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modeling strategy (Ŝ) and the estimated low-rank component (L̂). . 154

ix



LIST OF TABLES

Table

2.1 F1, FPR and TPR for (adaptive) lasso, truncating (adaptive) lasso
and thresholded lasso. Numbers in the table show mean and standard
deviations (in parentheses) over 50 replication. . . . . . . . . . . . . 27

2.2 F1, FPR and TPR for (adaptive) lasso, truncating (adaptive) lasso
and thresholded lasso. Numbers in the table show mean and standard
deviations (in parentheses) over 50 replication. . . . . . . . . . . . . 28

2.3 Structural Hamming Distance between different estimates of the T-
cell regulatory network. Diagonal numbers in parentheses show the
total number of edges in each network. . . . . . . . . . . . . . . . . 32

3.1 Performance of different regularization methods in estimating graph-
ical Granger causality with balanced group sizes and no misspec-
ification; d = 2, T = 5, SNR = 1.8. Precision (P ), Recall (R),
MCC are given in percentages (numbers in parentheses give stan-
dard deviations). ERR LAG gives the error associated with incorrect
estimation of VAR order. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Performance of different regularization methods in estimating graph-
ical Granger causality with unbalanced group sizes and no misspec-
ification; d = 2, T = 5, SNR = 1.8. Precision (P ), Recall (R),
MCC are given in percentages (numbers in parentheses give stan-
dard deviations). ERR LAG gives the error associated with incorrect
estimation of VAR order. . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Performance of different regularization methods in estimating graph-
ical Granger causality with misspecified groups (30% misspecifica-
tion); d = 2, T = 10, SNR = 2. Precision (P ), Recall (R), MCC
are given in percentages (numbers in parentheses give standard devia-
tions). ERR LAG gives the error associated with incorrect estimation
of VAR order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Mean and standard deviation of MSE for different NGC estimates . 59
3.5 Mean and standard deviation (in parentheses) of PMSE (MSE in case

of Dec 2010) for prediction of banking balance sheet variables. . . . 62
4.1 VAR(1) model with p = 10, T = 30 . . . . . . . . . . . . . . . . . . 121
4.2 VAR(1) model with p = 30, T = 120 . . . . . . . . . . . . . . . . . 122

x
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ABSTRACT

Modeling and Estimation of High-dimensional Vector Autoregressions

by

Sumanta Basu

Chair: George Michailidis

Vector Autoregression (VAR) represents a popular class of time series models in

applied macroeconomics and finance, widely used for structural analysis and simul-

taneous forecasting of a number of temporally observed variables. Over the years it

has gained popularity in the fields of control theory, statistics, economics, finance,

genetics and neuroscience. In addition to the “curse of dimensionality” introduced

by a quadratically growing dimension of the parameter space, VAR estimation poses

considerable challenges due to the temporal and cross-sectional dependence in the

data.

In the first part of this thesis, we discuss modeling and estimation of high-

dimensional VAR from short panels of time series, with applications to reconstruction

of gene regulatory network from time course gene expression data. We investigate

adaptively thresholded lasso regularized estimation of VAR models and propose a

thesholded group lasso regularization framework to incorporate a priori available

pathway information in the model. The properties of the proposed methods are as-

sessed both theoretically and via numerical experiments. The study is illustrated on

xii



two motivating examples coming from functional genomics and financial economet-

rics.

The second part of this thesis focuses on modeling and estimation of high-dimensional

VAR in the traditional time series setting, where one observes a single replicate of a

long, stationary time series. We investigate the theoretical properties of `1-regularized

and thresholded estimators in high-dimensional VAR, stochastic regression and covari-

ance estimation problems in a non-asymptotic framework. We establish consistency

of the estimators under high-dimensional scaling and propose a measure of stability

that provides insight into the effect of temporal and cross-sectional dependence on the

accuracy of the regularized estimates. We also propose a low-rank plus sparse mod-

eling strategy of high-dimensional VAR in the presence of latent variables. We study

the theoretical properties of the proposed estimator in a non-asymptotic framework,

establish its estimation consistency under high-dimensional scaling and compare its

performance with existing methods via extensive simulation studies.
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CHAPTER I

Introduction

Recent advances in information technology have made high-dimensional time se-

ries datasets increasingly common in many biomedical and economic applications.

Examples include structural analysis and forecasting of many macroeconomic vari-

ables (Stock and Watson, 2006; Bańbura et al., 2010), large volatility matrix esti-

mation in asset pricing (Fan et al., 2011), reconstruction of regulatory network from

time course gene expression data (Michailidis and d’Alché Buc, 2013) and discovering

functional and effective connectivity amongst brain regions from fMRI data (Smith,

2012).

Despite inherent difference in the focus of these problems together with unique

statistical and computational challenges from a modeling perspective, a central un-

derlying theme is to understand the interactions among the components of a large

dynamic system from temporal datasets.

This thesis focuses on developing rigorous and computationally efficient model-

ing strategies for vector autoregressive models (VAR) from high-dimensional datasets.

Vector autoregression refers to a popular class of models in economics and control the-

ory, commonly used for studying complex interrelationships among the components

of a multivariate time series. In the next few sections, we provide a brief description

of VAR models in the statistics and economics literature and their recent applica-
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bility in the fields of genomics and neuroscience, outline key technical challenges in

high-dimensional settings and summarize our contributions to the existing literature.

We conclude this chapter with an outline of subsequent chapters.

1.1 A Short Overview of Vector Autoregressions (VAR)

Autoregressive modeling of multivariate stationary processes originated in control

theory, where vector-valued autoregressive moving average (VARMA) and state-space

representations were used as canonical tools for identification of linear dynamic sys-

tems (Kumar and Varaiya, 1986; Hannan and Deistler , 2012). Some authors advo-

cated the use of higher-order VAR over more general VARMA models (Lütkepohl ,

2005) due to numerous identification issues of the latter model class. A strong the-

oretical justification of such a modeling strategy comes from the famous Wold de-

composition theorem, which ensures that a large class of stationary processes can be

represented as potentially infinite order VAR processes (Fournier et al., 2006).

VAR models gained popularity in the economics literature following the seminal

works of Granger and Sims. Granger (1969b) proposed the notion of Granger causal-

ity, a statistical framework for determining whether a time series X t is useful in

forecasting another one Y t. Sims proposed VAR models as a theory-free method for

estimating economic relationships (Sims , 1980). Since then VAR models have been

widely used for testing Granger-causal relationships among macroeconomic variables,

including government spending and taxes on economic output (Blanchard and Perotti ,

2002), stock price and volume (Hiemstra and Jones , 1994).

Formally, for a p-dimensional stochastic process X t = (X t
1, . . . , X

t
p), a finite-order

VAR model of order d, often denoted as VAR(d), takes the form

X t = A1X
t−1 + A2X

t−2 + . . .+ AdX
t−d + εt, E(εt) = 0,Var(εt) = Σε (1.1)

2



Figure 1.1: Graphical representation of the VAR model (4.3): directed edges (solid)
correspond to the entries of the transition matrices, undirected edges (dashed) corre-
spond to the entries of Σ−1

ε

where A1, . . . , Ad are p × p matrices and {εt} is white noise process. The matrices

A1, . . . , Ad, commonly referred to as transition matrices, capture temporal relation-

ship among the individual system components, while the error covariance matrix

Σε (or the precision matrix Σ−1
ε ) captures additional conemporaneous dependence

among them. For structure learning and forecasting problems, one is primarily inter-

ested in estimating the transition matrices, although incorporating information about

the contemporaneous dependence often results in improved estimation and prediction

accuracy.

VAR models provide a natural interpretation as a directed network of interactions

among the individual time series, as illustrated in Figure 1.1. The network of directed

edges, where the edge weights are represented by the entries of A1, . . . , Ad, is often

referred to as a Granger-causal network and the transition matrices are referred to as

the adjaceny matrices.

The macroeconomic applications described above involve learning Granger causal

networks in a classical time series setup, where the data consist of a single, long,

stationary snapshot of the vector-valued process {X1, . . . , XT ; T large}. Another

important line of research in microeconomics considers learning Granger causal net-

works among several economic variables from temporal panel data, where one observes

3



a panel of subjects (individuals, firms, households etc.) over a short period of time

(Cao and Sun, 2011; Binder et al., 2005).

In the last ten years, the Granger causal framework and VAR modeling have also

found diverse applications in biological sciences. An important example is the recon-

struction of regulatory networks from time course gene expression data, a canonical

problem in functional genomics. The Granger-causal network of interactions among

multiple genes are obtained via VAR modeling of short panels, since the time course

data generally consist of short time series (typically 5 − 20 time points), but one

has access to replicates from different biological samples or patients (Michailidis and

d’Alché Buc, 2013).

Another motivating example comes from neuroscience, where the main interest is

in finding dynamic connectivity measures among different regions of human brain from

time-course fMRI data. Despite increasing use of Granger causality and VAR mod-

eling in the neuroscience literature, their sensitivity to latency difference in Haemo-

dynamic Response Function (HRF) and platform specific issues like downsampling

remain unclear (Seth et al., 2013). In this thesis, we do not consider applications in

neuroscience and mention them as interesting future research directions.

1.2 High-dimensional VAR: Challenges and Current Work

The problem of high-dimensionality occurs when the ambient dimension of the

model parameter space exceeds the available sample size. VAR models are intrinsi-

cally high-dimensional due to a quadratically growing parameter space. For instance,

fitting a VAR(4) model for p = 10 time series requires estimating dp2 = 400 param-

eters (excluding estimation of the error covariance Σε). However, such large number

of stationary observations are seldom available in practice. In classical time series

settting (T large, n = 1), dependence among the observations further reduces the

effective sample size. Moreover, recent applications in macoecnomics and genetics

4



require analysis of hundreds of time series or genes. As a result, consistent estima-

tion and prediction is not possible without making some low-dimensional structural

assumption on the underlying model.

In Bayesian econometrics, researchers used several sparsity and structure inducing

priors to deal with this curse of dimensionality. Examples include gaussian, double-

exponential and Minnesota priors (Litterman, 1986; De Mol et al., 2008). The Gaus-

sian and double-exponential priors are related to ridge and lasso penalized regression

in the frequentist framework. More recently, the problem of high-dimensional VAR

estimation in the time series context has been addressed in the statistics literature by

several authors. For instance, Song and Bickel (2011) and Negahban and Wainwright

(2011) proposed lasso, group lasso and nuclear norm penalized estimation procedures

to encourage sparsity and structural pattern in the underlying network models. Davis

et al. (2012) proposed a regularized log-likelihood and two-stage estimation procedure

for encouraging sparsity in the model. In the genetic applications of short panel VAR,

Lozano et al. (2009a); Fujita et al. (2007a) and Shojaie and Michailidis (2010b) pro-

posed several modeling strategies for estimating sparse Granger causal networks from

time course gene expression data.

Despite its long history and wide applicability in many important problems, con-

siderable challenges and interesting questions remain in the statistical analysis of

high-dimensional VAR. First, due to the large dimensionality of time series datasets

in modern applications, dimension reduction via the mere assumption of sparsity is

often not adequate. In many applications, external information available to prac-

titioners can help reduce dimensionality in a meaningful way. In macroeconomic

applications, failure to correct for hidden factors can result in a non-sparse network

of interaction among the variables. Second, theoretical analysis of regularized es-

timates commonly used to fit high-dimensional VAR models is yet incomplete. As

we describe in Chapter IV, the results of Song and Bickel (2011) and Negahban and
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Wainwright (2011) rely on stringent assumptions which do not hold beyond a small

class of stationary VAR(1) models. Lastly, with growing dimension of the datasets,

the computational complexity of many of these methods increase dramatically. It is

important to come up with scaleable algorithms, often achieved via distributed and

parallel implementation, for analyzing large VAR.

1.3 Contribution of this work

This thesis makes several contributions to the existing literature of high-dimensional

VAR models.

On the modeling front, we adopt the framework of regularized estimation with

convex penalties inducing low-dimensional structure on the model space. By and

large, all the methods proposed in this thesis can be viewed as variants of an M -

estimator of the following form

argmin
A1,...,Ap

L(X t,
d∑
i=1

AiX
t−i) + P(A1, . . . , Ap) (1.2)

where L(., .) is a loss function (least squares or negative log-likelihood) and P(.) is

a convex penalty encouraging structured sparsity in the solution (lasso, group lasso,

nuclear norm or some combination of these). Regularized regression with convex

penalties is popular in the statistics and machine learning community for providing a

flexible and computationally efficient framework to incorporate in the model external

information a priori available to practitioners. In the context of structure learning

and prediction, we show that efficient use of appropriate penalties can achieve similar

goals and reduce effective dimensionality of the problem, leading to more accurate

estimation and forecasting strategies. In Chapter III, we show that a thresholded

variant of group lasso regularization can incorporate pathway membership of indi-

vidual genes towards accurate identification of gene regulatory networks. A salient
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feature of our proposed method is that it can handle moderate misspecification in

the a priori available knowledge. In Chapter V, we show that a low-rank + sparse

modeling of VAR(1) model can effectively correct for hidden latent factors in the

reconstruction of Granger causal networks from time course data.

On the theoretical front, we present a rigorous, non-asymptotic analysis of high-

dimensional VAR estimation problems under the above regularization methods, both

in the context of classical time series and short panels. In the past decade, a significant

amount of research has been conducted on the theoretical properties of regularized

estimation in the regression context. However, most of these analyses crucially rely on

the availability of independent and identically distributed samples and hence do not

directly apply in the time series context. A key challenge in the theoretical analysis of

high-dimensional time series is to capture the effect of temporal and cross-sectional

dependence present in the data. To this end, in Chapter IV we develop a novel

measure of stability for stationary processes, based on their spectral representation.

We derive non-asymptotic upper bounds on the estimation errors of the proposed

regularized estimates in the time series context, ensuring consistent estimation under

high-dimensional scaling. We show that the proposed measure of stability provides

insight into how the dependence present in the data affects the accuracy of these

estimates. Our proposed measure of stability is fundamental to the nature of multi-

variate stationary processes and provides meaningful results in the context of other

important problems in high-dimensional time series including stochastic regression

and covariance estimation.

For all the methods proposed in this thesis, we discuss computationally efficient

implementation strategies. The thresholded group lasso presented in Chapter III re-

lies on hard-thresholding and is computationally efficient than the competing methods

for bi-level selection. In Chapter IV we develop a block coordinate descent algorithm

for analyzing regularized likelihood based VAR estimates, that is amenable to par-
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allel implementation and scales easily for large datasets than the original, sequential

version suggested in Davis et al. (2012). We also demonstrate the advantages of the

proposed methods over competing methods via numerical experiments and applica-

tions on real data.

1.4 Organization of Thesis

This thesis consists of two main parts, each including two chapters. In the first

part, we discuss modeling and estimation of high-dimensional VAR from short panels

of time series, with applications to reconstruction of gene regulatory network from

time course gene expression data. In Chapter II, we propose an adaptively thresholded

estimation of Granger causal effects obtained from the lasso penalization method. We

establish the asymptotic properties of the proposed technique, and discuss the advan-

tages it offers over competing methods, such as the truncating lasso. Its performance

and that of its competitors is assessed on a number of simulated settings and it is ap-

plied on a data set that captures the activation of T-cells. In Chapter III, we extend

the above method to incorporate a priori available grouping structure on the indi-

vidual time series. To that end, we introduce a group lasso regression regularization

framework, and also examine a thresholded variant to address the issue of group mis-

specification. Further, the norm consistency and variable selection consistency of the

estimates are established, the latter under the novel concept of direction consistency.

The performance of the proposed methodology is assessed through an extensive set

of simulation studies and comparisons with existing techniques. The study is illus-

trated on two motivating examples coming from functional genomics and financial

econometrics.

The second part, consisting of Chapters IV and V, focuses on VAR models in the

traditional time series settings, where we observe a single, long, stationary realization

of the multiple time series. In Chapter IV, we investigate the theoretical properties
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of `1-regularized VAR estimates along with two other important statistical problems

in the context of high-dimensional time series - stochastic regression with serially

correlated errors and sparse covariance matrix estimation from temporal data. For

all three problems, we derive non-asymptotic upper bounds on the estimation er-

rors, thus establishing that consistent estimation is possible via `1-regularization and

thresholding for a large class of stationary time series under sparsity constraints. In

Chapter V, we consider the problem of estimating high-dimensional VAR models in

the presence of unobserved latent factors. We propose a low-rank plus sparse model-

ing of the transition matrix of a VAR(1) model and show that a regularized estimator

based on an infimal convolution of nuclear norm and `1 norm can approximate the

low-rank and the sparse components with high accuracy. Using the techniques devel-

oped in Chapter IV, we establish non-asymptotic upper bound on the approximation

error and show that consistent estimation is possible under high-dimensional scaling.
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CHAPTER II

Adaptive Thresholding for Reconstructing

Regulatory Networks from Time Course Gene

Expression Data

2.1 Introduction

Reconstructing gene regulatory networks is a critical problem in systems biology.

Gene regulation is carried out by binding of protein products of transcription factors

(TF) to cis-regulatory elements of genes, which results in change of expression levels

of the regulated genes. Such relationships are often represented in the form of directed

graphs with transcription factors (TF) regulating target genes. This interpretation

of effects of transcription factors on regulated genes, as a physical intervention mech-

anism therefore implies that regulatory interactions among genes are by definition

causal.

In the theory of graphical models, causal relationships among random variables

are modeled using directed (acyclic) graphs, where an edge among two random vari-

ables indicates a direct causal effect. Statistical methods based on observational data

can only determine associations among random variables and causal discovery re-

quires additional assumptions and/or information about the underlying system. This

implies that, reconstructing gene regulatory networks may be only feasible through
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carefully designed perturbation experiments. Such experiments are often expensive

and only possible in case of model organisms and cell lines. However, regulatory

mechanisms become evident if the expression level of gene Y is affected by changes

in expression levels of gene X. Time course gene expression data provide a dynamic

view of expression levels of all the genes under study, and therefore, can provide cues

to the causal relationships among genes, which can be used to reconstruct the gene

regulatory network.

Two of the most popular approaches for inferring gene regulatory networks using

time course gene expression data are dynamic Bayesian Networks, Murphy (2002) and

Granger causality, Granger (1969a). Dynamic Bayesian Networks (DBNs), generalize

the notion of Bayesian networks to allow for cycles in the graph, through expanding

the state space of the model by replicating the variables in the network over time

points. Cyclic networks are then transformed to directed acyclic graphs (DAGs) by

breaking down cycles into interactions between variables at two different time points.

Ong et al. (2002) and Perrin et al. (2003) discuss applications of DBNs for inferring

regulatory networks from time course gene expression data.

On the other hand, Granger causality is motivated by a practical interpretation

of predictability among random variables. In particular, given two random variables

X and Y , if the autoregressive model of Y based on past values of both variables

significantly outperforms the model based on Y alone, X is said to be Granger-causal

for Y . In the context of gene expression analysis, this definition implies that changes in

expression levels of Y could be explained by expression levels of X from previous time

points. Exploring Granger causal relationships is closely related to analysis of vector

autoregressive (VAR) models. Therefore, while applying DBNs to high-dimensional

applications may be computationally prohibitive, statistical methods can be used to

derive Granger causal relationships among genes from time-course gene expression

data using standard techniques for analysis of VAR models (see Yamaguchi et al.
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(2007); Opgen-Rhein and Strimmer (2007) for examples of such approaches).

Unlike the original application area of Granger causality in econometrics, in gene

regulatory network applications, the number of available samples is often small com-

pared to the number of genes in the study. As a result, sparse VAR models have been

explored by a number of researchers, including Fujita et al. (2007a) and Mukhopad-

hyay and Chatterjee (2007), to obtain reliable estimates of gene regulatory networks

when the number of genes, p is large compared to the sample size, n.

Penalized estimation methods provide sparse estimates of high dimensional sta-

tistical models. Arnold et al. (2007) use the lasso (or `1) penalty to discover the

structure of graphical models based on the concept of Granger causality in a financial

setting. More recently, a similar framework, using the group lasso penalty was used

by Lozano et al. (2009a) to group the effect of observations of each variable over past

time points.

A main challenge in applying both DBN and Granger causality models to discover

gene regulatory networks is that as the number of time points increases, the number

of variables used in the replicated representation of the network also increases. As a

result, many available methodologies simply ignore possible effects of genes on each

other from time points far in the past, resulting in possible loss of information. To

overcome this challenge, Shojaie and Michailidis (2010a) proposed to simultaneously

estimate the order of the vector auto-regressive model, as well as the interactions

among variables using a non-convex penalty, called the truncating lasso penalty, and

showed that when the effects of variables on each other decay over time, the proposed

penalty consistently estimates the order of the time series, as well as the structure of

the regulatory network in high dimensional sparse settings.

The decay condition in Shojaie and Michailidis (2010a) (referred to as S-M hence-

forth) is a natural assumption in many time series models. However, when this con-

dition is not satisfied, the truncating lasso penalty may fail to correctly estimate
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the order of the time series. In this study, we discuss examples where the decay as-

sumption of S-M may fail to hold, and propose a new estimator, based on adaptive

thresholding of lasso estimates, which can be used to simultaneously estimates the

order of the VAR model and the structure of the network. The new estimator is

based on the assumption that if the true VAR model includes non-ignorable effects

at any given time point, the number of edges in the network should exceed a certain

threshold. We formally state this assumption in Section 2.3, where we also investigate

the effect of violations of this assumption on false positive and false negative errors.

The remainder of the chapter is organized as follows. In Section 2.2, we re-

view some background material and present the new methodology and discuss its

asymptotic properties. Section 2.4 includes a comparative analysis of the performance

of the proposed estimator over a set of simulation studies, whereas applications to

time-course gene expression data from T-cell activation are presented in Section 2.5.

Section 2.6 discusses some final remarks on the choice of appropriate penalty, and

methods for evaluating the validity of underlying structural assumption.

2.2 Estimation of Regulatory Networks from Time Course

Gene Expression Data

We start this section by a brief introduction of two classes of statistical models for

analysis of genetic networks using time series observations, namely dynamic Bayesian

Networks (DBN) and graphical Granger causality. We then discuss penalized methods

for estimation of gene regulatory networks and introduce our new estimator based

on an adaptively thresholded lasso penalty. Computational issues and asymptotic

properties of the proposed estimator are discussed at the end of the section.
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2.2.1 Dynamic Bayesian Nework and Network Granger Causality

Bayesian networks models (BN) correspond to probability distributions over a

directed acyclic graph (DAG). More specifically, let G = (V,E), denote a DAG with

the node set V and the edge set E ⊂ V × V . Denote the random variables on the

nodes of the graph by X1, . . . , Xp, where p = |V | is the cardinality of the set V .

For a DAG G, it is clear that if (i, j) ∈ E ⇒ (j, i) /∈ E. We represent E through

the adjacency matrix A of the graph, a p× p matrix whose (j, i)−th entry indicates

whether there is an edge (and its weight) from node j to node i. We represent an

edge from j to i by j → i, and denote by pai the set of parents of node i.

A probability distribution P is said to be (Markov) compatible with G if it admits

the following decomposition based on the set of parents of each node in the graph

(Pearl (2000a)):

P(X1, . . . , Xp) = Πi∈VP(Xi|pai). (2.1)

Pearl (2000a) shows that if P is strictly positive, the Bayesian network G associ-

ated with P is unique and P and G are compatible. This implies that the joint Gaus-

sian distributions defined according to (2.1) on nodes of G are uniquely defined and

Markov compatible with G. Markov compatible probability distributions on DAGs

can be defined using structural equation models, where each variable is modeled as

a (nonlinear) function of its parents. Given latent variables Zi, i = 1, . . . , p for each

node i, the general form of these models is given by:

Xi = fi(pai,Zi), i = 1, . . . , p (2.2)

In (2.2), the latent variables represent the unexplained variation in each node, which is

independent of the effect of its parents. For Gaussian random variables, the function

fi is linear, in the sense that it corresponds to the linear regression of Xi on the set of
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its parents pai. In other words, for Gaussian random variables (2.2) takes the form:

Xi =
∑
j∈pai

ρijXj + Zi, i = 1, . . . , p (2.3)

where ρij represent the effect of gene j on i for j ∈ pai and ρij are the coefficients

of the linear regression model of Xi on Xj, j ∈ pai. Note that in this case ρij = 0

whenever j /∈ pai.

The main limitation of Bayesian networks is the requirement that the underlying

graph needs to be a DAG. However, gene regulatory networks often include cycles (e.g.

the cell cycle) or feedback loops that control the expression levels of genes. Thus, a

more general class of probability distributions on graphs is needed that allows for the

presence of directed cycles. To overcome this shortcoming, Murphy (2002) introduced

a generalization of Bayesian networks for analysis of time series data, called dynamic

Bayesian networks (DBN). In DBNs, random variables in the study are replicated

over time, and directed edges are only allowed from variables in each time point to

those in the future time points. In its simplest form, edges in DBN are limited to

those from variables in t to variables in t+ 1. Such a model corresponds to a Markov

model. More generally, for variables X1, . . . Xp observed over time points t = 1, . . . , T ,

edges are allowed from any time point t to future time points t′ > t.

A closely related model for analysis of time series, which we adapt in this work, was

developed in the econometrics literature based on the work of Granger (1969a). In

this framework, called Granger causality, interactions among variables are defined if

past observations of one variable result in improved prediction of other variable. More

specifically, let X1:T ≡ {X}Tt=1 and Y 1:T ≡ {Y }Tt=1, be trajectories of two stochastic

processes X and Y up to time T . Then, X is said to be Granger-causal for Y if the

joint prediction model in (2.4) significantly outperforms the model in (2.5).

Y T = AY 1:T−1 +BX1:T−1 + εT (2.4)
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Y T = AY 1:T−1 + εT (2.5)

Network Granger causal models (NGC) extend the notion of Granger causality

among two variables to p variables. In general, define a vector time series Xt =

(X t
1, . . . , X

t
p)

T
and consider the corresponding vector auto-regressive (VAR) model

(Lütkepohl (2005), Chapter 2):

XT = A1XT−1 + . . . AdXT−d + εT . (2.6)

Here, d denotes the order of the time series and At, t = 1, . . . , d are p × p matrices

whose coefficients represent the magnitude of interaction effects among variables at

different time points.

In this model, XT−t
j is considered Granger-causal for XT

i if the corresponding coef-

ficient, Ati,j is statistically significant. It is then easy to see that, the NGC corresponds

to a DAG with p × (d + 1) variables, in which the ordering of the set of p-variate

vectors XT−d, . . . ,XT is determined by the temporal index and the ordering among

the elements of each vector is arbitrary. As with DBNs, the interactions in NGCs are

only allowed to be forward in time, i.e. of the form XT−t
j → XT

i , t = 1, . . . , d.

2.2.2 Penalized Likelihood Estimation Methods for Gene Regulatory Net-

works

In the analysis of gene regulatory networks, the number of genes often exceeds

the available samples of the gene expression data. As a result, an estimate of the

gene regulatory network based on graphical Granger causality may include spurious

edges that do not correspond to interactions among the genes. In such situations,

penalized estimation methods can improve the accuracy of the model, especially for

reconstructing the true regulatory network. Shojaie and Michailidis (2010b) show

that for Gaussian random variables, when the variables inherit a natural ordering,
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the likelihood function can be written as a function of the adjacency matrix of the cor-

responding DAG. They also show that the penalized estimate of the adjacency matrix

can be obtained by solving p−1 penalized regression problems. Using this connection,

general weighted lasso estimates of gene regulatory networks can be found by solving

the following p distinct `1-regularized least squares problems for i = 1, . . . , p:

argmin
θt∈Rp

n−1‖X T
i −

d∑
t=1

X T−tθt‖2
2 + λ

d∑
t=1

p∑
j=1

|θtj|wtj (2.7)

where X t denotes the n × p matrix of observations at time t, and X t
i denotes the

ith column of X t. In this formulation, wtj = 1 corresponds to lasso estimates, and

adaptive lasso estimates are obtained by setting wtj = |Âtij|−γ, where Âtij is a consis-

tent estimate of Atij. Shojaie and Michailidis (2010b) consider a modification of the

adaptive lasso, which they call 2-stage lasso in which wtj = 1 ∨ |Âtij|−γ, and Âtij is

obtained using an initial lasso estimate and γ = 1.

As pointed out in S-M, the order of the VAR model d is often unknown. Therefore,

to estimate the NGC, one either has to include all the previous time points by setting

d = T − 1, or set d to an arbitrary value. While the latter choice may result in

ignoring some of the edges from the true network, the former results in a model

with p(T − 1) covariates, which in turn exhibits inferior performance. To overcome

this shortcoming, the authors propose to estimate the NGC using the truncating

lasso penalty, which is given as the solution of the following non-convex optimization

problem, for i = 1, . . . , p:

argmin
θt∈Rp

n−1‖X T
i −

d∑
t=1

X T−tθt‖2
2 + λ

d∑
t=1

Ψt

p∑
j=1

|θtj|wtj (2.8)

Ψ1 = 1, Ψt = M I{‖A(t−1)‖0<p2β/(T−1)}, t ≥ 2

where M is a large constant, and β is the allowed false negative rate. S-M propose
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an efficient algorithm for solving the optimization problem in (2.8), and show that

the proposed penalty gives a consistent estimate of the order of the underlying VAR

model, as well as the structure of the network if the model satisfies a decay assumption.

2.3 Adaptively Thresholded Lasso Estimate

The decay assumption for the truncating lasso estimate considered in S-M is a nat-

ural assumption in many applications. However, there are examples of VAR models

that do not satisfy this assumption. As an example, consider the VAR model whose

adjacency matrix is depicted in the top panel of Figure 2.2. In this case, observations

at time T are affected by those in time T −1 and T −3, whereas no significant effects

exists from observations in time T − 2. In Section 2.5, we show that the time series

model of T-cell regulation shows a similar pattern of influence. In such cases when

the decay assumption fails to hold, the truncating lasso penalty of S-M may not give a

correct estimate of the order of the time series, which results in an incorrect estimate

of the regulatory network. Examples of such cases are given in Sections 2.4.2 and 2.5.

To address this shortcoming, here we propose to consider the use of adaptive

thresholding to provide a consistent estimate of the regulatory networks from time

course gene expression data. The main idea for the proposed penalty (which replaces

the decay assumption of S-M) is that a given time point includes true effects in

the VAR model only if the number of edges in the network should exceed a certain

threshold (we formalize this assumption in the following discussion).

Thresholding of lasso estimates has been also considered as a tool to improve the

accuracy of lasso estimates in Wasserman and Roeder (2009); Meinshausen and Yu

(2009). More recently, Zhou (2010) considered iterative thresholding of both lasso

and Dantzig selector estimates for estimation of high dimensional sparse regression

models with random design matrix. The author studied asymptotic properties of the

thresholded estimator and shows that it results in accurate model selection, as well

18



as nearly optimal `2 loss.

To obtain consistent estimates of the order d, as well as edges of the regulatory

network, we modify the thresholding framework of Zhou (2010) so that only adja-

cency matrices with significant number of edges are included in the estimate of the

regulatory network. Consider, as before, random variables X1, . . .XT from a VAR

model of order d with Gaussian noise, i.e.

XT = A1XT−1 + . . . AdXT−d + εT , εT ∼ N(0, σ2Ip) (2.9)

where Ip denotes the p×p identity matrix. The adaptively thresholded lasso estimate

of NGC is found through the following three-step procedure:

(i) Obtain the regular lasso estimate of the adjacency matrices of NGC Ãtλn by

solving (2.7) with tuning parameter λ = λn

(ii) Define Ψt = exp
(
M1{‖Ãt‖0<p2β/(T−1)}

)
, t = 1, . . . T , and find the thresholded

estimator by setting:

Âtij = Ãtij1{|Ãtij |≥ τΨt} (2.10)

Here M is a large constant and τ is the tuning parameter for the thresholding

step.

(iii) Estimate the order of the time series by setting

d̂ = max
t

{
t : ‖Ât‖0 ≥ p2β/(T − 1)

}

Before discussing the asymptotic properties of the proposed adaptively thresh-

olded lasso estimator, we compare some features of the new estimator with the trun-

cating lasso estimator of S-M, and discuss the appropriate choice of tuning parameters

λn and τ .
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The proposed adaptively thresholded estimate is found by first obtaining an esti-

mate of the adjacency matrices using regular lasso. Then, in the thresholding step,

simultaneous sparsity and order selection in VAR models is achieved by setting small

values of the estimated adjacency matrix to zero, while controlling for the total num-

ber of nonzero elements of the adjacency matrix. Finally, the index of the last time

point in which a significant number of nonzero elements exist in the estimated adja-

cency matrix is defined as the estimate of the order of VAR model.

As pointed out earlier, the thresholded estimator requires less stringent assump-

tions about the structure of the time series model, and as shown in Theorem II.1, the

consistency of the estimates of the adjacency matrix and the order of the time series

are achieved under the usual sparsity and restricted eigenvalue (RE) assumptions.

In addition, since the thresholded estimator is found by adaptive thresholding of the

regular lasso estimates, the resulting optimization problem is convex. In contrast, al-

though the algorithm for finding the truncating lasso estimate of S-M is shown to be

convergent, the resulting estimate may correspond to a local optimum. On the other

hand, the thresholded estimator requires appropriate values of two tuning parameters

λn and τ , and hence the truncating lasso estimate may be obtained more directly. In

particular, S-M propose the following error-based choice of tuning parameter, which

controls a version of false positive probability:

λe = 2n−1/2Z∗ α
2(T−1)p2

(2.11)

where α is the probability of false positive determined by the user, and Z∗q denotes

the upper qth quantile of the standard normal distribution. This alleviates the need

for searching over the parameter space for appropriate values of λ and provides an

intuitive connection to the original definition of Granger causality between two time

series given earlier.
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Based on the asymptotic properties of the thresholded lasso estimator, and given

λ0 =
√

2 log ((T − 1)p)/n, Zhou (2010) suggests the following choices for tuning

parameters λn and τ :

λn = c1σλ0

τ = c2σλ0

for positive constants c1 and c2. Considering the fact that, the choice of the thresh-

olding parameter β is determined by the acceptable degree of false negative error, for

λ0 =
√

2 log ((T − 1)p)/n, and an estimate σ, tuning parameters for the proposed

adaptively thresholded estimator amount to appropriate choices of constants c1 and

c2. A common strategy is to use cross validation (C.V.) over a grid of possible values

of c1 and c2. We refer the interested reader to Zhou (2010) for additional details on

connections between c1 and c2 and constants that are defined based on the conditions

of the problem. For selection consistency of the estimate, we require c1 ≥ 2
√

1 + θ

for some constant θ > 0 and c2 = 4c1. The quantity θ controls the rate at which

the estimator performs consistent variable selection as reflected in Theorem 1. In

Sections 2.4 and 2.5, we provide additional guidelines on practical choices of tuning

parameters for the data examples considered.

