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Abstract 

 

This work examines the performance and fundamental operating principles of an active 

acoustic emitter based on an AlGaN/GaN high electron mobility transistor (HEMT). 

Strong piezoelectric effects in GaN-based semiconductors enable the formation of a two-

dimensional electron gas (2DEG) that acts as the HEMT channel. Because of the strong 

coupling between 2DEG carrier density and mechanical deformation, HEMTs offer 

methods for active control of acoustic emission that are not possible with traditional 

passive emitters. 

First it is shown that intense surface acoustic waves (SAWs) are generated when 

the gate-source voltage is modulated at a high frequency that is resonant with the 

transistor geometry, due to the dynamic screening of the built-in strain in the AlGaN 

layer by the modulated 2DEG carrier density. The dynamic strain modulation generated 

during typical RF operation of an AlGaN/GaN based 2DEG is found to be two to three 

orders of magnitude higher than that generated by a conventional SAW emitter 

(interdigital transducer) at a similar size under the same RF operation. 
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Next it is shown that the gate-source DC bias, which controls whether modulation 

occurs about a bias point at which the 2DEG is depleted or present, can be used to select 

the particular acoustic mode emitted.  

Finally it is shown that the drain-source DC bias can be used to control the 

directionality of acoustic emission through acoustoelectric amplification (or attenuation) 

of acoustic waves traveling in the same (or opposite) direction as the 2DEG electron drift 

current. In a measured HEMT, when an RF signal is applied across the gate/source 

electrodes to effect SAW generation in the presence of a DC bias across the drain/source, 

the ratio of SAW power emitted from the drain side to that from the source side reaches 

approximately 1.6 due to this effect. 
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Chapter 1 

1 Background 

 

Acoustic wave devices such as interdigital transducers, thin-film bulk acoustic resonators, 

and acoustic wedge transducers have been widely used in imaging, sensing, actuating, 

and signal processing. These devices rely on the piezoelectric effect, which leads to 

mechanical deformation in response to an applied electric field, or an electric field in 

response to mechanical strain. While conventional acoustic wave devices are passive and 

operate on insulating piezoelectric dielectric substrates, two-dimensional electron gases 

(2DEGs) formed at interfaces of piezoelectric semiconductors provide intense coupling 

between electric charge and mechanical strain over nanometer distances. Active devices 

utilizing 2DEGs, such as high electron mobility transistors (HEMTs), offer new means to 

control acoustic emission in terms of intensity, frequency response, and emission pattern.  

 

1.1 Piezoelectricity and Acoustic Wave Devices 

Piezoelectricity was discovered by Jacques and Pierre Curie in 1880 during studies on 

quartz crystals [3]. When piezoelectric materials are mechanically deformed, their 
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surfaces become electrically charged (see quartz as an example in Figure 1-1). The 

reverse is also true: the same materials will become deformed when put into an electric 

field. The origin of piezoelectricity is the built-in polarization in certain crystal structures 

[4] of materials such as quartz, zinc oxide (ZnO), aluminum nitride (AlN), lead zirconate 

titanate  (PZT), lithium niobate (LiNbO3), gallium arsenide (GaAs), Lithium Tantalate 

(LiTaO3), etc. 

Due to the ease of transduction between mechanical and electrical domains, 

piezoelectric materials are widely used in many applications such as actuators, high 

voltage sources and mechanical sensors. Numerous industrial and manufacturing markets 

 

Figure 1-1: Change in charge distribution of a quartz network under mechanical stress. 

Blue circles refer to silicon atoms and red circles refer to oxygen atoms [1]. 
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currently exist for piezoelectric devices, including the automotive industry. Strong 

demand also comes from medical instruments for imaging as well as information and 

telecommunication devices such as cellular phones, laptops, and printers [5]. The 2013 

global market for piezoelectric actuators and motors alone was valued at approximately 

$11.1 billion, and this market is estimated to reach $16 billion by 2018 [6]. 

 One of the important uses of piezoelectric materials is as a means to generate 

acoustic waves in a solid, in particular, bulk acoustic waves (BAWs) and surface acoustic 

waves (SAWs). BAWs are usually excited by a device called a film bulk acoustic-wave 

resonator (FBAR) [7], which is composed of a piezoelectric film sandwiched between 

two metal contacts (see Figure 1-2). Longitudinal waves can be easily generated when an 

oscillating field is applied across the FBAR. The resonant frequency of the fundamental 

mode is /(2 )res aF V t , where Va is the acoustic velocity in the direction of emission and t 

is the thickness of the piezoelectric film. 

 

 

Figure 1-2: Side view of a thin-film bulk acoustic resonator. 

file:///C:/Users/Tuan/Documents/My%20Box%20Files/defense/post%20defense/Market%23_ENREF_5
file:///C:/Users/Tuan/Documents/My%20Box%20Files/defense/post%20defense/Piezoelectric%23_ENREF_6
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SAWs are elastic waves travelling on the surface of a solid, and thus are 

externally accessible during propagation, making them more convenient for numerous 

applications. Prior to the 1960s, SAWs were excited by a wedge transducer (see Figure 1-

3), which couples BAWs onto the surface of a solid [8].  

In 1965, White and Voltmer invented an efficient SAW transducer composed of 

two interdigital combs of electrodes (see Figure 1-4), now commonly known as 

interdigital transducers (IDTs) [9]. The wavelength of the emitted SAW is determined by 

the spacing of the electrodes (d), and thus the center frequency is Fres = Va / d. 

 Soon after, researchers realized that two identical IDTs could be used as a pair 

(see Figure 1-5) in which the left IDT excites SAWs by converting RF signals at the 

IDT’s resonant frequency while the right IDT senses the mechanical wave and converts it 

back to the electrical domain. Such an IDT-to-IDT pair can 1) filter out RF signals which 

 

Figure 1-3: Excitation of surface acoustic waves by a coupling wedge. 
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Figure 1-4: Top view of an interdigital transducer fabricated on a piezoelectric 

substrate for surface acoustic wave emission [2]. 

 

Figure 1-5: An IDT-to-IDT pair leads to numerous applications in various fields. 
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are not resonant with the IDTs, 2) form a delay line for which the delayed time is 

determined by the spacing between the two IDTs, or 3) be used to study the interaction 

between SAWs and the propagation surface by measuring acoustic power loss and 

velocity shift. Since the invention of IDT-to-IDT pairs, SAW devices have been 

extensively investigated and are currently widely used in many applications, including 

touchscreens [10], nondestructive ultrasonic diagnostics [11], chemical and gas sensors 

(see Figure 1-6a) [12], radio-frequency (RF) signal processors (see Figure 1-6b) [13], 

acoustoelectric devices [14, 15], microfluidic and micro-electromechanical actuators (see 

 

Figure 1-6: Various applications of surface acoustic waves (SAWs). 
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Figure 1-6c) [16, 17], and devices utilizing dynamic quantum confinement (see Figure 1-

6d) [18, 19].  

 

1.2 Gallium Nitride Based Two-dimensional Electron Gas 

A semiconductor which has received a great deal of attention recently is gallium nitride 

(GaN), which, interestingly, has a large piezoelectric effect [20] due to the polar nature of 

its hexagonal crystal structure (see Figure 1-8). AlGaN/GaN heterojunction-based high 

electron mobility transistors (HEMTs) [21, 22] have been considered for numerous 

emerging high-frequency high-power RF and microwave applications. For example, one 

important application under current investigation is to use small GaN HEMT chips to 

replace bulky transformers, in order to increase the conversion efficiency of electrical 

grids and improve their reliability by using wireless chips, and thus enhance the nation’s 

energy security [23]. Furthermore, because of its wide band gap corresponding to 

relatively high photon energy, GaN is a critical enabler for blue and green light sources 

that do not require optical frequency doubling. Recently, green InGaN/GaN light emitting 

diodes (LEDs) [24] and laser diodes [25] have been demonstrated. 

 HEMTs are based on a heterojunction usually consisting of 20 nm Al0.25Ga0.75N 

and 1 m GaN, as shown in Figure 1-9. Due to the strong piezoelectric field caused by 

the highly strained AlGaN layer (which has a smaller lattice constant than the GaN 

under-layer as shown in Figure 1-10 [26]), a sheet of charge known as a two-dimensional 

electron gas (2DEG) is formed at the AlGaN/GaN interface, creating a channel between 

the source and drain electrodes. When the gate-source voltage is above a threshold value, 
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the channel is filled with a great number of electrons and is highly conductive. With the 

HEMT in this “on” state, voltage applied across the source and drain electrodes causes 

electron drift and hence electrical current between the source and the drain. On the other 

hand, when the gate-source voltage is below a certain threshold value, the channel 

becomes depleted of electrons and is highly resistive. In this case, the HEMT is in the 

“off” state and an applied source-drain voltage yields only a small electrical current. 

The mechanical strain at the interface is strongly linked by piezoelectric coupling 

to the 2DEG carrier density and hence can be dynamically modulated by varying the 

gate-source voltage, which controls the 2DEG carrier density. We will show in later 

chapters that this dynamic relaxation of the built-in strain in the AlGaN layer yields 

SAWs, and hence a GaN HEMT can be operated as an acoustic wave emitter. 

 

Figure 1-7: Crystal structure of GaN and the built-in polarization vector. 
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Figure 1-8: A conventional AlGaN/GaN high electron mobility transistor structure. 

The dotted line indicates the 2DEG channel that connects the source and drain. 

 

 

 

Figure 1-9: Built-in tensile strain in AlGaN layer due to lattice mismatch. 
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1.3 Active Acoustic Emitter Based on a 2DEG 

Traditional acoustic wave devices such as FBARs and IDTs are passive and offer little 

DC voltage control over characteristics of the emitted acoustic waves (e.g., intensity, 

resonant frequency, and emission pattern) once the devices are fabricated. Interestingly, 

acoustic wave emitters based on active devices such as transistors allow interactions 

between the emitted acoustic waves and the transported charge carriers, leading to 

schemes for active control of acoustic emission. 

