A Austin Community Landfill Testing Results
A.1 Austin Community Landfill Location 1

A.1.1 Downhole Seismic Testing

![Diagram of downhole seismic testing](image)

Figure A-1. Austin Community Landfill #1 (east hole): Downhole seismic testing at vertical load of 0 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

447
Figure A-2. Austin Community Landfill #1 (east hole): Downhole seismic testing at vertical load of 4 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

ACL Location 1: East Hole Array
Downhole seismic testing; Vertical static load ~ 4 kN

(a)
- Spacing 14 in., $\Delta t_1 = 1.113\text{ msec}$
- $V_p-Z = 1047\text{ ft/s} = 319\text{ m/s}$

(b)
- Spacing 8.7 in., $\Delta t_2 = 0.898\text{ msec}$
- $V_p-Z = 806\text{ ft/s} = 245\text{ m/s}$

(c)
- Spacing 12.8 in., $\Delta t_3 = 1.250\text{ msec}$
- $V_p-Z = 853\text{ ft/s} = 260\text{ m/s}$

ACL Location 1: East Hole Array
Downhole seismic testing; Vertical static load ~ 4 kN

(a)
- Spacing 14 in., $\Delta t_1 = 2.754\text{ msec}$
- $V_s-ZX = 423\text{ ft/s} = 129\text{ m/s}$

(b)
- Spacing 8.7 in., $\Delta t_2 = 1.465\text{ msec}$
- $V_s-ZX = 494\text{ ft/s} = 150\text{ m/s}$

(c)
- Spacing 12.8 in., $\Delta t_3 = 1.934\text{ msec}$
- $V_s-ZX = 551\text{ ft/s} = 168\text{ m/s}$

ACL Location 1: East Hole Array
Downhole seismic testing; Vertical static load ~ 4 kN

(a)
- Spacing 14 in., $\Delta t_1 = 2.578\text{ msec}$
- $V_s-ZY = 452\text{ ft/s} = 137\text{ m/s}$

(b)
- Spacing 8.7 in., $\Delta t_2 = 1.680\text{ msec}$
- $V_s-ZY = 431\text{ ft/s} = 131\text{ m/s}$

(c)
- Spacing 12.8 in., $\Delta t_3 = 1.855\text{ msec}$
- $V_s-ZY = 574\text{ ft/s} = 175\text{ m/s}$
Figure A-3. Austin Community Landfill #1 (east hole): Downhole seismic testing at vertical load of 9 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure A-4. Austin Community Landfill #1 (east hole): Downhole seismic testing at vertical load of 18 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure A-5. Austin Community Landfill #1 (east hole): Downhole seismic testing at vertical load of 67 kN: (a) V_{P-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure A-6. Austin Community Landfill #1 (east hole): Downhole seismic testing at vertical load of 133 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

ACL Location 1: East Hole Array
Downhole seismic testing; Vertical static load ~ 133 kN

(a) V_p-Z
Spacing 8.7 in., $\Delta t = 0.742$ msec
$V_p-Z = 976$ ft/s = 297 m/s

(b) V_s-ZX
Spacing 14 in., $\Delta t = 2.031$ msec
$V_s-ZX = 574$ ft/s = 175 m/s
Spacing 8.7 in., $\Delta t = 1.328$ msec
$V_s-ZX = 545$ ft/s = 166 m/s
Spacing 12.8 in., $\Delta t = 1.797$ msec
$V_s-ZX = 593$ ft/s = 180 m/s

(c) V_s-ZY
Spacing 14 in., $\Delta t = 1.992$ msec
$V_s-ZY = 585$ ft/s = 178 m/s
Spacing 8.7 in., $\Delta t = 1.484$ msec
$V_s-ZY = 488$ ft/s = 148 m/s
Spacing 12.8 in., $\Delta t = 1.699$ msec
$V_s-ZY = 627$ ft/s = 191 m/s
Figure A-7. Austin Community Landfill #1 (west hole): Downhole seismic testing at vertical load of 0 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure A-8. Austin Community Landfill #1 (west hole): Downhole seismic testing at vertical load of 4 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure A-9. Austin Community Landfill #1 (west hole): Downhole seismic testing at vertical load of 9 kN: (a) $V_p - Z$, (b) $V_s - ZX$, and (c) $V_s - ZY$.
Figure A-10. Austin Community Landfill #1 (west hole): Downhole seismic testing at vertical load of 18 kN: (a) V_p-Z, (b) V_s-Z_X, and (c) V_s-Z_Y.
Figure A-11. Austin Community Landfill #1 (west hole): Downhole seismic testing at vertical load of 67 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure A-12. Austin Community Landfill #1 (west hole): Downhole seismic testing at vertical load of 133 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
A.1.2 Crosshole Seismic Testing

Figure A-13. Austin Community Landfill #1 (rod A): Crosshole seismic testing at vertical load of 0 kN: (a) V_p-X and (b) V_s-XZ.

Figure A-14. Austin Community Landfill #1 (rod A): Crosshole seismic testing at vertical load of 4 kN: (a) V_p-X and (b) V_s-XZ.
Figure A-15. Austin Community Landfill #1 (rod A): Crosshole seismic testing at vertical load of 9 kN: (a) V_p and (b) V_s.

Figure A-16. Austin Community Landfill #1 (rod A): Crosshole seismic testing at vertical load of 18 kN: (a) V_p and (b) V_s.

ACL Location 1: G2X-G1X
Crosshole seismic testing; Vertical static load ~ 9 kN
Hit on rod A
Spacing = 17.6 in.
$\Delta t = 1.543$ msec
$V_p = 951$ ft/s = 290 m/s

ACL Location 1: G2Z-G1Z
Crosshole seismic testing; Vertical static load ~ 9 kN
Hit on rod A
Spacing = 17.6 in.
$\Delta t = 3.047$ msec
$V_s = 482$ ft/s = 146 m/s

ACL Location 1: G2X-G1X
Crosshole seismic testing; Vertical static load ~ 18 kN
Hit on rod A
Spacing = 17.6 in.
$\Delta t = 1.543$ msec
$V_p = 951$ ft/s = 290 m/s

ACL Location 1: G2Z-G1Z
Crosshole seismic testing; Vertical static load ~ 18 kN
Hit on rod A
Spacing = 17.6 in.
$\Delta t = 3.027$ msec
$V_s = 485$ ft/s = 147 m/s
Figure A-17. Austin Community Landfill #1 (rod A): Crosshole seismic testing at vertical load of 67 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure A-18. Austin Community Landfill #1 (rod A): Crosshole seismic testing at vertical load of 133 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure A-19. Austin Community Landfill #1 (rod B): Crosshole seismic testing at vertical load of 0 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure A-20. Austin Community Landfill #1 (rod B): Crosshole seismic testing at vertical load of 4 kN: (a) V_{p-X} and (b) V_{s-XZ}.

ACL Location 1: G5X-G3X
Crosshole seismic testing; Vertical static load ~ 0 kN
Hit on rod B
Spacing = 18 in.
$\Delta t = 1.348$ msec
$V_{p-X} = 1113$ ft/s = 339 m/s

ACL Location 1: G5Z-G3Z
Crosshole seismic testing; Vertical static load ~ 0 kN
Hit on rod B
Spacing = 18 in.
$\Delta t = 4.219$ msec
$V_{s-XZ} = 355$ ft/s = 108 m/s

ACL Location 1: G5X-G3X
Crosshole seismic testing; Vertical static load ~ 4 kN
Hit on rod B
Spacing = 18 in.
$\Delta t = 1.328$ msec
$V_{p-X} = 1129$ ft/s = 344 m/s

ACL Location 1: G5Z-G3Z
Crosshole seismic testing; Vertical static load ~ 4 kN
Hit on rod B
Spacing = 18 in.
$\Delta t = 4.199$ msec
$V_{s-XZ} = 357$ ft/s = 108 m/s
Figure A-21. Austin Community Landfill #1 (rod B): Crosshole seismic testing at vertical load of 9 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure A-22. Austin Community Landfill #1 (rod B): Crosshole seismic testing at vertical load of 18 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.
Figure A-23. Austin Community Landfill #1 (rod B): Crosshole seismic testing at vertical load of 67 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure A-24. Austin Community Landfill #1 (rod B): Crosshole seismic testing at vertical load of 133 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure A-25. Austin Community Landfill #1 (rod C): Crosshole seismic testing at vertical load of 0 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure A-26. Austin Community Landfill #1 (rod C): Crosshole seismic testing at vertical load of 4 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.
Figure A-27. Austin Community Landfill #1 (rod C): Crosshole seismic testing at vertical load of 9 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

ACL Location 1: G8X-G6X
Crosshole seismic testing; Vertical static load ~ 9 kN
Hit on rod C
Spacing = 17.9 in.
$\Delta t = 1.348$ msec
$V_{p,X} = 1109$ ft/s = 338 m/s

ACL Location 1: G8Z-G6Z
Crosshole seismic testing; Vertical static load ~ 9 kN
Hit on rod C
Spacing = 17.9 in.
$\Delta t = 2.754$ msec
$V_{s,XZ} = 542$ ft/s = 165 m/s

Figure A-28. Austin Community Landfill #1 (rod C): Crosshole seismic testing at vertical load of 18 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

ACL Location 1: G8X-G6X
Crosshole seismic testing; Vertical static load ~ 18 kN
Hit on rod C
Spacing = 17.9 in.
$\Delta t = 1.348$ msec
$V_{p,X} = 1109$ ft/s = 338 m/s

ACL Location 1: G8Z-G6Z
Crosshole seismic testing; Vertical static load ~ 18 kN
Hit on rod C
Spacing = 17.9 in.
$\Delta t = 2.617$ msec
$V_{s,XZ} = 571$ ft/s = 174 m/s
Figure A-29. Austin Community Landfill #1 (rod C): Crosshole seismic testing at vertical load of 67 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure A-30. Austin Community Landfill #1 (rod C): Crosshole seismic testing at vertical load of 133 kN: V_{p-X}.
A.1.3 Steady-state Dynamic Testing

Figure A-31. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.

Figure A-32. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 2 kN.
Figure A-33. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 4 kN.

Figure A-34. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 7 kN.
Figure A-35. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 10 kN.

Figure A-36. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 13 kN.
Figure A-37. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 67 kN and horizontal dynamic load of 40 kN.

Figure A-38. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 67 kN and horizontal dynamic load of 49 kN.
Figure A-39. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 40 kN.

Figure A-40. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 67 kN.
Figure A-41. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 98 kN.

Figure A-42. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 133 kN.
Figure A-43. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 165 kN and horizontal dynamic load of 27 kN.

Figure A-44. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 165 kN and horizontal dynamic load of 40 kN.
Figure A-45. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 165 kN and horizontal dynamic load of 40 kN.

Figure A-46. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 165 kN and horizontal dynamic load of 98 kN.
Figure A-47. Austin Community Landfill #1: Steady-state dynamic testing at vertical load of 165 kN and horizontal dynamic load of 133 kN.
A.2 Austin Community Landfill Location 2

A.2.1 Downhole Seismic Testing

Figure A-48. Austin Community Landfill #2 (north hole): Downhole seismic testing at vertical load of 0 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

<table>
<thead>
<tr>
<th>ACL Location 2: North Hole Array</th>
<th>ACL Location 2: North Hole Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downhole seismic testing; Vertical static load ~ 0 kN</td>
<td>Downhole seismic testing; Vertical static load ~ 0 kN</td>
</tr>
<tr>
<td>Spacing 6 in., $\Delta t = 0.391$ msec</td>
<td>Spacing 6 in., $\Delta t = 0.391$ msec</td>
</tr>
<tr>
<td>$V_p-Z = 1280$ ft/s = 390 m/s</td>
<td>$V_s-ZY = 533$ ft/s = 162 m/s</td>
</tr>
<tr>
<td>Spacing 6 in., $\Delta t = 0.566$ msec</td>
<td>Spacing 6 in., $\Delta t = 0.566$ msec</td>
</tr>
<tr>
<td>$V_p-Z = 882$ ft/s = 269 m/s</td>
<td>$V_s-ZX = 350$ ft/s = 106 m/s</td>
</tr>
<tr>
<td>Spacing 8 in., $\Delta t = 1.035$ msec</td>
<td>Spacing 8 in., $\Delta t = 1.035$ msec</td>
</tr>
<tr>
<td>$V_p-Z = 644$ ft/s = 196 m/s</td>
<td>$V_s-ZY = 371$ ft/s = 113 m/s</td>
</tr>
</tbody>
</table>
Figure A-49. Austin Community Landfill #2 (north hole): Downhole seismic testing at vertical load of 9 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

ACL Location 2: North Hole Array
Downhole seismic testing, Vertical static load ~ 9 kN

<table>
<thead>
<tr>
<th>Spacing</th>
<th>Δt (msec)</th>
<th>V_p-Z (ft/s)</th>
<th>V_s-ZX (ft/s)</th>
<th>V_s-ZY (ft/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in.</td>
<td>0.371</td>
<td>1347</td>
<td>568</td>
<td>375</td>
</tr>
<tr>
<td>6 in.</td>
<td>0.566</td>
<td>882</td>
<td>360</td>
<td>375</td>
</tr>
<tr>
<td>8 in.</td>
<td>1.016</td>
<td>656</td>
<td>375</td>
<td>379</td>
</tr>
</tbody>
</table>

ACL Location 2: North Hole Array
Downhole seismic testing, Vertical static load ~ 9 kN

<table>
<thead>
<tr>
<th>Spacing</th>
<th>Δt (msec)</th>
<th>V_s-ZX (ft/s)</th>
<th>V_s-ZY (ft/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in.</td>
<td>0.879</td>
<td>568</td>
<td>375</td>
</tr>
<tr>
<td>6 in.</td>
<td>1.387</td>
<td>360</td>
<td>375</td>
</tr>
<tr>
<td>8 in.</td>
<td>1.777</td>
<td>375</td>
<td>379</td>
</tr>
</tbody>
</table>
Figure A-50. Austin Community Landfill #2 (north hole): Downhole seismic testing at vertical load of 18 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
ACL Location 2: North Hole Array
ACL Location 2: North Hole Array
ACL Location 2: North Hole Array

Figure A-51. Austin Community Landfill #2 (north hole): Downhole seismic testing at vertical load of 36 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure A-52. Austin Community Landfill #2 (north hole): Downhole seismic testing at vertical load of 67 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure A-53. Austin Community Landfill #2 (north hole): Downhole seismic testing at vertical load of 133 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure A-54. Austin Community Landfill #2 (south hole): Downhole seismic testing at vertical load of 0 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure A-55. Austin Community Landfill #2 (south hole): Downhole seismic testing at vertical load of 9 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure A-56. Austin Community Landfill #2 (south hole): Downhole seismic testing at vertical load of 9 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure A-57. Austin Community Landfill #2 (south hole): Downhole seismic testing at vertical load of 18 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure A-58. Austin Community Landfill #2 (south hole): Downhole seismic testing at vertical load of 36 kN: (a) V_{p-Z}, (b) V_{S-ZX}, and (c) V_{S-ZY}.

