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CHAPTER 1:  

GENERAL INTRODUCTION 

Adaptive Reward Seeking Behavior 

Fundamental to the existence of animals, including humans, is the ability to obtain 

natural rewards, such as food and water.  Securing these resources is necessary for fitness 

and reproduction (Pyke, 1984), and critical for successful foraging is the ability to learn 

which foraging patches are rich in resources.  When resources have previously been 

found in certain patches, many animals will subsequently search in those patches again, 

termed an area-restricted search (Kareiva and Odell, 1987; Hills, 2006).  This behavior is 

phylogenetically ancient, having been observed in numerous species including C. elegans 

(Hills et al., 2004), insects (White et al., 1984), rodents (Benedix, 1993; Haskell, 1997; 

Reid and Staddon, 1998), wandering albatrosses (Weimerskirch et al., 2007), European 

polecats (Lode, 2000), and humans (Hills et al., 2013; Wolfe, 2013). 

Similarly, animals must be able to recognize when resource availability changes 

and alter motivated behavior accordingly toward a new foraging patch.  Modeling a rapid 

depletion, if an animal is given significantly less reward than expected, they are often 

observed to display behavioral reactions that have been described as frustrating and 

aversive (Amsel, 1958; Papini and Dudley, 1997).  These responses to the omission of an 

expected reward are also thought to be evolutionarily old, since they are observed in fish 

(Vindas et al., 2012), rodents (Gallup Jr, 1965; Salinas et al., 1993; Kerfoot et al., 2008), 
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monkeys (Tinklepaugh, 1928), and humans (Papini and Dudley, 1997; Abler et al., 2006).  

These activated behavioral responses may be helpful in prompting the animal to search 

elsewhere for necessary rewards.  Indeed, being able to exhibit flexible behavior in a 

dynamic environment is evolutionarily adaptive. 

With modern technology, humans in many societies no longer need to forage in 

nature for their food.  However, the same cognitive and behavioral skills required for 

optimal foraging are utilized daily by people in visual search (Wolfe, 2013) and semantic 

memory (Hills et al., 2012).  Indeed, goal-directed cognition likely evolved from basic 

foraging behaviors (Hills, 2006).  Additionally, deficits in cognitive and behavioral 

flexibility are observed in patients with neurological conditions such as Parkinson’s 

disease (Cools et al., 2001; Frank, 2005), Huntington’s disease (Josiassen et al., 1983; 

Montoya et al., 2006), schizophrenia (Thoma et al., 2007; Floresco et al., 2009), and drug 

abuse (Aharonovich et al., 2006; Colzato et al., 2009).  Therefore, investigating the 

behavioral and neurobiological mechanisms that mediate adaptive, reward seeking 

behavior under variable conditions is necessary for understanding how the brain has 

evolved to mediate these fundamental behaviors and paves the way for elucidating the 

relationship between certain disorders and the neural circuitry that underlies these 

behaviors. 

Dopaminergic Coding of Reward 

The basal ganglia, which mediate many motivated behaviors (Haber, 2003; Freeze 

et al., 2013), exist in some form in amniotes, amphibians, jawed fish, lamprey, and 

mammals, suggesting that the vertebrate, common ancestor of these species had basal 

ganglia (Reiner et al., 1998).  Furthermore, neurons containing the neurotransmitter 
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dopamine (DA) have strong inputs into the striatum, and striatal DA facilitates many 

motivated and goal-directed behaviors (Swanson et al., 1997; Berridge and Robinson, 

1998; Aragona and Wang, 2009) and exists in vertebrate and invertebrate organisms 

(Smeets and González, 2000; Mustard et al., 2005).   

Interference with DA transmission in a number of species impairs reward seeking 

behaviors.  For example, lesioning DA neurons impairs area-restricted search in C. 

elegans (Hills et al., 2004), and altering DA transmission can cause impairments in 

behavioral flexibility in rodents and humans (Frank et al., 2004; Haluk and Floresco, 

2009).  The nucleus accumbens (NAc) in particular receives strong dopaminergic 

projections from the ventral tegmental area (Ikemoto, 2007), and interfering with 

endogenous neurotransmission in the NAc impairs certain forms of flexible behavior 

(Taghzouti et al., 1985; Cardinal et al., 2001; Floresco et al., 2006a; Gill et al., 2010), 

although little is known about the role of DA in mediating choice behavior when an 

expected reward is omitted (Annett et al., 1989; Reading and Dunnett, 1991). Together, 

these studies suggest that DA is a likely candidate for mediating adaptive, flexible reward 

seeking behavior that is fundamental to numerous species.   

