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ABSTRACT

Observations of Coherence in Oxygenic Photosynthesis

Chair: Jennifer P. Ogilvie

The field of two dimensional electronic spectroscopy (2DES) is rapidly advancing,

both in theory and implementation to tackle increasingly complex and delicate problems.

In the past seven years, observations of coherent or wave-like dynamics in 2D spectra of

photosynthetic antenna has captured the imagination of many practitioners in the field,

from theorists to experimentalists. Two questions are being raised: what is the origin

of coherent dynamics in photosynthesis and, more importantly, do they matter for the

function of biological systems? For certain photosynthetic antenna systems there is now

considerable evidence and theoretical backing to suggest that coherent dynamics have a

positive functional impact on energy transfer. Less explored is how such dynamics may

influence charge separation, the primary purpose of photosynthetic reaction centers.

Coherent signals are typically weak and difficult to resolve from population dynamics.

To address this issue, we developed a method to collect 2DES which has dramatically

improved the signal to noise over previous implementations. The new method has been

applied to the photosystem II reaction center (PSII RC). The PSII RC is the photosynthetic

enzyme uniquely capable of using solar energy to split water. As such it is an important

system both for basic plant science and renewable energy generation. With this technique,

we find eight coherent modes in PSII RC in the first such report of coherent dynamics on

this system. Most of the wave-like motions are assigned to be of vibrational character

while four are assigned to a mixture of vibrational and electronic character. Based on

supporting simulations it is shown that charge separation is enhanced by the inclusion of

such mixed character modes.

xi



CHAPTER I

NONLINEAR SPECTROSCOPY OF
PHOTOSYNTHETIC PROTEINS

1.1 Introduction

Photosynthesis is the process by which plants and other photosynthetic organisms convert

solar energy into chemical energy. Although the photosynthetic machinery varies among

organisms, the basic architecture consists of light-harvesting antennae arrays that gather

solar energy and funnel it to reaction centers[3]. Within reaction centers the energy is

converted to a charge separated state that drives the later stages of photosynthesis. In

oxygenic photosynthesis in plants, algae, and cyanobacteria the Photosystem II Reaction

Center (PSII RC) is responsible for transforming solar energy into a charge separation

event which in turn powers a catalytic reaction to split water into hydrogen and electrons

for use in producing ATP. The oxygen we breathe and depend upon is a by-product of

this catalytic reaction. Although the ability to split water and respire oxygen is shared

among many completely different organisms, accomplishing this task requires a delicately

tuned device which evolution has perfected and conserved in structure for billions of

years[39]. Given the difficulty of making a molecular machine that efficiently catalyzes

water splitting using only solar energy and its obvious facility in the production of solar

fuels, understanding the function and structural design concepts of PSII is of interest for

designing artificial photosynthetic devices[1].

The specific structure of PSII conserved across species. Pigments in the RC are

organized specifically to produce a shallow energy landscape which facilitates transfers
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of energy and charge in a millionth of a millionth of a second (or a picosecond, which

is called the ultrafast time scale). These initial energy transfer and charge separation

events are not only fast, but efficient, with quantum efficiencies exceeding 95%[3]. Once

a hole is created in the reaction center, it is transferred via a tyrosine residue to a cluster

of four Manganese atoms in the Oxygen Evolving Complex (OEC) where, after a cycle

of four such transfers, water is finally split. An intense amount of research spanning

decades has been spent on understanding all aspects of PSII, and while the broad strokes

of what happens in PSII is understood, many finer questions remain that are critical for

implementing a device of comparable performance ourselves. For instance, even the

nuclear structure of the catalytic site in the OEC remains an open question[32] (although

the structure is highly constrained and with new techniques may soon be solved[18]).

The excitonic states of the RC, which describe the coupling between electron orbitals

of the pigments, are also not known with certainty. A number of empirical models exist

to describe the kinetics of excitonic interactions[19, 120, 27, 107, 33], but they have

not yet been able to fully account for features in recent two-dimensional spectroscopic

measurements on the RC[23]. More specifically, the sequence of charge transfer events

leading up to the transmission of electrons to the quinone pool still disputed[19, 14, 120].

While the nuclear structure of the entire system is characterized[36], along with the

principle nuclear vibrational modes[111], whether those vibrations interact strongly with

excitons and how that interaction might affect the function PSII is an open question.

1.2 PSII Structure, Function, and Nonlinear Spectro-
scopic Measurements

PSII is just one small piece in a much larger organization. Beginning at the chloroplast

level (the organelle responsible for energy production in higher plants), the photosynthetic

apparatus is essentially a system of nested membranes. The nest of membranes inside

chloroplasts are called the thylakoid membranes for their vaguely sack-like appearance.
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1.1

Grana Thylakoid

Stroma Thylakoid

Chloroplast

Figure 1.1: A cartoon of a chloroplast is shown, with a cutaway to expose the stroma and grana thylakoid

membranes inside.

Figure 1.2: A selected survey of Thylakoid proteins and a graphical depiction of the processes they control

in the thylakoid membrane. Adapted from [5]
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Two main types of thylakoid membranes exist in the chloroplast: grana, which are

columns of tightly packed disks, and stroma thylakoids, which are longer and more loosely

packed. See figure 1.1 for reference. Cyanobacteria lack organelles, but even so their

external membranes are also contorted into many folds. The reason for these membrane

structures, in both cyanobacteria and higher plants, is to increase the surface to volume

ratio. Membranes are a means to isolate one region of the thylakoid stroma from an inner

region (the lumen) in order to create a chemical potential (across the membrane). In

photosynthesis, as with many other biological systems, chemical potential is stored in the

form of a pH difference, i.e. the quantity of dissolved hydrogen ions. As the reactions

occur at the interface between the two regions, in order to increase the number of energy

producing units it is desirable to have a high surface to volume ratio. Ultimately, the

proteins living in the thylakoid membranes exist to produce ATP, the cellular energy

currency.

At the protein level, there are still many mechanisms, length and time scales, and

functions of photosynthesis to understand. In contrast to solar cells, it would be inaccurate

to say that the study of energy transfer or charge transfer captures the majority of what

happens at these membrane interfaces. Converting sunlight to charge carriers and then

chemical potential requires a number of supporting systems, that enable to adaptation to

changing light conditions, means to repair proteins that are damaged, and machinery to

further process the created chemical energy into a form usable by the rest of the organism.

Many of these support systems are either embedded in or extrinsic to the thylakoid

membrane. A cartoon summary of a portion of the proteins involved in the generation

and conversion of chemical potential to ATP is given in figure 1.2, adapted from [5]. This

study will focus on PSII, a protein complex whose main purpose is to collect energy,

transfer it to the reaction center, and produce a stable charge separation that drives the later

stages of the photosynthesis cycle.

PSII is found primarily in the grana thylakoid membranes of higher plants, and

4



particularly in spinach, this can be exploited to separate PSII from the other main

photosystem: PSI[2]. PSII consists of two bound antenna proteins CP43 and CP47, two

tightly bound subunits D1 and D2, which house the reaction center pigments, and PsbO,

which stabilizes the Manganese cluster mentioned in section 1.1. Bound within these

proteins are optically active chromophores, which include 35 chlorophyll, 2 pheophytin,

and 12 beta carotene. The reaction center itself houses 6 chlorophyll, the two pheophytin,

and 2 beta-carotene which are tightly packed together with distances ranging from as little

as 8 angstroms between PD1 and PD2 to about 70 angstroms from ChlZD1 to ChlZD2[36].

It is this tight packing which causes the valence orbitals of the chromophores, whose

transition energies are in the visible, to be coupled together. This means that an incident

photon will not simply excite one chlorophyll or pheophytin, but a collection of them

simultaneously. Such a simultaneous excitation is called an exciton. The 8 pigments in

the reaction center are depicted in figure 1.3. As these pigments will be often referred to

by name, we describe them here: PD1 and PD2 are two chlorophyll that are the closest

analog to the special pair in the bacterial reaction center (BRC). ChlD1, ChlD2, ChlZD1

and ChlZD2 are also chlorophyll, where D1 or D2 denotes which protein they are bound

to. PheoD1 and PheoD2 are pheophytin (similar to chlorophyll, but lacking a coordinated

Magnesium). It is actually possible to selectively purify the PSII core complex including

CP43 and CP47 and the reaction center, where these antenna proteins are removed from

spinach in a preparation called d1d2-cyt.b559[37], which we colloquially shorten to

d1d2. In this preparation, the only optically active pigments are only 6 chlorophyll, 2

pheophytin, 2 carotenoids, and the heme in cytochrome. Thus, the structure in figure 1.3

is representative of the d1d2 cyt. b559 complex, which the preparation studied in this

work. Other preparations, from cyanobacteria Synechocystis[30] or T. Elongatus[21] also

exist and are popular in mutagensis and crystallization respectively, but are typically more

difficult to produce.

The reaction center has a number of unique features in the visible spectral region,
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Yz

Chlz D1

Pheo D1 Pheo D2

Chlz D2

Chl D1
Chl D2

PD1

PD2

Figure 1.3: A crystal structure of the main pigments in d1d2 taken from [36]. Also shown is Yz, the tyrosine

residue which conducts holes to the Manganese cluster. Not shown are two carotenoids on the periphery of

the protein and the phytol tails of the chlorophyll/pheophytin. Color coding is arbitrary, but helps the viewer

see which pigments belong to the D1 protein or the D2 protein at a glance.

which yield different information. Chlorophyll absorbs primarily in the deep blue (Soret

band) and the red (Qy band), giving rise to the green appearance of chlorophyll and

most plant life. Most studies focus on the Qy band, as all the processes associated with

charge separation are energetically associated with this band (see figure 1.4 panel B). An

absorption spectrum of the purified reaction center is shown in panel A of figure 1.4, where

a number low amplitude bands are clearly visible. The Soret band is primarily used for

pigment stoichiometry measurements, where in the case of purified PSII RC, an absorption

ratio of A416/A435 = 1.2 indicates a sample with 6 Chlorophyll and 2 pheophytin[9].

At 545 nm, there is an isolated absorption feature associated with the Qx transition of

pheophytin and is an important marker for determining both pheophytin excitation and

the formation of a pheophytin anion. Studies of chemically reduced chlorophyll and PSII

reaction centers have found two other anion bands, one broad absorption peaking at 455

nm and another from 790 to 820 nm[38, 15]. It is noted in [13], however that all of these

anion bands are spectrally overlapped with excited state absorption features and thus are

not perfect markers for observing charge transfer.
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Figure 1.4: A: Visible absorption spectrum of the purified PSII reaction center, taken at room temperature.

The optical density (O.D) here is representative of that used in studies to be presented later. B: An energy

diagram adapted from [4], depicting the first 3 main steps of the reaction center up to the transfer of a hole to

Yz en route to the Manganese cluster. Note that a P+
D1Pheo−D1 can readily decay to a triplet state in reaction

center preparations where transfer to QA is blocked and this triplet state is nearly isoenergetic with the

product state of the reaction center.
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1.2.1 Non-linear Spectroscopy of PSII

In order to compete with the known nanosecond excited state lifetimes of chlorophyll,

any of the initial photoreactions constructed from chlorophyll aggregates must proceed

on timescales that are at least 10-100 times faster[34]. Understanding the processes

which immediately follow photoexcitation in photosynthetic systems therefore requires an

instrument capable of resolving sub nanosecond dynamics. A number of methods exist

to probe such these dynamics, but the most commonly employed methods in the study of

the PSII core and reaction center complexes have been time resolved fluorescence and

transient absorption, with the last being the most popular and enduring method as it has

been used to resolve dynamics down to femtosecond timescale[8]. Both of these methods

give slightly different, but complementary information. As mentioned in the beginning

of this section, anion bands offer a chance to directly monitor the formation of charge

separated products and so these bands have been studied extensively. In the following I

will review the works on each band and the conclusions reached by those studies.

Transient absorption studies of ground state bleach in the pheophytin Qx band at

545 nm has been monitored under a number of excitation conditions over the years. In

the early 1990s a 20 ps charge separation time was found for a room temperature study

using selective and non-selective excitation of the Qy band[17] and confirmed in the mid

1990s[7, 22] along with a weaker 3 ps component. The same band probed with numerous

excitation conditions at 77 K in [120], is slightly faster with the main component at about

17-18 ps, and faster components down to 1.5 ps. It is interesting to note that in this study,

680 nm excitation results in a dramatically slower 40 ps lifetime of the Pheo Qx band. In

a comprehensive study[19] relying heavily on kinetics from this band, 1.5 ps components

were identified as energy trapping in the reaction center and primary charge separation

was assigned to a 5.5 ps component.

Fluorescence of the reaction center monitored by time resolved fluorescence (TRF)

measurements or stimulated emission of a the Qy(0,1) band indirectly give information
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about charge separation through the depopulation of singlet states which are able to

fluoresce to charge separated states which do not. Streak cameras offer the fastest

measurement rates for TRF, with response times as small as 4.5 ps[6]. Faster response

times can be achieve through fluorescence upconversion, though the number of these

studies on d1d2 or core complexes has been limited[40]. The conclusions from these

studies, particularly for early ones, was that the charge separation was occurring on a time

scale of 30 ps or less. By using deconvolution of the instrument response, researchers in

[6] concluded that both a 1.5 ps component and a longer, multi-exponential component

best described the time scale of charge separation, with the faster component being

significantly larger than reported for the Qx band (50% vs 30%). Stimulated emission at

low temperature (15 K) corroborates with a shorter time component (2 ps)[38].

Transient absorption studies have examined the Qy band, and as one might expect

the kinetics are multi-exponential. 20-27 ps components were identified in the Qy band

in [28], along with 3 ps components[38]. More modern studies at 77K have identified

a myriad of components in the Qy and other bands, ranging from 1.2 to 2 ps, circa 20

ps, 250 ps and nanosecond components[120]. Early magic angle polarized studies in

the mid 1990s identified a 30 ps energy transfer component in the Qy band[12] at room

temperature.

Markers of charge separation in the infrared were studied primarily by Groot and

co-workers[14]. In this study it was concluded, based on vibrational modes from 1585

to 1775 cm−1, that photoreduction of pheophytin occurs faster than other studies with a

rate of 0.6-0.8 ps. A circa 6 ps lifetime for the formation of P+
D1 is estimated from the data

and the conclusion is that ChlD1 and PheoD1 complex to form the initial charge separation

event.

It is clear that a long history of measurements on reaction centers and core complexes

have been made, and the brief review here is hardly doing justice to them. An excellent

review of early work is found in [13], and another of work leading up to the early 2000s in

9



[40] which also includes a review of mutant studies not mentioned here, and more recent

reviews in [29, 20]. Despite all this work, there are still opposing views on what model

best describes the initial charge separation pathway. The 20-50 ps lifetimes found in nearly

all studies are thought to result from energy transfer to the RC and the multi-exponential

time components seen in anion bands reflect the cascade of energy transfers from antenna

and peripheral chlorophyll. The fast components observed intuitively result from direct

excitation of the reaction center. The dispersion of reported fast rates, ranging from sub

picosecond through 3 picoseconds, however open the door for a great deal of speculation.

Two main models are present in the current transient absorption literature. One group

strongly advocates both pathways to charge separation[120] shown in (1.1) and (1.2),

evoking a multi-pathway picture that is understood to be true in the bacterial reaction

center[16]. Others advocate only the ChlD1 pathway in equation (1.1) as the single

dominant pathway[19, 20].

[ChlD1,PheoD1]
∗ → Chl+D1Pheo−D1 → P+

D1Pheo−D1 (1.1)

[PD1PD2,ChlD1]
∗ → P+

D1Chla−D1 → P+
D1Chla−D1 (1.2)

In 2010, Myer and co-workers[24] reported a two dimensional spectroscopic study of

the PSII RC examining the Qy band that tentatively supports a multi-pathway model by

observing a spectrally dependent dispersion of rates. Subsequently I made measurements

of d1d2, expanding the probe bandwidth to cover from 700 to 455 nm with the aim of

observing dynamics in anion bands and the pheophytin Qx band[10]. The Qy band of

this data was analyzed via simulations and again, tacit support for multiple pathways

was found[100]. While signal was visible for the anion bands, it was too weak to offer

interpretable results along the excitation axis. In figure (1.5), the 2D spectrum of d1d2

is shown for the regions from 450 to 640 nm in panel A and from 650 to 690 nm for

comparison in panel B. As in the original study[24], the Qy band exhibited excellent signal

10



to noise, but the signals in the blue, particularly at the Pheo Qx bleach band, are nearly

100 fold weaker, which places the signal to noise of our measurement for these regions

on the order of unity. In the next chapter we develop a new method to collect 2D spectra

that dramatically improves the signal to noise achievable, with the aim to study weak, yet

information rich transitions.
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Figure 1.5: A 2DES measurement employing a Calcium Fluoride generated continuum probe examining the

PS2 RC at a waiting time delay of 3.5 picoseconds. A: the probe region from 455 nm to 640 nm. B: the

probe region from 650 nm to 690 nm.
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1.3 Overview of 2D Measurements

The introduction of two dimensional electronic spectroscopy (2DES) in section 1.2.1

deserves some exposition, as for the remainder of this work I will be using 2DES to

examine the PSII RC. Two-dimensional electronic spectroscopy (2DES) has become a

popular extension of visible transient absorption (TA) spectroscopy. By resolving the

excitation frequency in addition to the detection frequency, 2DES aids in understanding

condensed matter processes such as solvation dynamics[56] and excitonic energy

transfer in photosynthetic complexes[46, 62], J-aggregates[48] and semiconductor

materials[75, 76]. In concept, 2DES expands TA by using two pump pulses with variable

time delay t1 between them, rather than a single pulse, and then probes the system after

a waiting time t2. The result of splitting the pump pulse into two is that the measured

transient signal oscillates as a function of t1, and the Fourier transform with respect to this

delay produces the ω1 axis (or excitation axis). As in frequency-resolved TA, the signal

is typically detected in the frequency domain, yielding the ω3 axis (detection axis). The

reason the detected signal oscillates with t1 is because the first pump pulse puts the system

into a coherence: a super-position between the initial (usually called ground) state and

some excited state. Left alone, this coherence will oscillate between a mixture of mostly

ground or mostly excited state or somewhere in between. When the system is “observed”

by the dipole operator via interaction with the probe field a coherence will emit a photon

with energy equal to the difference between the two states that it was in a coherence with,

which is to say the photon emitted will have a well defined frequency. This is equivalent

to saying that, in the time domain, the output polarization will oscillate with a frequency

equal to ωeg, where h̄ωeg is the aforementioned photon energy. The concept that a field

interaction produces a coherence, which can then evolve and potentially re-emit a photon

comes from a perturbative picture of quantum mechanics and is conveniently described

for open or closed quantum systems by a density matrix formalism. The density matrix

is essentially an outer product of all possible quantum states in the system in a basis for
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those states that is convenient. If a closed quantum system comprised of only two states A

and B is considered, then a convenient basis for such a system would be {|A〉 , |B〉}, and so

the density matrix would take the form:

ρ =

⎡
⎢⎣ |A〉〈A| |B〉〈A|

|A〉〈B| |B〉〈B|

⎤
⎥⎦

The off diagonal elements of ρ describe a coherent superposition of the states A and B.

In so far as the basis completely describes the system, then so too does the density matrix

describe the system.

2DES, like transient absorption, is a third order process, which means that three field

interactions are required to generate the desired signal. The term “field interaction” refers

to a time dependent perturbation theory of the system response with respect to the exciting

field (field-matter interaction) mentioned earlier in this section. Each field interaction can

can change only states of the density matrix which correspond to energy differences within

the bandwidth of the laser. In the two state example above, a field interaction would only

be able to produce a transition from |A〉〈A| to |A〉〈B| or |B〉〈A|. Transitioning from |A〉〈A|
to |B〉〈B| would require two field interactions, one on the ket side and one on the bra side.

Field interactions can come in any allowed order with any time difference between them.

If the field interactions are impulsive, the system propagates between field interactions

along the zeroth-order Hamiltonian, which for spectroscopic measurements includes

system and bath dynamics[171]. During the infinitesimally short field interaction the

system propagates along the field-matter Hamiltonian alone and the system propagation

during this time can be neglected. Using a delta-function field interaction allows for the

dynamics of a system to be described by a Green’s operator[105].