We begin the discussion of asymptotic properties by providing additional notations

and statements of the main assumptions.

Denote by X = [X 1,X 2, . . . ,X T−1] the n×p(T−1) matrix of “past” observations,

and define:

Λmin(m) := min
ν 6=0,‖ν‖0≤m

‖X ν‖2
2

n‖ν‖2
2

> 0

Denote by Et = {(i, j) : Atij 6= 0} the edge set of the adjacency matrix at time lag

t = 1, . . . , d and let E = {(i, j) : ∃1 ≤ t ≤ d : Atij 6= 0} be the set of all edges in the

NGC model.

Let s = maxi |pai| be the maximum number of parents of each node in the NGC
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model, and define

a0 = min
1≤t≤d

min
1≤i,j≤p,Aij 6=0

|Atij|

The asymptotic analysis for the thresholded lasso in Zhou (2010) incorporates

the framework of Bickel et al. (2009), based on the restricted eigenvalue condition

RE(X ), which states that for some integer 1 ≤ s ≤ (T − 1)p and a number k, and

for all ν 6= 0 we have

1

K(s, k)
:= min

J⊂V,|J |≤s
min

‖νJc‖1≤k‖νJ‖1

‖X ν‖2

n1/2‖νJ‖2

> 0

In this case, we say that RE(X ) holds with K(s, k). Based on these assumptions, we

have the following result on the consistency of network estimation and order selection.

Theorem II.1 (Consistency of Adaptively Thresholded Lasso). In VAR(d) model of

(2.6) with independent Gaussian noise with variance σ2, suppose RE(X ) holds with

K(s, 3), and that λn ≥ 2σ
√

1 + θλ0 for some θ > 0. Also, assume a0 > cλn
√
s, for

some constant c depending on Λmin(2s) and K(s, 3). Finally, assume |E| = ζ p2(T −

1)1 for some 0 < ζ < 1.

Then for b = 3K2(s, 3)/4 and for any β > (T−1) b s
p

, with probability at least 1 −

p(
√
π log(T − 1)p[(T−1)p]θ)−1, the following hold for the adaptively thresholded lasso

estimator with thresholding parameter β:

(i) Control of Type-I error: FPR ≤ b s
(T−1) p (1−ζ)

(ii) Control of Type-II error: if there exists δ > 0 such that minAt 6=0 ‖At‖0 > γp2 and

β is chosen such that β < δ/(T −1), then FNR = 0, otherwise, FNR ≤ β
(T−1) ζ

(iii) Order selection consistency: under the condition in (ii), d̂ = d

1This assumption is made for simplicity of representation. The proof can be written in terms of
|E|, without making any explicit assumptions on the number of true edges.
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Proof. The proof here builds on the results in Zhou (2010) (in particular Theorems

1.1 and 3.1), with modifications to account for adaptive thresholding, control of FPR

and FNR, and the time series structure. For simplicity, denote by FP and FN , the

total number of false positives and false negatives. Also, let P ≡ |E| = ζ (T − 1)p2

be total number of positives (i.e. total number of edges) and N ≡ (T − 1)p2 − |E| =

(T − 1)p2 (1− ζ) denote the number of zeros in the true adjacency matrix.

First, note that from the decomposition of likelihood in Shojaie and Michailidis

(2010b) it follows that the adaptively thresholded estimator is found by solving p

regular lasso regression problems according to (2.7), followed by the thresholding

step according to (2.10).

Next note that, by definition of s and the RE condition, each of the p regressions

satisfies the RE(X ) holds with K(s, 3). Therefore, for β = 0 results of Zhou (2010)

apply to each individual regression.

Following Zhou (2010) we consider, for each θ ≥ 0, the set

Tθ,i =

{
εTi :

∥∥∥∥ 1

n
X T εTi

∥∥∥∥
∞
≤ λσ,θ,p, where λσ,θ,p = σ

√
1 + θλ0

}

for which P(Tθ,i) ≥ 1− (
√
πlog(T − 1)p((T − 1)p)θ)−1. It then follows from Theorem

1.1 of Zhou (2010) that for β = 0, on the set Tθ =

p∏
i=1

Tθ,i, we have, for all i = 1, . . . p,

pai ⊆ p̂ai. This implies that for all t = 1, . . . , d, on the set Tθ, we have

Et ⊆ Êt

To obtain the upper bound on FPR, we follow the proof of theorem 3.1 in Zhou

(2010) for each of the p regressions separately. First note that from the results of

Bickel et al. (2009) it follows that on the set Tθ,i, for ṽi = vec(Ã1:T
i: − A1:T

i: ),

‖ṽi,pai
‖2 ≤ B0λn

√
s and ‖ṽi,pac

i
‖1 ≤ B1λn s (2.12)
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where B0 = 4K2(s, 3) and B1 = 3K2(s, 3). If we threshold the lasso estimate by 4λn,

then it readily follows from (2.12) that (see Zhou (2010) for more details) on Tθ,i

|p̂ai\pai| ≤
‖ṽi,pac

i
‖1

4λn

≤ B1 s

4
(2.13)

Hence |p̂ai\pai| ≤ B1 s/4, for all i = 1, . . . p, on Tθ. This implies FP ≤ pbs where

b = 3K2(s, 3)/4.It then follows that on Tθ for β = 0, we have FNR = 0 and

FPR = FP/N ≤ b s

(T − 1) p (1− ζ)
.

To complete the proof, it suffices to show that for β > (T−1) b s
p

, FPR does not

increase (or is improved) and FNR ≤ β/(T−1) ζ. The fact that adaptive thresholding

does not increase FPR follows immediately from the definition of the estimator, as

the thresholding coefficient for the adaptively thresholded procedure is at least as

large as the procedure of Zhou (2010).

Now suppose At 6= 0 for some 1 ≤ t ≤ T − 1. It follows from E ⊂ Ê that

‖Ât‖0 ≥ ‖At‖0 and hence, if ‖Ât‖0 < β p2

T−1
, At must satisfy the same inequality.

Now, if there exists δ > 0 such that minAt 6=0 ‖At‖0 > γp2 and β is chosen such that

β < δ/(T − 1), then ‖At‖0 < δ p2, which implies that At ≡ 0, and hence FNR = 0.

On the other hand, if the condition in (ii) is not satisfied, FN could be at most βp2,

which implies that

FNR ≤ (βp2)/|E| = β

(T − 1)ζ
.

Finally, to show that d̂ = d, note that when At 6= 0, the condition in (ii) guarantees

that Ât 6= 0. On the other hand, if At = 0, ‖Ât‖0/p
2 ≤ b s

p
and hence when β ≥

(T−1) b s
p

, Ât ≡ 0, which completes the proof.

Before investigating the small sample performance of the proposed estimator in

Section 2.4, we offer some remarks regarding asymptotic properties of the estimator.
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1. Consider the asymptotic regime with n → ∞, p = O(na), for some a > 0, and

s = o(p). Assume the constant K(s, 3) is uniformly bounded above (see the

remark below on the validity of this assumption). Then theorem 1 says that

with probability tending to 1, FPR → 0 as long as ζ stays away from 1, i.e.,

the network is truly sparse. On the other hand, even if no constant δ exists to

satisfy the condition in part (ii) of the Theorem, the lower bound on β, given by

(T−1) b s
p

, converges to zero, indicating that we can make FNR arbitrarily small

as long as ζ stays away from zero, i.e., the network is not extremely sparse. The

conditions on β are set to achieve a tradeoff between FPR and FNR.

2. The false positive rate in the above theorem can be improved by considering a

multi-step thresholding procedure where at the second step the estimate of d is

used to restrict the number of time points considered in the estimation. It can

be shown that the numerator of the upper bound of FPR can be improved from

b s to b
√
s (refer to Zhou (2010) for more details on the multi-step thresholding).

However, this requires an additional assumption on the number of parents of

each node in the graph, and is hence not pursued here.

3. The RE condition has been shown to hold for many non-trivial classes of Gaus-

sian design matrices (see for example van de Geer and Bühlmann (2009a),

Raskutti et al. (2010)). In particular Raskutti et al. (2010) shows that RE(X )

holds with high probability if the sample size n is sufficiently large (∼ O(klogp))

and RE(Σ1/2) holds, where the rows of X ∼ N(0,Σ). Hence it is sufficient to

ensure that λmin(Σ) is bounded away from zero as n, p → ∞, which is not

very restrictive since every node of the NGC network is a noisy observation

with i.i.d innovation of variance σ2. For the special case of stationary vector

autoregressive processes, in Chapter III we use spectral density representation

of time series to show a stationary VAR(d) process satisfies this condition if the
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spectral matrix operator has continuous eigenvalues and eigenvectors and the

adjacency matrices for t = 1, . . . T are bounded above in spectral norm.

4. The results in Theorem 1 are non-asymptotic and are derived in the regime

n, p→∞ and p� n, without any restrictions on the length of the time series

T . However, it can be seen that if T →∞, then FPR and FNR converge to 0.

In addition, the increase in T also improves the probability of the events under

study.

2.4 Numerical Studies

In this section, we evaluate the performance of the proposed thresholded lasso

penalty in reconstructing temporal Granger causal effects, and compare it with the

performances of (adaptive) lasso and truncating (adaptive) lasso penalties. To this

end, we first present the estimated adjacency matrices of two small networks with

p = 20 and different sparsity patterns to better understand the properties of the

thresholded lasso penalty. We then evaluate the phase transition behavior of the

competing estimators as the sample size n and the signal to noise ratio (SNR) is

varied. To compare the performances of different estimators, we consider three dif-

ferent criteria: (1) the False Positive Rate (FPR), (2) the True Positive Rate (TPR)

and (3) the F1 measure. The F1 measure is the harmonic mean of precision(P ) and

recall(R) (i.e. F1 = 2PR/(P +R)) for the estimated graphs. The value of this sum-

mary measure ranges between 0 and 1, with higher values corresponding to better

estimates.

2.4.1 Illustrative Examples

To illustrate the effect of the proposed estimator, we begin with a simple VAR

model that satisfies the decay assumption of S-M. Here T = 20, d = 2, p = 20 and
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s ' min{0.025p2, n}, and every edge has an effect of ρ = ±0.6. We simulate n = 30

independent and identically distributed observations according to the VAR(d) model

in (2.6), with σ = 0.3. The values of α and β are set to 0.1 each.

To obtain comparable results, we set the tuning parameter λ for all estimators to

λ = 0.6λe, where λe is defined in (2.11). The thresholding parameter τ in the second

stage of the thresholded lasso penalty is chosen to be 0.7λσ. The results over 50

replications of the above simulation and estimation procedure are presented in Figure

2.1 and Table 2.12.

As expected, the truncating lasso estimator outperforms the lasso and thresholded

lasso estimators, and provides a consistent estimate of the order d. On the other

hand, the thresholded lasso estimator offers additional improvements over its non-

thresholded counterpart.

Next, we consider a more complicated structure, where the decay assumption is

not satisfied. In particular, we construct a network with the same parameters as

before except with d = 3 in such a way that there is no edge in the adjacency matrix

from lag 2 (i.e., A2 = 0). True and estimated adjacency matrices for this simulation

setting are shown in Figure 2.2. The performances of the estimators in terms of TPR,

FPR, and F1 are given in Table 2.2.

It can be seen that the truncating lasso penalty incorrectly estimates the order of

VAR as d̂ = 1, resulting in increased false positive and false negative errors. On the

2Here we present the results of simulation for adaptive versions of lasso and truncating lasso
estimators; the behavior of the regular versions of these estimators were similar and were excluded
to save space

Alasso TAlasso Thlasso
TPR 0.3341 (0.0311) 0.4083 (0.0375) 0.3485 (0.0339)

FPR (×1000) 0.9843 (0.494) 0.8155 (0.4068) 0.4593 (0.2712)
F1 0.4725 (0.0405) 0.5534 (0.0433) 0.5024 (0.0405)

Table 2.1: F1, FPR and TPR for (adaptive) lasso, truncating (adaptive) lasso and
thresholded lasso. Numbers in the table show mean and standard deviations (in
parentheses) over 50 replication.

27



1
20

True
1

20

Alasso

1
20

TAlasso

1
20

Thlasso

Figure 2.1: True and estimated adjacency matrices of graphical Granger model (a)
with T=10, d=2, p=20, n=30, SNR=2.4, the gray-scale images of the estimates
represent the percentage of times an edge has been detected in the 50 iterations.

other hand, the (adaptive) lasso estimate includes many edges in later time lags, while

failing to include some of the edges in the first time lag. This simulation illustrates

the logic and advantages of the proposed thresholded lasso estimator.

2.4.2 Study of Phase Transition Behavior

In this section, we study the phase transition of three performance metrics as the

values of (a) sample size (n) and (b) signal-to-noise ratio (SNR = ρ/σ) is varied for

Alasso TAlasso Thlasso
TPR 0.3462 (0.0529) 0.3077 (0.0558) 0.6288 (0.0698)

FPR (×1000) 0.8254 (0.3454) 0.7694 (0.3729) 0.7415 (0.2611)
F1 0.4729 (0.0591) 0.4338 (0.0654) 0.7251 (0.0581)

Table 2.2: F1, FPR and TPR for (adaptive) lasso, truncating (adaptive) lasso and
thresholded lasso. Numbers in the table show mean and standard deviations (in
parentheses) over 50 replication.
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Figure 2.2: True and estimated adjacency matrices of graphical Granger model (b)
with T=10, d=3, p=20, n=30, SNR=2.4, the gray-scale images of the estimates
represent the percentage of times an edge has been detected in the 50 iterations.

different combinations of n, p, ρ and σ. The results showing phase transitions for

sample size are based on p = 100, ρ = 0.9, σ = 0.3, while those for phase transitions

for SNR use p = 150, n = 120, σ = 0.3. Similar results were obtained for other

choices of these parameters.

Figure 2.3 summarizes the phase transition results for sample size n. It can be

seen that the phase transition occurs at a much smaller sample size for thresholded

lasso compared to (adaptive) lasso and truncating (adaptive) lasso. However, the

performances of thresholded lasso and regular lasso are almost similar when n is

almost as large as p. For smaller sample sizes, thresholded lasso slightly affects the

number of false positives, but greatly improves on the false negatives, resulting in a

better F1 than regular lasso.

Results of phase transition for SNR presented in Figure 2.4 also indicate that
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Figure 2.3: Phase transition of F1, FPR and TPR with increase in sample size
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Figure 2.4: Phase transition of F1, FPR and TPR with increase in SNR

phase transition occurs at a smaller SNR for thresholded lasso compared to (adaptive)

lasso and truncating (adaptive) lasso. As in the previous case, the performance of

thresholded lasso and regular lasso become more similar as SNR increases. Also, it

can be seen that for smaller SNR, thresholded lasso slightly affects the number of

false positives while greatly improves the false negatives, which results in significant

gain in the overall performance of the proposed estimator in terms of the F1 measure.

Comparison of phase transition behaviors of lasso, truncating lasso and the adap-

tively thresholded lasso procedures indicates that the proposed estimator provides a

better estimate of Granger causal effects over the range of values of n and SNR. In

addition, this advantage becomes more significant in problems with smaller sample

size and/or signal to noise ratio.
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2.5 Analysis of T-Cell Activation

We illustrate the application of NGC models in reconstructing gene regulatory

networks using the time course gene expression data of Rangel et al. (2004) on T-cell

activation. Activated T-cells are involved in regulation of effector cells (e.g. B-

cells) and play a central role in mediating immune response. The data set comprises

of n = 44 gene expression samples of p = 58 genes involved in activation of T-

cells, measured over 10 time points. In this study, the activity levels of genes are

measured at t = 0, 2, 4, 6, 8, 18, 24, 32, 48, 72 hours after stimulation of cells using a

T-cell receptor independent activation mechanism. Since changes in regulations often

occur at early stages of activation, and to simplify the analysis from the unbalanced

experiments, we consider only the earliest 5 time points.

Estimated networks of T-cell activation using the adaptive lasso, the truncating

adaptive lasso and the thresholded lasso estimators are shown in Figure 2.5. The

tuning parameters for different estimators are determined as in Section 2.4, where

the value of σ is estimated using the standard pooled estimate. Lasso and truncating

lasso estimates provided similar estimates to their adaptive counterparts and consid-

ering the advantages of the adaptive estimators over the regular estimators are not

presented. The networks in Figure 2.5 are obtained by drawing an edge between gene

i and gene j whenever there is an nonzero element in one of the adjacency matrices

Âtij, T − d̂ ≤ t ≤ T − 1. Comparison of the estimated networks reveals a signifi-

cant overlap between the adaptive lasso and thresholded lasso estimates, whereas the

truncating adaptive lasso estimate seems to give a different estimate. This is high-

lighted by the summary measures in Table 2.3, where the total number of edges in

each network, along with the structural Hamming distance (SHD) between pairs of

two networks, defined as the number of edges different between each two networks,

are given.

The striking difference between the estimated regulatory networks using the trun-
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Figure 2.5: Estimated Gene Regulatory Networks of B-cell activation. Edges indicate
nonzero entries in the estimated adjacency matrix in at least one time lag.

cating lasso estimate raises the question of whether the decay condition necessary

for the performance of the truncating lasso estimator is satisfied. Although the true

regulatory mechanism in this biological system is unknown, the gray-scale images of

the estimated adjacency matrices in Figure 2.6 suggest that in this case the decay

condition may be indeed violated. This example underscores the advantage of our

newly proposed estimator in cases where the conditions required for the truncating

lasso estimate of S-M are not met.

2.6 Discussion

Time course gene expression data provide a valuable source of information for

the study of biological systems. Simultaneous analysis of changes in expressions of

thousands of genes over time reveals important cues to the dynamic behavior of

Alasso TAlasso Thlasso
Alasso (96) – –
TAlasso 99 (101) –
Thlasso 35 102 (79)

Table 2.3: Structural Hamming Distance between different estimates of the T-cell
regulatory network. Diagonal numbers in parentheses show the total number of edges
in each network.
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Figure 2.6: Adjacency Matrices of Estimated B-Cells Networks.

the organism and provides a unique window for discovering regulatory interactions

among genes. A main challenge in applying statistical models for inferring regulatory

networks from time course gene expression data stems from the unknown order of the

time series. Simplified methods that ignore effects of genes from time points farther

in the past may suffer from loss of information, and could fail to include significant

regulatory interactions that are manifested after a long time lag. In contrast, methods

that incorporate all of the past information may suffer from an unnecessary curse of

dimensionality, and could result in inferior inference especially when the sample size

is small.

To overcome this challenge, we proposed a new penalized estimation method for

inferring gene regulatory networks from time series observations, based on adaptive

thresholding of lasso estimates. The proposed estimator builds upon the previously

proposed truncating lasso estimator Shojaie and Michailidis (2010a). Both of these

estimators attempt to simultaneously estimate the order of the VAR model and the

structure of the network, under two different structural assumptions. While the
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truncating lasso estimate is based on the assumption that the effects of genes on each

other decay over time, the newly proposed adaptively thresholded lasso estimator

relies on a less stringent structural assumption that sets a lower bound on the number

of edges in the adjacency matrix of the NGC at each time point (see Section 2.3 for a

formal statement of this assumption). The relaxation of the decay assumption allows

the new estimator to correctly estimate the order of the time series in a broader class

of models. However, while the truncating lasso penalty may fail in situations where

the decay assumption is violated, it offers advantages in favorable settings.

A natural question therefore arises on the choice of the appropriate penalty for

simultaneous estimation of the order of the time series and the structure of the NGC

model. The truncating lasso penalty can be advantageous if its underlying assumption

is satisfied, but its performance degrades markedly if it does not hold. In absence

a formal methodology for determining which of the two assumptions may be more

appropriate, the regular (adaptive) lasso estimate can guide the user: if the estimate

from the (adaptive) lasso clearly supports the decay assumption, then one could apply

the truncating lasso penalty, otherwise, the thresholded lasso penalty provides a more

reliable estimate of the NGC.
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CHAPTER III

Network Granger Causality with Inherent

Grouping Structure

3.1 Introduction

We consider the problem of learning a directed network of interactions among a

number of entities from time course data. A natural framework to analyze this prob-

lem uses the notion of Granger causality (Granger , 1969b). Originally proposed by

C.W. Granger this notion provides a statistical framework for determining whether a

time seriesX is useful in forecasting another one Y , through a series of statistical tests.

It has found wide applicability in economics, including testing relationships between

money and income (Sims , 1972), government spending and taxes on economic output

(Blanchard and Perotti , 2002), stock price and volume (Hiemstra and Jones , 1994),

etc. More recently the Granger causal framework has found diverse applications in

biological sciences including functional genomics, systems biology and neurosciences

to understand the structure of gene regulation, protein-protein interactions and brain

circuitry, respectively.

It should be noted that the concept of Granger causality is based on associations

between time series, and only under very stringent conditions, true causal relation-

ships can be inferred (Pearl , 2000b). Nonetheless, this framework provides a powerful
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tool for understanding the interactions among random variables based on time course

data.

Network Granger causality (NGC) extends the notion of Granger causality among

two variables to a wider class of p variables. Such extensions involving multiple

time series are handled through the analysis of vector autoregressive processes (VAR)

(Lütkepohl , 2005). Specifically, for p stationary time series X t
1, . . . , X

t
p, with X t =

(X t
1, . . . , X

t
p)
′, one considers the class of models

X t = A1X t−1 + . . .+ AdX t−d + εt, (3.1)

where A1, A2, . . . , Ad are p × p real-valued matrices, d is the unknown order of the

VAR model and the innovation process satisfies εt ∼ N(0, σ2I). In this model, the

time series {X t
j} is said to be Granger causal for the time series {X t

i} if Ahi,j 6= 0 for

some h = 1, . . . , d. Equivalently we can say that there exists an edge X t−h
j → X t

i

in the underlying network model comprising of (d + 1) × p nodes (see Figure 3.1).

We call A1, . . . , Ad the adjacency matrices from lags 1, . . . , d. Note that the entries

Ahij of the adjacency matrices are not binary indicators of presence/absence of edges

between two nodes X t
i and X t−h

j . Rather, they represent the direction and strength

of influence from one node to the other.

The temporal structure induces a natural partial order among the nodes of this

network, which in turn simplifies significantly the corresponding estimation problem

(Shojaie and Michailidis , 2010a) of a directed acyclic graph. Nevertheless, one still

has to deal with estimating a high-dimensional network (e.g. hundreds of genes) from

a limited number of samples.

The traditional asymptotic framework of estimating VAR models requires ob-

serving a long, stationary realization {X1, . . . , XT , T → ∞ p, d fixed} of the p-

dimensional time series. This is not appropriate in many biological applications
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Figure 3.1: An example of a Network Granger causal model with two non-overlapping
groups observed over T = 4 time points

for the following reasons. First, long stationary time series are rarely observed in

these contexts. Second, the number of time series (p) being large compared to T ,

the task of consistent order (d) selection using standard criteria (e.g., AIC or BIC)

becomes challenging. Similar issues arise in many econometric applications where

empirical evidence suggests lack of stationarity over a long time horizon, although

the multivariate time series exhibits locally stable distributional properties.

A more suitable framework comes from the study of panel data, where one observes

several replicates of the time series, with possibly short T , across a panel of n subjects.

In biological applications replicates are obtained from test subjects. In the analysis

of macroeconomic variables, households or firms typically serve as replicates. After

removing panel specific fixed effects one treats the replicates as independent samples,

performs regression analysis under the assumption of common slope structure and

studies the asymptotic properties under the regime n → ∞. Recent works of Cao

and Sun (2011) and Binder et al. (2005) analyze theoretical properties of short panel

VARs in the low-dimensional setting (n→∞, T, p fixed).
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The focus of this work is on estimating a high-dimensional NGC model in the

panel data context (p, n large, T small to moderate). This work is motivated by

two application domains, functional genomics and financial econometrics. In the first

application (presented in Section 3.6) one is interested in reconstructing a gene reg-

ulatory network structure from time course data, a canonical problem in functional

genomics (Michailidis , 2012). The second motivating example examines the compo-

sition of balance sheets of the n = 50 largest US banks by size, over T = 9 quarterly

periods, which provides insight into their risk profile.

The nature of high-dimensionality in these two examples comes from both estima-

tion of p2 coefficients for each of the adjacency matrices A1, . . . , Ad, but also from the

fact that the order of the time series d is often unknown. Thus, in practice, one must

either “guess” the order of the time series (often times, it is assumed that the data is

generated from a VAR(1) model, which can result in significant loss of information),

or include all of the past time points, resulting in significant increase in the number

of variables in cases where d� T . Thus, efficient estimation of the order of the time

series becomes crucial.

Latent variable based dimension reduction techniques like principal component

analysis or factor models are not very useful in this context since our goal is to

reconstruct a network among the observed variables. To achieve dimension reduction

we impose a group sparsity assumption on the structure of the adjacency matrices

A1, . . . , Ad. In many applications, structural grouping information about the variables

exists. For example, genes can be naturally grouped according to their function or

chromosomal location, stocks according to their industry sectors, assets/liabilities

according to their class, etc. This information can be incorporated to the Granger

causality framework through a group lasso penalty. If the group specification is correct

it enables estimation of denser networks with limited sample sizes (Bach, 2008; Huang

and Zhang , 2010; Lounici et al., 2011). However, the group lasso penalty can achieve
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model selection consistency only at a group level. In other words, if the groups are

misspecified, this procedure can not perform within group variable selection (Huang

et al., 2009), an important feature in many applications.

Over the past few years, several authors have adopted the framework of network

Granger causality to analyze multivariate temporal data. For example, Fujita et al.

(2007b) and Lozano et al. (2009b) employed NGC models coupled with penalized `1

regression methods to learn gene regulatory mechanisms from time course microarray

data. Specifically, Lozano et al. (2009b) proposed to group all the past observations,

using a variant of group lasso penalty, in order to construct a relatively simple Granger

network model. This penalty takes into account the average effect of the covariates

over different time lags and connects Granger causality to this average effect being

significant. However, it suffers from significant loss of information and makes the

consistent estimation of the signs of the edges difficult (due to averaging). Shojaie and

Michailidis (2010b) proposed a truncating lasso approach by introducing a truncation

factor in the penalty term, which strongly penalizes the edges from a particular time

lag, if it corresponds to a highly sparse adjacency matrix.

Despite recent use of NGC in applications involving high dimensional data, the-

oretical properties of the resulting estimators have not been fully investigated. For

example, Lozano et al. (2009b) and Shojaie and Michailidis (2010b) discuss asymp-

totic properties of the resulting estimators, but neither address in depth norm con-

sistency properties, nor do they examine under what vector autoregressive structures

the obtained results hold.

In this chapter, we develop a general framework that accommodates different

variants of group lasso penalties for NGC models. It allows for the simultaneous

estimation of the order of the times series and the Granger causal effects; further, it

allows for variable selection even when the groups are misspecified. In summary, the

key contributions of this work are: (i) investigate in depth sufficient conditions that
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explicitly take into consideration the structure of the VAR(d) model to establish norm

consistency, (ii) introduce the novel notion of direction consistency, which generalizes

the concept of sign consistency and provides insight into the properties of group

lasso estimates within a group, and (iii) use the latter notion to introduce an easy

to compute thresholded variant of group lasso, that performs within group variable

selection in addition to group sparsity pattern selection even when the group structure

is misspecified.

All the obtained results are non-asymptotic in nature, which help provide insight

into the properties of the estimates under different asymptotic regimes arising from

varying growth rates of T, p, n, group sizes and the number of groups.

3.2 Model and Framework

Notation. Consider a VAR model

X t︸︷︷︸
p×1

= A1︸︷︷︸
p×p

X t−1 + . . .+ AdX t−d + εt, εt ∼ N(0p×1, σ
2Ip×p) (3.2)

observed over T time points t = 1, . . . , T , across n panels. The index set of the

variables Np = {1, 2, . . . , p} can be partitioned into G non-overlapping groups Gg, i.e.,

Np = ∪Gg=1Gg and Gg ∩ Gg′ = φ if g 6= g′. Also kg = |Gg| denotes the size of the gth

group with kmax = max
1≤g≤G

kg. In general, we use λmin and λmax to denote the minimum

and maximum of a finite collection of numbers λ1, . . . , λm.

For any matrix A, we denote the ith row by Ai:, j
th column by A:j and the

collection of rows (columns) corresponding to the gth group by A[g]: (A:[g]). The

transpose of a matrix A is denoted by A′ and its Frobenius norm by ||A||F . For a

symmetric/Hermitian matrix Σ, its maximum and minimum eigenvalues are denoted

by Λmin(Σ) and Λmax(Σ), respectively. The symbol A1:h is used to denote the concate-

nated matrix
[
A1 : · · · : Ah

]
, for any h > 0. For any matrix or vector D, ‖D‖0 denotes
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the number of non-zero coordinates in D. For notational convenience, we reserve the

symbol ‖.‖ to denote the `2 norm of a vector and/or the spectral norm of a matrix. For

a pre-defined set of non-overlapping groups G1, . . . ,GG on {1, . . . , p}, the mixed norms

of vectors v ∈ Rp are defined as ‖v‖2,1 =
∑G

g=1 ‖v[g]‖ and ‖v‖2,∞ = max1≤g≤G ‖v[g]‖.

Also for any vector β, we use βj to denote its jth coordinate and β[g] to denote the

coordinates corresponding to the gth group. We also use supp(v) to denote the sup-

port of v, i.e., supp(v) = {j ∈ {1, . . . , p}|vj 6= 0}.

Network Granger causal (NGC) estimates with group sparsity. Consider n

replicates from the NGC model (3.2), and denote the n × p observation matrix at

time t by X t. In econometric applications the data on p economic variables across n

panels (firms, households etc.) can be observed over T time points. For time course

microarray data one typically observes the expression levels of p genes across n sub-

jects over T time points. After removing the panel specific fixed effects one assumes

the common slope structure and independence across the panels. The data are high-

dimensional if either T or p is large compared to n. In such a scenario, we assume

the existence of an underlying group sparse structure, i.e., for every i = 1, . . . , p, the

support of the ith row of A1:T−1 =
[
A1 : · · · : AT−1

]
in the model (3.2) can be covered

by a small number of groups si, where si � (T − 1)G. Note that the groups can be

misspecified in the sense that the coordinates of a group covering the support need

not be all non-zero. Hence, for a properly specified group structure we shall expect

si � ‖A1:T
i: ‖0. On the contrary, with many misspecified groups, si can be of the same

order, or even larger than ‖A1:T
i: ‖0.

Learning the true network of Granger causal effects {(i, j) ∈ {1, . . . , p} : Atij 6=

0 for some t} is equivalent to recovering the correct sparsity pattern in A1:(T−1) and

consistently estimating the non-zero effects Atij. In the high-dimensional regression

problems this is achieved by simultaneous regularization and selection operators like
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lasso and group lasso. The group Granger causal estimates of the adjacency matrices

A1, . . . , AT−1 are obtained by solving the following optimization problem

Â1:T−1 = argmin
A1,··· ,AT−1

1

2n

∥∥∥∥∥X T −
T−1∑
t=1

X T−t (At)′∥∥∥∥∥
2

F

+ λ
T−1∑
t=1

p∑
i=1

G∑
g=1

wti,g‖Ati:[g]‖ (3.3)

where X t is the n×p observation matrix at time t, constructed by stacking n replicates

from the model (3.2), wt is a p × G matrix of suitably chosen weights and λ is a

common regularization parameter. The optimization problem can be separated into

the following p penalized regression problems:

Â1:T−1
i: = argmin

θ1,··· ,θT−1∈Rp

1

2n
‖X T

:i −
T−1∑
t=1

X T−tθt‖2 + λ
T−1∑
t=1

G∑
g=1

wti,g‖Ati:[g]‖, i = 1, · · · , p

(3.4)

The order d of the VAR model is estimated as d̂ = max
1≤t≤T−1

{t : Ât 6= 0}.

Different choices of weights wti:g lead to different variants of NGC estimates. The

regular NGC estimates correspond to the choices wti,g = 1 or
√
kg, while for adap-

tive group NGC estimates the weights are chosen as wti,g =
∥∥∥Âti:[g]∥∥∥−1

, where Ât are

obtained from a regular NGC estimation. For Âti:[g] = 0, the weight wti,g is infinite,

which is interpreted as discarding the variables in group g from the optimization

problem.

Thresholded NGC estimates are calculated by a two-stage procedure. The first

stage involves a regular NGC estimation procedure. The second stage uses a bi-

level thresholding strategy on the estimates Ât. First, the estimated groups with `2

norm less than a threshold (δgrp = cλ, c > 0) are set to zero. The second level of

thresholding (within group) is applied if the a priori available grouping information

is not entirely reliable. Âtijwithin an estimated group Âti:[g] is thresholded to zero if∣∣∣Âtij∣∣∣ / ∥∥∥Âti:[g]∥∥∥ is less than a threshold δmisspec ∈ (0, 1). So, for every t = 1, . . . , T − 1,
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if j ∈ Gg, the thresholded NGC estimates are

Ãtij = ÂtijI
{∣∣∣Âtij∣∣∣ ≥ δmisspec

∥∥∥Âti:[g]∥∥∥} I {∥∥∥Âti:[g]∥∥∥ ≥ δgrp

}

The tuning parameters λgrp and δmisspec are chosen via cross-validation. The rationale

behind this thresholding strategy is discussed in Section 3.4.

3.3 Estimation Consistency of NGC estimates

In this section we establish the norm consistency of regular group NGC estimates.

The regular NGC estimates in (3.3) are obtained by solving p separate group lasso

programs with a common design matrix Xn×p(T−1) = [X 1 : · · · : X T−1]. This design

matrix has p̄ = (T − 1)p columns which can be partitioned into Ḡ = (T − 1)G

groups {G1, . . . ,GḠ}. We denote the sample Gram matrix by C = X ′X/n. For the ith

optimization problem, these Ḡ = (T−1)G groups are penalized by λ(t−1)G+g := λwti,g,

1 ≤ t ≤ T − 1, 1 ≤ g ≤ G, with the choice of weights wti,g described in Section 3.2.

Following Lounici et al. (2011) one can establish a non-asymptotic upper bound on the

`2 estimation error of the NGC estimates Ât under certain restricted eigenvalue (RE)

assumptions. These assumptions are common in the literature of high-dimensional

regression (Lounici et al., 2011; Bickel et al., 2009; van de Geer and Bühlmann, 2009b)

and are known to be sufficient to guarantee consistent estimation of the regression

coefficients even when the design matrix is singular. Of main interest, however, is

to investigate the validity of these assumptions in the context of NGC models. This

issue is addressed in Proposition III.2.

