane between two cracks at a distance 2s
apart is calculated for an applied strain of εo. In (b), a crack is introduced along this plane,
with surface tractions corresponding to −σ(y) applied along the new crack surface, and the
resultant crack opening displacements u(y) are calculated.

distance that will allow an intermediate crack to propagate, then not every feature will have
a crack associated with it and, again, there will be a random aspect to the crack pattern.
There will, however, be a “Goldilocks” regime which is “just right” for propagating cracks
from every feature, but no more. This regime is shown in Fig. 2.6 and 2.7, with and with-
out modulus mismatch. As indicated in these figures, careful matching between the feature
separation, the properties of the material, and the applied strain is required to realize per-
fectly periodic arrays.
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Figure 2.6: A plot showing the regimes of strains and feature spacing in which periodic
crack arrays contained within the film can be obtained for a film with no modulus mismatch.

These conclusions are consistent with the experimental observations described by Kim
et al. [7]. In their study, “V”-shaped notches were formed in poly(dimethylsiloxane)
(PDMS) substrates using soft lithographic techniques. In particular, a 5:1 mixture of cur-
ing agent and PDMS (Sylgard 184, Dow Corning) was cast against silicon moulds and
cured at 60 ◦C. The surface was plasma treated to create a thin surface layer of a rela-
tively brittle silica-like material. While the material properties of this surface layer are not
well-characterized, there is evidence that the modulus is only slightly higher than that of the
substrate, and not large enough to drive cracks to significant depths within the substrate [1].
As shown in Fig. 2.8, a systematic increase in applied strain to this micro-patterned system
results in a crack pattern that evolves from (i) random cracking at some of the notches,
through (ii) periodic cracking at every notch, to (iii) random cracking at locations away
from the notches.
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crack arrays contained within the film can be obtained for a film with a modulus mismatch
corresponding to a value of α = 0.98, and β = 0. (The film-to-substrate thickness ratio is
10−4.)

2.2.2 Crack arrays penetrating into the substrate

A large modulus mismatch, such as that between a gold film and PDMS, results in the
crack arrays penetrating relatively deep into the substrate [3]. This complicates the me-
chanics analysis because an increase in strain can result in two possible events: (i) the
growth of existing cracks deeper into the substrate, or (ii) the channelling of intermediate
cracks of unknown depth. In this section, a fracture-mechanics analysis is presented to
determine the conditions required to control such crack arrays.

The analysis was done in a similar fashion to that of the previous section, and is il-
lustrated by Fig. 2.9. In the first step, the strain that would just cause two existing cracks
of depth ao separated by a distance 2s to begin penetrating deeper into the substrate was
determined. Then, the stress distribution, σ(y), along the mid-plane between these two
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Figure 2.8: Micrographs showing the three regimes of cracking for an oxidized sample
of PDMS, with (a) too few cracks, (b) one crack on each geometrical feature, and (c) too
many cracks.
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Figure 2.9: A schematic showing the process by which the energy changes associated with
introducing a steady-state crack that propagates into the substrate between two existing
cracks of depth ao, separated by a distance 2s. In (a), the strain that would just cause the
existing cracks to penetrate deeper into the substrate is determined. Then, the stress dis-
tribution, σ(y), along the mid-plane between these two cracks is computed for this strain
level. In (b), a crack is introduced to an arbitrary depth a, with surface tractions correspond-
ing to −σ(y) along its surface. The corresponding crack-opening displacements, u(y), are
calculated.
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cracks was computed for this strain level. In the next step, a crack was introduced along
this plane to an arbitrary depth, a, with surface tractions corresponding to −σ(y) along its
surface. The corresponding crack-opening displacements, u(y), were calculated, and the
energy-release rate for channelling calculated from

Gss =

∫ h

h−a
σ(y)u(y)dy/a. (2.5)

This energy-release rate was compared to the effective toughness

Γ = (h/a)Γ f + (1−h/a)Γs, (2.6)

to find whether an intermediate crack can form for any value of a. If no crack could form,
the applied strain was increased, a new equilibrium crack depth for the original cracks de-
termined, and the calculation was repeated.

Figure 2.10: The secondary crack that is formed is shallower than the pre-existing cracks.
A second set of calculations is then required to compute which cracks will grow, and the
conditions for whether a tertiary set of cracks can channel between the other two sets.

The calculations were repeated until an intermediate crack of arbitrary depth could just
be formed. At this stage, the calculations were repeated for all three cracks (Fig. 2.10), ex-
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ploring the possibilities of either introducing another set of intermediate cracks or growing
the existing cracks. These calculations revealed the sequence of cracking for this problem.
The intermediate crack is first formed at a shallower depth than the original pair of cracks,
and immediately unloads the original cracks. While further increases in strain increase the
energy-release rate at the tips of all the cracks, only the shallower intermediate crack meets
the condition to grow deeper. Eventually, it reaches the depth of the original cracks. Fur-
thermore, during this stage, it is not thermodynamically possible to introduce any further
intermediate cracks. Once all cracks are at the same depth, further increases in strain al-
lows the entire set to propagate deeper, until eventually another set of shallow intermediate
cracks can be introduced, and the entire sequence is repeated.

Following the approach and assumptions of the previous section, Fig. 2.11 shows the
range of strains for which the crack spacing will match that of the geometrical features in a
system for which the film modulus is 104 times higher than the substrate modulus, so that
α = 0.9998 and β = 0, and the film-to-substrate toughness ratio, Γ f /Γs, is 35. This figure
shows the same important conclusions that are evident from Fig. 4. There is a limited range
of strains over which periodic cracking can be reliably obtained; channel cracks will be ini-
tiated at only some of the features if the strain is too low, and they will be initiated from
sites away from the features if the strain is too high.

A new aspect of the problem is the prediction of how the crack depths evolve within
the regime where the crack spacing matches the feature spacing. Figure 2.12 shows how
the crack depths are initially bimodal at the lowest strain for which uniform cracking is ob-
tained, with the newest cracks being shallower than the original ones. An increase in strain
results in the growth of the new cracks, while the original cracks remain at their original
depth (assuming no healing), until all the cracks are of the same depth. From this point on,
an increase in strain causes all the cracks to grow deeper in a uniform fashion, until a new
set of cracks is introduced.

Experimental observations of Kim et al. [7] for the three cracking regimes are shown
in Fig. 2.13 for this situation where there is a huge modulus mismatch between the film
and substrate, and the channeling cracks propagate far below the interface [3]. A similar
process to that described in the previous section was used to fabricate a PDMS substrate
with notches in it. A 10 nm adhesion layer of Cr was deposited by e-beam on the surface
of the PDMS, followed by a 40 nm thick Au layer. Laser interferometry confirmed that
the cracks which formed upon the application of a tensile strain were approximately 3 to 4
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Figure 2.11: A graph of strains over which periodic arrays of cracks can be obtained. An
identical figure is obtained if the calculations are repeated with Γ f /Γs = 0, but the cracks
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10−4.)

microns deep, or 60-80 times deeper than the total film thickness.

The numerical predictions for the crack depth are very sensitive to the choice of Γ f /Γs.
For the results shown in Figs. 2.11 and 2.12 , this ratio was chosen to be 35, to give a
relatively deep crack for illustrative purposes. However, thin metal films will have a low
toughness, because of the lack of thickness in which to develop a plastic zone. A relatively
tough film is required to predict crack depths that are consistent with the experimental ob-
servations, but such a toughness is not realistic for the metal films associated with these
observations. This paradox can be resolved by recognizing that, in the absence of a sig-
nificant constraint from a relatively stiff substrate, thin metal films can rupture by shear
localization [33] upon yield at very high strains. In particular, it should be noted that the
results of Figs. 2.11 and 2.12 are reproduced exactly if the calculations are repeated with
the coupled assumptions that Γ f /Γs = 0 and that cracks cannot form unless the strain in
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Figure 2.12: Plots of how the crack depths vary with strain within the regime for which
there is a uniform crack spacing. The solid lines correspond to the primary cracks, and
the dashed lines correspond to the secondary cracks formed at the beginning of each strain
range. (The film-to-substrate thickness ratio is 10−4.)

the film equals 1%. This would seem to be the appropriate form in which the calculations
should be conducted for very thin, high-strength metal films supported on compliant sub-
strates.

2.3 Statistical effects on crack arrays

In this section, statistical aspects are included to investigate how crack arrays are affected
by the distribution of flaw sizes and density. The calculations were done by performing
Monte Carlo simulations on a homogeneous system with a film of thickness h, in which
cracks did not penetrate the substrate. Before investigating the effect of geometrical fea-
tures on array formation, an analysis of how natural crack arrays are generated in uniform
structures was done as a point of comparison, and because such a coupling between LEFM
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Figure 2.13: Micrographs showing the three regimes of cracking for a sample of PDMS
coated with a 10 nm Cr layer (used as an adhesion layer) and 40 nm of Au: (a) with too
few cracks, (b) one crack from each geometrical feature, and (c) too many cracks.

and flaw statistics for thin-film fracture has not been presented before. Even for flaw pop-
ulations that meet the conditions usually assumed (dense, long flaws), fracture-mechanics
analyses cannot predict the sequence in which crack arrays form, or what the mean spacing
of an array might be. This information can only be obtained by incorporating some statis-
tical aspects of the flaw population into the analysis, even in the case when all the flaws are
so long that LEFM would predict that each individual flaw on its own would propagate at
the same stress level.
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2.3.1 Statistical distribution of intrinsic flaw

The intrinsic flaw sizes were approximated by truncating a Gaussian distribution with a
normalized standard deviation of µ/h and centered about zero to the interval of (0,∞).
This distribution results in a monotonically decreasing probability with increased flaw size.
Based on the assumption of all cracks are initiated from a free edge of the structure, the
defects are in one-dimensional components. The density of the defects in a fiber is often
approximated by a Poisson process [34]. According to the Poisson model, the positions of
flaws can be equally generated from a uniform distribution over the same length [35]. The
location of the flaws was assumed to be distributed uniformly along a length of L with a
uniform normalized density of ρh, where ρ is the density per unit length.

2.3.2 Energy-release rate at the tip of a crack

Three parameters determine the energy-release rate at the tip of a flaw: (i) the local strain,
(ii) any shielding that may be provided by neighboring cracks, and (iii) the length of the
flaw. In order to simplify the analysis, various assumptions were made about these param-
eters. Any flaws on the edge of geometrical features were assumed to experience a local
strain, εl, elevated above the remote applied strain, εo, as given by the Inglis solution for the
stress concentration at the surface of an ellipse [36]. The effect of shielding was assumed
to be determined by the distance to the nearest crack (or geometrical feature) that extended
beyond the tip of the crack being analyzed. Figure 2.14 shows examples of how this closest
spacing was determined. The appropriate energy-release rate for an individual flaw was
then calculated from the local strain and this distance, making a further approximation that
the flaw was equidistant to two neighbors at this minimum spacing.1

In a homogeneous system, where α = β = 0, the non-dimensional energy-release rate at
the tip of a defect is given by G/(Ē f ε

2
l h), where εl is the local strain the defect is subjected

to. The energy-release rate is determined by two features of a flaw including its length and
any shielding that may be provided by neighboring cracks. For a single crack of length, a,
the energy release rate is given by:

G
Ē f ε

2
l h

=

 1.98 if a/h > 0.50
1.25πa/h if a/h ≤ 0.50

(2.7)

1This approximation could be relaxed by doing a series of calculations for the energy-release rate of
cracks not spaced symmetrically between two other cracks. However, it is not expected that this would have
a significant affect on the results.
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In order to find out the effect of interactions between cracks on the energy release rate,
we performed finite element analysis on the energy-release rate to channel a crack across a
film in the middle of a pair of cracks that have channeled. The cracks were from a free edge
of a uniform structure, and the cracks were subjected to a same applied strain of εo. Me-
chanics analyses of thin-film cracking problems are generally predicated on the assumption
of a sufficient density of long flaws, so that the crack pattern is not limited by the availabil-
ity of long flaws which act as initiation sites for crack channeling. Fig. 2.2 shows that the
energy-release rate of a long flaw depends on its distance from its nearest neighbors that
have already channeled. It was assumed that the crack was equi-distant to its two nearest
neighbors on each side. The energy-release rate decreases from the steady-state value of
1.98 at a fixed applied strain as the distance to the nearest cracks decreases. In other words,
for a given level of applied strain, two cracks can be close enough to exclude a third rack
from growing between them. [25]. Equivalently, any defect that is too close to a neigh-
boring fully-developed crack will not grow, no matter how large it is [37]. This exclusion
distance is the maximum distance two cracks can be separated in an array at a given strain,
and half the distance is the minimum separation. We will discuss more about the exclusion
distance later.

Figure 2.2 was used to determine an empirical equation for the relationship between the
energy-release rate at the tip of a long crack, the strain and the distance, d, to the nearest
(longer) neighbor:

G
Ē f ε

2
l h

= 1.98(1− e−0.172d/h). (2.8)

The energy-release rate for a short crack of length a was assumed to be equal to that of an
edge crack [31], with the effect of crack spacing being of the same functional form as for
long cracks, so that

G
Ē f ε

2
l h

= 1.25π
a
h

(1− e−0.172d/h). (2.9)

The calculation proceeded by seeding the geometry of interest with a statistical distri-
bution of cracks, evaluating the distances, d, to all the nearest longer neighbors, and using
this distance to calculate the energy-release rate for every crack as being the smallest of
either Eqns. 2.8 or 2.9. The energy-release rate was then compared to the toughness of the
film, so as to obtain information about which cracks would propagate at a given level of
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strain. With a linear-elastic system, the calculations for any individual crack only needed
to be performed once, since it was assumed that the energy-release rate is not affected by
the growth of any nearest longer crack.

2.3.3 Determining the local strain

The local strain is determined by the geometry and the relative position of a crack on the
geometry. In the following analyses, we consider two types of geometries: (i) flat edge,
and (ii) flat edge with an array of elliptical structures. For both types of geometries, we
consider the specimen to have a length of L, and is subjected to an applied uniaxial tensile
strain of εo. The cracks are under tension. In a uniform structure, in the absence of flaws,
the local strain is simply equal to the applied strain εo. In structures with elliptical features,
the local strain was approximated to be the local tensile strain at the surface of an elliptical
hole [36], and is given by:

εl

εo
=

sinh2φ+ e2φ cos2θ−1
cosh2φ− cos2θ

(2.10)

Where the ellipse is defined in the curvilinear coordinates as:

x = ccoshφcosθ
y = csinhφsinθ

(2.11)

Away from the elliptical structures, the local strain decreases to the uniform applied
strain.

2.3.4 Exclusion distance

A crack, once occurred, releases the local strain and creates an exclusion distance in its
vicinity within which any incipient defect is precluded from growing unless the applied
strain is increased. In our analysis, in order to simplify the analysis, various assumptions
were made. The effect of shielding was assumed to be caused only by cracks (or geo-
metrical features that extended beyond the tip of the crack being considered. A second
assumption was that the effect of shielding on an individual crack is determined by the
distance to the nearest longer neighbor. Fig. 2.14 shows examples of how this closest spac-
ing was determined. The appropriate energy-release rate of an individual crack was then
based on this distance, making the approximation that it was equidistant from two nearest
neighbors at that spacing, so that the curve of Fig. 2.2 could be directly used.
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Figure 2.14: A schematic of a structure showing cracks and geometrical features. Elliptical
features with major and minor axes a and b are separated by a distance S o. Flaws are
introduced along the free edge of the structure with a density ρ, with a statistical variation
in crack length. The energy-release rate is based on the length of an individual crack and
the distance to its nearest neighbor, as defined in this figure.

Previous studies of the statistical effects on crack arrays [18, 19] investigated the lami-
nated composites and the fragmentation of fibers embedded in a matrix. In these studies, an
exclusion zone extending either side of a pre-existing crack was derived from a shear-lag
analysis. A characteristic feature of a shear-lag analysis for fracture is that once a pair of
neighboring cracks are close enough to interact, it is impossible to introduce a third crack
between them. Therefore, within the exclusion zone a new crack cannot form, no matter
how high the applied strain on the system is. Moreover, this exclusion distance increases
with increased applied strain. Conversely, if interfacial slip does not occur, the exclusion
distance decreases with applied strain, so that the strain can always be increased to a level
at which it is possible to introduce a third crack between two neighboring cracks. This
latter type of exclusion distance is the one used in our analysis.

2.3.5 Monte Carlo Simulation

Monte Carlo simulation programs were written for simulating the cracking of a specimen
of length L under an applied strain of εo. The specimen can be with or without geometrical
features that act as crack initiation locations. These artificial flaws are an array of elliptical
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holes spaced at S o, with a minor radius, b, that was aligned with the flat edge, and a ma-
jor radius of a. During the simulation, several tasks were performed. First, the sizes and
locations of defects were generated. The flaw sizes were from the Gaussian distribution
discussed above. The defects were seeded with a density of ρ, and uniformly distributed
along L. When artificial defects are present, we made an assumption that the projection of
flaws on the flat edge followed the same distribution. The assumption was valid when ρwas
selected to be sufficient that the final crack pattern was independent from the intrinsic flaw
spacing. Next, the local strain was calculated for each defect based on their locations as
we discussed in the previous section. Then, the distance of each defect to its nearest longer
neighbor was determined by comparing the height from the flaw tips to the flat edge. This
neighbor can be either an intrinsic flaw or an artificial flaw. For the artificial flaws, the
height was from each point on the surface of the features to the flat edge, which varies with
the position. This distance and the flaw sizes were then used in Eqns 2.8 and 2.9 to compute
the energy-release rates of each flaw. The final step was to compare the lowest of these two
values to the toughness of the film, to determine whether the crack would propagate or not.
It should be noted that not every crack that could have propagated from the geometrical
features can channel. This is because the local strain decreases to the remote applied strain
away from the geometrical features. Another remote energy-release rate was calculated for
this group of cracks that can propagate from the elliptical structures using the same set of
distance to the nearest longer neighbor and the applied strain. This remote energy-release
rate was compared with the toughness of the film to determine the channeling cracks. The
resultant crack spacing was then determined from all the flaws that were deemed to have
channeled.