 The GaN HEMT is an active device that can emit SAWs by RF modulation of the 

carrier density in a 2DEG channel, as suggested in Section 1.2. Because of the various 

regimes of charge transport in a 2DEG corresponding to ranges of applied DC bias, GaN 

HEMTs could provide certain means to actively control the characteristics of the emitted 

acoustic waves. First, because the same RF voltage modulation leads to different 2DEG 

carrier density modulations at different HEMT DC bias points, the 2DEG provides a 

means for DC voltage tunable intensity of SAW emission. Second, carrier drift in a 

certain direction (source-to-drain or drain-to-source) can amplify or attenuate SAW 

modes propagating in that direction (depending on the electron velocity relative to the 

SAW velocity) [2] and therefore can enable controlled directional intensity of SAW 

emission. Finally, the 2DEG offers the potential for switchable SAW emission, i.e., the 

ability to transduce different SAW modes at different HEMT DC bias points. 

GaN-based epitaxial structures are usually grown on substrates such as sapphire, 

silicon, or silicon carbide due to difficulty obtaining bulk GaN substrates. SAW modes 

which are supported by GaN-on-sapphire are Rayleigh (R), Love (L), Sezawa (S) and 
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Figure 1-10: SAW modes supported by a GaN-on-sapphire structure. 
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pseudo-bulk (PB) modes, which propagate with different polarizations and at different 

depths within the epitaxial layer structure as shown in Figure 1-11 [27]. The Rayleigh 

and Love modes are primarily confined on the surface of the thin film epitaxy. The 

existence of the Love mode, which is usually piezoelectrically inactive in hexagonal 

wurzite nitrides, is due to polarization mixture caused by the trigonal/3m sapphire 

substrate that supports SH and leaky SH modes [27]. The Sezawa (SV polarized) modes 

are higher-order R modes propagating deep in the epitaxial layer and can only be excited 

if the epitaxy thickness is comparable to the acoustic wavelength. The PB modes (SV 

polarized, primarily longitudinally) extend deep into the sapphire substrate [28]. Different 

types of acoustic waves can have advantages for different applications. For example, 

Rayleigh waves are the easiest to excite and most commonly used, but suffer huge losses 

at solid-liquid interfaces; at such interfaces, Love waves are usually used because of 

relatively small damping of shear horizontal modes by liquids. 

In addition to the potential for active control over emitted SAWs, 2DEGs can also 

have significantly stronger coupling to SAWs than IDTs can. Recent SAW applications 

such as microfluidic actuators [16, 17] and dynamic quantum confinement devices [18, 

19] require intense acoustic beams; traditional interdigital transducer (IDT) methods need 

50 or more pairs of fingers to reach sufficient intensities and therefore occupy relatively 

large real estate on a chip (hundreds of micrometers to several millimeters in length) 

compared to a HEMT (~10 micrometers in length) of similar width. The vertical (cross-

plane) strain modulation induced by electrical modulation of one pair of conventional 

IDT electrodes is given by: 

3zz i ii
d E                                                                                                    (1.1) 
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where d3i are the piezoelectric strain coupling constants in the vertical direction and Ei 

are the modulated components of applied electric field in the i = x, y, and z directions. For 

a typical IDT geometry (1 m wide electrodes with 4 m periodicity) and voltage 

modulation (1 V peak-to-peak) on a lightly-doped GaN substrate, finite element 

simulation of the resulting field profile indicates Ez ≈ 0.5 MV/m in the vertical (cross-

plane) direction and Ex ≈ 1 MV/m in the horizontal (in-plane) direction. For c-plane 

GaN (d31 = 0, d32 = 0, and d33 = 2.19×10
-12

 C/N [20]), finite element simulation and 

Equation 1.1 each indicate modulated vertical strains on the order of 10
-7

 to 10
-6

. Other 

common SAW substrates (e.g., GaAs, LiNbO3, LiTaO3, and ZnO) also yield modulated 

strains on this order, with the exception of PZT, which can achieve strains on the order of 

10
-4

. However, PZT has drawbacks for monolithic integration with devices made from 

GaN and other III-V semiconductors [29, 30]. 

Equation 1.1 can also be used to estimate the modulation in 2DEG vertical (cross-

plane) strain due to a change in carrier density n
 (2)

 by solving for Ei using Poisson’s 

equation with the boundary conditions of an AlGaN/GaN heterostructure, yielding [31]: 

(2)

33 0

2

0 33 33

ZZ

e e n

C e





 


                                                                                          (1.2) 

where e33 is the piezoelectric stress constant that couples electric field and stress in the 

vertical direction, e0 is the electron charge,  is the relative permittivity, 0 is the vacuum 

permittivity, and C33 is the elastic stiffness constant in the direction corresponding to e33. 

For a c-plane AlxGa1-xN/GaN-based 2DEG, e33 = 0.65+0.9x C/m
2
,  = 5.35-0.58x, and C33 

= 398-9x GPa [31], yielding  zz on the order of 10
-4

 for x = 0.25 and a change in carrier 
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density n
 (2)

 ≈ 10
13

 cm
-2

, which is typical for 2DEG modulation in this material system 

[22]. This calculation suggests that a 2DEG in GaN is able to generate strain modulation 

between two and three orders of magnitude greater than that achieved by a single IDT 

pair on the same substrate at the same applied RF voltage. 

In this work, we explore the coupling between an electrically pumped 2DEG and 

acoustic waves. In Chapter 2, we verify the emission of SAWs from a 2DEG by 

experimentally examining AlGaN/GaN HEMTs and monolithically integrated IDTs 

which function as acoustic wave detectors. We also demonstrate detection of incident 

SAWs by a 2DEG due to piezoelectric coupling. In Chapter 3, we characterize the 

frequency spectrum of SAWs emitted by a 2DEG and study the principle of switchable 

SAW emission by a 2DEG. In Chapter 4, we perform modeling to understand SAW 

amplification or attenuation by electron drift current in a 2DEG and investigate 

directional SAW emission from a 2DEG under certain bias conditions.  
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Chapter 2 

2 Emission and Detection of SAWs by a 

2DEG 

 

In this chapter, we use integrated IDTs as SAW sensors to the demonstrate emission of 

SAWs by AlGaN/GaN HEMTs under certain bias conditions through dynamic screening 

of the HEMT’s vertical field by modulation of its 2DEG. We show that a strong SAW 

signal can be detected if the IDT geometry replicates the HEMT electrode geometry at 

which RF bias is applied. In addition to characterizing SAW emission during both gate-

source and drain-source modulation, we demonstrate SAW detection by HEMTs. 

 

2.1 Previous Work 

GaN-based materials are known to exhibit large acoustic velocities, low acoustic 

attenuation, and strong piezoelectric effects [32], leading to their use in gigahertz (GHz) 

band SAW devices [33-35]. For example, studies have shown that the attenuation of 

SAWs propagating in a AlGaN/GaN heterostructure can be controlled by a DC-biased 
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diode that depletes the 2DEG between the IDTs emitter/receiver pair [36]. While 

monolithically integrated HEMTs have previously been used to amplify the electronic 

signal measured by an IDT [37], and one study examined how HEMT characteristics are 

affected by flexural modes when the HEMT is grown on an electromechanical resonator 

[38], no studies have examined the direct interaction of SAWs and HEMTs, i.e., the 

generation or detection of SAWs by a 2DEG that is dynamically modulated in the various 

regimes of transistor operation (e.g., cutoff, linear, and saturation regions) possible for a 

3-terminal HEMT. 

Several interesting applications would be enabled should HEMT bias conditions 

exist in which significant energy is coupled directly from HEMT electronic modulation to 

SAW modes or vice-versa. In high-power and high-speed RF and microwave applications 

of HEMTs, material degradation due to thermal [39] and acoustic [40, 41] stresses can 

pose a significant problem, prompting studies of device reliability [42]. SAWs emitted by 

a HEMT could provide a means to nondestructively sample the degradation of its epitaxy 

and 2DEG in real time, since SAW attenuation is known to depend strongly on crystal 

quality [11].  

Furthermore, SAWs incident on a HEMT could potentially provide dynamic 

strain modulation of the HEMT [38] (and thereby modulate its 2DEG carrier 

concentration and carrier mobility) over short times, potentially without the degradation 

effects that often occur when such strain is incorporated through lattice mismatch. 

Likewise, HEMT-based SAW detectors could provide a means for direct electrical 

amplification of SAW signals.  
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The potential for highly efficient HEMT-SAW coupling is supported by optical 

reflectance studies performed directly on an AlGaN/GaN HEMT, which showed strong 

generation of coherent acoustic phonons near the drain due to dynamic screening by the 

HEMT’s 2DEG [43]. Here we use integrated IDTs to confirm both the generation and 

detection of SAWs by AlGaN/GaN HEMTs and study the dependence of these 

mechanisms on HEMT frequency and DC bias conditions. 

 

2.2 Device Design and Fabrication 

The monolithically integrated HEMT-IDT structure used for this chapter is shown in 

Figure 2-1. The expitaxial structure is based on an undoped heterojunction consisting of 

20 nm AlN nucleation, 1.5 μm GaN, 20 nm Al0.25Ga0.75N, and a 2 nm GaN cap grown by 

molecular beam epitaxy on a sapphire (0001) substrate (see Figure 2-2). The AlGaN/GaN 

lattice mismatch strain creates a built-in piezoelectric polarization field at the 

heterointerface, which causes a 2DEG to accumulate. 

Figure 2-3 shows the fabrication process of the integrated HEMT-IDT structure. 

HEMTs were fabricated by chlorine etching mesas and e-beam evaporating Ti/Al/Ti/Au 

Ohmic contacts (subsequently exposed to rapid thermal annealing) and Ni/Au Schottky 

gates. The processed HEMTs had 1-μm-wide gates equidistant between 7-μm-wide 

source and drain contacts that had a 7 μm separation (see Figure 2-2). Ni/Au IDTs were 

formed during gate deposition.  

Three different IDT designs were fabricated and used for different purposes as 

shown in Figure 2-4; one IDT geometry had an electrode periodicity of 14 μm with the 
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same widths and spacing as the HEMT source and gate (see Figure 2-4a), a second had 

an electrode periodicity of 28 μm with the same widths and spacings as the HEMT source 

 

Figure 2-1: Integrated HEMT-IDT structure. 