A “diagrammatic” approach can make perturbative density matrix treatments of

spectroscopic signals simple to understand. The diagrammatic approach uses so called

double sided Feynman diagram to visually represent the density matrix element that

14



describes the system after each excitation of the system via field or vacuum interactions. A

brief tutorial on diagrams is depicted in figure 1.6, adapted from [35]. These diagrams can

be used to anticipate a number of features in the 2D spectrum, as shown in figure 1.7. From

such a diagrammatic approach, it is clear that numerous combinations of signals exist. For

2DES the two combinations of interest are called the “rephasing” and “non-rephasing”

signals, which are depicted in figure 1.7. These two signals are two of three pathways

which produce signals that have a frequency within the laser bandwidth. The third such

pathway is called the “double quantum” signal and arises when two positive frequency

interactions happen followed by a negative frequency interaction. As will be demonstrated

in the next chapter, the double quantum signal can be isolated from the rephasing or

non-rephasing signal via a phenomenon called phase matching.
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Figure 1.6: A tutorial on the components of double sided Feynman diagrams and how they encode the
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The 2D spectrum offers a wealth of information through the peak shape in addition

to peak position. At early waiting times, the peak elongation along the diagonal is

informative. Inhomogeneous broadening manifests itself as the diagonal linewidth at

short waiting times, while homogeneous linewidth at short waiting times is represented

by the anti-diagonal linewidth of the peak[105]. As the waiting time increases, one can

measure the loss of correlation of the detected frequency from the excitation frequency by

observing the anti-diagonal linewidth broaden, producing a round peak shape. Just like

transient absorption, population kinetics can be resolved by examining the spectra as a

function of waiting time. The advantage of a 2D measurement for determining population

kinetics is that transfers between different detected frequencies are straight-forwardly

resolved by watching the evolution of the cross-peak associated with the initial and final

state. Second order processes, involving two transfer steps between initial and final states,

however remain difficult to resolve. Depictions of energy transfer via Feynman diagrams

and cartoon spectra, along with how inhomogeneous broadening manifests itself in 2DES

is illustrated in figure 1.8.
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CHAPTER II

EXPERIMENTAL IMPLEMENTATION OF 2DES

In this chapter, we discuss a number of important details surrounding the realization of

a 2DES experiment. While a 2DES apparatus was already present when I began my work,

I describe a new method for collecting 2DES data that offers a dramatic improvement

over our previous pump probe setup and opened new doors for the sort of questions that

could be addressed in d1d2 and other systems with our setup. Specifically the signal to

noise increased by nearly 20 fold and we increased the bandwidth of our sources so that

we could approach 10 fs pulses, allowing the clear resolution of dynamics on the 20-30 fs

time scale. In the appendices of this chapter, some information on improvements to our

NOPA setup are presented.

2.1 Introduction

2DES was first experimentally demonstrated[57, 55] in 1998, and since then there

have been a number of groups demonstrating different methods for collecting 2DES

spectra[49, 45, 81, 77, 79, 52, 65, 71, 53, 66, 64, 68, 80, 42]. Each of the various

2DES methods have advantages and disadvantages, as they attempt to solve different

problems associated with the realization of 2DES. Some of the common practical

problems addressed in the literature are: achieving phase stability, reducing instrument

and measurement complexity, lowering acquisition time and minimizing component

costs. Most setups use a fully non-collinear box-CARS arrangement in some form or

another, since it gives a background free signal, and use motorized delay lines to scan
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t1. Compared to fully non-collinear methods, 2DES in the pulse-shaped pump-probe

geometry[52, 65, 73] provides a reduction in measurement and instrument complexity.

A significant benefit of the pump-probe geometry itself is that the collected signal is

automatically real and absorptive, as are transient absorption measurements made in the

same geometry[50]. In typical non-collinear geometries, rephasing and non-rephasing

signals are collected separately and must be combined together and “phased” to unmix

dispersive and absorptive components of the spectra. As will be discussed later, the

unmixing process can be challenging and collecting the pathways at separate times leaves

one vulnerable to noise from long-term laser fluctuations. In addition to the simplicity of

the geometry itself, the use of a pulse-shaper to create the two excitation pulses eliminates

uncertainties in coherence time zero that can be present in motorized setups[41] and

enables phase-cycling which can aid in scatter removal and the isolation of signals of

interest[79, 65, 72]. The use of a pulse-shaper also offers the flexibility to explore the

effect of pulse-shape (amplitude and phase) on the measurement[78, 68]. Despite these

advantages, pulse-shaped 2DES in the pump-probe geometry suffers from high component

costs and offers less freedom to optimize the signal-to-noise ratio (S/N) compared to

background-free geometries. In the pump-probe geometry, the signal emerges collinear

with the probe and both are sent directly into the camera. As a result, the probe must

be made to be weak in order to avoid saturating the detector. As the signal strength is

proportional to the probe field, its reduction lowers the achievable S/N. Background free

geometries are popular because they do not send the probe directly into the detector, so

the S/N may be improved by increasing the probe strength and optimizing the relative

strengths of signal and the local oscillator used for heterodyne detection[61]. To exploit

this fact, polarization schemes have been employed in the pump probe geometry to control

the local oscillator power[84, 65]. Polarization controlled pump-probe geometry 2DES,

however, is limited to measuring certain tensor elements of the third order response, and

cannot measure the all parallel response. Traditional box-CARS background free 2DES
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setups have no restriction on what tensor element is measured. We note that the achievable

S/N of background-free detection is reduced if phase instability between the signal

and local oscillator is significant[70], a problem that can be overcome with the use of

diffractive optics[49]. Here we present a hybrid diffractive optic and pulse-shaping based

approach to 2DES. It combines the advantages of background-free box-CARS detection

with the precise time-delays and phase-cycling capabilities of pulse-shaping. The setup

can be readily inter-converted between the background free and pump-probe geometries to

fit the demands of the system being studied.

2.2 Review of 2DES setups and Signal Isolation

In what follows we will consider a “hybrid” setup which employs five input pulses, while

typical 2DES setups employ three input pulses. To understand how a five pulse setup could

give the same information as a three pulse setup, we begin with a review of third order

signals. All 2DES setups seek to measure a specific set of signal pathways in the third

order response of a material to an applied optical field, as explained in the first chapter.

The phrase “third order response” refers to a Volterra expansion of the output signal

with respect to its input fields, where the desired signal is then the third term in such an

expansion. It is important to note that the Green’s function formalism which underpins the

diagrammatic description of 3rd order signals presented in the first chapter is essentially a

special case of a Volterra series where the input fields are all delta functions. The linear,

or first term in the Volterra series describes the absorption and dispersion of the sample,

both of which can be straight-forwardly combined into a complex index of refraction. It

can be shown[43] that the second order term in such an expansion is zero for isotropic

media, such as the typical liquid (or glassed) sample. Typically, in the measurement of

third order signals, the linear response term is ignored in the analysis by presuming that

the third order signal that is generated is only weakly affected by the linear response both

in its generation and propagation out of the sample. These assumptions are valid for low
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optical densities (low absorption) and thin samples (low dispersion). In reality, one often

does not actually have a low enough optical density or thin enough sample to legitimately

ignore these effects, and so the signals one measures are not a pure representation of the

third order response, but a distorted one[47, 63, 85]. Nevertheless, exposition is greatly

simplified by ignoring the linear propagation effects and the relevant intuition gained

by this approximation unaltered. Assuming all parallel polarized light, the third order

polarization we are seeking in a 2DES measurement can be written in the frequency

domain as:

E1 (ω) = |A(ω)|exp
[
�k (ω) ·�r+ iφ (ω)

]

Esignal (ωs) =

∞̂

−∞

∞̂

−∞

∞̂

−∞

∞̂

−∞

χ (ωs,ω1,ω2,ω3) (2.1)

× E (ω1)E (ω2)E (ω3)δ (−ω1 +ω2 +ω3)
3

∏
j=1

dω jd�r

Here δ (−ω1 +ω2 +ω3) implies that we are looking for a signal frequency

ωs = ω3 +ω2 −ω1. Other combinations exist, such as the third harmonic signal:

ωs = ω1 +ω2 +ω3 or the double quantum signal ωs = ω1 +ω2 −ω3. The wave-vector

k (ω) contribution of the field is complicated if treated rigorously. If we again assume that

none of the excitation fields experience any linear propagation effects, approximate each

input beam as a single ray with no divergence, and then ignore the frequency dependence

of the wave vector, equation 2.1 simplifies to something easily used in practice. In

particular, we are interested in describing the signal direction in terms of input beam

directions�b j and the phase of the output field:

ksignal = −�b1 +�b2 +�b3 (2.2)

φsignal (ω) = −φ1 (ω1)+φ2 (ω2)+φ3 (ω3) (2.3)
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A number of setups employ what is called a “box-CARS” arrangement of the input

beams, where each input beam is placed on the corner of a square and then all beams

are focused into the sample forming a tetrahedron with the point striking the sample.

In this case, it’s convenient to write the input beam vectors�b j by unit displacements

along each coordinate axis. For the box-CARS arrangement three corners of the

square serve as the inputs so that the signal emerges in the fourth corner of the box:

(1,1,1)− (−1,1,1)+ (−1,−1,1) = (1,−1,1) = ksignal . The pump-probe geometry

involves just two input beam directions, IE two corners of the box instead of three,

so the signal emerges in the same direction as the beam which only interacted once:

(1,1,1)−(1,1,1)+(−1,1,1) = (−1,1,1) = ksignal . If more pulses are added to the system

and we want to know the phase and beam direction of the resultant third order signals, we

still use the above expressions, except now we need to consider all possible combinations

of three inputs fields and beam directions. For five input fields it may be tempting to think

that fifth order signals would be significant. This is actually a concern regardless of how

many pulses are sent in and what matters is only the excitation probability per pulse. A

single pulse might produce fifth order signals if it had a high probability to excite the

sample. Consequently, we aim for an excitation probability per pulse of <5% per system

(be it a single chromophore or collection of aggregated chromophores). Therefore, the

probability of 3 fields hitting a given system is at most 0.0125% and the fifth order signal

is 0.25% of that.

The experimental implementations of pump-probe geometry 2DES and box-CARS

geometry 2DES with 3 input fields are depicted in figures 2.2 and 2.1 respectively.

There are two signals of interest in 2DES: rephasing and non-rephasing. These two

signals amount to two different time orderings for the purpose of discussion here. The

rephasing signal requires that the negative frequency pump interaction come first, the

positive pump second followed by the probe. The non-rephasing signal is produced when

the positive pump comes first, the negative second, and then the probe. When the pulses
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Figure 2.1: A box-CARS experimental setup implemented with a diffractive optic element (DO) to produce

the 3 input beams. Focusing optics here are drawn as lenses to simplify the layout, but most setups employ a

reflective optics in practice to reduce pulse broadening from passing through refractive materials. Variable

time delays between the pump beams are created by moving a thin wedge in and out.

Dazzler

SampleProbe

Pump Focusing Lens

Figure 2.2: A pump probe experimental setup implemented with a pulse shaper to produce the two variably

delayed input pump beams. Focusing optics here are drawn as lenses to simplify the layout, but most setups

employ a reflective optics in practice to reduce pulse broadening from passing through refractive materials.
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have finite duration and the pulses are overlapping in time, it’s not possible to distinguish

between these two signals. When the pulses are well separated, then we can employ either

beam direction, signal phase, or both to separate out the signal desired. The phase of the

signal can be extracted from the interferogram of the signal field with a reference beam

held at a fixed phase with respect to the probe field using a technique called spectral

interferometry[60]. In the box-CARS arrangement for three input pulses direction alone

suffices to isolate our desired signals. The rephasing and non-rephasing signals are emitted

into the fourth corner of the box one at a time, with the ordering of the pulses into the other

three corners of the box determining which signal emerges. In the pump probe geometry,

both rephasing and non-rephasing signals emerge simultaneously in the probe direction

along with a transient absorption signal generated from each individual pump pulse.

Separating out the rephasing and non-rephasing signals from the transient absorption

signals in the pump probe geometry requires some exploitation of signal phase, since

all signals emerge in the same direction. The simplest example of exploiting the signal

phase to isolate a desired signal is “phase cycling”. In phase cycling one adds a constant

(frequency independent), but variable phase to each input field. The constant phases are

changed over the course of several measurements so that a linear system of equations can

be constructed to isolate the signal of interest. Note that the reason constant phases (as a

function of frequency) are used is because they can be pulled out of the integral in equation

2.1 and thus only introduce a complex coefficient to a given measurement. For the pump

probe geometry to isolate the rephasing and non-rephasing from transient absorption

signals it suffices to take two measurements: one where the two pump pulses have 0 phase

difference and one where they have a pi phase difference. Since transient absorption

signals depend only on one pump pulse, their signal phase will be independent of the

inter-pump-pulse phase difference. The rephasing and non-rephasing signals, however,

have oppositely signed dependence on the inter-pump-pulse phase difference, as shown

below:
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φtransient absorption = φ3

φrephasing = −Δφ12 +φ3

φnon−rephasing = Δφ12 +φ3

For a five pulse setup, where two pump pulses per beam are placed at (−1,1,1) and

(−1,−1,1) and a probe pulse is placed at (1,1,1) we find that only 4 signals emerge in

the (1,−1,1) (fourth corner of the box) direction1. These signals and their directions are

depicted in panel B of figure 2.3.

2.3 Experimental Implementation of a 5 pulse setup

The laser source consists of a Ti:Sapph oscillator (Spectra Physics MaiTai) seeding a

regenerative amplifier (Spectra Physics Spitfire Pro). The 4 mJ, 500 kHz, 800 nm 40 fs

output is split and sent into two dual-stage non-collinear optical parametric amplifiers2

(NOPAs)[83]. The pump beam is sent through a pre-compensating grism[58] and then

into an acousto-optic pulse-shaper (Dazzler, Fastlite) where it is further compressed and

split into two pulses with a programmable inter-pulse delay t1 and phase. Note that an

amplitude and phase shaping pulse-shaper is required to produce a delayed pulse pair.

Aside from the Fastlite product, there are other options, such as Spatial Light Modulators

(SLM) and 4F acousto-optic (AO) pulse shapers[82, 54]. The critical feature of the Dazzler

and other AO shapers over SLM-based shapers is the ability to change waveform rapidly,

shot to shot, as this reduces the influence of long-term laser noise on the measurement.

The second NOPA is compressed using a separate grism pair and is delayed by “waiting

time” t2 with respect to the pump pulses using a conventional delay stage.

1See appendix 2.6

2See appendix 2.5

31



Dazzler

SampleDO
Probe

Pump

Attenuator

TG1: =0 TG2: =0 R: =y-x NR: =x-y

x
y

x
y

x
y

x
y

0th order mask

Attenuated LO

(A)

(B)

Focusing Lens

Imaging Lens

tctbta tdt0

t3t2t1

c
b
a
a
b
c
d

d
c
b
a
a
b
c
d

d
c
b
a
a
b
c
d

d
c
b
a
a
b
c
d

d

Pulse Sequence

Figure 2.3: Experimental Setup. (A) The diagram (not to scale) in lens notation of our interferometer. The

round cornered dotted box indicates the “drop-in” addition to a traditional pulse-shaped pump-probe

geometry 2DES setup. In our realization of the design, spherical mirrors are used with focal lengths f=500

mm for the focusing mirror and f=250 mm for the imaging mirror. (B) Four pulse timing diagrams are

shown illustrating the origin of the signals emitted in the local oscillator direction. These diagrams

communicate several things. The arrival time of the pulses is shown by their vertical displacement from the

center of the diagram. The phase of the pump pulse is indicated by a color coordinated box and letter (x or

y). The k-vector of the beam is indicated by the corner of the box on which it lies. Below the diagram is an

equation giving the phase-cycling dependence of the signal.
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The pump and probe beams are focused onto a diffractive optic (21 g/mm) with a

spherical mirror (f=500 mm, spotsize ≥150 microns). The first order diffracted beams are

imaged as shown in Figure 2.3 to produce a crossing angle at the sample of approximately

1.5 degrees. For the data presented here a collinear FROG measurement of the pump

pulses [34] yielded a pulse duration of 12 fs. Transient-grating-XFROG of the probe

pulses gave a duration of 15 fs. Since the pulse-shaper introduces two pulses into both

pump arms of the interferometer, four pump pulses strike the sample instead of two as in

usual box-CARS arrangements. Third order signals which phase match in the direction

of the local oscillator arise from pairwise interactions with two of the pump pulses and

the probe pulse. Figure 2.3 panel B depicts the four possible time ordered permutations

that phase match with the local oscillator and the names of the signals each time ordering

generates. Since all four signals enter the spectrometer simultaneously, a means to separate

them is required. Phase-cycling, wherein a different constant phase is independently

applied to the pump pulses, provides a means of separating the four signals [79]. As

illustrated in Figure 2.3 panel B, the first pulse out of the pulse-shaper is phase rotated by

x, while the second pulse is rotated by y. Fortunately, the two signals we are interested in

(rephasing and non-rephasing) have a unique phase dependence on x and y, while the two

transient-grating signals share a common phase dependence. Isolating the rephasing signal

(SR) and non-rephasing signal (SNR) therefore requires the solution of a linear system of

three measurements S1, S2, and S3.

⎡
⎢⎢⎢⎢⎣

SR

SNR

ST G

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

ei(y1−x1) ei(x1−y1) 1

ei(y2−x2) ei(x2−y2) 1

ei(y3−x3) ei(x3−y3) 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

S1

S2

S3

⎤
⎥⎥⎥⎥⎦ (2.4)

We note that although three measurements are required to separate the signals, this

does not represent a loss of duty cycle as all signals of interest are contained in each

laser shot, though in different complex linear combinations. Different phase-cycling
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schemes for 2DES in the pump-probe geometry have recently been explored[86]. In our

implementation, we use the following pulse-shape sequence:

{(x1,y1) ,(x2,y2) ,(x3,y3)} =

{
(0,0) ,

(
0,

2π
3

)
,

(
0,

4π
3

)}
(2.5)

We also suppress interference scatter terms between pump, probe, and signals by

collecting a second set of measurements where both pulses are shifted by π[65, 73].

The result is a total of six phase-cycles per t1 time point. Pump scatter is suppressed by

chopping the probe with a mechanical shutter (Thorlabs SH05) and subtracting out the

observed scatter. By using a mechanical shutter we are able to achieve good suppression

of pump scatter while maintaining a duty cycle of 80%. A useful benefit of pulse-shaping

based 2DES setups is the ability to observe the system of study in a rotating frame, also

known as “phase-locking”[73, 59]. In phase-locking, the coherent oscillations along t1

are observed at the difference between their innate frequency and a lock frequency ωlock.

This permits one to sample the coherence time much more coarsely, while still satisfying

Nyquist sampling, and thereby increasing acquisition speed. With the pulse-shaper,

we rapidly cycle through each of the six phase-cycles and t1 times, changing the pump

waveform for every laser shot. The signal for a given t1 value is therefore isolated in 12 ms

(minimally 6 ms if only 3 phase-cycles are used) when running at 500 Hz. When running

at 1 kHz the signal isolation times are halved. In our measurements vide infra, we average

~150 2D spectra together for a total acquisition time of 1.5 minutes per spectrum.

We note that this setup can easily convert to a pump-probe 2DES geometry by blocking

one pump beam and a probe beam, using the local oscillator beam as the probe. It also

facilitates polarization-dependent measurements. To demonstrate the hybrid diffractive

optic/pulse-shaping method we recorded 2DES data of chlorophyll a in a 50/50 (v/v)

ethanol/glycerol mixture at 77 K. All chemicals were purchased from Sigma Aldrich and

used as received. The sample was loaded into a custom-designed sample cell and cooled
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Figure 2.4: Relative phase of the signal measured at t1 = 0 delay, calculated by spectral interferometry[60].

(A) We demonstrate that the standard deviation of the signal phase is nearly independent of frequency. (B)

The phase stability measurement as a function of time for the central frequency. In this plot measurements

were averaged for a minute to produce the points shown in green.

to 77 K in an Oxford Microstat N cryostat.

2.3.1 Experimental Results

As this setup does not require wedge-pairs or other optics inside the imaging system, apart

from the local oscillator attenuator, we are able to bring the beams very close together

and make the interferometer compact. The compactness and use of a diffractive optic[49]

makes the setup very passively stable, even without an enclosure to block air currents. To

demonstrate the high phase stability of the setup we recorded the interference of the signal

with the local oscillator. Figure 2.4 shows the recorded phase difference over an hour long

period, where we estimate the standard deviation of the phase fluctuations to be ~λ/200.

In figure 2.5 we show 2DES, transient-grating, and pump-probe data of chlorophyll a in

a 50/50 (v/v) mixture of ethanol/glycerol at 77 K using the hybrid diffractive optic/pulse

shaping method. The sample O.D. was 0.3 at the maximum absorption. The fraction of

molecules excited by a given laser pulse (bleach rate) was 0.15% for the pump and 1.4%

for the probe.
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Figure 2.5: Demonstration of various 3rd order signals on Chlorophyll a in 50/50 (v/v) ethanol/glycerol at

77° K. The contour plots are drawn on a linear scale, with 1 contour above and below 0 omitted to suppress

the noise floor. (A) The real rephasing spectrum with contours 100 contours over the range. (B) The real

non-rephasing spectrum with 50 contours over the range. (C) A comparison of measurement to

measurement signal variation between pump-probe and the phased transient-grating at the peak of the

signal. There are three consecutive laser shots per measurement shown for the transient-grating signal (1 for

each phase-cycle) and two consecutive laser shots (pump on and pump off) per measurement shown for the

pump probe signal. The black line around which the signals vary represents the mean signal value in shared,

but arbitrary units. The observed per measurement signal to noise ratio (S/N) (mean value divided by the

standard deviation) is 32.2 for transient-grating and 1.3 for pump probe. Thus, factoring in the number of

laser shots per measurement, we see a 19.5 fold S/N improvement at the peak of the signal.
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2.3.2 Analytic Phasing of 2DES data

One of the distinct advantages of the pump-probe geometry for 2DES is that it avoids

the phasing problem. The probe pulse also acts as the local oscillator for heterodyne

detection of the signal, yielding absorptive spectra[50]. Should it be desirable to separate

rephasing and non-rephasing signals, this can be achieved with phase-cycling[65]. In the

non-collinear geometry used here, the phasing problem returns due to the fact that signal

and local oscillator follow different paths between the DO and the sample, imparting

an unknown relative phase. To obtain absorptive spectra we phase the transient-grating

signal against the pump-probe signal, an approach that has been used in time-domain

heterodyne-detected transient-grating measurements[67, 51]. The transient-grating signal

is generated during the course of a 2DES measurement in a non-collinear geometry when

t1 = 0 and has the same unknown relative phase as the 2DES data[69]. The frequency

resolved pump-probe must be measured separately, though this is easily realized in our

setup by removing the local oscillator attenuator and blocking a pump and probe beam.