ACL Location 2: South Hole Array
Downhole seismic testing; Vertical static load = 36 kN

Spacing 6 in., $\Delta t_1 = 0.410$ msec
$V_{p-Z} = 1219$ ft/s = 371 m/s

Spacing 6 in., $\Delta t_2 = 0.352$ msec
$V_{p-Z} = 1422$ ft/s = 433 m/s

Spacing 8 in., $\Delta t_3 = 0.840$ msec
$V_{p-Z} = 793$ ft/s = 241 m/s

ACL Location 2: South Hole Array
Downhole seismic testing; Vertical static load = 36 kN

Spacing 6 in., $\Delta t_1 = 0.723$ msec
$V_{S-ZX} = 691$ ft/s = 210 m/s

Spacing 6 in., $\Delta t_2 = 0.859$ msec
$V_{S-ZX} = 581$ ft/s = 177 m/s

Spacing 8 in., $\Delta t_3 = 1.758$ msec
$V_{S-ZX} = 379$ ft/s = 115 m/s

ACL Location 2: South Hole Array
Downhole seismic testing; Vertical static load = 36 kN

Spacing 6 in., $\Delta t_1 = 0.859$ msec
$V_{S-ZY} = 581$ ft/s = 177 m/s

Spacing 6 in., $\Delta t_2 = 0.879$ msec
$V_{S-ZY} = 568$ ft/s = 173 m/s

Spacing 8 in., $\Delta t_3 = 1.719$ msec
$V_{S-ZY} = 387$ ft/s = 118 m/s
Figure A-59. Austin Community Landfill #2 (south hole): Downhole seismic testing at vertical load of 67 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure A-60. Austin Community Landfill #2 (south hole): Downhole seismic testing at vertical load of 133 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
A.2.2 Crosshole Seismic Testing

Figure A-61. Austin Community Landfill #2 (rod A): Crosshole seismic testing at vertical load of 0 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure A-62. Austin Community Landfill #2 (rod A): Crosshole seismic testing at vertical load of 9 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure A-63. Austin Community Landfill #2 (rod A): Crosshole seismic testing at vertical load of 18 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure A-64. Austin Community Landfill #2 (rod A): Crosshole seismic testing at vertical load of 36 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.
Figure A-65. Austin Community Landfill #2 (rod A): Crosshole seismic testing at vertical load of 67 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure A-66. Austin Community Landfill #2 (rod A): Crosshole seismic testing at vertical load of 133 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

ACL Location 2: G2X-G1X
Crosshole seismic testing; Vertical static load ~ 67 kN
Hit on rod A
Spacing = 18 in.
$\Delta t = 1.504$ msec
$V_{p,X} = 997$ ft/s = 304 m/s

ACL Location 2: G2Z-G1Z
Crosshole seismic testing; Vertical static load ~ 67 kN
Hit on rod A
Spacing = 18 in.
$\Delta t = 4.004$ msec
$V_{s,XZ} = 374$ ft/s = 114 m/s

ACL Location 2: G2X-G1X
Crosshole seismic testing; Vertical static load ~ 133 kN
Hit on rod A
Spacing = 18 in.
$\Delta t = 1.484$ msec
$V_{p,X} = 1010$ ft/s = 308 m/s

ACL Location 2: G2Z-G1Z
Crosshole seismic testing; Vertical static load ~ 133 kN
Hit on rod A
Spacing = 18 in.
$\Delta t = 4.004$ msec
$V_{s,XZ} = 374$ ft/s = 114 m/s
Figure A-67. Austin Community Landfill #2 (rod B): Crosshole seismic testing at vertical load of 0 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure A-68. Austin Community Landfill #2 (rod B): Crosshole seismic testing at vertical load of 9 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure A-69. Austin Community Landfill #2 (rod B): Crosshole seismic testing at vertical load of 18 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure A-70. Austin Community Landfill #2 (rod B): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure A-71. Austin Community Landfill #2 (rod B): Crosshole seismic testing at vertical load of 67 kN: (a) V_p and (b) V_s.

ACL Location 2: G5X-G3X
Crosshole seismic testing; Vertical static load ~ 67 kN
Hit on rod B
Spacing = 17.7 in.
$\Delta t = 1.133$ msec
$V_{p,A} = 1301$ ft/s $= 396$ m/s

ACL Location 2: G5Z-G3Z
Crosshole seismic testing; Vertical static load ~ 67 kN
Hit on rod B
Spacing = 17.7 in.
$\Delta t = 2.480$ msec
$V_{s,A} = 594$ ft/s $= 181$ m/s

Figure A-72. Austin Community Landfill #2 (rod B): Crosshole seismic testing at vertical load of 133 kN: (a) V_p and (b) V_s.

ACL Location 2: G5X-G3X
Crosshole seismic testing; Vertical static load ~ 133 kN
Hit on rod B
Spacing = 17.7 in.
$\Delta t = 1.094$ msec
$V_{p,A} = 1347$ ft/s $= 410$ m/s

ACL Location 2: G5Z-G3Z
Crosshole seismic testing; Vertical static load ~ 133 kN
Hit on rod B
Spacing = 17.7 in.
$\Delta t = 2.441$ msec
$V_{s,A} = 603$ ft/s $= 184$ m/s
Figure A-73. Austin Community Landfill #2 (rod C): Crosshole seismic testing at vertical load of 0 kN: (a) V_{p-X} and (b) V_{s-XZ}.

ACL Location 2: G8X-G6X
Crosshole seismic testing; Vertical static load ~ 0 kN
Hit on rod C
Spacing = 17.8 in.
$\Delta t = 1.133$ msec
$V_{p-X} = 1305$ ft/s = 397 m/s

ACL Location 2: G8Z-G6Z
Crosshole seismic testing; Vertical static load ~ 0 kN
Hit on rod C
Spacing = 17.8 in.
$\Delta t = 3.281$ msec
$V_{s-XZ} = 450$ ft/s = 137 m/s

Figure A-74. Austin Community Landfill #2 (rod C): Crosshole seismic testing at vertical load of 9 kN: (a) V_{p-X} and (b) V_{s-XZ}.

ACL Location 2: G8X-G6X
Crosshole seismic testing; Vertical static load ~ 9 kN
Hit on rod C
Spacing = 17.8 in.
$\Delta t = 1.133$ msec
$V_{p-X} = 1305$ ft/s = 397 m/s

ACL Location 2: G8Z-G6Z
Crosshole seismic testing; Vertical static load ~ 9 kN
Hit on rod C
Spacing = 17.8 in.
$\Delta t = 3.047$ msec
$V_{s-XZ} = 485$ ft/s = 147 m/s
Figure A-75. Austin Community Landfill #2 (rod C): Crosshole seismic testing at vertical load of 18 kN: (a) V_p-X and (b) V_s-XZ.

Figure A-76. Austin Community Landfill #2 (rod C): Crosshole seismic testing at vertical load of 36 kN: (a) V_p-X and (b) V_s-XZ.
Figure A-77. Austin Community Landfill #2 (rod C): Crosshole seismic testing at vertical load of 67 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure A-78. Austin Community Landfill #2 (rod C): Crosshole seismic testing at vertical load of 133 kN: (a) V_{p-X} and (b) V_{s-XZ}.
A.2.3 Steady-state Dynamic Testing

Figure A-79. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.

Figure A-80. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 2 kN.
Figure A-81. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 4 kN.

Figure A-82. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 9 kN.
Figure A-83. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 18 kN.

Figure A-84. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 27 kN.
Figure A-85. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 1 kN.

Figure A-86. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 2 kN.
Figure A-87. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 4 kN.

Figure A-88. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 4 kN.
Figure A-89. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 9 kN.

Figure A-90. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 18 kN.
Figure A-91. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 27 kN.

Figure A-92. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 67 kN and horizontal dynamic load of 27 kN.
Figure A-93. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 67 kN and horizontal dynamic load of 36 kN.

Figure A-94. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 67 kN and horizontal dynamic load of 53 kN.
Figure A-95. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 67 kN and horizontal dynamic load of 133 kN.

Figure A-96. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 27 kN.
Figure A-97. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 44 kN.

Figure A-98. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 67 kN.
Figure A-99. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 98 kN.

Figure A-100. Austin Community Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 133 kN.
B Lamb Canyon Sanitary Landfill Testing Results
B.1 Lamb Canyon Sanitary Landfill Location 1

B.1.1 Downhole Seismic Testing

Figure B-1. Lamb Canyon Sanitary Landfill #1 (east hole): Downhole seismic testing at vertical load of 0 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure B-2. Lamb Canyon Sanitary Landfill #1 (east hole): Downhole seismic testing at vertical load of 18 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure B-3. Lamb Canyon Sanitary Landfill #1 (east hole): Downhole seismic testing at vertical load of 36 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure B-4. Lamb Canyon Sanitary Landfill #1 (east hole): Downhole seismic testing at vertical load of 71 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure B-5. Lamb Canyon Sanitary Landfill #1 (east hole): Downhole seismic testing at vertical load of 111 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure B-6. Lamb Canyon Sanitary Landfill #1 (west hole): Downhole seismic testing at vertical load of 0 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

- **LCSL Location 1: West Hole Array**
 - **Downhole seismic testing; Vertical static load ~ 0 kN**
 - **Spacing 6 in., $\Delta t_{-1} = 0.547$ msec**
 - $V_p-Z = 914$ ft/s = 278 m/s
 - **Spacing 8 in., $\Delta t_{-2} = 0.723$ msec**
 - $V_p-Z = 922$ ft/s = 281 m/s
 - **Spacing 10 in., $\Delta t_{-3} = 0.859$ msec**
 - $V_p-Z = 969$ ft/s = 295 m/s

- **Normalized Magnitude**
 - Time (x10^{-3} sec)
 - G23Z
 - G21Z
 - G19Z
 - G17Z

- **LCSL Location 1: West Hole Array**
 - **Downhole seismic testing; Vertical static load ~ 0 kN**
 - **Spacing 6 in., $\Delta t_{-1} = 0.059$ msec**
 - $V_s-ZX = 8533$ ft/s = 2600 m/s (?)
 - **Spacing 8 in., $\Delta t_{-2} = 1.328$ msec**
 - $V_s-ZX = 501$ ft/s = 152 m/s
 - **Spacing 10 in., $\Delta t_{-3} = 1.738$ msec**
 - $V_s-ZX = 479$ ft/s = 146 m/s

- **Normalized Magnitude**
 - Time (x10^{-3} sec)
 - G23X
 - G21X
 - G19X
 - G17X

- **LCSL Location 1: West Hole Array**
 - **Downhole seismic testing; Vertical static load ~ 0 kN**
 - **Spacing 6 in., $\Delta t_{-1} = 0.918$ msec**
 - $V_s-ZY = 544$ ft/s = 166 m/s
 - **Spacing 8 in., $\Delta t_{-2} = 1.113$ msec**
 - $V_s-ZY = 598$ ft/s = 182 m/s
 - **Spacing 10 in., $\Delta t_{-3} = 1.738$ msec**
 - $V_s-ZY = 479$ ft/s = 146 m/s

- **Normalized Magnitude**
 - Time (x10^{-3} sec)
 - G23Y
 - G21Y
 - G19Y
 - G17Y

516
Figure B-7. Lamb Canyon Sanitary Landfill #1 (west hole): Downhole seismic testing at vertical load of 18 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure B-8. Lamb Canyon Sanitary Landfill #1 (west hole): Downhole seismic testing at vertical load of 36 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure B-9. Lamb Canyon Sanitary Landfill #1 (west hole): Downhole seismic testing at vertical load of 36 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure B-10. Lamb Canyon Sanitary Landfill #1 (west hole): Downhole seismic testing at vertical load of 71 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure B-11. Lamb Canyon Sanitary Landfill #1 (west hole): Downhole seismic testing at vertical load of 111 kN: (a) V_{p-Z}, (b) V_{S-ZX}, and (c) V_{S-ZY}.
B.1.2 Crosshole Seismic Testing

Figure B-12. Lamb Canyon Sanitary Landfill #1 (rod A): Crosshole seismic testing at vertical load of 0 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure B-13. Lamb Canyon Sanitary Landfill #1 (rod A): Crosshole seismic testing at vertical load of 18 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure B-14. Lamb Canyon Sanitary Landfill #1 (rod A): Crosshole seismic testing at vertical load of 36 kN: (a) $V_{p,x}$ and (b) $V_{s,xz}$.