 

Figure 2-2: Design of the epitaxial layer structure. 
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and drain (see Figure 2-4b), and a third had a larger electrode geometry with periodicity 

40 μm that was not resonant with the HEMT geometry (see Figure 2-4c). 

 IDT-IDT pairs were also fabricated for each of these geometries to characterize 

the SAW properties of the epitaxial layers; transmission characteristics were measured 

for both as-grown (unetched) AlGaN/GaN/sapphire heterostructures (corresponding to 

the HEMT layers in which SAWs were generated) and etched GaN/sapphire 

heterostructures (corresponding to the region outside of the HEMT through which SAWs 

 

Figure 2-3: Micro-fabrication process of the integrated HEMT-IDT structure. 
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propagated). The distances between HEMTs and IDTs and between IDT pairs were 

nearly the same (approximately 120 m).  

 

2.3 Acoustic Emission from a 2DEG 

Acoustic emitters (either HEMTs or IDTs) were contacted by standard microwave probes 

(GGB 40A-GSG-100-DP) and operated by a network analyzer (Agilent 8753C), a DC 

power supply (Agilent E3631A), and a bias tee which combined RF and DC signals. The 

network analyzer operated the device by sweeping the applied RF frequency from 100 

MHz to 1 GHz and also receiving the RF signal from an IDT detector. The detected RF 

power divided by the applied RF power throughout the swept frequency is calculated (see 

Figure 2-5). 

 

Figure 2-4: Optical images of the fabricated HEMT-IDT structure and three different 

designs of IDTs, indicated as (a), (b) and (c). 
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Figure 2-6a demonstrates the IDT-to-IDT transmission characteristics of the 

unetched heterostructure for the 14 μm IDT geometry displayed in Figure 2-4a, showing 

SAW peaks at 307.7 and 713.2 MHz corresponding respectively to the Rayleigh (R) and 

pseudo-bulk (PB) modes [27] of the epitaxial layer structure. IDT-IDT transmission 

characteristics of the etched heterostructure showed significantly lower insertion loss due 

to the removal of the 2DEG and consequent reduced attenuation [44]; however, the 

etching process introduces surface roughness which is expected to contribute to SAW 

scattering. Impedance mismatch in IDT-IDT and HEMT-IDT structures as well as mass 

loading by the thick electrodes [44] (IDT fingers and HEMT gates were deposited 

simultaneously; the latter requires a thick layer to reduce electrical impedance) also 

contribute to insertion loss for HEMT-IDT structures and both etched and unetched IDT-

IDT pairs.  

 

2.3.1 Source-Gate Modulation 

When the drain-source voltage (VDS) of the HEMT was held at 10 V and the gate-source 

voltage (VGS) was driven with a 1.8 V peak-to-peak (Vp-p) RF signal about zero volts (i.e., 

the DC bias point shown in Figure 2-7), a 307.7 MHz peak was detected at the IDT in the 

gate-source geometry as shown in Figure 2-6b. This peak frequency was the same as that 

of the Rayleigh mode in the IDT-to-IDT geometry, confirming the emission of SAWs by 

the modulated HEMT. The larger insertion loss of the HEMT-IDT structures compared to 

that of the etched IDT-IDT structures is likely primarily due to the much smaller number 

of “fingers” in the HEMT (1 pair) than in the transmitter IDT (30 pairs). 
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Figure 2-5: Setup for characterization of the HEMT-IDT transmission while the RF 

signal is applied to the VGS. 
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Figure 2-6: IDT-IDT transmission and HEMT-IDT transmission when the RF signal is 

applied across and source-gate electrodes. 

 

 



24 
 

 

 

 

 

 

Figure 2-7: HEMT DC characteristics and bias point in Figure 2-6b. 

 

 

Figure 2-8: Amplitude of SAW peak as a function of VDS and the DC component of 

VGS. 
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To study the dependence of the 307.7 MHz SAW peak on HEMT bias conditions, 

its amplitude is plotted versus VGS,DC for several VDS values in Figure 2-8. The drain 

current (IDS) as a function of VGS,DC is also shown, indicating a HEMT threshold voltage 

(Vth) at VGS,DC = -2 V. Because the horizontal electric field in the HEMT does not 

produce strain to the first order [45], we expect modulation of the vertical electric field 

(EZ) across the AlGaN/GaN layers to play the primary role in SAW generation. For all 

values of VDS, the maximum HEMT-to-IDT SAW transmission occurs when VGS,DC ≈ Vth 

+ VP-P/2 = -1.1 V; at this bias point, there is maximum time variation of the carrier 

density in the 2DEG, to which we ascribe increased SAW generation through screening 

of EZ [43]. Such screening has been predicted through self-consistent Schrödinger-

Poisson calculations to be quite significant [31] and has been identified as a mechanism 

by which stress-induced defects are produced in the AlGaN barrier layer and device 

degradation occurs [40].  

In addition, the fact that the pseudo-bulk mode at 713.5 MHz was not observed is 

further evidence that SAW generation takes place close to the surface (i.e., near the 

2DEG) when gate-source modulation (which oscillates the 2DEG carrier density) is 

applied. Furthermore, Figure 2-6b shows that the amplitude of the emitted SAW peak 

increases with higher VDS. We attribute this to increasing depletion of carriers in the GaN 

layer between the gate and drain, leading to greater penetration of the dynamically 

screened vertical field into the GaN layer and larger spatially-averaged vertical field 

magnitude in this region [41, 46, 47]. 
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2.3.2 Source-Drain Modulation 

The fabricated HEMTs were also operated in common-gate mode with VGS held constant 

and VDS driven with a 1.8 VP-P RF signal about a DC bias point. As illustrated in Figure 

2-9b for VGS = 3V and VDS = 1 + 1.8VP-P, the 28 m (Figure 2-4b) IDT geometry in this 

case detected SAW peaks emitted by the HEMT at 195.1 and 368.4 MHz, consistent with 

Rayleigh and pseudo-bulk modes (note that these are lower in frequency than the 

Rayleigh and pseudo-bulk modes discussed above due to the larger electrode periodicity). 

The fact that both peaks were detected is consistent with the HEMT source and drain 

acting as conventional IDT fingers when modulation is applied to them, with dynamic 

strain extending into the substrate.  

As shown in Figures 2-9c and 2-9d, the magnitudes of these modes are controlled 

by VGS and maximized for small DC values of VDS and high values of VGS. When VGS is 

below threshold, the 2DEG is depleted, and the vertical field profile does not change 

significantly as VDS is varied [47]; hence modulation of VDS for low VGS does not lead to 

significant SAW generation. Above threshold, for small DC values of VDS, dEZ/dVDS is 

large (due to carrier depletion effects as discussed above [41]), leading to significant 

SAW generation as VDS is modulated. As the DC value of VDS increases, dEZ/dVDS 

saturates [47], leading to reduced SAW generation.  

In addition to this effect, it is well known that SAW generation is not as strong 

when Ohmic contact fingers are formed on a conductive substrate [34], which is the case 

for the HEMT’s source and drain electrodes. This was confirmed by separate 

measurements we made using IDT-IDT pairs in which all fingers were Ohmic, which 
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showed that SAW generation became weaker as the DC bias point about which the RF 

signal was added increased. 

 

2.4 Acoustic Detection by a 2DEG 

Finally, we studied the detection of SAWs by AlGaN/GaN HEMTs. In this case, an IDT 

with a periodicity of 40 μm (Figure 2-4c) was used to transmit SAWs to a HEMT with 

both VGS and VDS held at a constant DC bias point. A schematic diagram of such an IDT-

to-HEMT transmission is illustrated in Figure 2-10. IDT-to-IDT transmission 

characteristics for the 40 m IDT geometry are shown in Figure 2-11a.  

 

Figure 2-9: Characterization of the HEMT-IDT transmission while the RF signal is 

applied across the source-drain electrodes. 
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The AC admittance (IDS,AC/VIDT,AC) was used to quantify detection of the SAW by 

the HEMT, and is plotted in Figure 2-11b for the DC bias point shown in the inset. The 

Rayleigh mode is clearly visible in the AC admittance spectrum, demonstrating that the 

HEMT can sensitively detect piezoelectric modulation of the 2DEG that occurs when a 

Rayleigh mode (confined at the surface) passes through it.  

As shown in Figure 2-12, the AC admittance amplitude is controlled by VGS and 

roughly follows the HEMT DC characteristics. When the HEMT is biased in its linear 

regime, the 2DEG density is relatively uniform from the source to the drain, so the small 

carrier density variation caused by the strain modulation has negligible effect. When the 

 

Figure 2-10: Detection of incident SAWs by a 2DEG. 
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HEMT enters its saturation regime, however, pinch-off of the 2DEG occurs on the drain 

side; even a small variation of the carrier density in the pinch-off region caused by the 

strain wave has a significant effect on the HEMT’s electrical characteristics, causing the 

AC admittance to rise rapidly. This change in admittance can be greatly increased by 

impedance-matching the RF source and IDT, which is expected to increase the magnitude 

of the generated SAW mode by as much as a factor of 1000 [34]. 

 

 

Figure 2-11: IDT-IDT transmission and IDT-HEMT transmission in which the HEMT 

is operated at the DC bias point shown in the inset. 
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Figure 2-12: AC admittance under various HEMT operation conditions. 
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2.5 Conclusion 

In conclusion, we have used integrated IDTs to confirm the generation of SAWs by 

AlGaN/GaN HEMTs, and have shown how different bias and frequency conditions can 

be used to reliably transduce Rayleigh and pseudo-bulk modes.  

The relatively high signal-to-noise ratio observed in measuring these modes 

suggests that a HEMT could be occasionally driven with appropriate bias conditions to 

emit SAW pulses that would nondestructively sample material degradation of the 2DEG 

(for Rayleigh modes) or GAN/substrate interface (for pseudo-bulk modes) in real time. 

Such an integrated HEMT-IDT system can also potentially improve device reliability and 

reduce cross-talk by damping the strong vibrational modes that propagate across the chip, 

and possibly provide a means to efficiently manage device heating by resonantly 

removing energy from vibrational modes with high effective temperature. Furthermore, 

we demonstrated the detection of SAWs by a HEMT, which may enable high-speed, 

amplified detection of SAWs for sensing applications [38] or dynamic strain modulation 

of a HEMT’s electrical properties. 

