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ABSTRACT

The theory of quantum electrodynamics (QED) predicts that a neutron’s decay

into a proton, electron, and anti-neutrino will be accompanied by a radiative pho-

ton spectrum. While neutron decay is a prototypical example of weak decay, de-

tection of its radiative photons has been difficult to measure due to strong sources

of background photons related to neutron capture and neutron production. By the

simultaneous detection of a prompt photon and electron followed by a delayed

proton, the RDK II experiment was able to reliably identify radiative neutron de-

cays relative to non-radiative decays in the photon energy range of approximately

0.5 keV to the 782 keV endpoint. RDK II serves as not only a test of QED but

as a stepping stone towards an improved measurement of radiative neutron decay,

which could test quantum chromodynamics (QCD) and beyond the SM theories.

In this dissertation, the relevant theory is introduced first, followed by a detailed

description of the RDK II experimental apparatus. The author’s primary contribu-

tion to the experiment, a MC simulation of the apparatus, is then discussed. Next,

a preliminary analysis of the experimental data is compared to the simulated data.

This comparison shows good agreement between the two data sets across many

relevant experimental parameters. Finally, future experiments and analysis related

to RDK II are examined.

xv



CHAPTER 1

History and Theory

In this chapter, the RDK II radiative neutron decay experiment is introduced before dis-
cussing in general the neutron, its decay, and its radiative decay. Historical discoveries
are covered briefly (see Frank [1, 2] for additional detail) for and are used to introduce
relevant theoretical topics. Knowledge of basic quantum field theory is presumed and is
better learned from other sources [3, 4]. Finally, previous radiative decay experiments are
discussed.

1.1 Introduction

The topic of this dissertation is the RDK II experiment which measured radiative photons
originating from the beta decay of the free neutron. RDK is not an acronym but instead
simply a play on the words ”radiative decay”. While radiative decays have been measured
in nuclear systems for some time, only recently, in 2006 [5, 6], has it been measured in the
free neutron. The decay of the free neutron through the weak interaction has the potential
to test many aspects of the Standard Model (SM) of physics [2].

While RDK II is primarily a test of the theory of quantum electrodynamics (QED),
an improved experiment, with an uncertainty in its measurement of the branching of be-
low 1%, could test the direct emission from the weak vertex including recoil order correc-
tions [7]. A future experiment could also investigate the Dirac structure of the weak current
by measuring the polarization of radiative decay from polarized neutrons [7–9]. Further-
more, improved statistics and uncertainties at higher radiative photon energies could test a
possible source of time-reversal violation [10, 11].

The RDK II collaboration includes scientists working at the National Institute of Stan-
dards and Technology (NIST) laboratories, Arizona State University, the University of Tu-
lane, the University of Maryland, the University of Indiana, and the University of Michigan.
The experiment ran on the NIST Center for Neutron Research (NCNR) neutron beamline
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from December 2008 until November 2009. The past five years have been spent analyzing
the experimental data and creating simulations of the experimental apparatus. The result of
this work will be a measurement of radiative photon spectrum which spans three decades
of energy scale and which will be the most precise measurement of the neutron’s radia-
tive branching ratio over any energy range. This work, while almost complete, is waiting
for key contributions from collaborators to be completed before a measured value can be
stated. This dissertation contains both experimental and simulated data which should be
considered preliminary, but should be very close to RDK II’s final published values.

1.2 The Neutron

While neutrons have existed since around ten microseconds after the Big Bang or 13.8
billion years ago [12], it wasn’t until 1920 A.D that the human species first postulated their
existence. Ernest Rutherford predicted their presence as a way of explaining the differences
seen between the chemical properties of the elements and their masses [13]. This prediction
turned out to be correct, though he was mistaken in his prediction that the neutron was
simply a proton with a nuclear electron.

This incorrect model of the neutron persisted until a mysterious radiation entered the
scene. First Walter Bothe and Herbert Becker in 1931 [14] and then Irene Joliot-Curie
and Frédéric Joliot in 1932 [15] found evidence of a new radiation produced from alpha
particles striking light elements. This radiation was found to be highly penetrating and
ejected protons from hydrogenic substances. At first it was presumed this radiation was
simply a high energy gamma ray.

Then, in 1932, James Chadwick, a student of Ernest Rutherford, performed a series
of experiments [16] that provided evidence that this radiation was in fact from a massive
neutral particle, the neutron. The neutron explained both the mass differences in matter
and the properties of the mysterious radiation. After this discovery, Chadwick urged fur-
ther research to determine what the neutron’s substructure was, if any, and to describe the
neutron’s short range forces [17].

In the coming years, a veritable zoo of particles was discovered: muons, pions,
kaons, etas, and anti-protons. This zoo was reduced when, in 1964, Gell-Mann [18]
and Zweig [19] independently proposed that hadrons (mesons and baryons) were in fact
composed of sub-nucleonic particles called quarks. It is now known that the neutron is
a baryon formed from three valence quarks, two down quarks and one up quark. These
quarks are bound together by gluons, carriers of the strong interaction. The neutron’s mass
is 939.565379±0.000021 MeV [20] with 9.4 MeV of this mass taken up by the valence
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Figure 1.1: A cartoon of the modern view of what a neutron is made of. A neutron in the SM is
known to be composed of three valence quarks (large for emphasis only) bound together by self-
interacting gluons. Quark-anti-quark pairs can pop in and out of existence. The true composition of
a neutron or any hadron is probabilistic.

quarks. The remaining 930 MeV of mass resides in the gluons and the sea of quark/anti-
quark pairs (see Figure 1.1).

1.3 Neutron Beta Decay

In 1899, Rutherford observed two different forms of radiation emitted by radioactive atoms.
He called them alpha and beta rays [21]. Soon Becquerel was able to identify these beta
rays as electrons [22] and that they had an inhomogeneous velocity spectrum. From mo-
mentum conservation, this created a contradiction as decays into two particles should pro-
duce discrete energies. Thus the idea of a ”massless” third decay product, the neutrino,
was born in a letter from Pauli in 1930 [23]. This was expanded into a theory of beta decay
by Fermi in 1934 [24]. His theory presumed that neutrons decayed into protons, elec-
trons, and neutrinos. However the theoretical underpinnings were difficult to determine as
experimental measurements had only been performed with complex radioactive nuclei.

In the neutron, further experiments by Chadwick and Goldhaber [25] in 1934 demon-
strated that the mass of the neutron was ever so slightly greater than that of the proton.
They did this by examining the photo-disintegration of the deuteron. This implied that the
neutron was energetically allowed to decay into a proton, though the small size of the dif-
ference also makes detecting the decay much more difficult. The first reason it makes it
more difficult is that it causes the neutron to have a relatively long lifetime, about fifteen
minutes. The second reason is that it causes the neutron decay products to have relatively
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low kinetic energies (< 782 keV). This issue is further compounded by strong sources of
background that typically accompany strong sources of neutrons. It took fourteen years
for these challenges to be overcome and for the first observation of neutron decay to be
made by Snell and Miller in 1948. They observed the disappearance of a fraction of a neu-
tron beam from a reactor pile at Oak Ridge National Laboratory (ORNL) [26]. This was
soon followed by the discovery in 1950, by multiple groups [27–30], that neutrons decayed
into protons and a continuous spectrum of electrons. The half-life of the free neutron was
measured to be on the order of 10 minutes [31].

All seemed well until Lee and Yang postulated that perhaps the symmetry of parity
might not be conserved [32] in the weak interaction. If parity is a conserved symmetry,
then flipping the three spatial dimensions of an interaction should produce an interaction
that exists in nature. The symmetry also implies that chirality or handedness is preserved.
For example, the right-hand-rule learned in introductory physics was determined arbitrarily
for consistency’s sake. A left-hand-rule works equally as well. If parity is not conserved
than neither is chirality. If there is parity violation, the startling implication would be that
the universe has a preferred handedness!

This strange idea was confirmed in 1957, when Wu et al. [33] discovered parity viola-
tion in the beta decay of spin polarized radioactive 60Co. If the 60Co atoms had a clock-
wise spin, the electrons from decay were preferentially emitted in one direction, if they
were counter-clockwise, the electrons preferred the other direction. Later experiments [34]
showed that the the helicity of the emitted electrons was in fact negative. It was then
known that the weak interaction, which mediates beta decay, was purely left-handed and
maximally violated parity. In 1960, this parity violation was measured in the free neu-
tron [35].

1.3.1 Neutron Beta Decay Theory

In the SM of particle physics, represented by the gauge group U(1)x SU(2)x SU(3) plus
gravity, there are four, distinct fundamental interactions at energies below about 100 GeV:
the strong interaction, the weak interaction, electromagnetism, and gravity. The neutron
is stable under all but the weak interaction. The weak interaction violates quark flavor
conservation and can convert a down quark to an up quark by emitting a virtual W− gauge
boson, the carrier of the weak force. Because of the small mass difference between a
neutron and proton, the W− boson itself can only decay into one lepton generation: an
electron and an electron anti-neutrino (see Figure 1.2).

In principle, any quantum field theory in the Dirac representation is composed of a
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Figure 1.2: Feynman diagram for neutron decay. One of the down quarks is converted to an up
quark emitting a virtual W− boson that then decays into an electron and its anti-neutrino.

combination of the five Dirac bilinear components: scalar (S), pseudo-scalar (P), vector
(V), axial vector (A), and tensor (T). In the case of the weak interaction, parity has so far
proven to be maximally violated. This necessitates that the weak interaction only contain a
mixture of vectors and axial vectors in a linear combination. Thus a parity violating theory
of the weak interaction must be a vector minus axial vector (V–A) theory.

The emitted electron and anti-neutrino can either be emitted with their spin vectors
anti-parallel, a Fermi (F) transition, or in parallel, a Gamow-Teller (GT) transition. A
F transition preserves total angular momentum and isospin and consequently it preserves
parity. A GT transition can change the total angular momentum and isospin by 0 or 1 but
with a transition of 0 → 0 forbidden. F transitions arise from either S or V interaction,
while GT transition arise from either A or T interactions. P interactions are negligible in
allowed transitions and are generally ignored. Under V–A theory, the weak interaction is
therefore a mix of F and GT transitions with V and A components respectively.

The neutron decay rate (Γn) or lifetime (τ−1n ) can then be expressed using Fermi’s
golden rule

Γ = τ−1 =
2π

~
|M|2ρ, (1.1)

where M is the matrix element of the interaction, ρ is the density of final states, and ~
is the reduced Planck’s constant. Presuming V–A theory, unpolarized neutrons, and low
momentum transfer, it can be shown [2] that for neutron beta decay

Γn = τ−1n =
me

5c4

2π3~7
|M|2f, (1.2)
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where me is the mass of the electron, c is the speed of light, and

f =

∫ E0

0

F (Ee)peEe(E0 − Ee)2dEe (1.3)

is the phase space factor where Ee is the electron energy, pe is the electron momentum, E0

is equal to the electron endpoint energy, and F (Ee) is the Fermi function for neutron decay,
which corrects for Coulomb attraction between the final state electron and proton.

The matrix element,M, is defined as

M = iψ̄pγµ(gV + gAγ5)ψngµvψ̄eγ
µ(1− γ5)ψν , (1.4)

where ψp,n,e,ν are the fermion fields for the proton, neutron, electron, and anti-neutrino
respectively. The weak coupling constants, gA and gV , are defined as gV ≡ VudGF and
gA ≡ λVudGF where GF/(~c)3 = 1.166364(5) × 105 GeV−2 [36] is the Fermi coupling
constant, which is calculated from muon decay and Vud is a component of the Cabibbo-
Kobayash-Maskawa (CKM) matrix, which will be covered later. The λ factor originates
from gA’s dependence on the hadronic current and it is defined as λ ≡ gA/gV and measured
to be -1.2701 ± 0.0025 [20]. If time-reversal violation exists in weak decay, then a relative
phase is included: λ→ |λ|eiφ.

After evaluation of the matrix elements and letting K ≡ 2π3~7
me

5c4
, it can be shown that

Equation (1.2) will become

τn
−1 =

1

K
(gV

2 + 3gA
2)f =

1

KVud
2GF

2 (1 + 3λ2)f. (1.5)

If radiative corrections are included (see Section 1.4) there are two corrections to
Equation (1.5) that can be applied: a nucleus dependent radiative correction modifying
f → f(1 + δr) = and gV 2 → gV

2(1 + ∆R
V ) [2]. These corrections result in a shift of the

lifetime by +3.886%±0.039% [37, 38].
The Cabibbo-Kobayash-Maskawa (CKM) matrix or quark mixing matrix is the 3 × 3

parametrization of weak interaction’s flavor changing strength. It represents the difference
between the weak eigenstates of the quarks and the mass eignenstates of the quarks. If the
two were identical, then the matrix would be all 1’s on the diagonal and flavor-changing
between generations in the weak interaction would not exist. If there are only three gen-
erations of quarks and only SM physics is present, the matrix should be unitary. Current
experimental measurements are consistent with this. Presuming unitarity, the matrix can
be further reduced to four free parameters typically defined by three mixing angles and a
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complex phase. From the Particle Data Group (PDG) [20], the CKM matrix is Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =

 0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015
−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046

 .

(1.6)
Currently the best value of Vud comes from measurements of super-allowed beta decays,

but it can also be determined from the neutron lifetime by evaluating Equation (1.5), which
results in [20]

Vud =

√
4908.7(1.9)s

τn(1 + 3|λ|2)
= 0.9774± 0.0014. (1.7)

This number is 2.5σ from the measurements of Vud in super-allowed decays. However
there have recently been large discrepancies in both measurements of λ and τ−1n . For exam-
ple, the neutron lifetime experiments using cold neutron beams differ from those that use
ultra cold neutrons (UCNs) trapped in bottles by 3.8σ [39]. As such, there are many future
experiments that plan to measure both to high accuracy. It is worth noting that the RDK II’s
solenoid magnet will next be used for a future cold neutron beam lifetime measurement,
which could shed light on this discrepancy (see Chapter 5).

1.3.2 Neutron Decay Correlations

A trio of scientists, Jackson, Treiman, and Wyld (JTW), in 1957 formulated a general
form for the first order partial differential cross section for neutron decay [40, 41] using
a parametrization from Lee and Yang [32]. In this general form, the nature of whether
the weak force was vector, axial-vector, scalar, tensor, or a combination was left up to
the strength of unknown coupling constants. These coupling constants correspond to the
strengths of momentum and energy correlations in the decay products of neutron decay.
The JTW equation for neutron beta decay can be written as

dΓn
dEedΩedΩν

∝ |pe|Ee(E0 − Ee)2×[
1 + a

pe · pν
EeEν

+ b
me

Ee
+

Jn
|Jn|
·
(
A
pe
Ee

+B
pν
Eν

+D
pe × pν
EeEν

)]
,

(1.8)

where p and E are the momenta and energies of the decay particles, E0 is the electron
endpoint energy, and Jn/|Jn| is the neutron polarization. This leaves a, b, A, B, and D as
constants to be measured by experiment. These constants can be shown, to first order to
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First Order Experimental
Constant Name Expression Value

a Electron-antineutrino correlation 1−|λ|2
1+3|λ|2 -0.103 ± 0.004

b Fierz interference 0

A Spin-electron asymmetry -2 |λ|
2+|λ| cosφ
1+3|λ|2 -0.1176 ± 0.0011

B Spin-antineutrino asymmetry 2 |λ|
2−|λ| cosφ
1+3|λ|2 0.9807 ± 0.0030

D Triple correlation 2 |λ| sinφ
1+3|λ|2 (-1.2 ± 2.0) × 10-4

Table 1.1: JTW neutron decay correlation coefficients. λ is the coefficient representing the ratio of
GT decays to F decays, φ is the relative phase if time reversal violation exists. Experimental values
are from the PDG compilation [20].

have simple expressions relating them to λ and φ (see Table 1.1).

1.4 Radiative Corrections

Dirac [42], Fermi [43], and many others formulated a relativistic quantum theory of radia-
tion in the 1920’s and 1930’s [4]. The theory, however, was not without its issues. Infinities
present in its predictions were confusing and nonsensical [44–46]. One example of such an
infinity was labeled the “infrared catastrophe” [47] by some. It was predicted that photons
should be emitted from charged particles in decays, such as the electron and proton from
neutron decay. The “catastrophe” was that the probability of emission increased without
limit as one approached lower and lower energies due to the zero mass of the photon. In
1937, Bloch and Nordsieck [47] showed that this sort of infinity could be dealt with by
considering a detectable cutoff energy for the radiation. It is now understood that radiative
emission diagrams cancel with corresponding radiative loop diagrams at all orders.

By 1949, Tomonago, Schwinger, Feynman, Dyson and others had solved some of the
other “problems of infinities” through renormalization [4]. The theory that emerged, QED,
has been described as “the most stringently tested and the most dramatically successful of
all physical theories” [3]. For example, standard model theory and measurements of the
electron magnetic moment agree to ten digits that the fine structure constant, the coupling
constant of electromagnetism, is 137.0359990 [48].