2.3.6 Crack arrays without geometrical features

The first set of results are presented for a geometry with no artificial features and subjected
to a uniform strain of εo. Figure 2.15 shows how the cumulative distribution function
for the crack spacing varies with strain for the limiting case of a relatively high density
of large intrinsic flaws, with µ/h → ∞ and ρh → ∞. This is the appropriate condition
for making comparisons to LEFM results for characteristic spacings. The average crack
spacing decreases with increased strain. Take the case with the normalized applied strain
ε(E f h/Γ f )1/2 = 0.9 as an example, the mean value of spacing, S/h is about 11.12, with a
standard deviation of 4.31. The variation is considerable and the crack pattern is relatively
random. The average spacing for this flaw population is shown as a function of applied
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Figure 2.15: A plot showing cumulative distribution functions of the natural crack spacing
in a structure with no geometrical features at different strains, for the limiting case of a very
dense and long flaw population.

strain in Fig. 2.16 (solid line). Consistent with the results for the characteristic spacing
from LEFM solutions, the cracks first form at a normalized strain of εo

√
Ē f h/Γ f = 0.71,

and the crack spacing decreases with increases in applied strain. It should be emphasized
that this change in spacing occurs even though the flaws are long enough for there to be
no effect of size on strength. This provides a contrast to crack-spacing models based on
Weibull statistics which inherently assume a locally varying coating strength dependent on
the flaw size. Away from the threshold strain, the mean spacing for the statistical distribu-
tion assumed in this paper is approximately given by

sav/h ∝
(
εo

√
Ē f h/Γ f

)−2.36
. (2.12)

This relationship appears to be valid only for relatively dense crack arrays, which may
be beyond the range of practical interest for many systems. Over a more practical range,
the crack spacing is given by the transition between this relationship and the threshold. It
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should also be noticed that this is a steeper relationship than the inverse linear forms that
result from analyses based either on the minimum spacing that just prevents an intermediate
crack [25] or on a consideration of equilibrium [24,26]. It is expected that this relationship
may be sensitive to the form of the assumed flaw population, through how the distribution
controls the distance to nearest longer neighbors, but this detail of the problem has not been
explored.
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Figure 2.16: A plot showing the relationship between the mean crack spacing and the
applied strain for a structure with no artificial features as a function of the flaw population
(described by different values of the density and characteristic flaw size)

For systems with intrinsic flaw distribution severely skewed to the right, such as the
cases with µ/h = 0.1 and µ/h = 0.01 in Fig. 2.16, the statistics of their size become im-
portant. The effects of flaw density and length, and of strain and toughness on the average
spacing of the array are also shown in the plots of Fig. 2.16. The details of this plot will
vary with different forms of the flaw distribution and on the material properties; but the
general mechanics concepts will apply. While the onset of channeling always occurs at a
normalized strain of 0.71 for a homogeneous system, a limited number of long flaws in-
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creases the spacing for a given level of strain. The asymptotic spacing at large strains that
is shown for some flaw populations is simply a consequence of an assumption that there is
a finite set of flaws that can generate channel cracks.

2.3.7 The effect of geometrical features on crack arrays

The second set of results shows the effect on crack arrays of geometrical features consisting
of periodic elliptical cut-outs spaced at S o along the edge of the specimen. Each elliptical
hole is assumed to have a minor radius, b, aligned with the flat edge, and a major radius of
a. To simplify the process of seeding flaws in the analysis, it was assumed that the density,
ρ, is given in terms of the projected length along the flat edge, rather than the actual length
of the surface. The flaws were assumed to be perpendicular to the straight edge. As shown
in Fig. 2.14, the distance used to calculate the energy-release rate was the distance from
the tip of each flaw to the nearest intersection with either a flaw or the surface of an ellipse.
The Inglis solution for an ellipse [36] as in equations 2.10 was used to calculate the local
strain from which the energy-release rates for a flaw along the surface of a cut-out could be
calculated. However, an additional consideration in this problem was to determine whether
such a crack could continue channeling once it left the stress concentration at the tip of
the ellipse. This was done by a second step in which the energy-release rate for any flaw
along the surface of an ellipse that had been determined to meet the conditions of growth
was recalculated with the assumption that it had reached a steady-state length but was out
of the stress-concentration region. If a crack didn’t meet this second growth condition, it
was assumed to have propagated only a little bit from the geometrical feature, and not to
have channeled across the specimen. It was, therefore, not counted as forming the crack
array. (However, it was possible for these cracks to channel subsequently at higher level of
applied strains.)

Cumulative distribution functions for a structure with a dense population of relatively
large flaws are shown in Fig. 2.17 to 2.19. The plots are with different feature separations
and aspect ratios. Figure 2.17 and 2.18 are with the same small separation of the geo-
metrical features, S o/h = 10, and different aspect ratio. It was shown that small feature
separation allows a relatively wide strain range for the second regime. It should be noted
from a comparison of the two plots that the effect of the aspect ratio is not particularly sig-
nificant. A more detailed statistical analysis of this effect can be found in the next section.
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Figure 2.17: A plot showing the three regimes corresponding to Fig. 4 for systems with
a sufficient density of large intrinsic defects. These plots show the effect of changing the
spacing, S o/h, and aspect ratio, a/b, of the geometrical features. S o/h = 10 and a/b = 2.

When a big separation of the geometrical features is used, as shown in Fig. 2.19, the
onset of the second regime occurs just above the critical strain for a singe crack to chan-
nel across the specimen. A very narrow strain range is allowed for the second regime. In
practice, the applied strain needs to be tailored carefully to fit in this narrow range. This is
again consistent with Fig. 2.7.

In conclusion, there are three points to be observed in these plots. First, consistent
with the fracture-mechanics calculations of Section 2, there are three regimes of crack ar-
rays. (i) At low strains, relatively few cracks channel across the system, and not every
geometrical features initiates a crack. (ii) At intermediate strains, the distribution has a
sharp and single edge corresponding to the spacing of the geometrical features. The range
of strains over which this single mode of crack spacings can be obtained is very sensitive
to the chosen value of S o, becoming very restricted at large values of S o for homogeneous
systems. Conversely, the results are not very sensitive to the aspect ratio of the geometrical
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Figure 2.18: A plot showing the three regimes corresponding to Fig. 4 for systems with
a sufficient density of large intrinsic defects. These plots show the effect of changing the
spacing, S o/h, and aspect ratio, a/b, of the geometrical features. S o/h = 10 and a/b = 5.

features. (iii) At high strains, a significant number of cracks can form between the geo-
metrical features, resulting in a non-uniform distribution again. As discussed earlier, these
results are all consistent with the observations of Kim et al. [7] for an oxidized PDMS sys-
tem, which supports the notion that this system was one with relatively large intrinsic flaws.

Figure 2.20 and 2.21 present some cumulative distribution functions for a structure with
very small intrinsic flaws. A key feature to be noticed from these plots is that the strains
required to ensure the initiation of a crack from every geometrical feature are greater than
the strains required to channel cracks from long flaws between the geometrical features.
So, the formation of uniform arrays in these systems relies on the absence of any signifi-
cant flaws between the geometrical features. Since it relies on controlling the statistics of
the flaw population, the approach can be considered to be rather unstable and unintended
damage can trigger much finer arrays than intended. Sharper geometrical features lower
the critical strains required to form periodic arrays, and, at a given strain, a uniform array
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Figure 2.19: A plot showing the three regimes corresponding to Fig. 4 for systems with
a sufficient density of large intrinsic defects. These plots show the effect of changing the
spacing, S o/h, and aspect ratio, a/b, of the geometrical features. S o/h = 50 and a/b = 2.

is more likely to be formed with sharper features. Both of these conclusions, the sensitivity
of array formation to the aspect ratio of the features, and the triggering of uncontrolled
arrays by unintended damage, are consistent with the experimental observations presented
by Nam et al. [4].

In Fig. 2.20 , the feature separation or the desired crack spacing is S o/h = 10. The
onset strain of the second regime is εo(Ē f h/Γ f )1/2 = 0.9 with sharper features (a/b = 5),
and εo(Ē f h/Γ f )1/2 = 1.8 with blunt features (a/b = 5). Recall that with longer flaws, the
onset strain is 0.83 and 0.81respectively.The short defects results in the requirement of a
relatively high strain to get a uniform pattern. This strain is sensitive to the aspect ratio,
and at low aspect ratios the required strain can be much larger than the upper-bound strain
to create uniform arrays when the flaws are very long. This makes for much more unstable
crack arrays, since any single relatively long flaws between the geometrical features could
initiate a channel crack and break the periodicity. Sharper aspect ratios for the geometrical
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Figure 2.20: Plots showing the effects of the aspect ratio, a/b and spacing S o/h of geo-
metrical features on the cumulative distribution of the resultant crack arrays. The feature
separation is S o/h = 10. Two aspect ratios, a/b = 2 and 5 were used.

features lower the strain required to generate uniform flaws. In the limiting case of very
sharp features, the critical strains would be reduced to the level of those in Figure 14. Plots
with a larger spacing of S o/h = 50 are shown in Fig.2.21. Similar to the cases with large
flaws, uniform cracking occurs at lower strains.

The strategy for forming periodic patterns when there is a sufficient density of rela-
tively large flaws is robust against damage and is not very sensitive to the nature of the
geometrical features, but may require a careful matching of the strain to the desired spac-
ing, depending on the modulus-mismatch ratio. The strategy of relying on the intrinsic
flaws being very small is sensitive to the aspect ratio of the features, but may not be so
sensitive to the strain. However, the strategy is vulnerable to unintended damage. A lack
of strain sensitivity is useful in that it allows a range of crack spacings to be generated on
a single specimen. This versatility can be obtained either by keeping the density of long
flaws low, or by ensuring that the film has a much higher modulus than the substrate.
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Figure 2.21: Plots showing the effects of the aspect ratio, a/b and spacing S o/h of ge-
ometrical features on the cumulative distribution of the resultant crack arrays. The crack
spacing is S o/h = 50. Two aspect ratios, a/b = 2 and 5 were used.

2.3.8 Analysis of simulation data

The data that we will analyze are the results from 10 simulations for the systems with suf-
ficient density of large flaws with and without geometrical features. The corresponding
plots are the green line with ρh =∞ in Fig. 2.15 showing the distribution of crack spacing,
and Fig. 2.17 to 2.19 . The specimen has a length of L/h = 103. The length was chosen
to be long enough so that it would not affect the simulation results. This type of system
with sufficient density of large flaws is comparable to materials such as oxidized PDMS.
We have shown that for this type of systems, the sharpness of the geometrical feature is
not critical, however, the matching of feature separation with material properties and ap-
plied strain needs to be precise. The spacing of the geometrical features was selected to be
S o/h = 50 and S o/h = 10, to represent relatively large spacings and small spacings. Two
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values were selected for the aspect ratio of the ellipses, a/b = 2 and 5. In the following
analysis, we find that the aspect ratio doesn’t have a significant effect on the crack pattern.
The simulation was performed for both geometries with and without elliptical structures as
crack initiation locations. We will assess the effectiveness of the crack initiating structures.

Table 2.1: Individual and aggregate results for 10 individual simulations for a uniform
geometry

µ/h = 1 ρh =∞ L/h = 103 m = 10
i S̄ i/h SD
1 10.87 4.06
2 10.87 3.85
3 11.63 5.05
4 11.36 4.71
5 10.87 3.62
6 11.11 4.13
7 11.24 3.81
8 10.99 4.04
9 10.53 4.64
10 11.90 5.04
Aggregate 11.12 4.31

Individual and aggregate results of crack spacing for a uniform geometry and geome-
tries with elliptical structures as crack initiation location can be found in Table 2.1 to 2.3.
These results are from a specific applied strain of ε(Ē f h/Γ f )1/2 = 0.9, which is within
Regime 2 when the crack control mechanism is fully functional. From Table 2.1, we can
see that the normalized average spacing is S/h = 11.12, with a standard deviation of 4.31.
The variance of crack spacings is significant, and the crack array is considered non-uniform.
With the elliptical structures as crack initiation locations, we can significantly reduce the
variance. Two groups of results with different aspect ratio of the geometrical features are
presented in Table 2.2 and 2.3. The aspect ratio was a/b = 2 and a/b = 5 respectively. By
observing results, we can see that the average crack spacing is well defined by the geomet-
rical features, S̄ /h = S o/h = 10. This indicates that the choice of feature separation was
proper for this specific level of applied strain. The aggregated standard deviation reduced
significantly to 0.74 and 0.44. It appeared that with greater aspect ratio of geometrical
features, the variance is further decreased. The significance of the geometrical features in
reducing the variance of the crack spacing will be tested by one-way analysis of variance
(ANOVA). The significance of the sharpness of the features will also be tested by ANOVA.
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Table 2.2: Individual and aggregate results for 10 individual simulations for a geometry
with an array of elliptical structures as crack initiation locations,relatively blunt tips

µ/h = 1 ρh =∞ L/h = 103 S o/h = 10 m = 10 a/b = 2
i S̄ i/h SD
1 10 0.67
2 10 0.77
3 10 0.78
4 10 0.67
5 10 0.74
6 10 0.82
7 10 0.77
8 10 0.74
9 10 0.75
10 10 0.75
Aggregate 10 0.74

Table 2.3: Individual and aggregate results for 10 individual simulations for a geometry
with an array of elliptical structures as crack initiation locations,relatively sharp tips

µ/h = 1 ρh =∞ L/h = 103 S o/h = 10 m = 10 a/b = 5
i S̄ i/h SD
1 10 0.42
2 10 0.44
3 10 0.45
4 10 0.43
5 10 0.52
6 10 0.47
7 10 0.42
8 10 0.45
9 10 0.39
10 10 0.42
Aggregate 10 0.44
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First, the strip plots of the three groups of results are shown in Fig. 2.22. We can see
that the variance is different between the three groups. There are no outliers or skewness
in the data. ANOVA is performed for the three groups of data. From the F-Statistics, we
found that the p-value was very small, < 2.2×10−16, and we can conclude that there is some
difference between the groups. Therefore, we can make the conclusion that the geometrical
features can significantly reduce the variance of the crack spacings.

We then investigated whether the aspect ratio of the geometrical features have a sig-
nificant effect on reducing the variance of the crack spacing. A similar F-statistics was
performed for the two groups of data which were from the simulation of systems with el-
liptical structures as crack initiation locations. The aspect ratio of the elliptical structures
was 2 and 5 respectively. We found that the p-value was 1, which indicated that there was
no significant difference between the two groups of data. We therefore made the conclusion
that for systems with sufficient density of long intrinsic defects, the aspect ratio of geomet-
rical features is not significant in reducing the variance of the crack spacings. As long as
the matching between the feature separation, material properties and the applied strain was
tailored, the crack spacing can be well defined by the feature separations.
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Figure 2.22: Strip plots of the simulation results of the crack spacing with different geome-
tries. Geometry types are designated by: type A for a uniform geometry in the absence of
any geometrical features as crack initiation locations; type B for a geometry with an array
of elliptical structures with aspect ratio of 2 and spaced at S o/h = 10; type C for a geometry
with an array of elliptical structures with aspect ratio of 5 and spaced at S o/h = 10.
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2.4 Uniform fully-reversible micro-scale fluidic channel

As discussed in sections 2.2.1 and 2.2.2, cracks may be contained in the film or pene-
trate into the substrate. This is determined by the modulus mismatch between the film and
substrate material. When the modulus of the film and substrate are equal, the cracks are
confined to a surface layer with crack depth equate to the film thickness, h. The cracks
in this case are usually with small spacings and are of small sizes. The width of cracks is
around tens of nanometers [2]. If the film has a much higher modulus than the substrate,
the cracks penetrate into the substrate, resulting in deep cracks with larger spacings [3].
Although this latter type of cracks can handle a wider range of biomolecules especially in
the micron-scale regime, the lack of control over crack depth limits its use. It is most desir-
able to independently control the crack depth and crack width. We found that hard PDMS
(h-PDMS) can be used to generate cracks with defined dimensions at the micron-scale.

2.4.1 Material characterization

The Young’s modulus of PDMS and h-PDMS were measured using uniaxial tensile tests.
The tensile specimens were prepared by casting PDMS and h-PDMS in dog-bone shaped
molds, following ASTM D638-10. MTS 858 Bionix II tensile machine was used to conduct
the tensile tests. The specimens were released from the mold and clamped in wedge grips.
The load was applied at a constant strain rate of 0.8%/s. The load was measured using a
250N load cell and was automatically recorded. Optical images were taken to track the dis-
placement of markers on the sample. The strains were then determined using MetaMorph
software to analyze the optical images. True stress-strain curves were used to calculate the
Young’s modulus of each material. An example of the resulting stress-strain curve is shown
in Fig. 2.23. It should be noted that PDMS displays hyperelastic properties. The modulus
of PDMS was measured to be 3.7± 0.3 MPa. This agrees with the results previously re-
ported by Mills et al. [1]. The same approach was used to measue the modulus of h-PDMS,
giving a result of 9.2±0.6 MPa.

Table 2.4: Mechanical characterization of materials

PDMS h-PDMS
Young’s modulus 3.7±0.3 MPa 9.2±0.6 MPa
Mode I toughness 460±50J/m2 12.9±2.7J/m2
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The toughness of h-PDMS was measured using a tensile specimen with an edge crack
that had been introduced by razor blade following ASTM E1820-11e2. Crack growth dur-
ing the tests was monitored using a CCD camera. No sub-critical crack growth was ob-
served, so the peak load and the original crack length were used to determine the tough-
ness. The toughness of the h-PDMS was determined to be 12.9± 2.7J/m2. The toughness
of PDMS was reported by Mills et al. to be 460±50J/m2. All mechanical characterization
data are summarized in Table 2.4. H-PDMS is much more brittle than PDMS, this allows
a thin film of h-PDMS supported on PDMS substrate to crack under applied tensile strain.
The moduli of the two materials are comparable. As discussed in sections 2.2.1 and 2.2.2,
the cracks in such a system are mostly localized to the h-PDMS film layer. Hence, by con-
trolling the thickness of the h-PDMS layer, this system should afford a greater degree of
control over the depth of which cracks propagate.