  Much of the field’s knowledge about the firing patterns of DA neurons and their 

relationship to behavior comes from electrophysiological recordings.  Recordings of 

putative, midbrain DA neuron have revealed that these neurons can exhibit multiple 

firing patterns.  Specifically, they have a low, single-spike firing rate (Grace and Bunney, 

1984b).  Additionally, they can burst fire with multiple, consecutive spikes (Grace and 

Bunney, 1984a).  Much attention has been given to the phasic bursts of activity, since 

these firing patterns correlate to reward predictive information (Schultz, 1998), whereas 
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much less attention is focused on the single spike, baseline firing rate of DA neurons.  An 

iconic study by Wolfram Schultz’s laboratory using monkeys has revealed that when an 

unexpected reward is provided, putative DA neurons burst fire to the event of receiving 

the reward (Schultz et al., 1997).  If a conditioned stimulus predicts the reward, once 

subjects learn the relationship between the conditioned stimulus and the reward, DA 

neurons burst fire to the conditioned stimulus instead of the reward.  This transition of 

phasic activity from the reward to the conditioned stimulus has also been demonstrated in 

rats (Pan et al., 2005).  Finally, when an expected reward is withheld, putative DA 

neurons phasically decrease their firing rate (Schultz et al., 1997; Roesch et al., 2007).  

These phasic changes in DA neuronal activity are thought to cause changes in DA release 

in forebrain regions which receive strong dopaminergic projections, such as the nucleus 

accumbens (NAc).   

As predicted by the aforementioned electrophysiology studies, experiments 

measuring sub-second DA transmission in the NAc have demonstrated that extra-cellular 

DA concentration ([DA]) phasically increases when an unexpected reward is received 

(Day et al., 2007; Hart et al., 2014) and decreases in response to certain negative events 

(McCutcheon et al., 2012).  In Pavlovian conditioning, as animals gain experience with a 

conditioned stimulus that predicts reward, phasic increases in [DA] are observed to the 

cue (Day et al., 2007).  These phasic increases in [DA] that occur in relation to a 

conditioned stimulus are termed cue-evoked DA.  With overtraining, cue-evoked DA to a 

Pavlovian cue diminishes even though the condition approach response persists (Clark et 

al., 2013). 
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In addition to Pavlovian conditioning, cue-evoked DA in the NAc occurs during 

operant conditioning tasks.  Under certain circumstances, the magnitude of cue-evoked 

DA appears to track the utility of specific options during reward seeking behavior 

(Phillips et al., 2007b).  Specifically, once rats have learned the value of different options, 

greater cue-evoked DA is observed for very low effort options (but does not differentiate 

between two higher, but different, effort options) and for immediate versus delayed 

reward options (Day et al., 2010; Gan et al., 2010). 

Since DA neuronal firing and [DA] in the NAc increase during unexpected 

reward, mesolimbic DA has been hypothesized to signal reward prediction errors to aid in 

reinforcement learning.  In this theory, if an outcome is better than expected, a phasic 

increase in DA would occur, whereas if something is worse than expected, a phasic 

decrease in DA release would be expected to occur.  If aversive stimuli are represented as 

“negative reward,” phasic decreases in DA are predicted (Daw and Touretzky, 2002).  

Along these lines, phasic increases in DA transmission have been hypothesized to 

reinforce actions, and phasic decreases in DA transmission are thought to punish actions, 

making them less likely to occur in the future (Bromberg-Martin et al., 2010b).  And, 

indeed, there is evidence that midbrain DA neuronal firing (Schultz et al., 1997), as well 

as phasic changes in [DA] in the NAc (Hart et al., 2014), encode reward prediction errors.  