Meanwhile, the first measurements of radiative photons from nuclear beta decays were
observed by Aston in 1927 [49]. Nuclei are simply put, complicated. Electron capture,
nuclear excited states, and atomic structure can all affect the probability of radiative photon
emission. This also accounts for the wide variety of half-lives and energy spectra seen in
other isotopes that undergo beta decay. The radiative decay mode of the free neutron, on
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Figure 1.3: Feynman diagrams of the three primary contributors, in order, to radiative decay.
a) electron inner bremsstrahlung (IB) b) proton inner bremsstrahlung (IB) c) weak-vertex inner
bremsstrahlung (IB)

the other hand is free many of these complications or the corrections are calculable. While
theoretically simpler, experimental difficulty remained in the neutron’s long lifetime, the
neutron’s low energy daughters, and the neutron’s reactor or accelerator produced origins.

1.4.1 Radiative Decay

Radiative photons emitted from the decay of the neutron are said to be from inner
bremsstrahlung (IB). Bremsstrahlung is electromagnetic radiation produced by deceler-
ation of charged particles in matter and similarly, IB can be thought of as originating from
the sudden acceleration of the charged decay products in the neutron’s decay. However,
this classical picture is insufficient for a detailed understanding and quantum field theory
must be used.

To proceed with a calculation of the partial decay rate in a field theory, it is first im-
portant to define what final state particles are detected. In the case of a neutron decay
experiment that is sensitive to photons, it is important to define what the experiment’s de-
tectable energy range is and how many photons it can detect. For now, it will be assumed
that multiple photons do not contribute significantly to the calculation of the partial decay
rate.

For a single photon emission, three diagrams at order α will be considered (see Figure
1.3). The diagrams represent electron IB, proton IB, and weak-vertex IB. Electron IB dom-
inates radiative decay while weak-vertex IB has been shown by heavy chiral perturbation
theory to contribute less than 1% radiative decay [7, 50].
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Taking the first two diagrams from Figure 1.3, a matrix element can be formed [9, 51]

M =e
GF√

2
Vud
[
ψ̄pγ

µ(1 + λγ5)ψn
] 1

2q · pe
[
ψ̄e
(
(2ε∗ · pe + /ε∗/q

)
γµ
(
1− γ5

)
ψν
]

−eGF√
2
Vud

1

2q · pp
[
ψ̄p
(
(2ε∗ · pp + /ε∗/q

)
γµ
(
1− γ5

)
ψn
] [
ψ̄eγ

µ
(
1 + λγ5

)
ψν
]
,

(1.9)

where ε and q are the polarization vector and four momentum for the photon. Using this
matrix element, it can be shown that the differential decay rate is [9]

dΓn
dEedωdΩνdΩγ

= −αF (Ee)
gV

2|pe|Eνω
(2π)7

(
1 + 3|λ|2

)
×[

Eν

(
1

ω
+
Ee
ω2

+
me

2 (Ee + ω)

(pe · k)2
− 2Ee + ω

pe · k
− 2Ee

2

ω (pe · k)

)
+apν ·

(
pe
ω2

+
me

2 (pe + k)

(pe · k)2
− pe + k

pe · k
− Ee (2pe + k)

ω (pe · k)

)]
,

(1.10)

where w and k are the energy and three momentum of the photon.
This differential decay rate was incorporated into a computer simulation described in

Chapter 3, though in a slightly different form (see Appendix A). Using this event generator
as a numerical integrator it is possible to determine the branching ratio of radiative decay
within a specified photon energy range (see Figure 1.4). This determination is in agreement
with other calculations of the radiative branching ratio [7, 8, 50, 51].

10



Lower Photon Energy Limit (keV)
1 10 210

B
ra

n
ch

in
g

 R
at

io

-610

-510

-410

-310

-210

Figure 1.4: Plot of the radiative branching ratio determined from event generator. The x-axis
represents the lower energy cutoff with the high energy cutoff fixed to the endpoint energy.

γeθcos 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e 
P

ro
b

ab
ili

ty
 (

A
U

)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Figure 1.5: Plot of the electron-photon angular correlation in radiative neutron decay. The x
axis represents the cos θ angle between the two particles’s momenta while the y-axis represents the
relative probability. Due to the dominance of electron IB, the particles are correlated.

11



1.5 Radiative Neutron Decay Experiments

In 2002, the first limit on the branching ratio of radiative free neutron decay was made
by Beck et al. [52]. They pioneered a method of triple coincidence that measured the
photon in coincidence with the electron and proton to subtract background sources of ra-
diation. Beck et al. used the cold neutron beam at the Institut Laue-Langevin (ILL) to
illuminate an experimental apparatus, which consisted of a microchannel-plate (MCP) to
detect protons, a plastic scintillator to detect electrons, and six CsI(Tl) scintillators coupled
to photomultiplier tubes (PMTs) to serve as photon detectors. The six photon detectors
surrounded the electron detector on one side of the neutron beam while the proton detector
was on the opposite side. This took advantage of the angular correlations present between
the three decay particles. Ultimately, the experiment was unable to overcome the photon
backgrounds present and they measured a limit of<6.9× 10-3 (90% C.L.) for the branching
ratio for photon energies of 35 to 100 keV.

Then in 2006, using the method of triple coincidence, the RDK I collaboration reported
a radiative branching ratio for the neutron of (3.09± 0.32)× 10-3 for the energy range of 15
to 340 keV [5,6] while leading order QED theory calculations predicted 2.85× 10-3. In the
experiment, a cold neutron beam at NIST passed through a strong magnetic field that guided
electrons and protons from neutron decay off-axis to a surface barrier detector (SBD) that
measured them. An electrostatic mirror reflected protons traveling in wrong direction and
had a voltage that could be varied. A single bismuth germanium oxide (BGO) scintillator
coupled to an avalanche photodiode (APD) was directly exposed to the beam in the decay
region. As the charged particle detector was located off-axis, external electron-induced
bremsstrahlung was reduced. The RDK I experiment extracted the radiative branching ratio
by forming a ratio of electron, proton, and photon/gamma coincidence (epγ) with electron
and proton coincidence (ep) and then compared it with Monte Carlo (MC) simulations of
the apparatus at various electrostatic mirror voltages.

In the context of the topic of this dissertation, the RDK II experiment improved upon
RDK I in many ways. First, RDK II detected a significantly greater number of radiative
decays than RDK I. This is primarily due to the addition of eleven additional BGO photon
detectors to RDK I’s single detector. RDK II also modified the collimation of the neu-
tron beam, which allowed for a factor of two improvement in the neutron rate through the
apparatus.

Another improvement that RDK II made was in the photon energy range measured.
RDK I measured an energy range from 15 keV to 340 keV with a BGO scintillator coupled
to an APD detector while RDK II measured an energy range from approximately 14 keV
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to 781 keV (the neutron’s endpoint energy) with its own BGO detectors. Additionally, a
secondary set of large-area avalanche photodiode (LAAPD) detectors measured photons
directly in the range from approximately 300 eV to 20 keV.

Finally, there were significant improvements to the analysis and simulation. This in-
cluded greater understanding in areas such as pulse shape analysis, electron backscattering,
magnetic reflections, and scintillator light response. The non-proportionality of BGO scin-
tillator light response in particular produced a significant change to the actual energy range
measured by these experiments, and an estimate of a correction to the RDK I measurement
is found in Section 2.5.1.2.
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CHAPTER 2

Experimental Apparatus

In this chapter, an overview of the RDK II experimental apparatus is covered followed by
a detailed description of the components of the experiment.

2.1 Experimental Overview

The RDK II experiment operated at the NG-6 fundamental physics end-station [53] at the
Center for Neutron Research (NCNR) at the NIST in Gaithersburg from December 2008
to November 2009. The reactor-produced cold neutron beam (see Section 2.2) was guided
to the experiment using 58Ni coated guides and was collimated with a series of 6LiF aper-
tures backed with lead. A calibrated 6Li-foil neutron flux monitor [39, 54] was mounted
downstream of the detection region (see Figure 2.1).

The detection of the neutron’s decay products in coincidence was critical to the RDK
II experiment and was pioneered by the ILL experiment [52] (see Section 1.5). To the
leading order of radiative decay (order α), four particles are emitted by the decay. The
neutrino interacted minimally with the matter of the experimental apparatus and escaped

Figure 2.1: Diagram showing the relationship between the cryostat containing the solenoids and
the detectors relative to the neutron beamline and flux monitor. The apparatus in the blue square is
shown in more detail in Figure 2.2a

14



x

z

Downbeam

Upbeam

MC Axis

SBD

12x BGOs
3x LAAPDs

Electrostatic Mirror

Solenoids

Cold Neutron Beam

Magnetic
Field Line

Decay Position in Neutron Beam (m)
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

D
et
ec

tio
n
P
ro
b.

P
er

U
ni
tL

en
gt
h
(A
U
)

0

5

10

15

20

ep

(BGO)γep

(LAAPD)γep

b)

a)
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and photon/gamma coincidence (epγ).

undetected. The other particles, the electron, the proton, and the radiative photon, were
detectable.

The active region was defined by a strong magnetic field (3.3 to 4.6 T) created by a
set of superconducting solenoids (see Section 2.3). A ring of aluminum charged to 1400
V served as an electrostatic mirror. The mirror created an ≈800 V barrier to protons and
defined the downstream end of the active detection region. Approximately 34 cm upstream
of the mirror, the magnetic field bent at a 9.5° angle, which defined the upstream end of the
detection region (see Figure 2.2a).

If a neutron decayed between these two points, the charged decay products, an electron
and a proton, followed adiabatic helical orbits around the field. If the electron was emitted

15



in the direction of the beam, or downstream, its energy, on the order of hundreds of keV, was
usually sufficient to escape the detection region and the electron remained undetected. If the
electron was instead emitted in the opposite direction, upstream, it followed the magnetic
field to a surface barrier detector (SBD) in a time on the order of nanoseconds. The proton,
with an energy less than 750 eV, was detected if it was emitted in either direction as the
electrostatic mirror was sufficient to reflect it. The proton traveled to the SBD in a time on
the order of microseconds (see Section 2.4).

Two separate photon detector arrays surrounded the neutron beam in the active re-
gion [55]. The higher energy photon detector array consisted of twelve bismuth germa-
nium oxide (BGO) scintillator crystals coupled to avalanche photodiodes (APDs) (see Sec-
tion 2.5). The secondary photon detector array consisted of three large-area avalanche
photodiodes (LAAPDs) that directly measured low energy photons without a scintillator
(see Section 2.6). The BGO detectors overall systematic and statistical uncertainty is ex-
pected to be on the order of 4%, while the LAAPD detectors uncertainty is expected to
be on the order of 14%. The significantly greater uncertainty in measurements with the
LAAPD detectors is a result of the uncertainty of its complex energy response at low ener-
gies (see Sections 2.6.1.

A data acquisition (DAQ) system [55, 56] was used to to record the waveform data
from the particle detectors. In its non-diagnostic mode, the DAQ system utilized two single
channel analyzers and a time-to-amplitude converter to trigger data recording. The signal
of an ep was assumed to be detected when the SBD registered a voltage signal equivalent
to ≈50 keV or more (an electron) followed by a voltage signal equivalent to ≈7 keV or
more (an accelerated proton) within a timing window of 0.25 to 25 µs of the first peak, data
was recorded to disk from both the SBD and both photon detector arrays. The recorded
waveforms spanned 2048 channels: from≈25 µs before the electron signal to≈57 µs after
(see Section 2.7).

The experiment detected in two modes of coincidence. An electron and proton
coincidence (ep) occurred when the SBD detected an electron signal followed by a delayed
proton signal. An electron, proton, and photon/gamma coincidence (epγ) coincidence oc-
curred when the SBD detected an electron signal followed by a delayed proton signal while
one of the photon detectors detects a photon/gamma signal simultaneously with the elec-
tron signal. RDK II experiments use the detection of the electron and proton to validate
that the photon originated from neutron decay and not from a background photon. This is
covered in greater detail in Chapter 4.

The two coincidence modes depended significantly on the decay position along the
neutron beam (see Figure 2.2b). In addition, there are numerous correlations between
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momenta and energies of neutron decay’s daughter particles that must be accounted for.
This necessitated a sophisticated MC simulation be used to interpret the experimental data
(see Section 3).

2.2 Cold Neutron Beam

Fundamental neutron decay experiments require a large number of neutrons to decay within
their experimental volume in order to produce statistically significant results. This is
achieved by producing a beam of cold neutrons or by producing and storing ultra cold
neutron (UCN). The source of neutrons used in RDK II originated from the NCNR located
in Gaithersburg.

2.2.1 NCNR Cold Neutron Source

The source of neutrons used in RDK II originated from the NCNR located in Gaithers-
burg. The NCNR is a 20 MW reactor operating on highly enriched (93%) 235U fuel [57].
Neutrons from fission have an average energy of approximately 20 MeV. These neutrons
were then moderated by the deuterated or heavy water (D2O) that surrounded the fuel rods.
This reduced the average energy of the neutrons to the 30 meV range or “thermal neutron
energies”. Inside the reactor, there was a neutron cold source, which consisted of cooled
D2O surrounded by a liquid hydrogen (LH2) volume. This further cooled the neutrons to a
median energy of 2 meV or 6.4 Å.

2.2.2 NG-6 Neutron Beamline

These cold neutrons are transported out of the reactor and cold source via 58Ni coated glass
tubes, which terminate near the cold source. Cold neutrons strike the walls of these tubes
and, through a spin-spin interaction, undergo total internal reflection as the 58Ni coated
tubes have an effective refractive index of less than one [58]. Much like a fiber optic cable,
the neutron is transmitted through these evacuated guides away from the reactor and to
various scientific experiments. The NCNR at the time of the RDK II experiment had eight
operational cold neutron beamlines. RDK II occupied the NG-6 beamline [53] during its
operation. A series of Li glass collimators and LiF scrapers collimated and defined the cold
neutron beam and removed divergent or stray neutrons.

The beam enters the active detection region, which is held at a vacuum that is less than a
10-9 mbar. These pressure measurements were made near the ion pumps located relatively
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Figure 2.3: Profile of cold neutron beam taken downstream of the active detection region. A
dysprosium foil was exposed and activated by the neutron beam. The beta decays from these acti-
vations were measured by exposing a photographic plate to the foil. A small piece of cadmium foil
located in the center of the image was placed on the dysprosium foil to serve as a marker, which
was digitally removed in this profile.
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far from the neutron beam line. Due to the cryogenic environment of the experiment, it is
actually expected that the vacuum was significantly better at the center where the neutron
beam is located. Irrespective of whether the center was at lower pressure, there was minimal
attenuation of the protons by any residual gas.

2.2.3 Neutron Beam Monitor

A 6Li-foil neutron flux monitor [39, 54] was mounted downstream of the detection region.
Incoming neutrons produce charged alphas and tritons through the 6Li(n,t)4He reaction.
Four calibrated surface barrier detectors measured the charged particles produced. The
flux monitor measured an average neutron capture flux of 1.07× 108 neutrons per second,
which was roughly twice that of RDK I. This was primarily due to reduced collimation of
the beam.

2.3 Electric and Magnetic Fields

A set of superconducting solenoids made by Oxford Instruments [59] was used to generate
the magnetic fields in the active detection region of the RDK II apparatus (see Figure 2.2a).
The magnet consisted of 11 coils made from niobium-titanium filaments in a copper matrix.
The coils ranged from 14 cm to 24 cm in diameter [59]. The coils were arranged such that
there was a 9.5° bend that directed charged particles off the beam axis towards the SBD.
The magnet was cooled with liquid helium and generated a maximum field of 4.6 T during
operation. At this field strength, both electrons and protons from neutron decay followed
cyclotron orbits around the field with a radius on the order of 0.1 mm (see Figure 2.4).

The magnet has been used in previous experiments including RDK I, an electron-
antineutrino angular correlation experiment [60], and neutron lifetime experiments [54,61].
The magnet will be used for an updated and improved neutron beam lifetime experiment
that is currently underway.

Electric fields in the active detection region can affect the adiabatic motion of the
charged particles. As a particle follows a magnetic field line, the component of its ki-
netic energy along that field line must overcome any sources of differential potential (see
Section 3.5.1 for more details on adiabatic motion in magnetic fields). In the experiment,
there were three sources of electric potential in the active detector region that could have
potentially influenced charged particle motion: the electrostatic mirror, the SBD, and the
LAAPDs’ bias field (see Figure 2.6).

The electrostatic mirror was a simple aluminum ring 2 cm wide with a 4.76 cm diameter
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Figure 2.4: Plot of the simulated magnetic field strength from the RDK II solenoids along the
central magnetic field line (see Chapter 3).

and was located 33.7 cm downstream of the center of the bend. It was charged to +1.4 kV
relative to the bore and other grounded materials. At its center, it created an≈880 V barrier
to any charged particles.

The SBD was held at -25 kV relative to ground. When protons approached the SBD,
the field generated served to accelerate them from the energy range of 100’s of eV to 25
keV, which allowed the protons to penetrate the conductive gold layer on the front face of
the SBD (see Section 2.4).