For L > 0, we say that a Restricted Eigenvalue (RE) assumption RE(s, L) is
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satisfied if there exists a positive number φRE = φRE(s) > 0 such that

min
J⊂NḠ, |J |≤s
∆∈Rp̄\{0}

{
‖X∆‖√
n‖∆[J ]‖

:
∑
g∈Jc

λg‖∆[g]‖ ≤ L
∑
g∈J

λg‖∆[g]‖

}
≥ φRE (3.5)

The following proposition provides a non-asymptotic upper bound on the `2-

estimation error of the group NGC estimates under RE assumptions. The proof

follows along the lines of Lounici et al. (2011) and is delegated to Appendix 3.8.3.

Proposition III.1. Consider a regular NGC estimation problem (3.4) with smax =

max1≤i≤p si and s =
∑p

i=1 si. Suppose λ in (3.3) is chosen large enough so that for

some α > 0,

λg ≥
2σ√
n

√∥∥C[g][g]

∥∥(√kg +
π√
2

√
α log Ḡ

)
for every g ∈ NḠ, (3.6)

Also assume that the common design matrix X = [X 1 : · · · : X T−1] in the p regression

problems (3.4) satisfy RE(2smax, 3). Then, with probability at least 1− 2pḠ1−α,

∥∥∥Â1:T−1 − A1:T−1
∥∥∥
F
≤ 4

√
10

φ2
RE(2smax)

λ2
max

λmin

√
s (3.7)

Remark. Consider a high-dimensional asymptotic regime where Ḡ � nB for

some B > 0, kmax/kmin = O(1), s = O(na1) and kmax = O(na2) with 0 < a1, a2 <

a1 + a2 < 1 so that the total number of non-zero effects is o(n). If {‖C[g][g]‖, g ∈ NḠ}

are bounded above (often accomplished by standardizing the data) and φ2
RE(2smax)

is bounded away from zero (see Proposition III.2 for more details), then the NGC

estimates are norm consistent for any choice of α > 2 + a2/B.

Note that group lasso achieves faster convergence rate (in terms of estimation and

prediction error) than lasso if the groups are appropriately specified. For example, if

all the groups are of equal size k and λg = λ for all g, then group lasso can achieve an

`2 estimation error of order O
(√

s(
√
k +

√
log Ḡ)/

√
n
)

. In contrast, lasso’s error is
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known to be of the order O
(√
‖A1:d‖0 log p̄/n

)
, which establishes that group lasso

has a lower error bound if s � ‖A1:d
i: ‖0. On the other hand, lasso will have a lower

error bound if s � ‖A1:d
i: ‖0, i.e., if the groups are highly misspecified.

Validity of RE assumption in Group NGC problems. In view of Theorem

III.1, it is important to understand how stringent the RE condition is in the context

of NGC problems. It is also important to find a lower bound on the RE coefficient

φRE, as it affects the convergence rate of the NGC estimates. For the panel-VAR

setting, we can rigorously establish that the RE condition holds with overwhelming

probability, as long as n, p grow at the same rate required for `2-consistency.

The following proposition achieves this objective in two steps. Note that each row

of the design matrix X (common across the p regressions) is independently distributed

as N(0,Σ) where Σ is the variance-covariance matrix of the (T − 1)p-dimensional

random variable
(
(X1)′, . . . , (XT−1)′

)′
. First, we exploit the spectral representation

of the stationary VAR process to provide a lower bound on the minimum eigenvalue

of Σ. In the next step, we establish a suitable deviation bound on X − Σ to prove

that X satisfies RE condition with high probability for sufficiently large n.

Proposition III.2. (a) Suppose the VAR(d) model of (3.2) is stable, stationary.

Let Σ be the variance-covariance matrix of the (T − 1)p-dimensional random variable(
(X1)′, . . . , (XT−1)′

)′
. Then the minimum eigenvalue of Σ satisfies

Λmin(Σ) ≥ σ2

[
max

θ∈[−π,π]
‖A(e−iθ)‖

]−2

≥ σ2

[
1 +

d∑
t=1

‖At‖

]−2

≥ σ2

[
1 +

1

2
(vin + vout)

]−2

where A(z) := I − A1z − A2z2 − . . . − Adzd is the reverse characteristic polynomial

of the VAR(d) process, and vin, vout are the maximum incoming and outgoing effects
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at a node, cumulated across different lags

vin =
d∑
t=1

max
1≤i≤p

p∑
j=1

|Atij|, vout =
d∑
t=1

max
1≤j≤p

p∑
i=1

|Atij|

(b) In addition, suppose the replicates from different panels are i.i.d. Then, for any

s > 0, there exist universal positive constants ci such that if the sample size n satisfies

n >
Λ2

max(Σ)

Λ2
min(Σ)

(2 + Lλmax/λmin)4 c0s(kmax + c1 log(eḠ/2s))

then X satisfies RE(s, L) with φ2
RE ≥ Λmin(Σ)/2 with probability at least 1−c2 exp(−c3 n).

Remark. Proposition III.2 has two interesting consequences. First, it provides

a lower bound on the RE constant φRE which is independent of T . So if the high

dimensionality in the Granger causal network arises only from the time domain and

not the cross-section (T → ∞, p, G fixed), the stationarity of the VAR process

guarantees that the rate of convergence depends only on the true order (d), and not

T . Second, this result shows that the NGC estmates are consistent even if the node

capacities vin and vout grow with n, p at an appropriate rate.

3.4 Variable Selection Consistency of NGC estimates

In view of (3.4), to study the variable selection properties of NGC estimates it

suffices to analyze the variable selection properties of p generic group lasso estimates

with a common design matrix.

The problem of group sparsity selection has been thoroughly investigated in the

literature (Wei and Huang , 2010; Lounici et al., 2011). The issue of selection and

sign consistency within a group, however, is still unclear. Since group lasso does not

impose sparsity within a group, all the group members are selected together (Huang

et al., 2009) and it is not clear which ones are recovered with correct signs. This
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also leads to inconsistent variable selection if a group is misspecified, i.e., not all the

members within a group has non-zero effect. Several alternate penalized regression

procedures have been proposed to overcome this shortcoming (Breheny and Huang ,

2009; Huang et al., 2009). The main idea behind these procedures is to combine `2

and `1 norms in the penalty to encourage sparsity at both group and variable level.

These estimators involve nonconvex optimization problems and are computationally

expensive. Also their theoretical properties in a high dimensional regime are not well

studied.

We take a different approach to deal with the issue of group misspecification.

Although group lasso penalty does not perform exact variable selection within groups,

it performs regularization and shrinks the individual coefficients. We utilize this

regularization to detect misspecification within a group. To this end, we formulate a

generalized notion of sign consistency, henceforth referred as “direction consistency”,

that provides insight into the properties of group lasso estimates within a single

group. Subsequently, these properties are used to develop a simple, easy to compute,

thresholded variant of group lasso which, in addition to group selection, achieves

variable selection and sign consistency within groups.

We consider a generic group lasso regression problem of the linear model y =

Xβ0 + ε with p variables partitioned into G non-overlapping groups {G1, . . . ,GG} of

size kg, g = 1, . . . , G. Without loss of generality, we assume β0
[g] 6= 0 for g ∈ S =

{1, 2, . . . , s} and β0
[g] = 0 for all g /∈ S and consider the following group lasso estimate
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of β0:

β̂ = argmin
β∈Rp

1

2n
‖Y −Xβ‖2 +

G∑
g=1

λg‖β[g]‖ (3.8)

β0︸︷︷︸
p×1

= [β0
[1], . . . , β

0
[s]︸ ︷︷ ︸

k1+...+ks=q

,0, . . . ,0︸ ︷︷ ︸
p−q

] = [β0
(1) : β0

(2)] (3.9)

X︸︷︷︸
n×p

= [X(1)︸︷︷︸
n×q

: X(2)︸︷︷︸
n×(p−q)

] C =
1

n
X′X =

 C11 C12

C21 C22

 (3.10)

Direction Consistency. For an m-dimensional vector τ ∈ Rm\{0} define its

direction vector D(τ) = τ/‖τ‖ , D(0) = 0. In the context of a generic group lasso

regression (3.10), for a group g ∈ S of size kg, D(β0
[g]) indicates the direction of in-

fluence of β0
[g] at a group level in the sense that it reflects the relative importance of

the influential members within the group. Note that for kg = 1 the function D(·)

simplifies to the usual sgn(·) function.

Definition. An estimate β̂ of a generic group lasso problem (3.8) is direction

consistent at a rate δn, if there exists a sequence of positive real numbers δn → 0

such that

P
(
‖D(β̂[g])−D(β0

[g])‖ < δn, ∀g ∈ S, β̂[g] = 0, ∀g /∈ S
)
→ 1 as n, p→∞. (3.11)

Now suppose β̂ is a direction consistent estimator. Consider the set S̃ng := {j ∈

Gg : |β0
j| / ‖β0

[g]‖ > δn}. S̃ng can be viewed as a collection of influential group

members within a group Gg, which are “detectable” with a sample of size n. Then,

it readily follows from the definition that

P(sgn(β̂j) = sgn(βj), ∀j ∈ S̃ng ,∀g ∈ {1, . . . , s})→ 1 as n, p→∞. (3.12)
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The latter observation connects the precision of group lasso estimates to the ac-

curacy of a priori available grouping information. In particular, if the pre-specified

grouping structure is correct, i.e., all the members within a group have non-zero ef-

fect, then for a sufficiently large sample size we have S̃ng = Gg for all g ∈ S. Hence,

if the group lasso estimate is direction consistent, it will correctly estimate the sign

of all the variables in the support. On the other hand, in case of a misspecified a

priori grouping structure (numerous zero coordinates in βg for g ∈ S), group lasso

will correctly estimate only the signs of the influential group members.

Example. We demonstrate the property of direction consistency using a small

example. Consider a linear model with 8 predictors

y = 0.5x1 − 3x2 + 3x3 + x4 − 2x5 + 3x8 + e, e ∼ N(0, 1)

The coefficient vector β0 is partitioned into four groups of size 2, viz., (0.5,−3), (3, 1), (−2, 0)

and (0, 3). The last two groups are misspecified. We generated n = 25 samples from

this model and ran group lasso regression with the above group structure. Figure

3.2 shows the true coefficient vectors (solid) and their estimates (dashed) from five

iterations of the above exercise. Note that even though the `2 errors between β0
[g]

and β̂[g] vary largely across the four groups, the distance between their projections on

the unit circle,
∥∥∥D(β0

[g])−D(β̂[g])
∥∥∥, are comparatively stable across groups. In fact,

Theorem 3.4.1 shows that under certain irrepresentable conditions (IC) on the design

matrix, it is possible to find a uniform (over all g ∈ S) upper bound δn on the `2 gap

of these direction vectors. This motivates a natural thresholding strategy to correct

for the misspecification in groups (cf. Proposition 3.4.2). Even though a group β0
[g]

is misspecified (i.e., lies on a coordinate axis), direction consistency ensures, with

high probability, that the corresponding coordinate in D(β̂[g]) will be smaller than a

threshold δn which is common across all groups in the support.
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β[4] = (0, 3)  

β[1] = (0.5, -3)  

β[2] = (3, 1)  

β[3] = (-2, 0)  D(β[1]) – D( β[1]) 

Figure 3.2: Example demonstrating direction consistency

Group Irrepresentable Conditions (IC). Next, we define the IC required

for direction consistency of group lasso estimates. Irrepresentable conditions are

common in the literature of high-dimensional regression problems (Zhao and Yu, 2006;

van de Geer and Bühlmann, 2009b) and are shown to be sufficient (and essentially

necessary) for selection consistency of the lasso estimates. Further these conditions

are known to be satisfied with high probability, if the population analogue of the

Gram matrix belongs to the Toeplitz family (Zhao and Yu, 2006; Wainwright , 2009).

In NGC estimation the population analogue of the Gram matrix Σ = V ar(X1:(T−1)) is

block Toeplitz, so the irrepresentable assumptions are natural candidates for studying

selection consistency of the estimates. Consider the notations of (3.8) and (3.10).

Define K = diag (λ1Ik1 , λ2Ik2 , . . . , λsIks).
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Uniform Irrepresentable Condition (IC) is satisfied if there exists 0 < η < 1

such that for all τ ∈ Rq with ‖τ‖2,∞ = max
1≤g≤s

‖τ[g]‖2 ≤ 1

1

λg

∥∥∥[C21(C11)−1Kτ
]

[g]

∥∥∥ < 1− η, ∀g /∈ S = {1, . . . , s} (3.13)

Note that the definition reverts to the usual IC for lasso when all groups correspond

are singletons.

The IC is more stringent than the RE condition and is rarely met if the underlying

model is not sparse. It can be shown that a slightly weaker version of this condition

is necessary for direction consistency. We refer the readers to Appendix 3.8.4 for

further discussion on the different irrepresentable assumptions and their properties.

Numerical evidence suggests that the group IC tends to be less stringent than the

IC required for the selection consistency of lasso. We illustrate this using three small

simulated examples.

Simulation 1. We constructed group sparse NGC models with T = 5, p = 21, G =

7, kg = 3 and different levels of network densities, where the network edges were

selected at random and scaled so that ‖A1‖ = 0.1. For each of these models, we

generated 100 samples of size n = 150 and calculated the proportions of times the

two types of irrepresentable conditions were met. The results are displayed in Figure

3.3a.

Simulation 2. We selected a VAR(1) model from the above class and generated

samples of size n = 20, 50, . . . , 250. Figure 3.3b displays the proportions of times

(based on 100 simulations) the two ICs were met.

Simulation 3. We generated n = 200 samples from the VAR(1) model of example 2

for T = 2, 3, 4, 5, 10, . . . , 40. Figure 3.3c displays the proportions of times (based on

100 simulations) the two ICs were met.

Selection consistency for generic group lasso estimates. For simplicity, we
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Figure 3.3: Comparison of lasso and group irrepresentable conditions in the context
of group sparse NGC models. (a) group ICs tend to be met for dense networks where
lasso IC fails to meet. (b) For the same network group IC is met with smaller sample
size than required by lasso. (c) For longer time series group IC is satisfied more often
than lasso IC.

discuss the selection consistency properties of a generic group lasso regression problem

with a common tuning parameter across groups, i.e., λg = λ for every g ∈ NG. Similar

results can be obtained for more general choices of the tuning parameters.

Theorem 3.4.1. Assume that the group uniform IC holds with 1−η for some η > 0.

Then, for any choice of α > 0,

λ ≥ max
g/∈S

1

η

σ√
n

√∥∥∥(C22)[g][g]

∥∥∥(√kg +
π√
2

√
α log G

)
and

δn ≥ max
g∈S

1∥∥∥β0
[g]

∥∥∥
(
λ
√
s
∥∥(C11)−1

∥∥+
σ√
n

√∥∥∥(C11)−1
[g][g]

∥∥∥(√kg +
π√
2

√
α log G

))
,

with probability greater than 1− 4G1−α, there exists a solution β̂ satisfying

1. β̂[g] = 0 for all g /∈ S,

2.
∥∥∥β̂[g] − β0

[g]

∥∥∥ < δn

∥∥∥β0
[g]

∥∥∥, and hence
∥∥∥D(β̂[g])−D(β0

[g])
∥∥∥ < 2δn , for all g ∈ S. If

δn < 1, then β̂[g] 6= 0 for all g ∈ S.
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Remark. The tuning parameter λ can be chosen of the same order as re-

quired for `2 consistency to achieve selection consistency within groups in the sense

of (3.12). Further, with the above choice of λ, δn can be chosen of the order of

O(
√
s(
√
kmax +

√
log G)/

√
n). Thus, group lasso correctly identifies the group spar-

sity pattern and is direction consistent if
√
s(
√
kmax +

√
log G)/

√
n → 0, the same

scaling required for `2 consistency.

Thresholding in Group NGC estimators. As described in Section 3.2,

regular group NGC estimates can be thresholded both at the group and coordinate

levels. The first level of thresholding is motivated by the fact that lasso can select too

many false positives [cf. van de Geer et al. (2011), Zhou (2010) and the references

therein]. The second level of thresholding employs the direction consistency of regular

group NGC estimates to perform within group variable selection with high probability.

The following proposition demonstrates the benefit of these two types of thresholding.

The second result is an immediate corollary of Theorem 3.4.1. Proof of the first result

(thresholding at group level) requires some additional notations and is delegated to

Appendix 3.8.5.

Theorem 3.4.2. Consider a generic group lasso regression problem (3.8) with com-

mon tuning parameter λg = λ.

(i) Assume the RE(s, 3) condition of (3.5) holds with a constant φRE and define

β̂thgrp[g] = β̂[g]1‖β̂[g]‖>4λ. If Ŝ = {g ∈ NG : β̂thgrp[g] 6= 0}, then |Ŝ\S| ≤ s
φ2
RE/12

, with

probability at least 1− 2G1−α.

(ii) Assume that uniform IC holds with 1− η for some η > 0. Choose λ and δn as in

Theorem 3.4.1 and define

β̂thgrpj = β̂j1{|β̂j|/‖β̂[g]‖ > 2 δn} for all j ∈ Gg
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Figure 3.4: Estimated adjacency matrices of a misspecified NGC model with p =
60, T = 10, n = 60: (a) True, (b) Lasso, (c) Group Lasso, (d) Thresholded Group
Lasso. The grayscale represents the proportion of times an edge was detected in 100
simulations.

Then sgn(β0
j ) = sgn(β̂thgrpj ) ∀ j ∈ Np with probability at least 1−4G1−α, if min

j∈supp(β0)
|β0
j | >

2δn ‖β0
[g]‖ for all j ∈ Gg, i.e., if the effect of every non-zero member in a group is “vis-

ible” relative to the total effect from the group.

3.5 Performance Evaluation

We evaluate the performances of regular, adaptive and thresholded variants of

the group NGC estimators through an extensive simulation study, and compare the

results to those obtained from lasso estimates. The R package grpreg (Breheny and

Huang , 2009) was used to obtain the group lasso estimates. The settings considered

are:

(a) Balanced groups of equal size: i.i.d samples of size n = 60, 110, 160 are generated

from lag-2 (d = 2) VAR models on T = 5 time points, comprising of p = 60, 120, 200
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nodes partitioned into groups of equal size in the range 3-5.

(b) Unbalanced groups: We retain the same setting as before, however the correspond-

ing node set is partitioned into one larger group of size 10 and many groups of size 5.

(c) Misspecified balanced groups: i.i.d samples of size n = 60, 110, 160 are generated

from lag-2 (d = 2) VAR models on T = 10 time points, comprising of p = 60, 120

nodes partitioned into groups of size 6. Further, for each group there is a 30% mis-

specification rate, namely that for every parent group of a downstream node, 30% of

the group members do not exert any effect on it.

Using a 19 : 1 sample-splitting, the tuning parameter λ is chosen from an in-

terval of the form [C1λe, C2λe], C1, C2 > 0, where λe =
√

2 log p/n for lasso and√
2 log G/n for group lasso. The thresholding parameters are selected as δgrp = 0.7λσ

at the group level and δmisspec = n−0.2 within groups. These parameters are chosen by

conducting a 20-fold cross-validation on independent tuning datasets of same sizes,

using intervals of the form [C3λ,C4λ] for δgrp and {n−δ, δ ∈ [0, 1]} for δmisspec. Finally,

within group thresholding is applied only when the group structure is misspecified.

The following performance metrics were used for comparison purposes: (i) Precision =

TP/(TP + FP ) , (ii) Recall = TP/(TP + FN) and (iii) Matthew’s Correlation co-

efficient (MCC) defined as

(TP × TN)− (FP × FN)

((TP + FP )× (TP + FN)× (TN + FP )× (TN + FN))1/2

where TP , TN , FP and FN correspond to true positives, true negatives, false pos-

itives and false negatives in the estimated network, respectively. The average and

standard deviations (over 100 replicates) of the performance metrics are presented

for each setup.

The results for the balanced settings are given in Table 3.1. The Recall for p = 60

shows that even for a network with 60 × (5 − 1) = 240 nodes and |E| = 351 true
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Table 3.1: Performance of different regularization methods in estimating graphical
Granger causality with balanced group sizes and no misspecification; d = 2, T = 5,
SNR = 1.8. Precision (P ), Recall (R), MCC are given in percentages (numbers
in parentheses give standard deviations). ERR LAG gives the error associated with
incorrect estimation of VAR order.

p = 60, |E| = 351 p = 120, |E| = 1404 p = 200, |E| = 3900
Group Size=3 Group Size=3 Group Size=5

n 160 110 60 160 110 60 160 110 60
P Lasso 80(2) 75(2) 66(4) 69(1) 62(2) 52(2) 52(1) 47(1) 38(1)

Grp 95(2) 91(4) 83(7) 91(3) 80(5) 68(7) 78(4) 72(3) 59(6)
Thgrp 96(1) 92(3) 86(6) 93(3) 83(5) 70(7) 82(4) 76(3) 64(6)
Agrp 96(2) 92(4) 83(7) 92(3) 82(5) 69(7) 81(3) 74(3) 60(6)

R Lasso 71(2) 54(2) 31(2) 54(1) 40(1) 22(1) 38(1) 28(1) 15(1)
Grp 99(1) 93(3) 71(7) 91(2) 81(2) 48(8) 84(1) 70(2) 41(4)
Thgrp 99(1) 93(3) 71(7) 91(2) 81(2) 48(8) 84(2) 69(2) 41(3)
Agrp 99(1) 93(3) 71(7) 91(2) 81(2) 47(8) 84(1) 69(2) 40(4)

MCC Lasso 75(2) 63(2) 45(3) 60(1) 49(1) 33(1) 43(1) 35(1) 23(1)
Grp 97(1) 92(3) 76(5) 91(1) 80(2) 56(2) 81(2) 70(2) 48(2)
Thgrp 98(1) 93(2) 78(5) 92(1) 81(2) 57(3) 83(2) 72(2) 50(3)
Agrp 97(1) 92(3) 76(5) 91(1) 81(2) 56(3) 82(2) 71(2) 48(2)

ERR Lasso 10.5 11.3 13.9 16.63 17.37 16.69 19.79 20 18.52
LAG Grp 3.19 6.95 12.76 4.86 10.77 12.65 4.21 5.27 7.8

Thgrp 2.83 5.87 10.01 3.98 9.03 11.19 3.06 3.91 5.68
Agrp 3.13 6.89 12.59 4.63 10.37 12.34 3.58 4.87 7.59

edges, the group NGC estimators recover about 71% of the true edges with a sample

size as low as n = 60, while lasso based NGC estimates recover only 31% of the

true edges. The three group NGC estimates have comparable performances in all

the cases. However thresholded lasso shows slightly higher precision than the other

group NGC variants for smaller sample sizes (e.g., n = 60, p = 200). The results

for p = 60, n = 110 also display that lower precision of lasso is caused partially by

its inability to estimate the order of the VAR model correctly, as measured by ERR

LAG=Number of falsely connected edges from lags beyond the true order of the VAR

model divided by the number of edges in the network (|E|). This finding is nicely

illustrated in Figure 3.4 and Table 3.1. The group penalty encourages edges from the

nodes of the same group to be picked up together. Since the nodes of the same group

are also from the same time lag, the group variants have substantially lower ERR

LAG. For example, average ERR LAG of lasso for p = 200, n = 160 is 19.79% while

the average ERR LAGs for the group lasso variants are in the range 3.06%− 4.21%.

The results for the unbalanced networks are given in Table 3.2. As in the balanced
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Table 3.2: Performance of different regularization methods in estimating graphical
Granger causality with unbalanced group sizes and no misspecification; d = 2, T =
5, SNR = 1.8. Precision (P ), Recall (R), MCC are given in percentages (numbers
in parentheses give standard deviations). ERR LAG gives the error associated with
incorrect estimation of VAR order.

p = 60, |E| = 450 p = 120, |E| = 1575 p = 200, |E| = 4150
Groups=1× 10, 11× 5 Groups=1× 10, 23× 5 Groups=1× 10, 39× 5

n 160 110 60 160 110 60 160 110 60
P Lasso 72(2) 69(3) 62(2) 51(1) 48(1) 41(1) 61(1) 53(1) 42(2)

Grp 84(4) 79(6) 76(9) 55(5) 47(5) 40(6) 86(3) 77(5) 66(7)
Thgrp 86(4) 82(7) 78(11) 60(6) 50(7) 40(5) 88(2) 79(6) 69(6)
Agrp 85(3) 81(5) 77(9) 59(5) 51(5) 42(6) 88(2) 78(5) 67(6)

R Lasso 45(2) 35(2) 22(2) 43(1) 34(1) 22(1) 23(1) 15(0) 7(0)
Grp 94(3) 87(5) 61(8) 88(2) 75(5) 48(6) 73(3) 49(6) 22(5)
Thgrp 95(2) 88(4) 62(8) 89(3) 77(4) 50(5) 73(3) 50(6) 21(5)
Agrp 94(3) 87(5) 61(8) 88(2) 75(5) 48(6) 73(3) 49(6) 22(5)

MCC Lasso 56(2) 48(2) 35(2) 46(1) 39(1) 29(1) 36(1) 28(1) 17(1)
Grp 89(3) 82(4) 67(5) 68(3) 58(3) 42(3) 79(1) 61(3) 37(3)
Thgrp 90(3) 84(4) 68(6) 72(4) 61(4) 43(2) 80(1) 62(3) 37(3)
Agrp 89(3) 83(4) 67(6) 71(3) 60(3) 43(3) 79(1) 61(3) 37(3)

ERR Lasso 10.59 10.74 11.76 18.3 18.72 18.76 11.54 10.93 9.29
LAG Grp 7.04 9.85 13.04 12.53 14.71 13.06 4.8 6.41 6.85

Thgrp 6.58 8.98 11.1 9.6 11.9 10.9 4.06 5.65 5.7
Agrp 6.74 9.19 12.96 10.81 12.78 11.79 4.55 6.2 6.81

group setup, in almost all the simulation settings the group NGC variants outperform

the lasso estimates with respect to all three performance metrics. However the per-

formances of the different variants of group NGC are comparable and tend to have

higher standard deviations than the lasso estimates. Also the average ERR LAGs for

the group NGC variants are substantially lower than the average ERR LAG for lasso

demonstrating the advantage of group penalty. Although the conclusions regarding

the comparisons of lasso and group NGC estimates remain unchanged it is evident

that the performances of all the estimators are affected by the presence of one large

group, skewing the uniform nature of the network. For example the MCC measures of

group NGC estimates in a balanced network with p = 60 and |E| = 351 vary around

97− 98% which lowers to 89%− 90% when the groups are unbalanced.

The results for misspecified groups are given in Table 3.3. Note that for higher

sample size n, the MCC of lasso and regular group lasso are comparable. However,

the thresholded version of group lasso achieves significantly higher MCC than the

rest. This demonstrates the advantage of using the directional consistency of group
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Table 3.3: Performance of different regularization methods in estimating graphical
Granger causality with misspecified groups (30% misspecification); d = 2, T = 10,
SNR = 2. Precision (P ), Recall (R), MCC are given in percentages (numbers in
parentheses give standard deviations). ERR LAG gives the error associated with
incorrect estimation of VAR order.

p = 60, |E| = 246 p = 120, |E| = 968
Group Size=6 Group Size=6

n 160 110 60 160 110 60
P Lasso 88(2) 85(3) 77(5) 59(1) 55(1) 49(2)

Grp 65(2) 66(2) 66(3) 43(3) 44(4) 38(4)
Thgrp 87(3) 88(3) 85(3) 56(6) 56(6) 51(7)
Agrp 65(2) 66(2) 66(3) 45(2) 45(4) 39(4)

R Lasso 80(3) 63(3) 37(2) 66(1) 54(1) 35(1)
Grp 100(0) 98(2) 82(6) 87(2) 78(3) 59(4)
Thgrp 100(0) 98(2) 79(6) 86(2) 79(3) 57(4)
Agrp 100(0) 98(2) 82(6) 86(2) 78(3) 58(3)

MCC Lasso 84(2) 73(2) 53(3) 62(1) 54(1) 41(1)
Grp 81(1) 80(2) 74(4) 61(2) 58(3) 47(2)
Thgrp 93(2) 93(2) 82(4) 69(4) 66(4) 53(3)
Agrp 81(1) 80(2) 74(4) 62(2) 59(2) 47(2)

ERR Lasso 12.63 17.05 22.41 45.09 49.68 53.4
LAG Grp 9.43 8.78 15.12 18.22 18.43 29.26

Thgrp 6.45 5.34 8.02 11.81 12.84 15.57
Agrp 9.11 8.78 14.96 16.32 16.9 27.69

lasso estimators to perform within group variable selection. We would like to mention

here that a careful choice of the thresholding parameters δgrp and δmisspec via cross-

validation improves the performance of thresholded group lasso; however, we do not

pursue these methods here as they require grid search over many tuning parameters

or an efficient estimator of the degree of freedom of group lasso.

In summary, the results clearly show that all variants of group lasso NGC outper-

form the lasso-based ones, whenever the grouping structure of the variables is known

and correctly specified. Further, their performance depends on the composition of

group sizes. On the other hand, if the a priori known group structure is moder-

ately misspecified lasso estimates produce comparable results to regular and adaptive

group NGC ones, while thresholded group estimates outperform all other methods,

as expected.
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Table 3.4: Mean and standard deviation of MSE for different NGC estimates

Lasso Grp Agrp Thgrp
mean 0.649 0.456 0.457 0.456
stdev 0.340 0.252 0.251 0.252

3.6 Application

Example: T-cell activation. Estimation of gene regulatory networks from

expression data is a fundamental problem in functional genomics (Friedman, 2004).

Time course data coupled with NGC models are informationally rich enough for

the task at hand. The data for this application come from Rangel et al. (2004),

where expression patterns of genes involved in T-cell activation were studied with the

goal of discovering regulatory mechanisms that govern them in response to external

stimuli. Activated T-cells are involved in regulation of effector cells (e.g. B-cells)

and play a central role in mediating immune response. The available data comprising

of n = 44 samples of p = 58 genes, measure the cells response at 10 time points,

t = 0, 2, 4, 6, 8, 18, 24, 32, 48, 72 hours after their stimulation with a T-cell receptor

independent activation mechanism. We concentrate on data from the first 5 time

points, that correspond to early response mechanisms in the cells.

Genes are often grouped based on their function and activity patterns into bi-

ological pathways. Thus, the knowledge of gene functions and their membership

in biological pathways can be used as inherent grouping structures in the proposed

group lasso estimates of NGC. Towards this, we used available biological knowledge

to define groups of genes based on their biological function. Reliable information for

biological functions were found from the literature for 38 genes, which were retained

for further analysis. These 38 genes were grouped into 13 groups with the number of

genes in different groups ranging from 1 to 5.

Figure 3.5 shows the estimated networks based on lasso and thresholded group

lasso estimates, where for ease of representation the nodes of the network correspond
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Figure 3.5: Estimated Gene Regulatory Networks of T-cell activation. Width of edges
represent the number of effects between two groups, and the network represents the
aggregated regulatory network over 3 time points.

to groups of genes. In this case, estimates from variants of group NGC estimator

were all similar, and included a number of known regulatory mechanisms in T-cell

activation, not present in the regular lasso estimate. For instance, Waterman et al.

(1990) suggest that TCF plays a significant role in activation of T-cells, which may

describe the dominant role of this group of genes in the activation mechanism. On

the other hand, Kim et al. (2005) suggest that activated T-cells exhibit high levels

of osteoclast-associated receptor activity which may attribute the large number of

associations between member of osteoclast differentiation and other groups. Finally,
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Figure 3.6: Estimated Networks of banking balance sheet variables using (a) lasso
and (b) group lasso. The networks represent the aggregated network over 5 time
points.

the estimated networks based on variants of group lasso estimator also offer improved

estimation accuracy in terms of mean squared error (MSE) despite having having

comparable complexities to their regular lasso counterpart (Table 3.4), which further

confirms the findings of other numerical studies in that paper.

Example: Banking balance sheets application. In this application, we ex-

amine the structure of the balance sheets in terms of assets and liabilities of the n = 50

largest (in terms of total balance sheet size) US banking corporations. The data cover

9 quarters (September 2009-September 2011) and were directly obtained from the Fed-
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Table 3.5: Mean and standard deviation (in parentheses) of PMSE (MSE in case of
Dec 2010) for prediction of banking balance sheet variables.

Quarter Lasso Grp Agrp Thgrp
Dec 2010 1.59 (0.29) 0.36 (0.05) 0.36 (0.05) 0.37 (0.05)
Mar 2011 1.46 (0.30) 0.47 (0.23) 0.47 (0.23) 0.46 (0.22)
Jun 2011 1.33 (0.26) 0.36 (0.11) 0.36 (0.11) 0.35 (0.11)
Sep 2011 1.72 (0.32) 0.50 (0.18) 0.50 (0.18) 0.47 (0.16)

eral Deposit Insurance Corporation (FDIC) database (available at www.fdic.gov).

The p = 21 variables correspond to different assets (US and foreign government debt

securities, equities, loans (commercial, mortgages), leases, etc.) and liabilities (domes-

tic and foreign deposits from households and businesses, deposits from the Federal

Reserve Board, deposits of other financial institutions, non-interest bearing liabili-

ties, etc.) We have organized them into four categories: two for the assets (loans

and securities) and two for the liabilities (Balances Due and Deposits, based on a

$250K reporting FDIC threshold). Amongst the 50 banks examined, one discerns

large integrated ones with significant retail, commercial and investment activities

(e.g. Citibank, JP Morgan, Bank of America, Wells Fargo), banks primarily focused

on investment business (e.g. Goldman Sachs, Morgan Stanley, American Express,

E-Trade, Charles Schwab), regional banks (e.g. Banco Popular de Puerto Rico, Com-

erica Bank, Bank of the West).

The raw data are reported in thousands of dollars. The few missing values were

imputed using a nearest neighbor imputation method with k = 5, by clustering

them according to their total assets in the most recent quarter (September 2011)

and subsequently every missing observation for a particular bank was imputed by the

median observation on its five nearest neighbors. The data were log-transformed to

reduce non-stationarity issues. The dataset was restructured as a panel with p = 21

variables and n = 50 replicates observed over T = 9 time points. Every column of

replicates was scaled to have unit variance.

We applied the proposed variants of NGC estimates on the first T = 6 time
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points (Sep 2009 - Dec 2010) of the above panel dataset. The parameters λ and δgrp

were chosen using a 19 : 1 sample-splitting method and the misspecification threshold

δmisspec was set to zero as the grouping structure was reliable. We calculated the MSE

of the fitted model in predicting the outcomes in the four quarters (December 2010

- September 2011). The Predicted MSE (MSE for Dec 2010) are listed in Table 3.5.

The estimated network structures are shown in Figure 3.6.