However, there is also evidence that DA is not necessary for reward learning (Cannon 

and Palmiter, 2003; Robinson et al., 2005) and that DA transmission in the NAc is 

necessary for learning about rewards only when incentive salience is attributed to the 

reward predictive cues (Flagel et al., 2011). 

5 
 



Furthermore, electrophysiology studies of putative midbrain DA neurons have 

discovered heterogeneity in the responses of putative midbrain DA neurons to reward.  

While some DA neurons follow the classic model of increasing firing to an unpredicted 

reward and being inhibited by negative events, a large proportion of DA neurons are 

excited by both appetitive and aversive stimuli and outcomes (Matsumoto and Hikosaka, 

2009).  Similarly to the various electrophysiological reactions of midbrain DA neurons to 

aversive stimuli, some aversive stimuli decrease, whereas others increase, [DA] in 

terminal regions.  Phasic decreases in [DA] occur in response to aversive taste stimuli 

(Wheeler et al., 2011; McCutcheon et al., 2012), and phasic increases in [DA] in the NAc 

have been observed during social defeat (Anstrom et al., 2009).  Interestingly, both 

phasic increases and decreases have been observed during the presentation of cues that 

predict foot shock; the direction of the DA response varies by subregion of the NAc 

(Badrinarayan et al., 2012; Oleson et al., 2012). 

The challenges of studying dopamine transmission in behaving animals 

Much of our knowledge about DA signaling in relation to specific reward seeking 

behaviors has been obtained using electrophysiology or electrochemical techniques.  

Each technique can be a valuable tool to facilitate the investigation of DA’s role in 

adaptive goal directed behavior.  However, it is critical to understand the advantages as 

well as limitations of the techniques in order to properly determine which techniques are 

most suitable to address specific experimental questions and what conclusions can be 

made from experiments utilizing these various techniques. 

6 
 



Electrophysiological recordings of putative midbrain DA neurons 

Much of the field’s knowledge about DA’s role in reward has been achieved 

through electrophysiology experiments.  While such studies have made important 

contributions to the field’s understanding of DA neurons, there is uncertainty with 

regards to which subpopulations of neurons are being studied.  To unambiguously 

identify DA neurons and their projection targets, subjects must be anesthetized (Ungless 

et al., 2004; Lammel et al., 2008; Lammel et al., 2011) which is not a viable option for 

recording in awake, behaving animals.  Therefore, in awake animals, putative DA 

neurons have traditionally been identified by a waveform pioneered by Grace and Bunny 

(Grace and Bunney, 1984a, b).  Although frequently used to identify putative DA neurons, 

such criterion has led to misidentification of neurons (Ungless et al., 2004; Brischoux et 

al., 2009).  Furthermore, activity patterns of DA neurons may change depending on 

subject’s age (Margolis et al., 2006a; Grace et al., 2007). 

 Importantly, even if such electrophysiological criteria do accurately identify DA 

neurons, these criteria may only identify a certain subpopulation of DA neurons.  For 

example, in one study only about 14% of the 258 neurons recorded from in the ventral 

tegmental area (VTA) and substantia nigra (SN) met this established eletrophysiological 

criteria for DA neurons (Roesch et al., 2007), and in another experiment only about 22% 

(Nishino et al., 1987), although anatomical studies indicate that approximately 55% of 

VTA neurons and at least 88% of SN neurons are dopaminergic (Margolis et al., 2006a).   

 Similarly, many experimenters have identified putative DA neurons based on a 

large hyperpolariztion-activated cation current (Ih), and cells lacking this current have 

been classified as nondopaminergic (Bonci and Malenka, 1999; Margolis et al., 2003; 
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Margolis et al., 2006b; Wanat et al., 2008), although the presence of Ih has not always 

reliably predicted TH labeling (Cameron et al., 1997; Jones et al., 2000; Margolis et al., 

2003; Margolis et al., 2006a).  Recent work using retrograde tracing methods has 

demonstrated that there are subpopulations of DA neurons that have been neglected.   

Indeed, there are differences in the characteristics of DA neurons including the 

magnitude of Ih which can significantly vary among DA neurons with different projection 

targets (Lammel et al., 2011).  DA neurons located in the ventromedial posterior VTA 

projecting to the medial NAc in particular have been ignored since these neurons do not 

fit the traditional electrophysiological characteristics of DA neurons, since they have very 

small Ih and inward leak currents (Lammel et al., 2011). 