As noted by Singh et al.[74], the use of the transient-grating signal for phasing follows

immediately from the projection slice theorem[57].

In the typical formulation of the phasing problem, finding the unknown phase is done

by minimizing an objective function:

O = ||T G(ω)cos(φT G (ω)+θ (ω))−αPP(ω)||22 (2.6)

Where T G(ω) is the measured frequency resolved transient-grating signal, PP(ω) is

the measured frequency resolved pump-probe signal, α is an unknown positive scaling

constant and θ (ω) is the unknown phase model, typically a polynomial of first or second

order in frequency. This minimization formulation is liable to give poor agreement between

pump-probe and the transient-grating signal since the objective function is rugged (see

figure 2.6 panel F). The task of searching for a global minimum can be avoided by finding
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an analytic solution. We find that in certain common circumstances an analytic solution to

the phasing problem is available if the ratio R = PP/ |T G|| reaches a global extremum at

ωe. The existence of such a point implies that the absolute value transient-grating signal

is purely absorptive there, IE . At this point, α = |T G(ωe)/PP(ωe)| allowing one to

calculate the phase of the transient-grating signal:

φT G (ω)+θ (ω) = arccos

[
αPP(ω)

T G(ω)

]

Since the inverse cosine is not unique, it should be constructed so that passing through

a global extremum of R causes the domain of the arccos to pass to the next branch and

the range to increment (or decrement) by π appropriately. A global extremum of R is

guaranteed to exist within the detection window provided the frequency response of

the transient-grating signal does not contain significant resonances outside the detection

window. This requirement may be seen by using a Kramers-Kronig relation (KKR) on the

pump-probe signal to recover the dispersive pump-probe spectrum, as is commonly done

in the pump-probe geometry 2DES[65]. When the resonances of a signal are completely

contained within the detection window, the dispersive component estimated in this way

will have a zero crossing at the extremum of R. As resonant amplitude of the signal

increases outside the detection window, the zero crossing of the dispersive spectrum

estimated by KKR will shift away from the global extremum of R. In the worst case, where

large resonances of the pump-probe signal exist outside the detection window, then the

zero crossing of the dispersive spectrum estimated by the KKR will no longer be related

to a global extremum of R, and the global extremum will likely exist outside the detection

window. In this case, the analytic solution for the phasing problem will not apply. In

these circumstances it is necessary to employ numeric methods which search for a global

minimum of the objective function, the simplest of which is brute force grid-searching of

the physical parameter space followed by local minimization. For such a minimization
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procedure it is helpful to employ the following modification of 2.6:

O = min
[
|α |AT G [ω −ω0]|cos(φ (ω))−PP [ω −ω0]|2

]
φ (ω) = φobs (ω −ω0)+Θcor (ω −ω0)

Θcor (ω) = φobs (ω −ω0)+θ0 +θ1 (ω −ω0)+θ2 (ω −ω0)
2

Which casts the problem into the variable projection format: O=min
[
g
(

Φ�
(
�θ
)

α − y
)]

,

where g is the least squares function. If the first derivative of the model function with

respect to the parameters �θ = {θ0,θ1,θ2} are supplied then the gradient of the objective

function can be computed analytically and efficiently, which is useful in certain algorithms

for accelerating the convergence to an optimal solution.

∂Φ
∂θ0

= −α |AT G [ω −ω0]|

× sin
(

φobs (ω −ω0)+θ0 +θ1 (ω −ω0)+θ2 (ω −ω0)
2
)

∂Φ
∂θ1

= −α (ω −ω0) |AT G [ω −ω0]|

× sin
(

φobs (ω −ω0)+θ0 +θ1 (ω −ω0)+θ2 (ω −ω0)
2
)

∂Φ
∂θ2

= −α (ω −ω0)
2 |AT G [ω −ω0]|

× sin
(

φobs (ω −ω0)+θ0 +θ1 (ω −ω0)+θ2 (ω −ω0)
2
)

Given these, the gradient can be written as:

∇�θ O =

[
r�
(

∂Φ
∂θi

�αm

)
− r�

(
Φ
(

Φ−
(

∂Φ
∂θi

�α
)))]

where r is the residual Φ�
(
�θ
)

α −PP(ω). The phase correction θ (ω) retrieved by

the analytic solution (which has no intrinsic functional form), is dominantly described by

a low order polynomial, as would be expected, since the phase correction should arise
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from the phase difference between the refractive delay plate put in the local oscillator

beam. The analytic phase correction is shown in panel E of figure 2.6. The higher order

polynomial terms of the analytic phase may be due to the fact that the initial assumption

that α is frequency independent may be only approximately true. For example, differences

in signal phase-matching (most significant for large bandwidth pulses) and non-uniform

heterodyne amplification could yield a frequency dependent α .

2.3.3 Discussion

From panel C of figure 2.5 it is clear that the background free geometry affords a

significant advantage in achievable S/N (factor of ~19.5 at the signal peak). We attribute

the S/N improvement to the larger signal field strength, which is enabled by the larger

probe intensity afforded in the background free geometry. By increasing the ratio of

the signal strength relative to the local oscillator, we move away from the laser noise

dominated regime where the pump-probe measurements are made, towards a shot-noise

limited regime[61]. The strength of the probe that can be used is limited by the maximum

number of photons the detector can digitize per shot and the excitation requirements of

the sample. In the data presented here the bleach rate was fairly mild, though if gentler

excitation conditions are desired, the spotsize of the beams at the sample may be increased

while maintaining the same photon count on the detector. Thus, for a given excitation

condition and detector photon digitization rate, it will always be possible to construct a

situation where a background free geometry provides more signal amplitude, given no

restrictions on the power of the exciting laser. This fact is the dominant reason for pursuing

a background free geometry. In a similar S/N comparison between pump-probe geometry

and background free 2D IR spectroscopy, the Cheatum group concluded that phase

instability was the dominant noise source in their background free geometry and therefore

advocated the pump probe geometry[70]. Because we are able to collect both rephasing

and non-rephasing signals simultaneously, and due to the high degree of passive phase
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Figure 2.6: Comparison of different phasing protocols. (A) Phased absorptive 2DES spectrum obtained

from an exhaustive grid search with the quadratic phase model, and (B) the projection of the phased

absorptive 2D spectrum to the spectrally resolved pump-probe. (C) Analytic phasing approach described in

the text, showing the retrieved absorptive spectrum 2D spectrum, and (D) the projection of the phased

absorptive 2D spectrum to the spectrally-resolved pump-probe signal. (E) The corrective phase applied

under both models (solid line is the analytic model, dots for quadratic). (F) A slice of the objective function

at the optimal quadratic phase (21 rad/fs2), which demonstrates the rugged nature of the objective function.

The global optimum, corresponding to the phasing presented in sub-figures (A)-(E), can be seen at (0.9, 21).41



stability afforded by the diffractive optic approach[49] (see figure 2.4), our background

free setup offers significant S/N improvement over the pump-probe geometry.

The additional optics required to achieve a background free measurement from a

pulse-shaped pump-probe geometry instrument are minimal, as shown in panel A of figure

2.3. The most significant additional optic is the diffractive optic used to split the beams.

This optic can impose considerable power loss if the grating is not optimized for the

frequency of light being used. In this study, we employed a grating optimized for 800

nm, and observed a ~25% efficiency of diffraction into each of the utilized beams. In the

conventional implementation of diffractive-optics-based 2DES[49, 45], the bandwidth is

limited by the desire to maintain near transform-limited pulses while using a refractive

delay. In the setup presented here, this limitation does not apply, and we are currently

limited to ~120 nm bandwidth (at 680 nm center wavelength) by the pulse-shaper. Recent

upgrades to the pulse-shaper extend this significantly. While it is still easier to obtain

absorptive spectra in the pump-probe geometry, we have shown that it is possible to

obtain absorptive spectra from data collected in the hybrid geometry without much added

difficulty. In fact, the analytic phasing method we presented grants excellent unmixing

of the dispersive/absorptive components, limited only by the S/N of the pump-probe

signal one can obtain. If a more traditional minimization approach to the phasing problem

is taken, we see similar quality of unmixing; on par or better with results presented

elsewhere[41]. To obtain a reliably higher S/N of the absorptive signal, one might employ

this hybrid design in a “balanced” setup[64] which permits the absorptive part of the

signal to be collected background free. It is clear that a quadratic term is necessary to

achieve reasonable phasing. This quadratic term originates from the dispersion (relative

to the probe) of the local oscillator delay plate. In our case, the delay plate is a 0.5 mm

thick piece of fused silica, which gives about an 850 fs delay and ~20 fs2 of group delay

dispersion (GDD). Both phasing methods report a corrective phase with quadratic phase

amplitude of ~20 fs2. A polynomial fit to the correction phase from the analytic phasing
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method gives higher order polynomial terms with amplitudes that are less than 3% of the

quadratic amplitude (fit not shown).

2.4 Conclusion

We have demonstrated a hybrid diffractive-optic pulse shaping approach to 2DES. The

method allows the high S/N measurements enabled by background free detection while

retaining the advantages of precise timing, phase-cycling, and phase-locking afforded by

a pulse-shaper. The hybrid setup can readily switch between background free detection

and the pump-probe geometry to meet the needs of the experiment. While the automatic

acquisition of absorptive spectra is lost in the background free method, we demonstrate

an approach that makes recovering the absorptive spectrum significantly easier – in many

cases without the need to use a minimizer. Furthermore, due to the fact that non-rephasing

and rephasing signals are acquired simultaneously in the same detector, the phasing

process is significantly more immune to laser noise and phase fluctuations than in setups

where the signals must be acquired separately. For the purpose of studying d1d2, the new

setup equated to a dramatic (order of magnitude) decrease in acquisition time per 2D

spectrum while still offering better signal to noise than we were able to achieve previously.

2.5 Appendix: Improvements to the NOPA-based Laser
Source

As mentioned in section 2.3, we employ two NOPAs to frequency convert the output of

the regenerative amplifier to a color relevant for the system being studied. The current

NOPAs in the Ogilvie lab have an effective tuning range of around 455 nm to 750 nm and

can deliver at minimum 20fs pulses for any point in that range, sometimes down to 12 fs or

less for regions of the NOPA which have high gain bandwidth. While NOPAs have been

used for nearly 20 years now there have yet to be commercially available NOPAs which

can reliably generate the sort of bandwidths we want and ultimately were able to produce.
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The reason for the lack of commercialization, ignoring the likely low demand, is that as

designed NOPAs have a large number of degrees of freedom and potential pitfalls. In order

to explain some of the changes that were made, I will first review the general concept of

how a NOPA functions.

The NOPA (non-collinear optical parametric amplifier) operates on a second order

non-linear process called difference frequency generation to convert a high energy pump

photon into two photons of lower energy, such that the sum of the energies of the two

created photons equals the pump photon energy. Unlike sum-frequency generation, the

conversion of the pump into two lower energy photons exhibits exponential gain as a

function of propagation through a non-linear medium, which is what makes this process

feasible for amplifying light. The two photons which are created are given the name “seed”

and “idler” in the NOPA literature, since one is amplifying a “seed” field. As mentioned

earlier, second order processes do not produce signal in isotropic media so a non-isotropic

medium like a crystal is needed to implement DFG. β -barium borate (BBO), a negative

uniaxial crystal, is the most common NOPA gain crystal used due to its large non-linear

response and conveniently BBO crystals may also be used for frequency doubling of

800 nm Ti-Sapph lasers. Thus, we use a 0.5 mm thick BBO to double about 900 μJ at

around 20% conversion efficiency to give 180-200 μJ of pump power, meanwhile the seed

is generated by super-continuum generation in a 3mm thick c-axis cut sapphire plate as

described in excellent detail in[44].

Once the pump and seed beams are generated, the two are temporally and spatially

overlapped at a crossing angle α in the “NOPA BBO”, where DFG amplification occurs.

To obtain optimal conversion efficiency, the non-collinear angle α and the phase matching

angle θ of the NOPA crystal need to be set correctly. The Type I phase matching criteria

for DFG in negative uniaxial crystals is:
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. This does not, however, incorporate the non-collinear angle

α . To include α , we need to match the wave vectors of the pump, seed, and idler fields.

Specifically kpump = kseed + kidler, where k (ω) = n(ω)ω
c . In Type I phase matching, the

high frequency beam (pump) travels along the larger index of refraction (extraordinary

index) so that the sum of the seed and idler wave vectors can match it by propagating

along the ordinary axis. This means that the signal and idler fields need to be orthogonally

polarized with respect to the pump. Generally the pump is p-polarized to reduce the

reflection from the surface of the crystal, and the seed/idler are s-polarized. When a

non-collinear angle is introduced into the phase matching relation, we have:

kp = p′+ p′′

n(ωp)ωp = ks cos(α)+
√

k2
i − k2

s sin2 (α)

n(ωp) =
1

ωp
no (ωs)ωs cos(α)+

√
n2

o (ωi)ω2
i −n2

o (ωs)ω2
s sin2 (α) (2.8)

Given equations (2.7), we can formulate the phase matching angle in terms of α

through equation (2.8) for n(ωp) denoted np:
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From here we can fix ωs (pick a desired central frequency) and then vary α until we

find the flattest curve for θ over some desired bandwidth, where “flattest” means that we

minimize the RMS deviation of the phase matching angle about its mean. The results of
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Figure 2.7: Optimal NOPA external crossing angles as a function of central seed frequency optimized over a

120 THz bandwidth. Pump frequency here is set to 395 nm and the cut angle of the crystal is 29.2 degrees.

such a minimization for central frequencies ranging from 500 to 700 nm are shown in

figure (2.7).

Aside from obtaining an optimal crossing angle and phase matching angle, the

following parameters were found to be critical for achieving good efficiency, bandwidth,

stable output and a reasonable spatial mode.

• Temporal overlap of the pump pulse duration and the spectral region of interest

in the seed. If the seed duration (over the bandwidth you are interested in is 100

fs), then the pump should be made to be this duration as well. Typically the pump

duration, for a short pulse regen, needs to be stretched. We used around 6 cm of

fused silica from a 45-45-90 prism to act both as a stretcher and the retro-reflecting

delay optic to control time overlap of the pump pulse.

• Pump fluence at the crystal should not exceed 100 GW/cm2, at which energies it

should not be possible to see a super fluorescence ring by eye. If this pump fluence
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guideline is exceeded the spatial mode of the amplified output will suffer.

• The NOPA crystal should be 1mm thick, not 2 mm. Although the latter offers

greater conversion efficiency, the spatial mode suffers considerably.

• Double passing the output not only increases available power without requiring

excessive optimization, but decreases shot to shot variation through gain saturation,

and can be used as another knob to tweak the spectral shape to a desired output.

• Collimation of the white light into the smallest possible beam is desirable and

effectively implemented by using a 1 inch effective focal length off-axis parabolic

mirror. While parabolics are more difficult to use than lenses or spherical mirrors, in

this context the benefit far outweighs the disadvantages. To obtain good collimation

without much effort, the parabolic should be mounted on a 3-axis stage and

a kinematic mount, giving 5 degrees of freedom. For day to day tweaks, the

translational degrees of freedom from the 3-axis stage are usually all that need be

adjusted.

• Simplification in design, where possible, is desired to limit the number of degrees of

freedom, reduce footprint, and component cost.

A layout of the current NOPA setup is depicted in figure 2.8.
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Figure 2.8: A schematic for the double pass NOPA used in the studies presented here.
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2.6 Appendix: Comprehensive Analysis of Signals
Generated in Hybrid Setup

Because there are so many pulses, it’s worth discussing the momentum phase matching of

the signals we’re interested in, since enforcing phase matching will significantly cut down

on the number of signals we need to worry about later. One of the easiest ways to book

keep phase matching is to give each beam its own (x,y,z) vector. All beams propagate in

the positive z direction.

Pump1 = (−1,1,1)

Pump2 = (1,1,1)

Probe = (−1,−1,1)

LO = (1,−1,1)

Rephasing signal (and time ordering) is ksR = −k1 + k2 + k3, Non-Rephasing and

time ordering is: ksNR = k1 − k2 + k3. As you can see in the current configuration

that means if we scan pump 1, then the signal which goes in the LO direction is the

rephasing signal. Proof: −(−1,1,1)+ (1,1,1)+ (−1,−1,1) = (1,−1,1). If you scan

pump 2 instead (which implies we’re reversing the time ordering of the pumps so that

pump 2 comes first), then the rephasing signal emerges in the local oscillator direction:

ksNR = k2 − k1 + k3 = (1,1,1)− (−1,1,1) + (−1,−1,1) = (1,−1,1). That’s how

traditional D.O. setups work and separate R and NR signals. For the 6 beam setup, we

have many non-linear signals, which are summarized in the tables 2.1 through 2.3 below.

The conclusions from this analysis are:

1. Under no circumstance do we need to worry about a TG or 2D signal coming from a

conjugated probe field.

2. There are 12 phase matched signals from the local oscillator interaction, but all
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of these will emerge with zero probe-local oscillator delay and so should Fourier

transform out in the spectral interferometry.

3. There are 8 signals phase matched in the direction of interest, four of which

correspond to TG signals. These four TG signals should phase cycle out since they

are not dependent on the dazzler’s intra-pulse constant phase.

4. Four signals emerge that we care about and they are the rephasing/non-rephasing

signals (complex conjugates of each, makes for 2x2 = 4). These signals always

originate from the scenario when beam 1 is conjugated, and beam two is not. In

the case of pulse overlap a third set of four TG signals emerges where the probe is

allowed to interact first. These signals are inseparable, but we shouldn’t be looking

at the pulse overlap region anyway.
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beams pulses sum LO dir? Notes

1,P 1,2*,P (−1,−1,1) No 2D12NR-P

1,P 1*,2,P (−1,−1,1) No 2D12R-P

1,P 1,1*,P (−1,−1,1) No PP1NR-P

1,P 1*,1,P (−1,−1,1) No PP1R-P

1,P 2,2*,P (−1,−1,1) No PP2NR-P

1,P 2*,2,P (−1,−1,1) No PP2R-P

1,P* 1,2,P* (−1,3,1) No DQ12A-P

1,P 1*,2*,P (1,−3,−1) No DQ12B-P

1,P* 1,1,P* (−1,3,1) No DQ1A-P

1,P 1*,1*,P (1,−3,−1) No DQ1B-P

1,P* 2,2,P* (−1,3,1) No DQ2A-P

1,P 2*,2*,P (1,−3,−1) No DQ2B-P

1,L 1,2*,L (1,−1,1) Yes 2D12NR-L

1,L 1*,2,L (1,−1,1) Yes 2D12R-L

1,L 1*,1,L (1,−1,1) Yes PP1NR-L

1,L 1,1*,L (1,−1,1) Yes PP1R-L

1,L 2*,2,L (1,−1,1) Yes PP2R-L

1,L 2,2*,L (1,−1,1) Yes PP2NR-L

1,L* 1,2,L* (−3,3,1) No DQ12A-L

1,L 1*,2*,L (3,−3,−1) No DQ12B-L

1,L* 1,1,L* (−3,3,1) No DQ1A-L

1,L 1*,1*,L (3,−3,−1) No DQ1B-L

Table 2.1: A table describing all possible pulse interactions for a 6 pulse setup (5 input fields, and a 1 local

oscillator). Short hand notation is dependent on the column. For beams I refer to pump beam 1 as just “1”

and like wise for the second beam “2”. Vectors follow the beam vectors I list above. Probe is referred to as

“P”, while the local oscillator field is referred to as L in the pulse column. Asterisk denotes a complex

conjugate interaction (sign reversal).
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beams pulses sum LO dir? Notes

1,L* 1,1,L* (−3,3,1) No DQ1A-L

1,L 1*,1*,L (3,−3,−1) No DQ1B-L

1,L* 2,2,L* (−3,3,1) No DQ2A-L

1,L 2*,2*,L (3,−3,−1) No DQ2B-L

2,P 3,4*,P (−1,−1,1) No 2D34NR-P

2,P 3*,4,P (−1,−1,1) No 2D34R-P

2,P 3,3*,P (−1,−1,1) No PP3NR-P

2,P 3*,3,P (−1,−1,1) No PP3R-P

2,P 4,4*,P (−1,−1,1) No PP4NR-P

2,P 4*,4,P (−1,−1,1) No PP4R-P

2,P* 3,4,P* (3,3,1) No DQ34A-P

2,P 3*,4*,P (−3,−3,−1) No DQ34B-P

2,P* 3,3,P* (3,3,1) No DQ3A-P

2,P 3*,3*,P (−3,−3,−1) No DQ3B-P

2,P* 4,4,P* (3,3,1) No DQ4A-P

2,P 4*,4*,P (−3,−3,−1) No DQ4B-P

2,L 3,4*,L (1,−1,1) Yes 2D34NR-L

2,L 3*,4,L (1,−1,1) Yes 2D34R-L

2,L 3,3*,L (1,−1,1) Yes PP3NR-L

2,L 3*,3,L (1,−1,1) Yes PP3R-L

2,L 4,4*,L (1,−1,1) Yes PP4NR-L

2,L 4*,4,L (1,−1,1) Yes PP4R-L

Table 2.2: A continuation of table 2.2 describing all possible pulse interactions for a 6 pulse setup (5 input

fields, and a 1 local oscillator). Short hand notation is dependent on the column. For beams I refer to pump

beam 1 as just “1” and like wise for the second beam “2”. Vectors follow the beam vectors I list above.