The LAAPDs were biased by approximately 1350 V. While the first version of the
detector array shielded this potential from the active detection region, the second version
was not completely shielded (see Section 2.6). This caused a small electrostatic potential
of ≈5 V at the center of the beam, which potentially reflected protons. MC simulations
indicated that this correction did not significantly affect the measurement.
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Figure 2.5: Photo of the cryostat which contains the RDK II solenoids and the active detection
region. The high voltage isolation cage that supplies the -25 kV potential for the SBD field is
visible on the right.
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2.4 Surface Barrier Detector

A surface barrier detector (SBD) serves as the charged particle detector for both protons
and electrons in the RDK II apparatus. A SBD is a semiconductor device made from a
silicon crystal with doped impurity elements that are either pentavalent to create n-type
material, or trivalent to create p-type material [62]. N-type materials have loosely bound
electrons in the conduction band while P-type materials have loosely bound positive holes
in the conduction band. In the case of a SBD, a P-N junction is formed and a reverse bias
is applied. This creates a depletion region at front side of the detector. At liquid nitrogen
temperatures, one electron-hole pair is created for every 3.76 eV of ionizing radiation that
is absorbed in this region [62]. By biasing the device with an electric field, the holes travel
in one direction with the electrons traveling in the other to create a signal. While a fraction
of the signal will be lost to impurities in the silicon crystal, the large number of charge
carriers created gives the SBD excellent energy resolution.

Both 1 mm and 1.5 mm thick silicon detectors were used in the experiment. They were
made by ORTEC® [63] and had an active area of 600 mm2. They consisted of a wafer
of doped silicon coated with 20 nm of gold on the front face, which provides the positive
electrical contact, and layer of aluminum, which serves as the contact, on the opposite,
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Figure 2.7: Photo of the front of a SBD. The gold coated front of the silicon faces the camera and
the epoxy, which connects it to the outer canister, can be seen on the inner edge.

inner face. The wafer was contained within a brass canister which terminated in a microdot
connector. During operation, the SBD was located off the beam axis 27.8 cm from the
center of the bend. While the SBD as a whole was held at -25 kV, the detector itself was
only biased by 100 V. It was radiatively cooled down to approximately 150 K.

2.4.1 SBD Energy Response

In order to convert the recorded pulse height to an energy incident on the SBD detector,
both calibrations were performed offline, with the neutron beam off, and online, while
the neutron beam was on. Offline, 241Am and 57Co were used as gamma sources while
133Ba, 113Sn, 207Bi, and 36Cl were used as electron sources. These sources, along with
studies using a pulser system, identified a small quadratic correction to the proportionality
of the detector, which was included in the analysis. The energy resolution of the SBD was
determined to have a full width half maximum (FWHM) of 5.4 keV, which remained stable
over its operational range.

While online, the electron endpoint energy from neutron decay, 781.6 keV, was moni-
tored to account for gain drift in the SBD and amplification electronics. A functional form
was fit to the endpoint of the detected electron spectrum, which presumed that all electrons
that reached the SBD lost 25 keV of energy from the SBD’s electric field. From this fit, the
pulse height to energy conversion was determined. The functional form was tested against
the simulated electron energy spectrum and was confirmed to correctly identify the electron
endpoint energy.
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2.5 BGO Photon Detectors

An array of twelve BGO scintillation crystals coupled to APDs served as the primary pho-
ton detectors for RDK II. Each crystal was 1.2 cm x 1.2 cm x 20 cm and their inner edges
were located 3.6 cm from the center of the neutron beam. The upstream ends of the crys-
tals were painted with a reflective paint and each crystal was wrapped in ”two layers of
aluminized Mylar (”total of 12.4 µm Mylar and 0.065 µm aluminum). An additional alu-
minized Mylar sheet (12.7 µm Mylar and 0.049 µm aluminum)” [55] The downstream ends
coupled to the APDs. Because of the liquid nitrogen temperatures, optical grease was not
used on this connection.

The pure inorganic scintillator crystal, Bi5Ge3O12, also known as bismuth germanium
oxide (BGO) or bismuth germanate, contains no added activator, unlike many other scin-
tillators used in radiation detection [62]. It was chosen in part because its high density,
7.13 g/cm3, makes it one of the best absorbers [62] of high energy photons. This allowed
detection of photons with energy up to radiative decay’s endpoint energy, 781 keV. In ad-
dition BGO’s light yield at liquid nitrogen temperatures actually exceeds that of NaI(Tl)
scintillators, a common alternative. BGO does suffer from having both a factor of two
slower response time than NaI(Tl) and a higher index of refraction, which must be coupled
carefully to the light detection device. This and other considerations are discussed in more
detail in other references [9, 64].

Avalanche photodiodes (APDs) are semiconductor devices that use an internal gain cre-
ated by strong electric fields that multiply the number of charge carriers that are collected.
They have a higher quantum efficiency, lower power consumption, and are smaller than
PMTs, and most importantly, unlike an PMTs, they can operate in a high magnetic field.
An APD’s band gap energy is between 1 to 2 eV making it similar in operation to a solar
cell [62].

Incoming photons from neutron decay were absorbed in the high density BGOs crystal.
This produced quantities of scintillation light at 520 nm [65] nominally proportional to the
amount of energy absorbed. This scintillation light was then collected by the APDs, which
produced a voltage signal proportional to the quantity of hole-pairs it detected.

2.5.1 BGO Energy Response

Calibrations on the BGO array were performed both off-beam and on-beam. Off-beam
calibrations were performed with the magnetic field off and at liquid nitrogen temperatures.
Radioactive sources, including 137Cs, 133Ba, 57Co, and 241Am, were attached to a rod and
placed in the center of the detector array using a reentrant tube that allowed the magnet’s
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Figure 2.8: Plot of the RDK II BGO crystal’s photon attenuation based on the incident photon
energy. Data was generated from Geant4 simulations.

Figure 2.9: a) Photo of one end of a wrapped BGO crystal and its corresponding APD. b) The 12
element BGO crystal array.
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Figure 2.10: Plot of the response of a BGO detector to a combination of 57Co and 137Cs sources.

vacuum chamber to remain sealed. From these calibrations an energy resolution of the
BGO detectors was measured and it was determined to follow a Poisson distribution that at
511 keV resulted in a FWHM of ≈60 keV.

On-beam calibrations utilized a 511 keV peak located in the background photon spec-
trum. This peak resulted from electron-positron annihilations occurring from a variety
of sources associated with the reactor-produced neutron beam. This peak was monitored
and the energy of recorded data was scaled appropriately. In addition, two more complex
photon response phenomena were investigated: position dependent light collection and
non-proportional energy response.

2.5.1.1 BGO Light Collection

One of the properties that influenced the energy response of the apparatus was the positional
dependence of the BGO crystal’s light collection. This positional dependent response orig-
inated from the manner in which the scintillation light was collected and reflected by the
ends of the BGO crystal. This problem has been previously studied and is well under-
stood [66]. Light collection was less efficient at the center of the crystal than at either end:
either the end coupled to the APD or the end with reflective paint (see Figure 2.11). Given
the same incident photon energy, the APD measured a greater number of scintillation pho-
tons from the BGO if the originating photon struck the ends of the crystal. This results
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in a proportionally greater peak height detected by the electronics at the ends than when
the originating photon struck the center of the crystal. To measure this phenomenon for
RDK II BGO crystals, radioactive sources were collimated and then positioned to expose
different regions of the crystal to the radiation. Measurements of the RDK II BGO crystals
indicated that the relative effect of this light collection is independent of incident energy
and of the particular crystal examined.

In addition to increasing the energy resolution of any sample measured, positional de-
pendence must be accounted for when performing energy calibrations. During radioactive
source calibration measurements, a physical source was placed in a position located in the
center of the BGO array. Calibrations were made relative to the energy of 137Cs, which
has a strong peak located at 662 keV. During the on-beam operations of the RDK II ex-
periment, the 511 keV electron annihilation peak was used as an energy calibration. The
annihilations arose from neutron capture events on materials within the apparatus and are
assumed to evenly fall on the BGO crystals. Because the 137Cs source was centered on
the BGO crystal, the calibration differed from the annihilation events due to the positional
dependence. A multi-polynomial fit of positional dependence along the crystal’s beam axis
was included in the simulations used to study the experiment (see Figure 2.11). The ab-
solute normalization of this was adjusted such that 511 keV photons simulated by the MC
simulation code resulted in a peak centered at the calibrated peak height channel equal to
511 (see Section 3.7).

2.5.1.2 BGO Non-proportionality

Above and near 662 keV, the BGO scintillation response is reasonably linear, producing
a proportional amount of scintillation photons for a given incident energy. As the inci-
dent photon energy is decreased, the light output is proportionally less than expected. The
source of this non-proportionality is thought to be recombination of liberated electrons-
hole pairs, but the process is not completely understood [67]. This phenomenon had been
measured in BGO previously [68–72] and is present in other scintillator crystals. This non-
proportionality in the light output of BGO forms one of the largest sources of systematic
error for RDK II and its inclusion dramatically affects the radiative photon spectrum.

Studies of BGO have shown that the non-proportionality is independent of crystal di-
mensions and temperature [68,69]. It is standard practice to use the 662 keV peak of 137Cs
as a baseline, by defining its relative light output to be “1.0”. If a scintillator is completely
proportional, the relative light output would be constant at “1.0” for all energies.

To characterize the non-proportionality of RDK II BGO crystals, both published values
in BGO and measurements taken with radioactive sources on RDK II crystals were used.
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Figure 2.11: Plot of the average response of eleven BGO crystals relative to the center position as
a function of the collimated source position.

The first study illuminated a single RDK II BGO crystal and APD in a small test cryostat
with a variety of radioactive sources (57Co, 109Cd, 133Ba, 137Cs, 153Gd, 235U, and 241Am).
The DAQ system for this study consisted solely of a preamplifier, shaping amplifier, and
a multi-channel analyzer (MCA). The second study utilized the calibration measurements
detailed in Section 2.5.1. This study included the complete DAQ system as described in
Section 2.7.

Figures 2.12 and 2.13 include data from other publications as well as data points ex-
tracted from RDK II crystals. Clearly visible are large discontinuities at energies corre-
sponding with the K and L electron edges of bismuth near 85 keV and 15 keV respectively.
A parametrized model was used to fit the data and incorporated into the simulation. En-
ergies lower than 10 keV were extrapolated to follow the trend present in data near 10
keV.

Due to this non-proportionality, it is difficult to define an experimentally detected en-
ergy scale without resorting to a complex deconvolution analysis. It was decided instead to
define a detected peak height scale and reference peak height channel 511 to 511 keV. From
the non-proportionality analysis this makes the peak height channel cutoff of 10 equivalent
to approximately 14 keV.

In the original RDK I experiment, this non-proportionality was not known to the col-
laboration and was not accounted for. In the experiment, the energy range measured was
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Figure 2.12: Plot of the experimentally measured [68, 69, 73] non-proportional response of BGO
crystals in the energy range of 10-1000 keV.
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Figure 2.13: Plot of the experimentally measured [68, 69, 73] non-proportional response of BGO
crystals in the energy range of 10-120 keV.
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described as 15 keV to 340 keV. Knowing that this energy range was calibrated with an
energy peak from an 241Am source at 60 keV, we now know that the actual energy range
measured was 19 keV to 308 keV, which changes the branching ratio predicted by theory
from 2.85 × 10-3 to 2.52 × 10-3.

2.6 LAAPD Photon Detectors

Partway through the experiment, a detector array capable of detecting photons in the energy
range of 100 eV to 20 keV was installed. It utilized LAAPDs that were not coupled to a
scintillator. Low energy photons from radiative decay interacted with the doped silicon in
the LAAPD and were detected directly.

Two versions of the LAAPD apparatus were installed. The first version ran with the bias
field of the APDs perpendicular to the magnetic field of the experiment (see Figure 2.14).
The 4.6 T field combined with the low temperature at which the detector operated, lead to
detrimental detector behavior. This behavior had not been seen before in an APD [74]. No
usable data was recorded with this version of the apparatus.

The second version of the apparatus consisted of an array of three LAAPDs that had a
bias field parallel to the magnetic field (see Figure 2.15). The LAAPDs have an active area
of 2.8 cm by 2.8 cm by 60 µm. Their front faces face downstream and their centers are
located at 3.5 cm radius from the beam. This second version operated successfully and was
used for the remainder of the experiment.

2.6.1 LAAPD Energy Response

Calibrations of the LAAPD array were performed both offline and online. Offline calibra-
tions first began with measurements of x-ray fluorescence using 55Fe down to aluminum’s
k-shell line at 1.5 keV. However, it was not possible to extract a meaningful calibration be-
low 900 eV. Following this attempt, data were taken utilizing two synchrotron light sources.
The first of these measurements was taken at NIST at the Synchrotron Ultraviolet Radia-
tion Facility (SURF) III facility on the BL3 beam line. Measurements were taken using
the synchrotron’s continuous spectrum modified by material filters made of aluminum and
Mylar. The second of these measurements was made at BNL at the NSLS on the U3C beam
line. The U3C beamline incorporated a monochromator that produced monochromatic en-
ergies at six energies between 350 eV and 1500 eV (see Figure 2.16). These measurements
are detailed in a separate paper [75]. On-beam calibrations utilized an 55Fe source, which
was positioned off of the beam axis. The ≈5.9 keV line from the source was background
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Figure 2.14: Photo of version 1 of the LAAPD detector array, which was present during approxi-
mately one third of RDK II’s operation but did not take useable data. Two of the four LAAPDs are
visible in this photo.
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Figure 2.15: Photo of version 2 of the LAAPD detector array, which was present during approx-
imately one third of RDK II’s operation. This view is shown in the direction that is upstream of
the neutron beam. The three LAAPDs are partially visible. The aluminized Mylar wrap around the
BGO detector array can be seen at the edges of the photo. All data presented in this dissertation was
taken using this version of the apparatus.
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Figure 2.16: Plot of the response of LAAPD to energies from monochromatic light from
the monochromator at the National Synchrotron Light Source (NSLS) at Brookhaven National
Laboratory (BNL). An 55Fe source produced a peak at approximately channel 600 (not shown),
which corresponds to 5.9 keV.

subtracted from the epγ correlated results.

2.6.2 LAAPD Low Energy Response Modeling

The energy response of the LAAPDs was due to variations in photoelectron collection
efficiency versus absorption depth [75]. An example of the collection efficiency model
that was applied to the simulation can be found in Figure 2.17. The different slopes in the
collection efficiency model represent regions where the doping levels varied at different
rates. This was determined through both consultation with the manufacturer and through
fitting. Overall variations between the individual LAAPDs and the agreement between
the two synchrotron measurements resulted a large systematic uncertainty assigned to the
LAAPD measurements.
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Figure 2.17: Plot of the model used to describe the collection efficiency versus photon absorption
depth in one of the LAAPDs used in RDK II.

2.7 Data Acquisition

The goal of the data acquisition (DAQ) system is to convert a detector’s particle signal
efficiently into data while minimizing both background signals and deadtime. RDK II’s
DAQ system did this by triggering off of the combination of both an electron and a proton
signal.

The signal originating from the SBD first entered a preamplifier, which was within
the -25 kV isolation cage with the SBD. The pre-amplified signal was transmitted out of
the isolation cage via optical couplers and through an optical fiber. The signal was then
split into three signals, with two going to shaping amplifiers and the last to the digitizer
channel [56]. One analyzer was set at low gain for the electron signal and the other was
set to high gain for the proton signal and both were set to 0.25 µs shaping time. These
signals were run through single channel analyzers (SCAs), gate generators, and a time-to-
amplitude convertor (TAC) to trigger two digital oscilloscopes to take data (see Figure 2.18
for a diagram of the DAQ system).

The digital oscilloscopes were each 16 bit peripheral component interconnect (PCI)
cards made by GaGe Applied Technologies. Each card had eight channels and operated at
a 25 MHz sampling rate. The number of active photon detectors varied during RDK II’s
operation but was ultimately limited to fourteen active detectors as there were a limited
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Figure 2.18: Diagram of RDK II’s DAQ system. Signals originating from the SBD were used to
trigger the digital oscilloscope cards.

number of channels available in the system. This, for instance, resulted in at least one
inactive BGO detector during LAAPD operation.

In RDK II’s primary operating mode, the voltage triggers were set to record only when
a large pulse height with an energy equivalent to at least ≈50 keV is followed by a small
pulse of at least ≈7 keV. This second pulse was required to occur at least 250 ns after the
large pulse for the DAQ system to trigger. The exact values of these triggers were gain
dependent and were manually set during the experiment’s operation. Further and more
well defined software cuts are applied later in subsequent analysis (see Chapter 4).

When the DAQ triggered, waveform data were recorded from the SBD detector and
both photon detector arrays. These waveforms ranged from ≈25 µs before the electron
signal and for ≈57 µs after and spanned 2048 channels (1 channel = 40 ns) in time.
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Figure 2.19: Plot of an example ep waveform detected by the SBD.