 Indeed, DA neurons are not homogenous; rather, there are distinct subpopulations 

that project to different forebrain terminal regions (Ikemoto, 2007).  Relying on spike 

parameters and Ih to identify DA neurons has likely biased interpretations of how DA 

neurons respond in behavioral contexts (Garris and Rebec, 2002; Borgkvist et al., 2011).  

For example, while it is well established that midbrain DA neurons respond to rewards 

(Schultz et al., 1997; Hyland et al., 2002b; Pan et al., 2005; Roesch et al., 2007), recent 

evidence demonstrates that DA release to unexpected rewards is not uniform through the 

striatum and that DA is differentially released in specific subregions of the dorsal and 

ventral striatum  (Brown et al., 2011).  This is contrary to the notion that DA globally 

increases throughout the striatum to unexpected rewards and reward predictive cues 

(Schultz, 1998).  As most electrophysiology studies primarily capture classical DA 

neurons, more unconventional DA neurons remain unstudied. In fact, very little is known 

about these unconventional DA neurons projecting to the medial shell.  Understanding 
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the role of DA in these subregions of the ventral striatum is important, since the medial 

NAc shell can have a different role than the NAc core in certain forms of behavioral 

flexibility (Floresco et al., 2006a).  Additionally, drugs of abuse can target this 

subpopulation of DA neurons.  For example, cocaine preferentially increases DA 

transmission in the medial NAc shell (Aragona et al., 2008; Aragona et al., 2009), and 

cocaine administration increases AMPAR/NMDAR ratio in these VTA neurons (Lammel 

et al., 2011).  Therefore, employing techniques that can parse apart these subpopulations 

of DA neurons and their different projection targets is critical for being able to study how 

these different subpopulations signal specific components of reward, aversion, and 

motivated behavior. 

 Since these subpopulations of DA neurons cannot yet be reliably identified based 

upon their electrophysiological properties, currently, the only way to study these 

projection systems with certainty in awake, behaving animals is by recording in the 

forebrain terminal regions.  Even if new innovations allow for unambiguous 

identification of DA neurons and their projection targets based on their 

electrophysiological properties, recording action potentials from the cell bodies does not 

speak to DA release at the cells’ projection targets.  While electrophysiological 

recordings of putative midbrain DA neurons can quantify number and frequency of action 

potentials, they cannot unequivocally predict DA release or account for terminal 

modulation.  Indeed, central acetylcholine and opioid systems modulate DA release 

locally and independently of impulse traffic (Cragg, 2006; Britt and McGehee, 2008; 

Cachope et al., 2012), and drugs of abuse can alter quantile size and the probability of 

exocytosis of DA containing vesicles (Sulzer and Pothos, 2000; Sulzer, 2011).  Therefore, 
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to capture the dynamics of DA transmission, phasic changes in extracellular [DA] must 

be measured in the terminal regions. 

Measuring DA transmission in terminal regions 

An alternative to recording the firing properties of cells using electrophysiology is 

to utilize electrochemical techniques to measure [DA] in the terminal regions to which 

DA neurons project.  Since DA transmission can signal through volume transmission 

(Arbuthnott and Wickens, 2007; Agnati et al., 2010), released DA escapes the synapse 

and can be measured by probes in the extracellular space (Robinson et al., 2003; Kennedy, 

2013). 

Microdialysis 

Microdialysis has been an important tool used for decades to measure changes in 

[DA] in distinct forebrain regions.  The technique works by pumping artificial 

cerebrospinal fluid (aCSF) into a probe that contains a semi-permeable membrane in the 

brain.  Neurotransmitters and other compounds near the probe diffuse into the membrane, 

and the resulting fractions are collected by the experimenter (Fig. 1.1A).  Then, 

compounds within the dialysate are separated using high performance liquid 

chromatography (HPLC) and quantified, traditionally, by electrochemical detection since 