It can be seen that the lasso estimates recover a very simple temporal structure

amongst the variables; namely, that past values (in this case lag-1) influence present

ones. Given the structure of the balance sheet of large banks, this is an anticipated

result, since it can not be radically altered over a short time period due to business

relationships and past commitments to customers of the bank. However, the (adap-

tive) group lasso estimates reveal a richer and more nuanced structure. Examining

the fitted values of the adjacency matrices At, we notice that the dominant effects

remain those discovered by the lasso estimates. However, fairly strong effects are

also estimated within each group, but also between the groups of the assets (loans

and securities) on the balance sheet. This suggests rebalancing of the balance sheet

for risk management purposes between relatively low risk securities and potentially

more risky loans. Given the period covered by the data (post financial crisis starting

in September 2009) when credit risk management became of paramount importance,

the analysis picks up interesting patterns. On the other hand, significant fewer asso-

ciations are discovered between the liabilities side of the balance sheet. Finally, there

exist relationships between deposits and securities such as US Treasuries and other

domestic ones (primarily municipal bonds); the latter indicates that an effort on be-

half of the banks to manage the credit risk of their balance sheets, namely allocating

to low risk assets as opposed to more risky loans.

It is also worth noting that the group lasso model exhibits superior predictive

performance over the lasso estimates, even 4 quarters into the future. Finally, in
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this case the thresholded estimates did not provide any additional benefits over the

regular and adaptive variants, given that the specification of the groups was based

on accounting principles and hence correctly structured.

3.7 Discussion

In this chapter, the problem of estimating Network Granger Causal (NGC) models

with inherent grouping structure is studied when replicates are available. Norm, and

both group level and within group variable selection consistency are established under

fairly mild assumptions on the structure of the underlying time series. To achieve the

second objective the novel concept of direction consistency is introduced.

The type of NGC models discussed in this study have wide applicability in different

areas, including genomics and economics. However, in many contexts the availability

of replicates at each time point is not feasible (e.g. in rate of returns for stocks or other

macroeconomic variables), while grouping structure is still present (e.g. grouping of

stocks according to industry sector). Hence, it is of interest to study the behavior of

group lasso estimates in such a setting and address the technical challenges emanating

from such a pure time series (dependent) data structure.

3.8 Technical Results

3.8.1 Auxiliary Lemmas

Lemma 3.8.1 (Characterization of the Group lasso estimate). A vector β̂ ∈ Rp is a

solution to the convex optimization problem

argmin
β∈Rp

1

2n
‖Y −Xβ‖2 +

G∑
g=1

λg‖β[g]‖ (3.14)
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if and only if β̂ satisfies, for some τ ∈ Rp with max1≤g≤G
∥∥τ[g]

∥∥ ≤ 1, 1
n

[
X ′(Y −Xβ̂)

]
[g]

=

λg τ[g] ∀g. Further, τ[g] = D
(
β̂[g]

)
whenever β̂[g] 6= 0.

Proof. Follows directly from the KKT conditions for the optimization problem (3.14).

Lemma 3.8.2 (Concentration bound for multivariate Gaussian). Let Zk×1 ∼ N(0,Σ).

Then, for any t > 0, the following inequalities hold:

P (|‖Z‖ − E‖Z‖| > t) ≤ 2 exp

(
− 2t2

π2‖Σ‖

)
, E ‖Z‖ ≤

√
k
√
‖Σ‖

Proof. The first inequality can be found in Ledoux and Talagrand (1991) (equation

(3.2). To establish the second inequality note that,

E‖Z‖ ≤
√
E‖Z‖2 =

√
E [trace (ZZ ′)] =

√
trace (Σ) ≤

√
k
√
‖Σ‖

Lemma 3.8.3. Let β, β̂ ∈ Rm\{0}. Let û = β̂ − β and r = D(β̂) − D(β). Then

‖r‖ < 2δ whenever ‖û‖ < δ ‖β‖.

Proof. It follows from ‖û‖ < δ ‖β‖ that

(1− δ)‖β‖ < ‖β‖ − ‖û‖ ≤ ‖β̂‖ ≤ ‖û‖+ ‖β‖ < (1 + δ)‖β‖ ,

which implies that
∣∣∣‖β‖ − ‖β̂‖∣∣∣ < δ‖β‖. Now,

‖β̂‖ ‖β‖‖r‖ =
∥∥∥ β̂‖β‖+ (û− β̂)‖β̂‖

∥∥∥ ≤ ∥∥∥β̂ (‖β‖ − ‖β̂‖)+ ‖β̂‖ û
∥∥∥ < ‖β̂‖ ‖β‖(δ+δ)

since
∣∣∣‖β‖ − ‖β̂‖∣∣∣ < δ‖β‖ and ‖û‖ < δ ‖β‖.
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Lemma 3.8.4. Let G1, . . . ,GG be any partition of {1, . . . , p} into G non-overlapping

groups and λ1, . . . , λG be positive real numbers. Define the cone sets C(J, L) = {v ∈

Rp :
∑

g/∈J λg‖v[g]‖ ≤ L
∑

g∈J λg‖v[g]‖} for any subset of groups J ⊆ NG. Also

define the set of group s-sparse vectors D(s) := {v ∈ Rp : ‖v‖ ≤ 1, supp(v) ⊆

GJ for some J ⊆ NG, |J | ≤ s}. Then

⋃
J⊆NG,|J |≤s

C(J, L) ∩ Sp−1 ⊆ (2 + L′)cl{conv{D(s)}} (3.15)

where L′ = Lλmax/λmin, Sp−1 = {v ∈ Rp : ‖v‖ = 1} is the ball of unit norm vectors

in Rp and cl{.}, conv{.} respectively denote the closure and convex hull of a set.

Proof. Note that for any J ⊆ NG, |J | ≤ s, and v ∈ C(J, L) ∩ Sp−1, we have

∑
g/∈J

‖v[g]‖ ≤ L
λmax

λmin

∑
g∈J

‖v[g]‖

which implies

‖v‖2,1 ≤ (L′ + 1)
∑
g∈J

‖v[g]‖ ≤ (L′ + 1)
√
s‖v[J ]‖ ≤ (L′ + 1)

√
s

Hence the union of the cone sets on the left hand side of (3.15) is a subset of A :=

{v ∈ Rp : ‖v‖ ≤ 1, ‖v‖2,1 ≤ (L′ + 1)
√
s}.

We will show that the set A is a subset of B := (2+L′)cl{conv{D(s)}}, the closed

convex hull on the right hand side of (3.15). Since both sets A and B are closed

convex, it is enough to show that the support function of A is dominated by the

support function of B.

The support fucntion of A is given by φA(z) = supθ∈A〈θ, z〉. For any z ∈ Rp,

let S ⊆ {1, . . . , G} be a subset of top s groups in terms of the `2 norm of z[g].

Thus, ‖z[Sc]‖2,∞ ≤ ‖z[g]‖ for all g ∈ S. This implies ‖z[Sc]‖2,∞ ≤ (1/s)‖z[S]‖2,1 ≤
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(1/
√
s)‖z[S]‖. So, we have

φA(z) = sup
θ∈A
〈θ, z〉 ≤ sup

‖θ[S]‖≤1

〈θ[S], z[S]〉+ sup
‖θ[Sc]‖2,1≤

√
s(L′+1)

〈θ[Sc], z[Sc]〉 (3.16)

≤ ‖z[S]‖+ (L′ + 1)
√
s‖z[Sc]‖2,∞ ≤ (L′ + 2)‖z[S]‖ (3.17)

On the other hand, support function of B := (L′ + 2)cl{conv{D(s)}} is given by

φB(z) = sup
θ∈B
〈θ, z〉 = (L′ + 2) max

|U |=s, U⊆NG
sup
‖θ[U ]‖≤1

〈θ[U ], z[U ]〉 = (L′ + 2)‖z[S]‖

This concludes the proof.

Lemma 3.8.5. Consider a matrix Xn×p with rows independently distributed as N(0,Σ),

Λmin(Σ) > 0. Let G1, . . . ,GG be any partition of {1, . . . , p} into G non-overlapping

groups of size k1, . . . , kg, respectively. Let C = X ′X/n denote the sample Gram ma-

trix and D(s) denote the set of group s-sparse vectors defined in Lemma 3.8.4. Then,

for any integer s ≥ 1 and any η > 0, we have

P

[
sup

v∈cl{conv{D(s)}}
|v′(C − Σ)v| > 6η‖Σ‖

]
≤ c0 exp

[
−nmin{η, η2}+ c1s(kmax + c2 log (eG/2s))

]
(3.18)

for some universal positive constants ci.

Proof. We consider a fixed vector v ∈ Rp with ‖v‖ ≤ 1, the support of which can be

covered by a set J of at most s groups, i.e., supp(v) ⊆ GJ , J ⊆ NG, |J | ≤ s. Define

Y = Xv. Then each coordinate of Y is independently distributed as N(0, σ2
y), where

σ2
y = v′Σv ≤ ‖Σ‖.

Then, for any η > 0, Hansen-Wright inequality of Rudelson and Vershynin (2013)

ensures

P [|v′(C − Σ)v| > η‖Σ‖] ≤ P
[

1

n
|Y ′Y − EY ′Y | > ησ2

y

]
≤ 2 exp

[
−cnmin{η, η2}

]

67



Next, we extend this deviation bound on all vectors v in the sparse set

D(2s) = {v ∈ Rp : ‖v‖ ≤ 1, supp(v) ⊆ GJ for some J ⊆ NG, |J | ≤ 2s} (3.19)

For a given J ⊆ NG, |J | = 2s, we define DJ = {v ∈ Rp : ‖v‖ ≤ 1, supp(v) ⊆ GJ}

and note that D(2s) = ∪|J |=2sDJ . For an ε > 0 to be specified later, we construct an

ε-net A of DJ . Since
∑

g∈J kg ≤ 2s kmax, it is possible to construct such a net A with

cardinality at most (1 + 2/ε)s kmax (Vershynin, 2009).

We want a tail inequality for M := supv∈DJ |v
′∆v|, where ∆ = C − Σ. Since A is

an ε-cover of DJ , for any v ∈ DJ , there exists v0 ∈ A such that w = v − v0 satisfies

‖w‖ ≤ ε. Then

|v′∆v| = |(w + v0)′∆(w + v0)| ≤ |w′∆w|+ |v′0∆v0|+ 2|v′0∆w|

Taking supremum over all v ∈ DJ , and noting that w/ε ∈ DJ , we obtain

M ≤ ε2M + max
v0∈A
|v′0∆v0|+ sup

u,v∈DJ
2ε|u′∆v| (3.20)

To upper bound the third term, note that (u+ v)/2 ∈ DJ , and

2|u′∆v| ≤ |(u+ v)′∆(u+ v)|+ |u′∆u|+ |v′∆v|

Hence

sup
u,v∈DJ

2ε|u′∆v| ≤ 4εM + εM + εM = 6εM

From equation (3.20), we now have

M ≤ (1− 6ε− ε2)−1 max
v0∈A
|v′0∆v0|
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Choosing ε > 0 small enough so that (1− 6ε− ε2) > 1/2, we obtain

P
[

sup
v∈DJ
|v′∆v| > 2η‖Σ‖

]
≤ P

[
max
v0∈A
|v′0∆v0| > η‖Σ‖

]
≤ 2 (1 + 2/ε)s kmax exp[−cnmin{η, η2}]

Taking supremum over

 G

2s

 ≤ (eG/2s)2s choices of J , we get

P

[
sup

v∈D(2s)

|v′∆v| > 2η‖Σ‖

]
≤ 2 exp

[
−cnmin{η, η2}+ 2s log(eG/2s) + 2s kmax log(1 + 2/ε)

]
(3.21)

In order to extend this deviation inequality to cl{conv{D(s)}}, we note that any v

in the convex hull of D(s) can be expressed as v =
∑m

i=1 αivi, where v1, . . . , vm are in

D(s) and 0 ≤ αi ≤ 1,
∑
αi = 1. Then

|v′∆v| ≤
m∑
i=1

m∑
j=1

αiαj|v′i∆vj|

Also, for every i, j, (vi + vj)/2 ∈ D(2s), and

|v′i∆vj| ≤
1

2

[
|(vi + vj)

′∆(vi + vj)|+ |v′i∆vi|+ |v′j∆vj|
]

Hence

sup
v∈conv{D(s)}

|v′∆v| ≤
m∑
i=1

m∑
j=1

αiαj
1

2
[4 + 1 + 1] sup

v∈D(2s)

|v′∆v|

Together with the continuity of quadratic forms, this implies

sup
v∈cl{conv{D(s)}}

|v′∆v| ≤ 3 sup
v∈D(2s)

|v′∆v|

The result then readily follows from equation (3.21).
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3.8.2 Proof of Main Results

Proof of Proposition III.2. (a) Note that Σ is a p(T − 1) × p(T − 1) block Toeplitz

matrix with (i, j)th block (Σij)1≤i,j≤(T−1) := Γ(i − j), where Γ(`)p×p is the auto-

covariance function of lag ` for the zero-mean VAR(d) process (3.2), defined as

Γ(`) = E[Xt(Xt−`)′].

We consider the cross spectral density of the VAR(d) process (3.2)

f(θ) =
1

2π

∞∑
`=−∞

Γ(`)e−i`θ, θ ∈ [−π, π] (3.22)

From standard results of spectral theory we know that Γ(`) =
∫ π
−π e

i`θ f(θ) dθ, for

every `.

We want to find a lower bound on the minimum eigenvalue of Σ, i.e., inf‖x‖=1 x
′Σx.

Consider an arbitrary p(T − 1)-variate unit norm vector x, formed by stacking the

p-tuples x1, . . . , xT−1.

For every θ ∈ [−π, π] define G(θ) =
∑T−1

t=1 x
t e−itθ and note that

π∫
−π

G∗(θ)G(θ) dθ =
T−1∑
t=1

T−1∑
τ=1

(xt)′(xτ )

π∫
−π

ei(t−τ)θ dθ

=
T−1∑
t=1

T−1∑
τ=1

(xt)′(xτ ) (2π 1{t=τ}) = 2π
T−1∑
t=1

(xt)′(xt) = 2π ‖x‖2 = 2π

Also let µ(θ) be the minimum eigenvalue of the Hermitian matrix f(θ). Following
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Parter (1961) we have the result

x′Σx =
T−1∑
t=1

T−1∑
τ=1

(xt)′Γ(t− τ)xτ =
T−1∑
t=1

T−1∑
τ=1

(xt)′

 π∫
−π

ei(t−τ)θf(θ)dθ

xτ

=

π∫
−π

(
T−1∑
t=1

(xt)′eitθ

)
f(θ)

(
T−1∑
τ=1

xτe−iτθ

)
dθ =

π∫
−π

G∗(θ) f(θ)G(θ) dθ

≥
π∫

−π

µ(θ) (G∗(θ)G(θ)) dθ ≥
(

min
θ∈(−π,π)

µ(θ)

) π∫
−π

G∗(θ)G(θ) dθ = 2π min
θ∈(−π,π)

µ(θ)

So Λmin(Σ) ≥ 2π min
θ∈(−π,π)

µ(θ). Since A(z) = I − A1z − A2z2 − . . . − Adzd is the

(matrix-valued) characteristic polynomial of the VAR(d) model (3.2), we have the

following representation of the spectral density (see eqn (9.4.23), Priestley (1981)):

f(θ) =
1

2π
σ2(A(e−iθ))−1(A∗(e−iθ))−1

Thus, 2πµ(θ) = 2πΛmin(f(θ)) = 2π/Λmax(f(θ)−1) ≥ σ2/
∥∥A(e−iθ)

∥∥2
. But

∥∥A(e−iθ)
∥∥ ≤

1+
∑d

t=1 ‖At‖ for every θ ∈ [−π, π]. The result then follows at once from the standard

matrix norm inequality (see e.g. Golub and Van Loan, 1996, Cor 2.3.2)

‖At‖2 ≤
√
‖At‖1‖At‖∞ ≤

‖At‖1 + ‖At‖∞
2

t = 1, . . . , d

where

‖At‖1 = max
1≤i≤p

p∑
j=1

|Atij|, ‖At‖∞ = max
1≤j≤p

p∑
i=1

|Atij|

(b) The first part of the proposition ensures that Λmin(Σ) ≥ σ2
[
1 + 1

2
(vin + vout)

]−2
.

If the replicates available from different panels are i.i.d, each row of the design matrix

is independently and identically distributed according to a N(0,Σ) distribution.

To show that RE(s, L) of (3.5) holds with high probability for sufficiently large
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n, it is enough to show that

min

v ∈ C(J, L)\{0}

J ⊂ NḠ, |J | ≤ s

1

n

‖Xv‖2

‖v‖2
≥ φ2

RE (3.23)

holds with high probability, where the cone sets C(J, L) are defined as

C(J, L) := {v ∈ Rp̄ :
∑
g/∈J

λg‖v[g]‖ ≤ L
∑
g∈J

λg‖v[g]‖} (3.24)

for all J ⊂ NḠ with |J | ≤ s. Denote the ball of unit norm vectors in Rp̄ by Sp̄−1. By

scale invariance of ‖Xv‖2/n‖v‖2, it is enough to show that with high probability

min

v ∈ Sp̄−1 ∩ C(J, L)

J ⊂ NḠ, |J | ≤ s

v′Cv ≥ φ2
RE (3.25)

where C = X′X/n is the sample Gram matrix.

By part (a), we already know that v′Σv ≥ Λmin(Σ) > 0 for all v ∈ Sp̄−1. So we

only need to show that |v′ (C − Σ) v| ≤ Λmin(Σ)/2 with high probability, uniformly

on the set ⋃
J⊆NḠ,|J |≤s

C(J, L) ∩ Sp̄−1 (3.26)

The proof relies on two key parts. In the first part, we use an extremal representation

to show that the above union of the cone sets sits within the closed convex hull of a

suitably defined set of group s-sparse vectors. In particular, it follows from Lemma

3.8.4 that ⋃
J⊆NḠ, |J |≤s

C(J, L) ∩ Sp̄−1 ⊆ (L′ + 2)cl{conv{D(s)}} (3.27)

where D(s) = {v ∈ Rp̄ : ‖v‖ ≤ 1, supp(v) ⊆ GJ for some J ⊆ NḠ, |J | ≤ s},
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L′ = Lλmax/λmin and cl{.}, conv{.} respectively denote the closure and convex hull

of a set.

The next part of the proof is an upper bound on the tail probability of v′(C−Σ)v,

uniformly over all v ∈ cl{conv{D(s)}}, presented in Lemma 3.8.5. In particular,

setting η = Λmin(Σ)/12‖Σ‖(2 + L′)2 in the above lemma yields

P

[
sup

v∈(2+L′)cl{conv{D(s)}}
|v′(C − Σ)v| > Λmin(Σ)/2

]
≤ c0 exp[−c1 n] (3.28)

for the proposed choice of n. Together with the lower bound on Λmin(Σ) established

in part (a), this concludes the proof.

Proof of Theorem 3.4.1. Consider any solution β̂R ∈ Rq of the restricted regression

argmin
β∈Rq

1

2n

∥∥Y −X(1)β
∥∥2

2
+ λ

s∑
g=1

∥∥β[g]

∥∥
2

(3.29)

and set β̂ =
[
β̂′R : 01×(p−q)

]′
. We show that such an augmented vector β̂ satisfies the

statements of Theorem 3.4.1 with high probability.

Let û = β̂(1) − β0
(1) = β̂R − β0

(1). In view of lemmas 3.8.1 and 3.8.3, it suffices to

show that the following events happen with probability at least 1− 4G1−α:

∥∥û[g]

∥∥ < δn
∥∥β0

[g]

∥∥ , for all g ∈ S (3.30)

1

n

∥∥∥[X ′ (ε−X(1)û
)]

[g]

∥∥∥ ≤ λ, for all g /∈ S (3.31)

Note that, in view of Lemma 3.8.1, û = (C11)−1
(

1√
n
Z(1) − λτ

)
for some τ ∈ Rq with∥∥τ[g]

∥∥ ≤ 1 for all g ∈ S, and Z = 1√
n
X ′ε =

[
Z ′(1) : Z ′(2)

]′
. Thus, for any g ∈ S,

P
(∥∥û[g]

∥∥ > δn
∥∥β0

[g]

∥∥) ≤ P(∥∥∥∥∥
[
(C11)−1

(
1√
n
Z(1) − λτ

)]
[g]

∥∥∥∥∥ > δn
∥∥β0

[g]

∥∥)
≤ P

(∥∥∥[(C11)−1 Z(1)

]
[g]

∥∥∥ > √n [δn ∥∥β0
[g]

∥∥− λ∥∥∥[(C11)−1 τ
]

[g]

∥∥∥])
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Note that V = (C11)−1 Z(1) ∼ N(0, σ2 (C11)−1). So V[g] ∼ N(0, σ2C
[g][g]
11 ), where

Σ[g][g] := (Σ−1)[g][g]. Also, by the second statement of lemma 3.8.2 we have E
∥∥V[g]

∥∥ ≤
σ
√
kg

√∥∥∥C [g][g]
11

∥∥∥. Therefore P
(∥∥û[g]

∥∥ > δn

∥∥∥β0
[g]

∥∥∥) is bounded above by

P

(∣∣∥∥V[g]

∥∥− E∥∥V[g]

∥∥∣∣ > √n [δn ∥∥β0
[g]

∥∥− λ∥∥(C11)−1
∥∥√s]− σ√kg

∥∥∥C [g][g]
11

∥∥∥)

≤ 2 exp

[
− 2

π2σ2‖C [g][g]
11 ‖

(√
nδn‖β0

[g]‖ −
√
nλ‖C−1

11 ‖
√
s− σ

√
kg‖C [g][g]

11 ‖
)2
]

For the proposed choice of δn, this expression is bounded above by 2G−α.

Next, for any g /∈ S, we get

P
(

1

n

∥∥∥[X ′ (ε−X(1)û
)]

[g]

∥∥∥ > λ

)
≤ P

(∥∥∥[Z(2) − C21C
−1
11 Z(1)

]
[g]

∥∥∥ > √nλ(1−
∥∥∥[C21C

−1
11 τ
]

[g]

∥∥∥))

Defining W = Z(2) − C21C
−1
11 Z(1) ∼ N(0, σ2(C22 − C21C

−1
11 C12)), the uniform irrepre-

sentable condition implies that the above probability is bounded above by P
(∥∥W[g]

∥∥ > √nλη).
It can then be seen that W[g] ∼ N(0, σ2C̄[g][g]), where C̄ = C22 − C21C

−1
11 C12

denotes the Schur complement of C22. As before, lemma 3.8.2 establishes that

P
(∥∥W[g]

∥∥ > √nλη) ≤ P
(∣∣∥∥W[g]

∥∥− E∥∥W[g]

∥∥∣∣ > √nλη − σ√kg‖C̄[g][g]‖
)

≤ 2 exp

[
− 2

π2‖σ2C̄[g][g]‖

(√
nλη − σ

√
kg‖C̄[g][g]‖

)2
]
,

and the last probability is bounded above by 2G−α for the proposed choice of λ.

The results in the proposition follow by considering the union bound on the two sets

of the probability statements made across all g ∈ NG.
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3.8.3 Proof of results on `2-consistency

We first note that each of the p optimization problems in (3.4) is essentially a

generic group lasso regression on n independent samples from a linear model Y =

Xβ0 + ε, ε ∼ N(0, σ2):

β̂ = argmin
β∈Rp

1

2n
‖Y −Xβ‖2 +

Ḡ∑
g=1

λg‖β[g]‖ (3.32)

where Yn×1 = X T
i , Xn×p̄ = [X 1 : · · · : X T−1], β0

p̄×1 = vec(A
1:(T−1)
i: ), {1, . . . , p̄} =

∪Ḡg=1Gg, p̄ = (T − 1)p, Ḡ = (T − 1)G and λg = λwti,g. In Proposition III.3, we first

establish the upper bounds on estimation error in the context of a generic group lasso

penalized regression problem. The results for regular group NGC then readily follows

by applying the above Proposition on the p separate regressions.

Recall the Restricted Eigenvalue assumption required for the derivation of `2 es-

timation and prediction error. Following van de Geer and Bühlmann (2009b), we

introduce a slightly weaker notion called Group Compatibility (GC). For a con-

stant L > 0 we say that GC(S, L) condition holds, if there exists a constant

φcompatible = φcompatible(S, L) > 0 such that

min
∆∈Rp\{0}


(∑

g∈S λ
2
g

)1/2

‖X∆‖
√
n
∑
g∈S

λg‖∆[g]‖
:
∑
g/∈S

λg‖∆[g]‖ ≤ L
∑
g∈S

λg‖∆[g]‖

 ≥ φcompatible

(3.33)

The fact that GC(S, L) holds whenever RE(s, L) is satisfied (and φRE ≤ φcompatible)

follows at once from Cauchy Schwarz inequality. We shall derive upper bounds on

the prediction and `2,1 estimation error of group lasso estimates involving the com-

patibility constant. This notion will also be used later to connect the irrepresentable

conditions to the consistency results of group lasso estimators.

Proposition III.3. Suppose the GC condition (3.33) holds with L = 3. Choose α > 0
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and denote λmin = min1≤g≤G λg. If

λg ≥
2σ√
n

√∥∥C[g][g]

∥∥(√kg +
π√
2

√
α log G

)

for every g ∈ NG, then, the following statements hold with probability at least 1 −

2G1−α,

1

n

∥∥∥X (β̂ − β0
)∥∥∥2

≤ 16

φ2
compatible

s∑
g=1

λ2
g (3.34)

‖β̂ − β0‖2,1 ≤
16

φ2
compatible

∑s
g=1 λ

2
g

λmin
. (3.35)

If, in addition, RE(2s, 3) holds, then, with the same probability we get

‖β̂ − β0‖ ≤ 4
√

10

φ2
RE(2s)

∑s
g=1 λ

2
g

λmin
√
s
. (3.36)

Proof of Proposition (III.3). Since β̂ is a solution of the optimization problem (3.32),

for all β ∈ Rp, we have

1

n
‖Y −Xβ̂‖2 + 2

G∑
g=1

λg‖β̂[g]‖ ≤
1

n
‖Y −Xβ‖2 + 2

G∑
g=1

λg‖β[g]‖.

Plugging in Y = Xβ0 + ε, and simplifying the resulting equation, we get

1

n
‖X(β̂ − β0)‖2 ≤ 1

n
‖X(β − β0)‖2 +

2

n

G∑
g=1

∥∥(X ′ε)[g]

∥∥∥∥∥(β̂ − β)[g]

∥∥∥
+2

G∑
g=1

λg

(
‖β[g]‖ − ‖β̂[g]‖

)
.

Fix g ∈ NG and consider the event Ag =
{
ε ∈ Rn : 2

n

∥∥∥(X ′ε)[g]

∥∥∥ ≤ λg

}
. Note that
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Z = 1√
n
X ′ε ∼ N(0, σ2C). So Z[g] ∼ N(0, σ2C[g][g]). Then,

P
(
Acg
)

= P
(∥∥Z[g]

∥∥ > 1

2
λg
√
n

)
≤ P

(∣∣Z[g] − E
∥∥Z[g]

∥∥∣∣ > λg
√
n

2
− σ

√
kg

√∥∥C[g][g]

∥∥) ,
where the last inequality follows from the second statement of Lemma 3.8.2. Now,

let xg = λg
√
n

2
− σ

√
kg

√∥∥C[g][g]

∥∥. Then, for xg > 0, if

2 exp

(
−

2x2
g

π2σ2
∥∥C[g][g]

∥∥
)
≤ 2G−α ,

we get

P
(
Acg
)
≤ 2G−α.

But this happens if,
√

2xg ≥
√
α log Gπσ

√∥∥C[g][g]

∥∥,
which is ensured by the proposed choice of λg.

Next, define A := ∩Gg=1Ag. Then, P (A) ≥ 1 − 2G1−α, and on the event A, we

have, for all β ∈ Rp,

1

n
‖X(β̂ − β0)‖2 +

G∑
g=1

λg

∥∥∥β̂[g] − β[g]

∥∥∥ ≤ 1

n
‖X(β − β0)‖2

+2
G∑
g=1

λg

(∥∥∥β̂[g] − β[g]

∥∥∥+
∥∥β[g]

∥∥− ∥∥∥β̂[g]

∥∥∥) .
Note that

(∥∥∥β̂[g] − β[g]

∥∥∥+
∥∥β[g]

∥∥− ∥∥∥β̂[g]

∥∥∥) vanishes if g /∈ S and is bounded above by

min{2
∥∥β[g]

∥∥ , 2(∥∥∥β[g] − β̂[g]

∥∥∥)} if g ∈ S.
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This leads to the following sparsity oracle inequality, for all β ∈ Rp,

1

n
‖X(β̂ − β0)‖2 +

G∑
g=1

λg

∥∥∥β̂[g] − β[g]

∥∥∥ ≤ 1

n
‖X(β − β0)‖2

+4
∑
g∈S

λg min
{∥∥β[g]

∥∥ , ∥∥∥β[g] − β̂[g]

∥∥∥} . (3.37)

The sparsity oracle inequality (3.37) with β = β0, and ∆ := β̂ − β0 leads to the

following two useful bounds on the prediction and `2,1-estimation errors:

1

n
‖X∆‖2 ≤ 4

∑
g∈S

λg
∥∥∆[g]

∥∥ (3.38)∑
g/∈S

λg
∥∥∆[g]

∥∥ ≤ 3
∑
g∈S

λg
∥∥∆[g]

∥∥ . (3.39)

Now, assume the group compatibility condition 3.33 holds. Then,

1

n
‖X∆‖2 ≤ 4

∑
g∈S

λg
∥∥∆[g]

∥∥ ≤√∑
g∈S

λ2
g

‖X∆‖√
n

4

φcompatible
, (3.40)

which implies the first inequality of proposition III.3. The second inequality follows

from

λmin

∥∥∥β̂ − β∥∥∥
2,1
≤

G∑
g=1

λg
∥∥∆[g]

∥∥ ≤ 4
∑
g∈S

λg
∥∥∆[g]

∥∥
≤ 4

√∑
g∈S

λ2
g

‖X∆‖√
n

1

φcompatible
≤ 16

φ2
compatible

∑
g∈S

λ2
g ,

where the last step uses (3.40).

The proof of the last inequality of proposition III.3, i.e., the upper bound on `2

estimation error under RE(2s), is the same as in Theorem 3.1 in Lounici et al. (2011)

and is omitted.

Proof of Proposition III.1. Applying the `2-estimation error of (3.36) on the ith group
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lasso regression problem of regular group NGC, we have

‖Â1:T−1
i: − A1:T−1

i: ‖ ≤ 4
√

10

φ2
RE(2si)

∑si
g=1 λ

2
g

λmin
√
si
≤ 4

√
10

φ2
RE(2smax)

λmax

λmin

√
si

with probability at least 1 − 2Ḡ1−α. Combining the bounds for all i = 1, . . . , p and

noting that s =
∑p

i=1 si, we have the required result.

3.8.4 Irrepresentable assumptions and consistency

In this subsection, we discuss two results involving the compatibility and irrep-

resentable conditions for group lasso. We first show that a stronger version of the

uniform irrepresentable assumption implies the group compatibility (3.33), and hence,

consistency in `2,1 norm. Next we argue that a weaker version of the irrepresentable

assumption is indeed necessary for the direction consistency of the group lasso es-

timates. These results generalize analogous properties of lasso (van de Geer and

Bühlmann, 2009b; Zhao and Yu, 2006) to the group penalization framework. The

proofs are given under a special choice of tuning parameter λg = λ
√
kg. Similar re-

sults can be derived for the general choice of λg, although their presentation is more

involved.

Proposition III.4. Assume uniform irrepresentable condition (3.13) holds with η ∈

(0, 1), and Λmin(C11) > 0. Then group compatibility(S, L) (3.33) condition holds

whenever L < 1
1−η .

Proof. First note that with the above choice of λg the Group Compatibility (S, L)

condition simplifies to

φcompatible := min
∆∈Rp\{0}


√
q‖X∆‖

√
n
∑
g∈S

√
kg‖∆[g]‖

:
∑
g/∈S

√
kg‖∆[g]‖ ≤ L

∑
g∈S

√
kg‖∆[g]‖

 > 0

(3.41)
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Also, the uniform irrepresentable condition guarantees that there exists 0 < η < 1

such that ∀τ ∈ Rq with ‖τ‖2,∞ = max
1≤g≤s

‖τ[g]‖2 ≤ 1, we have,

1√
kg

∥∥∥[C21 (C11)−1K0τ
]

[g]

∥∥∥
2
< 1− η ∀g /∈ S

HereK0 = K/λ is a q×q block diagonal matrix with s diagonal blocks
√
k1 Ik1×k1 , . . . ,

√
ks Iks×ks .

Define

∆0 := argmin
∆∈Rp

 1

2n
‖X∆‖2

2 :
∑
g∈S

√
kg‖∆[g]‖2 = 1,

∑
g/∈S

√
kg‖∆[g]‖2 ≤ L

 (3.42)

Note that 1
n
‖X∆0‖2

2 = φ2
compatible/q, and introduce two Lagrange multipliers λ and λ′

corresponding to the equality and inequality constraints for solving the optimization

problem in (3.42). Also, partition ∆0 =
[
∆0

(1) : ∆0
(2)

]
and X =

[
X(1) : X(2)

]
into

signal and nonsignal parts as in (3.10). The first q linear equations of the KKT

conditions imply that there exists τ 0 ∈ Rq such that

C11∆0
(1) + C12∆0

(2) = λK0τ 0 (3.43)

and, for every g ∈ S,

τ 0
[g] = D(∆0

[g]) if ∆0
[g] 6= 0

‖τ 0
[g]‖2 ≤ 1 if ∆0

[g] = 0

It readily follows that (τ 0)
T
K0∆0

(1) =
∑
g∈S

√
kg‖∆0

[g]‖2 = 1.

Multiplying both sides of (3.43) by (∆0
(1))

T we get

(
∆0

(1)

)T
C11∆0

(1) +
(
∆0

(1)

)T
C12∆0

(2) = λ (3.44)
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Also, (3.43) implies

∆0
(1) + (C11)−1C12∆0

(2) = λ (C11)−1K0τ 0 (3.45)

Multiplying both sides of the equation by (K0τ 0)
T

= (τ 0)
T
K0 we obtain

1 = −
(
τ 0
)T
K0 (C11)−1C12∆0

(2) + λ
(
K0τ 0

)T
(C11)−1 (K0τ 0

)
(3.46)

Note that the absolute value of the first term,

∣∣∣∣∣∣
∑
g/∈S

(
∆0

[g]

)T [
C21(C11)−1K0τ 0

]
[g]

∣∣∣∣∣∣ , (3.47)

is bounded above by

(1− η)

∑
g/∈S

√
kg‖∆0

[g]‖2

 ≤ (1− η)L (3.48)

by virtue of the uniform irrepresentable condition and the Cauchy-Schwartz inequal-

ity.