Because an IDT can only detect SAWs which are resonant with its geometry, 

HEMT-IDT transmission cannot provide the full spectrum of SAWs emitted from a 

HEMT. In order to characterize the full spectrum, the next chapter will present an optical 

reflectance method that can measure the various SAW modes supported by a GaN-on-

sapphire structure and the active control of these modes by HEMT DC bias. 
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Chapter 3 

3 Active Control of SAW Emission 

 

In this chapter, optical reflectance spectroscopy is used to measure the full 

acoustic spectrum emitted by a modulated GaN-based 2DEG, including various SAW 

modes that propagate with different polarizations and penetration depths within the 

epitaxial layer structure. It is shown that 2DEGs can be actively controlled to selectively 

transduce certain acoustic wave modes based on DC bias conditions, because of their 

ability to provide either traditional bulk piezoelectric transduction or 2DEG transduction 

depending on whether the 2DEG is depleted or present. 

 

3.1 Field Modulation in a HEMT 

As discussed in Section 1.3, the primary SAW modes supported by a GaN-on-sapphire 

structure are Rayleigh (R), Love (L), Sezawa (S), and pseudo-bulk (PB) acoustic modes 

(Figure 1-11). Because our goal is to study the fundamental mechanisms of 2DEG 

acoustic emission rather than maximize conversion efficiency, we use a GaN layer 

thickness that is small (1.4 m) relative to the acoustic wavelength (~20 m), allowing us 
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to reduce the time, cost, and challenge of molecular beam epitaxy of the GaN layer and to 

have large device feature sizes, reducing the cost and processing complexity. It should be 

noted that this geometry prevents S modes from being efficiently transduced [33] and that 

significant room for optimization of the 2DEG emitter geometry remains. 

It is important to distinguish the modulated electric field profiles and resulting 

acoustic modes emitted by a 2DEG layer structure in which the 2DEG is either depleted 

or present and which has the electrode geometry of either an IDT or HEMT (with DC 

bias applied across the drain/source and RF bias applied across the gate/source).  

For the HEMT, if the 2DEG is depleted (e.g., by DC gate-source bias below 

threshold voltage), the field in the AlGaN layer is saturated by the drain-source voltage, 

and thus acoustic transduction by the modulated gate-source bias is minimal in this bias 

regime. Deeper into the structure, the field is not saturated, and RF modulation leads to 

PB emission. In the IDT structure with depleted 2DEG, field saturation occurs neither in 

the AlGaN layer nor deeper into the structure, and hence RF modulation leads to 

emission of all modes (R, L, and PB).  

If the 2DEG is present, for the HEMT, the RF-modulated field is dropped mostly 

in the 2DEG channel, leading primarily to modulation of the vertical built-in 

piezoelectric field in the 2DEG and efficient coupling to the R mode (which is primarily 

vertically polarized) rather than PB modes (due to their quasi-longitudinal nature). In the 

IDT structure, the presence of the 2DEG attenuates the surface modes (R and L), making 

their emission weak, while the PB modes emitted are relatively strong since they are at a 

distance from the 2DEG and therefore less attenuated. 
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Figure 3-1: Potential distribution in a GaN/AlGaN heterostructure in which the 2DEG 

is depleted. 
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Figure 3-2: Transconductance of the simulated HEMT and DC-dependent electrical 

fields at two depths in the simulated epitaxy for the case in which the 2DEG is 

depleted. 
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Figure 3-3: Potential distribution in a GaN/AlGaN heterostructure in which the 2DEG 

is present. 
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Figure 3-4: Transconductance of the simulated HEMT and DC-dependent electrical 

fields at two depths in the simulated epitaxy for the case in which the 2DEG is 

present. 
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2D finite-element simulations were performed to provide quantitative support of 

the above qualitative description of acoustic emission from a depleted or present 2DEG. 

A structure consisting of 20 nm Al0.25Ga0.75N and 2 μm GaN was modeled using the 

Synopsys Sentaurus Device package [48]. The drain-source voltage (VDS) was held at a 

constant 28 V and the gate-source voltage (VGS) was varied from -6 V to 0 V with a step 

size of 2 V. The transconductance of the simulated HEMT is given in Figure 3-2 and 

shows a threshold of -4 V.  

As the device is modulated between the two below-threshold points shown in 

Figure 3-1, the field modulation in the AlGaN layer is found to be small (since the total 

field is saturated in this region), while the modulation in the GaN is large. Above 

threshold (see Figure 3-3), the field modulation in the GaN is small since the modulated 

voltage drop occurs mostly in the 2DEG.  

To compare the depth at which field modulation occurs (which influences the 

particular acoustic modes excited) at various bias points, two vertical electric field (EZ) 

probes are shown as a function of VGS: one in the AlGaN layer (10 nm depth) and the 

other in the GaN layer (1 μm depth). Figures 3-2 and 3-4 show that when the 2DEG is 

below threshold, modulation of VGS leads to strong modulation of EZ in the GaN layer 

but weak modulation in the AlGaN layer; this is reversed when the 2DEG is above 

threshold. PB modes are therefore expected to be preferentially emitted when the 2DEG 

is modulated below threshold, while surface modes (R and L) are expected to be emitted 

when the 2DEG is modulated above threshold.  
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3.2 Optical Reflectance Spectroscopy 

To experimentally characterize acoustic emission from a 2DEG, we fabricated an 

undoped heterojunction epitaxial structure consisting of a 400 nm AlN layer, 1.4 μm GaN 

layer, 20 nm Al0.25Ga0.75N layer, and 2 nm GaN cap layer on a sapphire (0001) substrate. 

Hall measurements at room temperature indicated a 2DEG carrier density and electron 

mobility of 1.6×10
12

 cm
-2

 and 800 cm
2
/Vs. This mobility is low compared to most GaN-

based 2DEGs, because of non-optimized epitaxy growth conditions.  

HEMTs were fabricated by the same process described in Section 2.2. Ni/Au 

IDTs (50 pairs of fingers with a periodicity of 20 μm) were also fabricated on the as-

grown (unetched) heterostructures. All HEMTs and IDTs were fabricated on the same 

chip and were aligned with the source/gate/drain electrodes and IDT fingers in the same 

direction. Fabricated  devices and were RF-shielded and operated by a network analyzer, 

DC power supply, and bias tee.  

The optical reflectance spectroscopy setup (see Figure 3-5) includes a continuous-

wave (CW) HeNe laser (Thorlabs HNL225R), which was focused by a long working 

distance microscope objective (Mitutoyo M PLAN APO SL 50x) onto the sample with a 

spot size of 2 μm. The modulation of reflected intensity by an acoustic wave due to the 

photoelastic effect [49] was measured by an AC-coupled high-speed RF-shielded Si PIN 

photodetector (Menlo Systems FPD310-FV, frequency range 1-1500 MHz) and spectrum 

analyzer (Agilent N9340B), while the average power of the reflected light was monitored 

to confirm that it stayed constant. 2DEGs and IDTs were driven over the frequency range 

of 100 MHz to 1.1 GHz (with 1 VP-P modulation applied to the gate/source electrodes for 
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HEMTs and to consecutive finger pairs in IDTs); identical measurements were performed 

with the laser light blocked in order to confirm that measured spectra were not the result 

of RF leakage. Frequencies corresponding to multiples of the longitudinal mode spacing 

of the HeNe laser (257, 514, 771, and 1028 MHz) were skipped when sweeping the 

driving frequency. 

 

 

 

 

Figure 3-5: Optical reflectance spectroscopy setup used to measure R/R (SAW 

amplitude) vs. bias frequency. 
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Figure 3-6: SAW spectrum emitted from an IDT under DC bias at 0V and -4V. 

 

Figure 3-7: DC dependences of each resonant mode including R, L, PB1 and PB2. 
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3.3 SAW Mode Switching 

3.3.1 Mode Dynamics in an Interdigital Transducer 

The SAW spectrum emitted by an IDT and characterized by optical reflectance 

spectroscopy showed four prominent resonant modes (at 240, 290, 430, and 540 MHz) 

when a -4 V DC bias was applied, and only two modes (at 430 and 540 MHz) when the 

DC bias was zero, as shown in Figure 3-6. Based on the calculated dispersion relations 

for a GaN/sapphire layered structure [27], these modes at 240, 290, 430, and 540 MHz 

correspond to R, L, PB1, and PB2 modes respectively, and are consistent with a SAW 

wavelength of 20 μm.  

As shown in Figure 3-7, the R and L modes are weakly emitted in the DC bias 

regime between -2 to 2 V (when the 2DEG is present), and strongly emitted in the DC 

bias regime > 2 V or < -2 V (when the 2DEG is depleted) [36]. However, the PB1 and 

PB2 modes are not affected by the DC bias, as predicted in Section 3.1. 

 

3.3.2 Multi-gate HEMT 

When a 4-gate HEMT was operated with its VDS held at 10 V and its VGS driven with an 

RF signal about 2 V, four resonant modes at 330 MHz (R), 420 MHz (L), 630 MHz 

(PB1), and 850 MHz (PB2) were observed by optical reflectance spectroscopy (laser spot 

located between the gate and drain electrodes) as shown in Figure 3-8a. These resonant 

frequencies are consistent with a periodicity of 14 μm. The amplitudes of all four SAW 

peaks are plotted versus VGS,DC (while VDS is held at 10 V) in Figure 3-8b. When the 

device is modulated near its bias point of maximum transconductance, maximum time
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Figure 3-8: Characterization of the SAW emission spectrum of a 4-gate transistor and 

the DC dependences of the four primary acoustic modes (R, L, PB1 and PB2). 
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variation of the 2DEG carrier density occurs, and R and L modes are strongly emitted 

while PB1 and PB2 modes are weak. On the other hand, when the device DC bias is 

moved away from this point, the modulated voltage drop no longer primarily occurs in 

the 2DEG [50], and the PB1 and PB2 modes become strongly emitted while the R and L 

modes weaken. Different DC bias conditions therefore lead to SAW generation that is 

selective based on the modulation of the 2DEG carrier density or direct piezoelectric 

transduction by the dynamic potential. This selective source functionality in which R/L or 

PB modes can be chosen for emission based on the DC bias point is unique to the 

acoustic coupling provided by a 2DEG. 

