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Abstract 

This study describes a development of fuel sensitive quasi-dimensional multi-

zone model for a direct injection compression ignition (DICI) engine. The objective is to 

develop fuel sensitive sub models of the DICI combustion process and integrate them 

into a thermodynamic engine cycle simulation. The proposed spray and evaporation 

models comprise the sub-models including fuel sensitive spray breakup, improved zone 

velocity estimations with transient fuel injection, spray penetration and tracking of 

evaporated fuel components. On these foundations, ignition delay models are formulated 

with two different descriptions based on the origin of the charge properties in a DICI 

engine. The global ignition delay model is based on the global combustion chamber 

charge properties while the local ignition delay model includes variations in properties of 

each spray zones. The Cetane number is used to describe a fuel effect for both models. 

Then, the premixed combustion model is reformulated to calculate a proper burn rate 

profile with respect to equivalence ratio and scale the profile with diluted air.  

While the developed models are validated and evaluated by comparing the 

predictions with experimental data, some of important conclusions have been made. In 

the spray formation model, the degree of viscosity and surface tension effect on the spray 

formation and air entrainment is much more pronounced with DME fuel. For the fuels 
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closer to the conventional DF2, the effect of those properties is minimal. The evaporation 

model includes the behavior of evaporation at high pressure. The rate of evaporation is 

usually suppressed with higher pressure but at lower temperature than typical engine-like 

conditions, the effect is inverted. This effect might be significant for the low temperature 

combustion. Of the two proposed ignition delay models the local model has a slightly 

better accuracy compared to the global model. The results demonstrate the improvements 

that can be obtained when additional fuel specific properties are included in the spray 

ignition model. Although the proposed fuel sensitive combustion model calculates fuel 

effect to the combustion, the effect of ignition delay to the overall result of engine cycle 

simulation was much more dominant with given fuels in this study. 
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          Chapter 1  
 
 

Introduction 

Rudolf Diesel received a patent for the Diesel engine in 1892 in Germany [1]. 

Since then, this internal combustion engine has been widely used in various applications. 

Because of its high compression ratio, the thermal efficiency of a Diesel engine is far 

superior to a typical gasoline engine. However due to the nature of burning lean and 

stratified mixture, nitro-oxide (NOx) and particular matter emissions are higher than from  

a gasoline engine.  

Emission standards in the United States for the Diesel engine have become stricter. 

In addition to that, the newly designed Corporate Average Fuel Economy (CAFE) 

standard proposed a new fuel economy for heavy duty Diesel trucks [2]. Thus industry’s 

demands for research and development of new technologies to meet these regulations are 

higher than ever. Furthermore, demand for renewable and sustainable energy resources is 

increasing due to environmental concerns. To cope with these extensive requests of the 

Diesel engine, various technologies are investigated and researched including high EGR 

application, various injection strategies, new turbocharger configurations, after treatment, 
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as well as developments in fuels like Biodiesel, Jet Propulsion fuel (JP8) and Synthetic 

fuels like Dimethyl ether (DME) and synthetic jet fuel (S8). 

1.1 Modeling approaches for a direct injected compression ignition engine for 

alternative fuel applications 

A computer simulation enables studying the application of alternative fuels in a 

direct injected compression ignition (DICI) engine with details of the spray combustion 

phenomena included. Insights from the computer simulation are essential for engine 

design development, engine calibration or adaptation of alternative fuels to reduce 

emissions and to achieve high fuel economy.  

Figure 1.1 shows the general concept of an engine simulation and required sub-

models. Among many parts of engine simulation, the most critical and complex part of 

the engine simulation for alternative fuel applications is the combustion. The combustion 

of a DICI engine occurs within the stratified charge that is created by the fuel spray, its 

breakup and subsequent evaporation. The temporal and spatial distributions of properties 

in the spray and the heat release of the combustion are highly dependent on the fuel 

properties and the burning characteristics. Therefore, it is very important to introduce the 

fuel effects on the combustion as accurate as possible.  
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Figure 1.1 General engine simulation flow and area of required models 

 

The approaches of modeling the combustion in a DICI engine can be described in 

three categories [3]. 

1) The zero dimensional (0-D) single zone approach assumes uniform 

cylinder charge properties and composition. Typically the burn rate of the combustion is 

curve fitted with a Wiebe function or its various derivatives [4]. Although this method is 

versatile and computationally cost effective, the model is not capable of predicting the 

influence from various fuels on the combustion. The Wiebe function needs to be carefully 

calibrated for a specific engine and operating points [5, 6]. Since the 0-D single zone 

models performs at a very high computational speed, they are frequently used where 

massive number of cycles need to be calculated [7].  
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2) The multi-dimensional multi-zone model also known as 3-D 

Computational Fluid Dynamics (CFD) model divides the whole engine cylinder into 

small cells and calculates the combustion in an Eulerian description. Because the model 

calculates mass, energy and momentum equations with chemical reaction mechanisms 

(reactive flow cases) in multiple cells, the resolutions of temporal and spatial 

distributions of temperature and charge compositions are very high. Due to radically 

increased computing power, both commercial and academic 3-D CFD codes are widely 

used for studying alternative fueled DICI engines. However, even with recent highly 

advanced computing techniques, it takes hours and more to calculate combustion and it is 

not suitable for general system integration or behavior analysis.  

3)  The quasi-dimensional multi-zone combustion model is an attractive 

method because it is striking a balance between computational efficiency and physical 

fidelity. The quasi-dimensional model combines some of the advantages of the zero-

dimensional models and the multi-dimensional model. A typical model maintains a single 

uniform zone outside of the spray while dividing the spray into zones to provide temporal 

and spatial information. The spray phenomenon is described with a Lagrangian 

specification, so the zones carried with the spray move in the combustion chamber. In 

each zone, the quasi-dimensional multi-zone model solves the mass, energy and species 

balance equations but does not explicitly solve the momentum equation. Therefore, this 

type of models requires significantly less computing resources compared to the multi-

dimensional models. 
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1.2 Overview of quasi-dimensional multi-zone DICI combustion concept 

Many modern quasi-dimensional multi-zone DICI combustion models [3, 8–14] 

are influenced by Hiroyasu and his coworker’s work [15–17]. Generally in the quasi-

dimensional model, the fuel is injected into the combustion chamber according to the fuel 

injection schedule and it forms zones at each time step in both the axial and radial 

directions. The radial zone may be further divided in the rotational direction around the 

injection axis [13, 14]. Different zones have their own mass of fuel according to the 

injection rate. The mass of fuel in each zone can be either specified or calculated by using 

an empirical correlation based on the injection and chamber pressures and the injector 

geometry. The fuel injected into the chamber is initially assumed to form a liquid core 

until the liquid fuel jet break-up time has elapsed. Following the break-up, it is assumed 

that the fuel spray atomizes to fine droplets, each with a diameter equal to the Sauter 

Mean Diameter (SMD) which is a function of the cylinder conditions at the moment of 

injection. This is indicated in the time history shown in Figure 1.2. 

The air entrainment rate depends on the physical position of each zone, with 

centerline zones receiving less and zones near the outer edge receiving more air. The 

amount of entrained air is calculated based on conservation of momentum applied to each 

zone. It is assumed that the momentum of the zone at any instant is equal to the 

momentum given to the zone upon nozzle exit. Since the mass of fuel and injection 

velocity of each zone is initially determined the velocity of the zone can be subsequently 

calculated from the spray penetration correlation, and then the amount of air entrained is 

obtained by the zone momentum conservation. It is assumed that fuel droplets begin to 

evaporate immediately after break-up occurs. Both heat and mass transfer for a single 
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evaporating droplet are considered in order to compute instantaneous droplet temperature, 

rate of evaporation and droplet diameter. The conceptual spray evolution and evaporation 

progress until ignition are illustrated in Figure 1.2. 

The ignition delay is calculated as the delay time from the start of injection until 

the start of combustion. This delay time includes time for chemical mechanism to 

produce enough radical pool so the fuel-air mixture can be ignited, as well as mixture 

preparation time by the physical spray processes such as breakup, air entrainment and 

evaporation. At the time of ignition, the fuel vapor and air mixture in each zone that was 

prepared during the ignition delay is burned in the first phase of the combustion. The rate 

of this initial combustion in each zone is calculated by a pre-mixed combustion model. 

After all the prepared fuel vapor is consumed, the burning rate is mainly controlled by 

mixture availability because the physical entrainment and mixing process is much slower 

than the chemical reaction speed. Figure 1.3 shows the in-cylinder pressure and apparent 

heat release calculated from a measured pressure trace. Ignition delay and two phases of 

heat release are clearly recognizable in the figure.  
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Figure 1.2 Conceptual schematics of spray combustion for DICI engine in quasi-
dimensional multi-zone description. K is radial direction zone index 
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Figure 1.3 Ignition delay and two phases of heat release rate of typical DICI engine 

 

1.3 Literature review 

In this section, models from the literature describing DICI combustion are 

reviewed. The review is mainly focused on the sub models of quasi-dimensional multi-

zone combustion models for alternative fuels.  

The classic spray penetration correlations of Wakuri et al. [18], Dent [19] or 

Hiroyasu and Arai [15] are the most widely used spray penetration correlations in quasi-

dimensional models. However, the only fuel property included in the correlation is the 

liquid density and the correlation is calibrated for a Diesel spray. In addition to the 

correlation of Wakuri et al. [18] using a spray angle, more recently proposed spray 

penetration correlations [20–24] also chose the spray angle as a parameter. However, the 
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spray angle must be predefined from another correlation and calibrated from experiments. 

In addition, sensitivity to viscosity and surface tension is absent in [20, 21, 24].  

The air entrainment can be calculated in two ways. Basically the amount of the air 

in the spray cone volume is the air entrainment. If both the spray angle and the spray 

penetration are known, the air entrainment is determined from the spray cone volume and 

its geometry [15]. Two other well-known correlations for spray angle were developed by 

Hiroyasu and Arai [15] and Reitz and Bracco [25]. Total entrained air is the amount of air 

in a spray cone volume, which can be calculated from the tip penetration and the angle of 

the spray. Siebers [21] developed a spray angle correlation which covers a wide range of 

ambient conditions. The correlation however is only a function of ambient air density and 

liquid density. In addition, the model constant must be determined based on the 

experimental data. This method of calculating the air entrainment can be difficult to 

implement in a multi-zone spray model due to the unknown distribution of entrained air 

over the different zones. On the other hand, if the momentum of the spray zone is 

assumed constant after injection, then, the change of spray velocity can be interpreted as 

the result of air entrainment [16, 26, 27]. 

A multi-component evaporation model is desirable for investigating various 

alternative fuels. The single component droplet evaporation model of Abramzon and 

Sirignano [28] has been modified and extended to many multi-component applications 

[29–33]. Each research has a different approach for the multi-component evaporation, but 

these models except for Burger et al. [30] commonly express the evaporation rate for 

individual species in terms of a fraction of total vaporization rate. The fraction needs to 

be calculated implicitly which requires an iterative method. Burger et al. [30] used the 
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distillation curve to fit a polynomial of the average molar mass changes during 

evaporation. Then, the properties used in the model are fitted with the average molar 

mass. For a given fuel mixture Burger et al. pre-computed a table of equilibrium results 

for some properties as a function of the pressure, temperature, liquid molecular mass and 

mole fraction in the gas phase for the film around the droplet. However, integrating such 

models into a quasi-dimensional multi-zone framework is not recommended where a 

simpler and more computationally efficient model is desirable. 

Due to the improved computing power, chemical kinetic mechanisms are used 

more frequently than before when calculating ignition delay. These mechanisms are built 

to calculate radical reactions of combustion process of an individual fuel and the ignition 

delay is a part of these combustion processes. For calculating an ignition delay in a DICI 

engine, the chemical kinetic mechanism is typically coupled with multi-dimensional 

computational fluid dynamics simulation. However, even with current computing power, 

detailed mechanisms are too big for CFD based engine simulation [34] and typically 

reduced to less than a few hundreds reactions [35, 36].  

To achieve computational efficiency, the chemical kinetic mechanism can be 

further reduced. The Shell ignition model [37] was originally developed to predict  

knocking of spark ignition engine and used later for a DICI engine because the chemical 

kinetic mechanism of ignition delay and knocking is the same. Since the mechanism is 

highly reduced, the shell model needs to be calibrated for a particular fuel. Adjustable 

parameters can be partially [38] or fully [39] calibrated.  

One of the most common methods to calculate the ignition delay is Arrhenius 

equation type ignition delay models [15, 16, 40–43]. The Arrhenius equation is used to 
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describe a chemical reaction rate where the inverse of the average rate represents ignition 

delay time. Activation temperature for the model is an apparent activation temperature 

because the average rate of reaction is a combination of many different radical reactions. 

Because the model is simple and a calibration process is much easier than for other 

models, this type of ignition delay model is widely used for quasi-dimensional multi-zone 

combustion models [3, 10, 11, 16, 44]. 

For several decades, many researchers have been studying the Arrhenius equation 

type ignition delay correlations and applied these to a DICI engine. Numerous ignition 

delay correlations are based on Wolfer’s correlation [45] which has  been calibrated for 

Diesel engines [40], constant volume bombs [15] or gaseous fuel cases [46]. Furthermore 

the correlation is modified to capture various engine operating situations such as transient 

engine operation [41], biofuel applications [42], exhaust gas recirculation of Diesel 

engine [46] or blended hydrocarbon fuels [47]. These correlations are all developed and 

calibrated to use global averaged engine conditions. Hiroyasu et al. [16] developed an 

ignition delay model of a Diesel engine using local spray information such as temperature 

and equivalence ratio for a quasi-dimensional multi-zone spray model. This model was 

extended to recent multi-zone model [44]. In addition, in an effort to capture the ignition 

quality of different fuels, the Cetane number [11, 42, 47, 48] or the amount of aromatic 

contents [47] was included in the activation energy for the correlations In spite of all the 

previous effort made for spray ignition delay, there is still no definitive model which is 

sensitive to the various fuels and applicable to a wide engine operating range. 

Many burn rate models [49–51] used in the quasi-dimensional model are based on 

a one-step global reaction rate which is expressed with Arrhenius equation including 
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frequency factor as a function of concentration of fuel and oxidizer. Westbrook and Dryer 

presented a one-step global reaction rate model for various hydrocarbon fuels [52]. 

Although their calibration was performed to calculate laminar flame speed, the 

calibration result clearly shows slow reaction rate with heavier fuels. To capture the two 

phase heat release rate of DICI engine combustion more precisely, separate burn rate 

models are used for each phase [3, 13, 53]. The premixed burn rate model is based on one 

step global reaction rate and the mixing controlled burn rate model is correlated to 

account for physical preparation of vaporized fuel and air. 

Other types of burn rate calculations are often used in quasi-dimensional 

combustion model as well. Morel and Wahiduzzaman [8] developed a burn rate model 

with the rich equivalence ratio limit at 3. The model is made to have a maximum burn 

rate at the equivalence ratio of 1. A simpler way to compute the burning rate of 

combustion is assuming the burned fuel mass is proportional to the stoichiometric air-fuel 

ratio [9, 17, 54]. With this model, all the available fuel less or equal to stoichiometric fuel 

mass is burned in each time step. This model may be too simple to accurately capture the 

combustion of local spray zones of various fuels and operating conditions. Zhou et al. [10] 

developed a new concept of fuel droplet group combustion model considering collisions 

and interactions between droplets. In their work the concept of flame surface is 

introduced in a quasi-dimensional model platform to calculate evaporation and 

combustion of droplet groups. Although this concept can calculate the DICI combustion 

accurately, it may be too complex for the quasi-dimensional combustion model. Recently 

calculation of combustion using chemical kinetic mechanism is also attempted in a quasi-

dimensional multi-zone model [55]. 
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A limitation of the existing burn rate correlation is that a new calibration of the 

model is required for different fuels. When simulating alternative fuels, this could be a 

critical drawback, especially when the calibration of the model against engine 

experimental data is not available.  

1.4 Objective 

For the research and development of a DICI engine with alternative fuel 

application, fuel sensitive computer model is important. Without fuel property effect in 

the model, intensive calibration must be done in advance for each fuel and in many cases 

this is not desirable. Most of the previously developed models reviewed in the previous 

section are developed based on the Diesel combustion and do not have the ability to 

distinguish the fuel being used. The present study is focused on developing a fuel 

sensitive combustion model for a DICI engine using a quasi-dimensional multi-zone 

modeling framework.  

The main goals of this dissertation are to: 

• Develop a fuel sensitive DICI combustion model by modifying or develop 

new sub models: spray formation, evaporation, ignition delay and burn 

rate. 

• Integrate the new sub models in a full engine cycle simulation frame work, 

which should be fast yet accurate enough to predict engine performance 

with various fuels. 
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• Validate and evaluate the developed sub models and the integrated cycle 

simulation result in various experimental data such as constant volume 

chamber with engine like conditions and alternative fueled diesel engine 

experimental data with different engine operating conditions.  