Figure B-15. Lamb Canyon Sanitary Landfill #1 (rod A): Crosshole seismic testing at vertical load of 71 kN: (a) $V_{p,x}$ and (b) $V_{s,xz}$.
Figure B-16. Lamb Canyon Sanitary Landfill #1 (rod A): Crosshole seismic testing at vertical load of 111 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure B-17. Lamb Canyon Sanitary Landfill #1 (rod B): Crosshole seismic testing at vertical load of 0 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure B-18. Lamb Canyon Sanitary Landfill #1 (rod B): Crosshole seismic testing at vertical load of 18 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure B-19. Lamb Canyon Sanitary Landfill #1 (rod B): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure B-20. Lamb Canyon Sanitary Landfill #1 (rod B): Crosshole seismic testing at vertical load of 71 kN: (a) $V_{P,X}$ and (b) $V_{S,XZ}$.

Figure B-21. Lamb Canyon Sanitary Landfill #1 (rod B): Crosshole seismic testing at vertical load of 111 kN: (a) $V_{P,X}$ and (b) $V_{S,XZ}$.
Figure B-22. Lamb Canyon Sanitary Landfill #1 (rod C): Crosshole seismic testing at vertical load of 0 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure B-23. Lamb Canyon Sanitary Landfill #1 (rod C): Crosshole seismic testing at vertical load of 18 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.
Figure B-24. Lamb Canyon Sanitary Landfill #1 (rod C): Crosshole seismic testing at vertical load of 36 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure B-25. Lamb Canyon Sanitary Landfill #1 (rod C): Crosshole seismic testing at vertical load of 71 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.
B.1.3 Steady-state Dynamic Testing

Figure B-26. Lamb Canyon Sanitary Landfill #1 (rod C): Crosshole seismic testing at vertical load of 111 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure B-27. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.
Figure B-28. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 2 kN.

Figure B-29. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 4 kN.
Figure B-30. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 9 kN.

Figure B-31. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 13 kN.
Figure B-32. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 16 kN.

Figure B-33. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 18 kN.
Figure B-34. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 1 kN.

Figure B-35. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 2 kN.
Figure B-36. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 7 kN.

Figure B-37. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 9 kN.
Figure B-38. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 13 kN.

Figure B-39. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 18 kN.
Figure B-40. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 22 kN.

Figure B-41. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 31 kN.
Figure B-42. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 36 kN.

Figure B-43. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 40 kN.
Figure B-44. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 44 kN.

Figure B-45. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 53 kN.
Figure B-46. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 62 kN.

Figure B-47. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 85 kN.
Figure B-48. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 27 kN.

Figure B-49. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 31 kN.
Figure B-50. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 40 kN.

Figure B-51. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 53 kN.
Figure B-52. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 67 kN.

Figure B-53. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 89 kN.
Figure B-54. Lamb Canyon Sanitary Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 133 kN.
B.2 Lamb Canyon Sanitary Landfill Location 2

B.2.1 Downhole Seismic Testing

Figure B-55. Lamb Canyon Sanitary Landfill #2 (east hole): Downhole seismic testing at vertical load of 0 kN: (a) $V_{p,Z}$, (b) $V_{s,ZX}$, and (c) $V_{s,ZY}$.
Figure B-56. Lamb Canyon Sanitary Landfill #2 (east hole): Downhole seismic testing at vertical load of 18 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure B-57. Lamb Canyon Sanitary Landfill #2 (east hole): Downhole seismic testing at vertical load of 36 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

LCSL Location 2: East Hole Array

Downhole seismic testing; Vertical static load ~ 36 kN

Spacing 6 in., $\Delta t_1 = 0.508$ msec
V_p-$Z = 984$ ft/s = 300 m/s

Spacing 8 in., $\Delta t_2 = 0.664$ msec
V_p-$Z = 1003$ ft/s = 305 m/s

Spacing 10 in., $\Delta t_3 = 0.898$ msec
V_p-$Z = 927$ ft/s = 282 m/s

$LCSL$ Location 2: East Hole Array

Downhole seismic testing; Vertical static load ~ 36 kN

Spacing 6 in., $\Delta t_1 = 1.055$ msec
V_s-$ZX = 474$ ft/s = 144 m/s

Spacing 8 in., $\Delta t_2 = 1.289$ msec
V_s-$ZX = 517$ ft/s = 157 m/s

Spacing 10 in., $\Delta t_3 = 1.543$ msec
V_s-$ZX = 540$ ft/s = 164 m/s

$LCSL$ Location 2: East Hole Array

Downhole seismic testing; Vertical static load ~ 36 kN

Spacing 6 in., $\Delta t_1 = 0.957$ msec
V_s-$ZY = 522$ ft/s = 159 m/s

Spacing 8 in., $\Delta t_2 = 1.328$ msec
V_s-$ZY = 501$ ft/s = 152 m/s

Spacing 10 in., $\Delta t_3 = 1.543$ msec
V_s-$ZY = 540$ ft/s = 164 m/s
Figure B-58. Lamb Canyon Sanitary Landfill #2 (east hole): Downhole seismic testing at vertical load of 71 kN: (a) V_p-Z, (b) V_s-Z_X, and (c) V_s-Z_Y.

Normalized Magnitude

LCSL Location 2: East Hole Array
Downhole seismic testing; Vertical static load ~ 71 kN

Spacing 6 in., $\Delta t_1 = 0.449$ msec
$V_p-Z = 1113$ ft/s = 339 m/s

Spacing 8 in., $\Delta t_2 = 0.605$ msec
$V_p-Z = 1101$ ft/s = 335 m/s

Spacing 10 in., $\Delta t_3 = 0.859$ msec
$V_p-Z = 969$ ft/s = 295 m/s

LCSL Location 2: East Hole Array
Downhole seismic testing; Vertical static load ~ 71 kN

Spacing 6 in., $\Delta t_1 = 0.312$ msec
$V_s-Z_X = 1600$ ft/s = 487 m/s

Spacing 8 in., $\Delta t_2 = 1.191$ msec
$V_s-Z_X = 559$ ft/s = 170 m/s

Spacing 10 in., $\Delta t_3 = 1.504$ msec
$V_s-Z_X = 554$ ft/s = 168 m/s

LCSL Location 2: East Hole Array
Downhole seismic testing; Vertical static load ~ 71 kN

Spacing 6 in., $\Delta t_1 = 0.957$ msec
$V_s-Z_Y = 522$ ft/s = 159 m/s

Spacing 8 in., $\Delta t_2 = 1.133$ msec
$V_s-Z_Y = 588$ ft/s = 179 m/s

Spacing 10 in., $\Delta t_3 = 1.504$ msec
$V_s-Z_Y = 554$ ft/s = 168 m/s
Figure B-59. Lamb Canyon Sanitary Landfill #2 (east hole): Downhole seismic testing at vertical load of 107 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.

- LCSL Location 2: East Hole Array
- Downhole seismic testing; Vertical static load ~ 107 kN
- Spacing 6 in., $\Delta t_{-1} = 0.391$ msec $V_{p-Z} = 1279$ ft/s = 390 m/s
- Spacing 8 in., $\Delta t_{-2} = 0.547$ msec $V_{p-Z} = 1219$ ft/s = 371 m/s
- Spacing 10 in., $\Delta t_{-3} = 0.820$ msec $V_{p-Z} = 1015$ ft/s = 309 m/s
- Spacing 6 in., $\Delta t_{-1} = 0.840$ msec $V_{s-ZX} = 595$ ft/s = 181 m/s
- Spacing 8 in., $\Delta t_{-2} = 1.035$ msec $V_{s-ZX} = 644$ ft/s = 196 m/s
- Spacing 10 in., $\Delta t_{-3} = 1.465$ msec $V_{s-ZX} = 568$ ft/s = 173 m/s
- Spacing 6 in., $\Delta t_{-1} = 0.762$ msec $V_{s-ZY} = 656$ ft/s = 200 m/s
- Spacing 8 in., $\Delta t_{-2} = 1.094$ msec $V_{s-ZY} = 609$ ft/s = 185 m/s
- Spacing 10 in., $\Delta t_{-3} = 1.484$ msec $V_{s-ZY} = 561$ ft/s = 171 m/s
Figure B-60. Lamb Canyon Sanitary Landfill #2 (west hole): Downhole seismic testing at vertical load of 0 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure B-61. Lamb Canyon Sanitary Landfill #2 (west hole): Downhole seismic testing at vertical load of 18 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure B-62. Lamb Canyon Sanitary Landfill #2 (west hole): Downhole seismic testing at vertical load of 36 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure B-63. Lamb Canyon Sanitary Landfill #2 (west hole): Downhole seismic testing at vertical load of 71 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure B-64. Lamb Canyon Sanitary Landfill #2 (west hole): Downhole seismic testing at vertical load of 107 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
B.2.2 Crosshole Seismic Testing

Figure B-65. Lamb Canyon Sanitary Landfill #2 (rod A): Crosshole seismic testing at vertical load of 0 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure B-66. Lamb Canyon Sanitary Landfill #2 (rod A): Crosshole seismic testing at vertical load of 18 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.
Figure B-67. Lamb Canyon Sanitary Landfill #2 (rod A): Crosshole seismic testing at vertical load of 36 kN: (a) V_p and (b) V_s.

Figure B-68. Lamb Canyon Sanitary Landfill #2 (rod A): Crosshole seismic testing at vertical load of 71 kN: (a) V_p and (b) V_s.

LCSL Location 2: G11X-G12X
Crosshole seismic testing; Vertical static load ~ 36 kN
Hit on rod A

Spacing = 18 in.
$\Delta t = 1.211$ msec
$V_{p,X} = 1238$ ft/s = 377 m/s

LCSL Location 2: G11Z-G12Z
Crosshole seismic testing; Vertical static load ~ 36 kN
Hit on rod A

Spacing = 18 in.
$\Delta t = 2.891$ msec
$V_{s,XZ} = 518$ ft/s = 158 m/s

LCSL Location 2: G11X-G12X
Crosshole seismic testing; Vertical static load ~ 71 kN
Hit on rod A

Spacing = 18 in.
$\Delta t = 1.191$ msec
$V_{p,X} = 1259$ ft/s = 383 m/s

LCSL Location 2: G11Z-G12Z
Crosshole seismic testing; Vertical static load ~ 71 kN
Hit on rod A

Spacing = 18 in.
$\Delta t = 2.793$ msec
$V_{s,XZ} = 537$ ft/s = 163 m/s
Figure B-69. Lamb Canyon Sanitary Landfill #2 (rod A): Crosshole seismic testing at vertical load of 107 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure B-70. Lamb Canyon Sanitary Landfill #2 (rod B): Crosshole seismic testing at vertical load of 0 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure B-71. Lamb Canyon Sanitary Landfill #2 (rod B): Crosshole seismic testing at vertical load of 18 kN: (a) V_p-X and (b) V_s-XZ.

Figure B-72. Lamb Canyon Sanitary Landfill #2 (rod B): Crosshole seismic testing at vertical load of 36 kN: (a) V_p-X and (b) V_s-XZ.

Normalized Magnitude

Source trigger

Spacing = 18 in.
$\Delta t = 1.289$ msec
$V_{p-X} = 1163$ ft/s = 354 m/s

Normalized Magnitude

Source trigger

Spacing = 18 in.
$\Delta t = 2.988$ msec
$V_{s-XZ} = 501$ ft/s = 152 m/s
Figure B-73. Lamb Canyon Sanitary Landfill #2 (rod B): Crosshole seismic testing at vertical load of (a) 71 kN and (b) 107 kN: V_{s-XZ}.

Figure B-74. Lamb Canyon Sanitary Landfill #2 (rod C): Crosshole seismic testing at vertical load of 0 kN: V_{s-XZ}.
Figure B-75. Lamb Canyon Sanitary Landfill #2 (rod C): Crosshole seismic testing at vertical load of 18 kN: (a) V_p-X and (b) V_s-XZ.

Figure B-76. Lamb Canyon Sanitary Landfill #2 (rod C): Crosshole seismic testing at vertical load of 36 kN: (a) V_p-X and (b) V_s-XZ.
Figure B-77. Lamb Canyon Sanitary Landfill #2 (rod C): Crosshole seismic testing at vertical load of 71 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure B-78. Lamb Canyon Sanitary Landfill #2 (rod C): Crosshole seismic testing at vertical load of 107 kN: (a) V_{p-X} and (b) V_{s-XZ}.