Figure 2.23: Stress-strain curve of a uniaxial tensile test for PDMS.
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2.4.2 Results and Discussion

We reported the controlled cracking of thin h-PDMS film on PDMS substrate [5]. A thin
film of h-PDMS of selected thickness is sandwiched between two standard PDMS layers.
The multilayered structure was prepared using a sequential deposition technique. The geo-
metrical features discussed in section 2.2 were also molded in the h-PDMS layer for crack
control purposes. It was found that the cracks were only propagated from the geometrical
features, with crack depth relatively stable up to an applied strain of 60%, at which the
PDMS substrate failed catastrophically. The very small change in crack depth at higher
strains suggest the cracks only slightly penetrate into the substrate and the crack depth
has reasonably good consistency at all strain levels. The cracks were completely closed
upon full release of applied strain, which suggested that no delamination at the interface
occurred. The flat bottom of the crack profile suggested high levels of strain at the tip of
cracks which is rooted in the hyperelastic properties of PDMS.

(a)! (b)!

Figure 2.24: Stress-strain curve of a uniaxial tensile test for PDMS.

In order to confirm the mechanics underlying the observed crack profile, finite element
analyses were conducted. The full stress-strain behavior of PDMS for large deformations
of the material was used in the calculation. Given the low modulus mismatch between h-
PDMS and PDMS (E f /Es ≈ 2.5), and the observed experimental results, the cracks only
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penetrate slightly penetrate into the substrate, with the ratio of crack depth to film thick-
ness, a/h close to one. The simulation results confirmed that the substrate near the crack
tip deforms dramatically and forms the flat bottom. The simulated penetration depth a/h

was iteratively varied to most closely match the experimentally measured crack profiles.
The comparison between the simulation results and experimental measurements are shown
in Fig. 2.24. It was shown that a/h = 1.1 at 25% of applied strain and a/h = 1.14 at 35%
applied strain. The small increase in penetration with large increase in strain is consistent
with experimental observations and quantifies the close relationship between the thickness
of the h-PDMS film and the depth of the generated crack.

The use of h-PDMS as the brittle layer instead of the conventional oxidized PDMS or
deposited metal films provides advantages of both better defined crack depth and wider
range of crack sizes. The wider range of crack sizes answers the challenges existing in
defining micron-scale dimensions of cracks in bilayer material systems. Because the h-
PDMS film can be prepared by spin-coating, the film thickness is better controlled com-
pared with the oxidized PDMS. The toughness mismatch between h-PDMS and PDMS
is large enough to generate stable crack arrays at relatively low strains, yet the modulus
mismatch is small enough to strongly localize the cracks to the h-PDMS layer. It was re-
ported by Mills that the modulus of oxidized PDMS is between 7 and 13 times larger than
the modulus of the substrate, and that the toughness of oxidized PDMS was estimated to
be approximately 60 mJ/m2. h-PDMS is less stiff and less brittle than oxidized PDMS.
This explains why the cracking behaviors are different for the two materials. It is inter-
esting that the controlled cracking works better with the material combination of h-PDMS
and PDMS. Increasing the applied strain only widens existing cracks which are propagated
from the geometrical features instead of initiating more cracks. The hyperelastic defor-
mation of substrate material is more energy favorable than initiating more cracks. This
interesting interaction between the film and substrate materials suggests a broader future of
controlled cracking as fabrication techniques given more new materials are discovered.

2.5 Conclusions

The stochastic nature of flaws affects the formation of crack arrays in linear-elastic sys-
tems through the fact that the energy-release rate for channeling a crack depends on its
distance to nearest longer neighbors. This introduces a statistical aspect of crack lengths
to the problem, even if all the flaws are long enough so that the energy-release rates are
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insensitive to their lengths. This is a different effect from the more usual assumption (used
in Weibull statistics, for example) that the statistics of crack lengths enter fracture problems
directly through the dependence of energy-release rate on crack length. These two aspects
of the effects of statistics on cracking give rise to two distinct approaches for controlling
the formation of crack arrays: one relies on maintaining a sparse density of flaws, the other
is more general and applies to systems with fairly extensive flaw populations.

Controlled arrays can be generated in a system with very small flaws by introducing
sharp geometrical features that can trigger crack channeling from small defects at points of
high stress concentrations. While there can be considerable latitude for the range of strains
that can be used, this strain has to be relatively high, and the strategy is not stable against
any accidental introduction of additional large defects. The control of the crack array using
this strategy is very sensitive to the details of the strain enhancement. The physics behind
this proposed strategy seems to be consistent with the reported observations concerning
controlled crack patterns in a silicon nitride film deposited on a silicon wafer [4]. In that
paper, evidence was given that the crack patterns could be controlled but the details of the
stress concentrators used to trigger cracks were important. There was also evidence that
the system failed occasionally, with dense random arrays being generated.

Controlled arrays can also be generated in systems with relatively large defect popula-
tions by introducing geometrical features. The role of these features is to project the tips
of some flaws well beyond the others at well defined points where channeling is desired.
These cracks propagate first, when the appropriate strain conditions are met. Since the
features only need to project the tips of some flaws, less stringent conditions are placed on
their sharpness than on the features discussed in the previous paragraph. However, the de-
sign of the system requires a tight coupling between the material properties of the system,
the geometry, and the applied strain used to generate the crack arrays. A small difference
in modulus between the film and substrate allows only relatively close crack spacings to
be obtained reliably. A large difference in modulus mismatch, which can be accompanied
by cracking of the substrate, allows a larger range of crack spacings, and a larger range of
strains over which the spacings can be matched correctly.

This strategy of strain matching for both the small and large modulus mismatch is con-
sistent with observations on the formation of controlled crack patterns on oxidized PDMS
and in gold films deposited on PDMS [7]. This system has been used as the basis for fabri-
cating tunable nano-channels used for confining DNA and chromatin [2]. It is believed that
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the strategy outlined in this paper can be used to ensure uniform arrays, so that at a given
strain all the channels in an array will have similar dimensions. One question that might
arise is whether the cracks in an initially uniform array will close in a uniform fashion, or
whether some cracks might collapse before others. In this regard, it should be noted that
the appropriate toughness for healing these arrays (corresponding to a physical attraction,
such as van der Waals) will be much lower than the toughness associated with crack for-
mation. Therefore, the arrays that form are very sparse compared to the natural spacing
that would correspond to the toughness appropriate for the healing process. This means
that the cracks will not interact with one another until the applied strain has been relaxed
to very low levels, and the closing of the nano-channels should be effectively uniform until
the system is almost completely strain free. This is consistent with optical observations in
these systems, and suggests that once formed, uniform crack arrays in compliant systems
should provide repeated consistent opening and closing cycles if required.
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CHAPTER 3

The closure of liquid-filled cracks

3.1 Introduction

Nano fluidic channels fabricated by cracking of a thin film supported on elastic substrates
are used for biological applications including single DNA and chromatin analysis [1–3, 6],
cell patterning [16, 38, 39], and biomimetic systems [40]. The fabrication of this type of
nanochannels is fairly easy and cost-effective, where an array of parallel channels are cre-
ated by applying tension to an layered structure. The channel can narrow upon subsequent
relaxation of the applied tension. The reliability of the fabrication technique is greatly
enhanced by recent research of controlled cracking using microstructures to precisely ini-
tiate and propagate cracks at desired locations [7, 41], enabling parallel analysis of large
amount of samples in identical conditions. Narrowing the channels provide finer confine-
ments accompanied by nano-scale squeezing flow which are especially favorable for DNA
and chromatin linearization [2]. Characterization of the narrowing channels is therefore
desired to better understand DNA and chromatin behaviors in the channels and to develop
optimal channel operation parameters.

Because the channels are nano-scale three-dimensional structures beneath the surface,
characterization is difficult. Scanning electron microscopy (SEM) and laser confocal mi-
croscopy were used in reference to measure surface cracks [1, 2, 7]. The results provide
some reference for the shape and size of tunneling cracks but fail to reflect the real profile
of liquid-filled nanochannels. An electrical-impedance method was used to approximate
the average cross-sectional area of tunneling cracks. The accuracy of this method is greatly
affected by the choice of model and ion depletion during the experiment [2,3]. Cheng et al.

used photoactivated localization microscopy (PALM) to perform super-resolution imaging
of nanochannels [42]. While it provides higher-resolution images, the method is limited to
two-dimensional and cannot track the time-dependent narrowing process, because it takes
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average of signals over time. Therefore, we need to utilize computational methods to under-
stand the time-dependent narrowing of asymmetric nanochannels in thick elastic substrate
and filled with viscous substances.

The nanochannels of our interest have thick channel walls as they are embedded in
thick elastic substrates with channel spacings between one to two orders of magnitude big-
ger than channel widths. [2, 7, 42] Fluid flow is driven by the remote compression and the
deformation of the elastic channel wall. Literature of flows driven by the deformation of
an elastic channel or tube can be found in the transportation of bio-fluids [43–46], and
membrane-activated microfluidic pumps [47–50]. The existing analyses place more focus
on the flow while the motion of the channel wall is always prescribed. In our previous
analyses, we assumed uniform prescribed wall displacements and estimated the flow in
narrowing cylinders to be of an elongational shear type [2]. However, it was observed by
Cheng et al. [42] in experiments that the channels narrow first near the exit. The wall mo-
tion actually relies on the interaction between the fluid flow and the thick elastic substrate.
This important aspect is neglected when deformation is prescribed. Another group of re-
lated research examine collapsible tube in artery stenosis [51–53], where the flexible tube
is connected to rigid tubes at the ends and is usually modeled as a compliant thin-shell. In
our problem, the wall movement is determined by the interaction between the stress field
in the thick channel wall and the fluid flow. For this reason, assuming small-scale defor-
mation, we can use theory of elasticity to solve the stress field in the channel wall and
displacements at the interface between the channel and fluid.

The structure of this chapter consists of three parts. First, the channel flow under uni-
form prescribed radial displacements is discussed. The second part contains analyses for a
thick-walled axisymmetric tube that is filled with liquid and subjected to external compres-
sion. We study the non-uniform narrowing of the tube initiated from the exit of the tube and
proceeding towards the center of the tube. Optimal operation parameters to avoid partial
collapses are suggested, which agree with the empirical approaches suggested by Matsuoka
et al. [2] In the third part of this chapter we discussed how the shape and dimensions of an
elliptical channel in thick substrates evolve for both cases of channel opening and channel
narrowing.
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3.2 Flow of a contracting liquid cylinder

As the channel narrows, the liquid is squeezed out of the channel generating a flow. A sim-
plified model of the squeeze flow includes a slender axisymmetric liquid cylinder of fluid
subjected to uniformly decreasing radius. Here we use the asymptotic procedures reported
by Schultz [54] to calculate the flow rate. In the calculation, the cylinder is assumed to
be of length L, outer radius A, and has a viscosity µ and density ρ. The outer radius A

decreases with time, T . Depending on the details of the method to narrow the cylinder,
different formulas can be used to describe the radius. In the experiment, the channels are
fabricated by tunneling cracking of a thin film sandwiched between thick elastomeric sub-
strates upon remotely applied strain as described in the previous sectors. The channels are
buried in thick elastic substrate and can be closed by relaxation of the applied strain. Two
different approaches were used to relax the applied strain resulting in different degree of
DNA linearization. One is the stepwise quick relaxation, where the strain is released in
multiple steps from 10% to 7%, 7% to 5%, 5% to 3% and 3% to 1%. We approximate
this type of closing with an outer radius decreasing linearly with time. Another is the com-
pletely collapsing the nanochannel in a single step with the outer radius of the liquid better
approximated with an exponential equation. Both methods are discussed below. Although
the details of the flow vary, they are in general of the same type – elongational shear flow.
We believe this flow facilitates the linearization of DNA and may have future applications
in manipulating macromolecules in nanochannels.

3.2.1 Flow of a linearly contracting liquid cylinder

We first consider the case of quick multi-step closing used in the experiment. The channels
are closed by partial relaxation of the strain and is held at the lower strain level for about
0.5 second. We approximate this closing condition with the radius decreasing at a fixed
rate K which is independent of time T , so that

A = Ai−KT, (3.1)

where Ai is the initial value at T = 0. This results in a flow with an axial velocity W and a
radial velocity U, and also leads to gradients in the pressure P. The system is isothermal
and gravity is ignored. The liquid is Newtonian and all fluid properties are constant. A
cylindrical coordinate system (R, Θ, Z) is employed.

The axial and radial coordinates can be scaled by L and Ai respectively, so that z =

46



Z/L, and r = R/Ai. The nondimensional radial and axial Velocities are u = U/K and
w = WAi/KL, respectively. Other nondimensional groups include the nondimensional time
t = T K/Ai, the nondimensional pressure p = PAi

3/µKL2, and the nondimensional outer ra-
dius a = A/Ai = 1− t. Two additional parameters that enter the calculations are the scaling
parameter ε = Ai/L, and the Reynolds number, Re = KAiρ/µ.

Using this nondimensionalizing scheme, the continuity and Navier-Stokes equations
can be expressed as:
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r

u +
∂w
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The boundary conditions for the problem of interest assuming symmetry about z = 0,
are:

w = 0 on r = a,

u = −1 on r = a,

|u|, |w| <∞ on r = 0,
∂u/∂z = 0 on z = 0.

(3.5)

Since we assumed ε� 1, we can follow the perturbation method reported by Schultz
et al. [54] and write for all the dependent variables, φ,

φ = φo +ε2∂
2φ

∂a2 +ε4∂
4φ

∂a4 + O(ε6). (3.6)

Noting that in this case the scaling parameter ε only appears in even powers in the gov-
erning equations.

The inertial forces are assumed to be negligible, so that Re = 0. We then substitute
Eq.3.6 into the governing equations. Thus, to zero order in ε, equations 3.2 to 3.4 and
boundary conditions 3.5 become:
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wo = 0 on r = a,

uo = −1 on r = a,

|uo|, |wo| <∞ on r = 0,
∂u/∂z = 0 on z = 0.

(3.10)

Solving the partial differential equations Eq. 3.7to 3.9 with the boundary conditions 3.10,
it can be shown that the solutions for zero order in ε are:

uo = −a−3
(
2a2r− r3

)
, (3.11)

wo = 4za−3
(
a2− r2

)
. (3.12)

We then applied the same procedures for the higher orders of ε, and found that the solutions
for there were all equal to zero, so the zero-order solution is the full solution. Therefore, we
can state that the flow is an elongational shear flow, and has both radial and axial velocities.
From Eq. 3.12, we can see that at each axial location, the axial component of the flow has
a parabolic profile. An example of the streamline of the flow is shown in Fig. 3.1

The shear rate of the flow can be expressed as γ̇ = ∂u/∂z+∂w/∂r. Expressing the shear
rate with the dimensional groups gives |γ̇| = 8KZR/A3. Averaging the shear rate along
the length and the radius, the average shear rate can be shown to be given by |γ̇average| =

2KL/A2. Along the centreline of the cylinder (R = 0), the flow is purely elongational, with
an axial velocity of wo = 4z/a, and a strain rate of ε̇ = ∂wo/∂z. Expression of the strain rate
with the dimensional groups is given by ε̇ = 4K/A.

Although being an over simplified model of the flow in a narrowing channel, it provide
a good connection to many of the experimental observations. First, we examine the shear
rate and the strain rate of the flow because they affect the linearization of macromolecules
in the flow. To estimate the strain rates of the flow in a narrowing channel, the dimensions
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Figure 3.1: An example of streamline of the flow in a cylinder with uniformly decreasing
radius.

of the channel were calculated from electrical impedance measurements taken across the
nanochannel array [1]. The cross-sectional area was found at different strain levels. The
equivalent radius of the channels and the strain rates are listed in Table 3.1. When the
squeeze flow is used to linearize DNA, the effect is evaluated by two parameters derived
from the strain rates. One is the accumulated strain (Hencky strain) which is define by
multiplying the strain rate by the residency time of the molecule in the flow. The other
is the Weissenberg number (Wi) which is defined as the product of the average shear rate
and the DNA relaxation time [2]. The Hencky strain and Weissenberg number at different
levels of strain are also listed in Table 3.1.

We found that λ-DNAs were extended up to 97% of its contour length during multiple
steps of quick closing by releasing the strain from 10% to 1%, as shown in table 3.1. The
nearly full linearization of DNA was due to both the confinement provided by the small
sizes of the channels of around tens of nanometers and the squeeze flow. We estimated
a Henckey strain of 8 which is comparable to the strains reported by Perkins et al. re-
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Table 3.1: Values of the equivalent radius of nanochannels, strain rate, shear rate, Weis-
senberg number and Hencky strain during each closing conditions

Strain A (nm) ε̇ (s−1) γ̇ (s−1) Wi Hencky Strain
10% 68.7 NA NA NA NA

10% to 7% 38.5 6.26 1.22E4 4.37E4 3.13
7% to 5% 22.5 5.71 1.91E4 2.88E4 5.99
5% to 3% 17.9 2.02 8.45E3 9.03E3 7.00
3% to 1% 14.8 1.67 8.42E3 6.78E3 7.83

quired to achieve 80% extension of λ-DNA with a purely elongational flow [55]. The
strain rates are strongly dependent on the details of the relaxation procedure of the applied
tensile strain. Rapid relaxation of the applied tensile strain results in higher rates of the
flow, which are desirable. It was also found that relaxation of the applied strain in a se-
ries of rapid increments with a brief hold between them gives higher yields of linearized
DNA than completely collapsing the nanochannel in a single step. The nanoconfinement
combined with the high rates of elongational shear flows enabled the DNA linearization
to nearly full extent. We also estimated the fluid velocities to be around 300µm/s in the
multistep quick narrowing procedure. By measuring the velocity of quantum dots in chan-
nel during the nanoscale squeezing flow, the flow velocity was estimated to be 40µm/s.
The lower speed of the quantum dots may be because of the relatively large size (diameter
20nm). It is therefore expected that the fluid flow itself should have a higher speed [2].