Assuming the minimum eigenvalue of C11, i.e., Λmin (C11), is positive and considering

‖K0τ 0‖2 ≤
√
q, the second term is at most λ q/Λmin (C11). So (3.46) implies

1 ≤ (1− η)L+
λq

Λmin (C11)
(3.49)

In particular, λ ≥ Λmin (C11) (1− (1− η)L) /q is positive whenever L < 1/(1− η).

Next, multiply both sides of (3.45) by (∆0
(2))

TC21 to get

(
∆0

(2)

)T
C21∆0

(1) +
(
∆0

(2)

)T
C21 (C11)−1C(12)∆

0
(2) = λ

(
∆0

(2)

)T
C21 (C11)−1K0τ 0 (3.50)

Using the upper bound in (3.48), the right hand side is at least −λ(1− η)L.
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Also a simple consequence of the block inversion formula of the non-negative definite

matrix C guarantees that the matrix C22 − C21 (C11)−1C12 is non-negative definite.

Hence,

(
∆0

(2)

)T [
C22 − C21 (C11)−1C12

]
∆0

(2) ≥ 0

and
(
∆0

(2)

)T
C22∆0

(2) ≥
(
∆0

(2)

)T
C21 (C11)−1C12∆0

(2)

Putting all the pieces together we get

φ2
compatible/q =

1

n
‖X∆0‖2

2

= ∆0
(1)

T
C11∆0

(1) + 2∆0
(2)

T
C21∆0

(1) + ∆0
(2)

T
C22∆0

(2)

= λ+ ∆0
(2)

T
C21∆0

(1) + ∆0
(2)

T
C22∆0

(2) , by (3.44)

≥ λ− λ(1− η)L , by (3.50)

= λ(1− (1− η)L)

Plugging in the lower bound for λ we obtain the result; namely,

φ2
compatible = Λmin(C11) (1− (1− η)L)2 > 0

for any L < 1
1−η .

In this subsection we investigate the necessity of irrepresentable assumptions for

direction consistency of group lasso estimates. To this end we first introduce the

notion of weak irrepresentability.

For a q-dimensional vector τ define the stacked direction vector D̃(τ)︸ ︷︷ ︸
q×1

= [D(τ[1])
′︸ ︷︷ ︸

k1×1

, . . . , D(τ[s])
′︸ ︷︷ ︸

ks×1

]′.

Weak Irrepresentable Condition is satisfied if

1

λg

∥∥∥∥[C21(C11)−1KD̃(β0
(1))
]

[g]

∥∥∥∥ ≤ 1, ∀g /∈ S = {1, . . . , s} (3.51)
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We argue the necessity of weak irrepresentable condition for group sparsity selec-

tion and direction consistency under two regularity conditions on the design matrix,

as n, p→∞:

(A1) The minimum eigenvalue of the signal part of the Gram matrix, viz. Λmin(C11),

is bounded away from zero.

(A2) The matrices C21 and C22 are bounded above in spectral norm.

As in the last proposition, we set λg = λ
√
kg and K0 = K/λ. Suppose that the

weak irrepresentable condition does not hold, i.e., for some g /∈ S and ξ > 0, we have,

1√
kg

∥∥∥∥[C21(C11)−1K0D̃(β0
(1))
]

[g]

∥∥∥∥ > 1 + ξ

for infinitely many n. Also suppose that there exists a sequence of positive reals

δn → 0 such that the event

En := {‖D(β̂[g])−D(β[g])‖2 < δn, ∀g ∈ S, and β̂[g] = 0∀ g /∈ S}

satisfies P(En)→ 1 as p, n→∞.

Note that for large enough n so that δn < ming ‖D(β[g])‖, we have β̂[g] 6= 0, ∀ g ∈ S

on the event En.

Then, as in the proof of Theorem 3.4.1, we have, on the event En,

û = (C11)−1

[
1√
n
Z(1) − λK0D̃(β̂(1))

]
(3.52)

and
1

n

∥∥∥[X(2)
T (ε−X(1)û)

]
[g]

∥∥∥ ≤ λ
√
kg, ∀g /∈ S (3.53)

Substituting the value of û from (3.52) in (3.53), we have, on the event En,

1√
n

∥∥∥∥[Z(2) − C21(C11)−1Z(1) + λ
√
nC21(C11)−1K0D̃(β̂(1))

]
[g]

∥∥∥∥ ≤ λ
√
kg,
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which implies that

∥∥∥[Z(2) − C21 (C11)−1 Z(1)

]
[g]

∥∥∥
≥ λ
√
n
√
kg

[
1√
kg

∥∥∥∥[C21(C11)−1K0D̃(β̂(1))
]

[g]

∥∥∥∥− 1

]
. (3.54)

Now note that for large enough n, if ‖C21‖ is bounded above, direction consistency

guarantees that the expression on the right is larger than

1

2
λ
√
n
√
kg

[
1√
kg

∥∥∥∥[C21(C11)−1K0D̃(β(1))
]

[g]

∥∥∥∥− 1

]

which in turn is larger than 1
2
λ
√
n
√
kg ξ, in view of the weak irrepresentable condi-

tion.

This contradicts P(En) → 1, since the left-hand side of (3.54) corresponds to

the norm of a zero mean Gaussian random variable with bounded variance structure

[C22 − C21(C11)−1C12][g][g] while λ
√
n
√
kg diverges with

√
log G.

3.8.5 Thresholding Group Lasso Estimates.

Proof of Theorem 3.4.2. We use the notations developed in the proof of Proposi-

tion III.3. First note that, (ii) follows directly from Theorem 3.4.1. For (i), since the

falsely selected groups are present after the initial thresholding, we get ‖β̂[g]‖ > 4λ

for every such group. Next, we obtain an upper bound for the number of such groups.

Specifically, denoting ∆ = β̂ − β0, we get

∣∣∣Ŝ\S∣∣∣ ≤ ‖β̂Sc‖2,1

4λ
=

∑
g/∈S ‖∆[g]‖

4λ
. (3.55)

Next, note that from the sparsity oracle inequality (3.38), the following holds on
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the event A, ∑
g/∈S

‖∆[g]‖ ≤ 3
∑
g∈S

‖∆[g]‖

It readily follows that

4
∑
g/∈S

‖∆[g]‖ ≤ 3‖∆‖2,1 ≤
48

φ2
sλ

where the last inequality follows from the `2,1-error bound of (3.35). Using this

inequality together with (3.55) gives the result.
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CHAPTER IV

Regularized Estimation in Sparse

High-dimensional Time Series Models

4.1 Introduction

Recent advances in information technology have made high-dimensional time se-

ries datasets increasingly common in numerous scientific and socio-economic appli-

cations. Examples include structural analysis and forecasting with a large number

of macroeconomic variables (De Mol et al., 2008), reconstruction of gene regulatory

networks from time course microarray data (Michailidis and d’Alché Buc, 2013),

portfolio selection and volatility matrix estimation in finance (Fan et al., 2011) and

studying coactivation networks in human brains using task based or resting state

fMRI data (Smith, 2012). These applications require analyzing a large number of

temporally observed variables using small to moderate sample sizes (number of time

points). Meaningful inference in such situations is often impossible without imposing

some lower dimensional structural assumption on the data generating mechanism.

The most common structural assumption is that of sparsity on the model parame-

ter space. In high-dimensional regression problems, the notion of sparsity is often

incorporated in the estimation procedure by `1-regularization (Bickel et al., 2009)

procedures like lasso, while for covariance matrix estimation problems, sparsity is
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enforced via hard thresholding (Bickel and Levina, 2008).

The theoretical properties of such regularized estimates under high-dimensional

scaling has been the topic of numerous studies over the last few years, under the key

assumption that the samples are independent and identically distributed (i.i.d). On

the other hand, theoretical analysis of these estimates in a time series context, where

the data exhibit temporal and cross-sectional dependence, is rather incomplete. A

central challenge in analyzing regularized estimation problems in high-dimensional

time series is to quantify the dependence present in the data and its effect on the ac-

curacy of the estimation procedures. In classical asymptotic analysis, this is typically

achieved by assuming some mixing condition on the underlying stochastic process. Al-

though suitable for studying limiting behavior of the estimates, mixing conditions are

often hard to verify even for standard processes. A more recent approach (Lam and

Souza, 2013; Chen et al., 2013) is to impose some decay assumption on a functional

dependence measure (Wu, 2005) of the underlying stationary, causal processes. De-

spite the intuitive appeal and nice theoretical properties of this functional dependence

measure, the decay assumptions often lead to restrictions on the model parameters.

Hence, the objective of this study is to examine regularized estimation problems in

high-dimensional stationary time series models under sparsity constraints.

Towards this goal, we adopt a novel, non-asymptotic approach to deal with de-

pendence in high-dimensional time series. Our approach is based on stability , a

key notion in classical time series analysis and systems theory. For a covariance-

stationary process, we introduce a measure of stability using the extreme eigenvalues

of its spectral density and show that this measure can be used to capture the effect

of dependence on the accuracy of regularized estimates. In particular, we derive non-

asymptotic error bounds in three important and widely applicable estimation prob-

lems - (a) stochastic regression with serially correlated errors, (b) transition matrix

estimation in large vector autoregressive (VAR) models, (c) large covariance matrix
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estimation from temporally observed data. In all three problems, we establish that

the effect of dependence is minimal as long as the underlying processes are stable.

The estimates enjoy nearly the same convergence rates as in the i.i.d. case, with an

additional “price” which depends on the stability measure of the process and cap-

tures the effect of dependence. Next, we outline the three problems addressed and

summarize the contributions of this work.

Stochastic Regression. We start with the problem of stochastic regression with

serially correlated errors - a canonical problem in time series analysis (Hamilton,

1994). A linear regression model of the form

yt = 〈β∗, X t〉+ εt, t = 1, . . . , n (4.1)

is considered, where the p-dimensional (n� p) predictors {X t} and the errors {εt} are

generated according to independent, centered, Gaussian stationary processes. Under

a sparsity assumption on β∗, we study the properties of the lasso estimate

β̂ = argmin
β∈Rp

1

n
‖Y −Xβ‖2 + λn‖β‖1 (4.2)

where Y = [yn : . . . : y1]′, X = [Xn : . . . : X1]′ and ‖β‖1 =
∑p

j=1 |βj|. Theoretical

properties of lasso have been studied for fixed design regression Y = Xβ∗ + E, with

E = [en : . . . : e1]′, by several authors (Bickel et al., 2009; Loh and Wainwright ,

2012; Negahban et al., 2012). All the aforementioned papers established consistency

of lasso in high-dimensional regime under some form of restricted eigenvalue (RE) or

restricted strong convexity (RSC) assumption on S = X ′X/n and suitable deviation

conditions on X ′E/N . For a fixed design matrix, verifying RE-type conditions is NP-

hard (Dobriban and Fan, 2013). For random design regression, these assumptions are

known to hold with high probability, as long as the samples are i.i.d. (Raskutti et al.,

2010; Rudelson and Zhou, 2013). It is not clear, however, whether these conditions
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are satisfied with high probability when the observations are dependent. For instance,

Loh and Wainwright (2012) and Negahban and Wainwright (2011) have shown that

RE/RSC and deviation conditions are satisfied with high probability if the predictors

{X t} are generated according to a Gaussian VAR(1) process X t = A1X
t−1 + ξt with

‖A1‖ < 1, where ‖.‖ denotes the operator norm of a matrix. In Figure 4.1 and

Lemma 4.8.4, we show that the condition ‖A1‖ < 1 is very restrictive and fails to

hold beyond a limited subclass of stable VAR(1) processes. More importantly, this

condition is violated by all VAR(d) models, whenever d > 1, as shown in Figure 4.1.

A major contribution of this work is to establish the validity of RE and deviation

conditions for a large class of stationary Gaussian processes {X t} and {εt}, even

when the errors are serially correlated. The results crucially rely on the proposed

measure of stability and use a blend of ideas from spectral theory of multivariate time

series, convex geometry and non-asymptotic random matrix theory. An important

consequence of these results is to ensure that consistent estimation with lasso is

possible in high-dimensional stochastic regression in the presence of serially correlated

errors, as long as the underlying processes are stable.

Vector Autoregression. Next, we address the problem of transition matrix es-

timation in high-dimensional sparse vector autoregressive models (VAR). Vector Au-

toregression (VAR) represents a popular class of time series models in applied macroe-

conomics and finance, widely used for structural analysis and simultaneous forecasting

of a number of temporally observed variables (Sims , 1980; Bernanke et al., 2005a;

Stock and Watson, 2005). Unlike structural models, VAR provides a broad frame-

work for capturing complex temporal and cross-sectional interrelationship among the

time series (Bańbura et al., 2010). In addition to economics, VAR models have been

instrumental in linear system identification problems in control theory (Kumar and

Varaiya, 1986), while more recently, they have become standard tools in functional

genomics for reconstruction of regulatory networks (Lozano et al., 2009b; Shojaie and
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Figure 4.1: In the left panel, we consider a VAR(1) model with p = 2, X t = A1X
t−1 +

εt, where A1 = [α 0; β α]. The unbounded set (dotted) denotes the values of (α, β) for
which the process is stable. The bounded region (solid) represents the VAR models
that satisfy ‖A1‖ < 1. In the right panel, we consider a VAR(2) model with p = 1,
X t = 2αX t−1 − α2X t−2 + εt. Equivalent formulation of this model as VAR(1) is:
Y t = Ã1Y

t−1 + ε̃t, where Y t = [X t, X t−1]′, Ã1 = [2α − α2; 1 0], and ε̃t = [εt, 0]′. The
model is stable whenever |α| < 1 but ‖Ã1‖ is always greater than or equal to 1.

Michailidis , 2010b; Fujita et al., 2007b) and in neuroscience for understanding effec-

tive connectivity patterns between brain regions (Smith, 2012; Friston, 2009; Seth

et al., 2013).

Formally, for a p-dimensional vector-valued stationary time series {X t} = {(X t
1, . . . , X

t
p)},
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a VAR model of lag d (VAR(d)) with serially uncorrelated Gaussian errors takes the

form

X t = A1X
t−1 + . . .+ AdX

t−d + εt, εt
i.i.d∼ N(0,Σε) (4.3)

where A1, . . . , Ad are p × p matrices and εt is a p-dimensional vector of possibly

correlated innovation shocks. The main objective in VAR models is to estimate

the transition matrices A1, . . . , Ad, together with the order of the model d, based

on realizations {X0, X1, . . . , XT}. The structures of the transition matrices provide

insight into the complex temporal relationships amongst the p time series and lead

to efficient forecasting strategies.

VAR estimation is a natural high-dimensional problem because the dimensionality

of the parameter space (dp2) grows quadratically with p. For example, estimating a

VAR(10) model with p = 10 time series requires estimating dp2 = 1000 parameters.

However, a comparable number of stationary observations are rarely available in prac-

tice. In the low dimensional setting, VAR estimation is carried out by reformulating it

as a multivariate regression problem (Lütkepohl , 2005). Under high-dimensional scal-

ing and sparsity assumptions on the transition matrices, a natural strategy is to resort

to `1-penalized least squares or log-likelihood based methods (Song and Bickel , 2011;

Davis et al., 2012). Compared to stochastic regression, the analysis of large VAR

problems requires addressing two important issues. First, since the response variable

is multivariate, the choice of the loss function (least squares, negative log-likelihood)

plays an important role in forecasting problems, especially when the error process

has correlated components. Second, correlation of the error process with the process

of predictors Cov(X t−1, εt−1) 6= 0 makes the theoretical analysis more involved. Ex-

isting work on high-dimensional VAR models requires stringent assumptions on the

dependence structure (Song and Bickel , 2011), or on the transition matrix (Negahban

and Wainwright , 2011), which are violated by many stable VAR models, as discussed

above. Our results show that consistent estimation is possible with both `1-penalized
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least squares and log-likelihood based estimates under high-dimensional scaling for

any stable VAR models. As in the case of stochastic regression, we establish the

validity of suitable restricted eigenvalue and deviation conditions using the stability

measures introduced in our work. The results rely on some novel techniques involving

the spectral properties of the predictor and the error process to handle the intricate

dependence structure (see Proposition IV.10).

Covariance Estimation. The third problem considered is that of sparse co-

variance matrix estimation by thresholding, originally proposed by Bickel and Levina

(2008) and studied further by Cai and Liu (2011); Cai and Zhou (2012b,a). High-

dimensional covariance estimation is useful in finance for analyzing large volatility ma-

trices (Fan et al., 2011), in neuroscience for studying functional connectivity amongst

different regions of human brain (Smith, 2012). The theoretical works mentioned

above assume that the samples are independent. In recent work, Chen et al. (2013)

developed an asymptotic theory in the time series context under a suitable decay

assumption on the functional dependence measure of the stationary, causal process.

Our results do not require specific decay assumptions on the temporal dependence

and are applicable to non-causal processes. We assume that the data {X t}, for

t = 1, . . . , n, were generated according to a stationary Gaussian process with sparse

covariance matrix ΓX(0) = E [(X1)(X1)′]. Under the stability assumption, we estab-

lish consistency of a thresholded estimate under operator and Frobenius norms. The

convergence rates are the same as those obtained for independent samples (Bickel and

Levina, 2008), modulo a “price” of dependence expressed by its measure of stability.

The rest of the chapter is organized as follows. In Section 4.2 we introduce the

measure of stability, discuss its properties for stable, invertible ARMA systems and

present some deviation inequalities, used in the subsequent analyses. In Section 4.3

we derive non-asymptotic upper bounds on the estimation and prediction error of

lasso in stochastic regression with serially correlated errors. Section 4.4 is devoted to
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the modeling, estimation and theoretical analysis of sparse VAR models. We discuss

least squares and likelihood based regularized estimation of VAR models and their

consistency properties. In Section 4.6 we study the problem of covariance estimation

from time series data by adaptive thresholding. We defer the technical proofs to

Section 4.8.

Notations. Throughout this chapter, Z, R and C will denote the sets of integers,

real numbers and complex numbers, respectively. We denote the cardinality of a set J

by |J |. For a vector v ∈ Rp, we denote `q norms by ‖v‖q :=
(∑p

j=1 |vj|q
)1/q

, for q > 0.

We use ‖v‖0 to denote |supp(v)| =
∑p

i=1 1[vj 6= 0] and ‖v‖∞ to denote maxj |vj|.

Unless mentioned otherwise, we always use ‖.‖ to denote `2-norm of a vector v. For a

matrix A, ‖A‖ and ‖A‖F will denote its operator norm
√

Λmax(A′A) and Frobenius

norm
√
tr(A′A), respectively. We will also use ‖A‖max, ‖A‖1 and ‖A‖∞ to denote

the coordinate-wise maximum (in absolute value), maximum absolute row sum and

maximum absolute column sum of a matrix, respectively. For any p ≥ 1, q ≥ 0, r > 0,

we denote the unit balls by Bq(r) := {v ∈ Rp : ‖v‖q ≤ r}. For any J ⊂ {1, . . . , p}

and κ > 0, we define the cone set C(S, κ) = {v ∈ Rp : ‖vSc‖1 ≤ κ‖vS‖1} and the

sparse set K(s) = B0(s) ∩ B2(1), for any s ≥ 1. For any set V , we denote its closure

and convex hull by cl{V } and conv{V }. For a symmetric or Hermitian matrix A,

we denote its maximum and minimum eigenvalues by Λmin(A) and Λmax(A). We use

ei to denote the ith unit vector in Rp. Throughout the chapter, we write A % B if

there exists an absolute constant c, independent of the model parameters, such that

A ≥ cB. We use A � B to denote A % B and B % A.

4.2 Main Results

In this section, we first discuss the connection between the spectral density and

the autocovariance function and introduce our measure of stability. Then, we present

the key deviation inequalities used in subsequent analyses.
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4.2.1 Measure of Stability

Consider a p-dimensional discrete time, centered, covariance-stationary process

{X t}t∈Z with autocovariance function ΓX(h) = Cov(X t, X t+h), t, h ∈ Z.

Assumption IV.1. The spectral density function

fX(θ) :=
1

2π

∞∑
`=−∞

ΓX(`)e−i`θ, θ ∈ [−π, π] (4.4)

exists and is continuous.

We will often write f instead of fX and Γ instead of ΓX , when the underlying

process is clear from the context. Existence of the spectral density is guaranteed if∑∞
l=0 ‖Γ(l)‖ <∞. The assumption of continuity is satisfied by a large class of general

linear processes, including stable, invertible ARMA processes (Priestley , 1981). Fur-

ther, the spectral density has a closed form expression for these processes, as shown

in the following example.

Example. An ARMA(d, `) process {X t}

X t = A1X
t−1 + A2X

t−2 + . . .+ AdX
t−d (4.5)

+ εt −B1ε
t−1 −B2ε

t−2 − . . .−B`ε
t−`

is stable, invertible if the matrix valued polynomials A(z) := Ip −
∑d

t=1Atz
t and

B(z) := Ip −
∑`

t=1Btz
t satisfy det(A(z)) 6= 0 and det(B(z)) 6= 0 on the unit circle of

the complex plane {z ∈ C : |z| = 1}.

For a stable, invertible ARMA process, the spectral density takes the form

fX(θ) =
1

2π

(
A−1(e−iθ)

)
B(e−iθ) Σε B∗(e−iθ)

(
A−1(e−iθ)

)∗
(4.6)

Existence of the spectral density ensures the following representation of the auto-

94



−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag (h)

A
ut

oc
ov

ar
ia

nc
e 

  Γ
(h

)

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

ρ=0.1

ρ=0.5

ρ=0.7

(a) Autocovariance of AR(1)

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

f(
θ)

ρ=0.1

ρ=0.5

ρ=0.7

(b) Spectral Density of AR(1)

Figure 4.2: Autocovariance Γ(h) and spectral density f(θ) of a univariate AR(1)
process X t = ρX t−1 + εt, 0 < ρ < 1, ΓX(0) = 1. Processes with stronger temporal
dependence, i.e., with larger ρ, have flatter Γ and more spiky f . For ρ = 1, the
process is unstable and the spectral density does not exist.

covariance matrices:

ΓX(`) =

π∫
−π

fX(θ)ei`θ dθ, for all ` ∈ Z (4.7)

Since the spectral density characterizes the autocovariance function, it can be used

to study the temporal and cross-sectional dependence of the process. In particular,

the spectral density provides insight into the stability of the process. In Figure 4.2,

we illustrate this using the autocovariance function ΓX(h) and the spectral density

fX(θ) of a univariate AR(1) process X t = ρX t−1 + εt, 0 < ρ < 1, ΓX(0) = 1. Note

that processes with stronger temporal dependence (larger ρ) have a narrower spectral

density, with a higher peak. As ρ approaches 1, the peak of the spectral density

M(fX) := maxθ∈[−π,π] fX(θ) diverges. For ρ = 1, the process is not stable, and the

spectral density does not exist. This indicates that the peak of the spectral density

can be used as a measure of stability of the process.

More generally, for a p-dimensional time series {X t}, a natural analogue of the

“peak” is the maximum eigenvalue of the (matrix-valued) spectral density function
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over the unit circle:

M(fX) := max
θ∈[−π,π]

Λmax (fX(θ)) (4.8)

In our analysis of high-dimensional time series, we will use M(fX) as a measure of

stability of the process. Processes with largerM(fX) will be considered less stable.

For any k-dimensional subset J of {1, . . . , p}, we can similarly measure the stability

of the subprocess {X(J)} = {(X t
j) : j ∈ J}t∈Z as M(fX(J)). We will measure the

stability of all k-dimensional subprocesses of {X t} using

M(fX , k) := max
J⊆{1,...,p},|J |≤k

M(fX(J)) (4.9)

Clearly, M(fX) = M(fX , p). For completeness, we define M(fX , k) to be M(fX),

for all k ≥ p. It follows from the definitions that

M(fX , 1) ≤M(fX , 2) ≤ . . . ≤M(fX , p) =M(fX) (4.10)

If {X t} and {Y t} are independent p-dimensional time series satisfying assumption

IV.1 and Zt = X t + Y t, then fZ = fX + fY . Consequently, we have

M(fZ) ≤M(fX) +M(fY ) (4.11)

For studying stochastic regression and autoregression problems, we will also use the

minimum eigenvalue of the spectral density over the unit circle:

m(fX) := min
θ∈[−π,π]

Λmin (fX(θ)) (4.12)

m(fX) captures the dependence among the components of the vector-valued time

series. In our analysis of high-dimensional regression problems, m(fX) plays a crucial

role in quantifying dependence among the columns of the design matrix.
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The quantities m(fX) and M(fX) are well-defined because of the continuity of

eigenvalues and the compactness of the unit circle {z ∈ C : |z| = 1}.

m(fX) and M(fX) may not have closed form expressions for general stationary

processes. However, for a stationary ARMA process (4.5), we have the following

bounds

m(fX) ≥ 1

2π

Λmin(Σε)µmin(B)

µmax(A)
, M(fX) ≤ 1

2π

Λmax(Σε)µmax(B)

µmin(A)
(4.13)

where

µmin(A) := min
|z|=1

Λmin(A∗(z)A(z)), µmax(A) := max
|z|=1

Λmax(A∗(z)A(z)) (4.14)

and µmin(B), µmax(B) are defined accordingly.

It is often easier to work with µmin(A) and µmax(A) instead of m(fX) andM(fX).

In particular, we have the following bounds:

Proposition IV.2. Consider a polynomial A(z) = Ip−
∑d

t=1Atz
t, z ∈ C, satisfying

det(A(z)) 6= 0 for all |z| ≤ 1.

(i) For any d ≥ 1, µmax(A) ≤ [1 + (vin + vout)/2]2, where

vin =
d∑

h=1

max
1≤i≤p

p∑
j=1

|Ah(i, j)|, vout =
d∑

h=1

max
1≤j≤p

p∑
i=1

|Ah(i, j)|

(ii) If d = 1 and A1 is diagonalizable, then

µmin(A) ≥ (1− ρ(A1))2 ‖P‖−2‖P−1‖−2

where ρ(A1) is the spectral radius (maximum absolute eigenvalue) of A1 and the

columns of P are eigenvectors of A1.
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Proposition IV.2, together with (4.13), shows that m(fX) andM(fX) are bounded

away from zero and infinity as long as the noise covariance structure is well-conditioned,

the eigenvalues of A1 are bounded away from 1 and the entries of At and Bt do not

concentrate on a single row or column.

4.2.2 Deviation Bounds

Based on realizations {X t}nt=1 generated according to a stationary process sat-

isfying assumption (IV.1), we construct the data matrix X = [Xn : · · · : X1]
′

and

the sample Gram matrix S = X ′X/n. Deriving suitable concentration bounds on

S is a key step for studying regression and covariance estimation problems in high-

dimension. In the time series context, this is particularly challenging, since both

the rows and columns of the data matrix X are dependent on each other. When

the underlying process is Gaussian, this dependence can be expressed using the co-

variance matrix of the random vector vec(X ′). We denote this covariance matrix by

ΥX
n := Cov(vec(X ′), vec(X ′))np×np.

The next proposition provides bounds on the extreme eigenvalues of ΥX
n . A similar

result under slightly different conditions can be found in Parter (1961). Note that

these bounds depend only on the spectral density fX and are independent of the

sample size n.

Proposition IV.3. For any n ≥ 1, p ≥ 1,

2πm(fX) ≤ Λmin

(
ΥX
n

)
≤ Λmax

(
ΥX
n

)
≤ 2πM(fX) (4.15)

In particular, for n = 1,

2πm(fX) ≤ Λmin (ΓX(0)) ≤ Λmax (ΓX(0)) ≤ 2πM(fX) (4.16)

In the next proposition, we establish two important deviation bounds on S−Γ(0)
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for Gaussian time series. These bounds serve as the starting point for analyzing

regression and covariance estimation problems. The first deviation bound is about

the concentration of ‖X v‖2/n‖v‖2 around its expectation, where v ∈ Rp is a fixed

vector. This will be used to verify restricted eigenvalue assumptions for stochastic

regression and VAR estimation problems. The second deviation bound is about the

concentration of the entries of S around their expectations. This will be useful for

estimating sparse covariance matrices.

Proposition IV.4. For a stationary, centered Gaussian time series {X t}t∈Z satisfy-

ing Assumption IV.1, there exists a constant c > 0 such that for any k-sparse vectors

u, v ∈ Rp with ‖u‖ ≤ 1, ‖v‖ ≤ 1, k ≥ 1, and any η ≥ 0,

P [|v′ (S − ΓX(0)) v| > 2πM(fX , k)η] ≤ 2 exp
[
−cnmin{η2, η}

]
(4.17)

P [|u′ (S − ΓX(0)) v| > 6πM(fX , 2k)η] ≤ 6 exp
[
−cnmin{η2, η}

]
(4.18)

In particular, for any i, j ∈ {1, . . . , p}, we have

P [|Sij − Γij(0)| > 6πM(fX , 2)η] ≤ 6 exp
[
−cnmin{η2, η}

]
(4.19)

We give the proofs of the these two key propositions next, that employ techniques

in spectral theory of multivariate time series and non-asymptotic random matrix

theory results.

PROOF OF PROPOSITION IV.3. For 1 ≤ r, s ≤ n, the (r, s)th block of the np×np

matrix ΥX
n is a p× p matrix

ΓX(r − s) = Cov
(
Xn−r+1, Xn−s+1

)
For any x ∈ Rnp, ‖x‖ = 1, write x as x = {(x1)′, (x2)′, . . . , (xp)′}′, where each xi ∈ Rp.
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Define G(θ) =
∑n

r=1 x
re−irθ, for θ ∈ [−π, π]. Note that

π∫
−π

G∗(θ)G(θ) dθ =
n∑
r=1

n∑
s=1

π∫
−π

(xr)′(xs)ei(r−s)θ dθ (4.20)

=
n∑
r=1

‖xr‖2 2π = 2π

Also

x′ΥX
n x =

n∑
r=1

n∑
s=1

(xr)′ΓX(r − s)(xs)

=
n∑
r=1

n∑
s=1

π∫
−π

(xr)′fX(θ)ei(r−s)θ(xs) dθ using (4.7)

=

π∫
−π

G∗(θ)fX(θ)G(θ) dθ

Since fX(θ) is Hermitian, G∗(θ)fX(θ)G(θ) is real, for all θ ∈ [−π, π], and

m(fX)G∗(θ)G(θ) ≤ G∗(θ)fX(θ)G(θ) ≤M(fX)G∗(θ)G(θ)

This, together with (4.20), implies

2πm(fX) ≤ x′ΥX
n x ≤ 2πM(fX)

for all x ∈ Rnp, ‖x‖ = 1.

PROOF OF PROPOSITION IV.4. We will establish the deviation bounds using a

version of the Hansen-Wright inequality presented in Lemma 4.8.5 which says that

for any n-dimensional centered Gaussian vector Y ∼ N(0, Q), and any η ≥ 0, we
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have

P
[

1

n

∣∣‖Y ‖2 − tr(Q)
∣∣ > η‖Q‖

]
≤ 2 exp

[
−cnmin{η, η2}

]
for some constant c > 0.

First, note that it is enough to prove (4.17) for ‖v‖ = 1. For any v ∈ Rp, ‖v‖ = 1,

let J denote its support supp(v) so that |J | = k. define Y = X v = XJvJ . Then

Y ∼ N(0n×1, Qn×n) with

Qrs = v′JCov(Xn−r+1
J , Xn−s+1

J )vJ = v′JΓX(J)(r − s)vJ , for all 1 ≤ r, s ≤ n

Then tr(Q) = nv′JΓX(J)(0)vJ = v′ΓX(0)v and v′(S−Γ(0))v = 1
n
|‖Y ‖2 − tr(Q)|. Also,

for any w ∈ Rn, ‖w‖ = 1, we have

w′Qw =
n∑
r=1

n∑
s=1

wrwsQrs =
n∑
r=1

n∑
s=1

wrwsv
′
JΓX(J)(r − s)vJ

= (w ⊗ v)′ΥX(J)
n (w ⊗ v)

≤ Λmax

(
ΥX(J)
n

)
, since ‖w ⊗ v‖ = 1

≤ 2πM(fX(J)) ≤ 2πM(fX , k)

This establishes an upper bound on the operator norm ‖Q‖ ≤ 2πM(fX , k). The

result then follows from Hansen-Wright inequality.

To prove (4.18), note that

2 |u′ (S − ΓX(0)) v| ≤ |u′(S − ΓX(0))u|+ |v′(S − ΓX(0))v|

+ |(u+ v)′(S − ΓX(0))(u+ v)|

and u + v is 2k-sparse with ‖u + v‖ ≤ 2. The result follows by applying (4.17)

separately on each of the three terms on the right.
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The element-wise deviation bound (4.19) is obtained by choosing u = ei, v = ej.

4.3 Stochastic Regression

Stochastic regression with exogenous predictors and serially correlated errors is a

canonical problem in classical time series analysis. As is well known, the standard

errors of Ordinary Least Squares (OLS) estimates are affected in the presence of

serially correlated errors, so that one resorts to employing Generalized Least Squares

(GLS) estimates. However, the first step in GLS estimation with unknown error

covariance is to come up with consistent estimates of the regression coefficient vector

β∗, which are subsequently used to analyze the serial correlation in the residuals

(Hamilton, 1994). In a low-dimensional setting (p fixed, n→∞), a natural choice of

β̂ is the OLS estimates. In high-dimensional setting under sparsity assumption on β∗,

we establish that lasso based estimates are consistent for β∗, as long as the predictor

and noise processes are stable.

We consider the lasso estimate (4.2) for the stochastic regression model (4.1).

Further, we assume that both fX and fε satisfy Assumption IV.1 and β∗ is k-sparse,

with support J , i.e., |J | = k.

In the low-dimensional regime, consistent estimation relies on the following as-

sumptions:

(a) X ′X/n converges to a non-singular matrix (limn→∞ Λmin

(X ′X
n

)
> 0)

(b) X ′E/n converges to zero

In the high-dimensional regime (n � p), the first assumption is never true since

the design matrix is rank-deficient (more variables than observations). The second

assumption is also very stringent, since the dimension of X ′E grows with n and p.
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Interestingly, consistent estimation in the high-dimensional regime can be ensured

under two analogous sufficient conditions. The first one comes from a class of con-

ditions commonly referred to as Restricted Eigenvalue (RE) condition. Different

variants of the RE condition have been proposed in the literature (Bickel et al., 2009;

van de Geer and Bühlmann, 2009b). Roughly speaking these assumptions require

that ‖X (β̂−β∗)‖ is small only when ‖β̂−β∗‖ is small. If β̂, β∗ are any arbitrary vec-

tors in Rp, this assumption is never true since X is singular. However, if β∗ is sparse

and λN is appropriately chosen, it is now well-understood that the vectors v = β̂−β∗

only vary on a small subset of the high-dimensional space Rp (Negahban et al., 2012).