LCSL Location 2: G7X-G8X
Crosshole seismic testing; Vertical static load – 71 kN
Hit on rod C

Normalized Magnitude

Source trigger

Spacing = 18 in.
$\Delta t = 1.230$ msec
$V_{p-X} = 1219$ ft/s = 371 m/s

Normalized Magnitude

LCSL Location 2: G7Z-G8Z
Crosshole seismic testing; Vertical static load – 71 kN
Hit on rod C

Normalized Magnitude

Source trigger

Spacing = 18 in.
$\Delta t = 2.461$ msec
$V_{s-XZ} = 609$ ft/s = 185 m/s

Normalized Magnitude

LCSL Location 2: G7X-G8X
Crosshole seismic testing; Vertical static load – 107 kN
Hit on rod C

Normalized Magnitude

Source trigger

Spacing = 18 in.
$\Delta t = 1.094$ msec
$V_{p-X} = 1371$ ft/s = 418 m/s

Normalized Magnitude

LCSL Location 2: G7Z-G8Z
Crosshole seismic testing; Vertical static load – 107 kN
Hit on rod C

Normalized Magnitude

Source trigger

Spacing = 18 in.
$\Delta t = 2.129$ msec
$V_{s-XZ} = 704$ ft/s = 214 m/s
B.2.3 Steady-state Dynamic Testing

Figure B-79. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.

Figure B-80. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 4 kN.
Figure B-81. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 9 kN.

Figure B-82. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 11 kN.
Figure B-83. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 13 kN.

Figure B-84. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 18 kN.
Figure B-85. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 1 kN.

Figure B-86. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 2 kN.
Figure B-87. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 4 kN.

Figure B-88. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 7 kN.
Figure B-89. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 9 kN.

Figure B-90. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 11 kN.
Figure B-91. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 18 kN.

Figure B-92. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 27 kN.
Figure B-93. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 36 kN.

Figure B-94. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 44 kN.
Figure B-95. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 53 kN.

Figure B-96. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 71 kN.
Figure B-97. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 98 kN.

Figure B-98. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 133 kN.
Figure B-99. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 31 kN.

Figure B-100. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 36 kN.
Figure B-101. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 44 kN.

Figure B-102. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 53 kN.
Figure B-103. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 71 kN.

Figure B-104. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 98 kN.
Figure B-105. Lamb Canyon Sanitary Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 133 kN.
B.3 Lamb Canyon Sanitary Landfill Location 3

B.3.1 Downhole Seismic Testing

Figure B-106. Lamb Canyon Sanitary Landfill #3 (east hole): Downhole seismic testing at vertical load of 0 kN: (a) V_p-Z, (b) V_{s-ZX}, and (c) V_{s-ZY}.

- Spacing 6 in., $\Delta t_1 = 0.605$ msec
 - $V_p-Z = 825$ ft/s = 251 m/s

- Spacing 8 in., $\Delta t_2 = 1.191$ msec
 - $V_p-Z = 559$ ft/s = 170 m/s

- Spacing 10 in., $\Delta t_3 = 1.504$ msec
 - $V_p-Z = 554$ ft/s = 168 m/s

- Spacing 6 in., $\Delta t_1 = 1.211$ msec
 - $V_{s-ZX} = 412$ ft/s = 125 m/s

- Spacing 8 in., $\Delta t_2 = 1.992$ msec
 - $V_{s-ZX} = 334$ ft/s = 101 m/s

- Spacing 10 in., $\Delta t_3 = 2.695$ msec
 - $V_{s-ZX} = 309$ ft/s = 94 m/s

- Spacing 6 in., $\Delta t_1 = 1.230$ msec
 - $V_{s-ZY} = 406$ ft/s = 123 m/s

- Spacing 8 in., $\Delta t_2 = 2.168$ msec
 - $V_{s-ZY} = 307$ ft/s = 93 m/s

- Spacing 10 in., $\Delta t_3 = 2.637$ msec
 - $V_{s-ZY} = 316$ ft/s = 96 m/s
Figure B-107. Lamb Canyon Sanitary Landfill #3 (east hole): Downhole seismic testing at vertical load of 18 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure B-108. Lamb Canyon Sanitary Landfill #3 (east hole): Downhole seismic testing at vertical load of 36 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure B-109. Lamb Canyon Sanitary Landfill #3 (east hole): Downhole seismic testing at vertical load of 71 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure B-110. Lamb Canyon Sanitary Landfill #3 (east hole): Downhole seismic testing at vertical load of 98 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure B-111. Lamb Canyon Sanitary Landfill #3 (west hole): Downhole seismic testing at vertical load of 0 kN: (a) V_{P-Z}, (b) V_{S-ZX}, and (c) V_{S-ZY}.

LCSL Location 3: West Hole Array

Downhole seismic testing; Vertical static load ~ 0 kN

(a) V_{P-Z}

Spacing 6 in., $\Delta t_{1} = 0.605$ msec

$V_{P-Z} = 825$ ft/s = 251 m/s

Spacing 8 in., $\Delta t_{2} = 1.094$ msec

$V_{P-Z} = 609$ ft/s = 185 m/s

Spacing 10 in., $\Delta t_{3} = 1.309$ msec

$V_{P-Z} = 636$ ft/s = 194 m/s

(b) V_{S-ZX}

Spacing 6 in., $\Delta t_{1} = 1.113$ msec

$V_{S-ZX} = 449$ ft/s = 136 m/s

Spacing 8 in., $\Delta t_{2} = 2.168$ msec

$V_{S-ZX} = 307$ ft/s = 93 m/s

Spacing 10 in., $\Delta t_{3} = 2.383$ msec

$V_{S-ZX} = 349$ ft/s = 106 m/s

(c) V_{S-ZY}

Spacing 6 in., $\Delta t_{1} = 1.309$ msec

$V_{S-ZY} = 382$ ft/s = 116 m/s

Spacing 8 in., $\Delta t_{2} = 1.934$ msec

$V_{S-ZY} = 344$ ft/s = 105 m/s

Spacing 10 in., $\Delta t_{3} = 2.344$ msec

$V_{S-ZY} = 355$ ft/s = 108 m/s
Figure B-112. Lamb Canyon Sanitary Landfill #3 (west hole): Downhole seismic testing at vertical load of 18 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.

(a) Normalized Magnitude

(b) Normalized Magnitude

(c) Normalized Magnitude

<table>
<thead>
<tr>
<th>LCSL Location 3: West Hole Array</th>
<th>LCSL Location 3: West Hole Array</th>
<th>LCSL Location 3: West Hole Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downhole seismic testing; Vertical static load ~ 18 kN</td>
<td>Downhole seismic testing; Vertical static load ~ 18 kN</td>
<td>Downhole seismic testing; Vertical static load ~ 18 kN</td>
</tr>
<tr>
<td>Spacing 6 in., $\Delta_t^{-1} = 0.527$ msec</td>
<td>Spacing 6 in., $\Delta_t^{-1} = 1.016$ msec</td>
<td>Spacing 6 in., $\Delta_t^{-1} = 1.133$ msec</td>
</tr>
<tr>
<td>$V_{p-Z} = 948$ ft/s = 288 m/s</td>
<td>$V_{s-ZX} = 492$ ft/s = 150 m/s</td>
<td>$V_{s-ZY} = 441$ ft/s = 134 m/s</td>
</tr>
<tr>
<td>Spacing 8 in., $\Delta_t^{-2} = 0.996$ msec</td>
<td>Spacing 8 in., $\Delta_t^{-2} = 1.973$ msec</td>
<td>Spacing 8 in., $\Delta_t^{-2} = 1.836$ msec</td>
</tr>
<tr>
<td>$V_{p-Z} = 669$ ft/s = 203 m/s</td>
<td>$V_{s-ZX} = 337$ ft/s = 103 m/s</td>
<td>$V_{s-ZY} = 363$ ft/s = 110 m/s</td>
</tr>
<tr>
<td>Spacing 10 in., $\Delta_t^{-3} = 1.270$ msec</td>
<td>Spacing 10 in., $\Delta_t^{-3} = 2.227$ msec</td>
<td>Spacing 10 in., $\Delta_t^{-3} = 2.188$ msec</td>
</tr>
<tr>
<td>$V_{p-Z} = 656$ ft/s = 200 m/s</td>
<td>$V_{s-ZX} = 374$ ft/s = 114 m/s</td>
<td>$V_{s-ZY} = 380$ ft/s = 116 m/s</td>
</tr>
</tbody>
</table>
Figure B-113. Lamb Canyon Sanitary Landfill #3 (west hole): Downhole seismic testing at vertical load of 36 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure B-114. Lamb Canyon Sanitary Landfill #3 (west hole): Downhole seismic testing at vertical load of 71 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure B-115. Lamb Canyon Sanitary Landfill #3 (west hole): Downhole seismic testing at vertical load of 98 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.

(a)

(b)

(c)
B.3.2 Crosshole Seismic Testing

Figure B-116. Lamb Canyon Sanitary Landfill #3 (rod A): Crosshole seismic testing at vertical load of 0 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure B-117. Lamb Canyon Sanitary Landfill #3 (rod A): Crosshole seismic testing at vertical load of 18 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

(a) (b)
Figure B-118. Lamb Canyon Sanitary Landfill #3 (rod A): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure B-119. Lamb Canyon Sanitary Landfill #3 (rod A): Crosshole seismic testing at vertical load of 71 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure B-120. Lamb Canyon Sanitary Landfill #3 (rod A): Crosshole seismic testing at vertical load of 98 kN: (a) V_p and (b) V_s.

Figure B-121. Lamb Canyon Sanitary Landfill #3 (rod B): Crosshole seismic testing at vertical load of 0 kN: (a) V_p and (b) V_s.

LCSL Location 3: G3X-G4X
Crosshole seismic testing; Vertical static load ~ 98 kN
Hit on rod A

LCSL Location 3: G3Z-G4Z
Crosshole seismic testing; Vertical static load ~ 98 kN
Hit on rod A

LCSL Location 3: G1X-G6X
Crosshole seismic testing; Vertical static load ~ 0 kN
Hit on rod B

LCSL Location 3: G1Z-G6Z
Crosshole seismic testing; Vertical static load ~ 0 kN
Hit on rod B

- Source trigger
- Spacing = 18 in.
- $\Delta t = 1.973$ msec
- $V_{p} = 760$ ft/s = 231 m/s
- $V_{s} = 412$ ft/s = 125 m/s
- $V_{s} = 752$ ft/s = 229 m/s
- $V_{s} = 314$ ft/s = 95 m/s
Figure B-122. Lamb Canyon Sanitary Landfill #3 (rod B): Crosshole seismic testing at vertical load of 18 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure B-123. Lamb Canyon Sanitary Landfill #3 (rod B): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure B-124. Lamb Canyon Sanitary Landfill #3 (rod B): Crosshole seismic testing at vertical load of 71 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure B-125. Lamb Canyon Sanitary Landfill #3 (rod C): Crosshole seismic testing at vertical load of (a) 0 kN and (b) 18 kN: V_{p-X}.
Figure B-126. Lamb Canyon Sanitary Landfill #3 (rod C): Crosshole seismic testing at vertical load of (a) 36 kN and (b) 71 kN: V_{p-X}.

Figure B-127. Lamb Canyon Sanitary Landfill #3 (rod C): Crosshole seismic testing at vertical load of 98 kN: V_{p-X}.
B.3.3 Steady-state Dynamic Testing

Figure B-128. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.

Figure B-129. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 2 kN.
Figure B-130. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 18 kN ton and horizontal dynamic load of 4 kN.

Figure B-131. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 18 kN ton and horizontal dynamic load of 7 kN.
Figure B-132. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 9 kN.

Figure B-133. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 11 kN.
Figure B-134. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 0.6 kN.

Figure B-135. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 1 kN.
Figure B-136. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 2 kN.

Figure B-137. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 4 kN.
Figure B-138. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 9 kN.

Figure B-139. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 13 kN.
Figure B-140. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 18 kN.

Figure B-141. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 31 kN.
Figure B-142. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 36 kN.

Figure B-143. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 40 kN.
Figure B-144. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 44 kN.

Figure B-145. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 53 kN.
Figure B-146. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 71 kN.

Figure B-147. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 98 kN.
Figure B-148. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 133 kN.

Figure B-149. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 31 kN.
Figure B-150. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 36 kN.

Figure B-151. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 40 kN.
Figure B-152. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 44 kN.

Figure B-153. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 53 kN.
Figure B-154. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 71 kN.

Figure B-155. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 111 kN.
Figure B-156. Lamb Canyon Sanitary Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 133 kN.
C Los Reales Landfill Testing Results
C.1 Los Reales Landfill Location 1

C.1.1 Downhole Seismic Testing

Figure C-1. Los Reales Landfill #1 (east hole): Downhole seismic testing at vertical load of 0 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-2. Los Reales Landfill #1 (east hole): Downhole seismic testing at vertical load of 18 kN: (a) $V_p\text{-}Z$, (b) $V_s\text{-}ZX$, and (c) $V_s\text{-}ZY$.