The following chapters of the dissertation are organized as follows. The 

development, validation and evaluation of spray and evaporation model are presented in 

Chapter 2. In Chapter 3, two newly developed ignition delay models which utilize global 

and local in-cylinder information respectively are presented. In Chapter 4, a new scaled 

pre-mixed burn rate model is presented. In Chapter 5 the developed models are integrated 

into a full cycle engine simulation and the evaluation of the integrated cycle simulation is 

presented. Chapter 6 summarizes this study and highlights the conclusions and the 

suggestions for future work. 
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          Chapter 2  
 
 

Spray and evaporation models for multi-fuel mixtures for direct 
injection internal combustion engines 

In this chapter, direct injection spray and evaporation models during the pre-

ignition period in the quasi-dimensional multi-zone Direct Injection Compression 

Ignition (DICI) engine simulation are presented. The spray penetration, the air 

entrainment, the spray angle and the multi-component evaporation models are modified 

based on the models from [3] or newly developed for alternative fuel applications. To 

confirm the validity of the model, experimental data from the literatures were compared 

with simulation results. In addition, the model behavior with different fuels has been 

studied in wide ranges of ambient temperature and pressure. 

2.1 Spray Model 

The fuel spray is divided into zones as illustrated in Figure 2.1. Fuel injected into 

the combustion chamber according to the fuel injection schedule forms a parcel during 

each time step. Then, each fuel parcel is further divided into small zones with equally 
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distributed mass of fuel in the radial direction. Zone index is assigned according to the 

zone location in the axial and radial directions of the spray. 

 
Figure 2.1 Schematic of multi-zone spray concept 

2.1.1 Spray penetration and breakup time 

A classical spray penetration model for Internal combustion (IC) engines assumes 

the jet velocity during the pre-breakup period remains constant equal to the initial 

injection velocity, inju . After the breakup time, bt , the spray slows down and its 

penetration is proportional to the square root of time [15].  

inj b

b

S u t t t

t tS tβ

= <
 ≥=

 (2.1)

 

where β  is a proportionality constant 

The initial jet velocity is expressed as follows. 

ldinj PCu ρ/2∆=  (2.2)

 

The spray penetration at the breakup time is defined as the breakup length, bl  which can 

be calculated using Eqs. (2.1) and (2.2). 

 bbbb ttul β==  (2.3)
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In Eq. (2.3), the velocity of spray at breakup, bu , is the same as the initial injection 

velocity, inju . Then Eq. (2.1) can be rewritten using Eqs. (2.2) and (2.3). So the 

generalized spray penetration model can be described as 

    
     /2

  2
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bld

ld

tt

tt

ttPCS
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≥
<
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
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ρ
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Hiroyasu and Arai [15] used Levich’s breakup time model [56] which is derived 

from the wave stability analysis of the surface of liquid jets.  

 n

a

l
b dl

ρ

ρ
ζ=  (2.5)

  

In their work, the coefficient ζ and the nozzle discharge coefficient, dC , are fitted to the 

experiment. 

 
39.0
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=
=

dC

ζ
 (2.6)

  

Jung [3] modified this correlation using an actual nozzle discharge coefficient. 
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2
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These models are extensively used in recent multi-zone combustion simulations. 

However, the only sensible fuel properties of these models is the liquid fuel density 

because the spray penetration models relies on the breakup model described in Eq. (2.5). 

Other properties such as viscosity and surface tension of the liquid fuel are also important 

to describe breakup phenomena. Detailed breakup phenomena and its mechanisms are 

well reviewed in Faeth et al. [57] and Chryssakis [58]. More detailed breakup models 

incorporating viscosity and surface tension can be found in many CFD applications. 
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Among the various models the WAVE breakup model [59] is a simple alternative 

breakup time calculation model. This model starts with the same stability analysis of 

liquid jet surface wave as Levich’s model. Instead of deriving a correlation based on 

many assumptions, the numerical solution of the analysis is calculated and curve fitted. 

The wave growth rate, Ω, and the corresponding wave length, Λ, are correlated with non-

dimensional parameters. These non-dimensional parameters are calculated for the liquid 

jet with velocity, u  and initial blob radius, a. 
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Using the wave growth rate and the corresponding wave length, the child droplet radius, r, 

its parent blob radius, a, and characteristic breakup time, τ , are described as follows. 
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ΛΩ
=

aB1726.3
τ  (2.11)

 

where B0 is the model size constant, typical value is 0.61 and B1 is the model time 

constant which depends on the injector characteristics.  

In the multi-zone simulation context, the liquid jet temperature is assumed to be 

constant as well as the velocity of the spray in the pre-breakup region. The velocity, u , in 

Eq.(2.8) can be the velocity of the zone before breakup. The rate growth rate and the 

corresponding wave length are also constant under the assumptions. Therefore, Eqs. (2.10) 

and (2.11) are constant and characteristic breakup time can be considered as the breakup 

time of the spray. By setting the initial blob size the same as the nozzle diameter, nd , the 

breakup time can be expressed as 

 
ΛΩ

= n
b

dB.
t 17263

 (2.12)

 

In Figure 2.2 the variation of the WAVE breakup time is shown as function of 

viscosity and surface tension. Surface tension and viscosity shows opposite effects on the 

breakup time. 
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Figure 2.2 Breakup time calculation of WAVE breakup model varying viscosity and 

surface tension for ∆P=1100 bar and fuel density of 841 kg/m3 for both cases. For surface 
tension sweep, viscosity is fixed at 2.5 mm2/sec. For viscosity sweep, surface tension is 

fixed at 25 mN/m. 

2.1.2 Zone to zone interaction in the spray model 

In the multi-zone spray model environment, the spray penetration is calculated for 

each zone. The zone velocity is constant in the pre-breakup region and equals the initial 

injection velocity. However the injection process is transient in a real engine with a 

variable injection rate profile over time. The early injection with small lift creates slower 

injection velocities followed by higher lifts with higher injection velocities. If zone to 

zone interaction is not considered during the breakup period, the transient injection rate 

causes zone overlapping in the spray particularly in the liquid phase of the jet. This is not 

physically permissible.  

To resolve this problem a new penetration concept is developed for the pre-

breakup region. At the start of injection, the initial velocity, which is calculated from the 

injection profile, of the leading zone is slower than the velocity of the subsequent zone. 
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Since the zones are parts of the continuous liquid core of the fuel spray and the internal 

circulation motion of fuel jet is neglected in this framework, it is reasonable to assume 

that a faster zone pushes zone in front and both zones have the same velocity. This zone 

to zone interaction during the pre-breakup period is modeled by applying a momentum 

conservation law. The new velocity for the liquid core is updated whenever new zones 

are injected using the momentum conservation.  

 
Figure 2.3 Schematics of zone interaction concept. Left: the classical model without zone 

to zone interaction, Right: the new model with zone to zone interaction. 

Figure 2.3 shows the concept of zone to zone interaction. The figure compares 

two spray penetration models without and with zone to zone interactions. On the left, the 
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classical model calculation without zone interaction is illustrated. The 1st zones of spray 

show slowest penetration because the injection profile begins with a transient slope. The 

1st zones are falling behind and penetrate separately. However with zone interaction 

model on the right, the 1st zones are pushed by the following zones. Therefore the zones 

within the liquid core stay together and the average velocity is calculated from the total 

momentum. However, after the 1st zones break up, they are allowed to be penetrated by 

the following liquid core zones. The 1st zones gained enough speed and the separation 

from the other spray is minimal.  

After the breakup of the liquid core, the zone to zone interaction with direct 

pushing assumption is not valid, because droplets are colliding with each other and 

trajectories of each droplet are significantly different. In the multi-zone simulation 

environment, individual trajectories of droplets are not traced and the initially distributed 

fuel always stays in the zone. In this approach, only zones remaining in the liquid core 

state before breakup participates in momentum conservation for the calculation of 

injection velocity. After breakup the zone trajectory follows the penetration correlation.  

The initial zone velocity is calculated from a given injection mass flow rate 

profile. 
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where )(Km parcelɺ is mass flow rate of K-th parcel obtained from the injection profile. 

The mass flow rate of each zone is evenly distributed for radial direction zones. 
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The difference between injection pressure and ambient pressure is expressed as follows. 
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The liquid core velocity is calculated by momentum conservation. 
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The zone velocity, ),( KIu z  of all the existing liquid zones is assigned as the core 

velocity coreu  in the pre-breakup region. If the breakup time of the zone is reached, the 

spray velocity at breakup, ),( KIub  is assigned as coreu  at that time. 

The breakup time of each zone in a parcel linearly decreased in radial direction 

according to zone geometry. The correction factor is multiplied to the breakup time 

calculated in Eq. (2.12) for each zone. 
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where maxI  is maximum number of zone in radial direction. 

Combining the WAVE breakup time in Eq. (2.17)  with the spray penetration 

correlation in Eq. (2.4) the final form of spray penetration is expressed as 
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2.1.3 Air entrainment 

The air entrainment to each zone is calculated with a momentum conservation 

concept [16] with additional details in [3]. The initial momentum of the zone at the 

breakup is equal to the momentum of the zone at any subsequent distance traveled. The 

outer zones have shorter penetration than inner zones which leads to higher entrainment 

rate. The shorter penetration of outer zone is a result of the shorter breakup time. The 

velocity of zones slows down after the breakup, so that the total momentum in the each 

zone is kept constant by the amount of air entrained. 
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By balancing the initial momentum of the spray zone and the momentum of the 

zone at any instance, the air entrainment of the zone can be obtained.  
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By differentiating Eq. (2.19)  the rate of air entrainment is obtained. 
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2.2 Evaporation model 

The model for single-component droplet evaporation is extended to multi-

component fuels. To reduce computational expense, the fuel mixture in the droplet is 

assumed to be a pseudo-single component fuel. The mass fraction of each component is 

then recovered using Raoult’s law (ideal solution) and the new liquid composition is 

calculated as the droplet evaporates. This also assumes that the liquid drop has a uniform 

distribution of species so the uneven evaporation rate of different components of the fuel 

does not lead to diffusional effects. For very small droplets this is a reasonable 

assumption but could be important for low diffusivities and high evaporation rates. 

 

2.2.1 Single-component droplet evaporation 

The droplet evaporation model calculates the rate of vaporized mass transfer from 

the liquid droplet to the air. The temperature of liquid droplet is increased by the heat 

transfer from the surrounding air as shown in Figure 2.4. 
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Figure 2.4 Schematic of evaporating fuel droplet 

The classical droplet evaporation model [28] using Spalding mass transfer number 

MB is expressed as  

 ( )Mml
l BDShd

dt

dm
+−= 1lnρπ  (2.22)

  

where ld  is the liquid diameter, D  is the binary diffusion coefficient, Sh is the 

Sherwood number and mρ  is density of the fuel vapor and gas mixture in the film. 

The exact temperature and fuel vapor fraction profiles in the film are too 

complicated to model in the simplified evaporation model. All the gas phase properties 

are evaluated at the film conditions. The mean temperature and fuel vapor fraction of the 

film are expressed from an assumed profile (variation) through the layer as follows. 
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where x is mass fraction. The subscripts indicate as follows; v indicates vapor, f indicates 

fuel, s indicates surface and ∞ indicates ambient condition far enough from droplet. 
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The Spalding mass transfer number is defined from following equation. 
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The heat transfer from the surrounding air to the droplet is calculated from the following 

equation by El Wakil et al. [60]. 
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where z is given by 
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Equation (2.25) is derived considering the amount of the energy required for heating the 

film. The heat transfer coefficient, lm dNukh = in Eq. (2.25) is calculated for non-

evaporating condition.  To include the evaporation effect on the heat transfer, a correction 

factor, ( )1−zez   is added as in Eq. (2.25). The evaporating fuel is mixed with the air in 

the film, and then diffuses out to the air. Both the air and the fuel vapor in the film are 

heated by heat transfer from the air as shown in Figure 2.4To account for both fuel and 

air in the film under mean condition in Eq. (2.23) using the heat capacity of the film, 

mpC ,  instead of the fuel vapor, vpC ,  in Eq. (2.26)  is considered to be more appropriate. 

All properties and non-dimensional numbers in Eqs. (2.25) and (2.26) are calculated at 

the film condition. Nusselt number and Sherwood number are calculated using the well-

known empirical correlations [61].  
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Equation (2.27) is further modified by Arbramzon and Sirignano [28] to consider the 

Stefan flow effect which thickens the laminar boundary layer. 
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The modifying factors )(Bf  are given by 
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where B is the corresponding Spalding transfer number. 

The temperature of the liquid droplet is given by solving the droplet energy balance. 
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where λ is heat of evaporation (h
evap

) 

2.2.2 Extension to multi-component droplet evaporation 

For a computer simulation, the fuel properties of wide range of temperature and 

pressure are required and they are not readily available. Therefore a multi-component 

fuel surrogate is often used for computer simulation.  
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To maintain low computational load of multi-component evaporation model, a 

fuel mixture is treated as a single component droplet with properties of the mixture. The 

concentrations of each component are calculated by Raoult’s law which gives vapor-

liquid equilibrium in the film of the droplet. This concept for droplet evaporation of fuel 

spray is based on the following assumptions. 

First of all, a well-mixed liquid droplet is assumed so that the Soret effect can be 

ignored. Secondly, spatial distribution inside the droplet is assumed to be negligible. In 

addition, ideal gas and ideal solution are assumed. Therefore, Raoult’s law is applied to 

calculate Spalding mass transfer number for the fuel mixture. Lastly, the multi-

component fuel species are assumed to diffuse into air, thus a simple binary diffusion 

coefficient is used. 

Since the fuel species are diffused only into air, total fuel vapor flux in the radial 

direction becomes the summation of binary species fluxes defined by Fick’s first law. 
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where J is diffusion flux in mol/(m2∙s), D is diffusion coefficient in m2/s, c is molar 

concentration in mol/m3. The subscripts indicate as follows; i indicates species, n 

indicates number of total species and m indicates mean value at film condition.  

Species mole fraction, yi can be calculated from their concentration and the mean binary 

diffusion coefficient is expressed as  

 ∑
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Using Raoult’s law the mass fraction of fuel vapor (includes all fuel components), x at the 

surface (film) for Eq. (2.24) is calculated from following equations.  



30 

 

 

 

,
,,

,

1
,,

avg,s

sv
svsv

vap

sv

n

i
isatlivap

M

M
yx

P

P
y

PyP

=

=

= ∑
=

 (2.33)

  

where Pvap is vapor pressure of mixture, Psat is saturated vapor pressure and M is molar 

mass.  

The liquid droplet composition is can be calculated using mass conservation of each 

component. The instantaneous mole fractions of vapor fuel components leaving the 

droplet at the surface are obtained using Raoult’s law. 
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where subscript l indicates liquid.  

2.2.3 High pressure effect on the fuel vapor 

The compressibility of the fuel vapor is considered to calculate the real vapor 

density at the film. In the film of a droplet, the vapor and the liquid fuel are in 

equilibrium. Thus a simple corresponding state principal (CSP) method for the 

compressibility of saturated vapor can be used [62]. For the mixture fuel, the pseudo 

critical properties such as critical temperature, critical pressure and critical 

compressibility using Kay’s rule [63] are used to calculate the mixture compressibility. 

 
10
mmmm ZZZ ω+=  (2.35)

  

where Z is compressibility factor and ω is acentric factor. 
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Then the partial density of the fuel mixture at the film is given by 
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Kay’s rule in connection with a general equation of state as Lee-Kesler can provide 

the compressibility factor if not known as well as the fugacity for the liquid phase of the 

fuels. Such an extension would increase the complexity but make the model more 

accurate compared to Raoult’s rule and ideal solution assumption.  

2.2.4 Initial droplet size calculation 

At the breakup time, the droplet size distribution is neglected and all the droplets 

are assumed to have the same size. The initial droplet size is calculated using a Sauter 

mean diameter (SMD), d32 correlation proposed by Estes and Mudawar [64]. 
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and dn is nozzle diameter. 
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2.3 Results and discussion 

2.3.1 Spray penetration model validation 

To validate the new penetration model with the integrated WAVE breakup model, 

experiment data with three different fuels are collected from the literature [65]. The 

experiment measured spray penetrations of Diesel, soybean BioDiesel and dimethyl ether 

(DME) in a common rail injection system under atmospheric conditions. Injection rate of 

each fuel is illustrated in Figure 2.5 and the properties of fuels are listed in Table 2.2  

 

Table 2.1 Test fuel properties at 293 K, 0.1 MPa 

 
Diesel 

BioDiesel 
(Soybean) 

DME 

Density 
(kg/m3) 

828 884 660 

Viscosity 
(mm2/s) 

2.835 4.022 0.12-0.15 

Surface tension 
(kg/s2) 

0.027 0.028 0.012 

 

 
Figure 2.5 Volumetric injection rate profiles for the test cases. The mass injection rate is 
converted to the volume injection rate to identify the differences between the three fuels 

more intuitively. 
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The parameter of the WAVE breakup time, B1, is calibrated as 12.5 to match the 

calculated spray penetration with Diesel fuel experimental data. A comparison of other 

two fuels using new model is illustrated in Figure 2.6 (a). In the experimental results, 

higher viscosity of BioDiesel causes a longer breakup time and results in longer 

penetration. For DME fuel, low surface tension causes longer breakup length and spray 

penetration. However, the effect of low viscosity overwhelms this effect and results in 

short penetration. Figure 2.6 (b) shows a comparison  of the penetration model from our 

base framework [3] using Eqs. (2.4), (2.5) and (2.7). The model employs classical 

Levich’s breakup model and has no interaction model between spray zones. In the 

comparison the new spray model matches the spray penetration better than the base 

model. Especially, the new model can capture the shorter penetration length of the DME. 

In the pre-breakup region, the DME case shows slightly higher penetration, which is due 

to the higher injection rate of the DME. The penetration result of the base model does not 

distinguish three different fuel injections well enough to reproduce the experimental data. 