As shown in the proof of Proposition IV.7, the error vectors v in stochastic regression

lie in a low-dimensional cone

C(J, 3) = {v ∈ Rp : ‖vJc‖1 ≤ 3‖vJ‖1}

whenever λn ≥ 4‖X ′E/n‖∞. This indicates that the RE condition may not be very

stringent after all, even though X is singular. Note however that verifying that the

assumption indeed holds with high probability is a non-trivial task.

The next proposition shows that a restricted eigenvalue (RE) condition holds with

high probability when the sample size is sufficiently large and the process of predictors

{X t} is stable, with a full-rank spectral density.

Proposition IV.5 (Restricted Eigenvalue). If m(fX) > 0, then there exist constants

ci > 0 such that for n % max{1, ω2} min{k log(c0p/k), k log p},

P
[

inf
v∈C(J,3)\{0}

‖X v‖2

n‖v‖2
≥ αRE

]
≥ 1− c1 exp

[
−c2nmin{1, ω−2}

]
where αRE = πm(fX), ω = c3M(fX , 2k)/m(fX).

REMARKS. (a) The assumption m(fX) > 0 is fairly mild and holds for stable,
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invertible ARMA processes. However, the conclusion holds under weaker assumptions

like Λmin(ΓX(0)) > 0 or a RE condition on ΓX(0), replacing 2πm(fX) by the minimum

(or restricted) eigenvalue of ΓX(0).

(b) For large k, k log(c0p/k) can be much smaller than k log p, the sample size

required for consistent estimation with lasso.

(c) The factor ω � M(fX , 2k)/m(fX) captures the effect of temporal and cross-

sectional dependence in the data. Larger values of M(.) and smaller values of m(.)

indicate stronger dependence in the data and more samples are required to ensure RE

holds with high probability. We demonstrate this on three special types of dependence

in the design matrix X - independent entries, independent rows and independent

columns.

(i) If the entries of X are independent N(0, σ2), we have ΓX(0) = σ2I and ΓX(h) =

0 for h 6= 0. In this case, fX(θ) ≡ (1/2π)σ2I and M(fX , 2k)/m(fX) = 1.

(ii) If the rows of X are independent and identically distributed as N(0,ΣX), i.e.,

ΓX(0) = ΣX , ΓX(h) = 0 for h 6= 0, the spectral density takes the form fX(θ) ≡

(1/2π)ΣX , and M(fX , 2k)/m(fX) can be at most Λmax(ΣX)/Λmin(ΣX).

(iii) If the columns of X are independent, i.e., all the univariate components of

{X t} are independently generated according to a common stationary process

with spectral density f , then the spectral density of {X t} is fX(θ) = f(θ) I and

we have

M(fX , 2k)/m(fX) = max
θ∈[−π,π]

f(θ) / min
θ∈[−π,π]

f(θ)

The ratio on the right can be viewed as a measure of narrowness of f . Since

narrower spectral densities correspond to processes with flatter autocovariance,

it shows that more samples are needed when the dependence is stronger.

The second sufficient condition for consistency of lasso requires that the coordi-

nates of X ′E/n uniformly concentrate around 0. In the next proposition, we establish
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a deviation bound on ‖X ′E/n‖∞ that holds with high probability. Similar results were

established in Loh and Wainwright (2012) for VAR(1) process with serially uncorre-

lated errors, under the assumption ‖A1‖ < 1. Our result relies on different techniques,

holds for a much larger class of stationary processes and allows for serial correlation

in the noise term, as well.

Proposition IV.6 (Deviation Condition). For n % log p, there exist constants ci > 0

such that

P

[
1

n
‖X ′E‖∞ > c02π [M(fX , 1) +M(fε)]

√
log p

n

]
≤ c1 exp [−c2 log p] (4.21)

REMARKS. (a) The deviation inequality suggests that the coordinates of X ′E/n

uniformly concentrate around 0, as long as M(fX , 1) and M(fε) are not large, i.e.,

the univariate components of the predictor process and the noise process are stable.

Using the above propositions, we can establish error rates of estimation and predic-

tion in stochastic regression with exogenous predictors and serially correlated errors.

Proposition IV.7 (Estimation and Prediction Error). Consider the stochastic re-

gression setup of (4.1). If β∗ is k-sparse, n % [M(fX , k)/m(fX)]2k log p, then there

exist constants ci > 0 such that for

λn ≥ c02π [M(fX , 1) +M(fε)]
√

(log p)/n

any solution β̂ of (4.2) satisfies, with probability at least 1− c1 exp [−c2 log p],

∥∥∥β̂ − β∗∥∥∥ ≤ 2λn
√
k

αRE∥∥∥β̂ − β∗∥∥∥
1
≤ 8λnk

αRE
1

n

∥∥∥X (β̂ − β∗)
∥∥∥2

≤ 4λ2
nk

αRE
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where the restricted eigenvalue αRE = πm(fX).

Further, a thresholded variant of lasso β̃, defined as β̃j = {β̂j1|β̂j|>λn}, for 1 ≤

j ≤ p, satisfies, with the same probability,

∣∣∣supp(β̃)\supp(β∗)
∣∣∣ ≤ 24k

αRE
(4.22)

REMARKS. (a) The convergence rates of `2-estimation and prediction
√
k log p /n

are of the same order as the rates for regression with i.i.d. samples. Dependence

contributes the additional term [M(fX , 1) +M(fε)] /m(fX) in the error rates and

[M(fX , 2k)/m(fX)]2 in the sample size requirement. This ensures fast convergence

rates of lasso under high-dimensional scaling as long as the processes of predictors

and noise are stable.

(b) A thresholded version of lasso enjoys small false positive rates, as shown in

(4.22). Note that we do not assume any “beta-min” condition, i.e., a lower bound

on the minimum signal strength. It is possible to control the false negatives under

suitable “beta-min” conditions, as shown in (Zhou, 2010).

4.4 Transition Matrix Estimation in Sparse Vector Autore-

gressive Models

The problem of estimating sparse VAR models under `1-penalized regression has

been considered by several authors in recent years (Song and Bickel , 2011; Davis

et al., 2012; Kock and Callot , 2012; Han and Liu, 2013). Most of these studies

consider a least squares based objective function or estimating equation to derive

the estimates. An important aspect of this approach is that it is agnostic to the

presence of cross-correlation among the error components (non-diagonal Σε). Davis

et al. (2012) provided numerical evidence that the forecasting performance can be

improved by using a log-likelihood based loss function that incorporates knowledge
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about the error correlations. In this section, we consider both least squares and

log-likelihood estimates and study their theoretical properties.

A key contribution of our theoretical analysis is to verify suitable RE and devi-

ation conditions for the entire class of stable VAR(d) models. Existing works either

assume such conditions without verification, or use a stringent condition on the model

parameters, such as ‖A‖ < 1, as discussed in Section 4.1.

We consider a single realization of {X0, X1, . . . , XT} generated according to the

VAR model (4.3). We will assume the error covariance matrix Σε is positive definite

so that Λmin(Σε) > 0 and Λmax(Σε) <∞. We will also assume that the VAR process

is stable, i.e., det(A(z)) 6= 0 on the unit circle {z ∈ C : |z| = 1}. For stable VAR(d)

processes, the spectral density (4.6) simplifies to

fX(θ) =
1

2π

(
A−1(e−iθ)

)
Σε

(
A−1(e−iθ)

)∗
(4.23)

To deal with dependence in the VAR estimation problem, we will work with µmin(A),

µmax(A) and the extreme eigenvalues of Σε instead of m(fX) and M(fX). For a

VAR(d) process with serially uncorrelated errors, equation (4.13) simplifies to

M(fX) ≤ 1

2π

Λmax(Σε)

µmin(A)
, m(fX) ≥ 1

2π

Λmin(Σε)

µmax(A)
(4.24)

This factorization helps provide better insight into the temporal and contempo-

raneous dependence in VAR models. A graphical representation of a stable VAR(d)

model (4.3) is provided in Figure 4.3. The transition matrices A1, . . . , Ad encode

the temporal dependence of the process. When the components of the error pro-

cess {εt} are correlated, Σ−1
ε captures the additional contemporaneous dependence

structure. Expressing the estimation and prediction errors in terms of µmin(A),

µmax(A),Λmin(Σε) and Λmax(Σε) instead of m(fX) andM(fX) help separate the effect

of the two sources of dependence.
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Figure 4.3: Graphical representation of the VAR model (4.3): directed edges (solid)
correspond to the entries of the transition matrices, undirected edges (dashed) corre-
spond to the entries of Σ−1

ε

We will often use the following alternative representation of a p-dimensional

VAR(d) process (4.3) as a dp-dimensional VAR(1) process X̃ t = Ã1 X̃
t−1 + ε̃t with

X̃ t =



X t

X t−1

...

X t−d+1


dp×1

Ã1 =



A1 A2 · · · Ad−1 Ad

Ip 0 · · · 0 0

0 Ip · · · 0 0

...
...

. . .
...

...

0 0 · · · Ip 0


dp×dp

ε̃t =



εt

0

...

0


dp×1

(4.25)

The process X̃ t with reverse characteristic polynomial Ã(z) := Idp − Ã1z is stable

if and only if the process X t is stable (Lütkepohl , 2005). However, the quantities

µmin(A), µmax(A) are not necessarily the same as µmin(Ã), µmax(Ã).

108



4.4.1 Estimation Procedure

Based on the data {X0, . . . , XT}, we construct autoregression


(XT )′

...

(Xd)′


︸ ︷︷ ︸

Y

=


(XT−1)′ · · · (XT−d)′

...
. . .

...

(Xd−1)′ · · · (X0)′


︸ ︷︷ ︸

X


A′1
...

A′d


︸ ︷︷ ︸

B∗

+


(εT )′

...

(εd)′


︸ ︷︷ ︸

E

vec(Y) = vec(X B∗) + vec(E)

= (I ⊗X ) vec(B∗) + vec(E)

Y︸︷︷︸
Np×1

= Z︸︷︷︸
Np×q

β∗︸︷︷︸
q×1

+ vec(E)︸ ︷︷ ︸
Np×1

N = (T − d+ 1), q = dp2 (4.26)

This is a linear regression problem with N = T −d+1 samples and q = dp2 variables.

We will assume that β∗ is a k-sparse vector, i.e.,
∑d

t=1 ‖vec(At)‖0 = k.

We consider two different estimates for the transition matrices A1, . . . , Ad, or

equivalently, for β∗. The first one is an `1-penalized least squares estimate of VAR

coefficients (`1-LS). It is defined as

argmin
β∈Rq

1

N
‖Y − Zβ‖2 + λN ‖β‖1 (4.27)

This estimate does not exploit the error covariance structure Σε.

The second one uses an `1-penalized log-likelihood estimation (`1-LL) (Davis et al.,

2012). This is defined as

argmin
β∈Rq

1

N
(Y − Zβ)′

(
Σ−1
ε ⊗ I

)
(Y − Zβ) + λN ‖β‖1 (4.28)

This gives the maximum likelihood estimate of β, assuming the error covariance Σε

is known. In practice, Σε is often unknown and needs to be estimated from the data.
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4.4.2 Theoretical Properties

We analyze the two procedures (4.27) and (4.28) under a general penalized M-

estimation framework proposed in Loh and Wainwright (2012). To motivate this

general framework, note that the VAR estimation problem with ordinary least squares

is equivalent to the following optimization

argmin
β∈Rq

−2β
′
γ̂ + β

′
Γ̂β, (4.29)

where Γ̂ =
(
I ⊗X ′X/N

)
, γ̂ =

(
I ⊗X ′

)
Y/N are unbiased estimates for their pop-

ulation analogues. A more general choice of (γ̂, Γ̂) in the penalized version of the

objective function leads to the following optimization problem

argmin
β∈Rq

−2β
′
γ̂ + β

′
Γ̂β + λN ‖β‖1 , (4.30)

Γ̂ =
(
W ⊗X ′X/N

)
, γ̂ =

(
W ⊗X ′

)
Y/N

where W is a symmetric, positive definite matrix of weights. The optimization prob-

lems (4.27) and (4.28) are special cases of (4.30) with W = I and W = Σ−1
ε , respec-

tively.

As in the analysis of stochastic regression in Section 4.3, we establish consistency

of VAR estimates under two sufficient conditions - Restricted Eigenvalue (RE) and

Deviation Condition. Then we show that all stable VAR models satisfy these as-

sumptions with high probability, as long as the sample size is of the same order as

required for consistency. Although similar in spirit, these assumptions take different

forms than the ones used in stochastic regression due to the different choice of loss

function. We work with the RE condition proposed in Loh and Wainwright (2012).

For a detailed discussion of the curvature and the tolerance parameters we refer the

readers to the above paper.

110



(A1) Restricted Eigenvalue (RE): a symmetric matrix Γ̂q×q satisfies re-

stricted eigenvalue condition with curvature α > 0 and tolerance τ > 0 (Γ̂ ∼

RE(α, τ)) if

θ′Γ̂θ ≥ α ‖θ‖2 − τ ‖θ‖2
1 , ∀ θ ∈ R

q (4.31)

The deviation condition ensures that γ̂ and Γ̂ are well-behaved in the sense that

they concentrate nicely around their population means. As γ̂ and Γ̂β∗ have the same

expectation, this assumption requires an upper bound on their difference. Note that

in the low-dimensional context of (4.29), γ̂ − Γ̂β∗ is precisely vec(X ′E)/N .

(A2) Deviation Condition: There exists a deterministic function Q (β∗,Σε)

such that ∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞
≤ Q (β∗,Σε)

√
log d+ 2 log p

N
(4.32)

The following proposition establishes non-asymptotic upper bounds on the estimation

and prediction errors when the above conditions are satisfied.

Proposition IV.8 (Estimation and prediction error). Consider the penalized M-

estimation problem (4.30) with W = I or W = Σ−1
ε . Suppose Γ̂ satisfies RE condition

(4.31) with kτ ≤ α/32 and (Γ̂, γ̂) satisfies the deviation bound (4.32). Then, for any

λN ≥ 4Q(β∗,Σε)
√

(log d+ 2 log p)/N , any solution β̂ of (4.30) satisfies

‖β̂ − β∗‖1 ≤ 64 k λN/α (4.33)

‖β̂ − β∗‖ ≤ 16
√
k λN/α (4.34)

(β̂ − β∗)′Γ̂(β̂ − β∗) ≤ 128 k λ2
N/α (4.35)

Further, a thresholded variant of lasso β̃ = {β̂j1|β̂j|>λN} satisfies

∣∣∣supp(β̃)\supp(β∗)
∣∣∣ ≤ 192k

αRE
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Remark. (a) ‖β̂ − β∗‖ is precisely
∑d

t=1 ‖Ât − At‖F , the `2-error in estimating

the transition matrices. For `1-LS, (β̂ − β∗)′Γ̂(β̂ − β∗) is a measure of in-sample

prediction error under `2-norm, defined as
∑T

t=d ‖
∑d

h=1(Âh − Ah)X
t−h‖2/N . For

`1-LL, (β̂ − β∗)′Γ̂(β̂ − β∗) takes the form
∑T

t=d ‖
∑d

h=1(Âh − Ah)X t−h‖2
Σε
/N , where

‖v‖Σ :=
√
v′Σ−1v. This can be viewed as a measure of in-sample prediction error

under a Mahalanobis type distance on Rp induced by Σε .

(b) The convergence rates are governed by two sets of parameters: (i) dimension-

ality parameters - dimension of the process (p), order of the process (d), number of

parameters (k) in the transition matrices Ai and sample size (N = T − d + 1); (ii)

internal parameters - curvature (α), tolerance (τ) and the deviation bound Q(β∗,Σε).

The squared `2-errors of estimation and prediction scale with the dimensionality pa-

rameters as k(2 log p+ log d)/N , similar to the rates obtained when the observations

are independent (Bickel et al., 2009). The temporal and cross-sectional dependence

affect the rates only through the internal parameters. Typically, the rates are better

when α is large and Q(β∗,Σε), τ are small. In propositions IV.9 and IV.10, we inves-

tigate in detail how these quantities are related to the dependence structure of the

process.

(c) Although the above proposition is derived under the assumption that d is the

true order of the VAR process, the results hold even if d is replaced by any upper

bound d̄ on the true order. This follows from the fact that a VAR(d) model can also be

viewed as VAR(d̄), for any d̄ > d, with transition matrices A1, . . . , Ad, 0p×p, . . . , 0p×p.

Note that the convergence rates change from
√

(log p+ 2 log d)/N to
√

(log p+ 2 log d̄)/N .

Proposition IV.8 is deterministic, i.e., it assumes a fixed realization of {X0, . . . , XT}.

To show that these error bounds hold with high probability, one needs to verify that

the assumptions (A1-2) are satisfied with high probability when {X0, . . . , XT} is a

random realization from the VAR(d) process. This is accomplished in the next two

propositions.
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Proposition IV.9 (Verifying RE for Γ̂). Consider a random realization {X0, . . . , XT}

generated according to a stable VAR(d) process (4.3). Then there exist constants

ci > 0 such that for all N % max{ω2, 1}k(log d + log p), with probability at least

1− c1 exp(−c2N min{ω−2, 1}), the matrix

Γ̂ = Ip ⊗ (X ′X/N) ∼ RE(α, τ),

where

ω = c3
Λmax(Σε)/µmin(Ã)

Λmin(Σε)/µmax(A)
, α =

Λmin(Σε)

2µmax(A)
, τ = αmax{ω2, 1} log d+ log p

N
.

Further, if Σ−1
ε satisfies σ̄iε := σiiε −

∑
j 6=i σ

ij
ε > 0, for i = 1, . . . , p, then, with the same

probability as above, the matrix

Γ̂ = Σ−1
ε ⊗ (X ′X/N) ∼ RE

(
α min

i
σ̄iε, τ max

i
σ̄iε

)

This proposition provides insight into the effect of temporal and cross-sectional

dependence on the convergence rates obtained in Proposition IV.8. As mentioned

earlier, the convergence rates are faster for larger α and smaller τ . From the expres-

sions of ω, α and τ , it is clear that the VAR estimates have lower error bounds when

Λmax(Σε), µmax(A) are smaller and Λmin(Σε), µmin(Ã) are larger. We defer the proof

to Section 4.8.2.

Proposition IV.10 (Deviation Bound). There exist constants ci > 0 such that for

N % (log d+ 2 log p), with probability at least 1− c1 exp [−c2(log d+ 2 log p)], we have

∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞
≤ Q(β∗,Σε)

√
log d+ 2 log p

N
,
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where, for `1-LS,

Q(β∗,Σε) = c0

[
Λmax(Σε) +

Λmax(Σε)

µmin(A)
+

Λmax(Σε)µmax(A)

µmin(A)

]

and for `1-LL,

Q(β∗,Σε) = c0

[
1

Λmin(Σε)
+

Λmax(Σε)

µmin(A)
+

Λmax(Σε)µmax(A)

Λmin(Σε)µmin(A)

]

As before, this proposition shows that the VAR estimates have lower error bounds

when Λmax(Σε), µmax(A) are smaller and Λmin(Σε), µmin(A) are larger.

4.5 Implementation

The optimization problem `1-LS in (4.27) can be expressed as p separate penalized

regression problems:

argmin
β∈Rq

1

N
‖Y − Zβ‖2 + λN ‖β‖1

≡ argmin
B1,...,Bp

1

N

p∑
i=1

‖Yi −X Bi‖2 + λN

p∑
i=1

‖Bi‖1

This amounts to running p separate lasso programs, each with dp predictors: Yi ∼

X , i = 1, . . . , p. For large d and p, the p programs can be solved in parallel.

In the optimization problem `1-LL, the above regressions are coupled through Σ−1
ε .

One way to solve the problem, as mentioned in Davis et al. (2012), is to reformulate

it into a single penalized regression problem:

arg min
β∈Rq

1

N
(Y − Zβ)′

(
Σ−1
ε ⊗ I

)
(Y − Zβ) + λN ‖β‖1

≡ arg min
β∈Rq

1

N

∥∥(Σ−1/2
ε ⊗ I

)
Y −

(
Σ−1/2
ε ⊗X

)
β
∥∥2

+ λN ‖β‖1
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This amounts to running a single lasso program with dp2 predictors:
(

Σ
−1/2
ε ⊗ I

)
Y ∼

Σ
−1/2
ε ⊗ X . This is computationally expensive for large d and p. Unlike `1-LL, this

algorithm is not parallelizable.

We propose an alternative algorithm based on blockwise coordinate descent to es-

timate the `1-LL coefficients. To this end, we first observe that the objective function

in (4.28) can be simplified to

1

N

p∑
i=1

p∑
j=1

σijε (Yi −XBi)
′ (Yj −XBj) + λN

p∑
k=1

‖Bk‖1

Minimizing the above objective function cyclically with respect to each Bi leads

to the following algorithm for `1-LL:

1. pre-select d. Run `1-LS to get B̂, Σ̂−1
ε .

2. iterate till convergence:

(a) For i = 1, . . . , p,

• set ri := (1/2 σ̂iiε )
∑
j 6=i

σ̂ijε

(
Yj −X B̂j

)
• update B̂i = argmin

Bi

σ̂iiε
N
‖(Yi + ri)−XBi‖2 + λN ‖Bi‖1

In this algorithm, a single iteration amounts to running p separate lasso programs,

each with dp predictors: Yi + ri ∼ X , i = 1, . . . , p. As in `1-LS, these p programs can

be solved in parallel.

4.6 Sparse Covariance Estimation in Time Series

We consider a p-dimensional centered Gaussian stationary time series {X t}t∈Z

satisfying assumption IV.1. Based on realizations {X1, . . . , Xn} generated according

to the above stationary process, we aim to estimate the contemporaneous covariance

matrix Σ = Γ(0). The sample covariance matrix Γ̂(0) = 1
n

∑n
t=1(X t − X̄)(X t −
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X̄)′ is known to be inconsistent when p grows faster than n (Marčenko and Pastur ,

1967; Johnstone, 2001). Bickel and Levina (2008) showed that when the samples

are generated independently from a centered Gaussian or subgaussian distribution,

a thresholded version of the sample covariance matrix Tu(Γ̂(0)) = {Γ̂ij(0)1|Γ̂ij(0)|>u}

can perform consistent estimation, if Γ(0) belongs to the following uniformity class

of approximately sparse matrices

Uτ (q, c0(p),M) :=

{
Σ : σii ≤M,

p∑
j=1

|σij|q ≤ c0(p), for all i

}
(4.36)

In this section, we show that consistent estimation is possible in the time series

context, as long as the underlying process is stable.

Proposition IV.11. Let {X t}nt=1 be generated according to a p-dimensional station-

ary centered Gaussian process with spectral density fX , satisfying Assumption IV.1.

Then, uniformly on Uτ (q, c0(p),M), for sufficiently large M ′, if un =M(fX , 2)M ′
√

log p/n

and n %M2(fX , 2) log p, then

∥∥∥Tun(Γ̂(0))− Γ(0)
∥∥∥ = Op

(
c0(p)

(
M2(fX , 2)

log p

n

) 1−q
2

)
(4.37)

1

p

∥∥∥Tun(Γ̂(0))− Γ(0)
∥∥∥
F

= Op

(
c0(p)

(
M2(fX , 2)

log p

n

)1− q
2

)
(4.38)

REMARK. (a) The errors of estimation in operator and Frobenius norm scale

with log p/n, with an additional “price” of dependenceM2(fX , 2). Interestingly, only

the stability measure of bivariate subprocesses of {X t} appear in the bounds. For

large p, this can be substantially smaller than the stability measure of the entire

process M(fX).

(b) Chen et al. (2013) established consistency of thresholding procedures for co-

variance estimation in stationary time series using the framework of functional de-
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pendence measure (Wu, 2005). Proposition IV.11 relies on different structural and

distributional assumptions on the underlying time series. On one hand, the results

in the above paper are applicable on causal processes and require a specific decay as-

sumption on the functional dependence measure, even for stationary linear processes

(cf. Example 2.2, Chen et al. (2013)). Our results are applicable for non-causal pro-

cesses as well, and do not assume any specific decay on the temporal dependence.

On the other hand, their results are applicable under a mild moment condition on

the distribution of the random variables, while our results are derived under stronger

assumption of normality.

4.7 Numerical Experiments

We conduct numerical experiments to demonstrate the properties of `1-regularized

estimates for stochastic regression and VAR estimation in finite samples. In the first

subsection, we study the estimation error of lasso for stochastic regression, when the

noise process is serially correlated. In the next subsection, we compare the perfor-

mance of `1-penalized least squares and log-likelihood based estimates with different

correlation structures of the error process Σε.

4.7.1 Stochastic Regression

In the first experiment we demonstrate how the estimation error of lasso scales with

n and p. We simulated observations from a p-dimensional (p = 128, 256, 512, 1024)

stationary predictor process {X t} with independent components generated according

to AR(2) processes X t
i = 0.4X t−1

i − 0.16X t−2
i + ξt, where ξt ∼ N(0, 1). We generated

the errors {εt} according to a univariate MA(2) process εt = 0.4εt−1 − 0.16εt−2 +

ηt, where ηt ∼ N(0, 1). For different values of p, we generated sparse vectors β∗

with k ≈ √p non-zero entries, with a signal-to-noise ratio of 1.2. With a choice

of tuning parameter λn =
√

log p/n, we applied lasso on simulated samples of size
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(b) ‖β̂ − β∗‖ vs. n/k log p

Figure 4.4: Estimation error of lasso ‖β̂ − β∗‖ in stochastic regression with serially
correlated error. Predictors {X t

i}, i = 1, . . . , p are generated according to AR(2)
processes and the errors are generated from MA(2) process. In the left panel, errors
are plotted against sample size (n). For the same sample size, errors are higher for
larger p. In the right panel, the errors are plotted against the rescaled sample size
n/k log p. The error curves align perfectly, showing the errors scale as

√
k log p/n.

n ∈ (100, 3000). The `2-error of estimation ‖β̂ − β∗‖ is plotted in 4.4. The left panel

displays the errors for different values of p, plotted against the sample size n. As

expected, the errors are larger for larger p. The right panel displays the estimation

errors against the rescaled sample size n/k log p. The error curves for different values

of p now align very well. This demonstrates that lasso can achieve an estimation error

rate of
√
k log p/n, even with stochastic predictors and serially correlated errors.

The second numerical experiment demonstrates how the estimation error changes

with the dependence in data. We have simulated samples of size n ∈ (100, 2000)

from a p = 500-dimensional stationary process {X t} with independent components

generated according to AR(2) process X t
i = 2ρX t−1

i − ρ2X t−2
i + ξt, ξt ∼ N(0, 1),

for ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1}. Larger values of ρ correspond to stronger temporal

dependence in the data. The process is unstable for ρ = 1. We generated a sparse
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Figure 4.5: Estimation error ‖β̂ − β∗‖ of lasso, for different degree of dependence in
the data. p = 500 predictors {X t

i}, i = 1, . . . , p are generated according to AR(2)
process X t

i = 2ρX t−1
i − ρ2X t−2

i + ξt, ξt ∼ N(0, 1). With the same sample size n, the
estimates have larger error for stronger dependence in the data, i.e., for larger ρ. The
process of predictors is unstable for ρ = 1 and lasso is inconsistent.

signal β∗ with k = 25 non-zero entries, and simulated serially correlated errors {εt}

according to AR(2) process εt = 2γ εt−1 − γ2 εt−2 + ξt, γ = 0.2, ξt ∼ N(0, 1). The

signal-to-noise ratio was set to 1.2. With the response process Y t = 〈β∗, X t〉+ εt, we

applied lasso and plotted the estimation errors ‖β̂ − β∗‖ for different values of ρ and

n in Figure 4.5. As expected, the errors are larger for stronger temporal dependence,

i.e., larger values of ρ. For ρ = 1, the process of predictors is not stable and lasso

estimate is no longer consistent. Interestingly, the estimation error of lasso changes

with ρ in a highly non-linear fashion. The error curves for ρ = 0.1, 0.3, 0.5 are very

close. The error curve for ρ = 0.7 is slightly higher and the error curve for ρ = 0.9 is

farther apart from the rest.
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4.7.2 VAR Estimation

We evaluate the performance of `1-LS and `1-LL on simulated data and compare

it with the performance of ordinary least squares (OLS) and Ridge estimates. Imple-

menting `1-LL requires an estimate of Σε in the first step. For this, use the residuals

from `1-LS to construct a plug-in estimate Σ̂ε. To evaluate the effect of error correla-

tion on the transition matrix estimates more precisely, we also implement an oracle

version, `1-LL-O, which uses the true Σε in the estimation. Next, we describe the

simulation settings, choice of performance metrics and discuss the results.

We design two sets of numerical experiments - (a) SMALL VAR (p = 10, d =

1, T = 30, 50) and (b) MEDIUM VAR (p = 30, d = 1, T = 80, 120, 160). In each

setting, we generate an adjacency matrix A1 with 5 ∼ 10% non-zero edges selected at

random and rescale to ensure that the process is stable with SNR = 2. We generate

three different error processes with covariance matrix Σε from one of the following

families:

1. Block-I: Σε = ((σε,ij))1≤i,j≤p with σε,ii = 1, σε,ij = ρ if 1 ≤ i 6= j ≤ p/2, σε,ij = 0

otherwise;

2. Block-II: Σε = ((σε,ij))1≤i,j≤p with σε,ii = 1, σε,ij = ρ if 1 ≤ i 6= j ≤ p/2 or

p/2 < i 6= j ≤ p, σε,ij = 0 otherwise;

3. Toeplitz: Σε = ((σε,ij))1≤i,j≤p with σε,ij = ρ|i−j|.

We let ρ vary in {0.5, 0.7, 0.9}. Larger values of ρ indicate that the error processes

are more strongly correlated. Figure 4.6 illustrates the structure of a random transi-

tion matrix used in our simulation and the three different types of error covariance

structure.

We compare the different methods for VAR estimation (OLS, `1-LS, `1-LL, `1-LL-

O, Ridge) based on the following performance metrics:
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(a) A1



(b) Σε: Block-I



(c) Σε: Block-II



(d) Σε: Toeplitz

Figure 4.6: Adjacency matrix A1 and error covariance matrix Σε of different types
used in the simulation studies

1. Model Selection: Area under ROC curve (AUROC)

2. Estimation error: Relative estimation accuracy ‖Â1 − A1‖F/‖A1‖F

Table 4.1: VAR(1) model with p = 10, T = 30

BLOCK-I BLOCK-II Toeplitz
ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

AUROC `1-LS 0.77 0.74 0.7 0.79 0.76 0.74 0.82 0.79 0.77
`1-LL 0.77 0.75 0.73 0.79 0.77 0.77 0.81 0.8 0.81
`1-LL-O 0.8 0.79 0.76 0.82 0.8 0.81 0.85 0.84 0.84

Estimation OLS 1.24 1.39 1.77 1.29 1.63 2.36 1.32 1.56 2.58
Error `1-LS 0.68 0.72 0.76 0.64 0.67 0.7 0.63 0.66 0.69

`1-LL 0.66 0.66 0.66 0.57 0.59 0.53 0.59 0.56 0.49
`1-LL-O 0.61 0.62 0.62 0.53 0.54 0.47 0.53 0.51 0.42
ridge 0.72 0.74 0.75 0.7 0.71 0.72 0.7 0.71 0.72

We report the results for small VAR with T = 30 and medium VAR with T = 120

(averaged over 50 replicates) in Tables 4.1 and 4.2. The results in the other settings are

qualitatively similar, although the overall accuracy changes with the sample size. We

find that the regularized VAR estimates outperform ordinary least squares uniformly

in all the cases.

In terms of model selection, the `1-penalized estimates perform fairly well, as

reflected in their AUROC. Ordinary least squares and ridge regression do not perform

any model selection. Further, for all three choices of error covariance, the two variants

of `1-LL outperform `1-LS. The difference in their performances is more prominent

for larger values of ρ. Among the three covariance structures, the difference between
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least squares and log-likelihood based methods is more prominent in Block-II and

Toeplitz family since the error processes are more strongly correlated. Finally, in all

the cases, the accuracy of `1-LL is somewhere in between `1-LS and `1-LL-O, which

suggests that a more accurate estimation of Σε might improve the model selection

performance of regularized VAR estimates.

In terms of estimation error, the conclusions are broadly the same. The effect

of over-fitting is reflected in the performance of ordinary least squares. In many

settings, the estimation error of ordinary least squares is even twice as large as the

signal strength. The performance of ordinary least squares deteriorates when the

error processes are more strongly correlated (see, for example, ρ = 0.9 for block-II).

Ridge regression performs better than ordinary least squares as it applies shrinkage

on the coefficients. However the `1-penalized estimates show higher accuracy than

Ridge in almost all the cases. This is somewhat expected as the data were simulated

from a sparse model with strong signals, whereas Ridge regression tend to favor a

non-sparse model with many small coefficients.

Table 4.2: VAR(1) model with p = 30, T = 120

BLOCK-I BLOCK-II Toeplitz
ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

AUROC `1-LS 0.89 0.85 0.77 0.87 0.81 0.69 0.91 0.87 0.76
`1-LL 0.89 0.87 0.82 0.9 0.89 0.88 0.91 0.91 0.89
`1-LL-O 0.92 0.9 0.84 0.93 0.92 0.9 0.94 0.93 0.92

Estimation OLS 1.73 2 2.93 1.95 2.53 4.28 1.82 2.28 3.88
Error `1-LS 0.72 0.76 0.85 0.74 0.82 0.93 0.69 0.73 0.86

`1-LL 0.71 0.71 0.72 0.68 0.68 0.65 0.67 0.63 0.6
`1-LL-O 0.66 0.66 0.68 0.64 0.63 0.59 0.63 0.59 0.54
Ridge 0.81 0.83 0.85 0.82 0.85 0.88 0.81 0.82 0.86

4.8 Technical Results

4.8.1 Results on Stochastic Regression

Proof of Proposition IV.5. Let us recall that S = X ′X/n, J = supp(β∗) with |J | = k,

C(J, κ) = {v ∈ Rp : ‖vJc‖1 ≤ κ‖vJ‖1} and K(s) = B0(s) ∩ B2(1), for any s ≥ 1. We
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need a positive lower bound on v′Sv/‖v‖2, uniformly over all v ∈ C(J, 3)\{0}, that

holds with high probability. Assuming ‖v‖ = 1 does not result in any loss of generality

since v ∈ C(J, 3)\{0} if and only if v/‖v‖ ∈ C(J, 3)\{0}. If m(fX) > 0, the lower

bound in Proposition IV.3 ensures that

inf
v∈C(J,3), ‖v‖=1

v′ΓX(0)v ≥ 2πm(fX) > 0 (4.39)

So it remains to show that v′(S − ΓX(0))v is sufficiently small, uniformly for all

v ∈ C(J, 3) with ‖v‖ = 1. We start with the single deviation bound of (4.17) with a

2k-sparse v, ‖v‖ = 1:

P [|v′ (S − ΓX(0)) v| > 2πM(fX , 2k)η] ≤ 2 exp
[
−cnmin{η, η2}

]
Using a discretization argument presented in Lemma 4.8.7, we can extend it to the

following uniform lower bound on all 2k-sparse vectors v of unit norm:

P

[
sup

v∈K(2k)

|v′ (S − ΓX(0)) v| > 2πM(fX , 2k)η

]
(4.40)

≤ 2 exp
[
−cnmin{η, η2}+ 2kmin{log p, log (21ep/2k)}

]
In the next step, we use Lemma 4.8.6 to conclude that the set C(J, 3) ∩ B2(1) is

contained in a closed, convex hull of k-sparse vectors 5cl{conv{K(k)}}. This, together

with the approximation of Lemma 4.8.8, leads to the following upper bound

sup
v∈C(J,3), ‖v‖=1

|v′(S − ΓX(0))v| ≤ sup
v∈5cl{conv{K(k)}}

|v′(S − ΓX(0))v|

= 25 sup
v∈cl{conv{K(k)}}

|v′(S − ΓX(0))v|

≤ 75 sup
v∈K(2k)

|v′(S − ΓX(0))v|
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Using the deviation bound of (4.40) and min{η, η2} ≤ min{1, η2}, we have

P

[
sup

v∈C(J,3), ‖v‖=1

|v′(S − ΓX(0))v| > 150πM(fX , 2k)η

]
≤ 2 exp

[
−cnmin{1, η2}+ 2kmin{log p, log (21ep/2k)}

]
Setting η = m(fX)/150M(fX , 2k) and combining this deviation bound with (4.39),

we obtain the final result.