2.8 Waveform Data Analysis

2.8.1 SBD Waveforms

An example of a signal recorded by the SBD detector (see Section 2.4) is shown in Fig.
2.19. In order to identify the height of both the prompt “electron” peak and the delayed
“proton” peak, two waveform analysis methods were utilized: the peak height method and
the peak fit method. In both methods, the electron pulse height, the proton pulse height,
and the timing between the two was determined. As the electron’s travel time is negligable
in comparison, on the order of nanoseconds, this time is referred to as the proton’s time-of-
flight.

The first method, the peak height method, identified peaks by first finding the highest
point on the waveform and identifying it as an electron. The algorithm then found the next
highest point on the waveform after the electron peak, while presuming a small delay to
allow for the electron signal to settle to background levels. This second peak was iden-
tified as a proton. Background levels were also measured before the electron signal and
subtracted from the recorded electron and proton peak heights.

The second analysis method, the peak fit method, also identified the largest peak and
second delayed peak. The primary difference from the peak height method is that this
method fit both the electron and proton to a functional form that included a local back-
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Figure 2.20: Plot of a SBD waveform where the baseline from an electron was not reestablished
in the SBD.

ground. The two methods were found to be in general agreement but it was determined
that the peak fit method was superior.

There were a few classes of events that showed electronic artifacts. This included events
where “ringing” of the electron signal occurred. This was characterized by waveforms that
appeared to take the form of a damped harmonic oscillator. Another electronic artifact
type was waveforms where the baseline was not reestablished after the electron peak (see
Figure 2.20 for an example where the baseline was not reestablished). In both of these
cases, the DAQ’s ep trigger recorded data but it was unclear whether there was a proton
signal or when it occurred. These events were attributable to instrumentation malfunction
and were removed from the analysis. Associated systematic errors were estimated based
on the quantity of events that were removed.

2.8.2 BGO Waveforms

An example of a signal recorded by a BGO detector (see Section 2.5) is shown in Figure
2.21. As described in Section 2.7, in its primary operating mode, the BGO array was
triggered to record only when an ep signal was detected by the SBD. In the analysis, the
largest peak in the waveform was fit to a template and a peak height was extracted from
it. This template was formed by averaging waveforms from the calibration runs. If the
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Figure 2.21: Plot of an example waveform from a BGO + APD detector.

extracted peak height was greater than a cut value equivalent to approximately 14 keV,
then the BGO was considered to have detected a photon. It was determined that multiple
photons within a single ep trigger did not contribute significantly to the analysis.

Photons that were detected at nearly the same time as the electron were primarily ra-
diative photons from neutron decay. Photons detected much earlier or much later in the
signal were primarily from background sources of radiation such as neutron capture. This
can be seen when detected photons are plotted over time (see Figure 4.1). To determine the
number of radiative photons detected, three timing windows were created. A peak window
was centered around events near the electron trigger while pre-peak and a post-peak back-
ground windows were created in uncorrelated regions. From this, a background subtracted
result was determined presuming that background events were equally likely to occur at
any time across the data set.

2.8.3 LAAPD Waveforms

An example of a signal recorded by a LAAPD detector (see Section 2.6) is shown in Fig
2.22. As described in Section 2.7 and similar to the BGO detector array in its primary
operating mode, the LAAPD array was triggered to record only when an ep signal was
detected by the SBD. The largest peak in this waveform was identified (a template fit was
not used). This highest point was extracted as the photon peak height. If the peak height

38



Channel Number (1 ch = 40 ns)
200 400 600 800 1000 1200 1400 1600 1800 2000

S
ig

n
al

 C
h

an
n

el

0

200

400

600

800

1000

1200

Figure 2.22: Plot of an example waveform from a LAAPD detector.

was greater than a cut value equivalent to approximately 300 eV, than the LAAPD was
considered to have detected a photon. It was determined that multiple photons did not
contribute significantly to the analysis. Similar to the BGO array, the LAAPD array peak
height signals were background subtracted using pre-peak and post-peak windows.
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CHAPTER 3

Simulations and Modeling

In this chapter, the Monte Carlo (MC) simulation of the RDK II apparatus is discussed.
First, the goals of the simulation are described. Then Geant4, the primary software package
used, is covered before detailing each portion of the particle simulation (see Figure 3.1).
Some results of the simulations are presented in this chapter, but most results can be found
in the comparisons to experimental data in Chapter 4.

Figure 3.1: Flow chart for the MC simulation of the RDK II apparatus.

3.1 Simulation Goals

A major goal of RDK II was to compare the experimental data with the results from the-
oretical quantum field theory calculations to determine if theory accurately describes the
experimental results. To achieve this, it was necessary to use a detailed simulation to model
both the complex geometry and the nonlinear energy response of the apparatus. This sim-
ulation served as a bridge between the experimental results from the detectors and the
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Detector Type Calibration Energy
SBD 781 keV
BGO 511 keV
LAAPD 5.9 keV

Table 3.1: Calibration points used to generate the calibrated peak height scale used to compare
simulated and experimental data.

predictions of quantum field theory. For instance, at one extreme, it is possible to be-
gin with theoretically generated events and simulate what the resulting waveform voltage
responses for each detector would have been. Or, in the other extreme, the results of the
experimental analysis could be unfolded using the simulated detector response. This would
have generated a prediction of the original energy spectrum of photons, which could then
be compared with the result from a theoretical calculation. This latter extreme proved to
be too difficult to produce due to the experimental statistics. In addition, as seen in Figure
4.9, the preliminary BGO photon spectrum appears to show a shape consistent with QED
theory.

For RDK II, an intermediate path was chosen where calibrated peak heights were inter-
compared between experiment and simulated theory. A calibrated peak height is the am-
plitude of a waveform from a detector’s response to a particle that is calibrated linearly to a
known energy. To do this, MC simulations of neutron decay products generated by theory
were transported through the geometry of the active detection region. The simulation then
allowed one to estimate the energy absorbed in the sensitive regions of the detector with
further energy response effects added to produce calibrated peak height data. The exper-
imental peak height results were in turn linearly scaled by calibration points discussed in
Chapter 2 (see Table 3.1). This created a peak height scale that closely represented the
energy absorbed in the detectors, but differed depending on the detector’s non-linearity. It
should be noted that the branching ratio extracted from the experimental measurements,
which is discussed in detail in Section 4.2, will be directly comparable to theoretical mea-
surements.

The simulation also provided data in additional channels such as the electron-proton
time delay (proton time of flight), the electron peak height, and the proton energy. Com-
parisons of these additional data channels with experimental data helped to validate the
simulation’s accuracy. The simulation also allowed for the exploration of phenomena that
were impossible to explore in the experiment, which allowed for a better understanding of
the experiment’s operation. For example, the response of the detectors along the neutron
beam (see Figure 2.2b) was not fully understood until the simulation was completed. Fi-
nally, the simulation provided an excellent tool to explore systematic uncertainties. This
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subject is covered in depth in Chapter 4.

3.2 Geant4

The primary simulation software used in RDK II was Geant4 Version 9.6.p02 [76]. The
Geant4 website [77] describes the software:

Geant4 is a toolkit for the simulation of the passage of particles through matter.
Its areas of application include high energy, nuclear and accelerator physics, as
well as studies in medical and space science.

Geant4 is a C++ library, not a single pre-built software package. This versatility allows
Geant4 to perform well in in a wide variety of particle simulation applications. It is the
user’s responsibility to program the geometry, tracking, data storage, and particle interac-
tions that are relevant to the physics of the simulation problem. To assist in this, Geant4
provides extensive example programs that can be built upon and copied from. RDK II’s
Geant4 simulation utilized these examples extensively.

The RDK II detection region was modeled directly in C++ code using primitive Boolean
operations on geometric objects such as cylinders and boxes. See Appendix B for additional
details. This approximation is appropriate as the apparatus is very radially symmetric. The
active detection region of each detector was assigned to record the time, location, and
energy of any particle entering or exiting the volume as well as the total energy absorbed
from simulated particles. Data were stored using the ROOT libraries [78, 79]. Particle
transport and particle/matter interactions in Geant4 are discussed in Sections 3.5 and 3.6
respectively.

Geant4 has been used in applications that span many orders of magnitude in energy
(µeV to TeV), however, it was originally created for use in high energy physics. The
range at which neutron decay takes place is considered to be “low-energy” to the default
Geant4 setup. Despite its original purpose, Geant4 has been shown to produce excellent
agreement with experimental results at these energies [80, 81] with some exceptions such
as with electron backscattering. There are two primary low energy physics electromagnetic
interaction libraries used in Geant4: Livermore and Penelope. Both of these libraries were
tested in the RDK II simulation and they produced statistically identical results.
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Source Type Grid Size Density Software
Solenoids B 89x31x501 1 mm3 BioSavart
Mirror E 49x49x221 1 mm3 COMSOL Multiphysics®
SBD E 211x121x301 1 mm3 COMSOL Multiphysics®

Table 3.2: Magnetic and electric fields included in the RDK II Geant4 simulation.

3.3 Electromagnetic Field Calculations

An accurate mapping of the electric and magnetic fields was necessary to track the charged
decay products’ helical orbits in the apparatus. These fields were both static and highly
symmetric. The simulated fields calculated shown in Chapter 2 (see Figures 2.4 and 2.6).

The magnetic field from the solenoids was calculated using a program called
BioSavart [82], which integrates Bio Savart’s equation along each coil (see Table 3.2).

The electric fields were calculated using a finite element analysis code written in IGOR
Pro [83] [9] and then using COMSOL Multiphysics® [84]. All fields were linearly in-
terpolated. Cubic interpolation was confirmed to have a minimal effect on the result of
the simulation and had significantly slower performance. Fields were generated for the
electrostatic mirror and the SBD (see Table 3.2).

After the RDK II apparatus was removed from the beamline, it was realized that the
voltage bias on the second version of the LAAPD detector array could possibly have influ-
enced charged particle transport. This field was modeled in COMSOL Multiphysics®(see
Figure 3.2) and it was determined to have minimal impact on simulated results.
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Figure 3.2: COMSOL model of the LAAPD detectors including the high voltage and ground wires
that provided the detectors with their voltage bias.

44



3.4 Event Generation

The momenta and positions of the decay products of neutron decay were randomly gener-
ated to begin the MC simulation process. In all cases a pseudo random number generator
using the Mersene Twister algorithm [85] was used to generate random numbers, ensuring
that no sequence of numbers would repeat itself in practice as the generator has a period of
2219937-1. Events were generated using random, but fixed number seeds determined from
atmospheric noise [86]. This allowed for systematic changes in the simulation to be tested
easily on identical sets of events and allowed for independent simulation of each of the
decay products.

3.4.1 Neutron Beam

A simulated beam profile was created to randomly sample potential neutron decay locations
within the sensitive detection region. To generate this profile, an image of the neutron beam
was taken 45.68 cm away from the center of the bend in the magnetic field. The image
was taken using a sheet of 6Li foil that was exposed to the beam during the experiment’s
operation. A piece of dysprosium, which is a strong absorber of neutrons, was positioned
to indicate the geometric center of the detector. The 6Li film was measured by exposing
a photographic plate to the activated foil. The resulting data were translated into a two
dimensional histogram that was proportional to neutron flux (see Figure 2.3).

A very small percentage of neutrons decayed over the length of the active detection
region, and therefore it was presumed that neutrons decayed uniformly along the beam’s
path. Through tracking simulations, the regions in which either ep or epγ events could be
detected were identified and only decay positions within these bounds were generated to
minimize computations. Beam positions were generated randomly in this region: from -18
cm to 62 cm from the bend. The two dimensional histogram of the beam profile was then
sampled using Von Neumann rejection. Random x and y coordinates were chosen and then
a random number, from 0 to the maximum flux detected, was generated. If the number
was greater than the contents of that bin, the process was repeated with a new random
coordinate. If the number was less than the bin content, this event was kept and a neutron
decay location was generated. A correction was then applied to account for the divergence
of the neutron beam as it emerged from the neutron collimating system. The divergence
angle, 0.6°, was then used to scale the X and Y coordinates.
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3.4.2 Momenta Generation

To generate the momenta of the neutron decay products, rejection sampling or Von Neu-
mann rejection was applied to Eq. (1.8) to generate three-body decays (e, p, and ν) and
Eq. (A.1) to generate four-body decays (e, p, ν, and γ). First, as there are 5 independent
variables in Eq (1.8), 5 parameters were randomly sampled within their kinematically al-
lowed energy ranges. The parameters chosen were the electron energy (Ee), the electron
azimuthal angle (φe), the cosine of the electron inclination angle (cos θe), the neutrino az-
imuthal angle (φν), and the cosine of the neutrino inclination angle (cos θnu). For four-body
decay, there are 8 independent variables. In addition to the previously chosen parameters,
four-body decay also randomly generated the photon energy (Eγ), the electron azimuthal
angle (φγ), and the cosine of the electron inclination angle (cos θγ). Using conservation
of energy and momentum, the four momenta of all particles can be calculated. Kinemat-
ically disallowed events are rejected. Using these randomly sampled four momenta, first
Eq. (1.8) and Eq. (A.1) were evaluated and a scaled random number was “thrown” against
the probability of decay. If the number was greater than the probability of decay, the pro-
cess was repeated with a new set of randomly generated four momenta. If the number was
less than the determined probability, the set of momenta was kept and combined with a
randomly determined position. This combination was referred to as a neutron decay event.

Figures 3.3, 3.4, and 3.5 show the theoretical energy spectra from neutron decay for the
protons, electrons, and photons respectively.
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Figure 3.3: Plot of initial proton energies for both three and four-body decays (Eγ > 14 keV) from
the event generator. Curves are scaled to have the same area.
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Figure 3.4: Plot of initial electron energies for both three and four-body decays (Eγ > 14 keV)
from the event generator. Curves are scaled to have the same area.
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Figure 3.5: Plot of initial photon energies for four-body decays from the event generator.

3.5 Charged Particle Tracking

As described in Chapter 2, protons and electrons followed helical orbits around magnetic
field lines and were accelerated or reflected by electric fields. In general the proton and
electron tracks obeyed the principles of adiabatic particle motion [87]. In RDK I, both
an adiabatic tracking algorithm and a Runge Kutta tracking algorithm were utilized. In
RDK II, all MC results presented in this thesis were generated by a Runge Kutta algorithm
packaged with Geant4.

3.5.1 Adiabatic Tracking

While an adiabatic particle tracking algorithm was not used in the final RDK II simulation,
it is still valuable to discuss. In the RDK II apparatus, the magnetic field varies slowly in
time and space relative to the period and radius of the orbits of the protons and electrons.
As such, the protons and electrons will travel adiabatically using a guided center of mo-
tion [88]. A particle orbiting adiabatically will travel along a magnetic field line with the
particle’s behavior along the line determined by examining an invariant of motion. One
such invariant is [9, 87]

µ =
p⊥

2c2

B
, (3.1)
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where p⊥ is the component of the particle’s relativistic momentum that is perpendicular to
the magnetic field, B is the magnetic field strength, and c is the speed of light.

For example, in a purely magnetic field (constant electric potential), the field can do no
work on a particle. As B decreases, the invariant tells us that a particle’s p⊥ also decreases
and, from conservation of energy, its p‖, its momentum component parallel to magnetic
field, increases. Thus particles transfer transverse momentum to longitudinal momentum
in decreasing magnetic fields. The reverse is also true. Particles transfer longitudinal mo-
mentum to transverse momentum in increasing magnetic fields.

With the inclusion of electric fields, work can be done on the particles. Fortunately,
the effect electric fields have on particles is relatively simple to calculate. A particle with
an elementary charge of e and a kinetic energy parallel to the magnetic field line, E‖,
(expressed in electron volts) could have overcome a potential difference in volts of ∆V =

E‖/e before the potential was strong enough to have reflected the particle. At the center,
the experiment’s electrostatic mirror had a potential of ≈800 V relative to ground. This
was sufficient to reflect all protons created at ground as they all had less than 800 eV of
kinetic energy. Some electrons, depending on their initial kinetic energy and their emission
angle relative to the magnetic field, could also be reflected by the static electric field.

3.5.1.1 Magnetic Reflection

While an adiabatic algorithm was not implemented in RDK II, the principle of adiabatic
motion was used to investigate the phenomenon of the magnetic-mirror effect. A magnetic
mirror occurs when a particle adiabatically travels from a low magnetic field to a suffi-
ciently high magnetic field such that all of the longitudinal momentum is transferred to
the transverse momentum. When this happens, a turning point is reached and the particle
will reverse its motion along the magnetic field line, traveling backwards along its previous
path.