Overall, the penetration of DME is more distinguishable from others due to its extremely 

low viscosity and surface tension. 
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Figure 2.6 Comparison of spray penetration with experiment using (a) new model and (b) 

base model for injection pressure of 60 MPa with 0.3 mm of nozzle size, ambient 
temperature of 293 K and ambient pressure of 0.1 MPa. 

Another comparison is made using experimental data from [66]. The experiment 

compared spray penetration of Diesel fuel #2 (DF2) and JP8 in the constant volume 

chamber at 21% O2 molar concentration. The estimated fuel property at 373 K for the 

simulation is listed at Table 2.2. The calibrating parameter B1 is calibrated as 10.0. In 

Figure 2.7, a comparison of experiment data and the proposed model is presented for both 
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fuels. The results of simulation and experiment have a good level of agreement. In fact, 

the spray penetrations of two different fuels are very close to each other in this case. 

Since the physical fuel property of DF2 and JP8 is relatively similar compared to 

previous comparison, the calculation results as well as experiment data are almost the 

same. The slight over prediction in the later part of the penetration is due to the 

combustion of the spray. 

 

Table 2.2 Estimated fuel properties at 373 K, 0.1 MPa 

 
DF2 JP8 

Density 
(kg/m3) 

778 750 

Viscosity 
(mm2/s) 

1.80 1.05 

Surface tension 
(kg/s2) 

0.0172 0.0150 

 

 

 
Figure 2.7 Comparison of spray penetration with DF2 and JP8 for injection pressure of 
110 MPa with 0.18 mm nozzle diameter, ambient temperature of 850 K, and ambient 

density of 14.8 kg/m3. 
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2.3.2 Air entrainment model validation by spray angle comparison 

The air entrainment into the spray cannot be directly measured form the 

experiment or extremely difficult if possible. However, the total air entrainment can be 

considered as the total air inside of the spray cone volume. In this study, the spray 

penetration and the air entrainment are calculated from the model described in Eqs. (2.18) 

and (2.21). The spray angle can be calculated from those by assuming simple geometrical 

shape of the spray as shown in Figure 2.8. The spray is considered to be composed with 

two cones, one from the injector tip with the length of S(5,1) and the other with the length 

of [S(1,1)-S(5,1)]. The volume of two cones is equal to the sum of the individual volumes 

of the zones. 

 

Figure 2.8 Geometry of spray cone 
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Then, the spray angle can be calculated from the spray penetration and air 

entrainment as follows. 
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Since the spray penetration is validated in the previous section, a comparison of 

this spray angle with experimental results can be used to validate the model accuracy of 

air entrainment. Experimental data of spray angle  measured from the same experiment 

setup [66] in Figure 2.7  for Diesel fuel #2 (DF2) and JP8 fuels is compared with the 

calculated spray angle. In addition, other commonly used spray angle correlations are 

also compared for the reference. The other two spray angle correlations are given as 

follows.  
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Figure 2.9 shows the comparisons of spray angle calculation over time. Hiroyasu 

and Arai correlation given as Eq. (2.40) over-predicted the spray angle and Reitz and 

Bracco correlation given as Eq. (2.41) under-predicted the spray angle. The results from 

the momentum conservation method, given as Eq. (2.40), match the experimental data 

better than the other two correlations in the later part of injection while the other two 

correlations give constant values. The comparison result implies that the air entrainment 

model using momentum conservation method is reasonably valid. 

 
Figure 2.9 Comparison of spray angle models with experiment. The test fuels were 

injected at 110 MPa to air in the high pressure vessel at the ambient temperature and the 
density of 850 K and14.8 kg/m3 respectively. 
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evaporation characteristic of the binary mixture of n-heptane and n-decane with two 

different blend ratio at the atmospheric pressure. Lastly experimental data from Stengele 

et al. [29] provides the evaporation time and the velocity with free-falling binary mixture 

of the n-pentane and n-nonane droplet under high pressure condition. 

Figure 2.10 shows a comparison of evaporating n-heptane droplet history with 

two different ambient temperatures at the atmospheric pressure. In this case there is no 

convective flow thus it is a limiting case for an evaporating droplet [61] and the Nusselt 

number becomes 2.0. The computed droplet history shows good agreement with the 

experiment data at 648 K, but slightly slower evaporation at 471 K.  

Figure 2.11 shows a n-heptane and n-decane mixture evaporation comparison 

with two different blend ratios. In the comparison, both the models calculated under-

predicted results at the latter stage of evaporation. The experiment was performed using a 

suspended droplet and the suspension is not considered in the calculation. Thus the effect 

from the support might be the cause of a different evaporation rate in the later part where 

the droplet becomes small as it evaporates and the effect of suspender becomes dominant. 

In the experiment shown in Figure 2.10  was also performed with a suspended droplet, 

however the size of the suspender in the experiment is relatively small: 0.15 mm diameter 

silica fiber verses 0.2 mm diameter with 0.4 mm diameter at tip. Therefore the effect of 

suspender is small for Figure 2.10. 

The result of freely falling droplet case in Figure 2.12 shows that the presented 

evaporation model performs well in high ambient pressure condition. For the evaporation 

model, the velocity of the free falling droplet is calculated according to the method 

presented in Stengele et al.[29]. The gravity force, the buoyance force and the drag force 
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of the droplet are considered. The velocity of freely falling droplet accelerated in the 

beginning because the initial velocity of droplet is 0.45 m/s and the drag coefficient of 

droplet decreases as it evaporates. It is because the relative velocity of surrounding gas 

and droplet becomes small [28, 69].  

 
Figure 2.10 Comparison of single component fuel evaporation calculation with 

experiment data. 2
0

2 dd  indicates regression of the non-dimensional droplet surface and 
2
0dt  indicates the time normalize by the square of initial droplet size. Experiment data is 

obtained from Nomura et al.[67]. 
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Figure 2.11 Comparison of multi-component fuel evaporation calculation with 

experiment data. 2d  indicates regression profile of the droplet surface. Experiment data 
are obtained from Gökalp et al.[68]. Ambient pressure of 0.1 MPa, ambient temperature 

of 372 K and External flow velocity of 1.45 m/s are used. 
 

 
Figure 2.12 Comparison of multi-component fuel evaporation calculation with 
experiment data. du  in the second y-axis indicates the velocity of the droplet.. 

Experiment data are obtained from Stengele et al.[29]. Ambient pressure of 4 MPa and 
ambient temperature of 550 K are used. Initial droplet temperature is 400 K. 
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2.3.4 Liquid length comparison 

The penetration length of the zone, which has remained liquid fuel and is the 

furthest from the tip, is defined as the liquid length. The calculated liquid length is a 

combined result of jet penetration, breakup, zone to zone interaction and evaporation. 

The experimental data for DF2 and JP8 are taken from the literature [66]. The estimated 

fuel properties at 436 K of DF2 and JP8 are used for spray penetration and breakup. 

Multi-component surrogates are used for the evaporation. A mixture of 49 % n-

tetradecane, 30 % n-decane and 21 % 1-methyl naphthalene in mass basis is used for DF2 

[70]. A mixture of 18 % n-tetradecane and 82 %  n-dodecane in mass basis is used [71] 

for JP8.  

Figure 2.13 and Figure 2.14 show comparisons of the liquid length at various 

ambient temperatures and densities. The experiment results show that the liquid lengths 

of JP8 are 10-15 % shorter than DF2 [66]. For DF2, simulation results show good 

agreements with the experiment data over a wide range of ambient temperature and 

density. As ambient temperature rises the fuel droplets evaporate faster and liquid lengths 

becomes shorter. High ambient density causes shorter spray penetration. For JP8, 

simulation results show shorter liquid lengths especially with lower ambient densities. 

But in general current spray breakup, penetration and evaporation model can predict 

overall trend of liquid lengths over a wide ambient temperature and density changes as 

well as two different fuels. 
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Figure 2.13 Liquid length comparison with various ambient condition. The injection 

pressure is 110 MPa with nozzle diameter of 0.246 mm for DF2. Initial fuel temperature 
is 436 K. 

 

 
Figure 2.14 Liquid length comparison with various ambient condition. The injection 

pressure is 110 MPa with nozzle diameter of 0.180 mm for JP8. Initial fuel temperature is 
436 K. 
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2.3.5 Effects of temperature and pressure on fuel spray and evaporation 

The liquid phase life times of fuel sprays calculated with the presented model are 

analyzed. The liquid phase life time is calculated from the start of injection to the end of 

evaporation. In-cylinder ambient conditions at the time of injection, covering typical 

Diesel combustion as well as other combustion mode, are the region of interest: 

temperature range from 500 K to 1000 K and pressure range from 10 bar to 70 bar. The 

injection pressure of 600 bar, nozzle diameter of 0.18 mm and fuel temperature of 314 K 

were used. For the analysis, surrogates fuels for gasoline, DF2, JP8 and a single 

component fuel of DME are simulated. The gasoline surrogates are obtained from [72]. 

Other surrogates for DF2 and JP8 are described in the previous section. These surrogates 

with two-three components are selected to match the properties related to the evaporation 

only. It is impractical to match all the properties of real fuel since the number of 

component in the surrogates should be increased significantly. The blend ratio of 

surrogates and properties at the injection are listed in Table 2.3. 

Figure 2.15 to Figure 2.18 show the results of liquid phase life time for various 

fuels. DME shows consistent evaporation trend in the entire sweeping range. Both 

ambient temperature and pressure causes shorter liquid life time as they rises. For 

gasoline, DF2 and JP8, the liquid life time are shorten as pressure rises at high 

temperature. However in the low temperature region below approximately 550 K, 680 K 

and 650 K for gasoline, DF2 and JP8 respectively, higher ambient pressure promotes 

longer liquid phase life time.  
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Table 2.3 Surrogate blends and properties at 314 K, 0.1 MPa 

 
Gasoline 
surrogate 

DF2 surrogate JP8 surrogate DME 

Blend ratio 
(mass basis) 

n-hexane 34 % n-tetradecane 49 % n-dodecane 82% 
dimethyl ether 

100% 
n-decane 21 % n-decane 31 % n-tetradecane 18% n/a 

n-heptane 45% 
1-methyl 

naphthalene 20 % 
n/a n/a 

Density 
(kg/m3) 

665.17 783.54 733.3 621.37 

Viscosity 
(mm2/s) 

0.588 1.634 1.567 0.164 

Surface 
tension 
(kg/s2) 

0.0193 0.0266 0.0246 0.0103 

Diffusion 
coefficient 

(m2/s) 7.76e-6 5.98e-6 5.78e-6 1.36e-5 
Molar mass 
(kg/kmol) 

100.96 164.98 174.61 46.069 

 

 

 
Figure 2.15 Liquid phase life time for Gasoline spray 
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Figure 2.16 Liquid phase life time for DF2 spray 

 

 
Figure 2.17 Liquid phase life time for JP8 spray 

10 20 30 40 50 60 70
500

600

700

800

900

1000
0.00018916

0.00027317
0.00027317

0.00039449

0.00039449 0.00039449

0.00056969

0.00056969 0.00056969
0.0011881 0.0011881 0.0011881

0.0024777 0.0024777
0.0024777

0.0042175 0.0042175 0.0042175

0.012284
0.012284 0.012284

0.018343
0.018343 0.018343

0.031305
0.031305

0.031305

0.040897 0.040897
0.040897

0.061066 0.061066
0.069797 0.069797

Pressure (bar)

T
e

m
p

e
ra

tu
re

 (
K

)

DF2

 

 

10 20 30 40 50 60 70
500

600

700

800

900

1000 0.00016684

0.00016684

0.0002409
3

0.00024093 0.00024093

0.00034794

0.00034794 0.00034794 0.00034794

0.00050247
0.00050247 0.000502470.00072562 0.00072562 0.00072562

0.0010479 0.0010479 0.0010479

0.0015133 0.0015133 0.0015133

0.0031559 0.0031559 0.0031559
0.0045575

0.0045575 0.0045575

0.0075226
0.0075226 0.0075226

0.011233
0.011233 0.011233

0.016772 0.016772
0.016772

0.025044 0.025044
0.032717

Pressure (bar)

T
e

m
p

e
ra

tu
re

 (
K

)

JP8 

 

 



47 

 
Figure 2.18 Liquid phase life time for DME spray 
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Figure 2.19 Behavior of evaporation model with temperature and pressure 
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increases fast with time. At higher ambient temperature condition in Figure 2.21 and 

Figure 2.23, heavier species evaporate equally with light species and lighter species 

accelerates its evaporation in the later stage. Therefore the composition of liquid droplets 

does not change much at earlier stage. 

In terms of overall evaporation time, increasing the ambient temperature at a 

given pressure shortens the evaporation time. At higher pressure, evaporation time is also 

decreased except for DF2 and JP8 fuel at 600 K. It is because the dependence on the 

pressure changes below 650 to 680 K for these fuels as observed in Figure 2.19.The 

effect of the temperature on evaporation is more significant than the pressure. Ambient 

temperature increment of 300 K reduces evaporation time dramatically in both pressure 

cases.  
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Figure 2.20 Liquid mass fraction histories of the components at 25 bar and 600 K 
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Figure 2.21 Liquid mass fraction histories of the components at 25 bar and 900 K 
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Figure 2.22 Liquid mass fraction histories of the components at 55 bar and 600 K 
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Figure 2.23 Liquid mass fraction histories of the components at 55 bar and 900 K 
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2.4 Summary and Conclusions 

This chapter presents the enhanced models for spray and evaporation for the 

quasi-dimensional multi-zone DICI engine simulation framework. These models are 

capable of capturing various thermo-physical properties of multi-component fuel which is 

a key element in the adaptation of alternative fuels to DICI engine operation. 

The modification of the classical phenomenological spray correlation using the 

WAVE breakup model and implementing zone to zone interaction for the pre-breakup 

region showed improvement of model fidelity and captures behaviors of spray 

penetration of various fuels. In addition, spray angle comparison result validates the 

current approach for calculating air entrainment rate. A simple multi-component droplet 

evaporation model has been extended from single component droplet evaporation. This 

method proves the capability of predicting multi-component fuel droplet vaporization rate 

in various ambient conditions. In addition, the developed model simulates evaporation of 

penetrating DF2 and JP8 fuel sprays over a wide range of temperature and pressure 

conditions. 

The major conclusions are as follows. 

1. Surface tension and viscosity of a liquid fuel are key properties that need 

to be included in a breakup model in addition to density and injection pressure 

differences. This includes additional fuel specific properties in the model.  

2.  By adding a zone to zone interaction model, the inconsistent locations of 

the initial zones relative to the main spray is avoided. This improves the behavior and 

consistency of the previous developed model of the spray. 
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3. The proposed model allows a different composition in the vapor compared 

to the liquid as influenced by different ambient conditions and the fuel mixture 

composition. The effect of an elevated pressure is important and included in the 

vaporization process model. This can have a significant impact on the ignition delay and 

subsequent combustion, and generally improves the fidelity of the model. 

4. From the evaluation of the model with various fuels in a wide range of 

engine in-cylinder conditions, the model is able to capture a complex influence of the 

temperature that depends on pressure and the fuel type. This will become more 

pronounced with certain conditions, such as early injection or EGR, both leading to lower 

temperatures. 
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          Chapter 3  
 
 

Fuel sensitive ignition delay models for a local and global description 
of direct injection internal combustion engines 

In this chapter, the Arrhenius type fuel sensitive spray ignition delay models in 

the quasi-dimensional multi-zone DICI engine simulation are presented. Ignition delay 

models are developed using two different descriptions. The developed models are able to 

capture ignition delay of typical fuels suitable for Diesel engine operation including 

dilution effect. Other kinds of fuels are also used to evaluate the new models. 

3.1 Ignition delay overview 

Even though an Arrhenius equation type ignition delay model can be used for 

both spray ignition delay and the premixed charge ignition delay, the calibration of the 

model for each case is very different because the premixed charge ignition process 

happens in a physically well prepared environment than the spray ignition process. In the 

premixed charge spatial variations are small so local diffusion/conduction processes are 

minimal whereas in the spray there are strong local gradients in most of the properties 

and thus significant local diffusion type fluxes, like heat, species flux and shear. 
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Figure 3.1 Comparison of n-heptane ignition of spray in constant volume chamber vs. 
shock tube ignition. Spray ignition delay is obtained from ECN data base [74] and shock 
tube data is obtained from Ciezki and Adomeit [75]. Presented data is scaled to 50 atm 

using the following equation: ( ) 1atm50 −= atmidscaled Pττ  

A comparison of spray ignition delay and premixed ignition delay as a function of 

temperature is shown in Figure 3.1. As seen in the figure, the ignition delay behavior in 

the NTC regime is usually not observable with a fuel spray where temperature and 

pressure are under typical Diesel like conditions, except for the cases of extremely early 

injection. In addition, the apparent activation temperature (which is the activation energy 

divided by the universal gas constant) for the ignition delay is much smaller than for the 

premixed charge ignition delay except in the NTC regime. In a premixed charge, the 

ignition delay is mainly dominated by the chemical processes with vapor fuel and 

oxidizer well mixed. Local variance of their concentrations can be considered minimal as 

well. On the other hand, the spray ignition is a combination of chemical processes and 

physical processes with a stochastic distribution of properties like temperature and 

equivalence ratio. The ignition in a spray occurs at a local spot where environmental 
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conditions such as concentrations of fuel and oxidizer differ from location to location. 

The local temperature is lower than the ambient air temperature due to the evaporation of 

the liquid fuel. The local variance and transient behavior of the conditions are due to the 

physical processes of the spray evolution. As the liquid fuel penetrates into the ambient 

air in the combustion chamber, it breaks up, evaporates, and mixes with the entrained air. 