3.2.2 Rapid collapse of liquid cylinder

In the case of full relaxation of the applied strain in single step, the outer radius is better
approximated by

A = Aie−T/Ts . (3.13)

The normalization is similar to that in the previous section, with the velocity scale K re-
placed by Ai/Ts, such that u = U/(Ai/Ts), w = WTs/L, and p = PA2

i Ts/µL2. The nondi-
mensional outer radius a = e−t, and the Reynolds number, Re = A2

i ρ/µTs.

By solving the Navier-Stokes equations with the boundary conditions, we can get that

u = −
(
2r + e2tr3

)
, (3.14)

w = 4z
(
1− e2tr2

)
. (3.15)
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We can see that the flow is very similar to that in the previous section. It is an elon-
gational shear flow with bigger flow rates. However it is not as good when used for DNA
linearization. Not only the DNAs are not extended to the same high degrees, the channels
are collapsed locally leaving pockets of fluid trapped in the channel. We will discuss about
the liquid entrapment in latter sections.

3.3 Axisymmetric thick-walled tube

To examine the problem of an elastic thick-walled channel with a fluid core, we first neglect
the details of the channel shape and consider a more general 3D axisymmetric problem of
an elastic tube with an inner radius of R1, an outer radius of R2, and a half length of L,
where the tube length is much greater than the other two dimensions. Since the problem
is symmetric about the center of the tube, half of the geometry is considered, as shown in
Fig. 3.2(a). The tube is held expanded by applying a uniform traction of σo on the external
surface as shown in Fig. 3.2(b). Cylindrical coordinates of r, θ,z are employed. The radial
and hoop stresses in a thick-walled tube are described by the Lamé equations:

σrr = C1 +C2/r2

σθθ = C1−C2/r2 (3.16)

where C1 and C2 are constants which can be discovered from the boundary conditions, and
r is the radius at the point of interest.

The tube is made of an incompressible elastic material with a modulus of E and a Pois-
son’s ratio of ν = 0.5. The fluid is incompressible, and has a viscosity of η.

While the tube is held expanded, it is filled with fluid and a static state is reached. The
fluid has a reference pressure as the ambience of Po. Then the applied tension is unloaded
incrementally to zero (Fig. 3.2(c)). During unloading, the tube tends to return to its original
relaxed state, with the radii decreasing and tube length elongating. However, it is impeded
by the existence of the fluid core. Considering a thin slice of the cylinders, the stresses are
relaxed slowly enough that fluid flow can occur in the cross-section of the tube, and equilib-
rium is maintained in the fluid. A uniform hydrostatic pressure of P is built up throughout
the fluid at a given cross-section. The cylinders have no net axial tension at a cross-section,
and plane sections remain plane, which is referred as plane the displacement condition in
the following analysis. The hydrostatic pressure of P is much greater than the reference
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Figure 3.2: A schematic of the axisymmetric model. (a) A tube has an inner radius of R1,
an outer radius of R2 and a half length of L. The specimen is symmetric about the center
so half of the geometry is studied. The origin is located at the intersection of the z axis
and the plane at the exit. (b) A uniform tensile traction σo is applied on the outer surface
of the tube resulting in increases in the inner and outer radius. Then the tube is filled with
fluid that has a reference pressure of Po. (c) The applied traction is fully relaxed, resulting
in a fluid pressure of P, which is much greater than Po, built up in the core. (d) The fluid
flows out of the tube driven by the difference between the fluid pressure and ambience. The
fluid pressure P decreases during this process and its reduction accompanied by change in
dimensions of the tube. The tube tends to restore its initial shape as P approaches the
ambient pressure Po.

pressure, Po, so that Po can be neglected. Driven by the pressure difference between within
the fluid core and the ambience, the fluid flows until the stresses are fully relaxed and the
tube restores its original closed shape, as shown in Fig. 3.2(d). In the following sections
we discuss each stage of the process in details respectively.
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3.3.1 Axisymmetric channel opening

The tube is expanded by applying a uniform tension to the outer surface of the tube. Con-
sider a thin slice of the cylinder of length δL, with an inner radius of R1, during the process,
it is opened in the plane displacement condition. This problem can be analyzed using linear
superposition of two sets of boundary conditions. The first set of boundary conditions are
plane strain. The second set of boundary conditions include applying a tensile stress to
satisfy the condition of zero net axial force.

The plane strain boundary conditions are:

σrr = σo , at r = R2 ;

σrr = 0 , at r = R1 ;

εzz = 0 . (3.17)

Solving the Lamé equations with these boundary conditions, we can get C1 = k2σo/(k2−

1) and C2 = −k2σoR2
1/(k

2 − 1), where k = R2/R1. Using Hooke’s law in plane strain, the
axial stress is solved. The stresses in plane strain are given by

σrr =
k2

k2−1

1− R2
1

r2

σo ,

σθθ =
k2

k2−1

1 +
R2

1

r2

σo ,

σzz =
k2

k2−1
σo .

Integrating this stress over the tube cross-section area leads to a non-zero axial tension of

Fz = πR2
1k2σo . (3.18)
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The strains under plane strain are :

εrr = −
3σo

2E

k2R2
1(

k2−1
)
r2 ,

εθθ =
3σo

2E

k2R2
1(

k2−1
)
r2 ,

εzz = 0 . (3.19)

To get the net axial force to be zero, a compression of the same magnitude as the tension
calculated above is applied to the cylinder. The boundary conditions are:

σzz = −
k2

k2−1
σo , (3.20)

and all the other stresses are zero.

Using Hooke’s law, the strains in this condition are

εrr =
σo

E
k2

2(k2−1)
,

εθθ =
σo

E
k2

2(k2−1)
,

εzz = −
σo

E
k2

k2−1
, (3.21)

By linear superposition, the final stress and strain fields during the channel opening
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process are:

σrr =

 k2

k2−1
−

k2

k2−1

R2
1

r2

σo ,

σθθ =

 k2

k2−1
+

k2

k2−1

R2
1

r2

σo ,

σzz = 0 ,

εrr =
σo

E

 k2

2(k2−1)
−

3k2

2(k2−1)

R2
1

r2

 ,
εθθ =

σo

E

 k2

2(k2−1)
+

3k2

2(k2−1)

R2
1

r2

 ,
εzz = −

σo

E
k2

k2−1
, (3.22)

For the thin slice of cylinder considered, the inner radius and length are changed by:

∆R1

R1
=

2k2σo

E(k2−1)
,

∆δL
δL

= −
σo

E
k2

k2−1
.

The core volume for a cylinder is V = πR2
1δL. Therefore change in the core volume is

given by
∆V
V

= 2
∆R1

R1
+

∆δL
δL

. (3.23)

During channel opening, the change in core volume is:

∆V
V

=
4k2σo

E(k2−1)
−
σo

E
k2

k2−1
. (3.24)
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3.3.2 Initial narrowing during relaxation of the applied tension

At the end of channel opening (Fig. 3.2(b)), the tube is expanded uniformly in the radial
direction. Fluid fills the tube and is at rest, with a reference pressure Po as the ambience.
The applied traction σo is then relaxed incrementally. As stated before, the increments
were slow enough that fluid can flow in a cross-section of the cylinder, and an equilibrium
is always maintained in the fluid. Plane sections remain plane, and no net axial tension at a
section. Since the fluid is incompressible, the volume of the fluid core remains constant.

The problem can also be analyzed as a superposition of two sets of boundary condi-
tions, of which one being plane strain, and the other being no net axial force.

The plane strain boundary conditions are:

σrr = 0 , at r = R2 ;

σrr = −P , at r = R1 ;

εzz = 0 . (3.25)

Using Lamé equations and Hooke’s law with the above boundary conditions, the stresses
and strains are

σrr =
P

k2−1
−

PR2
2

r2(k2−1)
,

σθθ =
P

k2−1
+

PR2
2

r2(k2−1)
,

σzz =
P

k2−1
,

εrr = −
3P
2E

R2
2

r2(k2−1)
,

εθθ =
3P
2E

R2
2

r2(k2−1)
,

εzz = 0 . (3.26)

It can be found that the axial stresses calculated from the plane strain conditions satisfy
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that the axial tension in the elastic tube to be πR2
1P. This combined with the hydrostatic

fluid pressure of P, leads to a net axial force of zero at a section. So the calculations are
completed for both sets of boundary conditions. The inner radius and length of the slice of
cylinder are changed by:

∆R1

R1
=

3P
2E

k2

k2−1
,

∆δL
δL

= 0 . (3.27)

And the change in core volume is

∆V
V

=
3P
E

k2

k2−1
. (3.28)

Equating the change in volume as in Eqn. 3.24 and 3.28, the fluid pressure is solved to
have the same value as σo. Upon full relaxation of the applied tension, the fluid cylinder
core has a pressure of P = σo and a radius of R = R1(1 + 3Pk2/2E(k2−1). This provides
the initial condition for the following analysis of viscous flow of the core.

3.3.3 Viscous flow of the core

Now that the fluid has a uniform hydrostatic pressure of P that has an initial value of σo,
the difference between the fluid pressure and ambience will drive the fluid to flow. Assum-
ing a no-slip boundary condition at the interface between the inner surface of the tube and
the fluid core, the stress and displacement in the radial direction are continuous across the
interface between the fluid and the tube. At a cross-section of the cylinder, the net axial
force is zero.

For the tube, reduction in the fluid pressure leads to further relaxation of stresses and
decrease in the radius. Using Lamé equations and Hooke’s law for a thick-walled cylinder
with an internal pressure of P that decreases from an initial value of σo and no net axial
force for the tube and the core, the relationship between the displacement of the inner
surface of the tube and the fluid pressure is of the form:
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∆R
R1

=
3k2

2
(
k2−1

) P−σo

E
, (3.29)

where ∆R designates the change of the inner radius of the tube.

Fluid flow will first initiate at the ends of the tube, where it is driven by the difference
between the pressure within the tube and the ambience. Assuming a very long tube, when
the flow is first initiated, the fluid located close to the center of the tube is without a pressure
gradient and is still static. Once the fluid flows, the local pressure decreases and the local
interface radius decreases according to Eqn. 3.29. Thus, the fluid pressure P is a function
of location and time. Correspondingly, the interface radius is also a function of location
and time. A continuous pressure gradient is built up gradually along the length of the tube.
As a result, the tube narrows gradually from the exit towards the center.

Within a small length of the tube, the change in the inner radius is negligible, thus the
local flow driven by the pressure difference can be described by a Poiseulle flow, whose
volumetric flow rate follows:

Q̇(z) = −
πR4

1

8η
∂P
∂z

, (3.30)

where z is the axial distance along the cylinder measured from the end of tube, and Q̇(z) is
the volumetric flow rate.

By mass conservation we have

2πR1dRdz = −Q̇(z)dt (3.31)

Substituting Eqn. 3.30 and 3.31 into Eqn. 3.29, with the variables normalized as: τ = Et/η,
ψ = R/R1, ζ = z/R1 , where R designates the current inner radius of the tube. With ζ = 0 at
the exit of the tube, we can get

∂ψ

∂τ
=

k∗

16
∂2ψ

∂ζ2 , (3.32)

where k∗ = 2(k2−1)/3k2. The radius of inner surface is a function of axial location and time,
ψ = ψ(ζ,τ). The equation has the form of a diffusion equation. Assuming an infinitely long
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tube, by separation of variables, the general solution for the inner radius is in the form of:

ψ(ζ,τ) = 1 + K1 erf
(

2ζ
√

k∗τ

)
, (3.33)

where K1 is the maximum collapse of the interface when the fluid is fully relaxed and the
flow completely ceases, which is given by K1 = ∆ψmax = 3σok2/2E(k2−1).

An equivalent form of Eqn. 3.33 is:

∆ψ

∆ψmax
= erfc

(
2ζ
√

k∗τ

)
, (3.34)

where erfc is the complimentary error function, and ∆ψ/∆ψmax is the degree of interface
collapse. At the exit of the cylinder, the interface very quickly collapses by a significant
amount. Then the interface gradually narrows with the front of the interface collapse mov-
ing from the exit to the center.

If we define a front of collapse as ∆ψ/∆ψmax = 50% after the initial uniform collapse.
From equation 3.34, we can get

ζ = 0.238
√

k∗τ , (3.35)

showing the distance that the collapse front travel as a function of time. This front travels
faster in a system with a thicker elastic wall. For a system with an infinitely large outer
radius, the factor k∗ approaches 2/3.

The analytical solution of the profile of inner surface of the tube can be obtained from
Eqn. 3.35. However it should be noted that the derivation of this equation is based on the
assumption of an infinitely long tube. For a tube with finite length, Eqn. 3.35 is no longer
valid, while Eqn. 3.29, 3.30, and 3.31 provide a non-closed form solution. Numerical
calculation on the basis of this non-closed form solution is used to predict the real-time
channel profiles for tubes with finite lengths. The channel is segmented into thin slices of
small length δL as shown in Fig. 3.3. It is approximated that the j-th element has a uniform
pressure of P j and a radius of R j, where P j and R j are related by Eqn. 3.29. The pressure
gradient at the exit of the channel is calculated by dividing the pressure of the first element
by δL. Inside the channel, the pressure gradient in the j-th element is (P j+1−P j)/δL. The
volumetric flow rate at each element driven by pressure gradient can be determined using
Poiseuille equation. The corresponding deformation at each time step is then calculated by
Eqn. 3.31 and iterated over time.

59



r 

θ 

z 

r 

z 

δL 

Pj+1 Pj 

Rj …… 

Figure 3.3: A schematic showing the model used in the numerical calculation for channel
narrowing, where a long concentric cylinder is segmented into thin slices. Each slice has
a length of δL,and a radius of R j, which has an initial value R j(0) = R1o + ∆R1I + ∆R1II

calculated in the previous section. The pressure in each slice, P j has an initial value of σo.
Equation 3.29, 3.30, and 3.31 are used to calculate the time-dependent profile of the inner
surface of the tube.
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Fig. 3.4 shows the channel profile calculated analytically for an infinitely long tube
within a length of z/R1 = 1000, and numerically for the case of L/R1 = 1000. In both cases,
k∗ = 2/3 and σo/E = 0.01. It can be found that before the center of the tube starts to close,
the analytical results and numerical results display excellent agreement. However, after the
center of the tube starts to narrow, only the numerical solution is valid for a tube with finite
length. For example, the numerical solution satisfies the zero pressure gradient at the center
of the tube which is required by the boundary condition of symmetry. The results also show
that a tube with finite length can close almost fully within finite time. A cartoon based on
the calculated channel profile is shown in Fig. 3.5 demonstrating the gradual narrowing
process.
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Figure 3.4: Profile of the inner surface of a circular channel with infinite wall-thickness at
different times. The analytical solution for an infinitely long tube agrees with the numerical
solutions prior to the center of the tube starts to collapse. To predict the gradual collapse,
especially the complete collapse of tubes with finite lengths, numerical calculation based
on the non-closed form solution is needed.
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Figure 3.5: A cartoon based on the numerical calculation showing liquid-filled thick-
walled tube narrows gradually from the exit towards the center upon applied remote com-
pression. Local Poiseuille flow is driven by the pressure gradient. The shape change and
dimensions are exaggerated and do not reflect real data.

3.4 Elliptic channel in thick substrates

The channels fabricated by tunneling cracking of layered structures can be modeled by el-
liptic channels in infinite elastic body, since the channel width and depth are much smaller
than the crack spacing and the thickness of the substrate [2,7]. We assume that a channel in
the closed state has an elliptic cross-section with a major radius of ao, a minor radius of bo,
and a half length of Lo, where Lo is much larger than ao and bo. The process is very similar
to the previous case of axisymmetric tube, except that the channel is opened by applying
a remote uniaxial tension of σo in the direction of the minor radius instead of a uniform
traction in all directions. While the channel is held in the opened state, it is filled with
fluid. Then the applied tension is relaxed in increments to narrow the channel, resulting
in a pressure built up in the fluid, which will later drive the fluid to flow until the channel
returns to the original closed state. The process is depicted in Fig. 3.6, where a quarter of
the model is shown given the symmetry of the geometry.

The same notations as in the previous section of axisymmetric problem are used in this
section. The elastic body is made of an incompressible elastic material with a modulus of
E and a Poisson’s ratio of ν = 0.5. The fluid is incompressible and has a viscosity of η.
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Hydrostatic pressure P P Po ≈ 0

ao
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Figure 3.6: (a) The elliptic channel has initial sizes of ao and bo. (b) A remote tension of
σo is applied to open the channel to sizes of aI and bI. While the channel is held open, it
is filled with fluid that is static with a reference pressure as the ambience of Po. (c) The
applied tension is relaxed in increments to zero, resulting in a fluid pressure of P. The cross-
sectional area remains the same satisfying mass conservation, while the two radii change
to aII and bII. This is the initial state from which flow occurs. The dimensions in the
schematics are exaggerated for ease of visualization and do not reflect the real dimension
changes.(d) The fluid pressure is fully relaxed and the channel restore the initial shape as
(a) while it is filled with fluid.