DA is easily oxidized.   Microdialysis is a useful tool for measuring changes in 

neurotransmission over long periods of time (minutes to hours) in awake, behaving 

animals; however, technical limitations have obscured the precise nature of phasic DA 

transmission in vivo during motivated behavior.  Since microdialysis measures 

compounds through analyzing dialysate extracted from the brain, and a certain volume of 

dialysate is required for analysis, the technique has generally been limited to sampling 
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changes in [DA] every 5-20 min.  Therefore, traditional microdialysis can be used to 

study changes in tonic DA levels, but it does not have the temporal resolution to align 

changes in [DA] to brief behavioral or environmental events.  This severely limits the 

experimental questions that can be addressed.  For example, to use microdialysis to 

examine [DA] in relation to cocaine cues and drug-seeking behavior, experimental 

designs have been altered in attempt to differentiate these events (Ito et al., 2000).  

However, it has now been established that there are temporally and functionally distinct 

phasic DA signals in relation to different components of drug self-administration that 

cannot be captured with microdialysis (Stuber et al., 2005).   

Moreover, microdialysis captures [DA] in relatively large areas since the probes 

generally span millimeters in length and hundreds of microns in diameter.  As such, the 

resulting fractions result in one data point per several minutes, and the measure spans a 

large area of terminal inputs.  In the dorsal striatum it is known that the arborization of 

just one DA neuron is quite extensive covering over 1 mm3 (Arbuthnott and Wickens, 

2007).  Under these conditions, using a large probe is understandable.  However, the NAc 

core, NAc shell, and olfactory tubercle in the ventral striatum receive inputs from 

different populations of DA neurons (Ikemoto, 2007).  Indeed, evidence is accumulating 

that there are distinct subpopulations of DA neurons with differing electrophysiological 

characteristics and projection targets which differentially react to rewards, aversive 

stimuli, and drugs of abuse (Ikemoto, 2007; Lammel et al., 2008; Matsumoto and 

Hikosaka, 2009; Bromberg-Martin et al., 2010b; Brown et al., 2011; Roeper, 2013; 

Lammel et al., 2014).  Since subregions of the ventral striatum are more discrete than of 
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the dorsal striatum, smaller probes are needed to reliably measure changes in [DA] 

downstream from the different DA neuron subpopulations.   

Recent technological advances have greatly improved the temporal and spatial 

resolution of microdialysis (Schultz and Kennedy, 2008).  The length of sampling probes 

can be reduced to one millimeter or less (Kennedy, 2013).  In fact, using push-pull 

perfusion, probes can measure specific spatial subregions as small as 0.004 mm3 (Slaney 

et al., 2013).  A potential issue in microdialysis is finding the appropriate compromise 

between spatial and temporal resolutions for the experimental question.  While small 

dialysis probes can measure from a specific subregion of the brain, flow rates must be 

lower which requires longer sampling periods for each fraction (20 min).  The temporal 

resolution can be greatly improved with larger probes, but the inherent tradeoff is that 

one is sampling from a larger area in the brain.  Additionally, when investigating 

neurotransmission during reward seeking behavior, it is important that sampling 

equipment not interfere with the animal’s behavior.  Therefore, output lines must be long 

enough to extend outside the operant chamber.  Fractions within these lines can begin to 

blend together because of diffusion, flow, and different concentration gradients over time.  

A solution to this problem is segmenting flow, whereby droplets of oil separate adjacent 

plugs; using this technique, temporal resolution increase to the order of seconds (Wang et 

al., 2008; Wang et al., 2011).  Importantly, this technique can be utilized in awake, freely 

moving animals (Wang et al., 2011).  However, subjects are usually tested in Raturns to 

keep the multiple fluid lines untangled; so while this setup works well for certain 

experimental designs, it is not yet suited for operant behavior. 
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Utilizing mass spectrometry (MS) instead of electrochemical detection to quantify 

the amounts of neurotransmitter within samples has greatly improved the levels of 

detection and requires less volume of dialysate per fraction (Zhang et al., 2007; Nandi 

and Lunte, 2009; Song et al., 2012).  The separation requirements of MS are more lenient 

than in electrochemical detection (Kennedy, 2013).  A particularly useful method 

utilizing MS for measuring DA in behaving animals with relatively small probes (1mm) 

and 60 sec temporal resolution has been developed by Robert Kennedy’s lab.  In this 

technique, small molecule neurotransmitters (such as DA) are derivatized with benzoyl 

chloride (Fig. 1.1A), which increases sensitivity and makes them more hydrophobic so 

they can better be separated during the chromatography (Song et al., 2012).  This method 

is revolutionary in that it not only has good temporal and spatial resolution, but it allows 

the analysis of nearly 20 neurotransmitters and metabolites from each dialysate fraction 