Probe is referred to as “P”, while the local oscillator field is referred to as L in the pulse column. Asterisk

denotes a complex conjugate interaction (sign reversal).
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beams pulses sum LO dir? Notes

2,L* 3,4,L* (1,3,1) No DQ34A-L

2,L 3*,4*,L (−1,−3,−1) No DQ34B-L

2,L* 3,3,L* (1,3,1) No DQ33A-L

2,L 3*,3*,L (−1,−3,−1) No DQ33B-L

2,L* 4,4,L* (1,3,1) No DQ44A-L

2,L 4*,4*,L (−1,−3,−1) No DQ44B-L

1,2,P 1,3*,P (−3,−1,1) No TG13NR-P

1,2,P 1*,3,P (1,−1,1) Yes TG13R-P

1,2,P 1,4*,P (−3,−1,1) No 2D14NR-P

1,2,P 1*,4,P (1,−1,1) Yes 2D14R-P

1,2,P 2,3*,P (−3,−1,1) No 2D23NR-P

1,2,P 2*,3,P (1,−1,1) Yes 2D23R-P

1,2,P 2,4*,P (−3,−1,1) No TG24NR-P

1,2,P 2*,4,P (1,−1,1) Yes TG24R-P

1,2,L 1,3*,L (−1,−1,1) No TG13NR-L

1,2,L 1*,3,L (3,−1,1) No TG13R-L

1,2,L 1,4*,L (−1,−1,1) No 2D14NR-L

1,2,L 1*,4,L (3,−1,1) No 2D14R-L

1,2,L 2,3*,L (−1,−1,1) No 2D23NR-L

1,2,L 2*,3,L (3,−1,1) No 2D23R-L

1,2,L 2,4*,L (−1,−1,1) No TG24NR-L

1,2,L 2*,4,L (3,−1,1) No TG24R-L

Table 2.3: A continuation of table2.1 describing all possible pulse interactions for a 6 pulse setup (5 input

fields, and a 1 local oscillator). Short hand notation is dependent on the column. For beams I refer to pump

beam 1 as just “1” and like wise for the second beam “2”. Vectors follow the beam vectors I list above.

Probe is referred to as “P”, while the local oscillator field is referred to as L in the pulse column. Asterisk

denotes a complex conjugate interaction (sign reversal).
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CHAPTER III

COHERENT DYNAMICS OF PSII REACTION
CENTER

2DES of the Photosystem II reaction center (referred to here often by the name of its

subunits “d1d2”) at 77k are presented in this chapter. Analysis of the observed population

dynamics, with particular attention to coherent behavior is given here in the context of

existing exciton models, known Raman data, and simulations performed by other groups.

3.1 Two basic spectroscopic models

The main purpose of this work is to characterize and understand the complex waiting

time dynamics that we observe in the photosystem II reaction center during the first

two picoseconds after excitation. In particular, we are interested in observing and

explaining “coherent” dynamics over the waiting time, which we colloquially shorten

to “coherences”. Coherences occur when the (reduced) system is in a superposition of

two eigen-states of the system during the waiting time of the 2D experiment. This is

in contrast to “population” dynamics, where the system is in a pure eigen state of the

system during the waiting time. Population dynamics for photosynthetic systems usually

dominate the amplitude response during the waiting time and speak more obviously to

the function of energy transfer reactions found in these systems. Coherences, however,

describe how intimately coupled electronic states are to each other or to nuclear states. It is

straight-forward to see the importance of electronic to nuclear coupling for photoactivated

reactions like ligand dissociation, isomerization, or bond cleavage. Nuclear coupling to
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electron transfer enters in Marcus theory through the re-organization energy and it is

established that the oxidation of Yz by P680+ is well modeled by non-adiabatic electron

transfer[118, 88]. The initial charge separation and transfer steps in d1d2 are much faster

than the electron transfer from Yz, and more electronically coupled, so Marcus theory may

not be directly applicable to the reactions being studied in this work. There are, however,

non-adiabatic theories that have recently been published which incorporate Marcus theory

as a limit which can be used to describe ultrafast electron transfers in the so-called inverted

region[90]. This theory was used to describe the ultrafast electron transfers found in

the Bacterial Reaction Center (BRC)[90]. The idea that vibrational modes may have

influence on ultra-fast electron transfers has a history that extends to over twenty years

ago. Long-lived low frequency coherences in the BRC were observed in 1991 by Vos et

al.[131, 119, 130, 132] and subsequently other groups[124, 125, 123] using pump-probe

spectroscopy. Vos et al assigned these coherences to be of vibrational origin[132].

Theoretical work based on those studies has investigated the role of vibrational and/or

electronic coherence in electron transfer[87, 104, 102]. Researchers have reached differing

conclusions regarding the possible importance of vibrational coherence to electron

transfer efficiency in BRC[99, 89, 108]. Extensive studies of BRC mutants demonstrate

that protein dynamics dictates the rate of electron transfer[133], but the nature of these

dynamics is not yet understood. We note that low frequency modes have been implicated in

electron transfer in a completely different system, cytochrome P450, based on pump-probe

experiments[103]. It is quite likely that, while the detailed mechanisms may be different,

the underlying role of coherence may be similar in these systems and the PSII RC.

Until recently, coherence between electronic states has not been examined extensively

in photosynthetic systems, mainly because observing them is difficult to prove and

because the dephasing time of electronic coherences were thought to be too short to be

of relevance to picosecond-scale and longer reactions. In 2007 with Engel et al observed

wavelike beating in 2DES the Fenna-Mathews-Olson complex a photosynthetic antenna
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complex[97] and the interpreted of it as a long-lived electronic coherence, initiating an

explosion of work (mostly theoretical) studying coherent dynamics of photosynthetic

antenna systems. Because the purported electronic coherences were observed to linger

on the same timescale of energy transfer, the functional relevance of electronic coherence

seemed more concrete. A flurry of theoretical work attempted to explain the origin of

these long-lived electronic coherences and their potential role in enhancing energy transfer

efficiency[116, 115, 114, 101, 126]. Some work also suggests that long live electronic

coherence could enhance electron transfer[117]. In the few short years of my doctoral

work, however, the tone of the electronic coherence community has changed from far

reaching extrapolation (biological quantum computing[121, 97] for example), to a more

focused effort on demonstrating that it is electronic rather than vibration coherences that

are actually being observed. At this point no consensus has been reached, but the safest

thing one can say now is that coherent dynamics are very complicated and assigning

the origin of coherent dynamics is non-trivial. There is work that ascribes the origin of

the long lived coherence to the fact one is actually observing an exciton coupled to and

lending transition dipole strength to a vibrational mode[96, 94], essentially making the

coherent dynamics of mixed electronic/vibrational character. In any event, it is clear that

understanding the observed coherent dynamics is important both for understanding how

vibrational and electronic signatures appear in 2DES data, and because such coherences

may have functional importance for electron transfer.

The main spectroscopic signature of a coherence, regardless of its origin, is a sinusoidal

modulation of the peak amplitude as a function of the waiting time. The frequency of the

oscillations is proportional to the energy difference between the two states participating

in the superposition. When a peak oscillates the amplitude of that oscillation can be

plotted in the 2D space, creating what I call a “2D coherence map”. Coherence maps are

basically just slices at a particular waiting time frequency (the Fourier transform of the

waiting time ω2) through the three dimensional solid of data S (ω1,ω2,ω3). In order to
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get a handle on the origin of what sort of coherences exist in d1d2, we use two models

that describe the extreme cases of coherence origin: pure electronic coherence and pure

vibrational coherence. The smallest model that can describe an electronic coherence is a

pure electronic dimer, where two two-level electronic systems are coupled together and

the role of vibrations or phonons is treated as a relaxation mechanism on the electronic

system[92, 113]. To study how individual vibrations couple to a given electronic transition,

we consider a displaced harmonic oscillator model, in which equal harmonic oscillators are

displaced along a nuclear coordinate from one another[94, 127]. In order to examine the

interaction between electronic states and vibrational states simultaneously, the synthesis

of these models will be discussed[110, 94]. While none of these models fully capture the

complexity of d1d2 (which contains 8 chromophores) or even of chlorophyll (which has

multiple electronic transitions within our laser bandwidth), they can nonetheless be used

to qualtitatively predict a number of spectroscopic signatures that we observe.

3.1.1 Electronic Dimer Model

The electronic dimer model (EDM) was invoked to explain the concept of potentially long-

lived electronic coherence ahead of the publication of the Fleming group’s observation

in FMO[113]. There it was stated that the low re-organization energy observed in

photosynthetic proteins would prevent vibrational coherences from having significant

transition dipole strength, and thus allow one to observe electronic coherence. Second, the

lifetime of electronic coherence predicted by this model (which we will not detail here)

can be on the order of a few hundred femtoseconds[113]. While d1d2 does not have a

strong dimer pair like the BRC, the dimer model is applicable in that it can describe any

pair-wise interaction between electronic chromophores. In the EDM, chromophores are

treated as two level systems (TLS), that is they have just two states: a ground state and

an excited state. The overall system of two TLS is described by a Frenkel exciton basis:

{G1 ⊗G2,E1 ⊗G1,E2 ⊗G2,E1 ⊗E2}, where ⊗ indicates a tensor product in real space.
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G1 and G2 refer to the two potentially different ground electronic states, while E1 and E2

are the excited states of the two participating chromophores. When a coupling term J is

included between the two monomeric states E1 ⊗G1 and E2 ⊗G2, we can have excitonic

energy transfer and coherence. The Frenkel basis is re-diagonalized after the inclusion of

coupling to give the excitonic basis. In this case the energy levels of the excitonic basis have

an analytic form:
{

0, 1
2 h̄(ωE2

−ωE1
)−ΔEED,

1
2 h̄(ωE2

−ωE1
)+ΔEED, h̄(ωE1

+ωE2
)
}

,

where ΔEED =
√

h̄2 (ωE2
−ωE1

)2 +4J2[113, 92]. The energy level diagrams of this

model are depicted in figure 3.1. Many different methods have been used to calculate

spectra with this model, but if we consider a Markovian, Redfield system with the Secular

and rotating wave approximations, then the population dynamics are uncoupled from the

coherence dynamics during the waiting time[113]. In this case, the time dependence of

the off-diagonal density matrix elements (coherences), are given by a simple differential

equation, the solution of which is a complex matrix exponential (equation 3.1).

d
dt

σ jk (t) = −iω jkσ jk +∑
kl

Ri jklσkl

σ jk (t) = exp
[
iω jkt +Ri jklt

]
σ (0) (3.1)

Here jk are index variables for the row and column of the density matrix, and so h̄ω jk

describe the energy differences between states j and k. Ri jkl is, in general, a super-operator

describing the relaxation of the system. For this simplified model, it is apparent that the

density matrix will oscillate at the difference frequency between the two states involved

in the coherence, as mentioned briefly in section 3.1. Furthermore, these oscillations

will decay with some exponential rate given by the dephasing matrix Ri jkl . Despite the

many approximations made in arriving at this result, it agrees qualitatively very well

with experimental data and is the main reason why the coherence over t1 can be well

approximated by a damped sinusoid. (See the ensuing chapter on Adaptive filtering for

more details). To understand where in the 2D spectrum the oscillating peaks will appear,
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we can use diagrammatic (perturbation) theory to predict the location and frequencies

of coherences in the rephasing and non-rephasing signals during the waiting time for

the electronic dimer model (see figure 3.2). Ignoring excited state absorption (ESA), we

see that the rephasing will oscillate only on the cross peaks, while the non-rephasing

oscillates only on the diagonal. Including ESA results in some off-diagonal oscillation

for the non-rephasing signal, but the exact location of the ESA oscillations depends on

the anharmonicity of the second excited state. In chlorophyll a, and d1d2, we generally

see that the Qy band ESA signature is blue shifted from the singly excited state. In the

diagrams shown in figure 3.2, the upper state (F), is blue shifted with respect to the lower

excitonic state A, but red shifted from the upper excitonic state B. A final prediction

from this model is that if we assume all Liouville pathways have equal probability and

the transition dipole for all state transitions are equal, then the peak amplitudes shown

in the 2D maps should all be equal. Thus, the rephasing coherence map should look

approximately symmetric about the diagonal.

|G2>|G1>

|E1>
|E2>

Jb

0

eg- EED

E1+E2

c

eg+ EED

G

A

B

q

E1

E2

G

a

Figure 3.1: The coupling of two two-level systems depicted in panel b results in the excitonic energy level

diagram in panel c. In panel a, the electronic dimer model is depicted as an unshifted set of harmonic

oscillators (see text).
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Figure 3.2: Oscillating signal pathways from rephasing and non-rephasing pathways in the Electronic Dimer

Model and their corresponding peak locations in a 2D map. In the upper left corner of each peak location,

the phase of the oscillations (0 or π) is encoded as a + or - with multiple signs indicating contribution from

multiple pathways. Phase signs were taken from [110]. See section 3.1.3 for more discussion on the phase

of the waiting time coherences. A label for each peak color is included in the lower right of the peak for easy

reference in the text.
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3.1.2 Displaced Harmonic Oscillator Model

In this section we will discuss a model called the displaced harmonic oscillator (DHO),

following the work in [94, 128], to explain what the 2D coherence map would look like

if a single vibrational mode is included in the system. The DHO model is also a general

model used to describe fluorescence and absorption properties of single chromophores.

Adaptations of the model are also used to derive Marcus theory for electron transfer. In

this model, the potential energy surface of the ground electronic state is presumed to be

harmonic, which means that it is parabolic with eigen states evenly spaced at some specific

frequency ω0. The excited state is also assumed to be harmonic with mode spacing ω0, but

it is shifted along some nuclear coordinate q by a distance d and raised in energy. In the

case of zero displacement, we have no coupling of the electronic state to the nuclear states

and the transition energy between the ground state is given by the vertical displacement

of the excited state. Zero displacement is then equivalent to the TLS used to model each

chromophore in the EDM. When the excited state is displaced from the ground state

along q the inner product (overlap) between the ground state vibrational wavefunction is

no longer unit valued (complete overlap). As a consequence, higher vibrational states of

the excited state now have some non-zero transition dipole amplitude, and so a series of

peaks shifted by the integer multiples of ω0 from the main peak with decaying amplitude

forms in the absorption spectrum. This is called a vibronic progression, and is observed in

chlorophyll a with one main side peak shifted from the Qy band, which is usually called the

Qy(1,0) band. The main peak of the absorption, relative to a zero displacement oscillator,

is also shifted by an amount called the “reorganization energy” denoted in figure 3.3 by

the symbol λ . The name “reorganization energy” comes from the idea that the solvent is

re-organizing around the excited state (which has shifted along the nuclear coordinate q),

and this re-organization of molecules carries an additional energy cost. The reorganization

energy is given by λ = 1
2mω2

0 d2, which can also be written in terms of the dimensionless

Huang-Rhys factor S as λ = Sh̄ω0. The displaced harmonic oscillator model can be
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generalized to multiple dimensions, where each vibrational mode ω j acts along a different

coordinate and then the electronic states are coupled to a sum of oscillators. This model

is frequently used in fluorescence line narrowing spectroscopy to estimate Huang-Rhys

factors for a given vibrational frequency. In those experiments, the integrated intensity of

the narrowed lines (measured at very low temperatures) is approximately proportional to

an overall S, the Huang-Rhys factor along all reaction coordinates [111]. This data can be

used, along with linear absorption and CD measurements to obtain S j the Huang-Rhys

factor for the oscillator frequency ω j[106].

To determine where oscillations will occur in the 2D spectrum under this model, we

again employ a diagrammatic approach (see Figure). In this case, we see oscillations

showing up in 6 different peaks and now both the rephasing and non-rephasing signals

exhibit oscillations off and on the diagonal. Since all the data presented in the chapter

was collected at 77K and kT is about 0.7 cm−1K−1, we can ignore the possibility of the

system beginning in a hot vibrational state for any mode greater than ~55 cm−1. Several

interesting features are predicted by this model:

• Assuming the number of pathways contributing to a given peak is proportional to

the amplitude of the peak, then the rephasing map will be asymmetric about the

diagonal, unlike the what is seen in the EDM.

• The rephasing spectrum will have a peak located on a diagonal line that displaced

twice the coherence energy from the main diagonal (magenta peak in the 2D map).

This is a unique feature to vibrational coherence and requires the involvement of a

ground-state vibrational mode (though the coherence may be on the excited state

manifold).

• If the amplitude contributions from all pathways are equal, then the lower diagonal

peak in both rephasing and non-rephasing may cancel due to oppositely signed

phase contributions. This may produce rephasing maps which look like electronic
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coherences in that they have no diagonal amplitude, and only cross peak amplitude.

In this case, one should look either for the magenta peak for clarification. It may

not be possible to distinguish between electronic and vibrational in the case that the

transition dipole to the vibrationally excited ground state is weak, however.

{
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eg+½m 0
2d2

{ 0
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Figure 3.3: The displaced harmonic oscillator model is depicted in panel a and a 4-level energy level

approximation of the same system is shown in panel b.
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Figure 3.4: Vibrational coherence signal pathways. On the left, all signal pathways that give rise to coherent

oscillations during the waiting time for rephasing and non-rephasing signals. On the right, the corresponding

peak locations (color coded) for rephasing and non-rephasing signals. In the upper left corner of each peak

location, the phase of the oscillations (0 or π) is encoded as a + or - with multiple signs indicating

contribution from multiple pathways. Phase signs were taken from [110]. See section 3.1.3 for more

discussion on the phase of the waiting time coherences. A label for each peak color is included in the lower

right of the peak for easy reference in the text.

3.1.3 Phase of Waiting Time Coherences

In section 3.1.1 a simple model for the time evolution of the density matrix during a

coherence was introduced, and it was shown that at least phenomenologically one could

describe the time evolution by a damped sinusoid. This idea can be extended for all three

coherences in the Liouville pathways considered in this chapter and then the evolution of a
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2D lineshape S (ω3, t2,ω1) can be calculated as follows:

S (ω3, t2,ω1) = An ∑
k

∞̂

−∞

∞̂

−∞

dt1dt3 exp [iωt3]exp [iωt1]

× [±Gk (t3)Gk (t2)Gk (t1)]

Sk (ω3, t2,ω1) ≈ ±
∞̂

−∞

∞̂

−∞

dt1dt3 exp [iωt3]exp [iωt1]

× exp [−iε3t3 − γ3t3]exp [−iε2t2 − γ2t3]exp [iε1t1 − γ1t1]

= ±θ (t2)exp [−γ2t2 − iε2t2]

× 1

2π (γ1 + i(ε1 −ω1))(γ3 + i(ε3 −ω3))

= ± 1

2π
θ (t2)exp [−γ2t2 − iε2t2]

× 1

(γ1 + iΔ1)(γ3 + iΔ3)

Here An is a complex number incorporating the excitation fields and the transition

dipole strength. The ± is included for the signal type: + for ground state bleaching and

stimulated emission, − for excited state absorption. For the real part of the signal we get

the following expression for the signal:

Re [Sk (ω3, t2,ω1)] = 2πAn exp [−γ2t2]Lcos [|ε2| t +φ ]

L =

[√
(γ1γ3 −Δ1Δ3)

2 +(Δ1γ3 +Δ3γ1)
2

]−1

φ = −sign(ε2)Arg [(γ1 + iΔ1)(γ3 + iΔ3)] (3.2)

From this we can see that phase of the coherence, interestingly, depends on the initial

and final coherences prepared by the first and third excitation pulses. That is to say, the

phase will vary continuously for different points in (ω1,ω3) space. To associate a phase

with the peak locations we found via diagrammatic modeling we note that at the peak

Δ1 = 0 and Δ3 = 0. Thus the phase contribution from φ is zero, and all peak centers should
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be in phase except for the contribution from An. For transform limited pulses, the only

phase contribution we get from An comes from the sign of the transition dipole. In the

case of a displaced harmonic oscillator, we can compute the transition dipole analytically

by calculating the inner product between a shifted and unshifted harmonic oscillator

wavefunction (see equation 3.3), which can be negative for some values of displacement.

An =

´ ∞
−∞ exp

[
−q2/2− (q−Δ)2 /2

]
H [ j−1,q]H [k−1,q]dq

π
√

2 j−12k−1 ( j−1)!(k−1)!
(3.3)

Here H [ j,q] refers to the Hermite polynomials, and j,k are vibrational quantum

numbers. Without knowing the Huang-Rhys factor (strength of the displacement) or, in the

case of electronic coupling, the electronic wavefunctions, a general statement about the

phase of the peaks cannot be made. It is known, however, that the diagrammatic modeling

approach will only predict a 0 or π phase shift between peaks[94]. In [110], some phase

guidelines are given for Huang Rhys values < 1 and for simple models of electronic dimer

measured with all parallel polarization. Those phases are shown in figures 3.2 and 3.4 for

the ED and DHO models respectively.