The general solution for stresses in an infinite plate with an elliptic hole was provided by
Inglis [36], where the stresses were expressed in the form of infinite series with parameters
An and Bn. Cartesian coordinates with x and y aligned with the major and minor radius
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respectively are transformed to curvilinear coordinates α, β by:

x =

√
ao2−bo

2 coshαcosβ ,

y =

√
ao2−bo

2 sinhαsinβ , (3.36)

The surface of an elliptic hole is defined by α = αo = tanh−1 (bo/ao). The z-axis is in
the longitudinal direction pointing from the exit to the center. The stress and displacement
fields and the correspondent shape changes can be calculated based on different boundary
conditions. Comparing with the case of axisymmetric channels, the opening and narrow-
ing of elliptical channels are complicated by the shape change, which are addressed in the
following sections.

3.4.1 Elliptic channel opening

The first set of calculations were conducted for channel opening when the elastic body is
subjected to a uniaxial tension as shown in Fig. 3.6 (a)–(b). The boundary conditions are
remote tension of σo in the direction of the minor radius, zero stress in the longitudinal
direction and free surface at the surface of the ellipse. The parameters An and Bn for the
stress field in this condition were provided by Inglis [36], based on which the in-plane
stresses are:

σαα =
−σo

8(cosh2α− cos2β)2 {2e2α0 [1− cosh(2α−2α0)]cos(4β)

+ 2e2α0 [cosh(4α−2α0) + 3cosh(2α0)−4cosh(2α)]cos(2β)

+ 4cosh(2α0) sinh(2α)−2sinh(4α)−3e−2α+4α0 − e2α+ 4e2α0

− e2α−2e−2α−4e2α0} ,

σββ =
σo

8(cosh2α− cos2β)2 {−2e2α0 [1 + cosh(2α−2α0)]cos(4β)

+ 2e2α0
[
cosh(4α−2α0) + 3cosh(2α0) + 8e−2α−4e2α−2α0 + 4e−2α−2α0

]
cos(2β)

+ 4cosh(2α0) sinh(2α)−2sinh(4α)−3e−2α+4α0 −2e2α0−4α

−2e−2α+ 2e2α0−4α} ,

(3.37)
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Similar to the axisymmetric problem, the opening process of an elliptic channel in an
infinite body can also be analyzed by the superposition of plane strain conditions and no
net axial force. A thin slice of the elliptic channel of length δL, with the major and minor
axis of the ellipse being ao and bo respectively is in an infinite elastic body. The first set of
calculations are with plane strain boundary conditions. Using Hooke’s law with the above
in-plane stresses, the axial stress is

σzz =
σo

2

−e2αo +

(
e2αo + 1

)
sinh2α

cosh2α− cos2β

 . (3.38)

In order to evaluate the change in dimensions of the channel, displacements are calcu-
lated using the equations for strains provided by Inglis [36] as

εαα = h2 ∂u
∂α

+
u
2
∂h2

∂α
−

v
2
∂h2

∂β
, (3.39)

εββ = h2 ∂v
∂β

+
v
2
∂h2

∂β
−

u
2
∂h2

∂α
, (3.40)

where h is the scaling factor with

h2 =
2

c2 (cosh2α− cos2β)
. (3.41)

u and v are defined as

u = Xn[(n + p)e−(n−1)α cos(n + 1)β+ (n− p)e−(n+1)α cos(n−1)β] + Yne−nα cosnβ, (3.42)

v = Xn[(n− p)e−(n−1)α sin(n + 1)β+ (n + p)e−(n+1)α sin(n−1)β] + Yne−nα sinnβ, (3.43)

where p is related to the Poisson’s ratio ν, with p = 3−4ν in plane strain and p = (3−ν)/(ν+

1) in plane stress. Their relationships with the displacements in the normal and tangential
directions are:

u =
uα
h
, and v =

uβ
h
. (3.44)
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By Hooke’s law, we can relate Xn and Yn with An and Bn, with

An = 2nXn
E

3c2 , (3.45)

Bn =
2E
3c2 Yn+1. (3.46)

Substituting in the stresses in plane strain, the change in the major and minor radii in
plane strain are

∆a = −
3σo

4E
ao ,

∆b =
3σo

4E
(2ao + bo) . (3.47)

The average stress at any α can be obtained by integrating the axial stress derived above
in the interval of 0 ≤ β ≤ π/2, and from the standard integral of∫ π

o

dx
m1 + m2 cos x

=
π√

m2
1−m2

2

,
(
m2

1 > m2
2

)
. (3.48)

Thus the average axial stress under plane strain is

σ̄zz =
1
π/2

∫ π/2

0
σzzdβ

=
1
π/2

σo

2

∫ π/2

0

−e2αo +

(
e2αo + 1

)
sinh2α

cosh2α− cos2β

dβ

=
σo

2
. (3.49)

Since the average axial stress is constant at any α, the average stress in the cross-section
of the elastic body in the plane strain condition is σo/2. Now apply a uniform compression
ofσa =−σo/2 to get no net axial force. It should be noted that although the final axial stress
in the elastic body is dependent on β and α, the net force is zero, and the displacements will
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be plane. Using Hooke’s law, the strains resulted from the uniform compression are:

εαα = εββ =
σo

4E
,

εzz = −
σo

2E
. (3.50)

Thus in this condition, the changes in the major and minor radii of the elliptic channel
are

∆a =
σo

4E
ao ,

∆b =
σo

4E
bo . (3.51)

Combining the results from both conditions, the displacements are

∆a = −
σo

2E
ao ,

∆b =
3σo

2E
ao +

σo

E
bo , (3.52)

and
εzz = −

σo

2E
. (3.53)

Now we calculate the volume change of the core. For a slice of elliptical core of length
δL, with major and minor radius of ao and bo, the volume is V = πaoboδL. Therefore the
change in volume is given by

∆V
V

=
∆a
ao

+
∆b
bo

+
∆δL
δL

. (3.54)

During channel opening, using the displacements calculated above, the change in core
volume is

∆V
V

=
3σo

2E
φo , (3.55)

where φo is the aspect ratio of the channel, with φo = ao/bo.
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3.4.2 Initial narrowing upon relaxation of the applied tension

Similar to the axisymmetric case, while the channel is held open, it is filled with fluid. Then
the applied tension is relaxed in increments, tending to narrow the channel to a smaller
cross-sectional area. The same assumptions are made for the fluid, that is the fluid can flow
in a cross-section, and an equilibrium is maintained in the fluid. The fluid has a uniform
hydrostatic pressure, and the volume of the fluid core remains constant.

The first set of calculations are for plane strain condition when an infinite elastic body
is subjected to an internal pressure of P

σαα = −P , ταβ = 0 ,at α = αo ;

σαα = 0 ,at α =∞ ;

σββ = 0 ,at α =∞ ;

ταβ = 0 ,at α =∞ ;

εzz = 0 . (3.56)

Using the equations for the stress and displacement field provided by Inglis [36] and
the above boundary conditions, the stresses are solved as:

σαα = −
P

4(cosh2α− cos2β)2

(
2cos4β−8cos2βcosh2α+ 4 + 2e−4α+

sinh4αo

sinh2αo
2sinh2α

)
,

σββ = −
P

4(cosh2α− cos2β)2

(
2cos4β−8e−2α cos2β+ 4 + 2e−4α+

sinh4αo

sinh2αo
2sinh2α

)
,

ταβ =
P

2(cosh2α− cos2β)2

(
2sin2βcosh2α+

sinh4αo

sinh2αo
2sin2β

)
,

σzz = −P
(
1−

sinh2α
cosh2α− cosβ

)
. (3.57)
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The change in major and minor radii of the channel are:

∆a =
3P
2E

bo ,

∆b =
3P
2E

ao . (3.58)

Using the same method as in the previous section, the average axial stress at any α is

σ̄zz =
1
π/2

∫ π/2

0
σzzdβ

=
−P
π/2

∫ π/2

0

(
1−

sinh2α
cosh2α− cos2β

)
dβ

= 0 . (3.59)

The axial stress on the surface due to the internal pressure in the plane strain condition
is zero. To get the net load at a section be zero a stress of σa should be applied, which is
given by

σa = 0 +
Pπaobo

Asub
, (3.60)

where Asub is the cross-section area of the elastic body which approaches infinity. There-
fore this applied stress is negligible, and the solutions are plane strain.

The change in the core volume is given by

∆V
V

=
3P
2E

(
φo +

1
φo

)
. (3.61)

Equating the volume change in Eqn. 3.61 and 3.55, the fluid pressure is related to the
applied tension by

P =
3φ2

o

3φ2
o + 1

σo. (3.62)
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Upon full relaxation of the applied tension, the fluid pressure P approaches the value of
σo in channels with very high initial aspect ratios, and P approaches the value of 3σo/4 in
channels whose aspect ratio approaches one.

After the fluid pressure is built up, the major and minor radii of the channel are:

aII = ao +
3P
2E

bo ,

bII = bo +
3P
2E

ao . (3.63)

3.4.3 Viscous elliptic cylinder flow

Att the end of last stage, a pressure of P is built up within the fluid. Driven by the pressure
difference between within the fluid and the ambience, fluid begins to flow out of the chan-
nel, relaxing the stresses while enabling the channel to close.

The fluid pressure P has an initial value of Pi that is given by Eqn. 3.62. Using the
above stress field, and the relationship between displacements and stresses provided by
Inglis [36], the change in major and minor radii of the channel are related to the fluid
pressure by:

∆a = −
3Pi−3P

2E
b ,

∆b = −
3Pi−3P

2E
a . (3.64)

Similar to the axisymmetric problem, flow in an elliptic pipe has a flow rate of

Q̇(z) = −
π

4η
∂P
∂z

(aobo)3

a2
o + b2

o
. (3.65)
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By mass conservation, we have

dAdz = Q̇dt . (3.66)
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Figure 3.7: A collapse front defined by ∆ρ/∆ρmax = 50% travels from the exit of the
channel towards the center. The collapse fronts are before the center of the channel starts to
collapse, such that they model the collapse front in an infinitely long channel. The collapse
front in an elliptic channel travels to the same order of time as in the circular channel.
As the original aspect ratio of the elliptic channel approaches one (indicating the elliptical
channel approaching a circular channel), the curve approaches the analytical solution for an
infinite axisymmetric tube. The narrowing of channels with higher aspect ratios is slower.

Unlike the axisymmetric case where we can get the analytical solution for the narrowing
process, the elliptic problem is complicated by the shape change. We adapted the numerical
model described in section 3.3.3 to the elliptic channel flow problem by incorporating all
the elements discussed above. The average radius of an ellipse is defined as ρ =

√
ab. This

is the equivalent for the radius in the axisymmetric case. The front of channel narrowing
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is defined by the relative change in the average radius as ∆ρ/∆ρmax. As discussed in the
previous section, the collapse front of a finite channel travels at the same speed as that
of an infinitely long channel before the center of the channel starts to narrow. Figure 3.7
shows that in an elliptic channel the collapse front travels to the same order of time as in
the circular channel. The elliptic channels used in the analysis were long enough so that
the tracked collapse fronts resemble those in infinitely long channels. Although the plot
in Fig. 3.7 was for a specific collapse front defined by ∆ρ/∆ρmax = 50%, it was found that
any arbitrary collapse front travels to the same order of time. Thus, a generalized form of
Eqn. 3.35 for the collapse front traveling in an infinitely long channel is in the form of

ζ = f1

(
φo,

∆ρ

∆ρmax
,
σo

E

)
√
τ , (3.67)

Because the shape of an elliptic channel changes with the applied tension, an extra term
of σo/E is introduced. In the axisymmetric case, σo/E does not affect the collapse front
because the channel shape is preserved. Representative values for f1 are plotted in Fig. 3.8.
As φo approaches 1, the curves approaches the analytical solution for circular channels with
infinite outer radius which is given by

√
1/6 erfc−1 (∆ρ/∆ρmax). The value of f1 decreases

as the aspect ratio increases, indicating the narrowing of channels with higher aspect ratios
is slower.

Figure 3.9 show the profiles of a channel with an initial aspect ratios of 100 at dif-
ferent times. Both major and minor radii decrease as the fluid pressure decreases during
the viscous flow. The aspect ratio of the channel increases, while the cross-sectional area
decreases as the fluid pressure decreases. An elliptic channel narrows towards a more
crack-like shape with a smaller cross-section during the viscous flow.
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Figure 3.8: Representative values of f1 as in Eqn. 3.67. The value of f1 decreases as φo
increases when the other to parameters are fixed, showing that the collapse front travels
more slowly in a channel with higher aspect ratio. The error bars on these plots correspond
to the numerical uncertainties associated with mesh size.

3.5 Discussion

The nonuniform narrowing of channels initiates from the exit of the channel and proceeds
towards the center of the channel. The degree of channel narrowing can be evaluated by the
percentage of channel narrowing of ∆ρ/∆ρmax. Since the channel was originally expanded
or opened by an applied tension, it will return to its original state upon full relaxation of
the applied tension assuming all deformations are elastic. The degree of narrowing is a
function of time and longitudinal location. The analytical solution for an infinitely long
axisymmetric tube was given by Eqn. 3.34. The numerical method introduced in the pervi-
ous sections enabled us to analyze the collapse of a channel with arbitrary cross-sectional
shape and length.

The motivation of the analyses was to understand the effect of nonuniform narrowing
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Figure 3.9 (a)

on the application of linearization of DNA and chromosome in the narrowing nannochan-
nels [2]. The channel used were fabricated by tunneling cracking of layered structures of
oxidized PDMS film between PDMS substrates. The channels have a half length of 500
µm and were opened by different values of applied tension up to 10%. It was believed
that the linearization of DNA was facilitated by the nanoconfinement and the nanosqueeze
flow generated during the narrowing process. It was measured by electrical-impedance
experiment that the most widely opened channels (at 10%) have an equivalent radius of
0.1µm [2]. The channel length is much bigger than the equivalent radius. By different as-
sumptions of original channel shape in the closed state, we can calculate the time required
for the center of such a channel to close by any given degree upon full relaxation of the
applied tension as shown in Fig. 3.10. It was shown that if the channels in the closed state
are more crack-like which is of higher aspect ratios, the time to reach full closure is longer.
Assuming the channel being in a homogeneous substrate of PDMS, which has a modulus
of E = 3 MPa, and the fluid being a water-based solution, the time constant η/E = 3×10−10

s, the time required for the center of a channel to reach 99% of closure can be as long as
0.6 hr. The difference of narrowing between the ends and the center of the channel can
be significant. Especially, when a high applied tension was fully relaxed, the significant
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Figure 3.9 (b)

dimension difference between the ends and the center may exhibit as partial collapse of the
channel with significant amount of fluid trapped in the channel [2].

Equation 3.35 shows that for an infinitely long channel, and a defined collapse front
of ∆ρ/∆ρmax, the distance that the collapse front travels and the time has a quadratic re-
lationship. This solution is not applicable for a channel with finite length or of different
cross-sections. By conducting the numerical calculations for channels with varied lengths,
the times required for the center of each channel to reach a defined degree of closure of
∆ρ/∆ρmax = 50% were plotted as functions of channel length as shown in Fig. 3.11. It
was found that the time and channel length also have a quadratic relationship with the time
related to the square of channel length.

3.6 Conclusions

In this study, we proposed a model for the time-dependent narrowing process of liquid-
filled channels. The narrowing is a result of relaxation of the applied tension that opened
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the channel. The non-uniform narrowing initiates from the ends of the channel and pro-
ceeds towards the center. The profile of the inner surface of the channel is dependent on
the longitudinal location and time. We first analyzed the general case of an axisymmet-
ric thick-walled tube and found an analytical solution for an infinitely long axisymmetric
thick-walled tube. The solution showed a quadratic relationship between the location and
time for a certain degree of channel narrowing to be observed in the form of Eqn. 3.33. A
numerical method was developed to discover the closure of a channel with finite length. It
was shown that a finite tube can close almost fully within finite time.

Elliptic channels in infinite elastic body were analyzed as a better approximation for
the channels fabricated by tunneling cracking used in the literature [1, 2, 7]. The stress and
displacement fields in the elastic body with an elliptic hole were analyzed, and a numerical
method was developed to determine the time-dependent closure of an elliptic channel with
finite length. It was found that channels that are more crack-like and with higher aspect
ratios in the closed state require longer time to close. The time required for the center of a
channel to close by a certain degree is related to the square of channel length.
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Figure 3.9: Profiles of channel with an initial aspect ratio of 100 at different times, showing
the channel restoring its original closed shape. The major radius (as in (a)) and minor radius
(as in (b)) decreases as the fluid flows. They are both smaller near the channel exit. (c) The
aspect ratio increases as the fluid flows. (d) The cross-sectional area decreases.

The time scale for a cylindrical or elliptical channel in elastic body to close upon full
relaxation of the applied tension was estimated. While the ends of the channel close almost
instantaneously, the center of the channel requires much longer time to close given the rel-
atively long length of the channel compared with the other two dimensions. This could be
one of the limitations to use extensively long channels for applications of DNA lineariza-
tion. The analyses and numerical method described in this paper will be appropriate for
optimizing the operations to narrow a liquid-filled channel in elastic substrates.
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Figure 3.10: Time required for the center of a channel to collapse by certain percentage.
Channels with higher initial aspect ratio in the closed state requires longer time for the
center to collapse.
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CHAPTER 4

Healing of pores in polymer films

4.1 Introduction

The analyses in this chapter is motivated by the self-healing of Poly(lactic-co-glycolic
acids) (PLGAs). PLGA is one of the most used biomaterials today. Since they were
first patented in the 1960s, they have been approved by the Federal Drug Administra-
tion for use in sutures [56], cardiovascular stents [57–59], skin implants [60, 61] and a
plethora of drug delivery devices such as microparticals [9, 10, 12], patches [62], and in

situ forming gels [11]. Several characteristics make PLGAs attractive for medical applica-
tions. They have excellent biocompatibility and their degradation kinetics and mechanical
strength along can be easily tailored by altering molecular weight and monomer ratios. In
addition, glass-transition temperatures near body temperature result in desirable release be-
havior of drug-delivery systems, and in enhanced shelf-lives. Despite the prevalent use of
PLGAs, the associated scholarly literature rarely includes analyses of their material proper-
ties. There have been reports on the moduli of PLGA products, but very little work has been
reported on the underlying physics and mechanics of the deformation behavior. Therefore,
in the present work, we explore the constitutive properties of PLGA, with a focus on devel-
oping a model of the self-healing process in polymers.