Based on the transconductance data shown in the inset of Figure 3-8b, the 

modulated carrier density as a function of the applied voltage (VGS) can be derived using 

Equation 1.2 and used to predict the SAW signal detected by optical reflectance. 

Equation 1.2 can be rewritten as 

 
33
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0 33 33

m
ZZ GS

e g
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C e v l





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  
                                                                           (3.1) 

where gm is the transconductance, v is the electron drift velocity, l is the HEMT width, 

and VGS is the AC component of the applied gate-source voltage. The electron drift 

velocity (v = 0.4×10
7
 cm/s) can be obtained from the calculated velocity-field curves for 

the measured electron density [51] with known electric field E = 1.43 MV/m (the 

horizontal field applied by the DC drain/source bias along the channel). The strain  zz 

can then be used to calculate the change in the index of refraction n1 in GaN for 

transverse electric polarization through  
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where p13 = 0.006 is the photoelastic constant for GaN [52] and n1 = 2.33 is the GaN 

index of refraction at the HeNe laser wavelength [53]. The change in the normalized 

intensity of the reflected beam can be calculated as: 
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where n0 = 1.00 is the index of refraction of air. Given the measured average reflected 

optical power (R0 = 0.25 mW), the photodetector responsivity (0.4 A/W), and the 

integrated transimpedance amplifier gain (5×10
4
 V/W), the voltage of the detected SAW 

signal can be predicted by this model and is shown in Figure 3-8b. The good match 

between model and measurement of strain-induced changes in optical reflectance 

suggests that modulated strain at various bias points can be accurately predicted based on 

known HEMT DC characteristics.  

Using Equation 3.1, we can directly calculate the vertical strain modulation of the 

HEMT (~60 µm in length) characterized in Figure 3-8b; the result is shown in Figure 3-9. 

For comparison, the calculated strain modulation for the measured 50-pair IDT (which 

has the same width as the HEMT and is on the same AlGaN/GaN layer structure) is also 

shown, as well the responses of a three-pair IDT (60 μm long and hence the same chip 

area as the HEMT) and one-pair IDT (20 m long), the latter two being derived using a 

scale factor to account for the fact that SAW strength in a multifinger IDT is proportional 

to the square of the number of electrode pairs [28]. The modulated strain magnitudes of 

both are consistent with the predictions given above based on Equations 1.1 and 1.2, and 
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confirm that the HEMT provides strain modulation that is between two and three orders 

of magnitude greater than that of an IDT of the same chip area. 

 

3.3.3 Single-gate HEMT 

SAWs emitted from a HEMT geometry that only has a single gate electrode were also 

studied. DC characteristics and transconductance of the 1-gate HEMT are shown in 

Figures 3-10a and 3-10b. The emission spectrum of Figure 3-10e, in which the device 

was under the same bias conditions as the 4-gate transistor, shows four SAW modes: 460 

MHz (R), 550 MHz (L), 760 MHz (PB1) and 990 MHz (PB2). The DC dependences of 

 

Figure 3-9: Calculated vertical strain modulation induced in the 2DEG by carrier 

density modulation, as a function of VGS,DC, as well as the calculated vertical strain 

modulation induced by IDTs of three different sizes. 
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the four SAW peaks are plotted in Figure 3-10c and show trends similar to those of the 4-

gate HEMT plotted in Figure 3-8b. 

The higher resonant frequencies of the 1-gate transistor suggest a shorter SAW 

wavelength; to investigate this, we held VGS,DC at 2 V and measured SAW spectra as VDS 

was increased from 4 V to 12 V with 2 V steps, thus moving the channel’s bias from the 

linear regime to saturation, as illustrated by the arrow and dots in Figure 3-10a. Figures 

3-10d-h show that the R mode resonance shifts from 410 MHz to 470 MHz while the L 

mode resonance shifts from 510 MHz to 580 MHz as the channel shrinks in length due to 

pinch-off. This effect is further proof that the generation mechanism for the R and L 

modes is the dynamic modulation of the 2DEG. The R wave velocity is calculated as 

4620 m/s from the 330 MHz resonance of the 4-gate device (which has a wavelength of 

14 μm). Assuming the same R wave velocity, the wavelength in the 1-gate transistor is 

11.3 μm in the linear regime (R peak at 410 MHz) and shrinks to 9.8 μm (the 2DEG’s 

effective channel length) in the saturation regime (R peak at 470 MHz). Furthermore, this 

frequency shift is not observed in the 4-gate transistor geometry, as the wavelength is set 

by the periodicity of the multiple channels rather than the channel length. The resonant 

frequencies of the PB1 and PB2 modes are found to stay constant in both the 1-gate and 

4-gate transistors, consistent with their generation by direct transduction of the RF signal 

rather than a process involving the 2DEG. 

 Finally, it should be noted that a 2DEG also provides a means for acoustic wave 

detection (as shown in Section 2.4), since a propagating acoustic mode causes a transient 

variation in its carrier density due to piezoelectric coupling [54]. In a biased 2DEG 



48 
 

 

 

Figure 3-10: Characterization of the SAWs emitted by a single-gate HEMT. (a) DC 

characteristics of the 1-gate transistor. (b) Transconductance of the 1-gate transistor 

with VDS set at 10 V. (c) DC dependences of the amplitudes of the four SAW modes 

emitted from the 2DEG as a function of VGS,DC when VDS is set at 10 V. (d)–(h) 

Acoustic spectra when VGS,DC is set at 2 V and VDS is increased in 2 V increments 

from 4 V to 12 V, as illustrated by the red dots and arrow in (a). 
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detector, this will lead to a transient signal in either its current or voltage characteristics 

(depending on the DC bias configuration of its terminals). Combined with the acoustic 

mode selectivity discussed above, a 2DEG-2DEG emitter-detector pair could therefore 

enable switchable multi-band applications. 

 

3.4 Conclusion 

In this chapter, we performed finite element analysis of the electrical fields in an 

AlGaN/GaN heterostructure under bias conditions in which the 2DEG is either depleted 

or present. The location of the most intense field modulation was found to occur at 

different depths in the epitaxy for different bias conditions, suggesting the ability to 

strongly transduce different SAW modes by varying the DC bias. 

We then built an optical reflectance spectroscopy apparatus to measure the full 

SAW emission spectrum from a HEMT, including various SAW modes with different 

polarizations and penetration depths. Using this setup, we verified that a 2DEG SAW 

source is able to selectively turn on and off the emission of different acoustic modes 

based on applied DC bias conditions, leading to a unique functionality as a selective 

acoustic source. This technology can enable voltage-controlled acoustic emission at a 

specific depth and can furthermore provide a multi-band, amplified scheme for acoustic 

filtering and sensing applications. 

In order to examine the impact of carrier flow on the emitted SAWs from a 

HEMT, the next chapter will present a detailed investigation of the interaction between 

emitted SAWs and electron drift current in a 2DEG.   
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Chapter 4 

4 Coupling of SAWs and Drifting 

Electrons in a 2DEG 

 

In previous chapters, we verified SAW emission from a modulated 2DEG and 

characterized the emission spectrum. It was shown that different SAW modes can be 

selectively emitted in a HEMT geometry by varying the gate-source DC bias. 

One of the ways in which a 2DEG differs greatly from conventional transducers 

(e.g., IDTs) is that a 2DEG is highly electrically conducting whereas conventional 

transducers operate on insulating piezoelectric dielectrics. Based on acoustoelectric 

theory [18,19] developed decades ago for acoustic amplification in the presence of 

electrons with drift velocity higher than the acoustic phase velocity, we show below that 

a 2DEG can provide internally-amplified and uni-directional acoustic emission that is 

tuned by varying the drain-source voltage (which controls the electron drift velocity). For 

example, by simply switching the source-drain voltage polarity, one can switch the 

direction of emitted SAWs. 
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We first develop a model describing the amplification of SAWs by electron drift 

current in a 2DEG, and then experimentally examine directional SAW emission from a 

2DEG. 

 

4.1 Conventional Acoustoelectric Theory and Applications 

Interactions between acoustic waves and electrons have been extensively studied for 

more than half a century. In 1953, the acoustoelectric effect was first theoretically 

described by Parmenter, who predicted that a travelling longitudinal acoustic wave could 

drive electrons to generate an electric current [55]. This effect was then thoroughly 

studied by many investigations in subsequent years [56-58].  

In 1961, Hutson, McFee, and White demonstrated that bulk ultrasonic waves 

could be substantially amplified by drifting electrons if the electron velocity exceeds the 

speed of ultrasonic waves in CdS, a piezoelectric semiconductor [59]. Huston and White 

also developed a detailed analytic model describing the propagation of acoustic waves in 

a piezoelectric substrate and their amplification by drifting electrons [60, 61]. However, 

due to the low electron mobility in piezoelectric semiconductors at the time, it was 

common to use an applied voltage exceeding one kilovolt in order to move electrons 

faster than the ultrasonic waves. This posed serious problems for acoustoelectric devices, 

such as heating and degradation, which prevented further development [62].  

Researchers soon realized that such problems could be largely mitigated by using 

surface acoustic waves (SAWs) instead of bulk ultrasonic waves. In addition, the 

invention by White and Voltmer of interdigital transducers (IDTs) in 1965 as efficient 
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and reliable SAW emitters [9] greatly accelerated research of the acoustoelectric effect 

involving SAWs. The experimental approaches for such studies involved depositing a 

semiconducting layer with high electron mobility on a piezoelectric substrate, or simply 

bringing a semiconducting slab close enough to a piezoelectric substrate that the air gap 

is less than one wavelength of the SAWs propagating in the piezoelectric substrate [63, 

64]. The oscillating electric field excited by SAWs travelling in a piezoelectric substrate 

interacts with drifting electrons in the semiconductor layer, which can amplify (or 

attenuate) the SAWs if the electron drift velocity is higher (or lower) than the SAW 

velocity. This effect was extensively studied during the 1970s and 1980s with 

demonstrations of many varieties of acoustoelectric devices [14, 15, 65]. 