In RDK II’s active detection region, the magnetic field strength was relatively constant
along the neutron beam, and the magnetic field strength decreased as the field lines ap-
proached the SBD (see Figure 2.4). As such, particles did not undergo magnetic reflection
on their way to the SBD. Upon reaching the SBD, protons were accelerated by the SBD’s
negative potential and were eventually absorbed. Electrons, on the other hand, had a sig-
nificant probability of backscattering off of the SBD’s silicon (see Section 3.6). These
scattered electrons were then accelerated away from the SBD, back towards the magnetic
field bend and the neutron beamline. These electrons had the potential to see a magnetic
mirror effect depending on their kinetic energy parallel to the magnetic field (E‖), which
can in turn be determined by the backscattered kinetic energy and the angle at which they
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scattered from the silicon’s surface. Specifically, an energy dependent critical angle, θc, can
be determined. This angle was defined by the particle’s scattered momentum relative to the
SBD’s surface normal. If the electron was emitted at an angle larger than this critical angle,
it was magnetically reflected. If it was smaller, it overcame this difference in magnetic field
and it exited the experiment downstream.

To solve for the critical angle (θc), two points in space were considered: the point
where the electron was emitted (designated by x0) and the point of the highest magnetic
field strength along the magnetic field line (designated by xF ). If the electron passed by the
point xF , then the electron traveled out of the experiment as no field, electric or magnetic,
existed within the RDK II apparatus to stop it. To determine whether a backscattered
electron’s angle and energy would have caused it to be backscattered, it was sufficient
to determine if it was reflected at the point in space corresponding to xF . By requiring
the component of momentum that was parallel to the magnetic field (PF‖) to be zero, the
solution will give a critical angle for a particular energy.

From Eq. (3.1):
P0⊥

2c2

B0

= µ =
PF⊥

2c2

BF

, (3.2)

where B0 & P0 and BF & PF are the magnetic field strengths and electron momenta at x0

and xF respectively. The term, c is the speed of light. From Eq. (3.2), it can then be shown
that

PF⊥
2c2 =

B1P0⊥
2c2

B0

=
BFP0

2c2sin2θ

B0

, (3.3)

where θ is the polar angle from the SBD’s surface normal vector. The relativistic energy
equation at x0 is T02 = P0

2c2 + me
2c4, where me is the mass of the electron and T is the

total energy of the electron. Substituting this into Eq. (3.3):

PF⊥
2c2 =

BF (T0
2 −me

2c4)sin2θ

B0

. (3.4)

For xF , the energy-momentum relation is

TF
2 = PF⊥

2c2 + PF‖
2c2 +me

2c4. (3.5)

The SBD’s electric potential (∆V ) accelerated the scattered electron, with charge e, back
into the experiment. Thus,

TF = T0 + e∆V. (3.6)

Substituting Eq. (3.4) & Eq. (3.6) into Eq. (3.5) while setting PF‖ = 0 determines the
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Electron Critical
Kinetic Energy Angle

(keV) (degrees)
0 90*

50 90*
100 73
150 67
200 65
400 62
800 60

Table 3.3: The electron’s critical angle of magnetic reflection from the SBD in the RDK II appa-
ratus. The energy indicated is the kinetic energy after backacattering. Backscatter emission angles
below the critical angle were not reflected (see Eq. (3.8) with B0 = 3.3 T and BF = 4.6 T). 90*
indicates that no magnetic reflection in the apparatus was possible at this reflected energy.

critical angle, θc:

(E0 + e∆)2 =
BF (E0

2 −me
2c4)sin2θc

B0

+me
2c4. (3.7)

Rearranging Eq. (3.7)

sin θc =

√
B0((T0 + e∆)2 −m2c4)

BF (T0
2 −m2c4)

. (3.8)

It should be noted that removing the SBD’s electric field simplifies the equation and re-
moves its electron energy dependence:

θc = sin−1

(√
B0

BF

)
. (3.9)

If θc is greater than 90°, this indicates that the particle did not magnetically reflect, no
matter what angle it scattered into. The results of Table 3.3 show that magnetic reflections
do not affect energies below 50 keV but they do affects a significantly large amount of the
backscattered electrons at higher energies. Initially, the RDK II particle tracking simulation
did not track backscattered electrons, as it was presumed that they did not significantly
contribute to the signal. It was later shown to be an important component necessary to
generate an accurate electron spectrum.
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3.5.2 Runge-Kutta Tracking

As the adiabatic assumption could be violated in a number of locations in the apparatus, a
more exact and precise solution was desired for RDK II particle tracking. The relativistic
Lorentz force law governing the forces on the particles can be written as [89]

d2x

dt2
=

dv

dt
=

q

m

√
1− v2/c2

[
E(x) + v ×B(x)− 1

c2
(v · E (x))v

]
, (3.10)

where v is the velocity of the particle, x is the location of the particle, t is the local time,
q is the charge, m is the mass, E is the electric field, B is the magnetic field, and c is the
speed of light.

Eq. (3.10) must be integrated to determine where a particle traveled. One way to
integrate this equation would be to use Euler’s method. This method must be used on first
order ordinary differential equations (ODEs). To determine x(t) based on initial conditions
a second first order ODE,

dx

dt
= v, (3.11)

must also be defined. This creates a set of two coupled first order ODEs.
Using the initial conditions of the decay particle calculated in Section 3.4, a small

step in time of size h can be taken. The results of this small, linear step modifies both
the velocity and position of the particle according to Eq. (3.10) and Eq. (3.11). This
process can be repeated for many steps until the desired result is reached. The accuracy of
Euler’s method is of course tied to the size of the step taken. Smaller steps result in better
approximations of the integral.

Euler’s method is an example of a first order ODE numerical integration method.
Higher order methods exist and are generally classified as Runge-Kutta methods [90]. Of
particular interest is the fourth order method, which has been proven to be robust, fast, and
accurate [91]. It is typically simply called Runge-Kutta method (RK4).

Given a first order ODE,

dy

dt
= f(t, y), y(t0) = y0, (3.12)

where y can be a vector or scalar quantity, it is then possible to integrate it iteratively over
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Figure 3.6: An example of the four trial steps taken by the RK4 algorithm and the resulting average
that it outputs over a time step h from y0 to y1. This approximates the dashed curve that represents
the actual path.

a step size h using
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h
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h
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2
k1)

k3 = f(tn +
h

2
, yn +

h

2
k2)

k4 = f(tn + h, yn + hk3).

(3.13)

In essence, this algorithm takes four trial steps and then averages them together into a single
larger step (see Figure 3.6). In the case of Eq. (3.10) and Eq. (3.11), they must be evaluated
simultaneously at each trial step as the magnetic and electric fields are position dependent.
The algorithm as described has a fixed time step, h, but the RK4 algorithm can also be
extended to automatically adjust its time constant to output a fixed precision at the cost of
an extra step of computation. This is called a dynamic RK4 algorithm [91].
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Initially, both a fixed and dynamic RK4 algorithm for particle tracking were created in
the analysis software, IGOR Pro. This proved to be too computationally intensive for fur-
ther use, though it compared favorably with adiabatic calculations. The program was then
ported to C++, which significantly improved computational performance. It also compared
favorably with experimental results such as proton time of flight.

Subsequently, the dynamic RK4 algorithm built into Geant4 was utilized for all particle
tracking. In Geant4, the charged particle tracking algorithm is called a “stepper”. The
Geant4 libraries contain many different steppers operating at many different orders. These
were tested extensively to determine if any provided significantly different results from the
RK4. None did. Geant4’s tracking was also compared on identical event sets to the custom
C++ tracking algorithm. This produced nearly identical results.

3.6 Particle and Matter Interactions

The RDK II detectors’ peak height responses were each proportional to some function of
the energy absorbed in their sensitive regions. Geant4 was used to determine the amount
of energy absorbed in these active regions. In the case of the SBD and the LAAPDs, the
active region consisted of doped silicon. For the BGOs detectors, the active region was
considered to be the scintillator volume. Response contributions from nonproportionality
and the light collection of the BGO’s APD were applied later.

In Geant4, stable particles propagate until they have either left the simulated volume or
are absorbed in the matter. Geant4 tracks particles to absorption by utilizing a production
threshold for secondary particle generation. This threshold is defined as a distance. As
the particle path is tracked, Geant4 will determine if secondary particles that can travel at
least this threshold range can be generated. If the parent particle can generate secondaries,
probabilistic secondary particle generation will determine the parent particle’s energy loss
mechanism in the matter. When this threshold is passed, a continuous energy loss formu-
lation is used instead and the particle is tracked down to zero energy. This threshold is
based on particle range instead of energy cutoff to account for the dramatically different
ranges particles have in matter. The default threshold is 1 mm. In the RDK II simulation,
this threshold was set to 1 nm. This was determined by recommendations from the litera-
ture [81] as well by adjusting the parameter to ensure invariance in the simulated results.
For protons traveling through the gold layer and the inactive “dead” silicon layer of the
SBD, it was determined that a threshold of 0.001 nm was sufficient.

Geant4 uses theoretical models, parametric fits to experimental data, and interpolation
of public-domain data tables to determine a probabilistic model of particle and matter in-
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teractions. For the Geant4 Livermore low energy library, the evaluated data libraries used
were the EADL [92], EEDL [93], and EPDL [94] for atomic, electron, and photon data
respectively.

Low energy photons in Geant4 can undergo either photoelectric conversion or Compton
scattering. For the photoelectric effect, Geant4 uses “a parameterized photon absorption
cross section to determine the mean free path, atomic shell data to determine the energy
of the ejected electron, and the K-shell angular distribution to sample the direction of the
electron.” [95] Compton scattering is handled by calculating the Klein-Nishina differential
cross section [96] while ignoring atomic shell effects.

For the BGO detectors, the photoelectric effect was particularly important. Higher
energy photons can excite a K-shell electron in bismuth, which then can emit an ≈80 keV
photon. If this occurred near the surface of the BGO, this secondary photon could have
escaped the scintillator causing incomplete energy deposition. These K-shell x-rays were
visible in the final photon spectrum (see Figure 4.9). These x-rays also provided for an
calibration line when the neutron beam is on for the the BGO photon spectrum. This line
allowed for a nonproportionality was evaluation [73].

Low energy protons and electrons in Geant4 can undergo elastic or inelastic Rayleigh
scattering, bremsstrahlung, and ionization. In addition, Geant4 will model the resulting
fluorescence and Auger electron emission of excited atoms.

Of particular importance is the case of elastic scattering. Since the elastic scattering
cross section increases as the energy decreases, simulations become computationally in-
tensive at lower energies. While Geant4 has a calculation mode, called “single scattering”
that will simulate every elastic scattering event down to an arbitrary range cutoff, it is only
feasible to do this for small test cases. Instead, multi-scattering algorithms are generally
used to condense multiple scattering events into a net momenta change to the electron as
determined by phenomenological approximations.

For low energy electrons, both theory and experiments have had difficulty in arriving at
a consensus for quantity of electrons scattered from silicon, even at normal incidence [66,
80,81,97–100]. In the RDK II simulations, the default multi-scattering algorithm was used,
but for small test cases, the single scattering algorithm was shown to agree well with the
multi-scattering algorithm above 100 keV using the epγ/ep ratio method (see Section 4.2
for discussion of this analysis method).

Simulations were created for the calibration measurements taken off the neutron beam
with radioactive sources for the SBD and BGO detectors (see Sections 2.4.1 and 2.5.1. This
included both Geant4 simulations as well as simulations which utilized the Monte Carlo
N-Particle (MCNP) transport code, Version 5 [101], which originates from Los Alamos
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National Laboratory (LANL). MCNP was used validate Geant4 results. Agreement be-
tween the simulations was found to be good and sufficient for RDK II across all calibration
sources and detectors.

3.7 Detector Response

Geant4 simulations determined the energy deposited by the daughter particles of neutron
decay, but, as described in Section 3.1, the desired output of the MC simulation was in terms
of a calibrated detected peak height. To achieve this, further processing was performed for
all three detector types to add in their response. This was handled in C++ code that utilized
ROOT libraries.

For the SBD, each energy deposit was randomly shifted by a Gaussian distribution to
replicate energy resolution observed from source calibration measurements. This resolution
was sufficiently constant in the energy range measured that a single FWHM of 5.4 keV was
applied at all energies. In addition, a 20 nm thick dead layer of silicon was applied to the
model to match proton energy distribution observed in the experimental data.

For the BGO detectors, the energy deposited was first adjusted to account for BGO non-
proportionality by using a parametric fit to available data, as described in Section 2.5.1.2.
Then, an energy independent correction for the position dependent light collection was ap-
plied, as described in Section 2.5.1.1. Finally, each adjusted energy deposit was randomly
shifted by a Gaussian distribution to replicate energy resolution observed from source cal-
ibration measurements. In calibration measurements, this energy resolution varied slightly
between individual BGO crystal and APD detectors and the detectors resolution exhibited
energy dependence consistent with Poisson statistics. At 511 keV, the resolution’s FWHM
was ≈60 keV.

For the LAAPD detectors, the phenomenological model of charge collection described
in Section 2.6.2 was applied during the Geant4 simulation. A 35 nm thick silicon dioxide
layer reported by the manufacturer was also simulated on the outside of the LAAPDs. The
energy resolution of the detectors was found to follow the following equation [75]

FWHM =
√

57.6C + 0.144C2E, (3.14)

where C is the collection efficiency, ranging from 0 to 1, at the depth the energy was
absorbed and E is the energy in eV.
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CHAPTER 4

Data Comparisons and Systematic Analysis

This chapter addresses the details of comparing the experimental data with simulations of
theoretical predictions. First, a summary of experimental data is presented, which is fol-
lowed by comparison methodologies. Next, a series of comparison plots are presented,
followed by a summary of the systematic corrections and uncertainties present in the ex-
periment.

An important note: All plots and results found in this dissertation are considered to be
preliminary.

4.1 Experimental Data Summary

RDK II began operating on the beam line in December, 2008 and acquired its last neutron
decay event in November, 2009. The data were divided by cycle, series, and run, with a
cycle being the largest division of the data and a run being the smallest. Some data series
were taken as diagnostics to evaluate systematic effects. This included series where the
solenoid was turned off, the electrostatic mirror was varied, and the neutron beam was off.

As in RDK I, non-systematic data were taken at variety of electrostatic mirror voltages
in data cycles 1 and 2. It was noticed that the ep trigger rate did not change as expected
from 0 to 50 V on the mirror. Through investigations of the proton time-of-flight data, it
was determined that there was a possibility of an anomalous electrostatic potential in the
region downstream of the mirror that affected low energy protons. To address this issue, all
further data, cycles 3 through 8, were taken at full, 1400 V mirror voltage. For full mirror
voltage, there were approximately 64 million ep triggered events.

Later, during the analysis of the data, it was determined that data cycles 3 and 4 showed
systematic disagreement with the MC simulation’s proton time-of-flight spectrum. It was
postulated that insufficient grounding of internal components was to blame. It was decided
that the data from these cycles would be removed from the final analysis on this basis. The
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Cut Name Cut Value
Minimum Proton Energy 7 keV
Maximum Proton Energy 31 keV
Minimum Electron Energy 100 keV
Maximum Electron Energy 800 keV
Minimum Electron-Proton Time Difference 2 µs
Maximum Electron-Proton Time Difference 10 µs
Minimum BGO+APD Photon Peak Height 10
Maximum BGO+APD Photon Peak Height 800
Minimum LAAPD Photon Peak Height 0.3
Maximum LAAPD Photon Peak Height 20

Table 4.1: Preliminary Analysis Data Cut Table. These represent software cuts that must be applied
to both the experimental and simulated data.

remaining cycles (5, 6, 7, and 8) included ≈21 million ep events and ≈1,700 epγ events
after background subtraction per BGO detector after the analysis cuts were imposed (see
Table 4.1). The second version of the LAAPD array (see Section 2.6) operated during data
cycles 7 and 8 and it recorded ≈300 background subtracted epγ events per detector.

4.2 Experiment and Simulation Comparison

A few important determinations were made to ensure that comparisons between experi-
mental and simulated data were accurate. For epγ coincidence, a decision was made on
how to combine data from the individual detectors for each array. There were two detec-
tor combination methods that were considered. The first combination method was to add
together all energy/peak heights from each detector in the array for each ep trigger. This
essentially treated the array as a single photon detector. The second combination method
was to analyze each BGO or LAAPD detector individually and later average their peak
height responses. This individual detector method was the method chosen due to a sig-
nificant number of series where one or more BGO detectors were not operational. This
created complications in simulation as bismuth x-rays from inactive BGO crystals could
significantly affect the energy spectrum near 80 keV.

As covered in Chapter 3, both the experimental and simulated photon data were ex-
pressed in units of calibrated peak height. While this ensured that the shape of both the
experimental and simulated photon spectra were correctly compared, their relative scale
was still not comparable. Two measurement methods were investigated which produced
a scale where the spectra could be inter-compared: the epγ/ep ratio method (see Section
4.2.1) and the neutron flux method (see Section 4.2.2).
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For either measurement method, there were two techniques of extracting a radiative
branching ratio. The first technique, the integration technique, compares only the integral
number of counts within a photon energy range when evaluating Eq. (4.4) or (4.8). The
second technique, the fit technique, performs a chi-squared fit by allowing the branching
ratio to float as a scaling constant. The chi-squared fit technique puts a greater emphasis
on finding a branching ratio that will match the energy spectrum over the entire range. The
integration technique, on the other hand, emphasizes whether a photon is on one side of
the lower energy cutoff or the other. Both techniques were shown to agree within their
respective uncertainties. As such, the difference between the two was taken as a systematic
uncertainty (see Section 4.3).