Therefore the concentrations of fuel and oxidizer continuously change while the spray 

evolution process is happening. 

 

 
Figure 3.2 Physical and chemical ignition delays 
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evaporation times are calculated from the sub-models developed in Chapter 2 for given 

fuels. It should be notice that the total ignition delays are normalized to 100% and the 

breakup and evaporation times are not changing dramatically as appears in the figure. But 

overall they occupy significant portion of total delay for some fuels, thus it should be 

considered in the spray ignition delay.  

The breakup time model is a function of density, viscosity and surface tension. 

Higher density, viscosity and lower surface tension result in longer breakup time. As seen 

in the result of Chapter 2 the viscosity and surface tension need to be extremely different 

from one another to have a significant effect to breakup. Differences of surface tension 

between fuels are not big enough to change breakup time considerably. T70 has second 

lowest viscosity among the fuels, but because of high density, breakup time is longer than 

fuels like n-heptane, n-dodecane, DF2 and JP8. 

Saturated vapor pressure, diffusion coefficient heat of evaporation and specific 

heat capacity are closely related to the evaporation process. Faster evaporation time is a 

result of both higher diffusion coefficient and higher saturated vapor pressure. In addition, 

both higher heat of evaporation and lower liquid heat capacity prevent temperature rising 

of fuel droplets. Therefore evaporation time turns out to be shorter. Evaporation time of 

n-heptane is shortest because the fuel has highest saturated vapor pressure. T70, CN80, 

GE80 and BM88 have relatively low saturated vapor pressure, which leads to longer 

evaporation time. BM88 has lowest saturated vapor pressure however also has relatively 

low liquid heat capacity. Therefore droplet temperature rises little faster than others. In 

case of evaporation process, the related fuel properties of evaporation interacts more 
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compared to breakup process so the result of evaporation should not be judged by a 

single property of fuel. 

For the chemical ignition delay part, the process is strongly influenced by its 

chemistry. In addition the process is also very sensitive to the detailed conditions in the 

local gas mixture and its history. The variations of local conditions are calculated by 

breakup, evaporation and air entrainment processes. Thus these physical fuel spray 

evolution process is an important part for the modeling of the ignition delay in a DICI 

engine. 
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3.2 Fuel sensitive spray ignition models 

To develop a fuel sensitive spray ignition delay model, experimental data of spray 

ignition delay using different fuels in a same test setup are collected from the ECN 

database. From this database, spray ignition delay data of four different fuels (JP8, DF2, 

n-heptane and n-dodecane) are taken and used for regression.  

The obtained data is pre-screened to match the experimental conditions close to 

that of Diesel engines. For example, ignition delay less than 2 ms, and injection pressure 

difference of 1400 ~ 1500 bar data are used for the regression analysis. The test data used 

for the analysis are listed in Appendix C. It is impossible to conduct an experiment which 

controls fuel properties or chemical reactions of the auto ignition process in the fuel spray. 

Therefore, in the experiment, control parameters are limited to the environmental 

parameters such as temperature, pressure, composition of oxidizer, and injection 

conditions. Table 3.1 shows properties and blend ratio for surrogates of the test fuels. 

3.2.1 Formulation of fuel sensitive spray ignition delay model using global 

information 

Typically an Arrhenius type spray ignition delay model is developed as a function 

of global temperature and pressure in the combustion chamber. An Arrhenius type model 

based on Wolfer’s correlation[45] is one of the simplest models, which is traditionally 

used as a spray ignition delay model in a Diesel engine simulation.  
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where, Ag is a pre-exponential parameter in ms∙barn, P is chamber pressure in bar, n is 

exponent for pressure sensitivity, Tg is global chamber temperature in K, and gθ  is a 

global apparent activation temperature in K.  

This equation form served very well in the Diesel engine simulation for several 

decades, however, the correlation does not contain variables which can capture dilution 

effects. In the ECN spray ignition delay data set, simulated EGR data is included. To 

simulate dilution by EGR, test data was selected for the condition of various ambient 

oxygen mole fractions which are experimentally controlled by pre-combustion. Therefore, 

Eq. (3.1) is modified to include the ambient oxygen mole fraction
.,2 AmbOy . 
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
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T
yPAms

θ
τ exp][ ,2

 (3.2)

  
where m is the exponent for the ambient O2 mole fraction sensitivity. The charge overall 

air-fuel ratio or equivalence ratio is not included as they have very little influence on the 

local ignition delay in the spray configuration.  

 

Table 3.2 Individual calibration parameters for four different fuel using ECN test data 

 
JP8 DF2 n-heptane n-dodecane 

Ag ( nbarms⋅ ) 0.6204 0.1853 0.2697 0.0332 
n 1.0 
m 1.0 

θg (K) 2587.9 3350.7 2799.8 3946.6 
R2 0.9676 0.9148 0.9612 0.9778 

 

For each of the fuels in the ECN data, the model in Eq. (3.2) is calibrated and the 

calibration parameter sets are listed in Table 3.2. The pressure and oxygen mole fraction 
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exponents (n, m) are found to be the same for the four test fuels. The listed calibration 

parameters are implicitly includes the fuel properties which affect the ignition delay of 

spray. To develop fuel sensitive spray ignition delay model, these properties need to be 

identified and used as explicit variables for the correlation. With a fuel spray, the ignition 

delay is affected not only by a chemical ignition process but also by physical fuel spray 

evolution processes such as penetration, evaporation, air entrainment and mixing. The 

effect of all these processes on the spray ignition delay is still unclear and to separate and 

observe the effects of these processes in the experiment is almost impossible as well. 

The Cetane number is a traditional parameter that characterizes ignition quality of 

the fuel. The standard procedure [76, 77] for measuring the Cetane number utilizes spray 

ignition apparatus such as cooperative fuel research (CFR) engine or ignition quality 

tester. Since the procedure measures the apparent effect of a fuel on the spray ignition 

from the tester, the Cetane number is the parameter which takes into account both 

physical and chemical ignition processes. Since Cetane number is measured with a 

specific operating conditions and test equipment, the ignition delay in a real engine can 

be different between fuels with the same Cetane number. The ignition delay varies 

depending on different ambient conditions and this is altered by different equipment and 

operating conditions. The deviation between fuels and effect of environmental condition 

of different engine condition can be captured by the Arrhenius equation.  

Some of the ignition delay models [42, 48] utilize Cetane number for modeling 

the activation energy. However, apparent global activation temperatures do not vary as 

much as parameter Ag. With the temperature range of typical engine simulation situation, 

the activation temperature differences are even less pronounced. Figure 3.3 shows that 
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using average apparent activation temperature, 3171 K, actually fits reasonably well with 

different fuels although n-dodecane result shows slightly larger error than others. In fact, 

small variations of apparent activation temperature indicate local temperature sensitivities 

of ignition delays for different fuels are masked by the spray processes. Compared to the 

activation temperature variation of different fuels in premixed ignition delay experiment 

[78, 79], the deviation in spray ignition delay is very small. When averaged apparent 

activation temperature is used, the trend of model parameter Ag against Cetane number 

becomes monotonic and can be expressed by a function of the Cetane number as seen in 

Figure 3.4. 

The curve fitting of the pre-exponential parameter Ag becomes a simple power 

function of the Cetane number CN.  

 936.187.402 −= CNAg  (3.3)

  
By substituting Eq. (3.3) into Eq. (3.2), the fuel sensitive spray ignition delay 

using global information (global information model) becomes as follows. 

 













= −−−

g

ambOid

T
yPCNms

3171
exp87.402][ 1

,
1936.1

2
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This global model uses the Cetane number as the sole fuel specific information 

build into this model. Together with the overall charge pressures, temperature and 

ambient oxygen concentration these variables are predicting the ignition delay. 
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Figure 3.3 Comparison of activation temperatures. From Eq. (3.2) with exponent -1 for 
both pressure and ambient oxygen mole fraction, experimental and calculated ignition 

delay can be expressed as a simple exponential form, ( )TA θexp . 
 

 
Figure 3.4 Monotonic behavior of pre-exponential parameter Ag and its curve fitting 
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3.2.2 Formulation of fuel sensitive spray ignition delay model using local spray 

information 

The actual ignition occurs in a local spot of injected fuel spray. Therefore, the 

global ignition delay model cannot capture the deviation of local conditions such as 

temperature, and equivalence ratio from the average chamber condition. To enhance the 

spray ignition delay model, such local condition information should be utilized. This 

information is available with the enhanced spray and evaporation model described in the 

previous chapter. In each zone, the concentration (molar density) of oxygen and fuel 

vapor is calculated as follows. 

 [ ] [ ]
z

F

z

O

TR

Py
F

TR

Py
O ==    and   2

2  (3.5)

  
where [O2] and [F] are concentrations in mol/cm3, 

2Oy and Fy  are mole fractions, P is 

global pressure in bar, R  is universal gas constant: 83.1446 cm3·bar/(mol·K)  and Tz is 

zone temperature in K.  

Since a part of the physical process of spray ignition delay such as break up and 

evaporation is captured by the multi-zone spray model, the ignition delay model is 

required to capture the ignition delay dominated by chemical effects. The Arrhenius 

equation used for the premixed charge ignition delay experiment [78, 80, 79] data fitting 

is considered as a chemical ignition delay correlation. Thus for the ignition delay model 

with a multi-zone spray model, the following correlation is used. 
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where, delτ  is delay time in ms from breakup to ignition, A  is pre-exponential parameter 

in ms·(mol/cm3)n+m, n and m are exponent that determines effect of concentration, and θ 

is apparent activation temperature in K.  

Although the multi-zone model captures physical part of ignition delay by 

calculating concentration of each zone, there are additional information which should be 

implicitly captured by the experimentally determined pre-exponential parameter A and 

apparent activation temperature θ. In addition, breakup time is not included in the 

ignition delay since there is no fuel vapor in the zone during this period. The evaporation 

process starts after breakup and generates fuel vapors. Thus Eq. (3.6) is defined to 

calculate the delay time, delτ  from breakup to ignition, which includes evaporation time 

and chemical ignition time.  

By reformulating Eq. (3.6), the uncertainties of the physical part of the ignition 

delay can be identified. Replacing the concentration terms in Eq. (3.6) with Eq. (3.5), the 

delay time, delτ  can be expressed as follow. 
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The mole fraction of fuel can be also expressed with equivalence ratio and molar oxygen-

fuel ratio. 

 
α

φ
2O

F

y
y =  (3.8)

  
where α is the stoichiometric molar ratio of oxygen to fuel. The ratio is equal to a+0.25b 

with a hydrocarbon fuel, CaHb.  

In Eq. (3.8) , the definition of equivalence ratio is expressed with mole fractions. 
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where subscript ST and R indicates stoichiometric condition and real condition 

respectively. 

After the mole fractions of fuel in Eq. (3.7)  is replaced with Eq. (3.8), the 

equation becomes, 
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The first curly bracket of Eq. (3.10)  is a constant but contains some fuel information. 

Thus the whole bracket can be expressed as another pre-exponential parameter Az. Then 

the pre-exponential parameter A can be written as follows. 
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 mmn

z RAA −−−
= α  (3.12)

  
Finally, by substituting pre-exponent parameter A  in Eq. (3.6) by Eq. (3.12), and 

use zθ  instead of θ to signify the new model, the equation becomes, 
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where θz is local apparent activation temperature for the multi-zone spray model in K. 

Note that all the calibration parameters (n, m, Az and θz )  are model constants applied for 

all the different zones. The local information used in the model is the temperature and the 

two concentrations. 
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In theory, the equivalence ratio of the spray changes significantly during the 

evaporation and air entrainment processes, therefore the equivalence ratio can range from 

zero to infinity. If the equivalence ratio reaches extreme values (small or large), ignition 

delay must become longer since there are not enough oxidizer or fuel molecules to 

interact with each other. The minimum ignition delay does not necessary have to be 

located at equivalence ratio of 1. In Eq. (3.13), the concentration exponents represent 

sensitivity to the concentration, hence to the equivalence ratio. As seen in the Figure 3.5, 

positive exponents for both n and m are desired for the desired response with respect to 

the change in equivalence ratio. 

 

 

Figure 3.5 Effect of different values of concentration exponents 

 

In Eq. (3.10), the pressure exponent is (-n-m). This exponent should be the same 

value as the exponent value from global spray ignition delay model in Eq. (3.4) because 

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Equivalence ratio, φ

N
o

rm
a

liz
e

d
 [ O

2]
- 

n [ F
]- 

m

 

 

 n > 0,  m > 0

 n > 0,  m < 0

 n < 0,  m > 0

 n < 0,  m < 0



71 

of the global pressure assumption. Thus a criterion (n+m=1) can be used in addition to 

the positive exponents for current test fuels in this study. 

 
Table 3.3 Parameters for local ignition delay model 

 
JP8 DF2 n-heptane n-dodecane 

zA  1.76E-4 1.13E-4 9.99E-5 4.56E-5 
n 0.8 
m 0.2 

zθ  (K) 4000 

 

 
Figure 3.6 Regression of pre-exponent parameter Az versus Cetane number for local 

ignition delay model. 
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In addition exponent for universal gas constant in Eq. (3.13)  is also (-n-m) for all the test 

fuels. Therefore, 

 744.121084.9 −−×= CNAz  (3.14)
   

 744.131
10183.1 −−−

×= CNRAz  (3.15)

   
Finally, the fuel sensitive spray ignition delay model using local spray information 

becomes. 
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Using the ignition integral by Livengood and Wu [81], the ignition time, ignt , is 

obtained from the condition 

 ∫ =ign

break

t

t
del

1
1

τ
 (3.17)

   
where breakt  is the breakup time of the spray. Note that the starting time of integration is 

the breakup time. 

3.3 Results and discussion 

3.3.1 Result of developed spray ignition delay models 

Predicted ignition delay by the two developed ignition delay models is compared 

to the corresponding experimental data and presented in Figure 3.7 and Figure 3.8. In the 

figures, the test points have various combustion chamber density and ambient oxygen 

contents except for n-dodecane case. Thus the ignition delay shows in the chart is 

scattered. In order to identify validity of the proposed models easily from the figures, 
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presented data are scaled to 50 bar and 21 % oxygen with exponent -1 using the 

following equation and illustrated in in Figure 3.9 and Figure 3.10.  

 

1

,

1

2

21.0bar50
−

−

























=

AmbO

idscaled

yP
ττ  (3.18)

   
As seen in the figures, both models predict the ignition delay very well for most 

of the data points. The local ignition delay model captures the trend of ignition delay 

slightly better for DF2 and n-heptane fuels. The variations of local conditions within 

spray are captured with the local model so the spread of ignition delay at the same 

temperatures can be captured properly.  

Table 3.4 shows R2 results of each fuel for the two models. The average R2 values 

are about 0.92 for both models. When compared to global spray ignition delay model, 

using the local information of spray improves the precision except for n-heptane case. As 

seen in the Figure 3.10 (c), this is mainly because the predictions are slightly biased 

towards shorter delay. Since n-heptane is the lightest among the four test fuels, it has the 

fastest evaporation rate. The concentration of fuel for n-heptane changes faster than the 

other fuels as well. Therefore, the exponent values used for local ignition delay model is 

less close to the optimal value for n-heptane and results in a less accurate prediction. 

Average root mean square errors for the global and local models are 0.0971 and 0.0957 

respectively.  
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Table 3.4 R2 of two fuel sensitive spray ignition delay models 
Fuel Global model Local model 
JP8 0.9467 0.9594 
DF2 0. 8884 0.9024 

n-heptane 0.9223 0.8865 
n-dodecane 0.9074 0.9269 

Average 0.9162 0.9188 
 

 

 

Figure 3.7 Prediction result of fuel sensitive spray ignition delay model using global 
information original data 
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Figure 3.8 Prediction result of fuel sensitive spray ignition delay model using local spray 
information original data 
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Figure 3.9 Prediction result of fuel sensitive spray ignition delay model using global 
information scaled to 50 bar and 21% oxygen. 
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Figure 3.10 Prediction result of fuel sensitive spray ignition delay model using local 

spray information scaled to 50 bar and 21% oxygen. 
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Aligrot’s model [47] in Eq.(3.20)  is developed based on various blend of fuel 

with different Cetane number from 20 to 60. Parameter A from Wolfer’s model is 

expressed in a linear function of Cetane number. 
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Rakopoulos’s model [11] in Eq. (3.21) is used in their study of ethanol-Diesel fuel 

blends. Parameter A is calibrated to 4.5 ms∙bar0.737 for DF2 fuel in ECN data at 21 % 

ambient oxygen case. 
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Zheng’s model [42] in Eq.(3.22) is developed to capture oxygenated fuel effect of 

biodiesel fuel. The activation temperature from this model is modified from Watson’s 

model [40] using Cetane number. Cetane number of 46.3 would have a factor of unity. 

Parameters A, k and n used for comparison are 6.1 ms∙bar1.02, 0.1 and 1.02 respectively. 
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where [ ] ntake2 iO  is oxygen concentration in intake flow, [ ]fuelOF  is equivalence oxygen 

concentration in fuel. 

The result of calibrated Wolfer’s model in Figure 3.11 shows that prediction 

result of each fuel aligned in parallel with each other except for n-heptane. This is 

because the calibrated activation temperature for DF2 used for this comparison is close to 

the calibrated temperature of the global spray ignition model in Eq. (3.4). Result of n-

heptane is scattered because ambient oxygen contents of experiment data ranged from 8 % 
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to 21 % and the model does not captures the variation. The application of Aligrot’s model 

in Figure 3.12 results in the most scattered results. The pre exponential parameter is a 

function of Cetane number and determined with their experimental results with 

corresponding activation temperature. Because its activation temperature is much higher 

than the calibrated temperature, the model does not perform well with ECN test fuels. 