Autonomous healing in polymers can be achieved by several different strategies. For
example, methods have been developed that rely on an encapsulated healing/filling agent,
either in pores or in micro-vascular networks [63–66]. Alternatively, in the absence of sig-
nificant tensile stresses, voids and cracks in many materials can heal as a result of creep /
viscous flow driven by surface tension. This process requires no chemical modification of
the material, and relies only on the temperature being sufficiently elevated to ensure flow.
This phenomenon can occurs in many different applications from self-healing automotive
paints [63], to erasable data storage [67]. The major use of self-healing in PLGAs, is as an
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aqueous-based micro-encapsulation method for bio-macromolecules [12].

Porosity can be introduced in PLGAs as a result of phase transitions and associated
density changes during curing [68]. In particular, pore networks in PLGA micro-particles
can be created by the control of osmotic pressure differences induced by changes in the
internal and external environments. Healing of these pores is critical for the quality of the
encapsulation and release of drugs and peptides [12,69]. The healing process was explored
in a series of model experiments by Mazzara et al. [14] using controlled pores that had
been artificially introduced into the surface of PLGA films by blunt-tip micro-needle ar-
rays. These experiments showed empirically that the healing times were controlled by the
visco-elastic properties of the PLGA. In this present paper, we extend this work by devel-
oping a finite-element model for pore healing. This model assumes that healing proceeds
by viscous flow that occurs in response to a deviatoric stress field induced by the surface
tension and curvature of the pores. This model can be used to describe pore healing in
terms of the temperature and geometry.

4.2 Constitutive models for a linear polymer

The simplest representation of a linear visco-elastic material is known as a Maxwell model.
The constitutive behavior corresponding to such a model can be represented by a spring
(with a modulus of Em) in series with a dashpot (with a viscosity of ηm). The dashpot
represents a single thermally-activated mechanism for flow, so the viscosity is of the form

ηm = ηmoeQm/RT (4.1)

where Qm is the activation energy of the relaxation mechanism leading to flow, R is the
molar gas constant, T is the absolute temperature, and ηmo is a material constant. The
characteristic relaxation time of a Maxwell model is given by

τm = ηm/Em = τmoeQm/RT (4.2)

A time-dependent modulus, E(t) can be defined for a polymer as the ratio of the stress at a
given time t that results from a fixed strain:

E(t) = Eme−t/τm (4.3)
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The fully-relaxed modulus, which is the time-dependent modulus as t→∞, of a Maxwell
solid is zero. This is important in the present context, because pore healing can only occur
when the fully-relaxed modulus is very small.

While a Maxwell model describes some important characteristics of a polymer that ex-
hibits pore healing, polymers generally exhibit more than one relaxation mechanism. Some
of these mechanisms may allow for complete relaxation of polymer, others may allow only
partial relaxation. Each mechanism will have its own activation energy and characteristic
relaxation time, and can be represented by an assembly of elements consisting of linear
springs and dashpots. The time-dependent deformation of a polymer can then be modeled
as the resultant of such an assembly. The individual moduli and viscosities that go into
such a model are determined by fits to the observed response of the polymer at different
time scales through experiments such as dynamic mechanical analyses (DMA) and stress-
relaxation tests, as described below.

4.3 Role of surface energy and curvature

The chemical potential of an atom or molecule at the surface of a material depends on the
product of the surface energy (surface tension) and the local surface curvature. Gradients in
this potential provide a driving force for the material to change its shape, either by diffusion
of atoms or molecules along the surface, or by bulk deformation in response to deviatoric
(shear) stresses established within the body of the material. In the present work, we assume
that bulk flow is the dominant mechanism; this is consistent with the experimental results
presented later.

The internal stress field associated with a surface (or interface) is established by the
change in normal stress across a curved surface, as given by the Young-Laplace equation:

σn = γ (κ1 + κ2) (4.4)

where γ is the surface tension of the material, and κ1 and κ1 are the local principal curva-
tures. A convex surface results in a compressive normal stress at the surface and a concave
surface results in a tensile stress at the surface. The internal stress field induced by sur-
face curvature is exactly equivalent to the stress field induced by applied surface tractions
that are normal to the surface and have a magnitude given by Eqn. 4.1. This equivalence
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between the stresses induced by surface curvatures and those induced by applied surface
tractions forms the basis for the analysis used in this paper.

4.4 Pore healing

The healing of a surface indent is illustrated in Fig. 4.1. The indent is initially formed by
the application of a localized external pressure during indentation. This creates large de-
viatoric stresses to which the polymer responds by rapidly flowing and forming an indent.
The effects of surface energy at this stage are relatively small compared to the effects of
the indentation stress field, so surface features such as a lip around the indent can often
be retained, as shown by microscopy images. (Even when the indentations are square, the
surrounding lip is approximately circular). When the indenter is removed, deformation is
driven by the deviatoric stress field that is established by the surface tension and curvatures.
(A residual stress field resulting from the indentation can also contribute to this deforma-
tion; in the present work, we assume this is relaxed by flow during the indentation process.)
The resulting stress field can be visualized and modeled by considering equivalent surface
tractions, as shown in the schematic of Fig. 4.1. Provided the fully-relaxed modulus is sig-
nificantly smaller than the stresses induced by the surface curvature, the material can flow
to smooth out any surface curvatures. Both the depth of the indent, and the amplitude of
any lip formed around the indent will decay over time.

Figure 4.1: A schematic of the healing process showing the shape-recovery of a surface
indentation when the entire surface is subjected to stress fields arising from surface tension.
The amplitude and direction of surface tension is decided by local curvatures.

For an incompressible linear-viscous material, the deformation field that results from a
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deviatoric stress field can be calculated using the Levy-Mises flow rule [70]:

ε̇1

σ1−0.5(σ2 +σ3)
+

ε̇2

σ2−0.5(σ1 +σ3)
+

ε̇3

σ3−0.5(σ1 +σ2)
=

˙̃ε
σ̃

=
1
3η

(4.5)

where ˙̃ε and σ̃ are the von-Mises effective strain rate and stress, and and (i = 1,2,3) are the
principal strain rates and stresses. In Mazarra et al. [14], this approach was used to develop
a simple analytical result for healing an isolated spherical pore in the middle of a viscous
material. The Lamé equations [70] for a spherical pore of radius a with an internal pressure
of p = −2γ/a, give principal stresses at a distance r from the center of the pore of

σrr = 2γa2/r3 ; σθθ = σφφ = −γa2/r3. (4.6)

The corresponding principal strain rates are given by

εrr =
∂u
∂r

; εθθ = εφφ =
u
r
, (4.7)

where u is the radial displacement at a distance r from the center of the pore. Recognizing
that at r = ao, u̇(a) = ȧ, and that at time t = 0 the initial pore radius is ao, it was shown that
the pore size is given by

a = ao−
γt
2η

(4.8)

So, the time to heal a spherical pore is 2ηao/γ .

4.5 Numerical implementation

In the numerical simulation, the initial pores were assumed to be ellipsoidal, with a depth
of bo, and a half width of ao on the surface of a film of thickness Ho (Fig. 4.2). The ra-
dius of the external boundaries, S o, were set to a value of S o/ao = 10 in all simulations.
It was demonstrated numerically that this value was always large enough to that its effect
was limited to less than a 2% error in the calculated pore depth. The bottom of the film
was assumed to be attached to a rigid substrate, but free to expand. The assumption of
axisymmetric geometries allowed the calculations to be simplified, while retaining the es-
sential elements of the experimental studies. Furthermore, since the stresses are dependent
on local curvatures, there is a very large driving force for any sharp corners to be rounded
out. This results in a transition to axisymmetric shapes early in the healing process, so
that details of the initial geometry have only a limited effect on the healing time. Indeed,
Mazzara et al. [14] reported that their initially square pores quickly became circular. We
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used our numerical method to analyze cylindrical pores, and they evolved fairly quickly
into ellipsoidal shapes. However, the initial sharp corners in a cylindrical void required a
very dense mesh. Therefore, ellipsoidal geometries were used to model the pores.

ao

bo

So

Ho

r

z
(a)	  

(b)	  

Figure 4.2: a) A schematic illustration of an axisymmetric ellipsoidal surface pore. b) The
geometry of the axisymmetric specimen used in the numerical simulations. The boundaries
are located at an outer radius of S o, which is big enough so that the pore can be considered
as an isolated pore. The thickness of the substrate is Ho. The bottom symmetry plane
models free sliding on a rigid substrate.

Finite-element analyses were conducted using the commercial package ABAQUS. The
stress fields resulting from the surface tension were induced in the finite-element model
by applying tractions to the surface proportional to the sum of the principal curvatures
(Eqn. 4.4). A numerical technique for calculating the curvatures has been described by
Henann et al. [71]. We used a similar approach to calculate the curvatures of the axisym-
metric surfaces. Such a surface can be described by z = Z(r), where z is the height above an
arbitrary reference value, and r is the distance from the axis of symmetry. The sum of the
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two principal curvatures (twice the mean curvature) at any point on the surface is given by

2κ = κ1 + κ2 =
∂2Z/∂r2

(1 + (∂Z/∂r)2))3/2 +
∂Z/∂r

r(1 + (∂Z/∂r)2)1/2 . (4.9)

Thus, the calculation is reduced to a two-dimensional problem. The coordinates of an
integration point A ( rA, zA ), and the coordinates of its two nearest neighboring integration
points, B ( rB, zB ) and C ( rC , zC ), can be fitted to a parabola ( y′/yo = x′2 ) in terms of a
local coordinate system with an origin located at point A and aligned with the local normal
direction. The sum of the principal curvatures at A is then given by

2κ = 2yo−nr/r (4.10)

where nr is the radial component of the outward normal vector at A. This procedure was
used to calculate the mean curvature at all points on a surface, and then corresponding
surface tractions. A DLOAD user-subroutine was developed accordingly and was incorpo-
rated in ABAQUS/Standard. The user-subroutine code can be found in Appendix A. The
user-subroutine was verified using the simple geometries of a sphere and a cylinder. Mesh
and boundary sensitivity studies were conducted empirically by changing the size of the
mesh and distance to remote boundaries, and verifying that any influence on the results
was significantly less than uncertainty associated with the measurements of the material
parameters.

4.6 Material preparation

PLGA 50:50 with lauryl-ester-terminated chains, with a weight-averaged molecular weight
of 55.3 kDa, and average inherent viscosity of 0.61 dL/g was provided by Lactel Inc. De-
tails of the preparation of the PLGA films are reported by Mazzara et al. [14]. Briefly, the
polymer was dissolved in acetone (27% w/w) and spin-coated onto a Teflon-coated glass
substrate. The films were then dried for one day in a fume-hood, and then for an additional
day under vacuum to remove excess solvent. When the films were separated from the glass
substrate they had a final thickness of 16±3 µm.
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4.7 Material characterization

4.7.1 Stress relaxation tests

Dry films were cut into rectangular specimens of approximately 10 mm in width and 30
mm in length. Stress-relaxation tests were conducted in a temperature range of 40 ◦C to 65
◦C using a TA Instruments RSA3 dynamic mechanical analyzer. The samples were placed
in the grips at room temperature and heated to the desired temperature at 100 ◦C/min. One
minute was allowed for the temperature to stabilize before a strain of 3 % was applied
within 5 ms. The strain was held constant, and the corresponding stress was then measured
every 0.01 second.

4.7.2 Dynamic mechanical analysis

The same instrument was used to measure the visco-elastic properties of the PLGA films
by dynamic mechanical analysis (DMA). Samples were tested in uniaxial tension at a fre-
quency of 1 Hz, with a strain amplitude of 0.1% and an initial mean force of 0.01 N. The
storage modulus, E′, loss modulus, E′′, and loss tangent, tanδ, were measured over a tem-
perature range of 25 ◦C to 70 ◦C, with a temperature ramp-up rate of 3 ◦C /min and a soak
time of 30 seconds to reach steady state at each temperature. Three identical samples were
analyzed to determine representative values and uncertainties.

Frequency sweep tests in the range of 0.001 Hz to 99 Hz with a strain amplitude of
0.1% were then conducted in a temperature range of 25 ◦C to 65 ◦C. The mean strains in
these cyclic tests were set to be 25 % greater than the strain amplitudes to ensure that the
specimen never went into compression. The storage modulus, loss modulus and tanδ were
determined as functions of frequency.

4.7.3 Measurement of interfacial tension

The interfacial tensions of the PLGA films were determined by placing a drop of miliQ
ultrapure water on the films and using a goniometer to measure the polymer-water con-
tact angle. Contact angles for each film were measured in three distinct locations, and a
minimum of two films were used for each sample. The contact angles were converted to
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interfacial tensions using Berthelot’s combining rule [72]

cosθ = −1 + 2
√
γsv

γlv
(4.11)

where θ is the contact angle, and γ is the interfacial tension between solid (s) and vapor (v).

4.7.4 The effects of annealing and solvent escape kinetics

To investigate the effects of annealing and annealing time on the visco-elastic properties
of the PLGA, films were incubated at three temperatures (50 ◦C, 55 ◦C and 65 ◦C) above
the glass-transition temperature, Tg. for various times. The properties of these films were
tested using DMA and relaxation tests, as described above.

To quantify the kinetics of annealing and solvent escape, the films were subjected to
thermo-gravimetric analysis (TGA). Approximately 20 mg of PLGA was placed on plat-
inum pans and quickly heated (50 ◦C/min) to 50 ◦C, 55 ◦C and 65 ◦C. The films were held
isothermally for 8 hours and the percent change in mass was recorded.

4.8 Validation of finite-element model

Equation 4.8 gives the analytical solution for the radius of a spherical pore in an infinite
body of an incompressible Maxwell solid as a function of time. As a check on the validity of
our numerical technique, we repeated this calculation numerically, using the finite-element
model discussed above. A comparison between the simulation and the analytical results is
presented in Fig. 4.3, showing that the finite-element model gives the expected result. It
should be noted that, in this case, the numerical calculations suffer from excessive distor-
tion of the mesh when the pore is very small, owing to the huge normal stresses acting at
the surface. For this reason, the numerical calculations shown in Fig. 4.3 could not be taken
all the way to complete pore healing.

4.9 Numerical results for surface pores

Figure 4.4 shows how the depth of an initially ellipsoidal surface pore evolves with time for
a Maxwell material. Figure 4.5 shows representative snapshots of the mesh during healing
corresponding to the case with ao/bo = 1 in Fig. 4.4. It should be noted that, in contrast
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Figure 4.3: The results of a numerical calculation of the healing time of a spherical pore
in infinite visco-elastic body agree with the analytical results. The numerical results are
affected by the excessive distortion when the residual radius of the pore is small, resulting
in larger uncertainties, as represented by the error bars.

to the healing of a spherical pore inside a polymer, the depth of the pore goes to zero only
asymptotically. There is no well-described healing time. Instead, the healing time has to be
defined in terms of how long a pore takes to heal to a given percentage of its original depth.
Experimentally, this will be the depth at which the pore can no longer be distinguished.
We use a fixed percentage of 85% to define healing in the numerical simulations, since this
corresponds to the point at which the healing rate starts to decay markedly. This arbitrary
definition introduces a systematic error into absolute comparisons with experimental data
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for healing times; however, it is expected that relative comparisons will be unaffected.
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Figure 4.4: Numerical results for how the residual depth of an ellipsoidal surface pore in
a Maxwell material varies as a function of time show that healing slows down as the pore
depth decreases. In this plot, the time, t, has been normalized by the surface tension, γ,
the viscosity, η, and the initial volume of the pore, Vo. At very long times, the normalized
curves collapse and approach zero asymptotically. Wider and shallower pores, of the same
initial volume require longer times to reach the same level of healing. The error bars on
these plots correspond to numerical uncertainties associated with mesh size.
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Figure 4.5: The mesh of finite element analysis showing the evolving profile of a surface
pore during healing. These pictures correspond to the case with ao/bo = 1 in Fig. 4.4

4.10 Effect of temperature on healing of wet films

We did not have the capability to do DMA and stress-relaxation tests in an aqueous envi-
ronment. However, the results presented by Mazzara et al. [14] for the healing of pores in
wet films as a function of temperature were used as a preliminary validation of the physics
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of the model. An activation energy of 193 kJ/mol for the viscosity of the wet PLGA films
was found by fitting the healing data to an Arrhenius plot in Ref. [14]. This value of acti-
vation energy was then used in the finite-element calculations, with a representative value
of Young’s modulus E = 1 GPa. (This choice of modulus was not important for the calcu-
lations, but it is consistent with the measured value for a dry PLGA film, as described later.)

The pores in the wet PLGA had an initially square cross section, and an initial width to
depth ratio of ao/bo = 5/14. By fitting the observed healing time for these pores at 53 ◦C
to the numerical predictions for elliptical pores with the same aspect ratio to heal to 85%,
and using the activation energy of 193 kJ/mol for the viscosity, a value for γ/ηo could be
determined as 7.9 ± 2.3×1021 m/s. This fitted value of γ/ηo was then used in conjunction
with the activation energy of 193 kJ/mol for the viscosity to calculate the healing time for
identical pores over a range of temperatures. A comparison between the predicted healing
times and the temperature are shown in Fig. 4.6.

The role of the initial aspect ratio and volume on healing time was also investigated in
Ref. [14]. The material parameters described above, were incorporated into a finite-element
calculation and used to predict the healing time (again, defined as an 85% reduction in
depth) for different shaped pores. These predictions are shown in Fig. 4.7, and compared
with the experimental observations. It should be emphasized that this comparison, unlike
that of Fig. 4.6, does not reflect any fits to the data. Therefore, the reasonable agreement
between the predictions and experimental results provides support to the modeling.