4.2.1 Ratio Method

The epγ/ep ratio method was the same method used by RDK I. For the experimental data,
a number of ep counts (Cep) and a number of background corrected epγ counts (Cepγ) were
determined for a given series or set of series. The ratio, RExp, was formed:

RExp =
Cepγ
Cep

. (4.1)

RExp has the advantage of being independent of the neutron flux, and many systematic cor-
rections or uncertainties related to ep coincidence detections cancel when equally affected
by three-body and four-body events.

A similar ratio (RSim) was formed from the simulated data. The ratio was slightly
more complicated as three-body decay events (D3) and four-body decay events (D4) can
both create electron and proton coincidence (ep) and electron, proton, and photon/gamma
coincidence (epγ). The result is

RSim =
BSepγ(D4) + (1−B)Sepγ(D3)

(1−B)Sep(D3) +BSep(D4)
, (4.2)

where B is the radiative branching ratio and Sep and Sepγ is the probability of detection per
event for each coincidence from the simulation.

The quantity, (1−B)Sepγ(D3), arises primarily from external electron bremsstrahlung
occurring in the SBD. This allows the electron to both cause an ep trigger while still emit-
ting photons that could be detected by the BGO detectors. A correction was applied and is
accounted for in Section 4.3. It can also be assumed that (1 − B)Sep(D3) + BSep(D4) ≈
BSep(D3) as B << 1 and D3 and D4 have similar initial ep spectra.
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With electron bremsstrahlung set to be a systematic correction, this results in

RSim =
BSepγ(D4)

Sep(D3)
. (4.3)

Presuming that the theory and simulation correctly modeled reality, RExp = RSim. If they
do not agree, the source of the discrepancy must be present in one of the three terms in Eq.
(4.3). The branching ratio will be calculated by combining Eq. (4.1) and Eq. (4.3) and
allowing the branching ratio to vary:

B =
RExpSep(D3)

Sepγ(D4)
. (4.4)

Importantly, this branching ratio extraction presumes that the distribution of momenta that
arises from QED theory is unaltered, even if the branching ratio extracted is different than
theory. Given the agreement of the MC simulation with the experimental data in other data
channels, this appears to be a reasonable assumption.

4.2.2 Flux Method

The other method that could be used to calculate the branching ratio used the neutron cap-
ture flux measured by the neutron beam monitor discussed in Section 2.2.3. This allowed
for an absolute measurement that is independent of non-radiative neutron decay detec-
tion. For the experiment, a rate of epγ detections (rExp) was determined by dividing by the
amount of time (t) over which the data was acquired:

rExp =
KCepγ
t

, (4.5)

where K is a dead time correction factor associated with the DAQ system. It was measured
to be equal to ≈0.96, or 4% dead time.

Neutron capture flux, Fn, measured by the beam monitor is defined to travel at 2,200
m/s. Using this definition, a determination of the neutron decay rate in the simulated vol-
ume (nSim):

nSim = Fn

(
1− exp− LSim

2, 200m
s
τn

)
, (4.6)

where LSim is the neutron beam length that is simulated (see Section 3.4.1) and τn is the
neutron lifetime. Using the probability of epγ detection per four-body events (Sepγ(D4)),
the rate of electron, proton, and photon/gamma coincidence (epγ) determined by simula-
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tions (rSim) was

rSim = BSepγ(D4)nSim = BSepγ(D4)Fn

(
1− exp− LSim

2, 200m
s
τn

)
. (4.7)

Similar to the epγ/ep method, a branching ratio was extracted:

B =
rExp

Sepγ(D4)nSim
. (4.8)

The disadvantage of this method is that it does not automatically cancel systematic cor-
rections or uncertainties related to electron and proton detection, such as those from SBD
dead time. This method is advantageous in that it does not depend on ep coincidences that
originate from near the bend in the magnetic field. These ep coincidences were problematic
because their helical paths do not project evenly onto the SBD. In regions downstream of
the bend and near the photon detectors, the neutron beam and the magnetic field are par-
allel and relatively constant, which causes a symmetric projection of electrons and protons
onto the SBD. Positional uncertainties in the neutron beam, the magnets, and the SBD can
all influence whether an electron or proton originating from the bend region will hit the
SBD or miss it. In the end, it was determined that efforts would be focused on the epγ/ep
method as the uncertainty analysis was better understood. The neutron flux method will be
evaluated for a possible future analysis.

4.2.3 Plots of Experimental and Simulated Data

This section contains both plots of experimental data and plots comparing experimental
data with simulated theory. All experimental data are from the peak height method identi-
fied in 2.8.2 unless otherwise indicated. All simulated spectra have been scaled such that
their integrals are identical to that of the experimental spectra. For all epγ hists, the average
response per photon detector is plotted. All data are preliminary.

Figure 4.1 is a plot of the electron-photon timing spectrum under ep cuts for the BGO
detectors, and it is the most straightforward demonstration that radiative neutron decay
events are detected by the apparatus. A signal from correlated electrons and photons can
be seen near zero time delay. This is due to the near simultaneous detection of electrons and
photons produced by neutron decay. It is not centered at zero only due to differences in how
the peak location is identified and timing differences between the boards. The uncorrelated
photon background can also can be clearly seen and is constant on either side. Pre-peak
and post-peak windows were created for background subtraction (see Section 2.8.2).

Figure 4.2 is a plot of the epγ/ep ratio for the BGO detectors for each series with
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Figure 4.1: Plot of the electron-photon timing spectrum for the BGO detectors. The timing peak
located near zero channels of separation is the clear indicator that radiative neutron decays were
detected.

electron and proton cuts for the experimental data. The data are consistent with a line of
constant slope within its statistics.

Figures 4.3 and 4.4 are plots of the proton energy spectra under ep and BGO epγ cuts.
In general, agreement is very good between experiment and simulation, athough there is
a small amount of noise that is present in the lower energy portion of the experimental
spectra. This was identified to be background noise in the SBD, and it is expected to be
mitigated with a forthcoming, improved electron and proton peak identification analysis.
It is important to note that this noise, present in both spectra, would cancel in the epγ/ep
ratio.

Figures 4.5 and 4.6 are plots of the electron energy spectra under ep and BGO epγ cuts.
In general, agreement is very good, although there is a slight disagreement apparent in the
ep spectra. This difference is likely due to inaccurate modeling of electron backscattering.
It is important to note that low levels of inaccurate modeling of the electron backscatter
should, for the most part, cancel in the epγ/ep ratio.

Figures 4.7 and 4.8 are plots of the proton time-of-flight spectra under ep and BGO
epγ cuts. In general, agreement is very good between simulation and experiment. This
indicates the the RK4 tracking algorithm and the field simulations are performing well.

Figure 4.9 is a plot of the photon energy spectra from the BGO detectors and Figure
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Figure 4.2: Plot of epγ detections per ep detections by series number

4.10 is a plot of the normalized residuals of the two spectra plotted with variable bin size
and on a logarithmic calibrated peak height scale. The agreement between experiment and
simulation is very good and no significant deviations are apparent. The slight ”bump” in
the spectra seen at a peak height of ≈70 is caused by bismuth x-rays from nearby BGO
crystals.

Figure 4.11 is a plot of the photon energy spectra from the LAAPD detectors and Figure
4.12 is a plot of the normalized residuals of the two spectra. The agreement between ex-
periment and theory is reasonable, except for the region near 5.9 keV, which is the location
of the 55Fe peak. This could be an issue with the background subtraction that has yet to be
identified as the final LAAPD analysis is still underway. It should be noted that system-
atic uncertainty for the LAAPD detectors (not shown) is large compared to the statistical
uncertainty in the LAAPD energy response (see Section 4.3).
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Figure 4.3: Plot of the proton peak height spectra in ep coincidence for both experimental and
simulated data. The statistical error on the experimental data is too small to see.
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Figure 4.4: Plot of the proton peak height spectra in epγ coincidence for the average of the BGO
detectors for both experimental and simulated data. The experimental data’s statistical error is
shown.
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Figure 4.5: Plot of the electron peak height spectra in ep coincidence for both experimental and
simulated data. The statistical error on the experimental data is too small to see.
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Figure 4.6: Plot of the electron peak height spectra in epγ coincidence for the average of the
BGO detectors for both experimental and simulated data. The experimental data’s statistical error
is shown.
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Figure 4.7: Plot of the proton time-of-flight spectra in ep coincidence for both experimental and
simulated data. The statistical error on the experimental data is too small to see.
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Figure 4.8: Plot of the proton time-of-flight spectra in epγ coincidence for the average of the
BGO detectors for both experimental and simulated data. The experimental data’s statistical error
is shown.
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Figure 4.9: Plot of the photon peak height spectra for the average of the BGO detectors for both
experimental and simulated data. The experimental data’s statistical error is shown.
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Figure 4.10: Plot of the normalized residuals for the photon peak height spectra for the average
of the BGO detectors for the experimental data relative to the simulated data (Exp−SimSim ). Only
statistical error is included.
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Figure 4.11: Plot of the photon peak height spectra for the average of the LAAPD detectors for
both experimental and simulated data. The experimental data’s statistical error is shown.
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Figure 4.12: Plot of the normalized residuals for photon peak height spectra for the average of
the LAAPD detectors for the experimental data relative to the simulated data (Exp−SimSim ). Only
statistical error is included.
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4.3 Systematic Uncertainties and Corrections

All systematic corrections and uncertainties present in the RDK II experiment were cal-
culated with respect to a total measured branching ratio over the detector array’s energy
range. All were analyzed using the integration technique and the epγ/ep method and are
shown in Table 4.2. There were few systematic corrections as every attempt was made to
include all relevant effects in the simulation.

4.3.1 Photon Detectors

Sources of uncertainties for the photon detectors were specified to be those that arise from
their energy response or from electronic artifacts. “Energy response uncertainty” includes
uncertainty in non-proportionality and contributions from the detector’s peak height reso-
lution.

For the BGO detectors, the primary source of uncertainty arose from imprecise knowl-
edge of BGO non-proportionality (see Section 2.5.1.2). To estimate the effect of this un-
certainty, two envelope models which define the upper (+3%) and lower (-3%) uncertainty
of the parametric fit to the non-proportionality were created: one envelope for higher non-
proportionality and one envelope for less non-proportionality (see Figure 4.13). These
three energy response models were then applied to the simulated data, and an uncertainty
of±1.8% was calculated from their difference. Additional uncertainties in the BGO detec-
tors’ energy resolution and light collection were also assessed.

For the LAAPD detectors, the energy response uncertainty was estimated based on the
differences seen in charge collection efficiency model fits (see Section 2.6.2) between the
continuous spectra observed at SURF and the monochromator measurements performed at
the NSLS. The maximal difference observed was ±10% and this was estimated to be the
uncertainty in the LAAPD energy response.

Photon electronic artifacts were not yet analyzed by the collaboration in time for this
dissertation’s publication. They will be identified based on a goodness-of-fit tests of the
experimental data with a template photon peak. It is estimated that they will contribute less
than ±1% to the uncertainty analysis.

4.3.2 SBD Detector

Final SBD systematic correction and uncertainty analysis is expected to include corrections
and uncertainties from electronic artifacts as well as investigations of the certainty of energy
and timing cuts applied in the analysis.
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Source of BGO BGO LAAPD LAAPD
Uncertainty Corrections Uncertainties Corrections Uncertainties
Photon Detector
Energy response 0%∗ 2.1% 0%∗ 10.0%
Electronic artifacts tbd. tbd. tbd. tbd.
Photon peak height thresholds tbd. tbd. tbd. tbd.
SBD Detector
Electronic artifacts tbd. tbd. tbd. tbd.
Electron energy thresholds tbd. tbd. tbd. tbd.
Proton energy thresholds tbd. tbd. tbd. tbd.
Electron-proton timing tbd. tbd. tbd. tbd.
Electron-photon timing tbd. tbd. tbd. tbd.
Correlated Photon Backgrounds
Electron bremsstrahlung -1.0% 0.1% tbd. tbd.
Model Uncertainties
Photon detectors/mirror registration 0%∗ tbd. 0%∗ tbd.
SBD registration 0%∗ 2.6% 0%∗ 2.6%
Beam registration 0%∗ 1.6% 0%∗ 4.5%
Magnetic field registration 0%∗ 1.0% 0%∗ 2.4%
LAAPD bias leakage voltage 0%∗ 0%∗ 0%∗ 0%∗

Electron backscattering 0%∗ 0%∗ 0%∗ 0%∗

Monte Carlo statistics 0%∗ 0%∗ 0%∗ 0%∗

Extraction method 0%∗ tbd. 0%∗ tbd.
Total Systematic -1.0% 3.9% X% 11.7%

Table 4.2: Preliminary summary of the systematic effects that contributed corrections and uncer-
tainties to the measured branching ratio. All percentages represent the 68% level of confidence.
”0%∗” indicates that the systematic corrections or uncertainties are less than 0.05% in magnitude,
but may not be identically zero. A number of corrections and uncertainties are to be determined by
the collaboration; these are indicated by ”tbd.”
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Figure 4.13: Plot of the parametric fit to the experimental BGO non-proportionality data in Figure
2.12 used in the MC simulation and the two envelope models that were also analyzed to determine
the effect of its uncertainty.

Uncertainties in electron and proton energy thresholds as well as electron-proton and
electron-photon timing were not yet analyzed by the collaboration in time for this disserta-
tion’s publication. They will be calculated by varying the thresholds of the cuts described
in Table 4.1 when applied to the experimental analysis. The level at which the cuts will
be altered will be based on uncertainties inherent to the detector response and the DAQ
system. The variance in the epγ/ep ratio resulting from varying these cuts will be used to
determine the uncertainties. These uncertainties are expected to contribute less than ±1%
to the uncertainty analysis.

Electron and proton electronic artifacts were not yet analyzed by the collaboration in
time for this dissertation’s publication. They will be identified based on a goodness-of-fit
tests of the experimental data with a templates of electron and proton peaks. The method-
ology to determine uncertainties from these has yet to be determined. These uncertainties
are expected to contribute less than ±1% to the uncertainty analysis.

4.3.3 Correlated Photon Backgrounds

Sources of correlated photon backgrounds, those that will fall preferentially within the on-
peak window in the electron-photon timing spectrum, were not suppressed by the epγ/ep
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ratio method. Electron bremsstrahlung was the largest source of correlated background.
Electrons that entered the SBD deposited some of their kinetic energy while they produced
outer bremsstrahlung photons. These photons then could strike the photon detectors and
produce an epγ coincidence which did not originate from radiative decay. For the most part,
the RDK II photon detectors were shielded from this, however some BGO crystals did have
a small solid angle exposed to the SBD surface. The systematic correction and uncertainty,
-1.0%±0.1%, was estimated from Geant4 MC simulations of three body events.

4.3.4 Model Uncertainties

The uncertainties in the MC simulation of the apparatus included spatial registration (posi-
tional) uncertainties of various components, the precense of an unintended electric potential
from the LAAPDs, electron backscattering uncertainties, MC statistics, and the extraction
methodology.

The registration uncertainties were presumed to be on the level of ±1 mm and were
simulated in both the correct position and the displaced positions in Geant4. The SBD’s
positional uncertainty in the direction of the magnetic field was found to be ±2 mm due to
uncertainty in the amount of length contraction which occurred its mounting apparatus.

The results of the simulations showed that the registration uncertainties that altered the
SBD’s detection efficiency of electrons and protons that originated from decays occurring
at the magnetic field bend were the most significant. These registration uncertainties were
from SBD registration uncertainty (±2.6%) and beam registration uncertainty (±1.6%).
The uncertainty in the magnetic field registration (±1.0%) did not alter the path of particles
which originated from the bend, and thus was smaller. Photon detectors/mirror registration
uncertainty analysis was not complete in time for publication of this dissertation, but is
expected to be on the order of ±1.0%.

The bias voltage leakage of the second version of the LAAPD array was simulated
using COMSOL Mutiphysics®. It was found that this field did not significantly contribute
to the uncertainty (see Sections 2.3 and 3.3).

Uncertainty in the simulation’s modeling of electron backscattering was investigated by
simulating scattering with both a single-scattering and a multi-scattering algorithms (see
Section 3.6). The difference between the results of these two methods did not significanty
differ when the epγ/ep ratio was investigated .

Statistical uncertainty in the simulated model was not significant as the Flux high per-
formance computing (HPC) Cluster at the University of Michigan was utilized to simulate
over a fifty million three-body and four-body events.
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The uncertainty in the branching ratio extraction method is the difference between using
the integration technique and the fit technique. These extraction techniques were described
in Section 4.2. This uncertainty will not be evaluated until the final analysis has been
complete. It is expected to be less than ±1.0%.
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CHAPTER 5

Conclusion

The results of the RDK II experiment are addressed in this chapter. First, the preliminary
data is discussed in relation to QED theory. Then future experiments related to RDK II and
radiative beta decay are covered.