Researchers have reported observing peaks with phases that are not 0 or π ,

however[109]. The simplest way to explain this with the framework above is spectral

overlap. Due to the fact that each peak produces a continuously varying phase throughout

the 2D spectrum (see equation 3.2), if two peaks come close together their phases will

combine (via sum of angles identity) and produce a value which is neither 0 or π . Quantum

transport, where coherences relax to populations or other coherences during their free

evolution is another way that the phase may change from 0 or π . In [109], quantum

transport was invoked to explain an observed π/2 phase difference between a diagonal

peak and cross peak. Finally, it has been demonstrated via simulation [110, 93] that mixing

between vibrational and electronic degrees of freedom can also cause non 0 or π phase

shifts.
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3.1.4 Predicting the effect of static disorder

An approximate way to treat static disorder is to say that the electronic degrees of

freedom are affected, but the nuclear modes are not. This essentially amounts to a

statement that vibrations are oblivious to small changes to electrostatic environment.

Of course, this is not completely accurate – one can neatly observe small (no more

than 10s of wavenumbers) vibrational shifts in response to dipole shifts of neighboring

chromophores[91]. Nevertheless, if this approximation is made we can say that vibrational

coherence maps will simply be broadened as though the diagonal position of the electronic

transition had been moved. This gives us the picture for vibrational coherence maps

shown in figure 3.5. For electronic coherences, static disorder of exciton energies would

create maps at different coherence frequencies and if many such frequencies were closely

spaced with, for example, a Gaussian amplitude distribution then one would expect

significant amplitude reduction due to cancellation unless there is a reason for the phase

of the different static states to be correlated to one another in such a way as to produce a

constructive interference.

Figure 3.5: A toy model to describe the effect of inhomogeneous broadening on the vibrational coherence

map for both rephasing and non-rephasing spectra. As a consequence of this effect, we label the diagonal

lines over which the peaks smear for future reference: D+, D, D-, and D–.
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3.1.5 Literature Review on coherence origin protocols

The models presented in sections 3.1.1 and 3.1.2 are not state of the art anymore, although

they were just a couple of years ago[127, 92]. Now the focus has pushed to understand

how coherence maps will behave when both excitonic and vibrational coupling effects

are mixed in the same system. Naively, one might expect just a linear super-position

of the two models, but of course reality is slightly more complicated. In particular, the

simple signed phase relationships are no longer present [110, 94]. Adding disorder is not

as simple as the model presented in section 3.1.4, but the intuition is reasonably close.

Disorder has extremely deleterious effects on the amplitude of electronic coherences

and complicates the phase relationships of vibrational coherence peaks beyond all

recognition[94]. The peak shapes for coherences in the presence of electronic disorder do

elongate as anticipated. A tabulated list of protocols published in the literature is presented

in tables 3.1.5 and 3.1.5. The tables runs approximately chronologically and it can be seen

that as time progresses, the interpretation of coherence maps has become more and more

involved. Figure 3.6 partially reproduces the results presented in [94], which demonstrate

peak positions for an electronic dimer coupled to a harmonic ladder of vibrational states

for the rephasing signal. Only a limited subset of possible signal pathways are considered

(see figure caption). It is clear that the number of signal pathways for a vibronic system

explodes, which explains in part why interpretation of even toy reductions of realistic

multi-chromophoric systems is so complicated.
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Citation
Discrimination Rules

[113] Electronic coherence is characterized by an

anti-correlation of peak width in the cross peak to

diagonal amplitude. It is argued that this particular

behavior would not result from vibrational wave

packet motion.

[95] Electronic coherence can be identified by a lack of

oscillation amplitude on the diagonal in the rephasing

concomitant with diagonal amplitude in the

non-rephasing. This is in contrast with vibrational

coherence which have significant diagonal amplitude

oscillations.

[127] Presence of amplitude detected at e−ν is an

indication of a ground-state vibrational coherence.

However, the lack of amplitude here is not necessarily

and indication of electronic coherence, as the

transition diple strength for these e−ν transitions

may be weak. Additionally, the rephasing spectrum

shows a peak at (e−ν , e+ν), while this does not

appear in the rephasing.

Table 3.1: Review of various protocols found in the literature to discriminate between vibrational and

electronic coherences
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Citation
Discrimination Rules Continued

[94] Simulations reveal that system disorder has a strong

effect on the amplitude of the coherence map and

electronic coherences are more strongly affected than

vibrational. In addition, the phase of the oscillation in

the presence of disorder and spectral overlap is so

complex that any protocol depending upon observing

180 degree phase shifts for identification is

unrealistic. It is shown that when a vibrational

frequency is in resonance with an excitonic transition,

two main signatures are predicted. 1. Stronger

cross-peak amplitude than on the diagonal in

rephasing maps, and furthermore the amplitude of the

lower cross peaks is greater (asymmetric amplitude

across the diagonal). 2. Cross peaks at (e1, e2 +ν)
and (e2 +ν , e1).

[110] Peak locations similar to [127], but now relative

phases are examined with sophisticated modeling to

explain phase shifts that are less than 180 degrees.

Temperature is suggested as a discriminating agent.

Vibrational phase is more sensitive to temperature

than electronic degrees of freedom. Of particular

note, the authors point out that arbitrary phase

relationships between cross-peaks and diagonal peaks

are more likely an indication of vibronic coupling

than non-secular “quantum transport”,

Table 3.2: Review of various protocols found in the literature to discriminate between vibrational and

electronic coherences
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Figure 3.6: A list of Feynman pathways and peak locations for the rephasing signal of an electronic dimer

with a single vibrational state on each exciton. Not shown are the excited state absorptions, phases, or

pathways from a second vibrational state.
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3.2 Coherence Data of d1d2

To study the potential coherent dynamics of d1d2, we collected 185 2DES spectra from 80

fs to 1920 fs in 10 fs steps, with about 90 seconds of integration per spectrum for a total

acquisition time of about 5 hours. Excitation probability per reaction center per pulse

for each pump and probe pulse was 4%. The sample was not moved during this time,

since we found changing scatter environments would ruin our ability to resolve the small

coherent effects riding on top of the much larger population dynamics. Photo-damage

is a concern when the sample is not moved, which is one of the reasons for employing

such a low bleach rate. Furthermore, photodamage is thought to primarily result from

destruction of the sample by the presence of radical oxygen, which is created by absorbing

the triplet states created by d1d2. Thus, to reduce photo-damage the sample was vacuum

degassed immediately prior to use in a bid to reduce dissolved oxygen content. For each

2D spectrum, t1 was scanned to a maximum delay of 300 fs in increments of 1.85 fs, phase

locked at 592.4 nm, which meant that we were oversampling the t1 axis by at least a factor

of 3. Oversampling is not exactly a good thing, which will be demonstrated in the final

chapter, but for those unfamiliar with phase locking, it demonstrates that no information

was lost by stepping the t1 delay more than a half optical period. An example 2D spectrum

is illustrated in figure 3.7.

If the real part of the 2D spectra are collected into a 3D solid with the third dimension

being the waiting time, then we can find oscillating peaks by explicitly fitting the entire

solid with a functional form. I have chosen to fit the linewidths and frequencies of the

main oscillations with a sum of real Lorenzian functions, which have the functional form

(in waiting time domain t2):

fm (t2) = ∑
n

exp [−βn,1t2] (αm,n,1 cos [βn,2t2]+αm,n,2 sin [βn,2t2]) (3.4)

The model also incorporates zero-frequency “oscillators”, which are then essentially
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Figure 3.7: A real phased absorptive 2DES spectrum of d1d2 at 170 fs waiting time delay. This is shown

primarily to illustrate the new features we observe with the expanded pump and probe bandwidth (and

improved signal to noise). Of particular note is the positive cross-peak at 16000 cm−1.

fitting the population kinetics with sums of exponential decays. The index m here indicates

a linear “pixel” index, where m can refer to any frequency-frequency point in the 2D map.

In principle one could fit all M pixels in the spectrum independently, but this dramatically

reduces the degrees of freedom for the fitting procedure and does not make sense if we

want to see the response of all frequency-frequency points at a given population frequency.

Instead we fit all pixels with the same exact waiting time function, allowing only the linear

coefficients αm,n to vary from pixel to pixel. The linear coefficients must vary because they

encode the phase, which was demonstrated in section 3.1 to vary across the 2D spectrum.

The non-linear variables, which encode lifetimes, frequencies, and linewidths are “global”

to the entire spectral solid. This sort of fitting is similar in spirit to “multi-way” or “global”

kinetic analysis performed on transient absorption[129].
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Mode cm−1 Rel Err % Dephasing Time f s Rel Err %

494 0.12 219 2.4

730 0.02 723 2.0

854 0.04 400 2.5

971 0.02 1054 3.6

Table 3.3: This table shows coherent modes from a ~2 ps 2DES scan of d1d2 that were found to have

frequencies > 450cm−1. The error shown here is a relative error in units of percent, given by

(
√

σν/ν)×100, where σ is a diagonal element of the estimated covariance matrix and ν is the mean value

of the estimated parameter.

3.2.1 High Frequency Modes of d1d2

A few exciton models exist for d1d2 (see section 3.2.2) and most exciton difference

frequencies in them are lower than 450 cm−1, so we will define “high frequency” modes

as those which are above 450 cm−1. These frequencies are very unlikely to be electronic

in character or be in resonance with an excitonic difference. Thus we expect these

frequencies to be good candidates for having vibrational character. Indeed we find that

most coherence maps are in agreement with the vibrational model in section 3.1.2, though

two may fit better with the vibronic model in figure 3.6. In the fit of the d1d2 data, the

following frequencies, dephasing times, and their estimated errors are shown in table 3.3.

To identify the character (vibrational, electronic, or vibronic) of the high frequency

modes, we will first look at the rephasing amplitude maps to see if the peak positions

match the models presented in 3.1. From figure 3.8, the clearest map is given in panel

b for the 730 cm−1 mode. Peaks show up in this map at every single predicted point,

although with varying amplitude. The difference in amplitude for peaks with equal

pathway contributions is due to differences in transition dipole strength. It should be

noted, however, that no correction in these spectra was made for optical density or laser

profile, so some additional work would need to be done in order to really measure relative

transition dipole strengths from this map. The lower peaks (LP10 and LP20 in figure 3.4)

are not visible in panels c and d because the detection bandwidth did not span that region,

but otherwise the 854 and 971 cm−1 modes appear to match vibrational amplitude profiles,
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with a weak peak above the diagonal, some lower diagonal amplitude and high amplitude

on the cross peak below the diagonal. The 494 cm−1 mode does not appear to fit the

vibrational model very well. The dephasing time fit for this mode was only 219 fs (which

is unusually short for a vibrational dephasing time) and there appears to be significant

amplitude for this mode detected in the blue around 16500 to 17000 cm−1 (as is the case

also for the 854 mode). The long diagonal peak in this map is not well explained by the

vibrational model presented in section 3.1, because there should not be any significant

oscillation at the upper diagonal peak position DP22. In [110], it is pointed out that some

waiting time amplitude may appear at DP22 if a second vibrational quantum level is

allowed. To assist in seeing the relation between the models presented in section 3.1, stick

“chairs” are super imposed on all panels of figure 3.8, where the corners or end points of

the chair correspond to a peak position in the vibrational model. Vibronic character is

identified by an appreciable amplitude on the lowest diagonal line, detected at the same

energy as CP21, which in relation to the “chair” we call the “ottoman”. It can be seen that

both the 494 and 730 cm−1 modes have some small amplitude at the ottoman position,

indicating that they may be vibronic in character.

Non-rephasing signals for d1d2 are a factor of 2-3 times weaker, so the signal to

noise ratio for these maps is very poor compared to the rephasing amplitude maps.

Consequently, assignment of coherence origin from these maps alone is not feasible.

Non-rephasing amplitude maps for the high frequency modes can be seen in figure 3.9

for reference. Further discussions of coherence maps will focus on rephasing only as a

consequence of the low signal to noise found in the non-rephasing maps.

To look further support a vibrational or vibronic origin for the high frequency modes,

we should look to see if the phase of the oscillations match the appropriate model. Here

we are expecting cross peaks below the diagonal (CP21 and LP10) in the rephasing to

have the opposite phase of diagonal peak DP11. Due to the presence of a strong excited

state absorption, the phase of the upper cross peak CP12 should be opposite that of CP21.
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Figure 3.8: Rephasing maps of the 4 high frequency modes of d1d2: a: 494 cm−1, b: 730 cm−1, c: 854

cm−1, d: 971 cm−1. Black lines have been drawn on the maps to guide the eye (in the shape of a chair, see

text). In the case of the 854 and 971 cm−1 modes, the bottom rectangle goes outside the detection axis

range. All maps are thresholded so that only regions of the map with at least 33% of the peak amplitude

within the viewing window are non-white. In black contours the mean rephasing spectrum is shown to

illustrate where in the usual 2D spectrum the oscillations are occuring.
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Figure 3.9: Non-Rephasing maps of the 4 high frequency modes we observe in d1d2: a: 494 cm−1, b: 730

cm−1, c: 854 cm−1, d: 971 cm−1. The signal to noise of the non-rephasing is significantly lower than the

rephasing signal, rendering the interpretation of these maps difficult.

Finally, LP20 is predicted to have a phase opposite of CP21. In figure 3.10, the phase

plots for the rephasing only are shown, since the poor signal to noise of the non-rephasing

renders the phase difficult to interpret. The phase maps require some careful examination

if one is not accustomed to looking at them. As the 730 cm−1 mode has the highest signal

to noise and clearest amplitude map, we begin there. The lower cross peak CP21 of the

730 cm−1 map shows a phase transition from green to red, centering about on orange,

while the lower diagonal (DP11) is more red, but about the same phase within half a

radian. This phase difference is not anticipated by a vibrational model, but is possible in a

vibronic model[110]. The phase transitions to deep blue and cool blue for the upper cross

peak, which is about π radians out of phase from the lower cross-peak – exactly what is

expected for given that the upper cross peak signal is from an excited state absorption. The

lower cross peak LP10 is green to yellow, which corresponds to a half radian distance from

the lower cross peak at CP21. It’s not clear whether this phase deviation from the expected

model should be considered significant (the phase at CP21 and LP10 are expected to be
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the same). The cross peak at LP20 is clearly pi shifted from CP21, which matches the

expectations from the vibrational model. It is interesting to note that while the center of

gravity for peak amplitudes do not always line up exactly with the parallel lines, the phase

transitions do quite well, which is anticipated in [94]. The 971 cm−1 mode appears to

follow the vibrational model well, at least for the peaks we have the detection bandwidth

to see. There the upper cross peak is about π out of phase with the lower cross peak. The

diagonal appears to be nearly a full radian out of phase from the lower cross peak at the

diagonal, again not quite matching the expected π phase shift expected between CP21 and

DP11. An interesting feature present in all phase maps is a small peak slightly below the

main diagonal peak which has oppositely signed phase from the peak on the diagonal. I

assign this feature to an excited state absorption pathway where the spectral shift seen is

a reflection of the anharmonicity of the electronic state. It’s possible that the presence

of this peak is the reason why the phase difference between DP11 and CP21 are not

matching expectations, while the other phase relationships are. Even the 494 cm−1 mode

has reasonable phase agreement to the vibrational model (CP12 and LP20 are π shifted

from CP21), although DP11 is more phase shifted from CP21 than the other modes. It is

noted that 494 cm−1 mode has amplitude in the ottoman position and that the phase here

matches expectations from a vibronic model (π phase shifted from CP21).

3.2.2 Low Frequency Modes of d1d2

For modes below 450 cm−1 there are a myriad of excitonic differences in d1d2 which could

either resonantly enhance vibrational modes here or even exhibit electronic coherence.

A brief review of two excitonic models from literature and vibrational modes from

fluorescence line narrowing and resonance Raman are shown in figure 3.11. We find four

modes ranging from 88 cm−1 to 339 cm−1, the frequencies and dephasing times of which

are recorded in table 3.4.

As for the high frequency modes, we first examine the rephasing amplitude maps,
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Figure 3.10: Rephasing phase maps of the 4 high frequency modes of d1d2: a: 494 cm−1, b: 730 cm−1, c:

854 cm−1, d: 971 cm−1. All maps are noise-floor thresholded so that only regions of the map with at least

33% of the peak amplitude within the viewing window are non-white. The color scale is such that −π and π
are the same color, while all other values between are uniquely encoded. Since no fitting of time zero was

performed (it was selected to be approximately the peak of the non-resonant response), the absolute value of

the phase here is meaningless, only the relative value phase of peaks within the map is meaningful (see text).
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which are summarized in figure 3.12. An immediately distinguishable characteristic of

the low frequency maps, particularly for the 246 and 339 cm−1 maps is that there is a

significant amplitude on D– detected at the same frequency as CP21. In other words, the

amplitude at the ottoman of the chair super-imposed on the maps in figure 3.12 is strong.

This feature is not anticipated from the vibrational model and the strength of the amplitude

relative to CP21 is much higher than what we see in the high frequency maps. While

one could say that the inhomogeneous broadening of LP21 would cause its amplitude to

smear upwards in detected energy, the extent to which we see it smear upwards (and not

downwards) makes this explanation seem unlikely. A more likely explanation is offered

in [94], where they examine an electronic dimer coupled with vibrational modes. In this

model, they predict a peak detected at the lower energy of the two dimer exciton states

and along the D– line which has opposite phase of the CP21 cross peak. Remarkably,

both peak position and phase agree from this model agree excellently with the data here

(see figure 3.13 for the phase along D–). In the 339 cm−1 mode, the lower cross peak

CP21 is shifted by over 1 radian from the diagonal line, which again is not anticipated

in a purely vibrational model, but can be explained by a vibronic model[110]. The

presence of any significant amplitude on D–, however, outright excludes the possibility

that either the 246 or 339 cm−1 are of pure electronic origin. The 88 cm−1 mode suffers

from extreme spectral overlap, so it is not possible to distinguish its character. The

88 cm−1 does exhibit a long dephasing time (nearly 2 ps) so it seems probable that it

is not a purely electronic coherence. The identity of the 117 cm−1 mode is less clear,

as it shows significant amplitude above the D+ line. The vibronic model of [94] does

anticipate a peak on what would be a D++ line (that is a line displaced by 2 vibrational

quanta above the diagonal), but the phase they predict is opposite to what we observe. It

is proposed in [98] that this mode is a consequence of mixing between a low frequency

electronic exciton difference and the vibrational mode at 339 cm−1. This conclusion was

reached by, again, simulating a vibronic dimer but with parameters matching the PD1-PD2
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Mode cm−1 Rel Err % Dephasing time f s Rel Err %

87.8 0.13 1919 4.1

117 0.50 184 2.0

246 0.10 439 2.1

339 0.06 441 1.84

Table 3.4: This table shows coherent modes from a ~2 ps 2DES scan of d1d2 that were found to have

frequencies < 450cm−1. The error shown here is a relative error in units of percent, given by

(
√

σν/ν)×100, where σ is a diagonal element of the estimated covariance matrix and ν is the mean value

of the estimated parameter.
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Figure 3.11: Exciton models of d1d2 from the literature.a: Exciton difference frequencies for the

Novoderezhkin[107] model of the PSII RC. b: Exciton difference frequencies for the Gelzinis[100] model

of the PSII RC. c: vibrational frequencies for the PSII RC from fluorescence line-narrowing[111] (black)

and surface-enhanced resonance Raman[112] (green) experiments. The coherences observed in the 2DES

data are super imposed by red-dotted lines over all models and vibrational lines.

Chlorophyll pair. The new observation is that upon performing such a simulation, they

saw that vibronic modes produce a number of discrete frequencies in the waiting time

response with diminished amplitude, not just a single frequency as would be anticipated

by a diagrammatic approach, and that the maps of these secondary peaks do not match

expectations for the main resonance.
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Figure 3.12: Low frequency rephasing coherence amplitude maps for the following waiting time

frequencies: a: 87.8 cm−1, b: 117 cm−1, c: 246 cm−1, and d: 339 cm−1. Black lines have been drawn on the

maps to guide the eye (in the shape of a chair, see text). The amplitude maps are thresholded so that only

amplitude responses greater than 33% of the peak value of the viewing window are non-white. In black

contours the mean rephasing spectrum is shown to illustrate where in the usual 2D spectrum the oscillations

are occuring.
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Figure 3.13: Rephasing coherence phase maps. Low frequency rephasing coherence phase maps for the

following waiting time frequencies: a: 87.8 cm−1, b: 117 cm−1, c: 246 cm−1, and d: 339 cm−1. The phase

maps are thresholded so that only amplitude responses greater than 33% of the peak value of the viewing

window are non-white. In black contours the mean rephasing spectrum is shown to illustrate where in the

usual 2D spectrum the oscillations are occuring.
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3.3 Conclusions and Outlook

In this chapter we examined the coherent dynamics of the photosystem II reaction center

and came to the conclusion that both vibrational and vibronic features exist. Of note

we find that the 246, 339, 494, and 730 cm−1 vibrational modes, which can be seen

in fluorescence line narrowing spectra, are coupled to the exciton states of d1d2. The

existence of coupling between excitonic states and the vibrational modes of Chlorophyll

a is perhaps not surprising, but needed experimental verification. 2DES is an incivie

method for identifying such coupling, as the character of each mode can in many cases

be qualitatively assigned by matching the coherent amplitude and phase “map” to maps

created from simple models. From these results we conclude that non-adiabatic effects

(i.e. the unseparable mixing of vibrational and electronic wavefunctions) are important

in explaining the dynamics of the PSII RC. The existence of non-adiabatic effects can

have a profound impact on the rate of electron transfer in d1d2[90], thus these coherent

dynamics do actually speak to the functional purpose of the system. Furthermore, the role

of vibronic coupling (or non-adiabatic effects) in energy transfer, a second purpose of the

PSII RC and primary purpose of antenna proteins, is gaining support[126, 96].