(Fig. 1.1B).  Furthermore, each fraction takes only 6-8 min to analyze, so this technique 

can accommodate the large number of samples necessary in behavioral studies.  

Additional benefits of this technique are that stable-isotope labeled internal standards can 

be included in each fraction to aid in quantification, and minute-by-minute changes in 

neurotransmission can be quantified over long periods of time. 

Recent technological advances have greatly improved the spatial and temporal 

resolution of microdialysis.  However, phasic DA transmission and behaviorally relevant 

events occur on the sub-second timescale; therefore, microdialysis is not yet equipped for 

this temporal precision.  Understanding how phasic DA neurotransmission codes salient 

environmental events in behaving animals requires a technique that can measure changes 

in [DA] in specific striatal subregions on a sub-second timeframe. 
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Fast-scan cyclic voltammetry 

  The electrochemical technique fast-scan cyclic voltammetry (FSCV) at carbon 

fiber microelectrodes can capture sub-second changes in extra-cellular [DA] in specific 

terminal regions, and therefore is a valuable tool for examining phasic changes in DA 

transmission during motivated behaviors.  In FSCV, DA molecules adhere to the carbon-

fiber surface of the microelectrode because the electrode is held at a negative holding 

potential (-0.4 V) between measurement scans (Heien et al., 2003).  A triangular 

waveform ramping from -0.4 V to +1.3 V at 300 V/s is applied vs. a Ag/AgCl reference 

electrode once every 100 ms [Fig. 1.2A; modified from (Vander Weele et al., submitted)].   

The application of this measurement scan generates changes in electroactive compounds 

(in addition to DA) near the carbon surface.  Since measurements are made ten times per 

second, an enormous amount of data is collected.  To properly assess the data, it is 

helpful to view multiple measurements during one visual inspection.  To facilitate this, 

color plots are generated in which changes in current during the scans are plotted in false 

color against the applied potential during over time (Fig. 1.2B).  Changes in current due 

to the oxidation and reduction of a specific chemical compound, such as DA, can be 

identified based on the shape of the current by voltage plots, termed cyclic 

voltammograms (CVs; Fig. 1.2C), since various compounds have unique background-

subtracted cyclic voltammograms (Heien et al., 2003).  DA oxidizes at approximately 

+0.65V during the oxidative scan, and DA ortho-quinone reduces back to DA at 

approximately -0.2 V during the reductive scan, which creates DA’s characteristic CV 

(Fig. 1.2C-ii). Changes in pH also affect the recorded current measured by FSCV and 

have a distinct CV (Fig. 1.2C-iii).   
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FSCV is inherently a differential technique.  Unlike microdialysis, which extracts 

neurotransmitters from the brain to quantify them, FSCV oxidizes and reduces 

compounds still in the brain, revealing changes in concentrations, which is why current 

traces are presented as ∆[DA].  The changes in current from voltage ramps are stable over 

time and therefore can be subtracted out (Fig. 1.2D) to reveal the changes in current 

resulting from catecholamines, pH, and other compounds that can be oxidized within 

these parameters.  Specific changes in current due to one neurotransmitter, such as DA, 

can be extracted and converted into changes in concentration using chemometrics (Heien 

et al., 2004; Keithley et al., 2010). 

While other electrochemical techniques, such as amperometry, have superior 

temporal resolution to FSCV, there is poor chemical selectivity with amperometry since a 

constant potential is applied and therefore any analyte that oxidizes at the applied 

potential changes the recorded current (Dugast et al., 1994).  In addition to positive 

identification of DA and excellent temporal resolution, primary advantages of FSCV 

include good spatial resolution and sensitivity to phasic increases and decreases in DA.  