4.11 Measurement of properties for dry PLGA films

4.11.1 Stress relaxation

In the study described above, the material properties for wet PLGA films were determined
from fits to experimentally observed data, and then used to calculate pore healing. While
this shows consistency between the model and the experimental observations, a much more
important question is whether it is possible to measure the material properties indepen-
dently of the pore healing experiments, use these properties in a numerical model and
predict the behavior. This was the goal of the studies on the dry PLGA films for which it
was possible to measure the properties.
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Figure 4.6: A comparison between the calculated time to heal pores in a wet PLGA film
and the experimental observations of Mazzara et al. [19], as a function of temperature.
The time to heal a surface pore in a wet film above the glass transition temperature of Tg =

23.4 ± 0.4 ◦C by viscous flow depends on the temperature. The geometrical parameters
of the ellipsoidal pore used in the numerical calculations were ao/bo = 5/14, S o/ao = 10,
and Ho/bo = 25/7. These were consistent with the experimental geometries which had
pores with an initially square cross section. The material properties were chosen to fit the
experimental results at 53 ◦C, and an activation energy of 193 kJ/mol for the viscosity had
been estimated from an Arrhenius fit to this data [14]. The uncertainty in the numerical
simulations (represented by the dashed lines) match the uncertainty from the experimental
results at 53 ◦C.

An initial assumption that the PLGA behaves as a simple Maxwell solid with a time-
dependent modulus as in Eqn. 4.3, where the time constant τm was defined in Eqn. 4.2. A
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The experimental data were presented in Mazzara et al. [14], and the parameters for the
numerical studies were identical to those used for Fig. 4.6. The uncertainty in the numerical
simulations (represented by the dashed lines) comes from the uncertainties to the fit in
Fig. 4.6.

log-linear plot of stress against time, from stress-relaxation experiments should then be of
the form of a single line with a slope of −τ.
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Figure 4.8: Sample data of stress relaxation tests for dry PLGA films at different tem-
peratures for an initial strain of 3%, using a TA Instruments RSA3 dynamic mechanical
analyzer. While a single thermally-activated relaxation should exhibit a single slope, the
initial rapid drop indicates an additional rapid relaxation mechanisms. These stress relax-
ation data were used to measure the slower relaxation occurring at longer time scales. The
accuracy of modulus below 0.5 MPa is limited by the resolution of the machine. The con-
stant slope at longer time scales starts when the time-dependent modulus reaches 1.5±0.5
MPa.

The results from the stress-relaxation experiments are shown in Fig. 4.8 for a temper-
ature range of 40 ◦C to 65 ◦C. These plots show a very fast initial relaxation of modulus
followed by a slower decrease. This indicates more than one relaxation mechanism. If we
assume that the PLGA is a linear polymer, then this initial rapid drop indicates at least one
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additional relaxation mechanism with a relatively short time constant. The time constant
for this fast relaxation is too small to be extracted reliably from the stress-relaxation data
in Fig. 4.8; however, it was explored by means of DMA, as described later. At longer
time scales, there appears to be one dominant mechanism that gives a constant slope to the
stress-relaxation curves. The slopes of these lines corresponding to different temperatures
were determined by a least-squares fit process, and plotted on an Arrhenius plot in the form
of log(τ) against 1/T in Fig. 4.9. The slope of this line indicates an activation energy of
Qm = 206 ± 6 kJ/mol and a pre-exponential term of τmo = ηmo/Em = 6.4 ± 0.2×10−32 s. It
can be observed that at all temperatures, the constant slope at long time scales starts when
the time dependent modulus is in the range of 1 to 2 MPa with an average value of 1.5±0.5
MPa. If we model this dominant mechanism at long time scales with a Maxwell model, the
initial modulus is Em = 1.5±0.5 MPa, and the Maxwell dashpot has ηmo = 9.6±3.5×10−32

MPa s and Qm = 206±6 kJ/mol.

4.11.2 Dynamic mechanical analysis

The storage modulus and loss tangent for dry PLGA films computed from DMA temperature-
sweep tests at 1 Hz are plotted in Fig. 4.10. From this plot, the instantaneous modulus is
estimated to be 1.6±0.3 GPa, which is the asymptotic level that the storage modulus tends
to at low temperatures. It will be noted from Fig. 4.10 that the peak in tanδ is a double
peak. The first peak is at about 38 ◦C, which is consistent with the estimate of Mazzara et
al. [14] for a glass-transition temperature of between 35 ◦C and 40 ◦C. In this paper, we will
neglect the fine details of the relaxation peak, and assume a single relaxation mechanism
that operates at 1 Hz over the temperature range of 38 ◦C to 48 ◦C.

To extract the visco-elastic properties of the relaxation mechanisms that caused the fast
initial relaxations observed in the stress relaxation tests, we conducted frequency sweep
tests. Representative frequency sweep test results can be found in Fig. 4.11. The frequency
sweep tests shows a single peak in loss modulus and can be interpreted based on a standard
linear solid (SLS). An SLS has a Maxwell arm in parallel with a spring, and has a time-
dependent modulus in the form of [73]

E(t) = Er + Ese−t/τs . (4.12)

In this equation, the fully-relaxed modulus E(∞) is given by Er, and the unrelaxed modu-
lus, E(0) = Er + Es. The temperature-sweep tests gave a value for this unrelaxed modulus
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Figure 4.9: The time constant, τm, decreases as the temperature, T , increases. An Arrhe-
nius plot of relaxation time against 1/T shows an activation energy of 206± 6 kJ/mol for
the viscosity term responsible for the slow relaxation in the temperature range of 40 to 65
◦C. The data also indicate that the pre-exponent for the time constant (Eqn. 4.2) is given by
τmo = 6.4 ± 0.2×10−32 s.

of E(0) = 1.6±0.3 GPa.

A standard-linear solid also has a viscosity of the form ηs = ηso exp(Qs/RT ), where Qs

is the activation energy and ηso is a material constant. The storage modulus, E′(ω), and
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Figure 4.10: Results from DMA showing the storage modulus and loss tangent as functions
of temperature for dry PLGA films. The tests were conducted at a constant frequency of
1 Hz. Three samples were tested, and the average value has been plotted. The double
peaks in tanδ indicate at least two relaxation mechanisms with similar time constants in the
temperature range, which can be approximated by one equivalent dashpot. The unrelaxed
storage modulus is estimated to be 1.6 ± 0.3 GPa.

loss modulus, E′′(ω) of an SLS are in the form [73]:

E′(ω) = Er + Es
ω2τ2

s

1 +ω2τ2
s

(4.13)

E′′(ω) = Es
ωτs

1 +ω2τ2
s

(4.14)
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Figure 4.11: Representative results from DMA frequency sweep test showing the storage
and loss modulus as functions of frequency for dry PLGA films at 30 ◦C. The loss modulus
presents with a single peak within the range of frequency analyzed, and can be interpreted
based on a standard linear solid model. The time constant can be calculated from the peak
in the loss modulus.

where ω is the angular frequency of the input strain, and the time constant τs = ηs/Es . The
loss modulus is a maximum at ω = 1/τs, so the time constants at different temperatures
can be extracted from the peaks in the loss modulus and plotted on an Arrhenius plot in
Fig. 4.12. The activation energy of the SLS dashpot was estimated to be Qs = 250± 29
kJ/mol and the pre-exponential term was τso = 6.6±0.8×10−44 s.
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Figure 4.12: The time constant of standard linear solid decreases as the temperature, T,
increases. An Arrhenius plot shows an activation energy of 250± 29 kJ/mol for the fast
relaxation. The pre-exponent for the time constant (Eqn. 4.2) is given by τmo = 6.4±0.2×
10−32 s.

The fully-relaxed modulus, Er, of an standard-linear solid can be determined from the
difference between the storage and loss modulus at the frequency corresponding to the
maximum loss modulus (Eqn.4.14). In the present cases, there was a slight dependence of
the relaxed modulus on temperature, as shown in Fig 4.13. This indicates the presence of
additional fast relaxation mechanisms, which are ignored in the present analysis. However,
the relaxed moduli measured from the peaks in the loss modulus are consistent with the
value of 1.5 ±0.5 MPa determined from the stress-relaxation experiments for Em.
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Figure 4.13: Representative results from DMA frequency sweep test showing the storage
and loss modulus as functions of frequency for dry PLGA films at 25, 35, 40 and 45 ◦C.
Time constant can be extracted from the peaks in the loss modulus at each temperature.
There was a slight dependence of the relaxed modulus on temperature.

Combining the results from the stress relaxation tests and the frequency sweep tests, we
propose a material model for dry PLGA film as shown in Fig. 4.14(a). The model consists
of a standard linear solid in series with a dashpot, and has a time-dependent modulus of

E(t) = (Er + Ese−t/τs)e−t/τm . (4.15)
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In this model, the standard-linear solid provides a time-dependent initial modulus for the
Maxwell dashpot. The instantaneous modulus is E(0) = Er + Es which has a value of
1.6± 0.3 GPa from the frequency sweep test. The fully-relaxed modulus Er of the SLS
was chosen to be the initial modulus for the Maxwell dashpot estimated from the stress
relaxation results. The parameters are summarized in Table 1. The Maxwell dashpot with a
viscosity of ηm dominates the healing process and is the one we are particularly interested
in when analyzing the healing process. The SLS dashpot with a viscosity, ηs is associated
with relaxing 99.9% of the instantaneous modulus, however has no significant effect on
healing.

Table 4.1: Values of parameters of the unannealed dry PLGA (see Fig. 4.14)

Es (MPa) (1.6±0.3)×103

Er (MPa) 1.5±0.5

ηo (MPa s) Q (kJ/mol)
ηs (1.1±0.3)×10−40 250±29
ηm (9.6±3.5)×10−32 206±6

When the model is used in a finite-element code, it needs to be converted to the form
shown in Fig. 4.14(b), which is the equivalent Prony-series representation. In this figure,
E1 = Es, E2 = Em, η1 = (1/ηs + 1/ηm)−1, and η2 = ηm. A Prony series representation re-
quires a non-zero fully-relaxed modulus. Therefore, an arbitrary value of E3 was chosen
sufficiently low that would it not impede the healing to any level of completeness that were
we interested in.

4.11.3 Interfacial tension for dry PLGA

The contact angle was measured to be 71.8± 1.4 ◦. Using the Berthelot’s combining rule
and a water-air interfacial tension of 72.7 mN/m , the surface energy of dry PLGA films
were calculated to be γsv = 31.0±2.0 mN/m.
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Figure 4.14: Proposed material model for PLGA. (a) The model consists of a standard lin-
ear solid in series with a dashpot. The standard linear solid series provide a time-dependent
initial modulus for the lower dashpot. The material has a fully-relaxed modulus of zero, en-
suring complete healing to occur. The lower dashpot is the dominant relaxation mechanism
at longer time scales. (b) The equivalent model used as a Prony series for finite element cal-
culations in ABAQUS, with E1 = Es, E2 = Er, η1 = (1/ηs +1/ηm)−1, and η2 = ηm. E3 was
arbitrarily chosen for the implementation of the Prony series, and was sufficiently small so
as not to impede complete healing.

4.12 Prediction on healing times for pores in dry PLGA
fims

Finite-element calculations of pore healing in dry PLGA films using the material properties
described above were performed assuming axisymmetric ellipsoidal pores with an aspect
ratio, ao/bo = 2.5/7, and a pore volume of 91.6 µm3. This aspect ratio and volume are
appropriate for the values used in the experimental study [14]. The predicted healing times
are plotted as a function of temperature in Fig. 4.15, along with the experimental results.
Three different contours of different healing levels are plotted in Fig. 4.15, showing the
effect of small changes in the amount of pore closure used as a measure of healing.
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Figure 4.15: The time to heal a surface pore in dry films. Material properties of dry PLGA
films are used in the simulated results. Three levels of healing from finite element analysis
show a decelerating healing process. The observed healing time at low temperatures fit
between 85% and 87% of healing predicted by simulation.

104



4.13 Discussion

While Fig. 4.15 shows that the numerical predictions are generally consistent with the
experimental observations, the experimental healing times appear to be significantly longer
than expected at lower temperatures. It is conjectured that this is a result of changes in
material properties associated with annealing, as a result of relatively long healing times at
low temperatures.

When different samples of the dry PLGA were held isothermally in a TGA experiment
for 8 hours at temperatures above Tg (50 ◦C – 65 ◦C), the kinetics of solvent escape were
remarkably similar. During the first 20 minutes, the amount of solvent that had left the
films at a given time increased with increasing temperature. However, after 2 hours the val-
ues stabilized or were following similar trends towards a final value of 98.3%, consistent
with a residual solvent content of about 1.7%. Residual solvent acts as a plasticizer to the
polymer, and effectively decreases the viscosity.

To elucidate the effects of annealing, samples of the PLGA were held isothermally in a
TGA experiment for 8 hours at temperatures varying from 50 ◦C to 65 ◦C. The initial rate
of solvent evaporation increased with temperature. However, after two hours, there was
no further evaporation, and the final weight loss indicated that the initial residual solvent
content had been about 1.7%. This residual solvent acts as a plasticizer to the polymer, and
effectively decreases the viscosity [74]. It is conjectured that it was this effect that led to
the longer-than expected healing times.

The most important visco-elastic property of the films, from the perspective of pore
healing, is the viscosity represented by the second dashpot (ηm) in Fig. 4.14(a). The ef-
fects of annealing on this viscosity were investigated by holding the film isothermally at
65 ◦C for up to two hours. DMA was then used to measure the glass-transition tempera-
ture, and stress-relaxation measurements were used to determine the viscosity. These re-
sults showed that annealing raised the glass-transition temperature, increased the viscosity
and dropped the activation energy. But the instantaneous modulus was not affected much.
These changes are summarized in Table 4.2 for different annealing times 65 ◦C.It should
be noted that the time scales over which the relaxation data were obtained (see Fig.4.8, for
example) were much smaller than the time scales over which significant annealing might
occur. Therefore, it is believed that annealing did not occur while the relaxation data were
being collected.
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Table 4.2: Effect of annealing on the dry PLGA parameters at 65◦

Annealing Time (hr) Tg(◦C) ηm0(MPa s) Qm (kJ/mol)
0 38.4 ± 0.3 1.5E-30 ±6.9E-32 198 ±9
0.5 47± 0.3 2.0E-20±2.1E-21 136 ±13
1 49.5± 0.3 2.0E-22±1.9E-23 150 ±13
2 50.8± 0.3 2.8E-22±2.1E-23 149 ±11

In addition to the changes in the bulk properties of the PLGA, measurements of the
contact angle strongly suggest that the polymer-air interfacial tension may also change sig-
nificantly during incubation. Annealing at 65 ◦C reduced the interfacial tension to 25± 3
mN/m from 31±2 mN/m.

Finite-element simulations of pore healing were performed using the most extreme val-
ues of the material properties given in Table 4.2 (to provide an upper bound on the healing
time). These results are presented in Fig. 4.16. As can be seen from this figure, while
the use of the unannealed properties provide excellent predictions for the behavior at high
temperatures, the use of annealed properties provide better predictions at the lower temper-
atures. At the higher temperatures, the total time required to heal the film is comparable to
the annealing time, so most of the healing occurs before full annealing. However, at lower
temperatures, the time scales for annealing are smaller than the time scales for healing, so
the results are more affected by the annealing. This is expected since the activation energy
for solvent evaporation of 43± 6 kJ/mol is smaller than the activation energy for viscous
flow.

In many materials, surface pores can also heal by surface diffusion; for example, this
is the mechanism often ascribed to the healing of pores in high-temperature ceramics
[75–77]. However, this does not appear to be the case for PLGA. First, the healing data
does seem to be quite well described by the visco-elastic properties of the PLGA. Second,
surface diffusion tends to have a lower activation energy than the bulk diffusive processes
responsible for flow. This would decrease the healing time at low temperatures below that
predicted from viscous flow. The opposite trend was observed, so the discrepancy in heal-
ing times is not a result of surface diffusion; rather it is a result of solvent evaporation, as
discussed above.
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Figure 4.16: Healing of PLGA with annealing of dry films at elevated temperatures con-
sidered. The annealed films have higher glass transition temperatures, lower interfacial
tension, and are more viscous. Therefore, healing in annealed films require longer time.
While simulation of healing of unannealed films agrees with healing at high temperatures,
annealing affects healing at long times more significantly.
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4.14 Conclusions

Self-healing in PLGA can be modeled by flow driven by internal stress fields established
by surface-tension effects. A finite-element model incorporating a numerical method to
calculate the evolution of surface curvatures was developed to analyze indent healing in
visco-elastic materials. The rate of healing surface pores decreases as the pores heal, with
the pore depth approaches zero asymptotically. The visco-elastic properties of PLGA films
were characterized using a combination of DMA and stress-relaxation tests. The dry PLGA
films used in this study had a relatively high instantaneous modulus of 1.6±0.3 GPa, and a
glass transition temperature of 38.4±0.3 ◦C. The PLGA displayed relaxation mechanisms
with at least two distinct time scales. The first mechanism is a fast one with a very short
time constant; this reduced the modulus by 99.9% at a time scale of less than a minute at
temperatures above glass transition temperature, leaving the film with a partially-relaxed
modulus of 1.5± 0.5 MPa. This modulus, although being much smaller than the instanta-
neous modulus, is still too big for healing to occur. A second relaxation mechanism with a
much longer time constant was responsible for viscous flow that could accommodate pore
healing.

Finite-element simulations of indent healing using material properties that had been
independently measured were broadly consistent with earlier experimental observations
reported by Mazzara et al. [14]. It was noted that annealing of the films, which is asso-
ciated with solvent evaporation, resulting in longer healing times than expected at lower
temperatures.