During the late 1980s, research in this area shifted to interactions between SAWs 

and two-dimensional electron gases (2DEGs) formed in GaAs/AlGaAs heterostructures 

rather than electrons in bulk materials. Attention was mostly focused on the attenuation 

of SAWs caused by a 2DEG. First, the attenuation of weak SAWs travelling over a 

2DEG was studied [66, 67]; this occurs in the linear regime in which the conductive 

2DEG screens the electric field accompanying the travelling SAWs. Because a 2DEG’s 

conductivity can be easily characterized by measuring the attenuation of incident SAWs, 

such experiments provide a means to study the physics of low dimensional electrons, e.g.,  

quantization of the Hall conductivity [68] or quantum oscillation [66]. Later, studies of 

intense SAWs incident on a 2DEG revealed a nonlinear effect [69] in which the 2DEG 

was broken into moving strips of electrons (electrons falling into the SAW potential 

minima) guided by SAWs with a large potential amplitude comparable to the 

semiconductor’s band gap.  
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Recently, it was demonstrated that SAWs could be used to transport single 

electrons with maintained spins in a depleted 2DEG over macroscopic lengths at low 

temperatures [18, 19]. However, there has been no study in the literature on amplification 

of SAWs by electron drift in a 2DEG. 

 

4.2 Amplification of Acoustic Waves by a Biased 2DEG 

To quantify the amplification of SAWs by drifting electrons in a 2DEG, we first revisit 

the amplification of bulk acoustic waves by electron drift in a bulk piezoelectric 

semiconductor.  

 As a bulk wave propagates through a piezoelectric semiconductor, it induces a 

traveling sinusoidal potential that causes bunching of carriers and hence a periodic 

variation in electrical conductivity. In the presence of a DC current, this periodic 

conductivity leads to an additional periodic potential that has a phase difference with 

respect to the acoustic wave due to the motion of charge carriers. This phase difference 

leads to acoustic amplification under the condition that the electron drift velocity is 

higher than the acoustic wave speed.  

The equations that describe piezoelectric coupling in a material can be written as: 

 pT cS e E  ,              (4.1) 

 pD e S E  ,              (4.2) 

where c is the elastic constant at constant electric field,  is the dielectric permittivity at 

constant strain, E is the electric field, T is the stress, ep is the piezoelectric constant, and 
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D is the electric displacement. To derive the ultrasonic amplification coefficient [61], one 

first obtains an expression for the electric displacement, D, in terms of the E field from 

Poisson’s equation and the current-density-space-charge continuity equation. This 

relation between D and E is then used to eliminate D from the equation 4.2, so that an 

expression for E in terms of the strain, S, is obtained, which is then substituted in the 

equation 4.1. The result is a complex elastic stiffness constant, c’, which contains all of 

the electrical effects. The acoustic amplification coefficient, , is then obtained from the 

imaginary part of (c’)
-1/2

, yielding [59]: 

 

   

2

22 22 1 1

c

c c D

K
k

 


    


 
                                                                (4.3) 

where k is the acoustic wavenumber,  is the acoustic frequency, c    is the 

conductivity relaxation frequency (for which  is the conductivity and  is the dielectric 

constants of the piezoelectric medium), 
2 2

pK e c  is the electromechanical coupling 

coefficient (for which ep is the piezoelectric constant, and c is the stiffness constant), 

2

D Sv D   is the electron diffusion frequency (for which vS is the acoustic velocity in the 

piezoelectric material, 0BD k T e is the diffusion constant,  is the electron mobility, 

kB is the Boltzmann constant, T is absolute temperature, and e0 is the electron charge), 

and 1d Sv v    is the dimensionless electron drift parameter (for which vd is the 

electron drift velocity).  

 To modify Equation 4.3 to describe the interaction of SAWs with a 2DEG, an 

effective electromechanical coupling coefficient 
2

effK  is used which is slightly different 
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from the coefficient K
2
 used for bulk waves [67]. Also, the conductivity relaxation 

frequency is replaced by the following 2D form [67]: 

 1 2c Sk     ,                                                                                              (4.4) 

where 0S Sn e   is the 2DEG sheet conductivity and nS and are the 2DEG carrier 

density and electron mobility. Substituting into Equation 4.3 yields 

 

   

2

2 222 1

eff S M

S M

K
k

k

  


  


  
,                                                                 (4.5) 

where   2

1 2 0/B Sk T e n     is the 2D screening length and  1 2M Sv    . This is 

the governing equation for the interaction (amplification or attenuation) of SAWs by 

electron drift in a 2DEG. Figure 4-1 shows a layered structure supporting this interaction. 

 

 

Figure 4-1: Illustration of a layer structure and applied bias supporting SAW 

amplification. 
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When an incident SAW travels over a 2DEG, the intensity of the SAW is increased if the 

electron drift velocity is larger than the SAW velocity ( > 0).  

Under the conditions of no electron drift ( = -1) and a SAW wavelength much 

greater than the 2D electron screening length (k small), Equation 4.5 reverts to the well-

known equation describing attenuation of SAWs by a 2DEG [67]: 

 

 

2

2
2 1

eff S M

S M

K
k

 


 
 


.                                                                                 (4.6) 

Furthermore, Equation 4.3 reverts to the 3D form (Equation 4.3) if  is replaced by
2

DkL , 

where 1

2

0

B
D

d

k T
L

e N


  is the 3D Debye screening length and Nd is the bulk carrier density. 

The SAW power gain in decibels (dB) per unit length of interaction with drifting 

electrons in a 2DEG can be calculated in terms of the amplification coefficient derived in 

Equation 4.5:  

2

1010logG e     .                                                                                             (4.6) 

Figure 4-2 shows G as a function of electron drift velocity in a 2DEG for four different 

values of carrier density. Positive gain indicates that the SAW is amplified, while 

negative gain indicates attenuation. A positive electron velocity indicates that the SAW is 

travelling in the same direction as the drifting electrons, while negative indicates the 

opposite direction. The demonstrated strength of interaction in Figure 4-2 is calculated 

based on an Al0.25Ga0.75N/GaN 2DEG heterostructure grown on a sapphire substrate with 

an electron mobility of 1500 cm
2
/(V∙s) at 300 K. In this work, K

2
 is used approximately 
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Figure 4-2: SAW power gain per unit length of interaction with a DC biased 2DEG, as 

a function of electron velocity for four different values of 2DEG carrier density. 

 

Figure 4-3: Gain per unit length as a function of 2DEG density for four different 

values of electron velocity, based on the same condition used in Figure 4-2. 
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for 2

effK  [67]. For this epitaxial structure, ep = 1.14 C/m
2
, c = 397 GPa [31], and  = 

5.160 [70] at high frequencies (where 0 is the vacuum permittivity). The assumed 

frequency of the SAW is 0.8 GHz and its velocity is 4.6×10
5
 cm/s, consistent with a 2 m 

GaN on sapphire structure [33] that is used for experimental studies below. The crossover 

of G occurs when the electron velocity equals the SAW velocity.  

  Figure 4-3 shows G as a function of 2DEG density for four different values of 

electron velocity, based on the same layer structure used in Figure 4-2. The gain 

decreases after reaching its maximum as carrier density keeps increasing, because the 

 

Figure 4-4: Solid curves: gain per SAW wavelength for the four different values of 

2DEG density used in Figure 4-2, assuming an electron drift velocity of 3×10
6
 cm/s; 

dashed curves: gain per SAW wavelength if electron diffusion is ignored by setting  

to zero. 
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travelling piezoelectric field accompanying the SAW has a reduced bunching effect on 

local carrier density when this carrier density is high [61]. 

 The solid lines in Figure 4-4 show the acoustic gain as a SAW travels by one 

wavelength through a 2DEG, for the four different values of 2DEG density used in 

Figure 4-2, while the electron drift velocity is set constant at 3×10
6
 cm/s. The gain per 

wavelength drops quickly as the SAW wavelength decreases (SAW frequency increases) 

because the electrons cannot move fast enough to respond to the oscillating field 

generated by the travelling SAWs at high frequencies. This effect can be easily 

understood by ignoring the electron diffusion term in Equation 4.3 (setting  to zero), 

which leads to a constant gain per wavelength, as shown in the dashed lines. 

Figure 4-5 compares the interaction of SAWs with drifting electrons in a bulk 

material and in a 2DEG. For bulk GaN at 300 K with an electron density between 10
12

 

and 10
18

 cm
-3

 and a mobility of approximately 600 cm
2
/(V∙s) [71], the equivalent density 

in a 10-nm 2DEG quantum well formed at an AlGaN/GaN interface is between 10
6
 and 

10
12

 cm
-2

 and the mobility is approximately 1500 cm
2
/(V∙s). If the electron velocity is set 

constant at 3×10
6
 cm/s, the maximum SAW gain produced by electron drift in bulk GaN 

is predicted to be 160 dB/mm, which is a little higher than that predicted for a GaN-based 

2DEG (145 dB/mm). The former occurs at a smaller equivalent carrier density (~ 10
14

 

cm
-3

) than the latter (~ 10
10

 cm
-2

), due to the 2DEG’s higher effective resistance. Since a 

carrier density as low as 10
14

 cm
-3

 is difficult to obtain in bulk semiconductors due to 

unintentionally introduced impurities, while it is typical to obtain 10
10

 cm
-2

 in a 2DEG, a 

2DEG could yield a higher maximum gain for practical carrier densities. 
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4.3 Characterizing Directional Emission of SAWs 

The SAW-2DEG interaction allows a HEMT to not only emit SAWs by dynamic 

modulation of the carrier density [70, 72], but also to internally amplify (or attenuate) the 

emitted SAWs in particular directions. Figure 4-6 illustrates an experimental arrangement 

to investigate this phenomenon. An RF signal is applied across the source-gate (VGS) to 

excite SAW emission in both drain-source and source-drain directions. Meanwhile, DC 

bias is applied across the drain-source (VDS) to drive electron drift in the 2DEG channel 

which can, at certain bias conditions, substantially amplify the emitted SAWs 

propagating in one direction and attenuate those propagating in the other. 

 

Figure 4-5: Comparison of the interaction strength for SAWs and drifting electrons in 

a GaN-based 2DEG and bulk GaN at equivalent carrier densities. 