The question which remains, of course, is how important these vibronic modes are to

the function of d1d2. Does the probability of electron transfer significantly increase in

the presence of vibronic coupling? Thus far simulations of the PD1PD2 chlorophyll pair

indicate that this is true (see figure3.14, taken from [98]). Panel d of figure 3.14, shows the

results of a Hierarchical Equation of Motion (HEOM) simulation of a coupled electronic

dimer allowing for charge transfer via a third excited “charge transfer” state, which is

coupled to either monomeric excitation. To study the impact of a single vibrational mode,

an Ohmic spectral density spectral density containing either a heavily damped or weakly

damped 339 cm−1 mode was added, and it was found that an enhancement in the charge

separation efficiency is seen when the mode is weakly damped. In further simulations

(not shown) it was found that the proximity of the vibrational mode energy to an excitonic
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difference determines the strength of the charge separation enhancement. If the vibrational

mode is far from an excitonic difference, the effect is weak, but near resonance (as is the

case for the 339 cm−1 mode shown) it is strong.

The relevance of vibronic coupling to charge transfer remains to be demonstrated

experimentally. To begin to address this question experimentally we have examined an

anion band from 790-820 nanometers, identified first by Wasielewski and co-workers[134].

Initial attempts to resolve coherent oscillation in this band was inconclusive, due to low

signal to noise (see figure 3.15). Transient grating measurements are not ideal, however,

since our TG measurements of Qy band have lower contrast coherent dynamics when

compared to those measured with 2DES, likely because of phase cancellation on

integration over excitation frequency.

An attractive approach to demonstrating the effect of vibrational or vibronic coherence

is to preferentially prepare the system in such a state via coherent control techniques[122]

and then examine a product state. A coherent control experiment remains to be attempted,

but it may offer improved signal to noise and will be more incisive to uncover whether or

not a vibronic coherence has a measurable effect on the anion yield. Finally, additional

work should be done to confirm our assignment of the 246 cm−1, 339 cm−1, 500 cm−1,

and 730 cm−1 as vibronic modes. As mentioned in section 3.1.5, temperature control can

be used to strongly affect the phase relationship of vibronic states and so the vibronic

character of these modes could be identified by examining coherence phase maps as a

function of temperature.

[87] R Almeida and RA Marcus. Dynamics of electron transfer for a nonsuperexchange

coherent mechanism. 2. numerical calculations. Journal of Physical Chemistry,

94(7):2978–2985, 1990.

[88] Koji Ando and Hitoshi Sumi. Nonequilibrium oscillatory electron transfer in

bacterial photosynthesis. The Journal of Physical Chemistry B, 102(52):10991–

11000, 1998.
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Figure 3.14: Simulated coherence amplitude maps (filled contours) derived from the simulated real

rephasing 2D spectra for the special pair dimer model with a 339 cm-1 vibrational mode, shown at

frequencies a: ω2=130 cm-1, b: ω2=250 cm-1 and c: ω2=340 cm-1. To better capture the mixed origin of

the 250 cm-1 mode, the map shown here in Fig. 4b includes an equal mixture of contributions from the 339

cm-1 and 251 cm-1 simulations, while the other maps are derived from the 339 cm-1 simulations only. The

dashed black lines indicate the diagonal and parallel lines offset from the diagonal by ω2 and -2ω2. Overlaid

open contours show the real rephasing 2D spectrum, averaged over waiting time t2. d: Simulated population

of the charge transfer state for coherent and incoherent cases of the 339 cm-1 vibrational mode. The bath

spectral densities for the coherent (black line) and incoherent (red line) 339 cm-1 mode are shown in the

inset. Blue lines mark optical excitonic splittings.
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Figure 3.15: a: The frequency integrated real absorptive transient grating signal for d1d2 in the 790-820

nanometer band from 150 to 900 fs with global kinetic fit in solid line. This feature is an excited state

absorption (hence the negative sign) and it grows in with a 1.2 ps time component, corresponding to the time

scale of charge separation in the PD1PD2 pathway[120].
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CHAPTER IV

POST ANALYSIS OF 2DES DATA

4.1 Introduction

To extract parameters characterizing the dependence of a 2D spectrum with population

time, a straight-ahead approach is to use non-linear least-squares (NLLS) fitting. This

chapter details how the coherence maps in chapter 3 were generated using a NLLS

approach. At first glance it may seem strange to dedicate an entire chapter to the

methodology of non-linear fitting, when numerous packages for such task can be found

in Matlab, Python, C++ or other computer languages. What those packages actually

implement are methods to minimize or maximize objective functions, and if your objective

function is simple and well behaved, then there is little need to discuss the issue. However,

the problem of fitting a sum of Lorenzians to a 3D stack of data turns out to be a rather

ill-posed problem. The objective function is rugged even for infinite precision much less

double precision, due to the strong coupling between of phase and frequency. The problem

size if naively implemented is enormous, as the entire 2DES data tensor consumes nearly

2 gigabytes. Performing operations which require hundreds or thousands of manipulations

on data of this size is not only prohibitive on desktop computers, but also unnecessary as

we will show. What this chapter details are:

• Methods to improve the numerical condition of the objective function through a

method called variable projection.

• A means to analytically compute the gradient, Jacobian, and Hessian of the
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variable projection functional, which are necessary for analyzing goodness of fit

and obtaining rapid convergence to a solution when using standard minimization

packages.

• Ways to dramatically reduce the problem size so that that hundreds of data fits can

be generated in seconds, rather than a single fit in hours.

• A strategy for fitting data that gives a rigorous means to selecting the statistically

significant number of parameters that should be used in the model.

4.2 The Variable Projection Functional

Given any arbitrary functional form of the model f
(
�θ
)

with a N vector of parameters

�θ = {θ1, · · ·θi, · · ·θN}, an objective function of the form (4.1) may be used to estimate �θ

O =
L

∑
l=1

[
fl

(
�θ
)
− yl

]2
(4.1)

�θ = argmin
�θ

[O]

Where the data at a time index l ∈ [1,L] is given by yl , and the model at that time is

given by fl

(
�θ
)

. For three-dimensional data, such as 2DES, we can write:

O =
J,K,L

∑
j,k,l=1

[
f j,k,l

(
�θ j,k

)
− y j,k,l

]2

=
M,L

∑
m,l

[
fm,l

(
�θm

)
− ym,l

]2

m = 1, · · · ,JK

Where m is used to represent the linearization of the matrix of j,k pairs. This

linearization of multi-dimensional indices is extensible beyond three dimensions, and

would correspond to a specific unfolding of a tensor of d1,d2, · · · ,dn tuples. Once the
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objective function is specified, one is ostensibly done and the estimate θ̂ can be found

using one of the myriad of non-linear optimizers that exist. For non-linear optimization,

I use NLopt [140], which gives one access to a large a library of algorithms that may

be used to employ in the above search for a global optimum of the objective function.

In particular, I use a multi-start algorithm called Multi-Level Single Leakage employing

a Low Discrepancy Sequence in lieu of random starting points [142], which controls a

local optimizer. The local optimizer is either a derivative-free algorithm BOBYQA[146]

(requiring only the objective function) or a low-storage BFGS algorithm [143] which

requires that an estimate of the gradient be supplied. One can quickly find, however, that

simply using a non-linear fitting package on a sum of Lorenzians model with a data set

of the size found in fitting 2D spectra will be disastrous. As posed, the fitting procedure

can be highly unstable due to strong coupling between linear and non-linear terms in the

model. A method called “variable projection”, seminally demonstrated in [138], alleviates

the numerical instability of the naive fitting problem by separating the parameter vector

�θ into parameters which enter linearly in the model functional and those which enter

non-linearly, such that we have
{
�θm

}
=
{
�αm,�βm

}
. Under this separation, the model

function fl,m can be written as fl,m = Φm

(
�βm

)
�αm. The fitting process under variable

projection is broken into two steps: a set of non-linear parameters �βm are guessed, and then

�αm are estimated via linear regression. An important simplification can be made if we can

assume that the nonlinear parameters �βm are independent of m, i.e. �βm = �β . In a sum of

Lorenzians model, this simplification implies that the resonant frequencies observed along

the waiting time are independent of excitation and detection frequency. In our experiment,

we cannot feasibly sample the waiting time with a sampling period much less than 10 fs,

so the maximum resolvable waiting time resonances will be 50 terahertz (1600 cm−1)

or less. In other words, we will only be resolving IR resonances along the waiting time

coordinate axis. Under an adiabatic approximation, we can assume that the vibrational

resonances are independent of the electronic excitation or detection frequency. Thus, in
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what follows we will make the simplification �βm = �β . The amplitudes and phases of the

oscillators, which are encoded in �α are allowed to vary from pixel to pixel. Assuming

the linear regression estimation of �αm remains stable, the question that remains is how

we will vary �β such that O is minimized. The precise implementation details of how to

traverse a multi-dimensional objective function are beyond the scope of this thesis, but any

method apart from brute-force grid-searching or genetic-algorithms is going to employ

either an analytic or numerically estimated gradient or Jacobian of the objective function.

Convergence towards an optimal solution can proceed more rapidly if an accurate analytic

gradient is used. In addition, understanding the validity of fit parameters can be efficiently

estimated in terms of the Hessian, which as will be shown can be approximated from the

Jacobian.

By separating the parameter space into linear and non-linear parameters, we

are making the statement that the linear parameters depend upon the non-linear

parameters:
{
�θm

}
=
{
�αm

(
�β
)
,�β
}

. So, in order to determine an analytic gradient of

the objective function with respect to �β , the parametric dependence of �αm

(
�β
)

needs

to be known. While the normal equations immediately give an equation for �α
(
�β
)

([
Φ
(
�β
)�

Φ
(
�β
)]−1

Φ
(
�β
)�

ym,l = �α (β )

)
, the inverse of

[
Φ�Φ

]
can be numerically

unstable[137]. Thus many authors who have developed the variable projection method

pursue more stable solutions, which typically involve either QR[141] or SVD[144]

factorization of Φ, with QR being the faster if somewhat less reliable[139]. Both

the SVD and QR decomposition methods can be used to construct an estimate of the

pseudo-inverse. The pseudo-inverse Φ+ of Φ, can be constructed for any full rank

rectangular matrix, which upon left multiplication with the observation vector�y results in

the minimum norm solution for �α
(
�β
)

. More generally, Φ+ falls into a class of matrices

called general matrix inverses which satisfy (at minimum) the properties ΦΦ−Φ = Φ and

Φ−ΦΦ− = Φ−. The pseudo-inverse also satisfies (Φ−Φ)
†
= Φ−Φ and (ΦΦ−)†

= ΦΦ−.

Equipped with a suitable general inverse, the objective function may be written as:
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O = ∑m |ΦmΦ−
m�ym −�ym|22, where |·|22 denotes the usual L2 norm. The notation may be

further compactified by introducing the projector operator Pm = ΦmΦ−
m and its orthogonal

complement P⊥
m = I−ΦmΦ−

m , so that our problem may be represented as O = ∑m
∣∣P⊥

m�ym
∣∣2
2
.

Our task to compute the gradient and Hessian of the objective function must therefore

involve differentiating the projector.

O =
L,M

∑
l,m=1

[
− fl,m

(
�αm,�β

)
+ yl,m

]2

∂O
∂βn

= −
L,M

∑
l,m=1

2
[
− fl,m

(
�αm,�β

)
+ yl,m

] ∂ fl,m

∂βn

= −
L,M

∑
l,m=1

2rl,m
∂ fl,m

∂βn

= −
M

∑
m=1

2�r�m
∂

∂βn
(Pm�ym) (4.2)

∂ 2O
∂βn∂βn′

= −2
L,M

∑
l,m=1

∂
∂βn′

[[
− fl,m

(
�αm,�β

)
+ yl,m

] ∂ fl,m

∂βn

]

=
L,M

∑
l,m=1

2
∂ fl,m

∂βn′

∂ fl,m

∂βn
−

L,M

∑
l,m=1

2rl,m
∂ 2 fl,m

∂βn,x∂βn

= 2
M

∑
m=1

∂
∂βn′

(Pm�ym)
∂

∂βn
(Pm�ym)−2

M

∑
m=1

�r�m
∂ 2

∂βn∂βn′
(Pm�ym) (4.3)

Equation (4.2) gives elements of the gradient in terms of the derivatives of the projector

times the observation vector�ym, and equation (4.3) gives elements of the Hessian. Golub

and Pereyra in [138] derived the derivative of the projector Pm using assuming the two

aforementioned properties of general matrix inverses, (ΦΦ−)†
= ΦΦ−, and the product

rule:

DPm =

(
P⊥

m DΦΦ−+
(

P⊥
m DΦΦ−

)�)
(4.4)

The use of generalized inverse matrices (Φ−) rather than the specific case of the
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pseudo-inverse is convenient, as it allows us to employ low-rank approximations available

via SVD or QR decomposition, in case the columns of the model matrix Φ become nearly

collinear. For column pivoted QR decomposition, a rank k general left inverse is given by:

Φ− = Z

⎡
⎢⎣ R−1 (1 : k,1 : k)Q(:,1 : k)� |k

0|N−k

⎤
⎥⎦

Where Z permutes the rows of Φ− according to the pivoting scheme employed in

the QR algorithm, and the augmentation of N − k zero rows occurs when k < N. This

particular general inverse shares the same properties as the Moore-Penrose pseudo

inverse when the rank of Φ is full (they are the same to machine precision), but no

longer satisfies the condition that Φ−Φ is hermitian when the rank of Φ is not full. The

condition (ΦΦ−)†
= ΦΦ− for this general inverse is satisfied for any rank k, thus the

projector derivative of Golub and Pereyra for the QR-based general inverse is valid. The

main reasons for selecting this particular general inverse are that it is fast to compute

and coincides with the solution returned by Matlab’s backslash operator. Using the

pseudo-inverse (which is often most easily constructed from an SVD decomposition of Φ)

is equally valid, though slower. The Jacobian of the model function Pm�ym = �fm is given by

D(Pm�ym) = (DPm)�ym, under the assumption that�ym has no dependence on �β . Thus, from

equation (4.4) we have:
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Jm =

[
∂�fm

∂β1
, · · · , ∂�fm

∂βi
, · · · ∂�fm

∂βN

]

Jm,i =
∂�fm

∂βi

= P⊥
m

∂Φm

∂βi
Φ−�ym +

[
Φ−]�(∂Φm

∂βi

)�
P⊥

m�ym

=
(
I −ΦΦ−) ∂Φm

∂βi
�αm +

[
Φ−]�(∂Φm

∂βi

)�
�rm

=

[(
∂Φm

∂βi
�αm

)
−Φ

(
Φ−

(
∂Φm

∂βi
�αm

))]
(4.5)

+

([
Φ−]�((∂Φm

∂βi

)�
�rm

))

The full Jacobian over all m is given by the concatenation of J1···m. The ordering of the

parenthesis is important here to ensure that only matrix-vector multiplications are made.

When computing the gradient, which is the dot product of the residual�r�m =�y�P⊥
m with the

Jacobian, the second term of (4.5) can be dropped, due to the fact that P⊥
m [Φ−]� = 0[138],

giving:

∇βiO = −
M

∑
m=1

[
r�m

(
∂Φm

∂βi
�αm

)
− r�m

(
Φ
(

Φ−
(

∂Φm

∂βi
�αm

)))]
(4.6)

The formulation above for both Jacobian and gradient allows for a potentially full rank 3

tensor ∂Φm/∂�β = DΦm. To be explicit, DΦm is a three dimensional array, which when cut

along the third dimension gives “faces” that are matrices whose columns are the derivative

of each column of Φ with respect to the jth nonlinear variable. The jth face is denoted

[DΦm] j:

[DΦm] j =

[
∂Φm (1, ·)

∂β j
, · · · , ∂Φm (i, ·)

∂β j
, · · · , ∂Φm (A, ·)

∂β j

]

In total, there will be A = length [�α] columns in the jth tensor face, forming a L×A matrix.
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Often, DΦm is very sparse. In the case of a sum of Lorenzians model, each face contains

only two non-zero columns. To avoid calculations of the Jacobian or gradient scaling

poorly, the sparsity of DΦm should be exploited. A practical means of using the potential

sparsity of DΦm is to store a pattern matrix S of size N ×Q, where Q is the total number

of non-zero columns in DΦm, which encodes the structure of the sparsity. An example

structure for a sum of Lorenzians model containing 3 oscillators (6 nonlinear parameters)

is shown below:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Once the sparsity structure is known, only the non-zero derivatives of Φ need be stored

in columns of a L×Q matrix Φ′. The tensor product DΦm�αm can then be efficiently

implemented using S and Φ′:

DΦm�αm = Φ′ (S��α)� (4.7)

Where � indicates a column-wise scalar multiplication, implemented in Matlab by

the built-in function ������. When S is scaled column-wise by �α , then the columns of

the L×N matrix Φ′ (S��α)� are the sum of the scaled derivatives of all columns in Φ

with respect to a given non-linear parameter. This is equivalent to what the tensor product

would return: a series of L×1 column vectors, one for each face of the tensor (and there

are N faces in the tensor).

Equation (4.5) for the Jacobian contains a different tensor product in its second term,
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which needs to be treated separately. In (DΦm)
��rm, each face of the tensor is returning a

A×1 column vector, so the result of the tensor-vector product is a A×N matrix. In this

case, the resulting rows of the product retain the sparsity of each tensor face, so it is only

necessary to compute those elements.

4.3 Using 2D model functions to reduce the problem size

So far, we have discussed a simplified picture where we’ve assumed that the data for each

frequency-frequency “pixel” in a 2D spectrum is given by a sum of Lorenzians with linear

scaling factors that are completely independent from pixel to pixel. In other-words, we

have only considered a 1-dimensional non-linear problem, spread over multiple “ways”

or pixels. It can be advantageous for model parsimony to fit a model function which

contains nonlinear parameters in both data dimensions. This sort of model also applies to

standard transient absorption data, which when time resolved is also a two-dimensional

function. In general a function of the form f (x,y,βx,βy) could be used to describe

two-dimensional data with some list of parameters βx to describe the x-dimension and

βy to describe the y-dimension. We consider here a special case where the function

f (x,y,βx,βy) = Φx (x,βx)Φy (y,βy), i.e. it is separable. This assumption, while obviously

restrictive, will make the math considerably simpler. The separable case can be considered

to be two separate non-linear problems, where one seeks to find an optimal non-linear

basis for each dimension. Discretizing these functions to fit discrete data results in the

following matrix equation:
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[
hi (x,βx)αi, jg j (y,βy)

]
i, j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φx,1 (x0,βx) · · · Φx,MX (x0,βx)

...
...

Φx,1
(
x j,βx

) · · · Φx,MX

(
x j,βx

)
...

...

Φx,1 (xNX ,βx) · · · Φx,MX (xNX ,βx)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

α1,1 · · · α1,My

...
. . .

...

αMX ,1 · · · αMx,My

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φy,1 (y0,βy) · · · Φy,My (y0,βy)

...
...

Φy,1 (ys,βy) · · · Φy,My (ys,βy)

...
...