Since the healing mechanism is thermally activated, temperature is one of the most
important factors in self-healing of PLGA. The temperature needs to be high enough for
viscous flow to occur during the time scales of interest. In addition to the temperature, the
indent geometry also affects healing time, with larger indents requiring longer time to heal.
While this present study has focused on the healing of indents as a model for surface pores
in PLGA films, we believe that the numerical tools used to analyze the process and the
experimental techniques used to deduce the relevant material properties will be appropriate
for predicting the pore-healing processes of significance for pharmaceutical use of these
materials.
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CHAPTER 5

Conclusions

In this dissertation, some of the aspects of the formation and healing of cracks and pores
in polymeric materials have been studied. These two types of features are easy to obtain
and are of nano-sizes. Therefore they have been used as functional nanostructures. Cracks
can be introduced by applying a tensile strain to a layered structure of a brittle thin film
of oxidized PDMS or hPDMS on a compliant PDMS substrate, and can be used for nano-
fabrication purposes [1, 2, 7, 16]. The nanochannels fabricated by tunneling cracking are
normally closed and adjustable, with applications in biological research of DNA lineariza-
tion [2]. Polymeric materials are usually intrinsically porous [68]. Healing of pores in
PLGA microparticles is critical for the quality of the encapsulation and release of drugs
and peptides [12, 69]. The extensive experimental results in literature showed great po-
tentials of these techniques. However, to use these techniques to their full capacity, the
underlying physics and mechanics need to be studied for the purpose of prediction and
control of the behaviors. These have been the focus of this dissertation.

Cracks are initiated from flaws in material. Therefore, cracking is usually considered a
stochastic process. The statistic aspect of defect lengths affect the formation of crack ar-
rays in linear-elastic systems through the dependence of energy-release rate for channeling
a crack on its crack length and the distance to its nearest longer neighbors. These two as-
pects need to be addressed differently to control the formation of crack arrays. In Chapter
2, different control strategies have been developed for systems with sufficient long flaws
and with only small defects respectively. Finite element analyses were used for the energy-
based approach, while Monte Carlo simulation was used to study the effect of statistics
of the flaw population. In the statistical model, LEFM was used as the criterion for crack
channeling. Thus the statistical model has the capability to study the interaction between
LEFM, the statistics of a flaw population and the artificial geometrical features in produc-
ing uniform crack arrays. In a system with only small flaws, sharp geometrical features
and high levels of applied strain are required to create controlled arrays. This approach
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is suitable for materials that have few flaws such as silicon and silicon nitride. However,
it is vulnerable to accidental damage to the material. For a system with sufficient long
flaws, controlled crack arrays require careful matching the spacing of geometrical features,
applied strain and the material properties. This is a more robust approach, and has lower
requirement on the sharpness of the geometrical features. The crack control strategies were
implemented in different combinations of materials and was shown to be effective [5, 7].
The analyses for controlled cracking in silicon and silicon nitride films were consistent with
the experimental observations reported by Nam et al. [4].

Nanochannels fabricated by tunneling cracking are normally closed, and are completely
reversible by application and relaxation of the remote tension. The adjustable channels can
be applied to mechanically linearize DNA and chromatin [2] utilizing the nanoconfinement
provided by the closed channel resulted from relaxation of the applied tension. The exis-
tence of fluid in the channels make the channel narrowing process to be time-dependent.
In Chapter 3, this time-dependent narrowing of nanochannels is studied. The narrowing
process involves the coupling of the stress field in the elastic channel wall, the fluid pres-
sure, the pressure driven flow and the displacements of the inner surface of the channel.
Analytical solution for an infinitely long axisymmetric thick-walled tube showed a gradual
narrowing initiating from the ends of the tube. The normalized distance of collapse front
traveling z/R1 and normalize time tE/η has a quadratic relationship. A numerical method
was developed to study the complete closure of a channel with finite length and elliptic
cross-section. This provides a good approximation for the tunneling cracks. It was shown
that a longer channel with higher initial aspect ratio in the closed state requires longer time
to completely close. The time for the center of a channel to close is related to the square of
channel length.

In Chapter 3, the time-dependency of the channel narrowing process was due to the
viscosity of the fluid, while the channel wall was entirely elastic. In Chapter 4, the time-
dependent healing of pores in a visco-elastic material was studied. Self-healing in PLGA
was modeled by flow driven by internal stress fields established by surface-tension effects.
The visco-elastic properties of dry PLGA films were characterized by means of DMA and
stress relaxation tests. The PLGA displayed at least two distinct relaxation mechanisms.
The first mechanism is active at short time scales, reducing the modulus from a relatively
high instantaneous value of 1.6±0.3 GPa to 1.5±0.5 MPa. This partially-relaxed modulus
is still too big for healing to occur. The second relaxation mechanism at long time scales
was responsible to achieve pore healing in PLGA above glass transition temperatures.

110



A finite element model with the capability to calculate the evolution of surface curva-
tures was developed to analyze the healing of surface pores. Finite-element simulations
using the independently measured material properties were consistent with earlier experi-
mental observations reported by Mazzara et al. [14]. The healing of dry PLGA films ex-
hibits additional temperature dependency besides the thermally activated viscosity. This is
associated with solvent evaporation, which results in longer healing times than expected at
low temperatures. The visco-elastic properties of annealed dry PLGA films were measured.
Numerical calculation results using the properties of annealed PLGA were consistent with
the experimental observations.
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APPENDIX A

Appendix to Chapter 4

ABAQUS user-subroutine

C---------------------------------------

C Manipulate user exernal files

C---------------------------------------

SUBROUTINE UEXTERNALDB(LOP,LRESTART,TIME,DTIME,KSTEP,KINC)

C

INCLUDE 'ABA_PARAM.INC'

C

CHARACTER xoutdir*255, xfname*80

CHARACTER dmkname*255, FNAMEX*80

C

DIMENSION TIME(2)

C

lxfname = 0

lxoutdir = 0

xfname =' '

xoutdir =' '

call getjobname(xfname,lxfname) !input file name

call getoutdir(xoutdir,lxoutdir) !output directory

C

IF(LOP.EQ.0) THEN

C LOP=0, SUBROUTINE IS BEING CALLED AT START OF ANALYSIS

fnamex=dmkname(xfname(1:lxfname),xoutdir(1:lxoutdir),'.96')

OPEN(UNIT=96,FILE=FNAMEX,STATUS='UNKNOWN',FORM='FORMATTED')

C

C

ELSE IF(LOP .EQ. 3) THEN

CLOSE(UNIT=96)
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C

END IF

C

C

RETURN

END

c

c Compose a filename directory/jobname.exten

character*(*) function dmkname(fname,dname,exten)

C

character*(*) fname,dname,exten

C fname I jobname

C dname I directory

C exten I extension

C dmkname O directory/jobname.exten

ltot = len(fname)

lf = 0

do k1 = ltot,2,-1

if (lf.eq.0.and.fname(k1:k1).ne.' ') lf = k1

end do

ltot = len(dname)

ld = 0

do k1 = ltot,2,-1

if (ld.eq.0.and.dname(k1:k1).ne.' ') ld = k1

end do

ltot = len(exten)

le = 0

do k1 = ltot,2,-1

if (le.eq.0.and.exten(k1:k1).ne.' ') le = k1

end do

if ((lf + ld + le) .le. len(dmkname)) then

dmkname = dname(1:ld)//'/'//fname(1:lf)

ltot = ld + lf + 1

113



if ( le.gt.0) then

dmkname = dmkname(1:ltot)//exten(1:le)

end if

end if

C

return

end

C-------------------------------------------------------

C URDFIL -- User subroutine to read the results file -

C called at the end of any increment in which new

C information is written to the results file.

C-------------------------------------------------------

SUBROUTINE URDFIL(LSTOP,LOVRWRT,KSTEP,KINC,DTIME,TIME)

C

INCLUDE 'ABA_PARAM.INC'

C

DIMENSION ARRAY(513),JRRAY(NPRECD,513),TIME(2)

EQUIVALENCE (ARRAY(1),JRRAY(1,1))

C Variables

REAL OLDDSP(1000,2),CRD(1000,2),ELCRDEQ(1000,2)

REAL F(1000), MAG(1000), KAPPA(1000),T(1000,2)

INTEGER ENDOFSTEP, ENDOFINC, I, J, K, NNDT,NELT,NND,NEL,NINFTY,

1 ALLELN(10000),ALLELNDN(10000,4),NONUM(1000),NNUM(1000),

2 ELNUM(1000),ELNDN(1000,4),K1,K2,K3

DOUBLE PRECISION X1L,Y1L,X2L,Y2L,NX,NY,X0,Y0,X1,Y1,X2,Y2,

1 DZDR,D2ZDR2,A

C Set common variables

COMMON /coordinates/CRD /elementinfo/NEL,ELNUM /load/MAG,T

C Set gamma (GAMMA1) as the surface energy

REAL GAMMA1

GAMMA1= 6.0D-5 !MPa mm

C Initialize total number of elements and nodes

NNDT=100000

NELT=100000

NINFTY=100000000 ! An extremely large number

I=0

J=0

K=0
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K1=1

K2=1

K3=1

ENDOFSTEP=0

ENDOFINC=0

NNOD=0

NNEL=0

DO 110 I=1,NINFY

CALL DBFILE(0,ARRAY,JRCD)

IF(JRCD .NE. 0) THEN

END0FSTEP=1

CALL DBFILE(2,ARRAY,JRCD)

GOTO 111

ENDIF

IF(ENDOFSTEP .NE. 1) THEN

KEY=JRRAY(1,2)

IF (KEY .EQ. 1900) THEN

ALLELN(K1)=JRRAY(1,3)

DO 120 J=1,4

ALLELNDN(K1,J)=JRRAY(1,(J+4))

120 CONTINUE

C WRITE(96,3000) ALLELN(K1),ALLELNDN(K1,:)

C3000 FORMAT(2X,'EL#',I5,5X,I8,2X,I8,2X,I8,2X,I8,2X

C 1 ,I8,2X,I8,2X,I8,2X,I8,2X)

J=0

K1=K1+1

ENDIF

ENDIF

110 CONTINUE

111 CONTINUE

NELT=K1-1

WRITE (96,3010) NELT

3010 FORMAT(2X,'Total number of elements: 'I5)

I=0

K1=1

ENDOFSTEP=0

C========================================================

C Set the position in the results file to be the current
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C step and increment

C ARRAY here returns key 2000 only, increment start record.

C========================================================

C

CALL POSFIL(KSTEP,KINC,ARRAY,JRCD)

C

ENDOFSTEP=0

IF(JRCD .NE. 0) THEN

ENDOFSTEP=1

ENDIF

IF(ENDOFSTEP .NE. 1)THEN

C WRITE(96,3020) JRRAY(1,8), JRRAY(1,9)

C3020 FORMAT(1X,'**STEP',I2,'INCREMENT',I3)

DO 130 K=1,NINFTY

CALL DBFILE(0,ARRAY,JRCD)

ENDOFINC=0

IF(JRCD .NE. 0) THEN

ENDOFINC=1

GOTO 131

ENDIF

IF(ENDOFINC .NE. 1)THEN

KEY=JRRAY(1,2)

C--Node Displacement--------------------------------------------

IF(KEY .EQ. 101) THEN

NONUM(K1)=JRRAY(1,3) !Node number

DO 140 I=1,2

OLDDSP(K1,I)=ARRAY(I+3)

140 CONTINUE

I=0

K1=K1+1

ENDIF

C--End Node Displacement------------------------------------------

C--Node Coordinate------------------------------------------------

IF(KEY .EQ. 107) THEN

NNUM(K2)=JRRAY(1,3)

DO 150 I=1,2

C CRDLIN(K2,I)=ARRAY(I+3)

CRD(K2,I)=ARRAY(I+3)
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150 CONTINUE

I=0

C WRITE( 96, 3040) NNUM(K2),CRD(K2,:)

C3040 FORMAT(2X,'Node'I4,5X,'X_OLD'ES12.5E2,5X,

C 1 'Y_OLD'ES12.5E2,5X)

K2=K2+1

ENDIF

C--End Node Coordinate--------------------------------------------

C--Element Header-------------------------------------------------

IF(KEY .EQ. 1) THEN

ELNUM(K3)=JRRAY(1,3)

C WRITE(96,3050) ELNUM(K3),K3

C3050 FORMAT(2X,'Element',I8,2X,'Counter(K3)=',I8)

K3=K3+1

ENDIF

C--End Element Header---------------------------------------------

ENDIF !(ENDOFINC .NE. 1)

130 CONTINUE

131 CONTINUE

K=0

NNOD=K1-1

NEL=(K3-1)/2

C WRITE(96,3060) NNOD,NEL

C3060 FORMAT(2X,'#NODE',I8,2X,'#EL',I8)

C DO 160 I=1,NNOD

C DO 170 J=1,2

C CRD(I,J)=CRDLIN(I,J)+OLDDSP(I,J)

C170 CONTINUE

C J=0

C160 CONTINUE

C I=0

C For each ELNUM, locate in ALLELN find all the node connections

DO 180 I=1,NEL

DO 190 J=1,NELT

IF(ALLELN(J) .EQ. ELNUM(I)) THEN

ELNDN(I,:)=ALLELNDN(J,:)

ENDIF

190 CONTINUE
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J=0

180 CONTINUE

I=0

C For each Element numbered as ELNUM,

C find the load equivalent point Coordinates

DO 200 I=1,NEL

ELCRDEQ(I,1)=0

ELCRDEQ(I,2)=0

DO 210 J=1,NNOD

DO 220 K=1,4

IF(ELNDN(I,K) .EQ. NNUM(J))THEN

ELCRDEQ(I,1)=ELCRDEQ(I,1)+CRD(J,1)/2.0D0

ELCRDEQ(I,2)=ELCRDEQ(I,2)+CRD(J,2)/2.0D0

ENDIF

220 CONTINUE

210 CONTINUE

C WRITE(96,3100)ELNUM(I),ELCRDEQ(I,:)

C3100 FORMAT('Element',I5,5X,'Equi X=',ES12.5E2,5X,

C 1'Y=',ES12.5E2)

200 CONTINUE

C Assume all elements on the surface are numbered orderly

C Calculate the curvature for each element

C X, Y Denotes r and z in axisymmetric coordinate system

DO 230 I=2,NEL-1

X0=ELCRDEQ(I,1)

Y0=ELCRDEQ(I,2)

X1=ELCRDEQ(I-1,1)

Y1=ELCRDEQ(I-1,2)

X2=ELCRDEQ(I+1,1)

Y2=ELCRDEQ(I+1,2)

NX= -(Y2-Y1)/SQRT((Y2-Y1)**2+(X2-X1)**2)

NY= (X2-X1)/SQRT((Y2-Y1)**2+(X2-X1)**2)

X1L= NY*(X1-X0)-NX*(Y1-Y0)

Y1L= NX*(X1-X0)+NY*(Y1-Y0)

X2L= NY*(X2-X0)-NX*(Y2-Y0)

Y2L= NX*(X2-X0)+NY*(Y2-Y0)

KAPPA(I)=2*A-NX/X0

T(I,1)=NX
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T(I,2)=NY

C WRITE(96,3110) ELNUM(I),A,KAPPA(I),T(I,1),T(I,2)

C3110 FORMAT('Element',I5,5X,'A=',D12.5,'KAPPA='D12.5,

C 1 '(',D12.5,',',D12.5,')')

230 CONTINUE

C For the elements at the ends

C For the element at the symmetry,

C if it's the first element in the array,

X0=ELCRDEQ(1,1)

Y0=ELCRDEQ(1,2)

X1=-ELCRDEQ(1,1)

Y1=ELCRDEQ(1,2)

X2=ELCRDEQ(2,1)

Y2=ELCRDEQ(2,2)

NX= -(Y2-Y1)/SQRT((Y2-Y1)**2+(X2-X1)**2)

NY= (X2-X1)/SQRT((Y2-Y1)**2+(X2-X1)**2)

X1L= NY*(X1-X0)-NX*(Y1-Y0)

Y1L= NX*(X1-X0)+NY*(Y1-Y0)

X2L= NY*(X2-X0)-NX*(Y2-Y0)

Y2L= NX*(X2-X0)+NY*(Y2-Y0)

A=((X1L**2)*Y1L+(X2L**2)*Y2L)/(X1L**4+X2L**4)

KAPPA(1)=2*A-NX/X0

T(1,1)=NX

T(1,2)=NY

C For the element at the far end,

C approximate with its left neighbor.

KAPPA(NEL)=KAPPA(NEL-1)

T(NEL,1)=T(NEL-1,1)

T(NEL,2)=T(NEL-1,2)

DO 240 I=1,NEL

MAG(I)=KAPPA(I)*GAMMA1

C WRITE(96,3070)ELNUM(I),I,MAG(I)

C3070 FORMAT('ELNUM=',I8,5X,'MAG(',I5,1X,')',E10.3,5X)

240 CONTINUE

ENDIF

I=0

J=0

K=0
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RETURN

END

SUBROUTINE UTRACLOAD(ALPHA,T_USER,KSTEP,KINC,TIME,NOEL,NPT,

1 COORDS,DIRCOS,JLTYP,SNAME)

C

INCLUDE 'ABA_PARAM.INC'

C

DIMENSION T_USER(3), TIME(2), COORDS(3), DIRCOS(3,3)

CHARACTER*80 SNAME

INTEGER I,NEL,ELNUM(1000)

REAL MAG(1000),T(1000,2)

COMMON /coordinates/CRD /elementinfo/NEL,ELNUM

1/load/MAG,T

IF(JLTYP .EQ. 521 .OR. JLTYP.EQ.522 .OR. JLTYP.EQ.523

1 .OR. JLTYP.EQ.524 .OR. JLTYP.EQ.525

2 .OR. JLTYP.EQ.526) THEN

DO 260 I=1,NEL

IF(NOEL .EQ.ELNUM(I))THEN

ALPHA=MAG(I)

T_USER(1)=T(I,1)

T_USER(2)=T(I,2)

T_USER(3)=0

ENDIF

260 CONTINUE

ENDIF

RETURN

END
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