 



61 
 

 

Figure 4-7 shows the ratio of the SAW power emitted from the drain side to that 

from the source side, as a function of the electron drift velocity. This ratio is derived 

based on the gain per unit length from Figure 4-2, recognizing that SAWs emitted from 

the drain side interact with drifting electrons that have a positive velocity whereas SAWs 

emitted from the source side interact with drifting electrons that have a negative velocity. 

The SAW-2DEG interaction length is assumed to be one wavelength of the emitted SAW, 

which is also the effective channel length (given that the spacing of the modulated 

gate/source electrodes is approximately half of the channel length). This length used in 

Figure 4-7 is 6 m, obtained from dividing the SAW velocity (4.6×10
5
 cm/s) by the SAW 

frequency (0.8 GHz). The SAW power emitted from the drain side is found to be 

 

Figure 4-6: A HEMT on an AlGaN/GaN 2DEG structure is used as an active SAW 

emitter with directional emission functionality under certain bias conditions. S stands 

for source, G for gate, and D for drain. 
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Figure 4-7: Calculated ratio of the SAW power emitted from the drain side to that 

from the source side as a function of electron velocity for four different values of 

2DEG density. 
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nearly 1.6 times as large as that emitted from the source side at a 2DEG electron density 

of 1×10
10

 cm
-2

 and drift velocity of 4×10
6
 cm/s. 

 To experimentally investigate SAW amplification and consequent directional 

acoustic emission from a 2DEG, we studied a modified commercial GaN multi-gate high 

electron mobility transistor (HEMT) (Nitronex NPTB00050). The modification consisted 

of removing the sealing cap from the device package and using a micromanipulator-

controlled Alessi probe needle to mechanically break all electrode interconnections 

except for one source, one gate, and one drain, forming a single-gate transistor structure. 

The source-drain spacing was 5.5 m, and the layer structure was composed of 1.9 m 

thick GaN-based epitaxy grown on a silicon substrate. Since sapphire and silicon have 

similar slow transverse acoustic velocities (5980 m/s in sapphire and 5842 m/s in silicon), 

 

Figure 4-8: HEMT’s transconductance and source-drain current (IDS) as a function of 

VDS and VGS,DC, with VDS held at 1 V. 
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an approximate acoustic velocity of 4.6×10
5
 cm/s was assumed based on the calculated 

velocity-thickness-wavelength dispersion relationship for a GaN/sapphire structure [33].  

A HeNe laser was used as an optical probe [70] to measure SAW intensity by 

means of the photoelastic effect (see Section 3.2). The focused laser spot could be located 

precisely on either the drain side or source side to characterize the intensity of emitted 

SAWs in either direction. When an RF signal (80 mVP-P at 0.8 GHz) was applied across 

VGS at constant VDS = 1 V, intense SAW emission was detected over a range of VGS,DC as 

shown in Figure 4-9. The applied RF power was small enough to ensure that the 

transduced piezoelectric potential amplitude was considerably less than the 

semiconductor’s band gap, in order to prevent non-linear SAW-2DEG interactions from 

occurring.  

 

Figure 4-9: SAW power emitted at 0.8 GHz from the drain side (black) and source 

side (gray), as a function of VGS,DC, with VDS held at 1 V. The power is normalized to 

the minimum measured at VGS,DC = -2 V; the emission ratio (drain/source) is shown in 

magenta. 
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The ratio of the measured power emitted from the drain side to that emitted from 

the source side reaches its peak near the threshold voltage of the transistor which is -1.55 

V. For the applied electric field E = 1.82 kV/cm (corresponding to 1 V source-drain DC 

bias along the 5.5 m channel), Monte Carlo simulations of electron-velocity-field 

characteristics [73] predict an electron drift velocity approximately 2.8×10
6
 cm/s. The 

2DEG mobility is estimated to be approximately 1540 cm
2
/(V∙s) due to linear electron-

velocity-field relationship at the low field region. Thus, from the estimated electron 

velocity and the 0.287 mA/mm current density near the peak SAW power ratio, the 

2DEG density at this peak is estimated to be approximately 0.64×10
10

 cm
-2

, consistent 

with the calculated maximum in Figure 4-3. The directional emission is smaller outside a 

small bias regime near threshold, due to reduced SAW-2DEG interaction under 

conditions of high carrier density. We also note here that the acoustoelectric effect could 

 

Figure 4-10: (a) and (b) SAW power emitted from the drain side and source side as a 

function of VDS, with VGS,DC held at -1.55 V and -0.80 V, respectively. 
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potentially be enhanced if the acoustic impedance profile were engineered to provide 

acoustic confinement within the 2DEG. 

SAW emission was also measured while VDS was varied from -2 V to 2 V and 

VGS,DC was held constant at -1.55 V or -0.80 V, as shown in Figures 4-10 (a) and (b), 

respectively. Figure 4-10 (a) clearly shows that the direction of SAW emission can be 

reversed by switching the direction of VDS. Measured emitted power ratios at various VDS 

and VGS,DC are shown as scattered points in Figure 4-11. The estimated carrier densities 

for the four bias voltages are 2.4, 6.4, 16, and 40×10
9
 cm

-2
. Also shown are solid lines 

generated from the model of Figure 4-7 under the assumptions of a constant electron 

 

Figure 4-11: SAW power ratio (drain/source) as a function of VDS, with VGS,DC varied 

from -1.60 V to -1.45 V with a step size of 0.05 V (points). Also shown are predicted 

power ratios for which the electron velocity in Figure 4-7 is converted to VDS by 

assuming a constant 2DEG mobility (lines). 
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mobility of 1500 cm
2
/(V∙s) and a linear relationship between electron velocity and 

applied source-drain DC bias. The measurements and model match well for small source-

drain voltage and deviate at high source-drain voltage as the relationship between 

electron velocity and applied field begins to deviate from linear relation. In addition, the 

calculated power ratio is based on carrier densities that are slightly different from the 

estimated densities. 

 

4.4 Conclusion 

We developed an analytic model describing the amplification of SAWs by electron drift 

current in a 2DEG. We then verified that SAWs emitted from an active HEMT-based 

acoustic emitter can be internally amplified (or attenuated) by drifting electrons under 

certain bias conditions, leading to a DC voltage tunable radiation pattern for acoustic 

emission. 
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Chapter 5 

5 Conclusion and Future Work 

 

The work presented here is a study of the performance and fundamental operating 

principles of active SAW emitters based on HEMT structures.  

We first verified the emission of SAWs from a modulated AlGaN/GaN HEMT by 

fabricating integrated IDTs which have geometries that are resonant with that of the 

HEMT. HEMT-to-IDT transmission was characterized to demonstrate the strong 

emission of SAWs from the HEMT’s 2DEG channel as a result of dynamic relaxation of 

the built-in strain in the AlGaN layer upon modulation of the 2DEG carrier density. 

Because 2DEGs have a very concentrated built-in piezoelectric field (~10 nm vs. ~10 m 

in IDTs), they represent a source of very intense SAWs, which are increasingly desired in 

applications. 2DEGs were also demonstrated to detect incident SAWs due to dynamic 

strain modulation of their carrier density. Thus, a HEMT may enable high-speed, 

amplified detection of SAWs for sensing applications, and a 2DEG-2DEG emitter-

detector pair could enable increased performance relative to existing SAW filter 

applications. 
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 Because IDTs can only detect SAWs that are resonant with their designed 

geometries, we used optical reflectance spectroscopy to measure the full SAW emission 

spectrum from a HEMT, including various SAW modes with different polarizations and 

penetration depths. We demonstrated that a 2DEG SAW source is able to selectively turn 

on and off the emission of different acoustic modes based on applied bias conditions, 

leading to a unique selective acoustic source functionality. 

 We then investigated how charge carrier flow in a 2DEG impacts SAW emission. 

An analytic model describing SAW amplification and attenuation by electron drift 

current in a 2DEG was developed, and the emitted SAW intensity was predicted to be 

stronger in the direction of electron drift if the average electron velocity exceeds the 

SAW velocity. We then verified this directional emission by measuring emitted SAW 

power at the drain and source using optical reflectance microscopy. We found that the 

preferential direction of emission could be switched by switching the polarity of the 

applied drain-source bias voltage. 

 

5.1 Future Work: Nondestructive Ultrasonic Diagnostics of 

HEMTs 

In high-power and high-speed RF and microwave applications of HEMTs, material 

degradation due to thermal [39] and acoustic [40, 41] stresses can pose a significant 

problem, prompting studies of device reliability [42]. SAWs emitted by a HEMT could 

provide a means to nondestructively sample the degradation of its epitaxy and 2DEG in 

real time, since SAW propagation is known to depend strongly on crystal quality [11].  
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 Because bulk GaN substrates are difficult to obtain due to cost and restrictions on 

wafer dimensions, GaN-based epitaxial structures are usually grown on substrates such as 

sapphire, silicon, and silicon carbide. Due to lattice mismatch between GaN and these 

substrates, the quality of the epitaxy near the GaN/substrate interface is usually very poor, 

and a large number of cracks and dislocations can be easily observed under microscopy. 

During high voltage operation of GaN HEMTs, a large mechanical strain is generated in 

the device area due to the piezoelectric effect. This strain is concentrated locally at cracks 

and dislocations, leading to deterioration of the epitaxy near the GaN/substrate interface. 

It has already been reported that HEMTs suffer sudden failures because of this effect [40].  

In order to study this failure mechanism, an integrated IDT (with a geometry 

resonant with that of the HEMT) could be used for ultrasonic diagnostics by switching 

the HEMT to a bias condition in which strong SAWs are generated and then using the 

integrated IDT to characterize the HEMT’s emitted SAW spectrum. By measuring 

changes in the emitted SAWs (e.g., peak frequency, peak amplitude, peak width, peak 

shape, etc.) during a controlled degradation study, the relationships between emitted 

SAW spectrum and device degradation could be obtained. Such a study could provide a 

basis for real-time diagnostic indicators of impending HEMT failure while it is being 

used in an application.  

 

5.2 Future Work: 2DEG Transducers 

Because 2DEGs provide an interesting platform for intense interactions between electric 

charges and 1) strain, by piezoelectric coupling; 2) light, by photo-excitation; and 3) 
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polar molecules, by change in surface potential; they could enable applications such as 

ultra-high frequency SAW emission (Section 5.2.1), high performance nanomechanical 

resonators (Section 5.2.2), and ultra-sensitive biomaterial detectors (Section 5.2.3). 