Φy,1
(
yNy ,βy

) · · · Φy,My

(
yNy ,βy

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Ŷ = ΦxAΦ�
y

The data fitting procedure now involves two projectors:

Px = ΦxΦ−
x

xP = Φ−
x Φx

Py = ΦyΦ−
y

yP = Φ−
y Φy

Our problem is O = min
[∣∣Y− Ŷ

∣∣2
f

]
. |·| f here denotes the Frobenius norm, which

is the sum of the square root of the absolute value for each matrix element. For fixed

nonlinear variables, we know the solution to the linear problem is given by:

105



y−ΦxAΦy = 0

y = ΦxAΦy

Φ−
x yΦ−

y = xPAPy

= Â

So then we get this solution that no longer contains the linear terms A:

O = min
[∣∣Y −ΦxΦ−

x Y Φ−
y Φy

∣∣2
f

]
= min

[∣∣Y −PxYyP
∣∣2

f

]

= min

[
R,C

∑
r,c

(
[Y −PxYyP]r,c

)2
]

Where ∑R,C
r,c [·]r,c is meant to indicate that the matrix argument is to be summed over all

rows and columns. The derivative of the objective function with respect to elements of �βx

or �βy are:

∂O
∂βx,i

=
R,C

∑
r,c

[
2(Y −PxYyP)�

∂Px

∂βx,i
[YyP]

]
r,c

= −2R� ∂Px

∂βx,i
[YyP]

∂O
∂βy,i

= −2R� [PxY ]
∂ yP
∂βy,i

Where R is the matrix residual. We need to supply the derivatives of the projectors Px

and yP. From [138], lemma 4.1:

DPx = P⊥
x DΦxΦ−

x +
(

P⊥
x DΦxΦ−

x

)�
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The derivative of the row-space projector yP is also found in [138] as a corollary to

lemma 4.1 found there:

DyP = Φ+
y DΦy

(
yP⊥

)
+
(

Φ+
y DΦy

(
yP⊥

))�

The requirement that one use the pseudo-inverse rather than a more general inverse is

because the beginning of the derivation:
(

A� (A�)+)� =
((

A�)+)�A = A+A, requires

that the transpose operator ·� commute with pseudo-inversion, which it does. This may

not be true in the general inverse case. In any event, we can easily use the pseudo-inverse

here for the derivative of both projectors. It carries a factor of 3-4 greater computational

cost to compute the pseudo-inverse rather than the QR-based general inverse discussed

earlier, but the scaling is the same. So then we have:

∂O
∂βy,i

= −2R� [PxY ]
(

Φ+
y DΦy

(
yP⊥

)
+
(

Φ+
y DΦy

(
yP⊥

))�)
∂O

∂βx,i
= −2R�

(
P⊥

x DΦxΦ+
x +

(
P⊥

x DΦxΦ+
x

)�)
[YyP]

4.4 Using Orthogonal Decomposition to Reduce Problem
Size

In section 4.3, we illustrated a strategy to reduce the number of linear coefficients to be

estimated by encoding the “pixel” dimension with some continuous functional form that

makes sense, Gaussian for instance. While this strategy can give more physically relevant

parameters, the physicality of the parameters one estimates really depends strongly on

how valid the functional form being fit to the data was in the first place. If, for instance,

excitons in the model are not well described by a single Gaussian function, then one still

has multiple “pixels”, which are now Gaussian functions rather than delta functions in

frequency-frequency space, describing the same excitonic dynamics. This fact is what
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gives rise to the need for fitting multiple exponentials in the first place. If we knew

the true excitonic basis that would diagonalize the matrix exponential describing the

population dynamics, then we could fit the population time data with single exponentials.

Assuming, of course, that the process one is looking at is well described by first order

differential equations. Given the potential difficulty of finding the true excitonic basis, we

can avoid non-linear fitting all together by simply seeking some basis which offers more

parsimonious representation than the delta function basis. Discrete Gram polynomials,

also known as Chebyshev polynomials, are one such example basis and were chosen

because the smoothness of the data makes polynomial interpolation attractive and more

importantly because existing software packages are available which can compute these

polynomials to double precision for large numbers of basis functions[145]. We find that

a high resolution data set containing ~1000x500 frequency-frequency “pixels” can be

represented with around 0.1% error using only 30x30 Gram polynomial “pixels”. Thus the

problem size can be reduced from fitting 500,000 independent pixels to just 900 pixels.

As the Gram basis is orthonormal, if the number of Gram polynomials is equal to the

number of data points, we are evaluating essentially finding the Fourier spectrum of the

data, in the Gram basis, rather than the Fourier basis. So reducing the number of gram

pixels to something less than the number of data points is equivalent to filtering the data in

the Fourier domain with a rectangular apodization filter. The legitimacy of such a filter is

related to how quickly the basis functions converge to represent the data. We find that for

frequency windowed signals, which one has if they are fitting a region of interest in the

2D spectrum, the Gram polynomials converge more rapidly than the Fourier basis. The

fact that Gram polynomials have no physical interpretation is irrelevant, we know that

the dynamics of these “Gram” pixels will contain a super-position of excitonic states and

their dynamics, so we must fit a multi-exponential to the decay of each Gram pixel. The

orthogonality of the Gram polynomial basis is important, since it ensures that (unlike a

Gaussian decomposition of pixel space), the linear coefficients of neighboring Gram pixels
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will not be coupled. The problem presented in section 4.2 can be re-written in the Gram G

basis as follows:

Y̆ = G�Y

O = ∑
m

[
f
(
�β
)�

ᾰm − Y̆m

]�[
f
(
�β
)�

ᾰm − Y̆m

]

β̂ = argmin
�β ,ᾰ

[O]

α̂ = Gᾰ

Ŷm = f
(
�β
)�

α̂

Where now the index m refers to the “Gram” pixels, rather than frequency-frequency

pixels. The inverse of G = G� due to the orthogonality of the Gram polynomials. In

English, this means one decomposes the data Y into the Gram basis and then minimizes

the difference between the model function f that is independent of the pixel basis. After

the data is fit in the Gram basis, the fit is then re-expanded into the original pixel basis.

Since the parameters of the Gram basis are fixed, they never enter the gradient of the

variable projection problem, which allows us to avoid the dual projector issue in section

4.3. Thus, the only reason to use the two-dimensional variable projection problem is when

one believes that the functional form one can fit to the frequency-frequency pixel axis will

result in significant decoupling of the population time dynamics, i.e. that each Gaussian

“compartment” will exhibit a different rate or frequency than the others. If one is not sure

of this, then the approach describe in this section is significantly easier to implement while

still offering a great degree of model parsimony over the naive pixel-basis approach.
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4.5 Goodness of Fit: Taylor Expansion of Objective
Function

After running an optimization, it is necessary to know to what degree the parameters

found are “valid”. Validity can be measured in a number of ways. One can ask for

the sensitivity of the objective function to small changes in the fit parameters. Another

metric is to test how well the model predicts values withheld from the data set, something

called validation. While the second metric is perhaps the most intuitive and robust, it is

computationally intensive to compute. We can estimate the sensitivity of the objective

function by expanding the objective function in the vicinity of the optimal solution �S using

the gradient and Hessian we derived in section 4.2.

O
(
�β
)

≈ O
(
�S
)
+

N

∑
n=1

[
∂O
∂βn

]
�S (βn −Sn) (4.8)

+
1

2

N

∑
n=1

N

∑
n′=1

[
∂ 2O

∂βn∂βn′

]
�S (βn −Sn) · (βn′ −Sn′)

An intuitive notion of the sensitivity of the objective function to changes in parameter

is the difference: O
(
�β
)
−O

(
�S
)
= ΔO, where �S is the solution vector found via

minimization. Under the second order approximation (4.8), and the assumption that the

optimal solution lies at a stationary point of the objective function (such that ∂O/∂βn = 0),

we have:

ΔO ≈ 1

2

N

∑
n=1

N

∑
n′=1

[
∂ 2O

∂βn∂βn′

]
�S (βn −Sn) · (βn′ −Sn′)

≈ 1

2

(
HO

(
�S
)

Δ�β
)�

Δ�β

=
1

2
Δ�β�HO

(
�S
)

Δ�β
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u
(

Δ�β
)−1

= Δ�β�1

2
HO

(
�S
)

(
Δ�β

)−1
(

1

2
HO

(
�S
))−1

=
1

u
Δ�β�

(
1

2
HO

(
�S
))−1

=
1

u
Δ�βΔ�β�

If the objective function has found a deep minimum, we expect the difference ΔO to

require a small displacement
(
�β −�S

)
= Δ�β to achieve a unit of range, while for a shallow

displacement it will take a large displacement to achieve a unit of range. Thus, solving

ΔO2 = u for Δ�β will yield an estimate of the error, where u is the unit of range. At the

moment u is a place-holder for the confidence interval level we would like to report. Stated

another way, if we assume �β to be unit normally distributed and we look one standard

deviation away from the solution, we have:

[
1

2
HO

(
�S
)]−1

=
1

u
σnσn′ ,

Which has the form of a covariance matrix. Plugging our expression for the Hessian

into the above, we see:

[
1

2

[
L,M

∑
l,m=1

2
∂ fl,m

∂βn′

∂ fl,m

∂βn
+

L,M

∑
l,m=1

2rl,m
∂ 2 fl,m

∂β 2
n

]
�S

]−1

=
1

u
σnσn′ (4.9)

Dropping the second term in the Hessian, containing the second derivative, we arrive

at the form known as the outer product gradient estimate for the covariance:

[[
L,M

∑
l,m=1

∂ fl,m

∂βn′

∂ fl,m

∂βn

]
�S

]−1

=
1

u
σnσn′

[[
J�J

]
�S

]−1
=

1

u
cov

(
�β
)
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Where J = (L×M)×N, or the Jacobian of the model over a linearized index z of

length L×M. For small residuals this approximation is justifiable, and in practice, near a

local minimum the correction that the second derivative gives to the Hessian can be less

than 10% or less even for moderate signal to noise of 4:1. This observation can be verified

by computing a finite difference estimate of the Hessian. Equipped with an estimate of the

Hessian, whether it be numerically calculated or via analytic approximation, if we want to

know the standard error, we should scale the assumed unit normally distributed variance

by the explained variance: σ̂ = RSS/(# degrees of freedom).

cov
(
�β
)

=
RSS

L×M−N −M×N

[[
J�J

]
�S

]−1

From this expression, the standard variance of �β may be extracted as the εstd =√
diag

[
cov

(
�β
)]

. If the off-diagonal elements of the covariance matrix are small, then

the standard variance gives a reasonable idea of how “valid” the extracted parameters �β

are, i.e. we can put an error bar on the numbers extracted in the fit. A related and even

easier to understand metric is the relative standard error, which is the ratio of the standard

error to the estimated parameter:�εrel = βi/

√
diag

[
cov

(
�β
)]

.

4.6 Sum of Lorenzians Model

Throughout this chapter we have alluded to a sum of Lorenzians model, but have kept the

exposition in terms of a general model. For typical minimization packages, the objective

function must be supplied in terms of real numbers only. Thus, we break the model down

as follows:
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fl,m

(
�α,�β

)
=

N

∑
n=1

exp [−βn,1tl] (αm,n,1 cos [βn,2tl]+αm,n,2 sin [βn,2tl])

∂ fl.m

∂βn,2
= tl exp [−βn,1t] (αm,n,2 cos [βn,2tl]−αm,n,1 sin [βn,2tl])

∂ 2 fl.m

∂β 2
n,2

= −t2
l exp [−βn,1t] (αm,n,1 cos [βn,2tl]+αm,n,2 sin [βn,2tl])

∂ 2 fl.m

∂βn,1∂βn,2
= −t2

l exp [−βn,1tl] (−αm,n,1 sin [βn,2tl]+αm,n,2 cos [βn,2tl])

∂ fl.m

∂βn,1
= −tl exp [−βn,1tl] (αm,n,1 cos [βn,2tl]+αm,n,2 sin [βn,2tl])

∂ 2 fl.m

∂β 2
n,1

= t2
l exp [−βn,1tl] (αm,n,1 cos [βn,2tl]+αm,n,2 sin [βn,2tl])

Here I’ve explicitly encoded the fit parameters �α and �β with sub-indices to clarify

their dependency on the time index l, the frequency-frequency index m, and their real or

imaginary part (denote 1 or 2 respectively). The n index on β and α refer to the index of

the oscillator, where each oscillator has an intrinsic frequency and linewidth. In total, each

oscillator requires 2 non-linear parameters and 2 linear parameters.

4.7 Optimal Model Order

Even if a given fit returns what seem to be reasonable parameter estimates, it is not

necessarily true that the model employed is the best. A particularly insidious problem that

arises when fitting a sum of Lorenzian models is that if too few oscillators are specified

in the model, several true frequencies can be averaged into a single fit frequency, rather

than the fit only selecting a subset of the true frequencies. Such an error could result in a

dramatic change in the interpretation of the fitted data. To insure against these potential

mis-interpretations, one should run many possible models and select which is the best.

Information criteria can be used to perform this selection task. Although there are many

different information criteria in the literature, the corrected Akaike Information Criteria

(AICc) offers a simple and theoretically well grounded means for model selection[135].
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In information theory, one is seeking to minimize the “information” that is lost when a

model is used to parametrize a data set. AIC is a specific implementation of this idea,

which forms an estimate of the Kullback-Leiber information “distance” from an unknown

true model. An exposition of the metric and its underpinnings is beyond the scope of

this thesis, but the main assumptions and limitations of the particular implementation of

AICc used in the analysis are discussed here. First, the log-likelihood and the maximum

likelihood estimate are given by the least-squares estimate. Second, and more restrictive,

the residual of a given fit is assumed to be a normally distributed random variable with

constant variance. While bootstrap estimates could give much more accurate estimates of

the residual distribution and variance, for the data size used in 2DES, such estimates are

computational expensive. With these assumptions, the AIC takes on a simple form:

AICc = n log

[
RSS

n

]
+2K +

2K (K +1)

n−K −1

K = numel
(
�β
)
+numel(�α)+1

RSS = �r�r

Where RSS is the residual sum of squares, K describes the number of parameters in

the model (2 real numbers per complex oscillator, and 2 per complex amplitude), and n

is effective the number of data points (2 real numbers per record if fitting complex data).

With respect to the adaptive filtering method, presented in chapter 5, a signal of length N

can be perfectly reconstructed as soon as N poles are selected, since this gives a full rank

basis for the signal. However, it should be obvious that as soon as one uses N/2 poles, the

number of parameters will be equal to the number of data points! The third term in AICc

has a singularity at N
2 poles as well. Thus fitting model orders beyond this point is useless

and so whether one is using variable projection or adaptive filtering the maximum model

order one should select is N
2 −1. In terms of implementation, one simply runs the fitting

software many times, once for each model order. This is, at least, parallelizable so its a
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good idea to run the fitting on a multi-core processor with code that can take advantage of

this.
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CHAPTER V

EFFICIENT SIGNAL EXTRACTION FOR 2DES

5.1 Introduction

The need to scan over the coherence time delay dramatically increases the acquisition time

of the 2DES experiment relative to more traditional transient absorption measurements,

which only scan the waiting time delay. This simple problem, among others, has motivated

the development of single shot 2DES setups [152, 158]. Single shot setups, which encode

the coherence delay spatially, unfortunately require high speed large area CCD or CMOS

detectors (which are expensive) and significantly more pulse energy (since the energy

is spatially spread out) than traditional scanning setups. Furthermore the spatial mode

quality of the laser source for single shot setups must meet more stringent requirements

to avoid aberrations from spatial temporal coupling. So when single shot setups are not

feasible to implement (for a variety of reasons) we should instead seek ways to take fewer

scan measurements in order to recover the same information in less time. The simplest,

demonstrated[73], way to reduce the number of data points required to reconstruct a full

2D spectrum is to use what is called phase locking. Phase locking is a pulse shaping

method which allows the measurement to be conducted in a rotating frame. To accomplish

phase locking, a phase −ωlockt1 is added to the pulse as it is scanned through t1, and the

result is that the detected signal will now oscillate at a reduced frequency ω −ωlock in

t1. When the lock frequency is brought into resonance with an optical transition then

that optical transition will not oscillate at all as a function of t1. For frequencies away
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from resonance the oscillation frequency is not zero, but still low. The main experimental

implication of phase locking is that the sampling rate necessary to satisfy the Nyquist

sampling criterion is significantly reduced. For 120 nm bandwidths in the visible, this

means we can safely step through the coherence time in 10 femtosecond steps. For typical

electronic linewidths, only 300 femtoseconds need be measured before the signal decays

beneath our signal to noise. Thus we require about 30 measurements along the excitation

axis to extract a signal. As the pulse shaper we use is capable of stepping the time delay

and phase with each laser shot at a 1 KHz repetition rate, this means that an entire 2D

spectrum can be sweeped out in as little as 30 ms.

But if a further reduction of the acquisition time is desired, we need to look for ways

to either break the Nyquist criterion altogether or find ways to reliably extrapolate the

data based on a truncated measurement. In this chapter we will explore the latter idea. If

the signal we are trying to observe can be sparsely represented in some basis, then that

sparsity can be exploited to reduce the number of coefficients we need to estimate – and

thus the number of measurements we need to make in order to estimate them. Discovering

the basis in which a given signal is sparse is a general problem found in many fields. The

simplest way to state the sparse solution problem for a given basis Φ is that we would like

to minimize the quadratic error |y−Φx|22 subject to the constraint that the l0 norm of x,|x|0,

is also minimized. Which is to say: find the coefficient vector with the least number of

non-zero elements. Unfortunately, this direct problem statement is NP hard to solve[160].

In practice, sparse solutions can be found by solving alternative, more well behaved

problems like L1-minimization, which is called basis pursuit, or greedy algorithms like

matching pursuit. In this chapter we pursue an algorithm in the latter class, but with

modifications that can make it similar to a basis pursuit approach. A number of papers have

recently developed accelerated acquisition methods for multi-dimensional spectroscopies,

ranging from NMR[154], to 2DIR[149], and even 2DES[164]. All of these methods

seek to exploit a sparsity in the Fourier basis, which is applicable mainly to systems
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with narrow line-shapes relative to the excitation bandwidth, while the NMR papers are

using linear predictive methods. For the broad line-shapes commonly found in electronic

spectroscopy of the condensed phase, the Fourier basis obviously does not admit a sparse

representation. We demonstrate that these broad 2DES signals can, however, be efficiently

represented by an orthonormalized basis of rational polynomials in the frequency domain.

To find this representation, we reformulate an existing method called Adaptive Fourier

Decomposition[147] as a filtering method for physical signals and develop its discrete

time-domain analog. The result is a simple, easily implemented and stable algorithm with

few necessary tunable parameters that yields considerable compression relative to the

discrete Fourier basis.

5.1.1 Adaptive Filtering Algorithm

2DES signals of condensed phase samples in the frequency domain are typically broad,

with smooth overlapping irregularly shaped features. In other words, the signals are

inefficiently represented by the delta-function (in frequency) Fourier basis. The ideal

basis would be smooth and causal, be capable of simultaneously describing the real

and imaginary parts of the nonlinear signal, and also have finite support that smoothly

approaches zero as it approaches infinity in either direction. Complex rational polynomials

(given by ratios of complex polynomials), satisfy all these requirements and have been

extensively developed in both the System Identification and function approximation

communities for close to a hundred years[167]. By partial fraction decomposition, any

rational polynomial can be represented as a sum of complex Lorenzian functions in the

frequency domain or sum of complex exponentials in the time domain. Because Lorenzian

functions encode both a bandwidth and central frequency, it should be clear that the

problem of broad line-shapes can be handled by such a basis. What is less clear at the

outset is how sparsely experimental data will be represented, since Lorenzian lineshapes

have significantly broader tails than what is observed. As will be shown in section 5.2,
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the bulk of the amplitude for simple inhomogeneously broadened lineshapes can be well

represented with just a few basis functions.

As most 2DES setups involve scanning a time delay, we focus on formulating the

problem of extracting the frequency domain from a time series directly. Of course, in

2DES one collects a collection of time series for each 2D spectrum, but here the focus is

on a single time series. In section 5.2, the adaptation of this method to two dimensions is

made. The problem of fitting time series to sums of complex exponentials is in general

non-linear and therefore potentially troublesome. Linear predictive algorithms, which

date back to the late eighteenth century beginning with Prony’s method, can reduce the

non-linear problem to a linear problem[165]. Modern examples of such “linearizing”

algorithms are Linear Predictive Singular Value Decomposition[150], Multiple Signal

Classification[166], Filter Diagonalization Method[157], and Regularized Resolvent

Transform[136]. Despite the considerable success of linear methods, we consider an

adaptive filtering algorithm here primarily because it is straight-forwardly understood and

implemented and exhibits excellent numerical stability in the presence of noise without

recourse to regularization. We do not make any general claim about the superiority of an

adaptive filtering approach over linear methods, however.

To begin we introduce a parametrized orthogonal rational polynomial basis Φ known

as the Takenaka-Malmquist (TM) basis in System Identification literature[153]. The nth

column of Φ is given by:

Φn (z) =

√
1−|an|2
z−an

n−1

∏
j=1

1− ā jz
z−a j

, k ∈ N

This basis accepts as parameters a collection of complex values
{

a j
}

, called poles inside

the unit disk (D) excluding the boundary of the disk (T). The TM basis is orthogonal on

the Lebesgue measure, which can be expressed in the complex plane as a contour integral,

though it is more commonly known on the unit circle.
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〈 f ,g〉 =

˛
T

f (z)g(1/z̄)
dz
z

∀z ∈ T = 〈 f ,g〉= 1

2π

π̂

−π

f
(
eit)g(eit)dt

Because all the poles of the TM basis lie inside the unit circle, the TM basis is

orthogonal from [0,∞) in the discrete time domain, which is understood by examining

the radius of convergence of the z-transform for a complex function. Furthermore, the

numerator polynomial degree is strictly less than that of the denominator, making the TM

basis appropriate for strictly proper transfer functions, which implies that it is capable

of describing physical signals. Note that a “pole”, which mathematically just means a

singularity of a certain kind, in this context also implies a certain lifetime and frequency

of the Lorenzian oscillator. Orthogonality is important for a number of theoretical

reasons[153], particularly in estimating convergence and variance properties, but also a

key practical one: numerical conditioning. While the orthogonality in theory holds only

for infinite record lengths, in double precision the vectors become effectively orthogonal

within a few lifetimes of the slowest pole (the lifetime of the least damped oscillator).

Even for record lengths on the order of one lifetime of the slowest pole, the basis functions

are nearly orthogonal, such that the condition number of Φ�Φ is near unity. The basis of

individual complex exponentials described by the same poles and record length, on the

other hand, can very quickly become ill-conditioned. Thus using this basis acts, at the

least, as a preconditioner for the problem of fitting complex exponentials.