Note that similar lower bounds can be derived if, instead of assuming m(fX) > 0,

one assumes Λmin(ΓX(0)) > 0, or α := infv∈C(J,3)\{0} v
′ΓX(0)v/‖v‖2 > 0. In these

cases, 2πm(fX) is replaced by Λmin(ΓX(0)) or α in (4.39).

Proof of Proposition IV.6. We need an upper bound on ‖X ′E/n‖∞ that holds with

high probability. To this end, note that for any j ∈ {1, . . . , p},

2X ′jE/n =
1

n

[
‖Xj + E‖2 − nVar(X1

j + ε1)
]

+
1

n

[
‖Xj‖2 − nVar(X1

j )
]

+
1

n

[
‖E‖2 − nVar(ε1)

]
So it suffices to derive deviation bounds for each of the terms on the right.

Term III: The deviation bound (4.17) for the time series {εt} with p = 1, v = 1,

k = 1 gives

P
[

1

n

∣∣‖E‖2 − nVar(ε1)
∣∣ > 2πM(fε)η

]
≤ 2 exp

[
−cnmin{η2, η}

]
Term II: Applying the deviation bound (4.17) for the time series {X t

j} with p = 1,

v = 1, k = 1 and using (4.9), we have

P
[

1

n

∣∣‖Xj‖2 − nVar(X1
j )
∣∣ > 2πM(fX , 1)η

]
≤ 2 exp

[
−cnmin{η2, η}

]
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Term I: Setting Zt = X t
j + εt and using (4.11) with the deviation bound (4.17), we

conclude

P
[

1

n

∣∣‖Xj + E‖2 − nVar(X1
j + ε1)

∣∣ > 2π [M(fX , 1) +M(fε)] η

]

is at most 2 exp [−cnmin{η2, η}].

Putting the three concentration bounds together, we obtain, for any j ∈ {1, . . . , p},

P
[

1

n

∣∣X ′jE∣∣ > 2πη [M(fX , 1) +M(fε)]

]
≤ 6 exp

[
−cnmin{η2, η}

]
Taking an union bound over all j, we have:

P
[

max
1≤j≤p

1

n

∣∣X ′jE∣∣ > 2πη [M(fX , 1) +M(fε)]

]
≤ 6p exp

[
−cnmin{η2, η}

]

Setting η = c0

√
log p
n

and using the fact that n % log p, we have the required result.

Proof of Proposition IV.7. The events of Propositions IV.5 and IV.6 hold with prob-

ability 1 − c1 exp [−c2 log p] for some ci > 0, under the assumptions on n and λn.

Denote v = β̂ − β∗ and J = supp(β∗) so that |J | = k. Then we have,

1

n
‖Y −X β̂‖2 + λn‖β̂‖1 ≤

1

n
‖Y −Xβ∗‖2 + λn‖β∗‖1

After some algebra, this reduces to

v′Sv − 2

n
v′ (X ′E) ≤ λn‖β∗‖1 − λn‖β∗ + v‖1
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With the proposed choice of λn, we have

0 ≤ v′Sv ≤ λn
2
‖v‖1 + λn‖β∗‖1 − λn‖β∗ + v‖1

≤ λn
2
‖v‖1 + λn (‖β∗J‖1 − ‖β∗J + vJ‖1 − ‖vJc‖1) , since β∗Jc = 0

≤ λn
2

(‖vJ‖1 + ‖vJc‖1) + λn (‖vJ‖1 − ‖vJc‖1) , by triangle inequality

≤ 3λn
2
‖vJ‖1 −

λn
2
‖vJc‖1

This ensures ‖vJ‖1 ≤ 3‖vJc‖1, i.e., v ∈ C(J, 3) and v′Sv ≤ 2λn‖vJ‖1 ≤ 2λn
√
k‖v‖ .

Using RE condition, we have

αRE‖v‖2 ≤ v′Sv ≤ 2λn
√
k‖v‖

This implies

‖v‖ ≤ 2λn
√
k

αRE

‖v‖1 ≤ 4‖vJ‖1 ≤ 4
√
k‖vJ‖ ≤

8λnk

αRE

‖v′Sv‖ ≤ 4λ2
nk

αRE

To derive the upper bound on the number of false positives selected by the thresholded

lasso, note that

∣∣∣supp(β̃)\supp(β∗)
∣∣∣ =

∑
j /∈J

1{|β̂j|>λn} ≤
∑
j /∈J

∣∣∣β̂j∣∣∣/λn
≤ 1

λn

∑
j /∈J

|vj| ≤
3

λn

∑
j∈J

|vj| ≤
3 ‖v‖1

λn
≤ 24k

αRE
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4.8.2 Results on VAR Estimation

Proof of Proposition IV.8. Since β̂ is a minimizer of (4.30), for all β ∈ Rq we have

−2β̂′γ̂ + β̂′Γ̂β̂ + λN‖β̂‖1 ≤ −2β′γ̂ + β′Γ̂β + λN‖β‖1

For β = β∗, the above inequality reduces to

v′Γ̂v ≤ 2v′(γ̂ − Γ̂β∗) + λN {‖β∗‖1 − ‖β∗ + v‖1} (4.41)

where v = β̂ − β∗.

The first term on the right hand side of (4.41) is at most 2‖v‖1Q(β∗,Σε)
√

log q/N .

The second term, by triangle inequality, is at most λN{‖vJ‖1 − ‖vJc‖1}, where J

denotes the support of β∗. Together with the proposed choice of λN , this leads to the

following inequality

0 ≤ v′Γ̂v ≤ λN
2
{‖vJ‖1 + ‖vJc‖1}+ λN {‖vJ‖1 − ‖vJc‖1}

≤ 3λN
2
‖vJ‖1 −

λN
2
‖vJc‖1 ≤ 2λN‖v‖1 (4.42)

In particular, this ensures ‖vJc‖1 ≤ 3‖vJ‖1 so that ‖v‖1 ≤ 4‖vJ‖1 ≤ 4
√
k‖v‖. From

the restricted eigenvalue assumption and the upper bound on kτ(N, q), we have

v′Γ̂v ≥ α ‖v‖2 − τ(N, q)‖v‖2
1 ≥ (α− 16kτ(N, q))‖v‖2 ≥ α

2
‖v‖2

Together, the upper and lower bounds on v′Γ̂v guarantee that

α

4
‖v‖2 ≤ λN‖v‖1 ≤ 4

√
kλN‖v‖
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This implies

‖v‖ ≤ 16
√
kλN/α

‖v‖1 ≤ 4
√
kλN‖v‖ ≤ 64kλN/α

v′Γ̂v ≤ 2λN‖v‖1 ≤ 128kλ2
N/α

To derive the upper bound on the number of false positives selected by thresholded

lasso, note that

∣∣∣supp(β̃)\supp(β∗)
∣∣∣ =

∑
j /∈J

1{|β̂j|>λN} ≤
∑
j /∈J

∣∣∣β̂j∣∣∣/λN
≤ 1

λN

∑
j /∈J

|vj| ≤
3

λN

∑
j∈J

|vj| ≤
3 ‖v‖1

λN
≤ 192k

α

Proof of Proposition IV.9. Note that the matrix Γ̂ takes the form Ip⊗ (X ′X/N) and

Σ−1
ε ⊗(X ′X/N) for `1-LS and `1-LL, respectively. To prove that Γ̂ satisfies RE, we first

show that the random matrix S = X ′X/N satisfies RE(α, τ) with high probability,

for some α > 0, τ > 0. Then we invoke Lemma 4.8.1 to extend the result to Γ̂.

To prove that S = X ′X/N satisfies RE condition, note that the rows of the design

matrix X are sequentially generated according to a stable VAR(1) process {X̃ t}, as

defined in (4.25). In particular, each row of X is centered Gaussian with covariance

ΓX̃(0). Now ΓX̃(0) = ΥX̃
1 = ΥX

d , where ΥX
n is the covariance of the vectorized data

matrix containing n observations generated according to the process {X t}, as defined

in Section 4.2.2. Hence, from Proposition IV.3 and the bounds in (4.24), we have

Λmin (ΓX̃(0)) ≥ Λmin(Σε)

µmax(A)
(4.43)

Also, from Proposition IV.4 and (4.24), we have, for any v ∈ Rdp, ‖v‖ ≤ 1, and any
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η > 0,

P
[
|v′ (S − ΓX̃(0)) v| > η

Λmax(Σε)

µmin(Ã)

]
≤ 2 exp

[
−cnmin{η, η2}

]
(4.44)

The next step is to extend the deviation bound (4.44) for a single v to an appropriate

set of sparse vectors K(2s) := {v ∈ Rdp : ‖v‖ ≤ 1, ‖v‖0 ≤ 2s}, for an integer s ≥ 1

to be specified later. Using the discretization argument of Lemma 4.8.7, we have,

P

[
sup

v∈K(2s)

|v′ (S − ΓX̃(0)) v| > η
Λmax(Σε)

µmin(Ã)

]

is at most 2 exp [−cN min{η, η2}+ 2smin{log(dp), log(21e dp/2s)}].

Next, we set η = ω−1 with c3 = 54 and note that min{η, η2} ≥ min{1, η2}. Apply-

ing Supplementary Lemma 12 in Loh and Wainwright (2012) with δ = Λmin(Σε)/54µmax(A)

and Γ = S − ΓX̃(0), we have

v′Sv ≥ α‖v‖2 − α

s
‖v‖2

1, for all v ∈ Rdp

with probability at least 1− 2 exp [−cN min{ω−2, 1}+ 2s log(dp)].

Finally, we set s = dcN min{ω−2, 1}/4 log(dp)e [note that s ≥ 1 with the required

choice of N ] to conclude that S ∼ RE(α, τ) with high probability.

Lemma 4.8.1 (RE condition for Γ̂). If X ′X/N ∼ RE(α, τ), then so does Ip⊗X ′X/N .

Further, if Σ−1
ε satisfies σ̄iε := σiiε −

∑
j 6=i σ

ij
ε > 0, for i = 1, . . . , p, then

Σ−1
ε ⊗X ′X/N ∼ RE

(
α min

i
σ̄iε, τ max

i
σ̄iε

)

Proof. S = X ′X/N ∼ RE(α, τ). Consider Γ̂ = Ip ⊗ S. For any θ ∈ Rdp2
with

θ′ = (θ′1, . . . , θ
′
p)
′, each θi ∈ Rdp, we have

θ′(Ip ⊗ S)θ =

p∑
r=1

θ′rSθr ≥ α

p∑
r=1

‖θr‖2 − τ
p∑
r=1

‖θr‖2
1 ≥ α‖θ‖2 − τ‖θ‖2

1
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proving the first part. To prove the second part, note that

θ′(Σ−1
ε ⊗ S)θ =

p∑
r,s=1

σrsε θ
′
rSθs =

p∑
r=1

σrrε θ
′
rSθr +

p∑
r 6=s

σrsε θ
′
rSθs

Since the matrix S is non-negative definite, θ′rSθs ≥ −1
2
(θ′rSθr + θ′sSθs) for every

r 6= s. This implies

θ′(Σ−1
ε ⊗ S)θ ≥

p∑
r=1

σrrε θ
′
rSθr −

∑
r<s

σrsε (θ′rSθr + θ′sSθs)

=

p∑
r=1

(
σrrε −

∑
r 6=s

σrsε

)
θ′rSθr =

p∑
r=1

σ̄rεθ
′
rSθr

≥ α

p∑
r=1

σ̄rε‖θr‖2 − τ
p∑
r=1

σ̄rε‖θr‖2
1

≥
(
α min

i
σ̄iε

)
‖θ‖2 −

(
τ max

i
σ̄iε

)
‖θ‖2

1

Proof of Proposition IV.10. We want to establish an upper bound on ‖γ̂ − Γ̂β∗‖∞

that holds with high probability. To this end, we first note that in the context of

(4.30),

γ̂ = (W ⊗X ′) (Ip ⊗X ) β∗/N + (W ⊗X ′) vec(E)/N

Γ̂β∗ = (W ⊗X ′X/N) β∗

which implies γ̂ − Γ̂β∗ = (W ⊗X ′) vec(E)/N = vec(X ′EW )/N .

For `1-LS, EW = E, a matrix with independent rows, each row ∼ N(0,Σε). For

`1-LL, EW = Ē, a matrix with independent rows, each row ∼ N(0,Σ−1
ε ). Note that

in both cases ith row of E or Ē is independent of the ith row of X . First, we present

the argument for `1-LS.

For any l ∈ {1, . . . , dp}, any k ∈ {1, . . . , p}, we first derive an upper bound on
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P(|X ′lEk/N | > t). Taking union bound over all l, k then leads to the final upper

bound on the tail probability of the maximum

P
(

1

N
‖X ′E‖max > t

)
= P

(
max

1≤l≤dp,1≤k≤p

1

N
|X ′lEk| > t

)

Note that for any given l, 1 ≤ l ≤ dp, there exist unique j, h > 0 such that

l = p(h − 1) + j, 1 ≤ h ≤ d, 1 ≤ j ≤ p. The lth column of X and the kth column of

E are precisely

X (j, h) := Xl =



XT−h
j

XT−1−h
j

...

Xd−h
j


, Ek =



εTk

εT−1
k

...

εdk


We will use X (j, h) and Xl interchangeably for notational convenience. First note

that

2

N
X (j, h)′Ek =

1

N

[
‖X (j, h) + Ek‖2 −NVar(XT−h

j + εTk )
]

− 1

N

[
‖X (j, h)‖2 −NVar(XT−h

j )
]
− 1

N

[
‖Ek‖2 −NVar(εTk )

]
Next we establish deviation bound for each of the three terms on the right.

Term III: Ek ∼ N(0, Q) with Q = (e′kΣεek)IN , so that ‖Q‖ ≤ Λmax(Σε). So, by

Hansen-Wright inequality of Lemma 4.8.5, we have

P
(

1

N

∣∣‖Ek‖2 −N Var(εTk )
∣∣ > ηΛmax(Σε)

)
≤ 2 exp

[
−cN min{η, η2}

]
Term II: X (j, h) ∼ N(0, Q) with Qrs = e′jΓX(r−s)ej, so that tr(Q) = NVar(XT−h

j ).
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Also, for any u ∈ RN with ‖u‖ = 1,

u′Qu =
N∑
r=1

N∑
s=1

uruse
′
jΓX(r − s)ej = (u⊗ ej)′ΥX

N (u⊗ ej) ≤ Λmax

(
ΥX
N

)
≤ Λmax(Σε)

µmin(A)

so that ‖Q‖ ≤ Λmax(Σε)/µmin(A). Again, by Hansen-Wright inequality of Lemma

4.8.5, we have

P
(

1

N

∣∣‖X (j, h)‖2 −N Var(XT−h
j )

∣∣ > η
Λmax(Σε)

µmin(A)

)
≤ 2 exp

[
−cN min{η, η2}

]
Term I: The N -dimensional random vector X (j, h) + Ek is centered Gaussian with

covariance matrix Q, where

Qrs = Cov(XT−h−r+1
j + εT−r+1

k , XT−h−s+1
j + εT−s+1

k ), 1 ≤ r, s ≤ N

To apply Lemma 4.8.5, we need an upper bound on ‖Q‖. To this end, note that

Qrs = Cov(XT−h−r+1
j , XT−h−s+1

j ) + Cov(XT−h−s+1
j , εT−r+1

k )

+ Cov(XT−h−r+1
j , εT−s+1

k ) + Cov(εT−r+1
k , εT−s+1

k )

= e′jΓX(r − s)ej + e′j∆(s, r)ek + e′j∆(r, s)ek + 1{r=s} e
′
kΣεek

where ∆(r, s)p×p is the (r, s)th block of the covariance matrix

∆ := Cov





XT−h

XT−1−h

...

Xd−h


,



εT

εT−1

...

εd




,

∆(r, s) = Cov(XT−h−r+1, εT−s+1)

1 ≤ r, s ≤ N
(4.45)
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This implies that for any u ∈ RN , ‖u‖ = 1,

u′Qu =
N∑
r=1

N∑
s=1

urusQrs

= (u⊗ ej)′ΥX
N (u⊗ ej) + 2 (u⊗ ej)′∆ (u⊗ ek) + e′kΣεek

Since ‖u⊗ ej‖ = ‖u⊗ ek‖ = 1, it follows from the upper bounds in Lemma 4.8.2 and

Proposition IV.3 that

‖Q‖ ≤ Λmax(Σε) [1 + (1 + 2µmax(A))/µmin(A)]

Once again, using Hansen-Wright inequality of Lemma 4.8.5, we have

P
(

1

N

∣∣‖X (j, h) + Ek‖2 −NVar(XT−h
j + εTk )

∣∣ > ηΛmax(Σε)

[
1 +

1 + 2µmax(A)

µmin(A)

])

is at most 2 exp [−cN min{η, η2}].

Putting together the deviation bounds for Terms I - III, we have

P
(

1

N
|X (j, h)′E| > ηΛmax(Σε)

[
1 +

1 + µmax(A)

µmin(A)

])
≤ 6 exp

[
−cN min{η, η2}

]
Taking an union bound over all j, h and setting η = c0

√
log q /N yields the final

result.

The proof for `1-LL can be derived exactly along the same line. For term III, we

have ‖Q‖ ≤ 1/Λmin(Σε). For term II, ‖Q‖ remains the same. For term I,

‖Q‖ ≤ 1

Λmin(Σε)
+

Λmax(Σε)

µmin(A)
+ 2

Λmax(Σε)

Λmin(Σε)

µmax(A)

µmin(A)

The additional Λmin(Σε) in the denominator of the third expression appears because
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the (r, s)th block of ∆ in lemma 4.8.2 now changes to

∆(r, s) = Cov(XT−h−r+1,Σ−1
ε εT )

= [(ΓX(r − s+ h)− . . .− ΓX(r − s+ h− d)A′d)] Σ−1
ε

Setting η as before and taking union bounds over all j, h yield the final result.

Lemma 4.8.2 (Bounding u′∆v). Consider ∆, as defined in (4.45). For any u, v ∈

RNp with ‖u‖ = ‖v‖ = 1, |u′Qv| ≤ Λmax(Σε)µmax(A)/µmin(A).

Proof.

∆ = Cov



XT−h

...

Xd−h

 ,

XT − A1X

T−1 − . . .− AdXT−d

...

Xd − A1X
d−1 − . . .− AdX0




∆(r, s) = [(Γ(r − s+ h)− Γ(r − s+ h− 1)A′1 − . . .− Γ(r − s+ h− d)A′d)] ,

for any r, s, 1 ≤ r, s ≤ N .

For any u, v ∈ RNp with ‖u‖ = 1, ‖v‖ = 1, define G(θ) =
∑N

r=1 u
re−irθ, H(θ) =∑N

r=1 v
re−irθ. It is easy to check that

∫ π
−π G

∗(θ)G(θ) dθ = 2π,
∫ π
−πH

∗(θ)H(θ) dθ = 2π.

Then, using the representation of (4.7), we can write

u′∆ v =
N∑

r,s=1

(ur)′

 π∫
−π

f(θ)ei(r−s+h)θA∗(eiθ) dθ

 vs

=

π∫
−π

[
N∑
r=1

(ur)′eirθ

]
f(θ)eihθA∗(eiθ)

[
N∑
s=1

vse−isθ

]
dθ

=

π∫
−π

G∗(θ) f(θ)eihθA∗(eiθ)H(θ) dθ
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By Cauchy-Schwarz inequality,

∣∣∣∣∣∣
π∫

−π

G∗(θ)I(θ) dθ

∣∣∣∣∣∣ ≤
 π∫
−π

G∗(θ)G(θ) dθ

1/2  π∫
−π

I∗(θ)I(θ) dθ

1/2

This leads to the following upper bound on the quadratic form.

|u′∆ v| ≤

 π∫
−π

G∗(θ)G(θ) dθ

1/2  π∫
−π

H∗(θ)A(eiθ)f 2(θ)A∗(eiθ)H(θ) dθ

1/2

≤ 2π max
θ∈[−π,π]

Λ1/2
max

(
A(eiθ)f 2(θ)A∗(eiθ)

)
≤ Λmax(Σε)µmax(A)

µmin(A)

where the last inequality follows from the expression of f(θ) in (4.23).

4.8.3 Results on Covariance Estimation

Proof of Proposition IV.11. The sample covariance matrix Γ̂(0) can be expressed as

Γ̂(0) = S − X̄X̄ ′ where S = X ′X/n and X̄ = X ′1/n, 1n×1 = (1, 1, . . . , 1)′. First,

we derive element-wise concentration bound for Γ̂(0) around Γ(0). To this end, note

that for any i, j ∈ {1, . . . , p},

∣∣∣Γ̂ij(0)− Γij(0)
∣∣∣ ≤ |Sij − Γij(0)|+

∣∣X̄iX̄j

∣∣ (4.46)

Taking maximum over all i, j, we have

max
1≤i,j≤p

∣∣∣Γ̂ij(0)− Γij(0)
∣∣∣ ≤ max

1≤i,j≤p
|Sij − Γij(0)|+ max

1≤i≤p

∣∣X̄i

∣∣2
Equation (4.19) provides a concentration bound on the first term. To concentrate

the second term, note that X̄i = 1′X ei/n. Set Y = X ei. Then Yn×1 can be viewed

as the data matrix consisting of n observations from the ith subprocess of {X t}.
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Thus, Y ∼ N(0, Q) with ‖Q‖ ≤ 2πM(fX , 1), using Proposition IV.3. Now, for

Z = 1′Y/
√
n, we have Var(Z) = u′Qu ≤ 2πM(fX , 1), since u = 1/

√
n is an unit

norm vector. Using this upper bound on Var(Z) together with the standard Gaussian

tail bound, we have, for any η ≥ 0,

P
(
|X̄i|2 > 4πM(fX , 1)η

)
≤ P

(
|Z| >

√
4πM(fX , 1)η

√
n
)

≤ 2 exp

[
−4πM(fX , 1)ηn

2Var(Z)

]
≤ 2 exp

[
−nmin{η, η2}

]

Combining the concentration bounds for the two terms and setting η =
√

log p
n

=

oP (1), we conclude

max
i,j

∣∣∣Γ̂ij(0)− Γij(0)
∣∣∣ = OP

(
M(fX , 1)

√
log p

n

)
(4.47)

This provides element-wise concentration bounds similar to equation (12) in Bickel

and Levina (2008). Rest of the proof follows exactly along the lines of Theorems 1

and 2 in that paper.

4.8.4 Measure of Stability

In this section we discuss some properties of the stability measure introduced in

Section 4.2 and its connection with the assumption ‖A1‖ < 1. In particular, we

show that the assumption ‖A1‖ < 1 guarantees stability of the process, but not

the other way. If, however, the transition matrix A1 is symmetric, the assumption

‖A1‖ < 1 is necessary for stability. We also show that this assumption is violated for

all stable VAR(d) models, whenever d > 1. We conclude the section with the proof of

Proposition IV.2, where we derive upper and lower bounds on the quantities µmin(A)

and µmax(A).

Lemma 4.8.3. A VAR(1) process is stable if ‖A1‖ < 1 . If A1 is symmetric, then a
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VAR(1) process is stable only if ‖A1‖ < 1.

Proof. If ‖A1‖ < 1, then all the eigenvalues of A1 lie inside the unit circle {z ∈ C :

|z| ≤ 1}. So the process is stable.

If the process is stable, then all the eigenvalues of A1 lie inside the unit circle. In

addition, if A1 is symmetric, then this implies that ‖A1‖ =
√

Λmax(A′1A1) < 1.

Lemma 4.8.4. Consider the VAR(1) representation of a VAR(d) process in (4.25).

‖Ã1‖ ≮ 1 whenever d > 1.

Proof.

Ã1Ã
′

1 =



∑d
t=1 AtA

′
t A1 . . . Ad−1

A
′
1 Ip . . . 0

...
...

. . .
...

A
′

d−1 0 . . . Ip


dp×dp

So for any v ∈ Rdp with v′ = (v′1, . . . , v
′
d), each vt ∈ Rp, we have

v′Ã1Ã
′

1v = v′1

(
d∑
t=1

AtA
′

t

)
v1 + 2v′1

d∑
t=2

At−1vt +
d∑
t=2

v2
t

This implies

Λmax

(
Ã1Ã

′

1

)
= max
‖v‖=1

v′Ã1Ã
′

1v ≥ max

‖v‖ = 1

v1 = 0

v′Ã1Ã
′

1v = max

‖v‖ = 1

v1 = 0

d∑
t=2

v2
t = 1

Proof of Proposition IV.2. A(z) = Ip − A1z − A2z
2 − . . .− Adzd

(i) Using |z| = 1 together with the matrix norm inequality ‖A‖ ≤ ‖A‖1‖A‖∞ (cf.
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Cor. 2.3.2, Golub and Van Loan (1996)), we have

µmax(A) = max
|z|=1

∥∥I − A1z − . . .− Adzd
∥∥

≤ 1 +
d∑

h=1

‖Ah‖ ≤ 1 +
d∑

h=1

√
‖Ah‖1 ‖Ah‖∞

≤ 1 +
d∑

h=1

(
max
1≤i≤p

p∑
j=1

|Ah,ij|+ max
1≤j≤p

p∑
i=1

|Ah,ij|

)
/2

(ii) For d = 1, A(z) = Ip − A1z. First note that

µmin(A) = min
|z|=1

Λmin ((I − A1z)∗(I − A1z)) = min
|z|=1

Λmin ((zI − A1)∗(zI − A1))

If A1 is diagonalizable with eigenvalues λ1, . . . , λp and corresponding eigenvec-

tors w1, . . . , wp, we have the decomposition A1 = PDP−1, where D is a diagonal

matrix with entries λi and P = [w1 : . . . : wp]. So, zI − A1 = PDzP
−1, where

Dz is diagonal with entries (z − λi), i = 1, . . . , p. The condition det(A(z)) 6= 0

ensures all the eigenvalues of A1 are inside the unit circle {z ∈ C : |z| = 1}.

This implies Dz is invertible, for all |z| = 1 and the eigenvalues of D∗zDz are

|z − λi|2 ≥ (1− ρ(A1))2, for all |z| = 1 and i = 1, . . . , p. Hence,

µmin(A) = min
|z|=1

[∥∥PD−1
z P−1(P ′)−1(D∗z)

−1P ′
∥∥]−1

≥ ‖P‖−2‖P−1‖−2 (1− ρ(A1))−2
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4.8.5 Auxiliary Lemmas

Lemma 4.8.5 (Hansen-Wright Inequality). If Y ∼ N(0n×1, Qn×n), then there exists

an universal constant c > 0 such that for any η ≥ 0,

P
[

1

n

∣∣‖Y ‖2 − tr(Q)
∣∣ > η‖Q‖

]
≤ 2 exp

[
−cnmin{η, η2}

]
Proof. The proof follows from Theorem 1.1 in Rudelson and Vershynin (2013). Write

Y = Q1/2X, where X ∼ N(0, I) and (Q1/2)′(Q1/2) = Q. Note that each component

Xi of X is independent N(0, 1), so that ‖Xi‖ψ2 ≤ 1. Then, by the above theorem,

P
[

1

n

∣∣‖Y ‖2 − tr(Q)
∣∣ > η‖Q‖

]
= P

[
1

n
|X ′QX − E[X ′QX]| > η‖Q‖

]
≤ 2 exp

[
−cmin

{
n2η2‖Q‖2

‖Q‖2
F

,
nη‖Q‖
‖Q‖

}]
≤ 2 exp

[
−cnmin{η2, η}

]
since ‖Q‖2

F ≤ n‖Q‖2

Lemma 4.8.6 (Approximating cone sets by sparse sets). For any S ⊂ {1, . . . , p}

with |S| = s and κ > 0,

C(S, κ) ∩ B2(1) ⊆ B1((κ+ 1)
√
s) ∩ B2(1) ⊆ (κ+ 2)cl{conv{K(s)}}

Proof. The first inequality follows from the fact that for any v ∈ C(S, κ),

‖v‖1 = ‖vS‖1 + ‖vSc‖1 ≤ (κ+ 1)‖vS‖1 ≤ (κ+ 1)
√
s‖vS‖ ≤ (κ+ 1)

√
s

Both A := B1((κ+ 1)
√
s)∩B2(1) and B := (κ+ 2)cl{conv{K(s)}} are closed convex

sets. We will show that the support function of A is dominated by the support

function of B.
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The support function of A is φA(z) = supθ∈A〈θ, z〉. For a given z ∈ Rp, let J

denote the set of coordinates of z with the s largest absolute values, so that ||zJc||∞ ≤

||zJ ||1/s ≤ ||zJ ||/
√
s. Also note that for any θ ∈ A , ‖θJc‖1 ≤ (κ + 1)

√
s. Then we

have, for any θ ∈ A, z ∈ Rp,

〈θ, z〉 =
∑
i∈Jc

θizi +
∑
i∈J

θizi ≤ ||zJc ||∞‖θJc‖1 + ‖zJ‖‖θJ‖ ≤ (κ+ 1)‖zJ‖+ ‖zJ‖

so that φA(z) ≤ (κ+ 2)‖zJ‖.

On the other hand, φB(z) := supθ∈B〈θ, z〉 = sup|U |=s
∑

i∈U θizi = (κ+ 2)‖zJ‖.

Lemma 4.8.7. Consider a symmetric matrix Dp×p. If, for any vector v ∈ Rp with

‖v‖ ≤ 1, and any η ≥ 0,

P [|v′Dv| > Cη] ≤ 2 exp
[
−cnmin{η, η2}

]
then, for any integer s ≥ 1, we have

P

[
sup
v∈K(s)

|v′Dv| > Cη

]
≤ 2 exp

[
−cnmin{η, η2}+ smin{log p, log (21ep/s)}

]
Proof. Choose U ⊂ {1, . . . , p} with |U | = s. Define SU = {v ∈ Rp : ‖v‖ ≤

1, supp(v) ⊆ U}. Then K(s) = ∪|U |≤sSU . Choose A = {u1, . . . , um}, a 1/10-net

of SU . By Lemma 3.5 of Vershynin (2009), |A| ≤ 21s. For every v ∈ SU , there exists

some ui ∈ A such that ‖∆v‖ ≤ 1/10, where ∆v = v − ui. Then we have,

γ := sup
v∈SU
|v′Dv| ≤ max

i
|u′iDui|+ 2 sup

v∈SU

∣∣∣max
i
u′iD(∆v)

∣∣∣+ sup
v∈SU
|(∆v)′D(∆v)|

Since 10(∆v) ∈ SU , the third term is bounded above by γ/100. The second term is
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bounded above by 6γ/10, as shown below:

2 sup
v∈SU

∣∣∣max
i
u′iD(∆v)

∣∣∣ ≤ 1

10
sup
v∈SU
|(ui + 10∆v)′D(ui + 10∆v)|

+
1

10
sup
v∈SU
|u′iDui|+

1

10
sup
v∈SU
|(10∆v)′D(10∆v)|

≤ 4γ

10
+

γ

10
+

γ

10

Readjusting, we have γ ≤ 3 maxi |u′iDui|. Taking an union bound over all ui ∈ A, we

have

P
[

sup
v∈SU
|v′Dv| > 3Cη

]
≤ 2 exp

[
−cnmin{η, η2}+ s log(21)

]

Taking another union bound over

 p

s

 ≤ min{ps, (ep/s)s} choices of U , we obtain

the required result.

Lemma 4.8.8.

sup
v∈cl{conv{K(s)}}

|v′Dv| ≤ 3 sup
v∈K(2s)

|v′Dv|

Proof. Let v ∈ conv{K(s)}. Then v =
∑k

i=1 αivi, for some k ≥ 1, vi ∈ K(s) and

0 ≤ αi ≤ 1, for all 1 ≤ i ≤ k, such that
∑

i αi = 1. Then

2 |v′Dv| ≤ 2
k∑

i,j=1

αiαj |v′iDvj|

≤
k∑

i,j=1

αiαj
[
|(vi + vj)

′D(vi + vj)|+ |v′iDvi|+
∣∣v′jDvj∣∣]

≤ 6
k∑

i,j=1

αiαj sup
v∈K(2s)

|v′Dv|

By continuity of quadratic forms, the result follows.
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CHAPTER V

Low-Rank and Sparse VAR modeling

5.1 Introduction

An important challenge in autoregressive modeling of multivariate time series

stems from the fact that failure to include relevant variables in the model can in-

troduce spurious correlations among the individual time series, resulting in incorrect

estimation of the edge set of the underlying Granger causal network. This is also a

major critique against causal interpretation of Granger-causality. This problem in

VAR modeling is well-known in the economics literature. For instance, Christiano

et al. (1999) argue that a positive response of prices to monetary tightening in the

post-war US economy, commonly known as the “price puzzle”, is an artefact of not

including forward looking variables in the model (Bańbura et al., 2010). The high-

dimensional VAR framework with sparity based regularizers like lasso resolves this

problem to a certain extent by allowing many variables in the model. However, in

many macroeconomic applications it is not possible to observe all the relevant vari-

ables driving the market economy. A popular strategy is factor modeling, where

the key idea is that there are a few latent factors driving the major co-movements

of many time series (Stock and Watson, 2005). Indeed, empirical evidence suggests

that the co-movement of many macroeconomic time series in the US economy can be

explained by a small number of unobserved factors extracted from the data.
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Failure to account for the presence of unobseved common factors can negatively

impact high-dimensional sparse VAR modeling in two ways. First, the correlation

among the time series that is driven by underlying factors introduces spurious con-

nectivities among the observed time series. Second, even if the true Granger causal

network is sparse, failure to account for hidden factors can result in a non-sparse VAR

representation of the process and lasso estimates become inaccurate (cf Examples 1

and 2 below).