Los Reales Location 1: East Hole Array
Downhole seismic testing; Vertical static load ~ 18 kN

Spacing 12 in., $\Delta t_{-2} = 1.328$ msec
$V_p\text{-}Z = 752$ ft/s = 229 m/s

Spacing 16 in., $\Delta t_{-3} = 1.367$ msec
$V_p\text{-}Z = 975$ ft/s = 297 m/s

Spacing 12 in., $\Delta t_{-2} = 2.422$ msec
$V_s\text{-}ZX = 412$ ft/s = 125 m/s

Spacing 16 in., $\Delta t_{-3} = 2.324$ msec
$V_s\text{-}ZX = 573$ ft/s = 174 m/s

Spacing 12 in., $\Delta t_{-2} = 2.734$ msec
$V_s\text{-}ZY = 365$ ft/s = 111 m/s

Spacing 16 in., $\Delta t_{-3} = 2.266$ msec
$V_s\text{-}ZY = 588$ ft/s = 179 m/s
Figure C-3. Los Reales Landfill #1 (east hole): Downhole seismic testing at vertical load of 36 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-4. Los Reales Landfill #1 (east hole): Downhole seismic testing at vertical load of 71 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

Los Reales Location 1: East Hole Array
Downhole seismic testing; Vertical static load ~ 71 kN

Spacing 12 in., $\Delta t_{-2} = 1.191$ msec
$V_p-Z = 839$ ft/s = 255 m/s

Spacing 16 in., $\Delta t_{-3} = 1.191$ msec
$V_p-Z = 1119$ ft/s = 341 m/s

Spacing 12 in., $\Delta t_{-2} = 2.266$ msec
$V_s-ZX = 441$ ft/s = 134 m/s

Spacing 16 in., $\Delta t_{-3} = 2.168$ msec
$V_s-ZX = 615$ ft/s = 187 m/s

Spacing 12 in., $\Delta t_{-2} = 2.480$ msec
$V_s-ZY = 403$ ft/s = 122 m/s

Spacing 16 in., $\Delta t_{-3} = 2.168$ msec
$V_s-ZY = 615$ ft/s = 187 m/s
Figure C-5. Los Reales Landfill #1 (east hole): Downhole seismic testing at vertical load of 111 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure C-6. Los Reales Landfill #1 (west hole): Downhole seismic testing at vertical load of 18 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.

Los Reales Location 1: West Hole Array
Downhole seismic testing; Vertical static load ~ 18 kN

Spacing 12 in., $\Delta t_{12} = 1.035$ msec
$V_{p-Z} = 966$ ft/s = 294 m/s

Spacing 16 in., $\Delta t_{16} = 1.602$ msec
$V_{p-Z} = 832$ ft/s = 253 m/s

Spacing 6 in., $\Delta t_{6} = 0.840$ msec
$V_{s-ZX} = 595$ ft/s = 181 m/s

Spacing 12 in., $\Delta t_{12} = 2.031$ msec
$V_{s-ZX} = 492$ ft/s = 150 m/s

Spacing 16 in., $\Delta t_{16} = 2.891$ msec
$V_{s-ZX} = 461$ ft/s = 140 m/s

Spacing 6 in., $\Delta t_{6} = 0.957$ msec
$V_{s-ZY} = 522$ ft/s = 159 m/s

Spacing 12 in., $\Delta t_{12} = 1.641$ msec
$V_{s-ZY} = 609$ ft/s = 185 m/s

Spacing 16 in., $\Delta t_{16} = 2.930$ msec
$V_{s-ZY} = 455$ ft/s = 138 m/s
Figure C-7. Los Reales Landfill #1 (west hole): Downhole seismic testing at vertical load of 36 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure C-8. Los Reales Landfill #1 (west hole): Downhole seismic testing at vertical load of 71 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-9. Los Reales Landfill #1 (west hole): Downhole seismic testing at vertical load of 111 kN: (a) \(V_p-Z \), (b) \(V_s-ZX \), and (c) \(V_s-ZY \).
C.1.2 Crosshole Seismic Testing

Figure C-10. Los Reales Landfill #1 (rod A): Crosshole seismic testing at vertical loads of (a) 18 kN and (b) 36 kN: V_{s-XZ}.

Figure C-11. Los Reales Landfill #1 (rod A): Crosshole seismic testing at vertical loads of (a) 71 kN and (b) 111 kN: V_{s-XZ}.

(a) (b)
Figure C-12. Los Reales Landfill #1 (rod B): Crosshole seismic testing at vertical load of 0 kN:
(a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure C-13. Los Reales Landfill #1 (rod B): Crosshole seismic testing at vertical load of 18 kN:
(a) $V_{p,X}$ and (b) $V_{s,XZ}$.
Figure C-14. Los Reales Landfill #1 (rod B): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure C-15. Los Reales Landfill #1 (rod B): Crosshole seismic testing at vertical load of 71 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure C-16. Los Reales Landfill #1 (rod B): Crosshole seismic testing at vertical load of 111 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure C-17. Los Reales Landfill #1 (rod C): Crosshole seismic testing at vertical load of 0 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure C-18. Los Reales Landfill #1 (rod C): Crosshole seismic testing at vertical load of 18 kN:
(a) V_{p_X} and (b) V_{s_XZ}.

Figure C-19. Los Reales Landfill #1 (rod C): Crosshole seismic testing at vertical load of 36 kN:
(a) V_{p_X} and (b) V_{s_XZ}.
Figure C-20. Los Reales Landfill #1 (rod C): Crosshole seismic testing at vertical loads of (a) 71 kN and (b) 111 kN: V_{p-X}.

C.1.3 Steady-state Dynamic Testing

Figure C-21. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.
Figure C-22. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 2 kN.

Figure C-23. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 4 kN.
Figure C-24. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 7 kN.

Figure C-25. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 9 kN.
Figure C-26. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 1 kN.

Figure C-27. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 2 kN.
Figure C-28. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 4 kN.

Figure C-29. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 7 kN.
Figure C-30. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 11 kN.

Figure C-31. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 18 kN.
Figure C-32. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 27 kN.

Figure C-33. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 31 kN.
Figure C-34. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 36 kN.

Figure C-35. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 40 kN.
Figure C-36. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 44 kN.

Figure C-37. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 53 kN.
Figure C-38. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 62 kN.

Figure C-39. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 85 kN.
Figure C-40. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 133 kN.

Figure C-41. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 27 kN.
Figure C-42. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 31 kN.

Figure C-43. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 36 kN.
Figure C-44. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 40 kN.

Figure C-45. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 44 kN.
Figure C-46. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 53 kN.

Figure C-47. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 62 kN.
Figure C-48. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 85 kN.

Figure C-49. Los Reales Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 133 kN.
C.2 Los Reales Landfill Location 2

C.2.1 Downhole Seismic Testing

Figure C-50. Los Reales Landfill #2 (east hole): Downhole seismic testing at vertical load of 0 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-51. Los Reales Landfill #2 (east hole): Downhole seismic testing at vertical load of 18 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure C-52. Los Reales Landfill #2 (east hole): Downhole seismic testing at vertical load of 36 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

Los Reales Location 2: East Hole Array
Downhole seismic testing; Vertical static load ~ 36 kN
Spacing 6 in., $\Delta t_1 = 0.410$ msec
$V_p-Z = 1219$ ft/s = 371 m/s

Spacing 7 in., $\Delta t_2 = 0.547$ msec
$V_p-Z = 1066$ ft/s = 325 m/s

Spacing 8 in., $\Delta t_3 = 0.723$ msec
$V_p-Z = 922$ ft/s = 281 m/s

Los Reales Location 2: East Hole Array
Downhole seismic testing; Vertical static load ~ 36 kN
Spacing 6 in., $\Delta t_1 = 0.859$ msec
$V_s-ZX = 581$ ft/s = 177 m/s

Spacing 7 in., $\Delta t_2 = 1.074$ msec
$V_s-ZX = 543$ ft/s = 165 m/s

Spacing 8 in., $\Delta t_3 = 1.641$ msec
$V_s-ZX = 406$ ft/s = 123 m/s

Los Reales Location 2: East Hole Array
Downhole seismic testing; Vertical static load ~ 36 kN
Spacing 6 in., $\Delta t_1 = 0.879$ msec
$V_s-ZY = 568$ ft/s = 173 m/s

Spacing 7 in., $\Delta t_2 = 1.191$ msec
$V_s-ZY = 489$ ft/s = 149 m/s

Spacing 8 in., $\Delta t_3 = 1.562$ msec
$V_s-ZY = 426$ ft/s = 130 m/s
Figure C-53. Los Reales Landfill #2 (east hole): Downhole seismic testing at vertical load of 67 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.

Los Reales Location 2: East Hole Array
Downhole seismic testing; Vertical static load ~ 67 kN

Spacing 6 in., $\Delta t_1 = 0.371$ msec
$V_{p-Z} = 1347$ ft/s = 410 m/s

Spacing 7 in., $\Delta t_2 = 0.508$ msec
$V_{p-Z} = 1148$ ft/s = 350 m/s

Spacing 8 in., $\Delta t_3 = 0.703$ msec
$V_{p-Z} = 948$ ft/s = 288 m/s

Normalized Magnitude
30
25
20
15
10
5
0
Time (x10^{-3} sec)

Los Reales Location 2: East Hole Array
Downhole seismic testing; Vertical static load ~ 67 kN

Spacing 6 in., $\Delta t_1 = 0.742$ msec
$V_{s-ZY} = 673$ ft/s = 205 m/s

Spacing 7 in., $\Delta t_2 = 1.094$ msec
$V_{s-ZY} = 533$ ft/s = 162 m/s

Spacing 8 in., $\Delta t_3 = 1.504$ msec
$V_{s-ZY} = 443$ ft/s = 135 m/s

Normalized Magnitude
30
25
20
15
10
5
0
Time (x10^{-3} sec)
Figure C-54. Los Reales Landfill #2 (east hole): Downhole seismic testing at vertical load of 111 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-55. Los Reales Landfill #2 (west hole): Downhole seismic testing at vertical load of 0 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-56. Los Reales Landfill #2 (west hole): Downhole seismic testing at vertical load of 18 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-57. Los Reales Landfill #2 (west hole): Downhole seismic testing at vertical load of 36 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-58. Los Reales Landfill #2 (west hole): Downhole seismic testing at vertical load of 67 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-59. Los Reales Landfill #2 (west hole): Downhole seismic testing at vertical load of 111 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
C.2.2 Crosshole Seismic Testing

Figure C-60. Los Reales Landfill #2 (rod A): Crosshole seismic testing at vertical load of 0 kN:
(a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure C-61. Los Reales Landfill #2 (rod A): Crosshole seismic testing at vertical load of 18 kN:
(a) $V_{p,X}$ and (b) $V_{s,XZ}$.
Figure C-62. Los Reales Landfill #2 (rod A): Crosshole seismic testing at vertical load of 36 kN:
(a) V_{p-X} and (b) V_{s-XZ}.

Figure C-63. Los Reales Landfill #2 (rod A): Crosshole seismic testing at vertical load of 67 kN:
(a) V_{p-X} and (b) V_{s-XZ}.
Figure C-64. Los Reales Landfill #2 (rod A): Crosshole seismic testing at vertical load of 111 kN: (a) V_p and (b) V_s.

Figure C-65. Los Reales Landfill #2 (rod B): Crosshole seismic testing at vertical loads of (a) 0 kN and (b) 18 kN: V_p.

Notes:
- Los Reales Location 2: G9X-G10X
 - Crosshole seismic testing; Vertical static load ~ 111 kN
 - Hit on rod A
 - Spacing = 18 in.
 - $\Delta t = 1.543$ msec
 - $V_{p,X} = 972$ ft/s = 296 m/s
- Los Reales Location 2: G9Z-G10Z
 - Crosshole seismic testing; Vertical static load ~ 111 kN
 - Hit on rod A
 - Spacing = 18 in.
 - $\Delta t = 3.379$ msec
 - $V_{s,XZ} = 443$ ft/s = 135 m/s
- Los Reales Location 2: G11X-G12X
 - Crosshole seismic testing; Vertical static load ~ 0 kN
 - Hit on rod B
 - Spacing = 18 in.
 - $\Delta t = 1.406$ msec
 - $V_{p,X} = 1066$ ft/s = 325 m/s
- Los Reales Location 2: G11X-G12X
 - Crosshole seismic testing; Vertical static load ~ 18 kN
 - Hit on rod B
 - Spacing = 18 in.
 - $\Delta t = 1.367$ msec
 - $V_{p,X} = 1097$ ft/s = 334 m/s
Figure C-66. Los Reales Landfill #2 (rod B): Crosshole seismic testing at vertical loads of (a) 36 kN and (b) 67 kN: V_{p-X}.

- **Los Reales Location 2: G11X-G12X**
 - Crosshole seismic testing; Vertical static load ~ 36 kN
 - Hit on rod B
 - Spacing = 18 in.
 - $\Delta t = 1.328$ msec
 - $V_{p-X} = 1129$ ft/s = 344 m/s

- **Los Reales Location 2: G11X-G12X**
 - Crosshole seismic testing; Vertical static load ~ 67 kN
 - Hit on rod B
 - Spacing = 18 in.
 - $\Delta t = 1.289$ msec
 - $V_{p-X} = 1163$ ft/s = 354 m/s

Figure C-67. Los Reales Landfill #2 (rod C): Crosshole seismic testing at vertical load of 0 kN:
(a) V_{p-X} and (b) V_{s-XZ}.