Recall that our objective is to find the basis in which the signal may be sparsely

represented. This now amounts to finding the optimal poles for the TM system such

that as few as possible basis functions are needed to achieve a requested accuracy. A

number of approaches may be taken, the most straight-forward of which is to use simplex

minimization of the variable projection[151] functional ε =
∣∣y−Φ(�a)Φ(�a)+ y

∣∣2
2

. Where
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Φ(�a)+denotes the pseudo-inverse of the basis give the pole vector �a and y is the data.

Unfortunately, it was found that the best fit done in this manner was often less than

satisfactory due to the ruggedness of this objective function. The objective function can be

made to be more well behaved by adopting an iterative algorithm called Adaptive Fourier

Decomposition (AFD)[162], which is outlined below in brief. Details on the theoretical

development and optimality of the algorithm is discussed in[162] and references therein.

AFD is an iteration over three steps. At the nth step,

1. Select the pole a j that maximizes the squared absolute value of the inner product of

the signal Gn (z) with a parametric dictionary element e
(
z,a j

)
=

√
1−|an|2
z−an

. This is

called “Maximal Selection” by the original authors of the AFD algorithm.

2. Computing the remainder: Rn = Gn (z)−
〈
Gn (z) ,e

(
z,a j

)〉
e
(
z,a j

)
3. Orthogonalize the remainder with respect to the pole a j, to create the signal for the

next iteration: Gn+1 (z) = Rn
z−a j
1−ā jz

.

This process can be repeated N times until the remainder is as small as desired. The idea

here can be connected to Non-Linear Least Squares by saying that steps 2 and 3 constitute

a different “functional” to minimize. Unlike the variable projection functional, we are

approximating the linear coefficients with dot products, rather than general inverses.

Furthermore, the non-linear portion of AFD is different in the sense that one does not fit

a matrix of functions, but rather a single function and the residual is then filtered at each

function fitting step. It’s not a priori clear which method is superior, though we find in

practice that the AFD “functional” seems to give better extrapolative performance than

variable projection offers. In any event, The final signal estimate Ĝ can be synthesized by:

Tn (z) = 〈Gn (z) ,e(z,an)〉e(z,an)
n−1

∏
j=1

1− ā jz
z−a j

Ĝ(z) =
N

∑
n=1

Tn
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In the frequency domain a closed form for the inner product can be found by complex

contour integration and using the property that 〈 f ,g〉 = 〈g, f 〉. 〈Gn (z) ,e(z,an)〉 =√
1−|an|2 (1/ān)Gn (1/ān). While the frequency domain algorithm here may be used by

computing the z-transform of the time series data, there is one problem with this approach

(see equation 5.1):

F (z) =
∞

∑
k=0

f (k)z−k (5.1)

Z-transforming the input data requires that we measure the time series until the response

has converged to zero ( f (k)→ 0) so that the z-transform will converge to its true value.

Doing this would defeat the purpose of estimating the signal with fewer data points than

the Fourier transform requires. In fact, the discrete Fourier transform IS the z-transform,

for z ∈ T. This problem can be avoided by transforming the AFD iteration to operate

directly in time domain, at which point it begins to more closely resemble filtering

approaches used for Laguerre modeling[168]. To do this we will create a recursive solution

to the time domain:

Gn (z) = Rn−1 (z)
z−an−1

1− ān−1z

Gn (z)− ān−1zGn (z) = zRn−1 (z)−an−1Rn−1 (z)

gn (k)− ān−1gn (k+1) = rn−1 (k+1)−an−1rn−1 (k)
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gn (k) =
1

ān−1
gn (k−1) (5.2)

− 1

ān−1
[rn−1 (k)−an−1rn−1 (k−1)] , k ∈ [1,N] (5.3)

gn (k) =
k−1

∑
i=0

(
1

ān−1

)i+1

[−rn−1 (k− i)] , k ∈ [1,N] (5.4)

+
k−1

∑
i=0

(
1

ān−1

)i+1

an−1rn−1 (k− i−1) (5.5)

g1 (k) = y(k) (5.6)

In the closed form expression (5.4) we have used the fact that gn (0) = 0, because the

signal is assumed to have a strictly proper transfer function. Even if the time series does not

begin with zero value at the first index, a zero can be concatenated at the beginning without

loss of generality to satisfy this condition. g1 (k) is given by the input time series. In

practical computation, the recursive formula (5.2) is much faster to compute, but degrades

in accuracy more rapidly than the closed form version. In calculations presented here we

employ the recursive form. The inner product between the signal and the dictionary can

be approximated by a discrete dot product 〈gn (k) ,e(k,an)〉 ≈ [gn (k) ,e(k,an)], where

e(k,an) is given by (in closed and recursive form):

e(k,an) =

√
1−|an|2

k−1

∑
i=0

ai
nu(k− i) (5.7)

e(k,an) = ane(k−1,an)+

√
1−|an|2u(k) (5.8)

Here u(k) is the time domain of the pump pulse. For an impulsive pump, the dictionary

element simplifies to

√
1−|an|2ak

nS(k−1), where S(k) is the unit step function. To

summarize the algorithm in the time domain, we again iterate over three steps:

1. Find an such that the squared absolute value of the discrete dot product between the

dictionary (5.7) and gn (k) is maximized. Call this the Discrete Maximal Selection
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step.

2. Compute the nth remainder rn (k) = gn (k)− [gn (k) ,e(k,an)]e(k,an)

3. Factor the remainder to find signal for the next iteration using equation (5.4).

In either the frequency domain or time domain, it is necessary to find which value of an

maximizes the overlap of the dictionary element with the signal. This can be accomplished

a couple of ways, the simplest of which is a brute-force grid search. We found that a

multi-start subplex algorithm implemented in NLopt[163, 155] finds the global maximum

of each iteration much more quickly and with higher accuracy than a grid search. One

should observe, however, that the algorithm proposed here is finding a greedy solution

and therefore may not be the globally optimal solution if all possible pole orderings are

considered. One simply might not bother ensuring one has found a global optimum and

to live with the representation one gets from the greedy solution. It is significantly faster

to compute the greedy solution and it can be useful for exploratory work. A safer, albeit

much slower, approach is to find the global solution by selecting the entire vector of poles

all at once and then minimize residual of the AFD “functional”. A subplex optimizer again

performs well here, by now minimizing the norm of the nth remainder. We note again that

this is different than minimizing the variable projection functional. Global optimization is

done by optimizing a population of starting points, which is conveniently done through the

Multi-Level Single Linkage (MLSL) algorithm in NLopt[156]. A third option is to employ

the recently published cyclic AFD variant[161], described below, which acts to refine the

output of the greedy algorithm iteratively.

1. Select a vector of poles P(0) =
{

a(0)1 ,a(0)2 , · · · ,a(0)n

}
using greedy adaptive filtering.

Remove the first pole from the set to create P′ =
{

P(0) \a(0)1

}
.

2. Using the fixed set of poles P′ run the AFD iteration to obtain the (n−1)th

remainder r(1)n−1 starting with the original function to be approximated g(k) by
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looping over steps 2-3 of the usual AFD algorithm. (I.E., skip Discrete Maximal

Selection and use the poles of P′).

3. Select a new pole using Discrete Maximal Selection, operating on r(1)n−1 to obtain a

new pole a(1)1 .

4. Construct the new pole vector P(1) = P′ ∪a(1)1 ≡
{

a(1)1 ,a(1)2 , · · · ,a(1)n

}
.

5. Remove the second pole from P(1) to obtain P′ = P(1) \a(1)2 =
{

a(1)1 ,a(1)3 , · · · ,a(1)n

}
.

Go to step 2 and repeat through step 5, replacing the kth pole from the set at the kth

iteration. Once the entire pole vector is traversed a “cycle” is complete. One can

then go back to the beginning of the pole vector and repeat the entire process for N

cycles. A good stopping criterion is to specify the relative value of the pole vector

norm from cycle to cycle. i.e. Prel = norm
(

P(n)−P(n−1)
)
/norm

(
P(n−1)

)
.

Of these three options, we find that the greedy algorithm typically gives an excellent

starting point and that both cyclic AFD and the MLSL algorithm eventually refine that

starting point to the same answer. The cyclic algorithm converges more slowly than

MLSL, but its stopping criteria is well defined, which makes it less “fiddly” to work with

than MLSL. Thus for a user who is patient to wait for a good answer, but not patient

enough to try optimization parameters, I recommend using cyclic AFD with the relative

pole vector norm stopping criteria mentioned in step 5 of the cyclic AFD algorithm.

5.1.2 Extending Adaptive Filtering to Two and Three Dimensions

In order to estimate the entire two dimensional spectrum, or even a sequence of 2D spectra,

we use singular value decomposition (SVD) to break down the estimation problem into

a sequence of 1D problems, which are solved by the algorithms developed in section

5.1.1. If the 2D data is given by a matrix with the first dimension describing the detection

axis and the second axis describing the t1 axis, then the left singular matrix returned by

SVD gives an orthonormal basis for the detection axis and the right singular matrix gives
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an orthonormal basis for the time axis. The bases that SVD returns are optimal in the

sense that they capture the maximal variation possible and are typically ordered from

most important to least important. It is well known that truncating the SVD basis at some

number of columns M < N results in a low-rank approximation of the N column input

matrix[169]. Unfortunately, the basis functions returned by SVD are non-parametric,

so they cannot be used to extrapolate the time axis further. The strategy is then to

independently filter each column of the right singular matrix in order to extrapolate it to

longer time. As a result, this strategy is parallelizable and, by filtering only the first M

columns of the right singular matrix, one can reduce the problem size considerably. As

a consequence, even sequences of hundreds of 2D spectra can be quickly filtered and

extrapolated in less than a minute on modern desktop computers. In brief, when given

a data matrix D, with the first dimension containing the detection axis and the second

dimension containing the t1 axis, we have:

D = W3ΣT�
1 (5.9)

T1 = [T1,1,T1,2, · · · ,T1,N ]

T̂1, j = adaptive filter
[
T1, j

]
D̂ = W3ΣT̂1

Equation (5.9) is the SVD decomposition of D and thus W3 and T1 are the left and right

singular matrices respectively. In order to fit a sequence of 2D spectra, described by a

3-dimensional array of measurements, one can unfold the 3D array into a 2D array, where

the first dimension becomes a concatenation of the detection axes for each population time

point, while the second dimension remains the t1 axis. SVD is performed on the unfolded

array and the filtering procedure proceeds as in the 2D dimensional case. Note, however,

that this entire strategy results not in a new basis for the whole data, but in a set of bases for

each column of the right singular vector. As a result, it may be that a more parsimonious
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representation could be constructed if one were to generate a multi-dimensional filtering

method. Such methods are possible, but not explored here. In particular for AFD, it is

required that one describe the data in a higher dimensional algebra like quaternions[162].

5.2 Applying Adaptive Filtering to Non-Lorenzian
Lineshapes

A simple model for 2D lineshapes is given in Chapter 6 [159], which allows one to

incorporate homogeneous linewidths and inhomogeneous frequency distributions as

phenomenological parameters. In this model, the inhomogeneous broadening is created by

convolving the frequency response of the purely homogeneously broadened spectrum with

some distribution, which equates to a product of the homogeneously broadened spectrum

with that distribution in the time domain. This sort of model is valid when the bath

dynamics are much slower than the system dynamics. In general, static inhomogeneity of,

for instance, site energies or couplings, will result in more complicated lineshapes as the

time scale separation of bath and system dynamics is not generally valid. For the sake of

demonstrating how this algorithm treats lineshapes which are not Lorenzian, however, it

will suffice. For Gaussian distributed inhomogeneous broadening we have:

Ieg (t) = exp [iωegt −Γegt]

S (t1, t2, t3) ∝ Ieg (t1) Ieg (t3)(1+ exp [−Γeet2])

〈Sr (t1, t2, t3)〉 ∝ S (t1, t2, t3)exp

[
−Δ2

eg

2
(t3 − t1)

2

]

〈Snr (t1, t2, t3)〉 ∝ S (t1, t2, t3)exp

[
−Δ2

eg

2
(t3 + t1)

2

]

Selecting a larger inhomogeneous broadening parameter relative to the homogeneous

linewidth, we generate a example rephasing spectrum shown in Figure 5.1. In this case

it should be clear that fitting this lineshape with Lorenzians is not optimal, since the
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Figure 5.1: Simulated rephasing line shape with homogeneous linewidth of 1/(2ΔT ) and inhomogeneous

Gaussian distributed linewidth of 1/(5ΔT ).

a b c

Figure 5.2: Reconstruction error relative to the maximum intensity of the full spectrum of the three methods

mentioned in section 5.1.1. All methods run using between 1-7 poles using the first 20 data points (of 100).

a. Greedy algorithm, b. Cyclic AFD with 1E-6 relative pole norm stopping criteria, c. MLSL algorithm.

Equation for the error is: ε = (ŷ− y)/max(y).

tails of the spectrum in the frequency domain will damp more quickly than a purely

homogeneously broadened lineshape. Nevertheless, it is still possible to reconstruct

the spectrum using few data points (and few basis functions). In essence the adaptive

filtering is approximating the continuous distribution of homogeneous linewidths present

in the spectrum by a weighted discrete sum. In figure 5.2, 20 t1 time points are used to

reconstruct the spectrum using between 1-7 basis functions, depending on the optimal

order determined via an information criteria (see section 4.7). It can be seen that the

greedy algorithm has higher reconstruction error, while the refinements of the greedy

solution, either via cyclic filtering or MLSL, are nearly the same.
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a b

Figure 5.3: Real rephasing spectrum of chlorophyll a in a 50/50 mixture of isopropanol and glycerol at 77K

taken at 170 fs population time delay. a. FFT of a truncated data set containing 20 data points sampled every

5 fs. b. Cyclic adaptive filter reconstruction of the same truncated data set in a. Note that the excitation axis

modulation is eliminated in the adaptive filtered version without broadening the peakshape, as a fixed

Fourier filter would.

5.3 Applying Adaptive Filtering to Data

To demonstrate this method on real data, some broad-band 2DES data of chlorophyll a

in isopropanol and glycerol at 77K is examined. We show that for truncated data sets,

adaptive filtering allows one to extract 2D spectra that eliminate Gibbs phenomenon that

results from abruptly truncating and zero-padding an FFT. The ability to collect truncated

data (which decreases acquisition time) is useful, since it means more spectra can be

collected in the same period of time, which allows one to average out the differing laser

noise environments present between spectra. Furthermore, the fact that we are fitting a

function which does not completely span the discrete space of the data means that noise

which does not fit within the model is removed to some degree. In other words, poles

which represent pure noise terms are rejected by selecting a model order that is less than

the number of data points.

5.4 Conclusions

We have demonstrated that complex Lorenzians form a reasonably sparse basis to expand

2D electronic signals. The difficulty, however, is to find the appropriate parameters for

the Lorenzian basis so that the data can be well represented. We have proposed the use
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of an adaptive filtering scheme, based on existing frequency domain system identification

techniques, and have adapted it to the time domain, which is relevant for typical 2DES

data collection setups. Once the signal is expanded in some sparse basis, we can reduce

the acquisition time required to represent the full frequency domain data. As mentioned

in the introduction of this chapter, significant reductions in acquisition times can be

accomplished through the use of phase locking. We find that such measurements can be

reduced further by nearly about a factor of 2 by using adaptive filtering to extrapolate

the data. The reason for pursuing a reduction in acquisition time so doggedly is because

improved acquisition speed results in higher signal to noise along the population time axis

by integrating the measurement over many scan instances. Integrating many waiting time

scans is a popular strategy in transient absorption, but one which was often denied to us

because the acquisition time of a single scan was many hours.

The amount of acquisition time reduction one can achieve depends on how well the

algorithm can find such a sparse representation and more fundamentally how well the basis

approximates the true form of the data. The need for a flexible and adaptive basis was the

original reason for pursuing AFD. Unfortunately, even though the idea of using Lorenzians

to fit the data appears to be good, the adaptive filtering algorithm, like linear predictive

algorithms, requires that the Nyquist sampling criteria still be met and that the sample

spacing be linear in order to find a sparse representation. True “compressive sensing”

techniques[148] avoid both of these issues, but there new and more esoteric constraints

arise and the minimization process becomes much more expensive. In order to reduce

the acquisition time further than is possible with phase locking alone, it was necessary to

demonstrate that 2DES signals admit a sparse representation in some basis. The adaptive

filtering scheme I have presented here suggests is that a subset of the space of all possible

Takenaka-Malmquist basis functions admits a sparse representation of the data, which is

something not a priori obvious in the presence of inhomogeneous broadening. Exploitation

of this observed sparsity in more modern compressive sensing approaches remains to be
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explored in this context.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Summary and Innovations of this Work

This thesis presents my work to improve both the detected signal bandwidth for 2DES

measurements of d1d2[172] and to improve the signal to noise of the experiment in

general[173]. The former study showed the possibility of resolving excitation dependent

kinetics in weak blue transitions of d1d2, but the signal to noise needed improvement.

With the new setup that was subsequently developed it is now possible to return to that

study, as was shown in preliminary data on an anion band at 790-820 nm. Combined with

work to improve pump source bandwidth and other instrumental changes, we are now

able to resolve nearly twice the excitation bandwidth of previous 2DES studies on d1d2

done in this group[174]. The extended bandwidth along with improved pulse compression

and signal to noise has made the high quality observations of coherent dynamics of

d1d2 possible. Improvements to data fitting procedures compared to those presented in

[174] has enabled us resolve multiple kinetic rates and eight coherent oscillations from

the data. Additionally, the move away from a pump-probe geometry to a non-collinear

box-CARS geometry has greatly facilitated the separation of rephasing and non-rephasing

pathway signals, which is important for analysis of coherent effects. While the box-CARS

geometry requires phasing, we have clarified methods to implement the phasing (be it

through minimization procedures or through the new analytic method presented) and in

so doing have achieve better results than published elsewhere[170]. Finally, we have
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developed a method of reducing the number of data points needed to generate 2DES

spectra in a way that is general enough to describe both broad and narrow lineshapes.

Of the coherent oscillations in d1d2 that we observe, the 246 cm−1, 339 cm−1,

494 cm−1, and 730 cm−1 modes were identified as having mixed vibrational/excitonic

character. The higher frequence modes observed (854 and 971cm−1) were identified

as purely vibrational. Two of the lower frequency modes (89 and 117 cm−1) have less

clear origin, though an interesting speculation for the 117 cm−1 mode from simulations

of a dimer system suggest that coherent mixing between excitons and vibrational states

can give rise to numerous peaks in the waiting frequency response. Simulations further

demonstrate that mixing between vibrational and excitonic states leads to an increase in

charge transfer rate, which is an indication that the observations of coherence here are

relevant for the function of d1d2 and potentially other charge transfer systems.

6.2 Future Work

An excellent ground-work for future experimentation has been established here, and the

observation of coherent dynamics in the PSII RC raises a number of questions. An initial

focus of this work was to develop the instrumentation to extend the bandwidth to detect

many transitions. Some initial work in probing anion bands at 890-820 has been presented,

but more work needs to be done here. Given the design principle behind the improved

signal to noise of this setup, though, returning to measurements which span from the Qy

to pheophytin anion bands in the blue will require the development of an amplified probe

over this bandwidth. Some exciting work to create a strong 200 nm bandwidth probe over

the 700-900 nm region using a degenerate optical parametric amplifier[176] has already

well under way in the lab. Such a source would be able to resolve the weak stimulated

emission bands, excited state absorptions, and anion bands of d1d2 in that region.

While simulations suggest that coherent effects can enhance charge separation, it

remains to be experimentally demonstrated. Given the pulse shaping capabilities this lab

134



has, a coherent control experiment is appropriate to attempt. Such an experiment would

involve pumping d1d2 with a train of pulses, rather than just a single pulse or pair of

pulses. When the time spacing between pulses in a pulse train is equal to the period of

a vibrational coherence, the mode can be “driven” or preferentially excited over other

modes. This sort of experiment would be ideal in the sense that it allows one to directly

answer whether exciting a particular coherence has an impact on the generation of a

photoproduct relative to exciting off-resonance.

Investigating how general the coherent dynamics are is another important direction.

In other aggregates of chlorophyll, what do the coherence maps look like? How closely

do they match the data here? Do protein mutations affect coherences? Though it will

be difficult, a temperature dependent study is straight-forward to accomplish and may

yield significant insight into the nature of the coherences observed in d1d2 or other

systems[175]. And, as mentioned in the introduction, a data-based model of long-time

kinetics both for the PSII RC and Core complexes to rival those created from transient

absorption data needs to be developed. The main question is whether or not a more

complex model of the kinetics is justified. It is hoped that the global data fitting techniques

demonstrated here will be of utility in that study, since target models generally involve a

large number of non-linear rates components.

Finally, some work to understand the physical nature of vibrations and how they

impact the electronic state would be helpful. From molecular dynamics simulations and

Raman studies the 261 cm−1 and 350 cm−1 modes have been identified and characterized

as originating from both in and out of plane deformations delocalized over the entire

chlorophyll molecule[177]. Ultimately electronic structure calculations capable of

describing the interplay of vibrational motion and excited state electron density could be

useful for grounding the concepts of vibrational electronic coupling to a more physical

picture.
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