In this chapter, we propose to deal with this issue with a low-rank and sparse

modeling strategy. Low-rank approximation and low-rank+sparse decomposition of

Hankel matrices, which represent the input-output structure of a linear time invariant

system (LTI), have appeared in the literature (Fazel et al., 2003). A low-rank repre-

sentation of the Hankel matrix corresponds to a system of small order or dimension

and a sparse Hankel matrix represents sparse input-output system (Chandrasekaran

et al., 2011). In the context of high-dimensional stationary time series, we show that

a low-rank or a sparse+low-rank structure in the transition matrix arises naturally,

if the components of the observed process are affected by some latent factors. We

demonstrate this using two examples.

Example 1. We consider a p-dimensional stationary process {X t} with the entire

dynamics driven by a r-dimensional (r � p) unobserved process of factors {F t},

which itself follows a V AR(1) process

X t = ΛF t + ξt, ξt ∼ N(0,Σξ), Cov(ξt, ξs) = 0 if t 6= s (5.1)

F t = HF t−1 + ηt, ηt ∼ N(0.Ση), Cov(ηt, ηs) = 0, if t 6= s (5.2)

This is a simple example of a static factor model used in economics. We assume the

matrix of factor loadings Λp×r has full column rank r, so that it has a left inverse Λ−
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satisfying Λ−Λ = Ir. It then readily follows that

X t = Λ
[
HF t−1 + ηt

]
+ ξt

= Λ
[
HΛ−(X t−1 − ξt−1) + ηt

]
+ ξt

= ΛHΛ−X t−1 +
[
Ληt + ξt − ΛHΛ−ξt−1

]
= LX t−1 + εt

where L = ΛHΛ− has rank at most r and the new error process εt = Ληt + ξt−Lξt−1

has a MA(1) component.

Example 2. Consider the same process {X t}, but assume that its dynamics is

governed by two sources: an underlying process of factors {F t} as before and the

interaction among its components, as captured by a VAR(1) process with a sparse

transition matrix S

X t = ΛF t + SX t−1 + ξt, S sparse (5.3)

F t = HF t−1 + ηt (5.4)

A similar calculation shows

X t = ΛHΛ−
[
X t−1 − SX t−2 − ξt−1

]
+ SX t−1 + ξt + Ληt

= (L+ S)X t−1 − LSX t−2 + εt

≈ (L+ S)X t−1 + εt, assuming the second order effects in LS are small

Model. Motivated by the above connections, we propose to model the process

{X t} as a stable VAR(1) process with the transition matrix having a low-rank and a
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sparse component. Formally, we consider the class of models

X t = AX t−1 + εt, εt i.i.d. N(0,Σε) (5.5)

A = L0 + S0, rank(L0) = r, ‖S0‖0 = s, r � p, s� p2 (5.6)

In this model, the matrix L0 captures the effects of latent variables and S0 encodes

the dynamics among the individual time series, after accounting for the latent effects.

The goal is to estimate S0 and L0 with high accuaracy using moderate sample sizes.

In this chapter we restrict our analysis to only models with serially uncorrelated

errors. A general model with serially correlated error structure, although more well-

suited for the examples described above, poses significant technical challenges due to

endogeneity (correlation between predictors and the noise in the regression) and we

intend to pursue it as a separate problem.

Stability. As shown in Section 4.2, the VAR(1) models considered in (5.5),

under the assumption of stability, has a spectral density satisfying assumption (IV.1).

Proposition IV.2 provides a lower bound on µmin(A). Further, for the special structure

of the models considered here, one can get an improved upper bound on µmax(A), as

shown in the following lemma:

Lemma 5.1.1. For a stable VAR(1) model of the class (5.5), we have

µmax(A) ≤ [1 + l + (vin + vout)/2]2 (5.7)

where l is the largest singular value of L0, vin = max1≤j≤p |S0
ij| and vout = max1≤i≤p |S0

ij|.

Proof. ‖A(z)‖ = ‖I − (L0 + S0)z‖ ≤ ‖I‖+ ‖L0‖+ ‖S0‖ for any z ∈ C with |z| = 1.

The result follows from the fact that µmax(A) = max|z|=1 ‖A(z)‖2.

Notations. We reserve the symbol ‖.‖ to denote the `2-norm of a vector and

the spectral norm of a matrix. The symbol ‖A‖∗ is used to denote the nuclear norm,
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i.e., sum of the singular values, of a matrix. A∗ denotes the conjugate transpose of

a matrix A. For any matrix A, we use the notations ‖A‖0 to denote card(vec(A)),

‖A‖1 to denote ‖vec(A)‖1 and ‖A‖max to denote ‖vec(A)‖∞. Throughout the chapter,

Λmax(.), Λmin(.) are used to denote the maximum and minimum eigenvalues of a

symmetric or Hermitian matrix. For any integer p ≥ 1, we use Sp−1 to denote the

unit ball {v ∈ Rp : ‖v‖ = 1}. We use {e1, e2, . . .} generically to denote unit vectors

in Rp, when p is clear from the context. Throughout the chapter, we write A % B if

there exists an absolute constant c, independent of the model parameters, such that

A ≥ cB.

5.2 Related Work

Factor models have a long history in the statistics and econometrics literature as

a popular technique for dimension reduction. Bai and Ng (2008) provide a compre-

hensive review of the theoretical and empirical work on factor models.

The problem that we consider in this chapter, however, is considerably different

in nature. We are interested in learning both the effect of the latent variables on

the system and the Granger causal estimates or interactions among the system com-

ponents, after accounting for the effects of latent factors. Bernanke et al. (2005b)

considered a similar problem using factor augmented vector autoregressive (FAVAR)

models. The authors proposed to model the joint process [(F t)′, (X t)′]′ as a vector

autoregression, with the restriction that there is no effect from {X t} to {F t}. Since

the process of factors is unobserved, the modeling strategy amounts to iteratively

estimating the factors and using them in the VAR model. The method relies on con-

sistent estimation of the number of factors and testing the restrictions imposed by the

factor structure. Our approach of modeling the transition matrix as a combination

of sparse and low-rank component does not require estimating the number of fac-

tors or the factor process separately and provides a framework for jointly estimating
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the common effects of the market and interactions among the system components.

Further, the theory presented in the subsequent section can be easily generalized for

appoximately sparse and low-rank matrices, capturing a broader model class.

Low rank approximation of a given matrix is a popular technique of dimension

reduction in many areas of science and engineering (Fazel , 2002), including matrix

completion problems, principal component analysis and factor analysis. In recent

years, decomposing a given matrix into sparse and low-rank component has gained

considerable interest, with applications in video surveillance (Candès et al., 2011),

neuroimaging and recommender systems. Finding the best low-rank plus sparse rep-

resentation of an observed matrix via rank constrained optimization is computation-

ally expensive due to the nonconvex nature of the problem. A tractable alternative

commonly used in practice is the convex relaxation

min
(L,S): L+S=A

‖L‖∗ + γ‖S‖1, γ > 0 (5.8)

where the nuclear/trace norm (sum of singular values of a matrix) serves as a sur-

rogate for the rank constraint and the `1 norm serves as a surrogate for the sparsity

constraint. Several algorithms for solving the above optimization problem have been

propsed in the literature, including semidefinite programming (Chandrasekaran et al.,

2011) and alternating direction method of multipliers (Yuan and Yang , 2009).

In many noisy settings such as ours, the matrix A is not observed and needs to

be estimated from data. An example closely related to our problem is the problem

of Gaussian graphical model selection in the presence of latent variables from inde-

pendent samples (Chandrasekaran et al., 2012). Some other applications in factor

analysis and multi-task regression has been covered in Agarwal et al. (2012). To the

best of our knowledge, the properties of these estimators have not been studied in

the context of time series and dependent data.
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5.3 Estimation Procedure

Based on the data {X0, . . . , XT} generated according to the model (5.5), we form

the autoregressive design


(XT )′

...

(X1)′


︸ ︷︷ ︸

Y

=


(XT−1)′

...

(X0)


︸ ︷︷ ︸

X

A′ +


(εT )′

...

(ε1)′


︸ ︷︷ ︸

E

(5.9)

This is a linear regression problem with N = T samples and q = p2 variables. The

goal is to estimate L0 and S0 with high accuracy when N � p2.

There is an inherent identifiability issue in the estimation of (5.5). Suppose the

low-rank component L0 itself is s-sparse and the sparse component S0 is of rank r.

In that scenario, we cannot hope for any method to estimate L0 and S0 separately

without imposing any further constraints. So, a minimal condition for low-rank and

sparse recovery is that the low rank part should not be too sparse and the sparse part

should not be low-rank.

This issue has been addressed in the literature by several authors (Chandrasekaran

et al., 2011; Candès et al., 2011). By and large, all the authors propose to ensure

the above identifiability under some form of incoherence type condition. These con-

ditions serve as sufficient conditions for exact recovery of the low rank and the sparse

component by solving the convex program (5.8). In a recent paper, Agarwal et al.

(2012) showed that in a noisy setting where exact recovery of the two components

is impossible, it is still possible to achieve good approximation under comparatively

mild assumption. In particular, they formulated a general measure of the radius of

nonidentifiability of the problem and established a non-asymptotic upper bound on

the approximation error

‖L̂− L0‖2
F + ‖Ŝ − S0‖2

F (5.10)
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which depend on this radius. The key idea is to allow for sparse and low-rank ma-

trices in the model, but controlling for the error introduced. We refer the readers to

the above paper for a more detailed discussion on this notion of non-identifiability.

The low-rank and sparse decomposition problem under restrictions on the radius of

nonidentifiability takes the form

(L̂′, Ŝ ′) = argmin
L,S∈Rp×p:‖S‖max≤α/p

1

2
‖Y − X (L+ S)‖2

F + λN‖L‖∗ + µN‖S‖1 (5.11)

where λN , µN are non-negative tuning parameters controlling the regularization of

sparse and low-rank part. The parameter α controls for degree of non-identifiable

matrices allowed in the model class.

5.4 Theoretical Properties

In this section, we derive a non-asymptotic upper bound on the estimation error

of the low-rank and sparse components of the transition matrix. The main result

shows that consistent estimation is possible with a sample size of the order N ∼

pM2(fX)/m2(fX), as long as the process {X t} is stable, stationary and the radius of

nonidentifiability, as measured by ‖S0‖max is small in an appropriate sense.

We build upon the results of Agarwal et al. (2012) for fixed X and E. In par-

ticular, it follows from Corollary 1 of the above paper that for a single realization

of {X0, . . . , XT}, for any α ≥ ‖S0‖max, if γN := Λmin(X ′X ) > 0, then any solution

(L̂, Ŝ) of the convex program (5.11) with

λN ≥ 4‖X ′E‖, µN ≥ 4‖X ′E‖max +
4γNα

p
(5.12)
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satisfies, for some universal positive constants ci > 0,

‖L̂− L0‖2
F + ‖Ŝ − S0‖2

F ≤ c1
λ2
N

γ2
N

r + c2
µ2
N

γ2
N

s (5.13)

In order to obtain meaningful results in the context of our problem, we need upper

bounds on ‖X ′E‖ and ‖X ′E‖max and a lower bound on Λmin(X ′X ) that hold with

high probability. In the context of time series where all the entries of the matrix

X are dependent on each other, it is a non-trivial task to establish such deviation

bounds. The main technical contribution of this chapter is to derive these deviation

bounds, which lead to meaningful analysis in the context of VAR. The results rely on

the measure of stability defined in Chapter IV and an analysis of the joint spectrum

of {X t−1} and {εt}.

Proposition V.1. Consider a random realization of {X0, . . . , XT} generated accord-

ing to a stable VAR(1) process (5.5) and form the autoregressive design (5.9). Define

φ(A,Σε) = Λmax(Σε)

[
1 +

1 + µmax(A)

µmin(A)

]

Then there exist universal positive constants ci > 0 such that

1. for N % p,

P
[
‖X ′E/N‖ > c0φ(A,Σε)

√
p/N

]
≤ c1 exp [−c2 log p]

and for any N % log p,

P
[
‖X ′E/N‖max > c0φ(A,Σε)

√
log p/N

]
≤ c1 exp [−c2 log p]
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2. for N % pM2(fX)/m2(fX),

P
[
Λmin(X ′X/N) >

Λmin(Σε)

2µmax(A)

]
≤ c1 exp [−c2 log p]

Using the above deviation bounds in the non-asymptotic error (5.13), we obtain

the final result for approximate recovery of the low-rank and the sparse components

using nuclear and `1 norm relaxation, as shown next.

Proposition V.2. Consider the setup of Proposition V.1. There exist universal

positive constants ci > 0 such that for N % pM2(fX)/m2(fX), for any S0 with

‖S0‖max ≤ α, any solution (L̂, Ŝ) of the program (5.11) satisfies, with probability at

least 1− c1 exp[−c2 log p],

‖Ŝ−S0‖2
F +‖L̂−L0‖2

F ≤
c0φ

2(A,Σε)µ
2
max(A)

Λ2
min(Σε)

(rp+ s log p)

N
+

32Λ2
min(Σε)

µ2
max(A)

sα2

p2
(5.14)

Remarks. The error bound presented in the above proposition consists of two key

terms. The first term is the error of estimation emanating from randomness in the

data and limited sample capacity. For a given model, this error goes to zero as the

sample size increases. The second term represents the error due to the unidentifiability

of the problem. This is more fundamental to the structure of the true low-rank and

sparse components, depends only on the model parameters and does not change with

sample size.

The error in estimation again consists of two terms - the second term (rp +

s log p)/N consists of the dimensionality parameters and matches the parametric con-

vergence rates for independent observations. The effect of dependence in the data

is captured through the first part of the term: c0φ2(A,Σε)µ2
max(A)

Λ2
min(Σε)

. As we discussed in

chapter IV, this term is larger when the spectral density is more spiky, indicating a

stronger temporal and cross-sectional dependence in the data.
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Estimation Error ‖ÂOLS −A‖F /‖A‖F ‖Âlasso −A‖F /‖A‖F ‖(L̂+ Ŝ)−A‖F /‖A‖F ‖[L̂ : Ŝ]− [L : S]‖F
p=30, N=50 7.20(1.16) 1.17(0.09) 0.96(0.07) 0.96(0.10)

p=30, N=100 3.66(0.63) 1.04(0.06) 0.89(0.07) 0.90(0.15)
p=30, N=200 2.30(0.26) 0.93(0.05) 0.76(0.07) 0.77(0.10)
p=30, N=300 1.83(0.21) 0.87(0.06) 0.69(0.06) 0.73(0.08)
p=30, N=500 1.39(0.21) 0.79(0.05) 0.62(0.06) 0.62(0.09)
p=50, N=50 - 1.27(0.11) 1.01(0.05) 1.10(0.08)

p=50, N=100 6.52(0.52) 1.12(0.08) 0.96(0.05) 1.05(0.08)
p=50, N=200 3.80(0.38) 1.02(0.06) 0.87(0.06) 0.93(0.09)
p=50, N=300 2.90(0.23) 0.97(0.03) 0.80(0.04) 0.89(0.06)
p=50, N=500 2.14(0.21) 0.90(0.06) 0.73(0.06) 0.80(0.09)
p=100, N=50 - 1.37(0.14) 1.03(0.04) 1.33(0.10)

p=100, N=100 - 1.23(0.13) 1.00(0.02) 1.29(0.09)
p=100, N=200 7.83(0.54) 1.14(0.07) 0.96(0.03) 1.22(0.08)
p=100, N=300 5.48(0.44) 1.08(0.04) 0.92(0.04) 1.20(0.09)
p=100, N=500 3.84(0.30) 1.01(0.03) 0.86(0.04) 1.11(0.06)

Table 5.1: Estimation Error ‖Â − A‖F/‖A‖F of OLS, lasso and low-rank+sparse
estimates of a VAR(1) model X t = AX t−1 + εt. The transition matrix A = L+S has
a low rank component L of rank 2 and a sparse component S with 2− 3% non-zero
entries.

5.5 Numerical Experiments

In this section we conduct numerical experiments to assess the performance of low

rank and sparse modeling in VAR analysis and compare it with the performances of

ordinary least squares (OLS) and lasso estimates.

We consider three different VAR(1) models with p = 30, 50 and 100 variables. For

each of these models, we generate N = 50, 100, 200, 300 and 500 observations from a

Gaussian VAR(1) process X t = AX t−1 +εt, where A = L+S can be decomposed into

a low-rank matrix L of rank 2 and a sparse matrix S with 2 − 3% non-zero entries.

We rescale the entries of A to ensure stability of the process (the spectral radius is

set to ρ(A) = 0.7) and rescale the error variance so that SNR = 2. We compare

the estimation and in-sample prediction error of the different estimates using two

performance metrics:

1. Estimation Error: ‖Â− A‖F/‖A‖F

2. In-sample Prediction Error: ‖Ŷ − Y‖2
F/‖Y‖2

F

The tuning parameters for lasso and low-rank plus sparse estimates are chosen ac-

cording to Proposition IV.8 and Equation (5.12). We report median and IQR of the
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Prediction Error OLS lasso low-rank+sparse
p=30, N=50 3.50(0.38) 1.00(0.02) 0.95(0.03)

p=30, N=100 1.53(0.08) 0.99(0.01) 0.96(0.02)
p=30, N=200 1.15(0.04) 0.99(0.01) 0.96(0.02)
p=30, N=300 1.08(0.02) 0.98(0.01) 0.95(0.02)
p=30, N=500 1.03(0.02) 0.98(0.01) 0.95(0.01)
p=50, N=50 - 1.01(0.02) 0.96(0.02)

p=50, N=100 2.51(0.16) 1.00(0.01) 0.97(0.01)
p=50, N=200 1.39(0.04) 1.00(0.00) 0.97(0.01)
p=50, N=300 1.21(0.02) 0.99(0.00) 0.97(0.01)
p=50, N=500 1.10(0.01) 0.99(0.01) 0.97(0.01)
p=100, N=50 - 1.02(0.01) 0.98(0.01)

p=100, N=100 - 1.01(0.01) 0.98(0.01)
p=100, N=200 2.50(0.05) 1.00(0.00) 0.99(0.01)
p=100, N=300 1.66(0.02) 1.00(0.00) 0.98(0.01)
p=100, N=500 1.29(0.01) 1.00(0.00) 0.98(0.00)

Table 5.2: In-sample prediction error ‖Ŷ − Y‖2
F/‖Y‖2

F of OLS, lasso and low-
rank+sparse estimates of a VAR(1) model X t = AX t−1 + εt. The transition matrix
A = L + S has a low rank component L of rank 2 and a sparse component S with
2− 3% non-zero entries.

performance metrics from 50 iterations of the above experiments.

The estimation errors are reported in Table 5.1. In all the three settings, we find

that the low-rank plus sparse VAR estimates outperform the estimates using ordinary

least-squares and lasso. Among the three estimates, OLS has the worst estimation

error with a high IQR, whereas the two regularized estimates produce lower estimation

error with low IQR. For p = 30 and N = 50, the median estimation error of OLS

is 7.20 with an IQR of 1.16, whereas lasso has an estimation error of 1.17 with an

IQR of 0.09. The sparse plus low rank estimate has the lowest estimation error of

0.96 with an IQR of 0.07. The estimation errors of all three methods decrease with

increase in sample sizes. We also report the error in estimating separately the low

rank and the sparse components in the last column of Table 5.1.

The in-sample prediction errors of the three estimation methods are reported in

Table 5.2. As in the case with estimation error, we see that low-rank plus sparse VAR

estimates outperform OLS and lasso estimates in terms of prediction error in nearly

all the settings. The prediction error of OLS for p = 30 and N = 50 is 3.50 with an

IQR of 0.38, which indicates that the OLS prediction errors are 3.50 times larger than

the errors from fitting a white noise model to the data (i.e., assuming A = 0). This
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Figure 5.1: Estimated Granger causal networks using lasso and low-rank plus sparse
VAR estimates. The top panel displays the true transition matrix A, its low-rank
component L and the structure of its sparse component S. The bottom panel displays
the structure of the Granger causal networks estimated by lasso (Âlasso), the low-rank
plus sparse modeling strategy (Ŝ) and the estimated low-rank component (L̂).

effect of overfitting is lower in the lasso regularized estimates, where the prediction

error (1.00) is of the same order of the white noise model with an IQR of 0.02. By

accounting for a latent low-rank structure of the transition matrix, the low-rank plus

sparse estimates produce a lower prediction error of 0.95 with an IQR of 0.03. The

results of the other settings are qualitatively similar.

In addition to its improved estimation and prediction performance, the low-rank

plus sparse modeling strategy help recover the underlying Granger causal network

after accounting for the latent structure. In Figure 5.1, we demonstrate this using a

VAR(1) model with p = 50 and N = 500. The top panel displays the true transition

matrix A, its low-rank component L and the strucure of its sparse component S.

The bottom panel displays the structure of the Granger causal networks estimated

by lasso (Âlasso), the low-rank plus sparse modeling strategy (Ŝ) and the estimated

low-rank component (L̂). As predicted by the theory, we see that the lasso estimate

of the Granger causal network, Âlasso, selects many false positives due to its failure to
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account for the latent structure. On the other hand, the low-rank plus sparse estimate

Ŝ provides a sparser estimate of the network with significantly less false positives.

It is interesting to note that the estimation performance of the regularized esti-

mates in low-rank plus sparse VAR models is worse than the performance of lasso in

sparse VAR models presented in Chapter IV, even for the same sample sizes. This

is in line with the error bounds presented in Proposition V.2. The estimation error

in low-rank plus sparse models is of the order of O(rp+ s log p)/N while the error of

lasso in sparse VAR models scales at a faster rate of O(s log p/N). This can also be

viewed in the factor model examples of Section 5.1. Using the notation of (5.1) and

(5.3), a s-sparse VAR requires estimating s parameters in S while the presence of r

factors introduces an additional rp parameters in the loading matrix Λ.

5.6 Technical Results

Proof of Proposition V.1. 1. We want to find upper bounds on ‖X ′E/N‖max and

‖X ′E/N‖ that hold wih high probability. Note that such an upper bound for

‖X ′E/N‖max has already been derived in Proposition IV.10. Here we adopt

a different technique that takes a unified approach to provide upper bounds

on both quantities. To this end, note that the two norms have the following

representations

1

N
‖X ′E‖ = sup

u,v∈Sp−1

1

N
u′X ′Ev, 1

N
‖X ′E‖max = sup

u,v∈{e1,...,ep}

1

N
u′X ′Ev

For any given u, v ∈ Sp−1, we first provide a bound on u′(X ′E/N)v. Note that

1

N
u′X ′Ev =

1

2N

[
‖Xu+ Ev‖2 − ‖Xu‖2 − ‖Ev‖2

]
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Consider the univariate stochastic processes {u′X t−1}, {v′εt} and {u′X t−1 +

v′εt}. The vectors Xu, Ev and Xu + Ev can be viewed as data matrices (see

Section 4.2) with N consecutive observations from the above three processes.

Also Var(u′X t−1 + v′εt) = Var(u′X t−1) + Var(v′εt) [since Cov(X t−1, εt) = 0].

This implies

∣∣∣∣ 2

N
u′X ′Ev

∣∣∣∣ ≤ ∣∣∣∣ 1

N
‖Xu+ Ev‖2 − Var(u′X t−1 + εt)

∣∣∣∣
+

∣∣∣∣ 1

N
‖Xu‖2 − Var(u′X t−1)

∣∣∣∣+

∣∣∣∣ 1

N
‖Ev‖2 − Var(εt)

∣∣∣∣

So it is enough to derive deviation bounds for each of the three terms on the

right.

We will use Proposition IV.4 to derive these deviation bounds. For this, we

will need the spectral densities of the three processes. By Lemma 5.6.1 and

the fact that fu′X(θ) = u′fX(θ)u for any p-dimensional stationary process {X t}

satisfying assumption IV.1 and any u ∈ Rp, we have

M(fu′Xt−1) ≤M(fX) ≤ Λmax(Σε)

µmin(A)

M(fv′εt) ≤M(fε) ≤ Λmax(Σε)

M(fu′Xt−1+v′εt) ≤
Λmax(Σε)

µmin(A)
+ Λmax(Σε) + 2

µmax(A)Λmax(Σε)

µmin(A)

Applying the first inequality of IV.4 on each of the three terms on the right

leads to the following deviation bound

P [|u′(X ′E/N)v| > 2πηφ(A,Σε)] ≤ 6 exp
[
−cN min{η, η2}

]
(5.15)

for any u, v ∈ Sp−1 and any η > 0.
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To derive the deviation bound on ‖X ′E/N‖max, we simply take a union bound

over the p2 possible choices of u, v ∈ {e1, e2, . . . , ep}. This leads to

P [‖X ′E/N‖max > 2πηφ(A,Σε)] ≤ 6 exp
[
−cN min{η, η2}+ 2 log p

]
Since N % p, we can set η =

√
(2 + c1) log p/cN so that η < 1 (i.e., η2 < η)

will be satisfied for large enough N . This implies that

P [‖X ′E/N‖max > c0φ(A,Σε)] ≤ c1 exp [−c2 log p]

for some universal constants ci > 0.

To derive the deviation bound on the spectral norm, we discretize the unit ball

Sp−1 using an ε-net N of cardinality at most (1 + 2/ε)p. An argument along

the line of Lemma 4.8.7 then shows that for a small enough ε > 0,

sup
u,v∈Sp−1

|u′(X ′E/N)v| ≤ K sup
u,v∈N

|u′(X ′E/N)v|

for some constant K > 1, possibly dependent on ε. As before, taking a union

bound over the (1 + 2/ε)2p choices of u and v, we get

P [‖X ′E/N‖ > 2πKηφ(A,Σε)] ≤ 6 exp
[
−cN min{η, η2}+ 2p log(1 + 2/ε)

]
Since N % p, choosing η =

√
(c1 + 2 log(1 + 2/ε))p/cN ensures η < 1 for large

enough N . Setting η as above concludes the proof.

2. We want to obtain a lower bound on the minimum eigenvalue of X ′X/N that

holds with high probability.

Since Λmin (X ′X/N) = infv∈Sp−1 v′(X ′X/N)v, we start with the single deviation
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bound of Proposition IV.4

P [|v′ (X ′X/N − ΓX(0)) v| > 2πηM(fX)] ≤ 2 exp
[
−cN min{η, η2}

]
for any v ∈ Sp−1 and η > 0.

The next step is to extend this single deviation bound uniformly on the set Sp−1.

As in the proof of part 1, we construct a ε-net of cardinality at most (1 + 2/ε)p

and approximate the quadratic form using its values on the net. This yields the

following deviation bound

P
[

sup
v∈Sp−1

∣∣∣∣v′(X ′XN − ΓX(0)

)
v

∣∣∣∣ > 2KπηM(fX)

]
≤ 2 exp

[
−cN min{η, η2}+ p log

(
1 +

2

ε

)]

for some constant K > 1. Seting η = m(fX)/4KπM(fX) < 1 and noting that

N %M2(fX)/m2(fX)p, we conclude

P
[

sup
v∈Sp−1

|v′ (X ′X/N − ΓX(0)) v| > m(fX)/2

]
≤ c0 exp [−c1 log p]

The result follows from the lower bound on m(fX) presented in (4.24) and the

fact that v′ΓX(0)v ≥ m(fX) for all v ∈ Sp−1.

Lemma 5.6.1. Consider a stable VAR(1) process X t = AX t + εt with error process

{εt} satisfying assumption (IV.1). Then

1. The spectral density of the joint process W t = [(X t−1)′, (εt)′]
′

is given by

fW (θ) =

 fX(θ) e2iθfX(θ)A∗(eiθ)

e−2iθA(eiθ)fX(θ) fε(θ)


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2. For any u, v ∈ Sp−1, the spectral density of wt = u′X t−1 + v′εt satisfies

M(fw) ≤ Λmax(Σε)

µmin(A)
+ Λmax(Σε) + 2

µmax(A)Λmax(Σε)

µmin(A)
(5.16)

Proof. 1. The autocovariance function of the process {W t} is given by

ΓW (s) = Cov


 X t−1

εt

 ,
 X t−1+s

εt+s




=

 ΓX(s) ΓX(s+ 2)− ΓX(s+ 1)A′

ΓX(s− 2)− AΓX(s− 1) Γε(s)


since εt+s = X t+s+1 −AX t+s and εt = X t+1 −AX t. Then it is easy to see that

the diagonal blocks of the spectral density of fW (θ) are precisely fX(θ) and

fε(θ). The upper off-diagonal block is

1

2π

∞∑
l=−∞

[ΓX(l + 2)− ΓX(l + 1)A′] e−ilθ

= e2iθfX(θ)− eiθfX(θ)A′

= e2iθfX(θ)
(
I − e−iθA′

)
= e2iθfX(θ)A∗(eiθ)

Since the spectral density matrix is Hermitian, the lower off-diagonal block is

the conjugate transpose of the above.
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2. Since wt = [u′v′]W t, the spectral density of {wt} is given by

fw(θ) =

[
u′ v′

]
fW (θ)

 u

v


= u′fX(θ)u+ v′fε(θ)v + e2iθu′fX(θ)A∗(eiθ)v + e−2iθv′A(eiθ)fX(θ)u

≤ M(fX) +M(fε) + 2M(fX)µmax(A)

where the last term comes from applying Cauchy-Schwartz inequality on the

cross-product terms. The result follows by substituing the bounds in (4.24).
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Michailidis, G., and F. d’Alché Buc (2013), Autoregressive models for gene regu-
latory network inference: Sparsity, stability and causality issues, Mathematical
Biosciences, (0), –, doi:http://dx.doi.org/10.1016/j.mbs.2013.10.003.

Mukhopadhyay, N., and S. Chatterjee (2007), Causality and pathway search in mi-
croarray time series experiment, Bioinformatics, 23 (4), 442.

Murphy, K. (2002), Dynamic Bayesian networks: representation, inference and learn-
ing, Ph.D. thesis, University Of California.

Negahban, S., and M. J. Wainwright (2011), Estimation of (near) low-rank matri-
ces with noise and high-dimensional scaling, Ann. Statist., 39 (2), 1069–1097, doi:
10.1214/10-AOS850.

Negahban, S. N., P. Ravikumar, M. J. Wainwright, and B. Yu (2012), A unified frame-
work for high-dimensional analysis of m-estimators with decomposable regularizers,
Statistical Science, 27 (4), 538–557.

Ong, I., J. Glasner, D. Page, et al. (2002), Modelling regulatory pathways in E. coli
from time series expression profiles, Bioinformatics, 18 (Suppl 1), S241–S248.

Opgen-Rhein, R., and K. Strimmer (2007), Learning causal networks from systems
biology time course data: an effective model selection procedure for the vector
autoregressive process, BMC bioinformatics, 8 (Suppl 2), S3.

Parter, S. V. (1961), Extreme eigenvalues of Toeplitz forms and applications to elliptic
difference equations, Trans. Amer. Math. Soc., 99, 153–192.

Pearl, J. (2000a), Causality: Models, Reasoning, and Inference, Cambridge Univ
Press.

Pearl, J. (2000b), Causality: models, reasoning, and inference, vol. 47, Cambridge.

Perrin, B., L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. d’Alche Buc
(2003), Gene networks inference using dynamic Bayesian networks, Bioinformatics,
19 (suppl 2), 138–148.

Priestley, M. B. (1981), Spectral analysis and time series. Vol. 2, i–xviii and 654–
890 and Ri–Rxxi and Ii–Ixv pp., Academic Press Inc. [Harcourt Brace Jovanovich
Publishers], London, multivariate series, prediction and control, Probability and
Mathematical Statistics.

Rangel, C., J. Angus, Z. Ghahramani, M. Lioumi, E. Sotheran, A. Gaiba, D. Wild,
and F. Falciani (2004), Modeling t-cell activation using gene expression profiling
and state-space models, Bioinformatics, 20 (9), 1361.

Raskutti, G., M. J. Wainwright, and B. Yu (2010), Restricted eigenvalue properties
for correlated Gaussian designs, J. Mach. Learn. Res., 11, 2241–2259.

166



Rudelson, M., and R. Vershynin (2013), Hanson-wright inequality and sub-gaussian
concentration, Electron. Commun. Probab., 18.

Rudelson, M., and S. Zhou (2013), Reconstruction from anisotropic random mea-
surements, Information Theory, IEEE Transactions on, 59 (6), 3434–3447, doi:
10.1109/TIT.2013.2243201.

Seth, A. K., P. Chorley, and L. C. Barnett (2013), Granger causal-
ity analysis of fmri {BOLD} signals is invariant to hemodynamic con-
volution but not downsampling, NeuroImage, 65 (0), 540 – 555, doi:
http://dx.doi.org/10.1016/j.neuroimage.2012.09.049.

Shojaie, A., and G. Michailidis (2010a), Discovering graphical Granger causality using
the truncating lasso penalty, Bioinformatics, 26 (18), i517–i523.

Shojaie, A., and G. Michailidis (2010b), Penalized likelihood methods for estimation
of sparse high-dimensional directed acyclic graphs, Biometrika, 97 (3), 519–538.

Shojaie, A., and G. Michailidis (2010a), Penalized likelihood methods for estimation
of sparse high dimensional directed acyclic graphs, Biometrika, 97 (3), 519–538.

Shojaie, A., and G. Michailidis (2010b), Discovering graphical granger causality using
a truncating lasso penalty, Bioinformatics, 26 (18), i517–i523.

Sims, C. (1972), Money, income, and causality, The American Economic Review,
62 (4), 540–552.

Sims, C. A. (1980), Macroeconomics and reality, Econometrica, 48 (1), pp. 1–48.

Smith, S. M. (2012), The future of fmri connectivity, NeuroImage, 62 (2), 1257 – 1266,
doi:http://dx.doi.org/10.1016/j.neuroimage.2012.01.022.

Song, S., and P. J. Bickel (2011), Large vector auto regressions, Arxiv preprint
arXiv:1106.3915v1.

Stock, J. H., and M. W. Watson (2005), Implications of dynamic factor models for
var analysis, Working Paper 11467, National Bureau of Economic Research.

Stock, J. H., and M. W. Watson (2006), Forecasting with many predictors, Handbook
of economic forecasting, 1, 515–554.
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