- **Los Reales Location 2: G22X-G23X**
 - Crosshole seismic testing; Vertical static load ~ 0 kN
 - Hit on rod C
 - Spacing = 18 in.
 - $\Delta t = 1.328$ msec
 - $V_{p-X} = 1129$ ft/s = 344 m/s

- **Los Reales Location 2: G22Z-G23Z**
 - Crosshole seismic testing; Vertical static load ~ 0 kN
 - Hit on rod C
 - Spacing = 18 in.
 - $\Delta t = 3.027$ msec
 - $V_{s-XZ} = 495$ ft/s = 151 m/s
Figure C-68. Los Reales Landfill #2 (rod C): Crosshole seismic testing at vertical load of 18 kN:
(a) V_p-X and (b) V_s-XZ.

Figure C-69. Los Reales Landfill #2 (rod C): Crosshole seismic testing at vertical load of 36 kN:
(a) V_p-X and (b) V_s-XZ.
Figure C-70. Los Reales Landfill #2 (rod C): Crosshole seismic testing at vertical load of 67 kN:
(a) $V_p \cdot X$ and (b) $V_s \cdot XZ$.

Figure C-71. Los Reales Landfill #2 (rod C): Crosshole seismic testing at vertical load of 111 kN: $V_p \cdot X$.
C.2.3 Steady-state Dynamic Testing

Figure C-72. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.

Figure C-73. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 2 kN.
Figure C-74. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 4 kN.

Figure C-75. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 7 kN.
Figure C-76. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 9 kN.

Figure C-77. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 13 kN.
Figure C-78. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 1 kN.

Figure C-79. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 2 kN.
Figure C-80. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 4 kN.

Figure C-81. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 7 kN.
Figure C-82. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 9 kN.

Figure C-83. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 13 kN.
Figure C-84. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 18 kN.

Figure C-85. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 27 kN.
Figure C-86. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 27 kN.

Figure C-87. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 31 kN.
Figure C-88. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 36 kN.

Figure C-89. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 44 kN.
Figure C-90. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 62 kN.

Figure C-91. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 71 kN.
Figure C-92. Los Reales Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 133 kN.
C.3 Los Reales Landfill Location 3

C.3.1 Downhole Seismic Testing

Figure C-93. Los Reales Landfill #3 (east hole): Downhole seismic testing at vertical load of 0 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-94. Los Reales Landfill #3 (east hole): Downhole seismic testing at vertical load of 18 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-95. Los Reales Landfill #3 (east hole): Downhole seismic testing at vertical load of 36 kN: (a) $V_p.Z$, (b) $V_s.ZX$, and (c) $V_s.ZY$.

Los Reales Location 3: East Hole Array
Downhole seismic testing; Vertical static load ~ 36 kN

Spacing 5.94 in., $\Delta t_1 = 0.586$ msec
$V_p.Z = 844$ ft/s = 257 m/s

Spacing 11.88 in., $\Delta t_2 = 1.484$ msec
$V_p.Z = 666$ ft/s = 203 m/s

Spacing 15.84 in., $\Delta t_3 = 1.738$ msec
$V_p.Z = 759$ ft/s = 231 m/s

Normalized Magnitude

Time (x10^{-3} sec)

G22Z
G14Z
G12Z
G8Z

Los Reales Location 3: East Hole Array
Downhole seismic testing; Vertical static load ~ 36 kN

Spacing 5.94 in., $\Delta t_1 = 1.035$ msec
$V_s.ZX = 478$ ft/s = 145 m/s

Spacing 11.88 in., $\Delta t_2 = 2.988$ msec
$V_s.ZX = 331$ ft/s = 100 m/s

Spacing 15.84 in., $\Delta t_3 = 2.754$ msec
$V_s.ZX = 479$ ft/s = 146 m/s

Normalized Magnitude

Time (x10^{-3} sec)

G22X
G14X
G12X
G8X

Los Reales Location 3: East Hole Array
Downhole seismic testing; Vertical static load ~ 36 kN

Spacing 5.94 in., $\Delta t_1 = 1.035$ msec
$V_s.ZY = 478$ ft/s = 145 m/s

Spacing 11.88 in., $\Delta t_2 = 2.930$ msec
$V_s.ZY = 337$ ft/s = 102 m/s

Spacing 15.84 in., $\Delta t_3 = 3.340$ msec
$V_s.ZY = 395$ ft/s = 120 m/s

Normalized Magnitude

Time (x10^{-3} sec)

G22Y
G14Y
G12Y
G8Y
Figure C-96. Los Reales Landfill #3 (east hole): Downhole seismic testing at vertical load of 67 kN: (a) V_p, (b) V_S, and (c) V_S.

Los Reales Location 3: East Hole Array
Downhole seismic testing; Vertical static load ~ 67 kN

Spacing 5.82 in., $\Delta t_1 = 0.508$ msec
$V_p = 955$ ft/s = 291 m/s

Spacing 11.76 in., $\Delta t_2 = 1.367$ msec
$V_p = 716$ ft/s = 218 m/s

Spacing 15.84 in., $\Delta t_3 = 1.680$ msec
$V_p = 785$ ft/s = 239 m/s

Normalized Magnitude

Time (x10^-3 sec)

Los Reales Location 3: East Hole Array
Downhole seismic testing; Vertical static load ~ 67 kN

Spacing 5.82 in., $\Delta t_1 = 0.898$ msec
$V_S = 539$ ft/s = 164 m/s

Spacing 11.76 in., $\Delta t_2 = 2.734$ msec
$V_S = 358$ ft/s = 109 m/s

Spacing 15.84 in., $\Delta t_3 = 2.598$ msec
$V_S = 508$ ft/s = 154 m/s

Normalized Magnitude

Time (x10^-3 sec)
Figure C-97. Los Reales Landfill #3 (east hole): Downhole seismic testing at vertical load of 102 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure C-98. Los Reales Landfill #3 (west hole): Downhole seismic testing at vertical load of 0 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure C-99. Los Reales Landfill #3 (west hole): Downhole seismic testing at vertical load of 18 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.

Los Reales Location 3: West Hole Array
Downhole seismic testing; Vertical static load ~ 18 kN

Spacing 5.94 in., $\Delta t_1 = 0.820$ msec
$V_{p-Z} = 603$ ft/s = 183 m/s

Spacing 11.88 in., $\Delta t_2 = 1.621$ msec
$V_{p-Z} = 610$ ft/s = 186 m/s

Spacing 15.84 in., $\Delta t_3 = 2.012$ msec
$V_{p-Z} = 656$ ft/s = 199 m/s

Spacing 5.94 in., $\Delta t_1 = 1.738$ msec
$V_{s-ZX} = 284$ ft/s = 86 m/s

Spacing 11.88 in., $\Delta t_2 = 2.793$ msec
$V_{s-ZX} = 354$ ft/s = 108 m/s

Spacing 15.84 in., $\Delta t_3 = 3.945$ msec
$V_{s-ZX} = 334$ ft/s = 101 m/s

Spacing 5.94 in., $\Delta t_1 = 1.406$ msec
$V_{s-ZY} = 352$ ft/s = 107 m/s

Spacing 11.88 in., $\Delta t_2 = 2.676$ msec
$V_{s-ZY} = 369$ ft/s = 112 m/s

Spacing 15.84 in., $\Delta t_3 = 3.633$ msec
$V_{s-ZY} = 363$ ft/s = 110 m/s
Figure C-100. Los Reales Landfill #3 (west hole): Downhole seismic testing at vertical load of 36 kN: (a) V_p-Z, (b) V_s-Z_X, and (c) V_s-Z_Y.
Figure C-101. Los Reales Landfill #3 (west hole): Downhole seismic testing at vertical load of 67 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure C-102. Los Reales Landfill #3 (west hole): Downhole seismic testing at vertical load of 102 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
C.3.2 Crosshole Seismic Testing

Figure C-103. Los Reales Landfill #2 (rod A): Crosshole seismic testing at vertical load of 0 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure C-104. Los Reales Landfill #2 (rod A): Crosshole seismic testing at vertical load of 18 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.
Figure C-105. Los Reales Landfill #2 (rod A): Crosshole seismic testing at vertical load of 36 kN: (a) $V_{p,X}$ and (b) $V_{S,XZ}$.

Figure C-106. Los Reales Landfill #2 (rod A): Crosshole seismic testing at vertical load of 67 kN: (a) $V_{p,X}$ and (b) $V_{S,XZ}$.
Figure C-107. Los Reales Landfill #2 (rod A): Crosshole seismic testing at vertical load of 102 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure C-108. Los Reales Landfill #2 (rod B): Crosshole seismic testing at vertical loads of (a) 0 kN and (b) 18 kN: V_{p-X}.
Figure C-109. Los Reales Landfill #2 (rod B): Crosshole seismic testing at vertical loads of (a) 36 kN and (b) 67 kN: V_p.

Figure C-110. Los Reales Landfill #2 (rod B): Crosshole seismic testing at vertical load of 102 kN: V_p.

Los Reales Location 3: G12X-G13X
Crosshole seismic testing; Vertical static load ~ 36 kN
Hit on rod B
Spacing = 18 in.
$\Delta t = 1.719$ msec
$V_p = 872$ ft/s = 266 m/s

Los Reales Location 3: G12X-G13X
Crosshole seismic testing; Vertical static load ~ 67 kN
Hit on rod B
Spacing = 18 in.
$\Delta t = 1.699$ msec
$V_p = 882$ ft/s = 269 m/s

Los Reales Location 3: G12X-G13X
Crosshole seismic testing; Vertical static load ~ 102 kN
Hit on rod B
Spacing = 18 in.
$\Delta t = 1.680$ msec
$V_p = 893$ ft/s = 272 m/s

Source trigger
G12X
G13X

Normalized Magnitude
Time (x10^-3 sec)
Source trigger
G12X
G13X

Normalized Magnitude
Time (x10^-3 sec)
Los Reales Location 3: G14X-G15X
Crosshole seismic testing; Vertical static load ~ 0 kN
Hit on rod C

Source trigger

Spacing = 18 in.
$\Delta t = 2.422$ msec
$V_{p,X} = 619$ ft/s ~ 188 m/s

G14X
G15X

(a)

Normalized Magnitude

Time (x10^{-3} sec)

Los Reales Location 3: G14Z-G15Z
Crosshole seismic testing; Vertical static load ~ 0 kN
Hit on rod C

Source trigger

Spacing = 18 in.
$\Delta t = 5.254$ msec
$V_{s,XZ} = 285$ ft/s ~ 87 m/s

G14Z
G15Z

(b)

Normalized Magnitude

Time (x10^{-3} sec)

Figure C-111. Los Reales Landfill #2 (rod C): Crosshole seismic testing at vertical load of 0 kN:
(a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Los Reales Location 3: G14X-G15X
Crosshole seismic testing; Vertical static load ~ 18 kN
Hit on rod C

Source trigger

Spacing = 18 in.
$\Delta t = 2.285$ msec
$V_{p,X} = 656$ ft/s ~ 200 m/s

G14X
G15X

(a)

Normalized Magnitude

Time (x10^{-3} sec)

Los Reales Location 3: G14Z-G15Z
Crosshole seismic testing; Vertical static load ~ 18 kN
Hit on rod C

Source trigger

Spacing = 18 in.
$\Delta t = 4.707$ msec
$V_{s,XZ} = 318$ ft/s ~ 97 m/s

G14Z
G15Z

(b)

Normalized Magnitude

Time (x10^{-3} sec)

Figure C-112. Los Reales Landfill #2 (rod C): Crosshole seismic testing at vertical load of 18 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.
Figure C-113. Los Reales Landfill #2 (rod C): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure C-114. Los Reales Landfill #2 (rod C): Crosshole seismic testing at vertical load of 67 kN: (a) V_{p-X} and (b) V_{s-XZ}.
C.3.3 Steady-state Dynamic Testing

Figure C-116. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 0.7 kN.
Figure C-117. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.

Figure C-118. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 2 kN.
Figure C-119. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 4 kN.

Figure C-120. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 7 kN.
Figure C-121. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 9 kN.

Figure C-122. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 11 kN.
Figure C-123. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 18 kN.

Figure C-124. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 2 kN.
Figure C-125. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 4 kN.

Figure C-126. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 7 kN.
Figure C-127. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 9 kN.

Figure C-128. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 11 kN.
Figure C-129. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 13 kN.

Figure C-130. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 18 kN.
Figure C-131. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 27 kN.

Figure C-132. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 31 kN.
Figure C-133. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 36 kN.

Figure C-134. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 40 kN.
Figure C-135. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 44 kN.

Figure C-136. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 27 kN.
Figure C-137. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 31 kN.

Figure C-138. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 40 kN.
Figure C-139. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 44 kN.