5.1 RDK II Results

The final data analysis for the radiative beta decay of the free neutron unfortunately could
not be completed by the RDK II collaboration in time to be discussed in this dissertation.
It is possible to state that preliminary data analysis indicates that the experimental branch-
ing ratio measured will be within 10% of its predicted QED value for both the BGO and
LAAPD detectors. In addition, the shape of the QED photon spectrum simulated in the
RDK II apparatus (see Figures 4.9, 4.10, 4.11, and 4.12) shows good agreement with the
experimental data for both detector arrays.

The systematic error analysis, while incomplete, indicates that the BGO detectors will
have an uncertainty on the level of≈4% while the LAAPD detectors will have a uncertainty
on the level of ≈12%. The statistical uncertainties for the BGO and LAAPD detectors will
be ≈2% and ≈3% respectively.

RDK II’s measurement will be the second measurement of radiative free neutron decay,
and it will be the most precise measurement. While the uncertainty level is insufficient to
test proposed new physical theories beyond QED (see Section 5.3) it is nevertheless still
important to test even ”the most successful” of theories, particularly in relatively simple
systems.
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5.2 Neutron Beam Lifetime

RDK II also makes two contributions towards resolving the puzzling discrepancies seen
between neutron lifetime measurements made with cold neutron beams and those measured
from UCNs trapped in bottles (see Figure 5.1). First, as was previously discussed in Section
1.3.1, radiative corrections affect the decay rate of the neutron at the ≈4% level. Any
deviations from QED theory could alter the extraction of Vud from the neutron lifetime and
make comparisons to other systems invalid. Confirming that the neutron’s radiative decay
mode matches with QED theory strengthens confidence in these corrections.

The second contribution is of a more practical nature. An experimental collaboration
was formed to perform a beam lifetime measurement at the≈0.1% uncertainty level [102].
This experiment will take place on the NG-6 beamline at the NCNR and will utilize the
same solenoid system utilized in RDK II and previous neutron beam measurements at
NIST. Principally, the photon detectors and electrostatic mirror will be removed and re-
placed with a precision-machined multi-electrode trap. The electrodes will trap individual
protons from neutron decay, while allowing electrons to escape undetected. Each proton
will travel in a helical orbit towards a silicon detector after it is released from the trap. Due
to the significant overlap in functionality, many of the lessons learned during the opera-
tion and analysis of RDK II can be applied to the beam measurement. In particular, the
Geant4 charged particle simulation code used in RDK II can be applied to calculate proton
trapping dynamics and their subsequent detection. This will benefit the exploration and
understanding of the systematic uncertainties associated with beam measurement.
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Figure 5.1: Plot of the neutron lifetime measurements [54, 103–107] included in the PDG aver-
age [20] and a recent recalculation of the most recent beam measurement by Yue et al. [39] which
will supercede the Nico et. al. [54] value. After replacing the Nico et. al. measurement with the Yue
et al. measurement, there is currently a 3.8σ discrepancy between cold neutron beam measurements
and UCN bottle measurements of the neutron lifetime [39].
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5.3 Future Radiative Decay Experiments

The goal of any future experiment that measures radiative neutron decay should be well
defined. At this juncture, radiative neutron beta decay appears to be consistent with QED
theory at the current experimental precision and in the energy ranges measured. One av-
enue of investigation would be to simply perform an additional measurement in the RDK
II energy ranges with even higher precision. Within the SM, measurements would have to
approach sub 1% precision in order to measure contributions from inner-bremsstrahlung.
This would be challenging to perform with the RDK II apparatus as registration uncer-
tainties that relate to the magnetic field bend and the performance of BGO crystals and
LAAPDs would be difficult to reduce.

There are few significant changes that could be madeto reduce the uncertainty associ-
ated with positional registration. First, the detection apparatus could be designed from the
ground up to be precision-machined. After manufacturing the detection apparatus could
then be measured by a metrology laboratory. This could also include adjustable stages to
precisely adjust the detectors’ positions and measure the systematic effects of any such
variations. An adjustable stage of this nature is being designed for the silicon detector
used in the NIST beam neutron lifetime experiment. Another improvement to positional
registration would be to increase the area of the SBD. This would degrade the SBD’s en-
ergy resolution, but this effect would likely be manageable. Finally it might be possible
to add additional electrodes in the active detection region to serve as mirrors to protons.
This would provide greater understanding of the ep coincidence detection sensitivities. As
discussed, there is a precision, segmented electrode system that will be used in the NIST
beam neutron lifetime experiment, but the system would not be compatible with the current
BGO detector array. It might be possible to use the electrode system with a detector array
mounted in a similar fashion as the LAAPD array.

A possible replacement for BGO detectors would be to use high purity germanium
(HPGe) detectors. A HPGe detector is similar in design to a SBD or an APD as it is a
semiconductor detector doped in the pin configuration. The advantage of HPGe is that
pure thick germanium crystals can be formed, which allows for greater depletion depths
than silicon. This means that thicker detectors can be formed to detect high energy pho-
tons. HPGe detectors can easily detect photons in the energy range of 5.9 keV to 781 keV
with a resolution of ≈200 eV and 2 keV respectively [108], which is far superior to BGO
detectors. Germanium, unlike BGO scintillators, is also highly linear, even near its K and L
edges [109]. The disadvantage of HPGe detectors is that germanium has a very small band
gap energy (0.74 eV) and therefore necessitates that it be at or near liquid nitrogen tem-
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peratures (77 K) to operate at reasonable noise levels. Like the LAAPD detectors, HPGe
detectors are sensitive to high magnetic fields, but this can be minimized by choosing a
direction such that the charge flow is parallel to the magnetic field [110]. As germanium
is less dense than BGO, the detectors would have to be ≈30% thicker to absorb the same
amount of photons in the upper energy range of radiative decay. This, along with any active
cooling needed, make placing HPGe detectors in the existing RDK II solenoids difficult.
Again, perhaps the most attractive option would be an array similar to the LAAPD array.
This would provide sufficient room behind the detectors to establish cooling.

A future experiment could also investigate the Dirac structure of the weak current by
measuring the polarization of radiative decay from polarized neutrons [7–9]. This would
require both a source of polarized neutrons and a method of detecting their polarization.
For polarized cold neutrons, there are two primary methods of generating them: either with
a super mirror or with polarized 3He [111]. While polarized cold neutron production is
relatively straightforward, efficiently detecting polarized photons at the keV energy scale
is exceedingly difficult.

Furthermore, improved statistics at higher radiative photon energies would test a pos-
sible source of time-reversal violation through the triple correlation lp · (le × k), where
lp and le are the proton and electron momenta, respectively, and k is the photon momen-
tum [10, 11]. This would require significant improvements in the statistics in the high
energy region and the capability of capturing the direction of emission of the proton, elec-
tron, and photon. One way of doing so would be to take a duplicate version of the RDK
II solenoid system and place it on a cold neutron beam such that the SBD detectors can
detect electrons going in either direction. This would also provide for detection of any
backscattered electrons, eliminating any systematic corrections that they would introduce.
Conveniently, a duplicate solenoid system already exists and currently is unused [104].
This ”double” RDK II design would increase the active detection region by a factor of two
and would double the number of electrons detected per unit length. Furthermore, the solid
angle of photon detection is increased, particularly for detectors in a configuration similar
to the LAAPD, guaranteeing greater than a factor of four improvement in epγ detection
rate. A potential issue could arise from this design. Electrons could be ejected from the
SBD potential and could create additional noise in the SBD signal. A diagram of a concept
system which uses both solenoid sets, as well as HPGe detectors and an electrode system,
can be found in Figure 5.2.

Perhaps the best future for radiative neutron decay experiments would be in conjunc-
tion with other neutron decay experiments that measure the correlation coefficients that
were discussed in Section 1.3.2. For example, measurements of the electron-antineutrino
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Figure 5.2: Diagram of a ”double RDK” concept to measure radiative photon decay. In this
concept, two RDK II solenoids and two SBDs are used in conjunction with precision-machined
electrodes to restrict the active region and germanium detectors to measure radiative photons.

correlation (a) using an asymmetry approach require the detection of an electron as well
as a proton [112, 113]. In future experimental efforts, the only additional component that
would need to be added to the design would be the photon detectors and a DAQ system to
record the events.

5.4 Fierz Interference

One future avenue of research that uses the preexisting RDK II experimental data would be
to investigate the Fierz interference term (b) in the free neutron. As explained in Chapter
1, the Fierz term should be zero in the standard model, as it arises from scalar or tensor
couplings, which are not known to be present in weak decay. It has been measured to be
consistent with zero, +0.0001±0.0026, in super allowed (0+ → 0+) decays [114]. Recent
efforts to directly measure this in the free neutron have set a limit of |b| < 0.13 (90%
C.L.) [115] and a planned experiment, Nab, will measure both the Fierz term as well as the
electron-antineutrino correlation term [113]. As can be extrapolated from Eq. (1.8), the
Fierz term will directly affect the electron spectrum originating from neutron decay. Figure
5.3 emphasizes the small effect b has on the electron spectrum.

RDK II’s electron spectrum contains sufficient statistics to consider measuring the Fierz
interference term using the preexisting data. This was investigated early on during the data
analysis, but concerns over the effect of imprecise modeling of electron backscattering by
Geant4 and other simulation packages arose [81]. Further efforts to extract a Fierz term
were put on hold to focus on the completion of radiative neutron decay measurements.
With the radiative measurements nearing completion, it would be possible again to examine
whether a Fierz term extraction with RDK II data was possible.
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Figure 5.3: Plot of the effect of a non-zero Fierz interference (b = 0.05) term on the electron
spectrum compared to no Fierz interference.
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APPENDIX A

Radiative Decay Formula

The following formula is used in place of Eq. (1.10) in the four body event generator in the
RDK II simulation.
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APPENDIX B

Simulation Geometry

The geometry in the RDK II apparatus was simplified in the Geant4 model to use only the
C++ classes: G4Tubs, which formed cylinders and rings, and G4Box, which formed boxes.
Holes were made in objects appropriately using boolean subtraction (G4SubtractionSolid).
Tables B.1, B.3, B.2, and B.4 contain the parameters used in the Geant4 model before
length contraction. Length contraction was accounted for separately in the Geant4 simula-
tion code.

Part Inner Outer Center Offset Offset
Name Material Radius Radius z0 zF Length Along z x Dir. y Dir.
Straight Bore Stainless Steel 5.85 6.11 45.28 0.00 45.28 22.64 0.00 0.00
High Voltage Tube Aluminum 2.38 2.54 34.72 32.72 2.00 33.72 0.00 0.00
Front Nylon Spacer Nylon 2.38 2.54 32.72 32.40 0.32 32.56 0.00 0.00
Large Nylon Spacer Nylon 2.54 2.86 38.91 32.40 6.51 35.66 0.00 0.00
Main Ground Cylinder Aluminum 2.86 3.18 45.10 32.40 12.70 38.75 0.00 0.00
Front Mirror Ground Aluminum 2.54 3.18 32.40 32.24 0.16 32.32 0.00 0.00
Outer Mirror Ground Aluminum 3.18 5.24 36.21 35.57 0.64 35.89 0.00 0.00
Downstream Nylon Spider Nylon 3.81 5.40 35.57 33.67 1.90 34.62 0.00 0.00
G10 APD Holder G10 3.49 5.40 33.67 32.40 1.27 33.04 0.00 0.00
Throwing Star 1 Aluminum 3.49 4.95 32.40 31.77 0.64 32.08 0.00 0.00
Aluminum Heat Shield Aluminum 4.95 5.12 32.40 12.09 20.32 22.24 0.00 0.00
Throwing Star 2 Aluminum 3.49 4.95 12.72 12.09 0.64 12.40 0.00 0.00
Nylon Pusher Assembly Nylon 3.49 5.40 12.08 9.38 2.70 10.73 0.00 0.00
Upstream Aluminum Tape 1 Aluminum 3.46 3.49 12.08 9.38 2.70 10.73 0.00 0.00
Upstream Aluminum Tape 2 Aluminum 3.49 3.81 9.38 9.35 0.03 9.36 0.00 0.00
Upstream Nylon Spider Nylon 3.81 5.40 9.38 7.48 1.91 8.43 0.00 0.00
Upstream Aluminum Tape 3 Aluminum 3.78 3.81 9.35 7.88 1.47 8.61 0.00 0.00
BAPD Holder Aluminum 1.75 5.50 4.10 3.78 0.32 3.94 0.00 0.00
Front Copper On Aperture Copper 2.38 5.73 2.72 2.54 0.18 2.63 0.00 0.00
Lead Aperture Lead 2.54 5.73 2.54 0.00 2.54 1.27 0.00 0.00
Inner Copper On Aperture Copper 2.38 2.54 2.54 0.00 2.54 1.27 0.00 0.00
Upstream Support Rod 1 Aluminum 0.00 0.24 12.72 2.82 9.90 7.77 3.97 2.29
Upstream Support Rod 2 Aluminum 0.00 0.24 12.72 2.82 9.90 7.77 0.00 -4.59
Upstream Support Rod 3 Aluminum 0.00 0.24 12.72 2.82 9.90 7.77 -3.97 2.29
Hex Support Rod 1 Aluminum 0.00 0.33 31.77 12.72 19.05 22.24 3.97 2.29
Hex Support Rod 2 Aluminum 0.00 0.33 31.77 12.72 19.05 22.24 0.00 -4.59
Hex Support Rod 3 Aluminum 0.00 0.33 31.77 12.72 19.05 22.24 -3.97 2.29
Downstream Support Rod 1 Aluminum 0.00 0.24 37.70 31.77 3.81 33.67 3.97 2.29
Downstream Support Rod 2 Aluminum 0.00 0.24 37.70 31.77 3.81 33.67 0.00 -4.59
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Part Inner Outer Center Offset Offset
Name Material Radius Radius z0 zF Length Along z x Dir. y Dir.
Downstream Support Rod 3 Aluminum 0.00 0.24 37.70 31.77 3.81 33.67 -3.97 2.29
Long Adjustment Rod 1 Stainless Steel 0.00 0.24 44.70 8.43 36.27 26.56 0.00 4.59
Long Adjustment Rod 2 Stainless Steel 0.00 0.24 44.70 8.43 36.27 26.56 3.97 -2.29
Long Adjustment Rod 3 Stainless Steel 0.00 0.24 44.70 8.43 36.27 26.56 -3.97 -2.29
Short Adjustment Rod 1 Stainless Steel 0.00 0.24 44.70 34.62 10.08 39.66 4.59 0.00
Short Adjustment Rod 2 Stainless Steel 0.00 0.24 44.70 34.62 10.08 39.66 -2.29 -3.97
Short Adjustment Rod 3 Stainless Steel 0.00 0.24 44.70 34.62 10.08 39.66 -2.29 3.97
Magnet Coil 1 Copper 7.00 8.28 42.40 36.40 6.00 39.40 0.00 0.00
Magnet Coil 2 Copper 8.32 10.29 42.40 36.40 6.00 39.40 0.00 0.00
Magnet Coil 3 Copper 7.00 7.89 35.90 5.90 30.00 20.90 0.00 0.00
Magnet Coil 4 Copper 7.91 8.96 35.90 5.90 30.00 20.90 0.00 0.00
Magnet Coil 5 Copper 7.00 7.57 5.40 3.90 1.50 4.65 0.00 0.00
Magnet Coil 6 Copper 7.61 9.28 5.40 3.90 1.50 4.65 0.00 0.00
Magnet Coil 7 Copper 9.32 10.46 5.40 3.90 1.50 4.65 0.00 0.00
Aluminum Plug Aluminum 0.00 2.06 67.00 62.00 5.00 64.50 0.00 0.00
Far Aluminum Tube Aluminum 2.06 2.22 73.99 46.05 27.94 60.02 0.00 0.00
DS Cryostat Flange A Stainless Steel 7.70 13.49 46.23 45.28 0.95 45.75 0.00 0.00
DS Cryostat Flange B Stainless Steel 0.00 18.75 45.28 44.01 1.27 44.65 -5.72 0.00
Coil Tray 1, Part H Aluminum 6.35 6.98 43.72 3.08 40.64 23.40 0.00 0.00
Coil Tray 1, Part I Aluminum 6.98 12.70 43.72 42.40 1.32 43.06 0.00 0.00
Coil Tray 1, Part K Aluminum 6.98 10.48 36.37 35.90 0.47 36.14 0.00 0.00
Coil Tray 1, Part L Aluminum 6.98 10.48 5.87 5.40 0.47 5.63 0.00 0.00
Coil Tray 1, Part M Aluminum 6.98 12.70 3.87 3.08 0.79 3.48 0.00 0.00
Grounding Strap Part 1 Copper 5.12 5.18 31.84 31.55 0.29 31.69 0.00 0.00
Grounding Strap Part 2 Copper 5.12 5.18 29.14 28.85 0.29 28.99 0.00 0.00
Grounding Strap Part 3 Copper 5.12 5.18 26.44 26.15 0.29 26.29 0.00 0.00
Grounding Strap Part 4 Copper 5.12 5.18 23.74 23.44 0.29 23.59 0.00 0.00
Grounding Strap Part 5 Copper 5.12 5.18 21.04 20.74 0.29 20.89 0.00 0.00
Grounding Strap Part 6 Copper 5.12 5.18 18.33 18.04 0.29 18.19 0.00 0.00
Grounding Strap Part 7 Copper 5.12 5.18 15.63 15.34 0.29 15.49 0.00 0.00
Grounding Strap Part 8 Copper 5.12 5.18 12.93 12.64 0.29 12.79 0.00 0.00
Grounding Strap Part 9 Copper 5.40 5.46 34.54 34.25 0.29 34.39 0.00 0.00
Grounding Strap Part 10 Copper 3.50 3.56 37.24 36.95 0.29 37.09 0.00 0.00
Grounding Strap Part 11 Copper 3.50 3.56 39.94 39.65 0.29 39.79 0.00 0.00
Grounding Strap Part 12 Copper 3.50 3.56 42.64 42.35 0.29 42.50 0.00 0.00

Table B.1: Parameters which define the cylinders or rings parallel to z axis. All dimensions of
length are in cm.