Figure 3.13 shows Rakopoulos’s ignition delay model results. This model is the only 

model that is developed for a multi-zone model among the four models in the comparison. 

However, the calculated activation temperature is quite low; for Cetane number from 38 

to 80, the activation temperature change from 1181.44 K to 708.86 K. Also the model 

does not capture dilution effects. Thus even after calibration of parameter A, the results 

show a discrepancy with experimental data. Figure 3.14 shows Zheng’s model result. 

This model also shows lower activation temperatures, 2376.7 K to 1432 K respectively 

for Cetane number from 38 to 80. This model captures oxygen concentration of intake air 

and oxygenated fuel, but due to the lower activation temperature the model does not 

exhibit a good result.  

The result of all four ignition delay models shows that they are inadequate for 

predicting the ignition delay of different fuels or diluted conditions other than the fuel 

range that each model was originally developed for.  
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Figure 3.11 Prediction result of calibrated Wolfer's ignition delay model scaled to 50 bar 

and 21% oxygen. 
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Figure 3.12 Prediction result of Aligrot’s ignition delay model scaled to 50 bar and 21% 

oxygen. 
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Figure 3.13 Prediction result of calibrated Rakopoulos’ ignition delay model scaled to 50 

bar and 21% oxygen. 
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Figure 3.14 Prediction result of calibrated Zheng’s ignition delay model scaled to 50 bar 

and 21% oxygen. 

 

3.3.3 Performance of developed models for other fuels in the ECN 

To investigate the performance of the two developed models for other alternative 

fuels, experimental results of different test fuels, namely, T70, CN80, GE80 and BM88 

from the literature [82] are compared with the model predictions. The test data used for 

the comparison are listed in the Appendix C. These fuels are oxygenated fuels except for 

CN80 and the ignition delay is measured using the same constant volume chamber setup 

in Sandia National Laboratory as done with the previous test fuels. The acquisition of the 

0.8 1 1.2 1.4
0

0.5

1

1.5

Ig
n

iti
o

n
 d

el
ay

 (
m

s)

1000/T (1/K)

(a) JP8

0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

Ig
n

iti
o

n
 d

el
ay

 (
m

s)

1000/T (1/K)

(b) DF2

0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

Ig
n

iti
on

 d
el

ay
 (

m
s)

1000/T (1/K)

(c) n-heptane

0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

1000/T (1/K)

Ig
n

iti
on

 d
el

ay
 (

m
s)

(d) n-dodecane

Experiment

Prediction: Zheng



84 

ignition delay is performed with 21 % ambient oxygen at three different ambient 

densities (7.3, 14.8 and 30 kg/m3). The properties of these test fuels are listed in Table 3.1. 

Ignition delays for these additional test fuels are calculated without re-calibration of the 

global and the local ignition delay models. 

The results illustrated in Figure 3.15 and Figure 3.16 shows that the developed 

ignition delay models are not suitable for prediction of other fuels without any re-

calibration. In both cases, sensitivity with the Cetane number is exaggerated. Thus the 

predicted results generally show longer ignition delay for T70 and shorter ignition delay 

for the other fuels compared to the experimental data. In both Figure 3.15 and Figure 3.16 

the activation temperatures of the models are smaller than their optimal values to match 

with the experimental result of for CN80, GE80 and BM88. In addition the deviation 

comes from the fact that the activation temperature of the models does not explain the 

sensitivity of the experimental results to the temperature. The scaled experimental results 

show different temperature sensitivity depending on the ambient air density for fuels like 

GE80 and T70.  

The local model utilizes oxygen and fuel concentrations of local zones. These 

concentrations are the outcome of enhanced sub-models of multi-zone model, which are 

capable of capturing physical property differences of each fuel. Only the remainder 

effects are captured by the calibration of the model. As a result, the local model is a bit 

more sensitive to the different conditions of the experimental setup. Therefore, this model 

performs slightly better as seen in Figure 3.16. 

The other models in Eqs. (3.19) to (3.22) are also tested with T70, CN80, GE80 

and BM88. These correlations are not re-calibrated for the new set of the fuels. The 
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results are shown in Figure 3.17 to Figure 3.20. They generally do not capture different 

experimental conditions well. Figure 3.17 shows that current calibration for Wolfer’s 

model is not acceptable for the test fuels. Aligrot’s model in Figure 3.18 shows better 

performances than that shown in previous section. However Cetane number effect is 

more exaggerated than global or local model results in Figure 3.15 and Figure 3.16. 

Rakopolous’ model in Figure 3.19 shows scattered result but less sensitive to the 

temperature because initially the model did not have enough variation to the pressure and 

having small activation temperature. Zheng’s model in Figure 3.20 captured pressure 

effect pretty well but again the overall sensitivity to the temperature is very small which 

result in much smaller variation in ignition delay compared to experimental data. 

 
Figure 3.15 Result of global ignition delay correlation scaled to 50 bar and 21% oxygen.  
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Figure 3.16 Result by local ignition delay scaled to 50 bar and 21% oxygen.  
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Figure 3.17 Prediction result of Wolfer's ignition delay with T70, CN80, GE80 and 

BM88 scaled to 50 bar and 21% oxygen. 
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Figure 3.18 Prediction result of Aligrot’s ignition delay model with T70, CN80, GE80 

and BM88 scaled to 50 bar and 21% oxygen. 
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Figure 3.19 Prediction result of calibrated Rakopoulos’ ignition delay model with T70, 

CN80, GE80 and BM88 scaled to 50 bar and 21% oxygen. 
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Figure 3.20 Prediction result of calibrated Zheng’s ignition delay model with T70, CN80, 

GE80 and BM88 scaled to 50 bar and 21% oxygen. 
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3.4 Summary and Conclusion 

 In this chapter, two fuel-sensitive spray ignition delay models are developed: a 

global model and a local model. These models follow the Arrhenius type expression 

modified with the oxygen concentration and Cetane number to extend the range of 

validity. The models are also sensitive to pressure (density) and dilution, which is 

important for use in modern engine EGR applications for emission control. Both models 

were calibrated with four different fuels (JP8, DF2, n-heptane and n-dodecane).  

Spray ignition correlations previously developed by others are typically calibrated 

with a specific fuel, mostly Diesel fuel and they have to be recalibrated if they are 

intended to be used for different fuels. Unlike the previous models the models and 

methodology developed in this investigation show very good predictive capability with a 

single set of calibration parameters for different fuels. The deviations between models 

and experimental data are significantly less than previous models.  

However, the proposed models have a limitation in predicting the ignition delay 

of synthetic/oxygenated fuels. It was found that the Cetane number is not sufficient to 

explain the behavior of synthetic/oxygenated fuels and a simple change in the activation 

temperature cannot cover the behavior either. Additional fuel specific information would 

be required to extend the proposed models to these other fuels. The proposed models 

have relatively better predictive capability compared to the existing models for this class 

of fuels. 

 



92 

          Chapter 4  
 
 

Enhanced combustion modeling method for diluted air-fuel mixture:  
Scaled premix burn rate model 

In this chapter, a method to calculate the burn rate of combustion in the quasi-

dimensional multi-zone DICI engine simulation is presented. The premixed combustion 

model is newly formulated to calculate the burn rate of diluted air and fuel mixtures 

appropriately. The dilution effect to the combustion is important for simulating a modern 

DICI engine which employs high rate of EGR flow for emission purposes. 

4.1 Scaled premixed burn rate model 

Among two phase of spray combustion, pre-mixed combustion is more sensitive 

to the fuel chemistry. During the ignition delay period, the air-fuel mixtures in each zone 

are calculated using spray penetration, breakup, air entrainment and droplet evaporation 

models. Then the burn rate is mostly dominated by the chemical reaction rate. Using a 

single step global reaction rate in an Arrhenius equation form for premixed burn rate is an 

adequate method for practical computation time and reasonable accuracy over wide 

engine operating range. Nishida and Hiroyasu [49] developed a burn rate model for their 
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multi-zone Diesel simulation using a single step global reaction rate of n-dodecane 

combustion. The rate of consumed fuel vapor mass is described as follow. 
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where A is a model constant in m3/(kg∙s), mixρ  is density of mixture, 
2Ox  and vfux ,  are 

mass fraction of oxygen and fuel vapor respectively and pθ  is activation temperature.  

In this model, the activation temperature is determined as 12000 K based on the 

extended C-H-O chemical kinetic reaction mechanism [83]. The exponents of mass 

fractions are determined to have a maximum combustion rate at the stoichiometric 

condition (when vfux , = 0.22, n=5 and m=1) of a mixture with pure oxygen and fuel. 

However this calibration does not work properly when oxidizer is not pure 

oxygen and diluted as in case of air. Equation (4.1) does not calculate a peak combustion 

rate at the stoichiometric condition.  

 
Figure 4.1 Normalized calculation result of Nishida correlation with different oxygen 

mole fraction in the air. 
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Figure 4.1 shows normalized burn rates of Nishida correlation at different oxygen 

mole fraction in the air. In the figure, the peak of the burn rate moves to the richer side as 

the oxygen is diluted. The maximum burn rate of the correlation at diluted situation can 

be achieved at stoichiometric condition with re-calibrated exponents of mass fractions. 

However this calibration increases exponents of oxygen mole fraction much higher (n=16 

and m=1 when 21 % of oxygen contains in the ambient) and causes sensitivity of oxygen 

contents to burn rate becomes irrationally high. In this case slight dilution by EGR flow 

can cause significantly low burn rate. Thus the burn rate correlation should be 

reformulated with the equivalence ratio so that the peak of burn rate remains at the 

stoichiometry without the effect of dilution. Then, the overall rate can be scaled 

judiciously by the dilution effect maintaining the peak of the burn rate at stoichiometry. 

For the new correlation, the normalized burn rate at the mixture of pure oxygen 

and fuel shown in Eq. (4.1) is taken as a reference and curve fitted. An exponential 

function given in the following equation is used to describe the normalized burn rate.  

( )d
ub

b
ub caf φφ −= exp1  (4.2)

 

where a, b, c and d is the calibration constants ϕub is the equivalence ratio of unburned air 

and fuel mixture. 

This function is made with an intimation from the probability density function of 

Weibull distribution [84]. Unlike with the Weibull distribution, the exponents and 

coefficients are not mathematically tied together. The result of regression listed in Table 

4.1 shows that the Eq. (4.2) can represent the function shape of normalized Nishida 

correlation very well.  
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Table 4.1 Coefficients and goodness of fit of regression 

Coefficients 

a 29.95 
b 1.577 
c 3.406 
d 0.4847 

Goodness of fit 

R2 0.9997 
Sum of Squared Error 0.03289 

 

The trend of burn rate with different dilution calculated by Nishida model in Eq. 

(4.1) at stoichiometric is taken as reference for new model development. The oxygen and 

fuel mass fraction terms in the equation can be reformulated to scale the Eq. (4.2) for 

dilution effect. The mass fraction terms can be expressed as follow. 
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At stoichiometric condition, the mole fractions in Eq. (4.3) of oxygen and fuel can be also 

expressed as follows. 
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where n is mole number, α is oxygen-fuel molar ratio at stoichiometric condition and yO2au 

is oxygen mole fraction in the unburned air of each zone. 
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By substitute, Eq. (4.4) to Eq. (4.3), the scaling function becomes as follow. 
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where M is molar mass, Mavg is average molar mass of stoichiometric mixture at given 

oxygen content of ambient air in the zone. 

In Eq. (4.5) the dilution effect and the fuel effect are described with the oxygen 

mole fraction in the zone and stoichiometric oxygen-fuel molar ratio. This equation is 

independent of equivalence ratio; therefore it can be used to scale Eq. (4.2). In addition, 

temperature and pressure effects are captured by density term and exponential term with 

activation temperature in (4.1). Therefore, the scaled pre-mixed bun rate model is 

expressed as follows. 
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(4.6)

 

where Bp is calibration parameter in m3/kg∙s. The coefficient a of Eq.(4.2) is included in 

the parameter.  

The exponents n and m of the scaled pre-mixed bun rate model in Eq. (4.6) are taken as 

the same as in the Nishida correlation (n=5 and m=1). This calibration will give the same 

scaling effect as Nishida correlation except for the location of the maximum burn rate 

After all the pre-mixed fuel and air, which is prepared during the ignition delay, 

has been consumed, the rest of fuel in the spray jet (including fuel injected after ignition) 

starts burning. In this combustion phase, fuel and air needs to be mixed prior to the 
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combustion and mixing process requires several other processes in addition to mixing 

itself such as breakup, air entrainment and evaporation. The chemical reaction rate is 

usually much faster than these processes. Therefore in this ‘mixing-controlled’ 

combustion phase, also known as diffusion combustion phase, the mixing process 

becomes a limiting factor of the overall combustion rate. The heat release of pre-mixed 

phase usually show high spike due to the rapid combustion. For mixing-controlled 

combustion phase, the heat release usually shows much longer duration due to the slower 

burning rate compared to the earlier phase. 

The mixing controlled combustion model used in this study is developed by Jung 

[3]. Usually, the burn rate of this phase is limited by fuel availability, but sometimes 

when the gas temperature is low enough or the mixture is very lean, so that kinetics slows 

down exponentially, the combustion rate is limited by chemical kinetics. The following 

equation describes the rate of combustion at mixing controlled combustion phase.  
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The available fuel and air mixture is calculated from the spray formation air entrainment 

and evaporation model developed in Chapter 2. This mixture availability competes with 

the burn rate given in Eq. (4.7). In the simulation, the numerical solution of the equation 

is taken care to avoid unfeasible solution by the following steps. The available fuel is 

compared with the burned fuel prescribed by the burn rate in Eq. (4.7). If the available 

fuel is less that the prescribed burned fuel, the only available fuel will be completely 

burned with the rate. If the combustion is kinetically limited, the only prescribed burned 

mass, which is less than the available fuel will be burned with the rate. 
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4.2 Characteristics of the scaled premixed burn rate model 

Experimentally measured burning rate of fuel spray in high spatial resolution is 

extremely difficult to obtain. Typically the apparent heat release rate is calculated from 

the engine cylinder pressure traces. This apparent heat release rate is not suitable to 

validate a burn rate correlation because the burn rate is a comprehensive simulation result 

from all the other spray models combined. Therefore, a qualitative assessment of the 

developed pre-mixed burn rate model is presented here. 

For the evaluation, the burn rates of n-dodecane fuel and diluted air with oxygen 

mole fraction at 21 % to 13 % are calculated and presented in Figure 4.2.  

 
Figure 4.2 Normalized burn rate relative to 21% oxygen case with n-dodecane 

 

The burn rates in the figure are normalized to the peak of 21 % case. As seen in 

the figure the maximum of burn rate is located at the stoichiometry, while burn rates are 

reduced as the air is diluted. The flammability limits are implemented with the function 

used for curve fit in Eq. (4.2). The function decays fast at higher equivalence ratio. In 
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addition, the function has an infinite tail which provides a numerical stability for the 

simulation.  

  
Figure 4.3 Normalized molar reaction rate relative n-heptane case with 21% oxygen mole 

fraction 

 

Figure 4.3 shows normalized molar reaction rate for five different n-alkane fuels 

from n-heptane to n-cetane. The ambient oxygen mole fraction is 21 % and the data is 

normalized to the peak of n-heptane reaction rate. The figure shows that the molar 

reaction rate of combustion of heavier fuel is slower. This behavior is comparable to 

other one step global combustion model by Westbrook and Dryer [52]. In their work, one 

step global reaction mechanism is developed for the combustion of hydrocarbon fuels in 

flames. The following correlation is used for their reaction rate model. 
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where k is reaction rate in mol/s, Ea is activation energy in kcal/mol and R is universal 

gas constant: 1.987×10
-3 kcal/ (K∙mol). 
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Table 4.2 Single step reaction rate model parameters  
Fuel M α A* Ea* n* m* 

C5H12 72 8 6.40E+11 30 0.25 1.5 
C6H14 86 9.5 5.70E+11 30 0.25 1.5 
C7H16 100 11 5.10E+11 30 0.25 1.5 
C8H18 114 12.5 4.60E+11 30 0.25 1.5 
C9H20 128 14 4.20E+11 30 0.25 1.5 
C10H22 142 15.5 3.80E+11 30 0.25 1.5 

* Parameters from Westbrook and Dryer [52]. 

 

The model parameters for multiple hydrocarbon fuels are obtained by matching 

laminar flame speed calculation using the reaction mechanism to the experimental data. 

Table 4.2 shows selected parameters for n-alkanes which have the same activation energy 

and exponent parameter n and m. The parameter A is found to be correlated with 

stoichiometric oxygen-fuel molar ratio, α. The goodness of fit R2 is 0.9968. 

784.0121031.3 −×= αA  (4.9)
 

Using the parameter A from Eq. (4.9), molar reaction rates for the n-alkane fuels in 

Figure 4.3 are obtained with Eq. (4.8). The calculated reaction rates are then compared 

with the result of the scaled pre-mixed burn rate model. Figure 4.4 shows normalized 

reaction rate calculated from Eq. (4.6) and Eq. (4.8) at stoichiometry with different fuels 

in pure oxygen and fuel mixture. As seen in the figure, the scaled pre-mixed burn rate 

model matches remarkably well with the trend of one step global reaction rate model 

calibrated against different experimental setup. 