 

5.2.1 GaN 2DEG-based Nanomechanical Resonators 

Nanomechanical resonators such as free-standing membranes, cantilevers, doubly 

clamped beams, and suspended guitar-string-like nanotubes have recently attracted a 

great deal of attention because they provide a macroscopic platform to study coupling 

between mechanical excitations and elementary excitations such as quantum states [74], 

qubits (quantum analogue of the classical bit) [75], and single electrons [76]. Furthermore, 

they could have applications in fields as diverse as ultrasensitive mass detection [77], 

radio-frequency signal processing [78], mechanical logic circuits [79], and phonon lasing 

[80]. 

 Furthermore, nanomechanical resonators are promising candidates for gigahertz 

(GHz) CMOS integrated on-die timing applications, potentially replacing the bulky off-

chip quartz resonators which are used in most electronics today [81]. However, in 

continued efforts to scale down the size of mechanical resonators, capacitive feed-

through presents a problem by inducing huge losses in measuring mechanical motion by 

a sensing transducer at multi-GHz frequencies. To improve the sensing signal-to-noise 

ratio, recent work has developed a resonant body transistor by integrating a sense 

transistor directly into the resonant body of a capacitively transduced silicon resonator 

[81]. Similarly, another study recently developed GaN-based resonant body transistors by 
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integrating a HEMT as a sense transistor directly on a suspended AlGaN/GaN membrane 

as a means to increase the sensing signal due to the amplification provided by the HEMT 

[82]. However, the large capacitance of the actuator formed by the metal gate (top 

electrode) and 2DEG (bottom electrode) introduced loss in generating oscillation at high 

frequencies.  

A suspended GaN HEMT rather than a 2-terminal transducer could provide a 

means for intense actuation at multi-GHz frequencies (see Figure 5-2). As described in 

 

Figure 5-1: High electron mobility resonant body transistor. Dashed lines represent the 

2DEG at the AlGaN/GaN interface. 
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Section 2.3.1, by modulating the carrier density in the 2DEG of a GaN HEMT, large 

dynamic strains can be generate near the 2DEG due to piezoelectric coupling. Since the 

potential drop is concentrated at a 2DEG which has a thickness of only several 

nanometers, the field modulation across a 2DEG is extremely large, leading to intense 

dynamic strain generation, as verified in Section 3.3.2. While one HEMT under RF 

modulation is used to generate intense high frequency strains, the other HEMT which is 

ungated could be used as a sense transistor. Because transistors usually can be scaled well, 

a sub-micrometer size suspended resonant body HEMT-to-HEMT pair could provide a 

high-frequency nanomechanical resonator with promising quality factor (high Q). 

 

5.2.2 GaN 2DEG-based Ultra-sensitive Bio-detectors 

Figure 5-3a shows a typical HEMT design consisting of three electrodes: gate, source and 

drain. For a “normally on HEMT”, when the gate is left unconnected, the 2DEG channel 

is filled with a great number of electrons and is highly conductive. Electrons drift from 

the source to the drain through the 2DEG channel when a DC voltage is applied across 

the source and drain electrodes. On the other hand, electrons in the 2DEG can be depleted 

by a negative gate-source voltage, leading to a highly resistant 2DEG channel. In this 

case, the HEMT is turned off.  

GaN HEMT based biosensors could be used for rapid early detection of specific 

cancer antigens before costly and time-consuming clinical tests. A number of different 

electrical measurement approaches for biological materials have been studied extensively, 

although all of them have limitations. Electrochemical impedance measurements [83] are 
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inexpensive but suffer low sensitivity issues, whereas extremely sensitive antibody 

coated microcantilevers [84] and nanowire field effect transistors [85] are limited by an 

expensive fabrication process. 

GaN HEMT based sensors have been found to be effective and potentially 

economical for scale-up, in addition to other advantages such as stability in harsh 

chemical environments. Prior work has demonstrated the excellent sensitivity and 

robustness of ungated AlGaN/GaN HEMTs because of their large changes in electrical 

current upon exposing the functionalized gate region to polar molecules, leading to 

applications in detecting gases, ions, pH values, proteins, and DNA [86-89]. This 

modulation of the HEMT current is due to the induced change in surface potential of the 

AlGaN barrier layer on top of the 2DEG by target molecules. 

 To improve the sensitivity of detecting tiny amount of cancer antigens in human 

blood, the thickness of the barrier layer on top of the 2DEG must be shrunk to several 

nanometers, instead of an AlGaN layer that is usually as thick as 20 nm (as shown in 

Figure 5-3b). This can be made possible by recent progress in nitride growth technology 

of an ultra-thin barrier layer AlInN/GaN structure which has been developed for terahertz 

microwave applications. AlInN/GaN-on-silicon wafers with AlInN layers that are only 4 

nm are readily available. Furthermore, whereas most demonstrated GaN HEMTs have 

normally-on (depletion mode) characteristics, enormous efforts have been made recently 

to develop a normally-off GaN HEMT in high-power switching systems to prevent 

device destruction when the gate voltage becomes zero. Numerous schemes are available 

in the literature, such as gate recess [90], fluoride ion treatment [91, 92], and metal-oxide-

semiconductor junction [93]. Such a normally-off structure is indispensable for ungated 
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Figure 5-2: (a) Conventional AlGaN/GaN HEMT design. (b) Design of an InAlN/GaN 

HEMT based biosensor with a specially functionalized gate. 
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HEMT biosensors, because the current is desired to be zero for a device implanted in the 

human body for safety considerations and battery lifetime. This will be potentially a new 

paradigm for rapid detection of cancer antigens, while other devices are also possible, 

such as implantable blood pH sensors, remote harsh environment chemical sensors, etc.  

The ultimate goal is to develop all-GaN-based ultra-sensitive low-power wireless 

biomedical sensing microsystems (depicted as a tree canopy in Figure 5-4) which consist 

of all-GaN-based building blocks such as bio-microfluidic devices, implantable 

biomedical sensors as described in this section, low-power wireless communication 

 

Figure 5-3: Vision for all-GaN-based biomedical and chemical sensing microsystems. 
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devices, resonant MEMS for on-chip microprocessor clocking (described in Section 

5.2.2), and GaN-based energy harvesting devices.  

 

5.3 Pulsed Laser Interferometer 

In the work presented here, optical reflectance spectroscopy was used to measure the 

dynamic strain associated with SAWs by means of the photoelastic effect. Although such 

a setup is relatively easy to build and calibrate, the photoelastic constants are not easy to 

obtain for some materials, and it is therefore difficult to compare measured vibrations 

among different types of materials.  

In order to accurately characterize devices such as acoustic wave emitters and 

nanomechanical resonators, it is important to precisely measure their displacements. 

Optical interferometry is among the most sensitive measurement techniques and is well 

established for the transduction of nanomechanical displacements. For example, 

Michelson interferometers have been used for decades to measure small vibrational 

displacements and acoustic waves [94]. 

The standard Michelson interferometer setup includes a beam splitter to divide a 

CW laser into a signal arm and a reference arm. The former is reflected at the surface of 

the device under test, which modulates the total length of the signal arm due to the 

displacement being measured, whereas the latter is reflected by a fixed mirror. The two 

reflected laser beams are recombined at the same beam splitter and interfere with each 

other due to their optical path difference. A high-speed photodetector and spectrum 

analyzer are then used to obtain an electrical signal at the driven frequency of the 
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resonator. The amplitude of this detected RF signal can be used to derive the 

displacement. However, the Michelson interferometer is restricted to operating 

frequencies higher than 1 GHz because of the limited bandwidth of most photodetectors. 

In addition, optical interferometry involving a CW laser is only useful for frequency-

domain characterization of vibrational modes.  

A pulsed laser interferometer including a femtosecond laser probe with 

synchronized electrical excitation (either pulsed or sinusoidal) could provide a means for 

studying oscillating motion in the time domain at frequencies high than 10 GHz. For this 

setup (see Figure 5-5), the femtosecond laser pulse is used as the probe, while a 

synchronized reference sinusoidal signal from the controlling electronics of the laser is 

used as the pump. The pump signal is passed through a tunable electronic delay generator 

to control the relative timing between the sinusoidal excitation and probe pulse. The 

sinusoidal signal is then amplified and applied to the resonator. For lock-in detection, the 

output of the delay generator is chopped at a low frequency of several kilohertz. To form 

a Michelson interferometer for measuring dynamic displacements caused by excited 

acoustic resonances, the laser beam is divided into a signal arm and a reference arm by a 

polarized beam splitter. In the signal arm, the light is focused on the resonator using a 

long-working-distance microscope objective and then reflected back through the same 

objective. In the reference arm, the light is reflected by a fixed mirror and then re-

combines with the light reflected from the resonator surface by the same beam splitter. 

The mirror is mounted on a precision piezoelectric stage to optimize the optical path 

difference for highest signal-to-noise ratio. These two combined reflected laser beams are 

then tuned to interfere with each other due to by the optical path difference modulated by 
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Figure 5-4: Stroboscopic Michelson interferometer (PD, photodiode). The beam path 

is indicated by red lines, while electrical connections are indicated by black dotted 

lines. 
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the displacement under measurement, and detected by a photodiode followed by a low-

noise RF preamplifier and lock-in amplifier. The resonator’s displacements can then be 

derived from the signal measured by the lock-in amplifier.  

This stroboscopic Michelson interferometer could provide a number of benefits. 

First, since it uses a Michelson interferometer, this setup could be applicable to all 

devices, not just those designed as optical cavities. Second, it enables investigation of the 

time-domain response of a nanomechanical resonator subjected to sinusoidal electrical 

excitations, which could provide insight into device physics at its fundamental and higher 

harmonic resonant frequencies exceeding 10 GHz, etc. Finally, because the photodiode 

only needs to work at the frequency of the lock-in amplifier, the bandwidth of such an 

interferometer could be practically much greater than 1 GHz, and might only be limited 

by the trigger between the electronic delay and the RF amplifier and by the stray 

capacitance of the electrical connections. 
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