Figure C-140. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 53 kN.
Figure C-141. Los Reales Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 71 kN.
D BKK Landfill Testing Results
D.1 BKK Landfill Location 1

D.1.1 Downhole Seismic Testing

Figure D-1. BKK Landfill #1 (north hole): Downhole seismic testing at vertical load of 0 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-2. BKK Landfill #1 (north hole): Downhole seismic testing at vertical load of 9 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-3. BKK Landfill #1 (north hole): Downhole seismic testing at vertical load of 18 kN:
(a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure D-4. BKK Landfill #1 (north hole): Downhole seismic testing at vertical load of 36 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

<table>
<thead>
<tr>
<th>Spacing</th>
<th>Δt</th>
<th>V_p-Z</th>
<th>V_s-ZX</th>
<th>V_s-ZY</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in.</td>
<td>0.313 msec</td>
<td>624 ft/s</td>
<td>1599 ft/s</td>
<td>1706 ft/s</td>
</tr>
<tr>
<td>10 in.</td>
<td>1.309 msec</td>
<td>1153 ft/s</td>
<td>636 ft/s</td>
<td>618 ft/s</td>
</tr>
<tr>
<td>18 in.</td>
<td>3.672 msec</td>
<td>783 ft/s</td>
<td>408 ft/s</td>
<td>421 ft/s</td>
</tr>
</tbody>
</table>
Figure D-5. BKK Landfill #1 (north hole): Downhole seismic testing at vertical load of 71 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-6. BKK Landfill #1 (north hole): Downhole seismic testing at vertical load of 111 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure D-7. BKK Landfill #1 (south hole): Downhole seismic testing at vertical load of 0 kN: (a) V_{P-Z}, (b) V_{S-ZX}, and (c) V_{S-ZY}.
Figure D-8. BKK Landfill #1 (south hole): Downhole seismic testing at vertical load of 9 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-9. BKK Landfill #1 (south hole): Downhole seismic testing at vertical load of 18 kN:
(a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

BKK Location 1: South Hole Array
Downhole seismic testing; Vertical static load ~ 18 kN

- Spacing 6 in., $\Delta t_1 = 0.449$ msec
 - $V_p-Z = 1113$ ft/s = 339 m/s

- Spacing 10 in., $\Delta t_2 = 0.742$ msec
 - $V_p-Z = 1122$ ft/s = 342 m/s

- Spacing 18 in., $\Delta t_3 = 1.699$ msec
 - $V_p-Z = 882$ ft/s = 269 m/s

BKK Location 1: South Hole Array
Downhole seismic testing; Vertical static load ~ 18 kN

- Spacing 6 in., $\Delta t_1 = 0.801$ msec
 - $V_s-ZX = 624$ ft/s = 190 m/s

- Spacing 10 in., $\Delta t_2 = 1.250$ msec
 - $V_s-ZX = 666$ ft/s = 203 m/s

- Spacing 18 in., $\Delta t_3 = 2.891$ msec
 - $V_s-ZX = 518$ ft/s = 158 m/s

- Spacing 6 in., $\Delta t_1 = 0.273$ msec
 - $V_s-ZY = 1828$ ft/s = 557 m/s

- Spacing 10 in., $\Delta t_2 = 1.348$ msec
 - $V_s-ZY = 618$ ft/s = 188 m/s

- Spacing 18 in., $\Delta t_3 = 3.398$ msec
 - $V_s-ZY = 441$ ft/s = 134 m/s
Figure D-10. BKK Landfill #1 (south hole): Downhole seismic testing at vertical load of 36 kN:
(a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure D-11. BKK Landfill #1 (south hole): Downhole seismic testing at vertical load of 71 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.

BKK Location 1: South Hole Array
Downhole seismic testing; Vertical static load – 71 kN

(a)

Spacing 6 in., $\Delta t_1 = 0.410$ msec
$V_{p-Z} = 1219$ ft/s = 371 m/s

Spacing 10 in., $\Delta t_2 = 0.703$ msec
$V_{p-Z} = 1185$ ft/s = 361 m/s

Spacing 18 in., $\Delta t_3 = 1.602$ msec
$V_{p-Z} = 936$ ft/s = 285 m/s

(b)

Spacing 6 in., $\Delta t_1 = 0.742$ msec
$V_{s-ZX} = 673$ ft/s = 205 m/s

Spacing 10 in., $\Delta t_2 = 1.191$ msec
$V_{s-ZX} = 699$ ft/s = 213 m/s

Spacing 18 in., $\Delta t_3 = 2.754$ msec
$V_{s-ZX} = 544$ ft/s = 166 m/s

(c)

Spacing 6 in., $\Delta t_1 = -0.117$ msec
$V_{s-ZY} = -4266$ ft/s = -1300 m/s (?)

Spacing 10 in., $\Delta t_2 = 1.230$ msec
$V_{s-ZY} = 677$ ft/s = 206 m/s

Spacing 18 in., $\Delta t_3 = 3.281$ msec
$V_{s-ZY} = 457$ ft/s = 139 m/s
Figure D-12. BKK Landfill #1 (south hole): Downhole seismic testing at vertical load of 111 kN:
(a) V_p-Z, (b) V_s-Z_X, and (c) V_s-Z_Y.

Normalized Magnitude

<table>
<thead>
<tr>
<th>Value</th>
<th>Time (x10^{-3} sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Normalized Magnitude

<table>
<thead>
<tr>
<th>Value</th>
<th>Time (x10^{-3} sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Normalized Magnitude

<table>
<thead>
<tr>
<th>Value</th>
<th>Time (x10^{-3} sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

BKK Location 1: South Hole Array
Downhole seismic testing; Vertical static load ~ 111 kN

Spacing 6 in., $\Delta t_{-1} = 0.410$ msec
$V_p-Z = 1219$ ft/s = 371 m/s

Spacing 10 in., $\Delta t_{-2} = 0.664$ msec
$V_p-Z = 1254$ ft/s = 382 m/s

Spacing 18 in., $\Delta t_{-3} = 1.523$ msec
$V_p-Z = 984$ ft/s = 300 m/s

Spacing 6 in., $\Delta t_{-1} = 0.703$ msec
$V_s-Z_X = 711$ ft/s = 216 m/s

Spacing 10 in., $\Delta t_{-2} = 1.172$ msec
$V_s-Z_X = 711$ ft/s = 216 m/s

Spacing 18 in., $\Delta t_{-3} = 2.715$ msec
$V_s-Z_X = 552$ ft/s = 168 m/s

Spacing 6 in., $\Delta t_{-1} = -0.098$ msec
$V_s-Z_Y = -5119$ ft/s = -1560 m/s

Spacing 10 in., $\Delta t_{-2} = 1.191$ msec
$V_s-Z_Y = 699$ ft/s = 213 m/s

Spacing 18 in., $\Delta t_{-3} = 3.203$ msec
$V_s-Z_Y = 468$ ft/s = 142 m/s
D.1.2 Crosshole Seismic Testing

Figure D-13. BKK Landfill #1 (rod A): Crosshole seismic testing at vertical load of 0 kN: (a) V_p and (b) V_s.

Figure D-14. BKK Landfill #1 (rod A): Crosshole seismic testing at vertical load of 9 kN: (a) V_p and (b) V_s.

(a) (b)
BKK Location 1: G16X-G17X
Crosshole seismic testing; Vertical static load ~ 18 kN
Hit on rod A

Spacing = 18 in.
Δt = 1.602 msec
V_p-X = 936 ft/s = 285 m/s

Normalized Magnitude

Time (x10^-3 sec)

Figure D-15. BKK Landfill #1 (rod A): Crosshole seismic testing at vertical load of 18 kN: (a) V_p-X and (b) V_s-XZ.

BKK Location 1: G16Z-G17Z
Crosshole seismic testing; Vertical static load ~ 18 kN
Hit on rod A

Spacing = 18 in.
Δt = 3.066 msec
V_s-XZ = 489 ft/s = 149 m/s

Normalized Magnitude

Time (x10^-3 sec)

(a) (b)

BKK Location 1: G16X-G17X
Crosshole seismic testing; Vertical static load ~ 36 kN
Hit on rod A

Spacing = 18 in.
Δt = 1.582 msec
V_p-X = 948 ft/s = 288 m/s

Normalized Magnitude

Time (x10^-3 sec)

Figure D-16. BKK Landfill #1 (rod A): Crosshole seismic testing at vertical load of 36 kN: (a) V_p-X and (b) V_s-XZ.
Figure D-17. BKK Landfill #1 (rod A): Crosshole seismic testing at vertical load of 71 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-18. BKK Landfill #1 (rod A): Crosshole seismic testing at vertical load of 111 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure D-19. BKK Landfill #1 (rod B): Crosshole seismic testing at vertical load of 0 kN: (a) V_p and (b) V_z.

Figure D-20. BKK Landfill #1 (rod B): Crosshole seismic testing at vertical load of 9 kN: (a) V_p and (b) V_z.
Figure D-21. BKK Landfill #1 (rod B): Crosshole seismic testing at vertical load of 18 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-22. BKK Landfill #1 (rod B): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure D-23. BKK Landfill #1 (rod B): Crosshole seismic testing at vertical load of 71 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure D-24. BKK Landfill #1 (rod B): Crosshole seismic testing at vertical load of 111 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.
Figure D-25. BKK Landfill #1 (rod C): Crosshole seismic testing at vertical load of 0 kN: (a) V_p and (b) V_s.

Figure D-26. BKK Landfill #1 (rod C): Crosshole seismic testing at vertical load of 9 kN: (a) V_p and (b) V_s.
Figure D-27. BKK Landfill #1 (rod C): Crosshole seismic testing at vertical load of 18 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.

Figure D-28. BKK Landfill #1 (rod C): Crosshole seismic testing at vertical load of 36 kN: (a) $V_{p,X}$ and (b) $V_{s,XZ}$.
D.1.3 Steady-state Dynamic Testing

Figure D-29. BKK Landfill #1 (rod C): Crosshole seismic testing at vertical load of 71 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-30. BKK Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.

714
Figure D-31. BKK Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 4 kN.

Figure D-32. BKK Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 9 kN.
Figure D-33. BKK Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 11 kN.

Figure D-34. BKK Landfill #1: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 13 kN.
Figure D-35. BKK Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 1 kN.

Figure D-36. BKK Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 2 kN.
Figure D-37. BKK Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 4 kN.

Figure D-38. BKK Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 7 kN.
Figure D-39. BKK Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 9 kN.

Figure D-40. BKK Landfill #1: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 13 kN.
Figure D-41. BKK Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 27 kN.

Figure D-42. BKK Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 36 kN.
Figure D-43. BKK Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 40 kN.

Figure D-44. BKK Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 44 kN.
Figure D-45. BKK Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 62 kN.

Figure D-46. BKK Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 85 kN.
Figure D-47. BKK Landfill #1: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 133 kN.
D.2 BKK Landfill Location 2

D.2.1 Downhole Seismic Testing

Figure D-48. BKK Landfill #2 (north hole): Downhole seismic testing at vertical load of 0 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-49. BKK Landfill #2 (north hole): Downhole seismic testing at vertical load of 9 kN:
(a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-50. BKK Landfill #2 (north hole): Downhole seismic testing at vertical load of 18 kN:
(a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure D-51. BKK Landfill #2 (north hole): Downhole seismic testing at vertical load of 36 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure D-52. BKK Landfill #2 (north hole): Downhole seismic testing at vertical load of 71 kN:
(a) \(V_{p-Z}\), (b) \(V_{s-ZX}\), and (c) \(V_{s-ZY}\).
Figure D-53. BKK Landfill #2 (north hole): Downhole seismic testing at vertical load of 111 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure D-54. BKK Landfill #2 (south hole): Downhole seismic testing at vertical load of 0 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure D-55. BKK Landfill #2 (south hole): Downhole seismic testing at vertical load of 9 kN:
(a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-56. BKK Landfill #2 (south hole): Downhole seismic testing at vertical load of 18 kN:
(a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-57. BKK Landfill #2 (south hole): Downhole seismic testing at vertical load of 36 kN:
(a) V_p-Z, (b) V_{s-ZX}, and (c) V_{s-ZY}.

Spacing 5.75 in., $\Delta t_1 = -0.059$ msec
$V_p-Z = -8177$ ft/s = -2492 m/s (?)

Spacing 10 in., $\Delta t_2 = 0.684$ msec
$V_p-Z = 1219$ ft/s = 371 m/s

Spacing 18 in., $\Delta t_3 = 1.055$ msec
$V_p-Z = 1422$ ft/s = 433 m/s

Spacing 5.75 in., $\Delta t_1 = 0.137$ msec
$V_{s-ZX} = 3504$ ft/s = 1068 m/s (?)

Spacing 10 in., $\Delta t_2 = 1.348$ msec
$V_{s-ZX} = 618$ ft/s = 188 m/s

Spacing 18 in., $\Delta t_3 = 1.895$ msec
$V_{s-ZX} = 791$ ft/s = 241 m/s

Spacing 5.75 in., $\Delta t_1 = -0.098$ msec
$V_{s-ZY} = -4906$ ft/s = -1495 m/s (?)

Spacing 10 in., $\Delta t_2 = 1.367$ msec
$V_{s-ZY} = 609$ ft/s = 185 m/s

Spacing 18 in., $\Delta t_3 = 1.816$ msec
$V_{s-ZY} = 825$ ft/s = 251 m/s
Figure D-58. BKK Landfill #2 (south hole): Downhole seismic testing at vertical load of 71 kN:
(a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-59. BKK Landfill #2 (south hole): Downhole seismic testing at vertical load of 111 kN:
(a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
D.2.2 Crosshole Seismic Testing

Figure D-60. BKK Landfill #2 (rod A): Crosshole seismic testing at vertical load of 0 kN: (a) V_{p-x} and (b) V_{s-xz}.