101 

 

Figure 4.4 Normalized molar reaction rate of scaled premixed burn rate model and 
Westbrook’s one-step global reaction rate at stoichiometric condition in pure oxygen for 
n-heptane (α =11), n-decane (α =15.5), n-dodecane (α =18.5), n-tetradecane (α =21.5) 

and n-cetane (α =24.5), 

 

4.3 Summary and conclusion 

In this chapter a new scaled premixed burn rate model is presented. Typical 

Arrhenius equation type premixed burn rate correlation does not have its maximum at 

stoichiometric with diluted air if it is calibrated with pure oxygen. This can be potentially 

a problem for EGR application. The proposed model is designed to calculate the rate of 

burned fuel mass of a premixed combustion appropriately in diluted air with fuel 
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approaches infinite. This characteristic of function works as a flammability limit. In 

addition the model is numerically more stable than a function using a cutoff equivalence 

ratio to set the rate zero at the flammability limit. 
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          Chapter 5  
 

Thermodynamic engine cycle simulation integrated with fuel 
sensitive quasi-dimensional multi-zone combustion models 

The engine cycle simulation integrated with quasi-dimensional multi-zone model 

of a DICI engine is briefly explained in Figure 5.1. The engine cycle simulation consists 

of four main processes with corresponding sub models which simulate four strokes of the 

engine. The proposed models in the earlier chapters are implemented in the multi-zone 

combustion process for the power stroke of engine cycle. 

 
Figure 5.1 Four stroke cycle simulation 
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The platform for the cycle simulation is developed by Jung [3] using 

thermodynamic cycle simulation framework developed by Assanis and Heywood [85]. 

Jung implemented quasi-dimensional multi-zone spray Diesel combustion model into the 

framework. In this study, the sub models for the Diesel combustion is replaced with 

proposed fuel sensitive models. 

5.1 Background of cycle simulation 

The multi-zone thermodynamic Diesel combustion simulation is briefly 

summarized in this section. Details can be found in the reference [3]. 

5.1.1 Gas exchange process 

The gas exchange processes of the cycle simulation are modeled with one-

dimensional quasi-steady state compressible flow model. The model calculates mass flow 

rate through intake and exhaust valves with tabulated or estimated discharge coefficients 

using following equation. 
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where Cd is discharge coefficient, A is valve area, P0 is stagnation pressure upstream of 

restriction, Ps is static pressure at restriction, γ is specific heat ratio and R is gas constant. 

If a chocked flow is detected, following equation is used. 
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5.1.2 Heat transfer process 

Heat transfer from the cylinder charge to the cylinder wall, piston and cylinder 

head is also calculated. For the heat transfer, convective heat transfer, cQɺ  from the 

turbulence flow in the cylinder and the radiative heat transfer, rQɺ  from the flame and 

burning soot particles are considered. Convective heat transfer is expressed as follow. 

( )wgc TThAQ −=ɺ  (5.3)

 

where A is surface area and h is convective heat transfer coefficient. The convective heat 

transfer coefficient is calculated from a Nusselt-Reynolds number correlation. 

daNu Re=  

 
(5.4)

where khLNu /=  and µρ /Re VL= , a and d is experimentally determined constant.  

To calculate characteristic length, L, macro scale turbulence is considered. For the 

characteristic velocity, V, effective velocity due to the contributions from the mean 

kinetic energy and turbulent kinetic energy and piston motions is used. This is similar to 

the variations of the heat transfer model by Woshcni [86]. 

Two radiative heat transfer models are implemented in the cycle simulation and 

they can be used selectively. The correlation of Annand [87] is expressed as follows 

( )44
wgrr TTAkQ −=ɺ  (5.5)

 

where kr empirical radiation constant. 

The other model is adopted from Assanis and Heywood[85] which calculates radiative 

coefficient from apparent gray-body emissivity εa and Boltzmann constant σ. 

( )44
wgac TTAQ −= σεɺ  (5.6)
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5.1.3 Mass and energy conservation 

In the power stroke, the multi-zone spray combustion model calculates mass 

conservation and energy conservation in each zone. Figure 5.2 illustrates the heat and 

mass fluxes between zones and cylinder walls. In the zone the vapor fuel is considered as 

an open system. In each system mass transfer from liquid droplet by evaporation, mass 

transfer by air entrainment, heat transfer to the droplets by evaporation and heat transfer 

to the cylinder walls are calculated. The air zone outside of spray is also treated as open 

system with mass transfer to the vapor fuel systems and heat transfer to the cylinder walls 

are calculated.  

 
Figure 5.2 Heat and mass fluxes of a zone [3] 

 

The energy equation in the simulation follows the description in Heywood [88]. 

The air and combustion product mixture inside the cylinder is assumed to be ideal gas 

and in thermodynamic equilibrium. The first law of thermodynamics in the open system 

of the engine in quasi-static state is written as follow. 



107 

∑+−=
j

jj hmWQE ɺɺɺɺ  (5.7)

 

where j is number of mass flow in and out of the system. Qɺ  is total heat transfer rate to 

the system and Wɺ  is work transfer rate out of the system through the boundary, where the 

piston is displaced. The work transfer rate is equal to VP ɺ . The change of energy in the 

cylinder can be expressed as follows 

( )

( ) ( )PV
dt

d
mh

dt

d

mu
dt

d
E

−=

=ɺ

 (5.8)

 

Then, Eq. (5.7) can be rewrites as follows. 

hmVPQhmhm
j

jj ɺɺɺɺɺ −++=∑  (5.9)

 

The enthalpy of h and the density ρ of the mixture and their rate of changes can be 

expressed as temperature pressure and equivalence ratio. 

),,( φPThh = , ),,( φρρ PT=  (5.10)
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From the partial derivative of ideal gas law following equation can be obtained. 
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By substitutingρɺ  of Eq. (5.13) with Eq. (5.12) Rɺ  is expressed with Pɺ , Tɺ  and φɺ  and 

together with ideal gas law, the rate of change of pressure can be obtained. 
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By expressing energy equation, Eq. (5.9) with Eq. (5.11) and substitute Pɺ  with Eq.(5.14), 

the rate of change of temperature can be also obtained. 
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By considering enthalpy flow and heat transfer of each spray zone and air zone, the rates 

of change of temperature for those zones can be calculated as follows. 
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More details of the modeling method related to the cycle simulation is well described in 

Jung [3] Assanis and Heywood [85] and Heywood [88]. 

5.2 Implementation of fuel sensitive models  

In this section, the implementation of proposed fuel sensitive model is presented. 

Methodologies of calculating physical and thermodynamic properties for multi-

component fuel are integrated. Calculating air and fuel contents in the cylinder and spray 

zones are also defined for the proposed ignition delay and combustion models. 

5.2.1 Physical and thermodynamic properties 

For the fuel sensitive combustion models, physical and thermodynamic properties 

need to be calculated for the different types of fuel including oxygenated fuels. In the 

simulation, properties at different temperature and pressure of both liquid and vapor are 

required. Because estimating real fuel properties in wide ranges of temperature and 

pressure sometimes inadequate for the simulation, the fuel surrogates are used to achieve 

flexible and fast calculation for various fuels. A total of 10 different methods to calculate 

physical properties of multi-component fuel surrogates are employed from multiple 

references. Table 5.1 presents list of required physical properties and calculation methods 

briefly. The detailed equations are provided in Appendix A. 
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Table 5.1 Physical property calculation methods 

Properties Method Source 

Specific heat of liquid fuel  
Group contribution method 
(GCM) - Joback (1984) 

Poling [63] 

Specific heat of fuel vapor  GCM -Joback (1984) Poling 

Thermal conductivity of 
fuel vapor 

Corresponding state principle 
(CSP) Chung, et al. (1984, 1988) 

Poling 

Dynamic viscosity of liquid 
fuel 

Experiment fitting model  
API [89] 
Perry [90], DIPPR [91] 

Dynamic viscosity of fuel 
vapor 

CSP Stiel and thodos 1961) API 

Density of liquid fuel  CSP - Rackett (1970) Poling 

Heat of evaporation CSP - Pitzer et al. Poling 

Vapor pressure 
CSP - Lee and Kesler (1975) 
form 

Poling 

Diffusion coefficient 
Empirical correlation - Fuller, et 
al. (1965, 1966, 1969) 

Poling 

Surface tension of fuel CSP - Sastri and Rao (1995) Poling 

 

The thermodynamic properties of air and combustion product mixture are 

calculated using 14 species in a chemical equilibrium program developed by Depcik [92]. 

The partial derivatives of enthalpy and density of air and combustion products are 

calculated using the equilibrium program. The integrated thermodynamic properties 

calculation method is an alternative way of estimating air and combustion product of 

variety of fuels including oxygenated fuels, to the technique developed by Martin and 

Heywood [93]. The details are provided in Appendix B. 

5.2.2 Calculation of air and fuel contents 

The oxygen mole fraction in the air zone is calculated based on the fuel content 

(the fuel in the form of combustion products) of the intake process. Due to the residual 

gas of combustion and exhaust gas recirculation (EGR), combustion products exist in the 
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air inside the cylinder at intake valve closing timing. The fuel mass fraction in the intake 

air due to the EGR is calculated as follows. 

intake

exhaust

m

FmFm
F EGRfreshfresh

i
ɺ

ɺɺ +
=  (5.19)

 

where F is defined as mf /mtotal , the mass flow rates intakemɺ , freshmɺ  and EGRmɺ  indicate 

intake air, fresh air and EGR flow respectively. Fexhaus is fuel fraction at the exhaust 

which is defined as follow. 
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mm
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ɺɺ

ɺ

+
=exhaust  (5.20)

 

where fmɺ is fuel flow rate. 

In most cases the fuel fraction in the fresh air, Ffresh is zero. Therefore Eq. (5.19) is can be 

expressed as follow. 

exhaustFxF EGRi =  (5.21)
 

where xEGR is mass fraction of EGR flow rate in the intake flow.  

During the intake process, mass flow into and out of the cylinder is calculated depends on 

the valve event. The fuel mass fraction Fa in the air zone can be calculated by integrating 

the following equation. 

( )
m

mFF
FF valvea

aa

ɺ
ɺɺ

−
+= flow

 (5.22)

 

where Fa is current fuel fraction in the air, Fflow is fuel fraction in the intake or exhaust 

flow, vakvemɺ  is the mass flow rate though intake or exhaust valve and m is current mass in 

the cylinder.  
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At the end of intake process, the oxygen mole fraction of the air zone, yO2,Amb 

which corresponds to the fuel fraction, Fa is calculated from chemical equilibrium 

subroutine. The subroutine takes equivalence ratio as an input parameter. Because the 

fuel contents is used to calculate fuel fraction including the combustion product, the 

effective equivalence ratio for the fuel and air mixture can be calculated from the 

following equation using the stoichiometric air fuel ratio with fresh air. 

( )
F

mmF
STfa

−

⋅
=

1
φ  (5.23)

 

where ( )
STfa mm  is stoichiometric air fuel ratio. 

After injection, burned fuel fraction in each zone is used to calculate the 

properties of combustion product using chemical equilibrium subroutine. The burned fuel 

fraction for each zone is calculated from the following equation. 
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=  (5.24)

 

where mfb is burned fuel mass, the mass ma and  mz are air and total mass of the zone 

respectively. 

In the unburned air and fuel mixture of a zone, oxygen mole fraction and effective 

equivalence ratio need to be calculate for the burn rate model. Using oxygen mole 

fraction of the air zone, oxygen mole fraction in each zone is calculated as follow. 
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where the subscripts au and ab indicate unburned and burned air in the zone respectively. 

Ma and Mf is molar mass for air and fuel respectively.  

The effective equivalence ratio for the unburned fuel can be calculated as follows 

( )
fuauO

STfuO

ub

nn

nn

,2

2=φ  (5.26)

 

5.3 Result of cycle simulation 

In this section, the results of engine simulation are compared with two different 

engine experimental results for the validity and characteristics of the proposed fuel 

sensitive combustion models in thermodynamic cycle simulation 

Salvi et al. [94] performed alternative fueled Diesel engine experiment using the 

experimental setup at the University of Michigan. The engine is 2004 International 6L V-

8 Diesel engine equipped with a single variable geometry turbocharger. The engine 

utilizes exhaust gas recirculation to reduce NOx emission. In addition the injection timing 

is retarded after top dead center for NOx emission control. The brief engine specification 

is listed in Table 5.2.  

Among the test data, JP8, DF2 and synthetic jet fuel (S8) at low medium and high 

load cases are used for validation in this study. The test conditions are listed in Table 5.3. 

The fuel properties used in the simulation are calculated using fuel surrogates. 

The composition and the blend ratio for the surrogates are listed in Table 5.4. The 

surrogate for DF2 and JP8 are the same as that used in Chapters 2 and 3. For S8 two 

component surrogate is taken from literature [95]. The properties are calculated from 

property subroutine using the fuel surrogates. 
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Table 5.2 Engine specification of 2004 International 6L V-8 medium duty diesel engine 

Engine specification 

Bore (mm) 95 
Stroke (mm) 105 

Connecting Rod Length (mm) 176 
Compression Ratio 18:01 

Maximum Speed (rpm) 3300 
Intake Valve Opening (CA deg ATDC) 322 
Intake Valve Closing (CA deg ATDC) -108 

Exhaust Valve Opening (CA deg ATDC) 104 
Exhaust Valve Closing (CA deg ATDC) -312 

Nozzle Diameter (mm) 0.179 
Number nozzle per injector 6 

 
Table 5.3 Test condition of medium duty Diesel engine 

 
Low load Medium load High load 

Engine speed 
(rpm) 

750 1200 1800 

BMEP (bar) 1.5 7 11 
Fuel DF2 JP8 S8 DF2 JP8 S8 DF2 JP8 S8 

Injection timing  
(deg ATDC) 

3.70 4.06 4.32 3.74 4.27 4.67 3.85 4.37 4.72 

Injection duration 
(deg) 

2.4 8.9 15.6 2.3 9.0 16.3 2.3 9.2 16.6 

Injected fuel mass 
(mg/cylinder) 

11.4 11.6 11.8 34.4 34.3 33.6 50.9 51.6 50.5 

 
Table 5.4 Fuel surrogate blend used in the simulation  

 
DF2 surrogate JP8 surrogate S8 surrogate 

Blend ratio for surrogate 
(mass basis) 

n-tetradecane 
49.0 % 

n-dodecane 
82.0 % 

n-dodecane 
61.67 % 

n-decane 
31.0 % 

n-tetradecane 
18.0 % 

iso-octane 
38.33 % 

1-methyl 
naphthalene 

20.0 % 
n/a n/a 

(nO2 /nf ) at stoichiometry 17.49 18.98 15.63 
Cetane number 51.4 46.2 58.1 
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5.3.1 Calibration of the model 

The integrated fuel sensitive combustion model is calibrated to the experimental 

data at a single operating point with DF2 fuel to match apparent heat release rate 

calculated from pressure data using following the equation from Heywood [88]. 

dt

dP
V

dt

dV
P

dt

dQn

1

1

1 −
+

−
=

γγ
γ

 (5.27)

 

Since the purpose of calculating apparent heat release rate is not to precisely achieve 

exact heat release and is to compare simulation to experiment, a simple specific heat ratio 

correlation is used. The ratio used for both experiment and model calculation is 

calculated from the following correlation [3].  

285 101106338.1 TT −− ×+×−=γ  (5.28)

 

First of all, the intake air mass at the intake valve closing timing was adjusted 

manually by changing effective area of valve profile to match the cylinder pressure at that 

timing. The valve cam profile and exact mass flow rate through the valves are not 

available for the experimental data; therefore the curve fit of generic cam profile and 

discharge coefficient calculated using pressure differences between valves were used.  

The breakup model shown in Eq. (2.12) has influences mostly on air entrainment 

because the breakup time determines spray penetration after breakup. Ignition delay also 

changes slightly by breakup time. 

 
ΛΩ

= n
b

dB.
t 17263

 (2.12)

The shorter breakup time tend to have more air entrainment and earlier start of 

evaporation. Therefore duration of premixed burn phase increased with shorter breakup 
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time .The model time constant B1 depends on the injector characteristics and could be 

calibrated to match duration of the premixed burn phase. The value of 7.5 was chosen for 

B1. 

The local ignition delay model shown in Eq. (3.13) is used for cycle simulation. 

Only the constant Az was slightly adjusted to match the ignition delay. It was calibrated to 

1.082 ⨉ 10-1 CN-1.744.  
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The rest of constants in the ignition delay equation are set as the same as the constants in 

Eq. (3.16): n = -0.8, m = -0.2 and θz = 4000.  

The burn rate models shown in Eq. (4.6) and Eq. (4.7) changes the peak of each 

phase of heat releases. These rates are calibrated to match each peak of two phase heat 

release of experiment at 1200 rpm with DF2 fuel.  

Burn rate model of premixed combustion: 
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Burn rate model of Mixing controlled combustion: 
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The coefficient Bp and Bm of the premixed and mixing controlled burn rate models were 

determined to 0.5 ⨉ 1012 and 700 respectively.  
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Figure 5.4 and Figure 5.3 shows the comparison of calibrated model prediction 

and experimental data. Heat release rate in the mixing controlled combustion phase right 

after premixed combustion slightly overshoots. This was the best match can be achieved 

by calibrating model parameters. Otherwise the model result fits experimental data very 

well. R2 result of comparison is 0.95691. 