Part Inner Outer Center Offset Offset
Name Material Radius Radius z0 zF Length Along z x Dir. y Dir.
Bent Bore Stainless Steel 5.85 6.11 0.00 -26.49 26.49 -13.25 0.00 0.00
Large Bent Bore Stainless Steel 7.04 7.30 -25.68 -35.84 10.16 -30.76 0.00 0.00
Spacer Ring Stainless Steel 6.11 7.04 -25.68 -26.49 0.81 -26.09 0.00 0.00
Magnet Coil 9 Copper 7.00 10.76 -3.90 -5.40 1.50 -4.65 0.00 0.00
Magnet Coil 10 Copper 7.00 8.58 -5.90 -23.40 17.50 -14.65 0.00 0.00
Magnet Coil 11 Copper 8.00 10.52 -23.90 -30.65 6.75 -27.28 0.00 0.00
SBD 1.5mm Si Silicon 0.00 1.38 -27.80 -27.95 0.15 -27.88 0.00 0.00
SBD 1.5mm Si Holder Al Oxide 1.38 1.75 -27.59 -28.08 0.49 -27.84 0.00 0.00
SBD 1.5mm Gold Coating Gold 0.00 1.38 -27.80 -27.80 0.00 -27.80 0.00 0.00
SBD Aluminum Coating Aluminum 0.00 1.38 -27.95 -27.95 0.00 -27.95 0.00 0.00
SBD 1.5 mm Plastic Lining Acrylic 1.75 1.75 -27.59 -28.14 0.54 -27.87 0.00 0.00
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Part Inner Outer Center Offset Offset
Name Material Radius Radius z0 zF Length Along z x Dir. y Dir.
SBD 1.5mm Back Rings Brass 1.51 1.75 -28.08 -28.11 0.03 -28.10 0.00 0.00
SBD 1.5mm Internal Disc Brass 0.16 1.75 -28.11 -28.14 0.03 -28.13 0.00 0.00
SBD 1.5mm Spring Brass 0.03 0.22 -28.14 -28.75 0.61 -28.45 0.00 0.00
SBD 1.5mm Hex Screw Brass 0.21 0.42 -28.75 -29.19 0.44 -28.97 0.00 0.00
SBD 1.5mm Front Case Brass 1.51 1.81 -27.52 -27.59 0.07 -27.56 0.00 0.00
SBD 1.5mm Mid Case Brass 1.75 1.81 -27.59 -28.86 1.27 -28.23 0.00 0.00
SBD 1.5mm Back Case Brass 0.42 1.81 -28.86 -28.91 0.05 -28.89 0.00 0.00
BeO Tube Be0 2.89 3.05 -27.52 -45.23 17.71 -36.38 0.00 0.00
SBD 1.5mm Steel Tube Stainless Steel 1.23 1.27 -29.01 -45.23 16.22 -37.12 0.00 0.00
Coil Tray 2, Part A Aluminum 6.35 6.98 -3.08 -24.34 21.26 -13.71 0.00 0.00
Coil Tray 2, Part B Aluminum 7.47 7.98 -23.88 -31.96 8.09 -27.92 0.00 0.00
Coil Tray 2, Part C Aluminum 6.98 12.70 -3.08 -3.87 0.78 -3.48 0.00 0.00
Coil Tray 2, Part D Aluminum 6.98 10.80 -5.40 -5.87 0.47 -5.64 0.00 0.00
Coil Tray 2, Part E Aluminum 6.98 10.80 -23.40 -23.87 0.47 -23.64 0.00 0.00
Coil Tray 2, Part F Aluminum 7.98 11.11 -30.65 -31.97 1.31 -31.31 0.00 0.00

Table B.2: Parameters which define the cylinders or rings parallel to 9.5°axis. All dimensions of
length are in cm.

Part Inner Outer Center Offset Offset
Name Material Radius Radius z0 zF Length Along z x Dir. y Dir.
Magnet Coil 8 Copper 7.00 10.15 1.75 -1.75 3.50 0.00 -0.25 0.00
Coil Tray 3, Part N Aluminum 6.58 7.00 2.46 -2.46 4.93 0.00 -0.25 0.00
Coil Tray 3, Part O Aluminum 10.95 12.83 1.98 -1.98 3.96 0.00 -0.25 0.00
Coil Tray 3, Part P Aluminum 7.00 9.00 -1.75 -2.25 0.50 -2.00 -0.25 0.00
Coil Tray 3, Part Q Aluminum 7.00 9.00 2.25 1.75 0.50 2.00 -0.25 0.00

Table B.3: Parameters which define the cylinders or rings parallel to 4.75°axis. All dimensions of
length are in cm.

Part Offset Offset
Name Material x0 xF y0 yF z0 zF x Dir. y Dir.
Active Area Bare APD 1 Silicon -1.40 1.40 -1.40 1.40 3.90 3.89 3.01 -1.74
Active Area Bare APD 2 Silicon -1.40 1.40 -1.40 1.40 3.90 3.89 -3.01 -1.74
Active Area Bare APD 3 Silicon -1.40 1.40 -1.40 1.40 3.90 3.89 0.00 3.47
Si Bare APD 1 Silicon -1.52 1.52 -1.52 1.52 3.90 3.89 3.01 -1.74
Si Bare APD 2 Silicon -1.52 1.52 -1.52 1.52 3.90 3.89 -3.01 -1.74
Si Bare APD 3 Silicon -1.52 1.52 -1.52 1.52 3.90 3.89 0.00 3.47
BAPD Backing 1 Aluminum Oxide -1.70 1.70 -1.70 1.70 3.89 3.80 3.01 -1.74
BAPD Backing 2 Aluminum Oxide -1.70 1.70 -1.70 1.70 3.89 3.80 -3.01 -1.74
BAPD Backing 3 Aluminum Oxide -1.70 1.70 -1.70 1.70 3.89 3.80 0.00 3.47
G10 BAPD Back Pieces 1 G10 -1.69 1.69 -2.51 2.51 3.80 3.17 3.01 -1.74
G10 BAPD Back Pieces 2 G10 -1.69 1.69 -2.51 2.51 3.80 3.17 -3.01 -1.74
G10 BAPD Back Pieces 3 G10 -1.69 1.69 -2.51 2.51 3.80 3.17 0.00 3.47
Si Small APD 1 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 1.09 4.08
Si Small APD 2 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 2.99 2.99
Si Small APD 3 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 4.08 1.09
Si Small APD 4 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 4.08 -1.09
Si Small APD 5 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 2.99 -2.99
Si Small APD 6 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 1.09 -4.08
Si Small APD 7 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 -1.09 -4.08
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Part Offset Offset
Name Material x0 xF y0 yF z0 zF x Dir. y Dir.
Si Small APD 8 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 -2.99 -2.99
Si Small APD 9 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 -4.08 -1.09
Si Small APD 10 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 -4.08 1.09
Si Small APD 11 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 -2.99 2.99
Si Small APD 12 Silicon -0.84 0.84 -0.78 0.78 32.43 32.40 -1.09 4.08
Small APD Backing 1 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 1.09 4.08
Small APD Backing 2 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 2.99 2.99
Small APD Backing 3 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 4.08 1.09
Small APD Backing 4 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 4.08 -1.09
Small APD Backing 5 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 2.99 -2.99
Small APD Backing 6 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 1.09 -4.08
Small APD Backing 7 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 -1.09 -4.08
Small APD Backing 8 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 -2.99 -2.99
Small APD Backing 9 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 -4.08 -1.09
Small APD Backing 10 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 -4.08 1.09
Small APD Backing 11 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 -2.99 2.99
Small APD Backing 12 Aluminum Oxide -0.84 0.84 -0.78 0.78 32.53 32.43 -1.09 4.08
BGO Crystal 1 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 1.09 4.08
BGO Crystal 2 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 2.99 2.99
BGO Crystal 3 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 4.08 1.09
BGO Crystal 4 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 4.08 -1.09
BGO Crystal 5 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 2.99 -2.99
BGO Crystal 6 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 1.09 -4.08
BGO Crystal 7 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 -1.09 -4.08
BGO Crystal 8 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 -2.99 -2.99
BGO Crystal 9 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 -4.08 -1.09
BGO Crystal 10 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 -4.08 1.09
BGO Crystal 11 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 -2.99 2.99
BGO Crystal 12 BGO -0.60 0.60 -0.60 0.60 32.40 12.40 -1.09 4.08

Table B.4: Parameters which define the boxes parallel to the z axis. All dimensions of length are
in cm.
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Figure B.1: Cross section rendering of the Geant4 model of the RDK II apparatus.
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[58] K.-J. Kügler, W. Paul, and U. Trinks, Z. Phys. B 39, 361 (1980)

[59] G. Ferguson, 5T Bent Magnet and Cryostat: Operator’s Manual PN: 35913 (Oxford
Instruments, 1992)

[60] J. Byrne, P. Dawber, M. van der Grinten, C. Habeck, F. Shaikh, J. Spain, R. Scott,
C. Baker, K. Green, and O. Zimmer, J. Phys. G 28, 1325 (Jun. 2002)

89

http://dx.doi.org/10.1016/0029-5582(87)90019-8
http://dx.doi.org/10.1098/rspa.1927.0039
http://dx.doi.org/10.1103/RevModPhys.4.87
http://dx.doi.org/10.1007/BF01340129
http://dx.doi.org/{10.1007/BF01341423}
http://dx.doi.org/10.1103/PhysRev.35.461
http://dx.doi.org/{10.1103/PhysRev.52.54}
http://dx.doi.org/10.1103/PhysRevA.83.052122
http://dx.doi.org/10.1016/j.physletb.2004.08.041
http://dx.doi.org/{10.1134/1.1525031}
http://dx.doi.org/{10.6028/jres.110.013}
http://dx.doi.org/10.1016/j.nima.2012.06.018
http://dx.doi.org/10.1016/j.nima.2012.06.018
http://dx.doi.org/10.1007/BF01305837
http://dx.doi.org/{10.1088/0954-3899/28/6/314}


[61] J. Byrne, P. G. Dawber, C. G. Habeck, S. J. Smidt, J. A. Spain, and A. P. Williams,
Europhys. Lett. 33, 187 (1996)

[62] G. Knoll, Radiation Detection and Measurement, 4th ed. (Wiley, 2010) ISBN 978-
0470131480

[63] “ORTEC,” http://www.ortec-online.com/, Accessed: Jun 2014

[64] T. R. Gentile, M. S. Deweya, H. P. Mumm, J. S. Nico, A. K. Thompson, T. E.
Chupp, R. L. Cooper, B. M. Fisher, I. Kremsky, F. E. Wietfeldt, K. G. Kiriluk, and
E. J. Beise, Nucl. Instrum. Methods A 579, 447 (Aug. 2007)

[65] H. V. Piltningsrud, J. Nucl. Med. 20, 1279 (1979)

[66] G. Keil, Nucl. Instrum. Methods 89, 111 (1970)

[67] W. W. Moses, S. A. Payne, W. S. Choong, G. Hull, and B. W. Reutter, IEEE Trans.
Nucl. Sci. 55, 1049 (Jun. 2008)

[68] M. Moszynski, M. Balcerzyk, W. Czarnacki, M. Kapusta, W. Klamra, A. Syntfeld,
and M. Szawlowski, IEEE Trans. Nucl. Sci. 51, 1074 (Jun. 2004)

[69] I. V. Khodyuk and P. Dorenbos, IEEE Trans. Nucl. Sci. 59, 3320 (Dec. 2012)

[70] E. Sysoeva, O. Zelenskaya, and E. Sysoeva, IEEE Trans. Nucl. Sci. 43, 1282 (Jun.
1996)

[71] M. A. Verdier, P. C. F. Di Stefano, P. Nadeau, C. Behan, M. Clavel, and C. Dujardin,
Phys. Rev. B 84 (Dec. 2011)

[72] V. V. Averkiev, V. K. Lyapidevskii, and G. K. Salakhutdinov, Prib. Tekh. E ksp.
[Instrum. Exp. Tech. (USSR)] 33, 80 (Jul. 1990)

[73] T. Gentile, M. J. Bales, H. Breuer, T. E. Chupp, K. J. Coakley, R. L. Cooper, J. S.
Nico, and B. O’Neill, “Nonproportionality in the scintillation light yield of bismuth
germanate,” (2014), manuscript in preparation

[74] T. R. Gentile, C. D. Bass, J. S. Nico, H. Breuer, and R. Farrell, Nucl. Instrum. Meth-
ods A 652, 520 (Oct. 2011)

[75] T. R. Gentile, M. Bales, U. Arp, B. Dong, and R. Farrell, Rev. Sci. Instrum. 83 (May
2012)

[76] S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

[77] “Geant4,” http://geant4.cern.ch/, Accessed: Jun 2014

[78] R. Brun and F. Rademakers, Nucl. Instrum. Methods A 389, 81 (1997), new Com-
puting Techniques in Physics Research V

[79] “ROOT,” http://root.cern.ch/drupal/, Accessed: Jun 2014

90

http://dx.doi.org/10.1209/epl/i1996-00319-x
http://www.ortec-online.com/
http://dx.doi.org/{10.1016/j.nima.2007.04.103}
http://dx.doi.org/10.1016/0029-554X(70)90813-X
http://dx.doi.org/{10.1109/TNS.2008.922802}
http://dx.doi.org/{10.1109/TNS.2008.922802}
http://dx.doi.org/10.1109/TNS.2004.829491
http://dx.doi.org/{10.1109/23.506678}
http://dx.doi.org/10.1016/j.nima.2010.08.061
http://dx.doi.org/10.1016/j.nima.2010.08.061
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://geant4.cern.ch/
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://root.cern.ch/drupal/


[80] A. Lechner, M. G. Pia, and M. Sudhakar, IEEE Trans. Nucl. Sci. 56, 398 (Apr. 2009),
ISSN 0018-9499

[81] G. Soti, F. Wauters, M. Breitenfeldt, P. Finlay, I. Kraev, A. Knecht, T. Porobić,
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A. Palladino, S. Penttilä, K. Rykaczewski, W. Wilburn, A. Young, and G. Young,
Nucl. Instrum. Methods A 611, 211 (2009)

[114] J. C. Hardy and I. S. Towner, Phys. Rev. Lett. 94, 092502 (Mar 2005)

[115] K. P. Hickerson, The Physics of Ultracold Neutrons and Fierz Interference in Beta
Decay, PhD dissertation, California Institute of Technology, Department of Physics
and Astronomy (2012)

93

http://dx.doi.org/10.1016/j.nima.2009.07.065
http://dx.doi.org/10.1103/PhysRevLett.94.092502

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Abbreviations
	Abstract
	History and Theory
	Introduction
	The Neutron
	Neutron Beta Decay
	Radiative Corrections
	Radiative Neutron Decay Experiments

	Experimental Apparatus
	Experimental Overview
	Cold Neutron Beam
	Electric and Magnetic Fields
	Surface Barrier Detector
	BGO Photon Detectors
	LAAPD Photon Detectors
	Data Acquisition
	Waveform Data Analysis

	Simulations and Modeling
	Simulation Goals
	Geant4
	Electromagnetic Field Calculations
	Event Generation
	Charged Particle Tracking
	Particle and Matter Interactions
	Detector Response

	Data Comparisons and Systematic Analysis
	Experimental Data Summary
	Experiment and Simulation Comparison
	Systematic Uncertainties and Corrections

	Conclusion
	RDK II Results
	Neutron Beam Lifetime
	Future Radiative Decay Experiments
	Fierz Interference

	Appendices
	Radiative Decay Formula
	Simulation Geometry
	Bibliography