Figure D-61. BKK Landfill #2 (rod A): Crosshole seismic testing at vertical load of 9 kN: (a) V_{p-x} and (b) V_{s-xz}.

736
Figure D-62. BKK Landfill #2 (rod A): Crosshole seismic testing at vertical load of 18 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-63. BKK Landfill #2 (rod A): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure D-64. BKK Landfill #2 (rod A): Crosshole seismic testing at vertical load of 71 kN: (a) V_p and (b) V_s.

BKK Location 2: G3X-G4X
Crosshole seismic testing; Vertical static load ~ 71 kN
Hit on rod A

Spacing = 18 in.
$\Delta t = 1.055$ msec
$V_p = 1422$ ft/s = 433 m/s

Normalized Magnitude
Source trigger
G3X
G4X

Time (x10^-3 sec)
Normalized Magnitude
(a)

Figure D-65. BKK Landfill #2 (rod A): Crosshole seismic testing at vertical load of 111 kN: (a) V_p and (b) V_s.

BKK Location 2: G3Z-G4Z
Crosshole seismic testing; Vertical static load ~ 111 kN
Hit on rod A

Spacing = 18 in.
$\Delta t = 2.168$ msec
$V_s = 691$ ft/s = 210 m/s

Normalized Magnitude
Source trigger
G3Z
G4Z

Time (x10^-3 sec)
Normalized Magnitude
(a)

738
Figure D-66. BKK Landfill #2 (rod B): Crosshole seismic testing at vertical load of 0 kN: (a) $V_{p,x}$ and (b) $V_{s,xz}$.

Figure D-67. BKK Landfill #2 (rod B): Crosshole seismic testing at vertical load of 9 kN: (a) $V_{p,x}$ and (b) $V_{s,xz}$.
Figure D-68. BKK Landfill #2 (rod B): Crosshole seismic testing at vertical load of 18 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-69. BKK Landfill #2 (rod B): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure D-70. BKK Landfill #2 (rod B): Crosshole seismic testing at vertical load of 71 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-71. BKK Landfill #2 (rod B): Crosshole seismic testing at vertical load of 111 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure D-72. BKK Landfill #2 (rod C): Crosshole seismic testing at vertical load of 0 kN: (a) \(V_p \) \(_x\) and (b) \(V_s \) \(_{XZ}\).

Figure D-73. BKK Landfill #2 (rod C): Crosshole seismic testing at vertical load of 9 kN: (a) \(V_p \) \(_x\) and (b) \(V_s \) \(_{XZ}\).
Figure D-74. BKK Landfill #2 (rod C): Crosshole seismic testing at vertical load of 18 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-75. BKK Landfill #2 (rod C): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure D-76. BKK Landfill #2 (rod C): Crosshole seismic testing at vertical load of 71 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-77. BKK Landfill #2 (rod C): Crosshole seismic testing at vertical load of 111 kN: (a) V_{p-X} and (b) V_{s-XZ}.

(a) (b)
D.2.3 Steady-state Dynamic Testing

Figure D-78. BKK Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.

Figure D-79. BKK Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 2 kN.
Figure D-80. BKK Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 4 kN.

Figure D-81. BKK Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 7 kN.
Figure D-82. BKK Landfill #2: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 11 kN.

Figure D-83. BKK Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 0.6 kN.
Figure D-84. BKK Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 1.24 kN.

Figure D-85. BKK Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 2 kN.
Figure D-86. BKK Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 4 kN.

Figure D-87. BKK Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 7 kN.
Figure D-88. BKK Landfill #2: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 13 kN.

Figure D-89. BKK Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 27 kN.
Figure D-90. BKK Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 36 kN.

Figure D-91. BKK Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 53 kN.
Figure D-92. BKK Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 71 kN.

Figure D-93. BKK Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 98 kN.
Figure D-94. BKK Landfill #2: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 133 kN.

Figure D-95. BKK Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 22 kN.
Figure D-96. BKK Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 27 kN.

Figure D-97. BKK Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 31 kN.
Figure D-98. BKK Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 40 kN.

Figure D-99. BKK Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 44 kN.
Figure D-100. BKK Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 71 kN.

Figure D-101. BKK Landfill #2: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 133 kN.
D.3 BKK Landfill Location 3

D.3.1 Downhole Seismic Testing

Figure D-102. BKK Landfill #3 (east hole): Downhole seismic testing at vertical load of 9 kN:
(a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.

757
Figure D-103. BKK Landfill #3 (east hole): Downhole seismic testing at vertical load of 18 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure D-104. BKK Landfill #3 (east hole): Downhole seismic testing at vertical load of 36 kN:
(a) $V_p - Z$, (b) $V_s - ZX$, and (c) $V_s - ZY$.
Figure D-105. BKK Landfill #3 (east hole): Downhole seismic testing at vertical load of 71 kN:
(a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-106. BKK Landfill #3 (east hole): Downhole seismic testing at vertical load of 111 kN:
(a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-107. BKK Landfill #3 (west hole): Downhole seismic testing at vertical load of 0 kN:
(a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-108. BKK Landfill #3 (west hole): Downhole seismic testing at vertical load of 9 kN:
(a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.

- **BKK Location 3: West Hole Array**
 - Downhole seismic testing; Vertical static load ~ 9 kN
 - Spacing 5.75 in., $\Delta t_1 = 0.508$ msec
 - $V_p-Z = 943$ ft/s = 287 m/s
 - Spacing 10 in., $\Delta t_2 = 0.742$ msec
 - $V_p-Z = 1122$ ft/s = 342 m/s
 - Spacing 18 in., $\Delta t_3 = 1.152$ msec
 - $V_p-Z = 1301$ ft/s = 396 m/s

- **BKK Location 3: West Hole Array**
 - Downhole seismic testing; Vertical static load ~ 9 kN
 - Spacing 5.75 in., $\Delta t_1 = 0.918$ msec
 - $V_s-ZX = 521$ ft/s = 159 m/s
 - Spacing 10 in., $\Delta t_2 = 1.348$ msec
 - $V_s-ZX = 618$ ft/s = 188 m/s
 - Spacing 18 in., $\Delta t_3 = 1.895$ msec
 - $V_s-ZX = 791$ ft/s = 241 m/s

- **BKK Location 3: West Hole Array**
 - Downhole seismic testing; Vertical static load ~ 9 kN
 - Spacing 5.75 in., $\Delta t_1 = 0.840$ msec
 - $V_s-ZY = 570$ ft/s = 173 m/s
 - Spacing 10 in., $\Delta t_2 = 1.250$ msec
 - $V_s-ZY = 666$ ft/s = 203 m/s
 - Spacing 18 in., $\Delta t_3 = 2.070$ msec
 - $V_s-ZY = 724$ ft/s = 220 m/s
Figure D-109. BKK Landfill #3 (west hole): Downhole seismic testing at vertical load of 18 kN: (a) V_{p-Z}, (b) V_{s-ZX}, and (c) V_{s-ZY}.
Figure D-110. BKK Landfill #3 (west hole): Downhole seismic testing at vertical load of 36 kN: (a) V_pZ, (b) V_sZX, and (c) V_sZY.

Normalized Magnitude

Time (x10^{-3} sec)
Figure D-111. BKK Landfill #3 (west hole): Downhole seismic testing at vertical load of 71 kN: (a) V_p-Z, (b) V_s-ZX, and (c) V_s-ZY.
Figure D-112. BKK Landfill #3 (west hole): Downhole seismic testing at vertical load of 111 kN: (a) V_{P-Z}, (b) V_{S-ZX}, and (c) V_{S-ZY}.
D.3.2 Crosshole Seismic Testing

Figure D-113. BKK Landfill #3 (rod A): Crosshole seismic testing at vertical loads of (a) 0 kN and (b) 9 kN: $V_{s,XZ}$.

Figure D-114. BKK Landfill #3 (rod A): Crosshole seismic testing at vertical loads of (a) 18 kN and (b) 36 kN: $V_{s,XZ}$.
Figure D-115. BKK Landfill #3 (rod A): Crosshole seismic testing at vertical loads of (a) 71 kN and (b) 111 kN: V_{s-XZ}.

Figure D-116. BKK Landfill #3 (rod B): Crosshole seismic testing at vertical load of 0 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure D-117. BKK Landfill #3 (rod B): Crosshole seismic testing at vertical load of 9 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-118. BKK Landfill #3 (rod B): Crosshole seismic testing at vertical load of 18 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure D-119. BKK Landfill #3 (rod B): Crosshole seismic testing at vertical load of 36 kN: (a) \(V_{p-X} \) and (b) \(V_{s-XZ} \).

Figure D-120. BKK Landfill #3 (rod B): Crosshole seismic testing at vertical load of 71 kN: (a) \(V_{p-X} \) and (b) \(V_{s-XZ} \).
Figure D-121. BKK Landfill #3 (rod B): Crosshole seismic testing at vertical load of 111 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-122. BKK Landfill #3 (rod C): Crosshole seismic testing at vertical load of 0 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure D-123. BKK Landfill #3 (rod C): Crosshole seismic testing at vertical load of 9 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-124. BKK Landfill #3 (rod C): Crosshole seismic testing at vertical load of 18 kN: (a) V_{p-X} and (b) V_{s-XZ}.
Figure D-125. BKK Landfill #3 (rod C): Crosshole seismic testing at vertical load of 36 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Figure D-126. BKK Landfill #3 (rod C): Crosshole seismic testing at vertical load of 71 kN: (a) V_{p-X} and (b) V_{s-XZ}.

Normalized Magnitude

<table>
<thead>
<tr>
<th>Time (x10^{-3} sec)</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
</table>

Source trigger

G22X

G23X

Spacing = 18 in.
$\Delta t = 1.309$ msec
$V_{p-X} = 1146$ ft/s = 349 m/s

BKK Location 3: G22X-G23X
Crosshole seismic testing; Vertical static load ~ 36 kN
Hit on rod C

Normalized Magnitude

<table>
<thead>
<tr>
<th>Time (x10^{-3} sec)</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
</table>

Source trigger

G22Z

G23Z

Spacing = 18 in.
$\Delta t = 2.441$ msec
$V_{s-XZ} = 614$ ft/s = 187 m/s

BKK Location 3: G22Z-G23Z
Crosshole seismic testing; Vertical static load ~ 36 kN
Hit on rod C

Normalized Magnitude

<table>
<thead>
<tr>
<th>Time (x10^{-3} sec)</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
</table>

Source trigger

G22X

G23X

Spacing = 18 in.
$\Delta t = 1.191$ msec
$V_{p-X} = 1259$ ft/s = 383 m/s

BKK Location 3: G22X-G23X
Crosshole seismic testing; Vertical static load ~ 71 kN
Hit on rod C

Normalized Magnitude

<table>
<thead>
<tr>
<th>Time (x10^{-3} sec)</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
</table>

Source trigger

G22Z

G23Z

Spacing = 18 in.
$\Delta t = 2.109$ msec
$V_{s-XZ} = 711$ ft/s = 216 m/s

BKK Location 3: G22Z-G23Z
Crosshole seismic testing; Vertical static load ~ 71 kN
Hit on rod C
D.3.3 Steady-state Dynamic Testing

Figure D-128. BKK Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 1 kN.
Figure D-129. BKK Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 2 kN.

Figure D-130. BKK Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 4 kN.
Figure D-131. BKK Landfill #3: Steady-state dynamic testing at vertical load of 18 kN and horizontal dynamic load of 7 kN.

Figure D-132. BKK Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 0.56 kN.
Figure D-133. BKK Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 1 kN.

Figure D-134. BKK Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 2 kN.
Figure D-135. BKK Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 4 kN.

Figure D-136. BKK Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 9 kN.
Figure D-137. BKK Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 13 kN.

Figure D-138. BKK Landfill #3: Steady-state dynamic testing at vertical load of 36 kN and horizontal dynamic load of 18 kN.
Figure D-139. BKK Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 27 kN.

Figure D-140. BKK Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 36 kN.
Figure D-141. BKK Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 36 kN.

Figure D-142. BKK Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 44 kN.
Figure D-143. BKK Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 62 kN.

Figure D-144. BKK Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 71 kN.
Figure D-145. BKK Landfill #3: Steady-state dynamic testing at vertical load of 71 kN and horizontal dynamic load of 85 kN.

Figure D-146. BKK Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 27 kN.
Figure D-147. BKK Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 31 kN.

Figure D-148. BKK Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 36 kN.
Figure D-149. BKK Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 44 kN.

Figure D-150. BKK Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 62 kN.
Figure D-151. BKK Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 71 kN.

Figure D-152. BKK Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 85 kN.
Figure D-153. BKK Landfill #3: Steady-state dynamic testing at vertical load of 133 kN and horizontal dynamic load of 133 kN.
REFERENCES

ASTM D1556 - 07 “Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method”

ASTM D2487-11 “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)”

Chang, W. J., 2002, “Development of an In-Situ Dynamic Liquefaction Test,” Ph.D. Dissertation, the University of Texas, Austin, TX, 316 pp.

Fu L., 2004, "Application of piezoelectric sensors in soil property determination." PhD Thesis, Department of Civil Engineering, Case Western Reserve University, USA

Ref.:

Phillips, R.D., 2000, “Initial design and implementation of an in situ test measurement of nonlinear soil properties,” M.S. Thesis, The University of Texas at Austin, TX.

studies,” Third International Conference on Site Characteristic, April 1-4, Taipei, Taiwan, 6 pp.

802