 
Figure 5.3 Comparison of apparent heat release rate of calibrated model and experiment 

at the engine speed of 1200 rpm BMEP of 7 bar condition with DF2 
 

 
Figure 5.4 Comparison of cylinder pressure of calibrated model and experiment at the 

engine speed of 1200 rpm BMEP of 7 bar condition with DF2 
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5.3.2 Validation of the fuel effect 

To validate the model capability to capture the fuel effects on the combustion, the 

apparent heat release rate was calculated and compared to the experimental data. The 

calibration of the model was kept constant. Figure 5.5 to Figure 5.8 show the apparent 

heat release rate and cylinder pressure comparisons of JP8 and S8 simulated at 1200 rpm 

and 7 bar case. The apparent heat release of JP8 in Figure 5.5 shows higher premixed 

burn rate than DF2 result in Figure 5.3. The premixed heat release rate of S8 in Figure 5.7 

is lowest among three fuels. The calculation matches with experimental result well for 

JP8 while S8 result shows slightly lower premixed heat release rate. Between premixed 

and mixing controlled combustion phases, there exists a slight overshoot of heat release 

rates. In S8 case this overshoot is little more pronounced. This is because the premixed 

burn rate is lower than other fuel cases. 

 

 
Figure 5.5 Comparison of apparent heat release rate of calibrated model and experiment 

at the engine speed of 1200 rpm BMEP of 7 bar condition with JP8 
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Figure 5.6 Comparison of cylinder pressure of calibrated model and experiment at the 

engine speed of 1200 rpm BMEP of 7 bar condition with JP8 
 

 

 
Figure 5.7 Comparison of apparent heat release rate of calibrated model and experiment 

at the engine speed of 1200 rpm BMEP of 7 bar condition with S8 
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Figure 5.8 Comparison of cylinder pressure of calibrated model and experiment at the 

engine speed of 1200 rpm BMEP of 7 bar condition with S8 

 

Figure 5.9 shows ignition delay of the three test fuels at the same condition (1200 

rpm and 7 bar). The start of combustion (ignition) in the experimental data is defined as 

the time of the apparent heat release rate crosses zero right before the premixed spike. 

Ignition delay of DF2 was accurately calculated. The difference is only -0.01 crank angle 

degree compared to the experiment. For JP8 and S8, the differences are +0.1 and -0.49 

crank angle degree respectively. Compared to DF2 fuel, JP8 shows longer ignition delay, 

and S8 shows shorter ignition delay. Although error S8 is bigger than DF2, the overall 

result of heat release rate shows that the proposed model in the study is capable of 

capturing ignition delay trend of different fuels from the experiment. This trend matches 

with the Cetane number variance of fuels as well. The result also indicates that the 

differences of the heat release rate of premixed combustion shown in earlier figures 

(Figure 5.3, Figure 5.5 and Figure 5.7 ) can be explained by typical effect of ignition 
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delay; the shorter ignition delay tends to have less premixed heat release because the 

prepared air and fuel mixtures are small.  

 

 
Figure 5.9 Ignition delay of DF2, JP8 and S8 fuels at the engine speed of 1200 rpm 

BMEP of 7 bar 

 

Figure 5.10 to Figure 5.15 show the comparison of apparent heat release rate of 

simulation and experimental data at different operating points (750 rpm 1.5 bar and 1800 
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1200 rpm 7 bar for DF2 fuel. The premixed heat release rates in 750 rpm cases are 

slightly higher than experimental result and the rate at 1800 rpm cases are slightly lower 

than experimental result. In addition, the heat release rates of the mixing controlled 

combustion phase at 1800 rpm show slight under prediction. Based on the overshooting 

trends shown in the 1200 rpm cases, the calibration constant for mixing controlled 

combustion phase is probably not the optimal. In general, the cycle simulation integrated 

with proposed fuel sensitive models predicts a trend of heat release rate for each fuel at 
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combustion at low engine load and the opposite trends are shown in high engine load 

cases. 

 

 
Figure 5.10 Comparison of apparent heat release rate of calibrated model and experiment 

at the engine speed of 750 rpm BMEP of 1.5 bar condition with DF2 

 

 

 
Figure 5.11 Comparison of apparent heat release rate of calibrated model and experiment 
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Figure 5.12 Comparison of apparent heat release rate of calibrated model and experiment 

at the engine speed of 750 rpm BMEP of 1.5 bar condition with S8 

 

 

 
Figure 5.13 Comparison of apparent heat release rate of calibrated model and experiment 

at the engine speed of 1800 rpm BMEP of 11 bar condition with DF2 
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Figure 5.14 Comparison of apparent heat release rate of calibrated model and experiment 

at the engine speed of 1800 rpm BMEP of 11 bar condition with JP8 

 

 

 
Figure 5.15 Comparison of apparent heat release rate of calibrated model and experiment 

at the engine speed of 1800 rpm BMEP of 11 bar condition with S8 
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Figure 5.16 Ignition delay of DF2, JP8 and S8 fuels at the engine speed of 750 rpm 

BMEP of 1.5 bar and 1800 rpm 11 bar 

 

In Figure 5.16, the ignition delay from the simulation is compared with the 

experimental data. Overall the ignition delay is also well captured for different engine 

speed and load cases. Table 5.5 shows ignition delay comparison of all nine engine 

operating points. The maximum error from the simulation is 0.1ms.  

 

Table 5.5 Ignition delay comparison for all nine operating points 

Fuel 
Engine 
speed 
(rpm) 

Model 
prediction 
(CA deg) 

Experiment 
(CA deg) 

Error 

(CA deg) (ms) 

DF2 
750 3.30 2.95 0.35 7.78E-02 
1200 3.19 3.20 -0.01 -1.39E-03 
1800 3.08 3.64 -0.56 -5.20E-02 

JP8 
750 4.01 3.56 0.45 1.00E-01 
1200 3.98 3.88 0.10 1.39E-02 
1800 3.45 3.75 -0.30 -2.78E-02 

S8 
750 2.65 2.82 -0.17 -3.78E-02 
1200 2.33 2.82 -0.49 -6.86E-02 
1800 2.43 2.77 -0.34 -3.19E-02 
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5.3.3 Behavior of fuel sensitive combustion model  

To analyze the combustion calculation result easier, ignition delay calculation is 

bypassed. The start of combustion is given as the same as experimental data.  

 

Comparison with Nishida premixed burn rate model 

The model constant of Nishida model in Eq. (4.1) is calibrated to match the 

maximum premixed heat release rate at 1200 rpm DF2 case: A=1.1 ⨉ 1010
, n=5 m=1 and 

θp=12000. 










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−−=

z

pm
vfu
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Omix

fb

T
xxA

dt

dm θ
ρ exp,

2

2
 (4.1)

 

Figure 5.17 shows the result of simulation at 1200 rpm case with Nishida 

premixed and the proposed scaled premixed burn rate models. The rate of premixed burn 

rate of Nishida model shows slightly slow rising rate at the beginning of combustion. 

This behavior can be also observed in equivalence ratio trace of the zone. Figure 5.18 

shows the equivalence ratio of unburned mixture at the tip of the spray (zone index (I,K) 

=(1,1)). It should be noticed that the apparent heat release rate is the result of all the heat 

release in the spray zones all together. Therefore, equivalence ratio of a single zone may 

only represent overall trend in a qualitative manner. Generally equivalence ratio of this 

zone decreases as air entrains into the zone during the ignition delay period. After 

ignition equivalence ratio increases little because the burn rate is much faster than 

evaporation and air entrainment rate.  
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Figure 5.17 Comparison of Nishida premixed bur rate model and scaled premixed burn 
rate model with experimental result 

 

 

 

Figure 5.18 History of equivalence ratio at the tip of spray (I,K)=(1,1) 
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Ignition delay effect in the combustion 

Figure 5.19 shows apparent heat release rate calculated with ignition timing 

sweep. From the reference the start of combustion time for DF2 1200 rpm case is 7.4 

crank angle degree ATDC. The start of combustion (SOC) timing is changed by ± 1 

degree. Figure 5.20 shows the heat release rate change by fuel effect. The SOC is fixed at 

the reference timing, 7.4 crank angle degree ATDC. The fuel effect is captured by spray 

formation, air entrainment, evaporation and premixed burn rate models. The result shows 

quite dramatic changes with ignition timing sweep in the premixed heat release rate. The 

order of variation is much higher than that by fuel effects to the premixed burn rate model 

shown in Figure 5.20. This comparison demonstrates that the main driver of different fuel 

effect to the overall combustion is the ignition delay. 

 

 

Figure 5.19 Effect of ignition delay. 
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Figure 5.20 burn rate change by fuel effects 

 

5.4 Summary and conclusion 

In this chapter, fuel sensitive quasi-dimensional combustion sub models 

developed in Chapters 2 to 4 are integrated into thermodynamic cycle simulation. The 

proposed combustion model is able to capture the effect of three different fuels in DICI 

engine cycles. The predicted ignition delay of the simulation matches accurately with 

engine experimental data for different fuels. From the apparent heat release rate analysis, 

slight overshoot and undershoot of the calculation against experimental data are observed. 

The simulation is also tested without ignition delay calculation. The ignition is specified 

as an input to observe the combustion model behavior independently. It is found that the 

ignition delay effect on the combustion is much dominant than fuel sensitive premixed 
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burn rate model. In the comparison, non-oxygenated fuels (DF2, JP8 and S8) are used 

thus the proposed ignition delay model is able to predict ignition delay accurately.  

The integrated fuel sensitive thermodynamic simulation is designed for large bore 

engines. Therefore in case of wall wetting condition is not considered. This limitation 

may require additional calibration procedures. 
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          Chapter 6  
 
 

Summary, conclusions and recommendations 

This chapter addresses summary of this dissertation, conclusions of the study and 

suggestions for the future work. 

6.1 Summary  

In this study, the development of fuel sensitive quasi-dimensional multi-zone 

combustion model for a DICI engine is presented. The models describing each processes 

of spray combustion are carefully examined and modified or newly developed. The 

proposed models are validated and compared with experimental results from literature. 

Spray evolution process includes breakup, penetration, and air entrainment to the 

spray. The WAVE breakup model is integrated to replace the traditional Levich breakup 

model. The WAVE model successfully predicated viscosity and surface tension effect to 

the spray penetration in the quasi-dimensional multi-zone platform. The zone to zone 

interaction concept before the breakup is implemented into the spray penetration model. 

The concept calculates velocities of liquid fuel zones more realistically. The air 

entrainment is modeled using momentum conservation. In this study, the proposed spray 
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model is validated by comparing experimental data from literatures with calculated spray 

penetration and spray angle (spray penetration, spray angle and air entrainment of spray 

are tied together, thus angle is automatically determined from calculations of the other 

two models).  

Extension of single component droplet model to multi-component evaporation 

model is done in a simple manner. To avoid excessive calculation, ideal solution and 

uniform mixture temperature are assumed. Raoult’s law is used to calculate the 

composition of evaporating fuel droplet. The high pressure effect is also considered for 

the density. Although the developed multi-component model is relatively simple, it can 

reproduce sizes of evaporating droplets from various experiments well. The behaviors of 

multi-component evaporation model in engine like ranges of pressure and temperature 

showed that sensitivity of evaporation to the pressure is inversed at a certain temperature.  

Fuel sensitive ignition delay models are developed in a global and local 

description. The global description utilizes average temperature and pressure, oxygen 

contents of the air and Cetane number as variables of the model. The local description 

utilizes zonal information of quasi-dimensional multi-zone spray structure. The local 

zone temperature, concentration of fuel and oxygen in the zone are used as variables. In 

addition, the stoichiometric oxygen/fuel molar ratio and Cetane number of fuel are used 

in the correlation as well. A simple relationship of the model constant is found in a 

function of Cetane number for four different test fuels. For the oxygenated fuels with 

same test setup, it is not possible to describe ignition delay with a simple function of 

Cetane number. An additional effect related to the temperature need to be added for 

potential improvement of the proposed model. 
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The scaled burn rate model is developed for premixed combustion. The model is 

based on the traditional Arrhenius type one-step burn rate model but reformulated to 

calculate the maximum burn rate at the stoichiometry when air is diluted. The 

stoichiometric oxygen/fuel molar ratio is also used as a variable for the fuel sensitivity. 

The developed spray combustion models are then integrated into the 

thermodynamic engine cycle simulation. Apparent heat release rates calculated from 

pressure from the simulation are used to validate the models against experimental data. 

From the heat release rate results ignition delays are obtained and validated as well. The 

simulation predicts ignition delay of different fuels very accurately.  

6.2 Conclusions  

The main conclusions from this dissertation are as follows. 

1. The result of developed spray model reveals that the viscosity and surface tension 

effect to the spray formation and air entrainment is small. Especially, for the fuels 

relatively close to conventional DF2 fuel (JP8, biodiesel), the effect is minimal for 

spray formation and air entrainment. The viscosity and surface tension effects are 

pronounced with the fuel have very low viscosity and surface tension (like DME). 

In such case the viscosity and surface tension effect need to be considered for the 

future research. 

2. Multi-component evaporation model captures unique pressure effect for 

evaporation. The evaporation is usually suppressed with higher pressure but the 

inflection point exists so that in lower temperature higher pressure promotes 

evaporation. The behavior indicates that in some conditions, such as early 
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injection or EGR, leading to lower temperatures, this effect is more pronounced. 

Thus proper evaporation model like the proposed one is required to simulate the 

combustion more precisely. 

3. By introducing temperature, air and fuel contents of the spray zone, the ignition 

delay is predicted more accurately. Even though developed model has a limitation 

for predicting wide range of fuels including oxygenated ones, the local ignition 

delay model have shown the potential of better predictability than global ignition 

delay model or existing Arrhenius type ignition delay models. 

4. The typical pre-mixed combustion model used in diesel combustion modeling is 

not versatile enough with the diluted air. The new scaled premixed burn rate 

model properly captures burn rate in diluted air and various fuels. 

5. Although the new scaled premixed burn rate model properly calculates burn rate 

in diluted air and various fuels, the effect of ignition delay to the overall result of 

engine cycle simulation was much more dominant. 

6.3 Suggested future works 

Presented work covers modeling of the combustion for DICI engine with alternative 

fuels from injection of the fuel to end of the combustion. Yet, there is a potential 

research to extend current work and followings are suggested. 

1. For the oxygenated fuel, the ignition delay behaves differently from typical 

hydrocarbon fuels. It showed additional temperature effect to the ignition delay. 

The frequency factor of Arrhenius type model could be potentially a function of 

temperature to capture the effect. 
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2. Emission analysis is one of the potential future works. The Zel’Dovich’s NOx 

mechanism is included in the quasi-dimensional DICI combustion frame work. 

With 14 species chemical equilibrium code used in this work, NOx for 

oxygenated fuel application can also be calculated. In addition to the NOx 

emission, soot and other emission models can be developed for alternative fuel 

application.  

3. The multi-component evaporation model utilized ideal solution assumption and 

Raoult’s law. It is possible to utilize an equation of state and fugacity for more 

accurate vapor-liquid equilibrium.  

4. Recent effort on optical diagnostic provide measurement of spay environment 

[96]. Even though the resolution is still not high enough, it could be used to 

provide some insights of the local equivalence ratio of the spray. Potentially, this 

data could be used to improve fuel evaporation and air entrainment models. 
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Appendices 

A. Physical properties of multi-component fuel surrogate 

The method for estimating the physical properties of the mixture of fuel using 

pure components properties are explained. Critical temperature and critical 

compressibility factors and acentric factors of mixture are obtained from Kay’s rule [63]. 
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The critical molar volume is also calculated by Kay’s rule. 
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cm

cmcm
cm

V

TZ
P

144.83
)bar( =  (A.3) 

   
 

1) Specific heat of liquid fuel 



137 

Corresponding state principle (CSP) from Bondi (1968) is refitted by Poling et al. 

[63]  
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where Cpo is ideal gas heat capacity of liquid, R  is universal gas constant equals 8.3144 

J/(mol∙K). Tr is reduced temperature which equals to T/Tcm . 

The ideal gas specific heat is calculated from Group contribution method (GCM) 

developed by Joback (1984). 
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where Nk indicates number of groups and the following constants are the corresponding 

values for the group. The group values are taken from the Poling. 

For the mixture, molar averaged ideal gas heat capacity is calculated and 

substituted for Cpo in Eq. (A.4). 
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2) Specific heat of fuel vapor 

The fuel vapor is treated as ideal gas and group contribution method in Eq. (A.5) 

is used. Mixture property is obtained by molar average of ideal gas heat capacity in Eq. 

(A.6).  

 

3) Thermal conductivity of fuel vapor 

Single component thermal conductivity of fuel vapor is obtained using CSP by 

Chung (1984, 1988). 
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Thermal conductivity of mixture is calculated using mass fractions of components. 
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4) Dynamic viscosity of liquid fuel 

Dynamic viscosity of liquid fuel is obtained from experimental fitting equation. 

The fitting data is taken from three different sources and corresponding fitting equations 

are as follows. 

(1) American petroleum institute technical data book [89] 

 

( ) ( )

( ) 1000/
0.1000

expS-Pa

04042.00102.0

8.18.1log
8.1

exp0.1000

181.0











=

+−=











+++=

voepsi
voF

vovoe

e
vo

DP
DVisc

DD

TdTc
T

b
aD

 (A.9) 

   
(2) Perry's chemical engineers' handbook [90] and DIPPR [91] 
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Mixtures are calculated from mole fractions of components using following 

equation. 

 ( )
3

3/1S-Pa 






= ∑
i

iFiFm ViscyVisc  (A.11) 

   
 

 

 

 

 

 

 

 



140 

5) Dynamic viscosity of vapor fuel 

Dynamic viscosity of vapor fuel is taken and calculated from following API 

procedure. 
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Mixtures are calculated from mole fractions of components using following 

equation. 
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6) Density of liquid fuel  

Density of liquid fuel is calculated form CSP of Rackett (1970). Saturated liquid 

density at given temperature at low pressure is calculated from molar volume of the 

liquid is calculated from following equation.  
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where M is molar mass in g/mol. 
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Density of fuel mixture is calculated using critical properties of mixture 

calculated using Kay’s rule. The high pressure effect to the liquid density is applied for 

the multi-component droplet evaporation in Chapter 2 using compressibility factor. 
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where R is gas constant for liquid fuel in kJ/(kg∙K) 

 

7) Heat of evaporation 

Heat of evaporation is calculated using Pitzer CSP from Poling. 
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Heat of evaporation of fuel mixture is calculated using critical properties of 

mixture calculated using Kay’s rule. 

 

8) Saturated vapor pressure 

Saturated vapor pressure is calculated using Pitzer 2parameter CSP expansion 

equation from Lee and Kesler (1975). 
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Saturated vapor pressure of mixture is calculated based on Raoult’s law 

 ∑=
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9) Diffusion coefficient 

Binary diffusion coefficient is calculated from empirical correlation by Fuller, et 

al. (1965, 1966, 1969). 
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where ∑v  is atomic diffusion volumes, MAB is average molar mass equals to

( ) 1972801102 −⋅ ./.+/M. f . Mf is molar mass of fuel. 

In this study diffusion coefficient for the fuel to air is required thus for the fuel 

with C, H, O, and N atoms ( CaHbOcNd) binary diffusion coefficient is as follows. 
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The diffusion coefficient of fuel vapor mixture is calculated from mole fraction of 

components. 
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10) Surface tension 

Surface tension is calculated from CSP by Sastri and Rao (1995). 
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where Tb if boiling temperature and Tbr equals to T/Tb. The values of constants are from 

Table A.1. 

Table A.1 Values of Constants for Sastri-Rao Method 
 K X Y Z M 

Alcohols 2.28 0.25 0.175 0 0.8 
Acids 0.125 0.5 -1.5 1.85 11/9 

All others 0.158 0.5 -1.5 1.85 11/9 
 

The surface tension for liqdui mixtures are calculated using mole fraction 

 ∑=
i

iim x σσ  (A.22)
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B. Thermodynamic properties of combustion product 

1) Hot combustion gas equilibrium program 

The thermodynamic properties of air and combustion product mixture are 

calculated using 14 species chemical equilibrium program developed by Depcik [92]. 

Depcik added two more species NO2 and HO2. To the Olikara and Borman program [97]. 

The code calculates properties of burned gas with respect to temperature, pressure and 

equivalence ratio.  

The global reaction for the fuel with C, H, O and N atoms and oxidizer with O2, 

N3, Ar, CO2 and H2O is as follows. 
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To determine 15 unknown variables in equation above, are solved for four 

variables using atomic balances constraints and equilibrium equations. Total 15 equations 

are used. The atomic balance equations are 
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Also sum of total mole fraction should equal to unity. 

 ∑
=

=
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Additionally 9 equilibrium equations are used. 
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These 15 equations can be reduced to 4 equations which are only function of 4 

variables. 
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Then the Eq. (B.5) is solved by Newton-Raphson iteration technique.  
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2) Cold combustion gas property calculation 

The properties of burned gas less than 600 K can be calculated from simple 

equilibrium method. Depcik used 7 species equilibrium from Heywood [88]. The reaction 

is separately written in case of lean and rich condition. 

 (1) Lean case 

 
( )
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(2) Rich case 
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Detail method for the solving equilibrium methods are presented in Depcik or 

Heywood. Table B.1 summarizes the result of mole fraction from the program. 

Table B.1 Relevant Mole Fractions for Low Temperature Combustion 

i Species Lean (ϕ ≤ 1) Rich (ϕ > 1) 

1 CO2 Z+φεα  5vZ −+φεα  

2 H2O 2/φεβ  ( ) 522 vW +−− γαφε  

3 N2 X+2/φεδ  X+2/φεδ  

4 O2 )1( φ−W  0 

5 CO 0 5v  

6 H2 0 52
2

2 vW −−








++ γβαφε  

7 Ar Y Y 

Note that 1 mole of Air and fuel are as follows: WO2 + XN2 + YAr + ZCO2 and  
CαHβOγNδ  respectively. 
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3) Derivatives of thermodynamic properties 

 

Formulation 

Derivatives of enthalpy and density in terms of pressure, temperature and 

equivalence ratio need to be calculated from the properties calculated with chemical 

equilibrium code. Enthalpy of combustion product charge is calculated by polynomial 

model with NIST-JANAF table. 
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Mixture density is calculated by assuming the charge as ideal gas. 
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Using Eqs. (B.8) and (B.9)  the derivatives of enthalpy and density are calculated as 

follows. 
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Validation 

The equilibrium code and derivatives calculation code are validated by comparing 

the results using CEA (Chemical equilibrium with application) program. CEA (Chemical 

equilibrium with application) is a web application from NASA which calculates chemical 

equilibrium of various fuel and air. URL: http://cearun.grc.nasa.gov/. The results are also 

compared with traditional thermodynamic property calculation method developed by 

Martin and Heywood [93]. This method is intended to calculate traditional hydrocarbon 

thus the program cannot calculate properties of oxygenated fuel. Test fuel used in this 

validation is Dimethyl ether (C2H6O). Overall, thermodynamic property and its 

derivatives calculated for Depcik equilibrium program works well with oxygenated fuel 

and is suitable for the objective of current study. 

 

 (1) Mole fraction of burned fuel products 

Figures B.1 to B.3 shows mole fractions comparison from temperature sweep comparison 

of Depcik and CEA program at the pressure of 50 bar and equivalence ratio of 0.5. The 

CEA utilize 156 species equilibrium for DME fuel. The results are differ by only 0.05 % 

to 0.1 % . 
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Figure B.1 CO2 mole fraction comparison 

 

Figure B.2 H2O mole fraction comparison 
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Figure B.3 O2 mole fraction comparison 

 

 

 

(2) Enthalpy of burned fuel products comparison  

Figures B.4 to B.6 show the comparison result between Depcik, Martin and 

Heywood and CEA calculations. Results of Depcik program matches well with CEA, but 

results of Martin and Heywood are biased from others. This is because the test fuel is 

oxygenated fuel and the Martin and Heywood program is not designed to calculate 

burned product properties of such fuels. 
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Figure B.4 Enthalpy comparison at 50 bar and equivalence ratio of 0.5 

 

  

Figure B.5 Enthalpy comparison at 1400K and equivalence ratio of 0.5 
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Figure B.6 Enthalpy comparison at 1400K and 50 bar 

 

 

 

(3) Derivatives of enthalpy of burned fuel products 

Figures B.7 to B.9 shows three derivatives of enthalpy calculated by three 

different methods. Derivatives of CEA results are calculated numerically while others are 

analytically calculated. Again, derivatives calculated using Depcik program matches well 
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Figure B.7 Derivative of enthalpy with respect to temperature at constant pressure and 

constant equivalence ratio 

 

 

Figure B.8 Derivative of enthalpy with respect to pressure at constant temperature and 

constant equivalence ratio 
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Figure B.9 Derivative of enthalpy with respect to equivalence ratio at constant pressure 

and constant temperature 
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C. The data used for ignition delay model 

The data are obtained from Engine combustion network data base for fuel set 1 

and Pickett and Siebers [82] for fuel set 2 

1) Test fuel set 1: JP8, DF2, n-heptane, n-dodecane 

  
Ambient 
Density 
(kg/m3) 

O2 mole 
fraction 

T (K) P (bar) τign (ms) 

Fuel 
Tempe-
rature 
(K) 

Density 
of liquid 

fuel 
(kg/m3) 

Cetane 
number 

JP8 

14.8 0.21 962.7 40.88 0.98 373 746 38 
14.8 0.21 1004.0 42.63 0.87 373 746 38 
14.8 0.21 1099.2 46.67 0.64 373 746 38 
14.8 0.21 1191.3 50.58 0.54 373 746 38 
30 0.21 908.7 78.21 0.71 373 746 38 
30 0.21 1011.9 87.09 0.41 373 746 38 

7.27 0.21 1058.7 22.09 1.67 373 746 38 
7.27 0.21 1110.3 23.17 1.41 373 746 38 
7.27 0.21 1216.7 25.39 0.92 373 746 38 

DF2 

7.3 0.21 1200.0 24.80 0.55 373 767 46 
7.3 0.21 1050.0 21.70 1.27 373 767 46 
14.8 0.21 1200.0 50.60 0.33 373 767 46 
14.8 0.21 1000.0 42.30 0.57 373 767 46 
14.8 0.21 900.0 38.00 0.88 373 767 46 
14.8 0.21 850.0 35.90 1.25 373 767 46 
30 0.21 1000.0 86.40 0.31 373 767 46 
30 0.21 900.0 77.70 0.51 373 767 46 
7.3 0.15 1100.0 22.80 1.29 436 712 46 
7.3 0.15 1200.0 25.00 0.79 436 712 46 
14.8 0.15 900.0 38.20 1.15 436 712 46 
14.8 0.15 1000.0 42.40 0.73 436 712 46 
14.8 0.15 1100.0 46.80 0.48 436 712 46 
14.8 0.15 1200.0 51.00 0.35 436 712 46 
30 0.15 800.0 69.50 1.36 436 712 46 
30 0.15 900.0 78.40 0.60 436 712 46 
30 0.15 1200.0 104.60 0.20 436 712 46 

n-
heptane 

14.8 0.08 1148.0 51.50 0.64 373 613 56 
14.8 0.08 1058.0 47.20 0.99 373 613 56 
14.8 0.08 967.0 42.90 1.52 373 613 56 
30 0.08 962.0 87.90 0.76 373 613 56 

14.8 0.1 1237.0 55.60 0.54 373 613 56 
14.8 0.1 1058.0 47.10 0.81 373 613 56 
14.8 0.1 1013.0 44.90 0.95 373 613 56 
14.8 0.1 967.0 42.80 1.13 373 613 56 
14.8 0.1 922.0 40.60 1.56 373 613 56 
14.8 0.1 875.0 38.50 1.74 373 613 56 
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30 0.1 962.0 87.60 0.61 373 613 56 
14.8 0.12 967.0 42.70 0.95 373 613 56 
14.8 0.12 921.0 40.50 1.13 373 613 56 
14.8 0.12 876.0 38.40 1.33 373 613 56 
30 0.12 962.0 87.40 0.44 373 613 56 

14.8 0.15 967.0 42.50 0.73 373 613 56 
14.8 0.15 922.0 40.40 0.85 373 613 56 
14.8 0.15 876.0 38.20 1.10 373 613 56 
30 0.15 962.0 87.00 0.38 373 613 56 

14.8 0.21 1237.0 54.80 0.26 373 613 56 
14.8 0.21 1148.0 50.60 0.27 373 613 56 
14.8 0.21 1058.0 46.40 0.38 373 613 56 
14.8 0.21 967.0 42.10 0.53 373 613 56 
14.8 0.21 921.0 40.00 0.61 373 613 56 
14.8 0.21 876.0 37.90 0.79 373 613 56 
14.8 0.21 830.0 35.80 1.03 373 613 56 
14.8 0.21 783.0 33.70 1.65 373 613 56 

n-
dodecan

e 

22.8 0.15 756.2 52.50 0.85 343 713 80 
22.8 0.15 799.3 56.10 0.50 343 713 80 
22.8 0.15 827.3 59.20 0.44 343 713 80 
22.8 0.15 837.6 59.40 0.41 343 713 80 
22.8 0.15 924.1 66.20 0.24 343 713 80 
22.8 0.15 1006.9 73.00 0.15 343 713 80 
22.8 0.15 1083.4 79.40 0.11 343 713 80 

 

2) Test fuel set 2: T70, CN80, GE80 and BM88 

The test data is tabulated from the literature [82]. 

  
Ambient 
Density 
(kg/m3) 

O2 mole 
fraction 

T (K) P(bar) τign (ms) 

Fuel 
Tempe-
rature  
(K) 

Density 
of liquid 

fuel 
(kg/m3) 

Cetane 
number 

T70 

14.8 0.21 798.20 33.90 2.41 373 808 42.5 
14.8 0.21 848.46 36.04 1.50 373 808 42.5 
14.8 0.21 900.22 38.24 0.90 373 808 42.5 
14.8 0.21 951.77 40.43 0.67 373 808 42.5 
14.8 0.21 1003.28 42.62 0.50 373 808 42.5 
14.8 0.21 1099.61 46.71 0.28 373 808 42.5 
14.8 0.21 1199.19 50.94 0.19 373 808 42.5 
14.8 0.21 1298.74 55.17 0.13 373 808 42.5 
7.3 0.21 948.33 19.87 2.50 373 808 42.5 
7.3 0.21 998.33 20.92 1.60 373 808 42.5 
7.3 0.21 1050.00 22.00 1.13 373 808 42.5 
7.3 0.21 1098.33 23.01 0.76 373 808 42.5 
7.3 0.21 1195.00 25.04 0.45 373 808 42.5 
30 0.21 800.00 68.88 1.21 373 808 42.5 
30 0.21 848.33 73.04 0.59 373 808 42.5 
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30 0.21 898.33 77.35 0.42 373 808 42.5 
30 0.21 996.67 85.81 0.14 373 808 42.5 
30 0.21 1098.33 94.57 0.08 373 808 42.5 
30 0.21 1195.00 102.89 0.06 373 808 42.5 

CN80 

14.8 0.21 802.27 34.08 1.05 373 724 80 
14.8 0.21 855.57 36.34 0.65 373 724 80 
14.8 0.21 905.44 38.46 0.45 373 724 80 
14.8 0.21 955.26 40.58 0.34 373 724 80 
14.8 0.21 1006.73 42.76 0.25 373 724 80 
14.8 0.21 1104.66 46.92 0.15 373 724 80 
14.8 0.21 1204.21 51.15 0.10 373 724 80 
14.8 0.21 1306.02 55.47 0.08 373 724 80 
7.3 0.21 948.33 19.87 0.93 373 724 80 
7.3 0.21 1001.67 20.99 0.76 373 724 80 
7.3 0.21 1050.00 22.00 0.64 373 724 80 
7.3 0.21 1098.33 23.01 0.53 373 724 80 
7.3 0.21 1200.00 25.14 0.31 373 724 80 
30 0.21 800.00 68.88 0.63 373 724 80 
30 0.21 848.33 73.04 0.45 373 724 80 
30 0.21 900.00 77.49 0.25 373 724 80 
30 0.21 1000.00 86.10 0.10 373 724 80 
30 0.21 1098.33 94.57 0.05 373 724 80 
30 0.21 1195.00 102.89 0.05 373 724 80 

GE80 

7.3 0.21 950.00 19.90 2.75 373 858 80 
7.3 0.21 1000.00 20.95 1.85 373 858 80 
7.3 0.21 1050.00 22.00 1.22 373 858 80 
7.3 0.21 1101.67 23.08 0.92 373 858 80 
7.3 0.21 1196.67 25.07 0.41 373 858 80 
14.8 0.21 798.95 33.94 1.05 373 858 80 
14.8 0.21 848.81 36.05 0.87 373 858 80 
14.8 0.21 903.63 38.38 0.73 373 858 80 
14.8 0.21 951.79 40.43 0.61 373 858 80 
14.8 0.21 1003.30 42.62 0.46 373 858 80 
14.8 0.21 1101.27 46.78 0.28 373 858 80 
14.8 0.21 1200.85 51.01 0.17 373 858 80 
14.8 0.21 1302.09 55.31 0.07 373 858 80 
30 0.21 800.00 68.88 0.41 373 858 80 
30 0.21 846.67 72.90 0.33 373 858 80 
30 0.21 901.67 77.63 0.23 373 858 80 
30 0.21 1000.00 86.10 0.13 373 858 80 
30 0.21 1098.33 94.57 0.05 373 858 80 
30 0.21 1200.00 103.32 0.05 373 858 80 

BM88 

14.8 0.21 797.87 33.89 2.01 373 907 80 
14.8 0.21 849.29 36.07 1.06 373 907 80 
14.8 0.21 900.71 38.26 0.67 373 907 80 
14.8 0.21 948.82 40.30 0.40 373 907 80 
14.8 0.21 1000.24 42.49 0.32 373 907 80 
14.8 0.21 1099.76 46.71 0.19 373 907 80 
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14.8 0.21 1197.63 50.87 0.11 373 907 80 
14.8 0.21 1300.47 55.24 0.07 373 907 80 
7.3 0.21 950.00 19.90 1.08 373 907 80 
7.3 0.21 998.33 20.92 0.74 373 907 80 
7.3 0.21 1048.33 21.96 0.54 373 907 80 
7.3 0.21 1096.67 22.98 0.46 373 907 80 
7.3 0.21 1200.00 25.14 0.24 373 907 80 
30 0.21 798.33 68.74 1.21 373 907 80 
30 0.21 850.00 73.19 0.61 373 907 80 
30 0.21 898.33 77.35 0.38 373 907 80 
30 0.21 1000.00 86.10 0.14 373 907 80 
30 0.21 1098.33 94.57 0.05 373 907 80 
30 0.21 1200.00 103.32 0.05 373 907 80 
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