Since the recording carbon fiber electrodes are approximately only 7 µm in diameter, 

significantly less tissue damage results from carbon fiber microelectrodes compared to 

microdialysis probes; in fact, tissue damage at the recording site of carbon fiber 

microelectordes is undetectable with light microscopy (Khan and Michael, 2003; Peters 

et al., 2004).  Importantly, the small size of the recording electrode facilitates targeting 

precise striatal subregions.  Therefore, rapid DA transmission in the various projection 

targets of midbrain DA neurons, which have been shown to be functionally distinct, can 

be studied. 
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While microdialysis examines changes in extracellular [DA] over minutes, the 

temporal resolution of FSCV allows DA release and reuptake to be resolved.  This is 

clearly demonstrated using electrical stimulation of midbrain DA neurons.  The abrupt 

increase in [DA] due to electrical stimulation is release dominated and, therefore, 

considered a measure of DA release.  While the change in [DA] following stimulation of 

DA neurons is release dominated, DA reuptake via the DAT is also simultaneously 

occurring (Garris and Rebec, 2002)].  Indeed, when rats are pretreated with the DA 

uptake inhibitor nomifensine to slow DA reuptake, a four pulse stimulation delivered to 

the medial forebrain bundle yields an increase in [DA] in the NAc core that is four times 

as much as the increase in [DA] elicited by one pulse (Garris et al., 1994), demonstrating 

that FSCV measurements can detect DA release events of magnitudes proportional to the 

size of experimentally delivered stimulation of DA neurons.   

Importantly, through use of a commutator, FSCV can be performed in rats during 

operant conditioning (Phillips et al., 2003; Day et al., 2007; Day et al., 2010).  Based 

upon its good temporal and spatial resolution, FSCV is an excellent technique to examine 

phasic changes in extracellular [DA] in relation to behaviorally relevant events. 

Role of dopamine in modulating choice behavior  

following unexpected reward omission 

Many of the traditional electrophysiology studies examining putative DA 

neuronal firing in relationship to behaviorally relevant stimuli and outcomes have utilized 

simple Pavlovian tasks or tasks in which only one response is available (Niv and 

Schoenbaum, 2008).  While Pavlovian associations and simple responses to stimuli can 

be very important for learning, many behaviors that human and non-human animals 
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perform each day involve choices and decisions among the available options.  Therefore, 

we sought to use an instrumental task that provided subjects with the choice between two 

options. 

As stated earlier, animals must employ adaptive foraging strategies to acquire 

food, but how do animals make decisions about where to forage and when to explore 

other foraging options?  There is still debate as to how individuals choose specific actions 

and when to try new strategies, but a number of theories have been proposed.  In basic 

decision making situations such as this, the field of reinforcement learning has suggested 

that the possible actions first are evaluated, then an action is chosen, and, finally, the 

chosen action can be reassessed based upon the outcome (Daw and Doya, 2006).  This 

would be an example of model-based learning, since a goal-directed decision is made 

based upon one’s knowledge of the environment.  In contrast, model-free models track 

the success of past outcomes to generate rules for future actions (Dayan and Berridge, 

2014).  Choosing the most valuable option the majority of the time is often adaptive; 

however, this could result in missing out on a previously unknown, more advantageous 

option (Baudonnat et al., 2013).  Indeed, thriving in a dynamic environment requires 

periodic reassessment of the available options and outcome contingencies.   

To study this in the laboratory, we adapte an operant choice task in which rats can 

“forage” from two “patches” (i.e. two spatially distinct levers). Once trained on the task, 

the response outcome contingencies can be altered to examine how subjects alter their 

behavioral strategy to obtain reward.  In chapter 2, we show that when the reward 

following a correct response on one lever is omitted, subjects quickly develop a choice 

preference for the rewarded lever.  These results replicate using both male and female 
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rats and across all stage of the estrus cycle, demonstrating that this is a valid paradigm for 

examining choice preference due to manipulations of reward availability (Porter-Stransky 

et al., 2013).   

After establishing a robust behavioral model for examining changes in behavior 

due to the omission of an expected reward, we sought to elucidate how DA transmission 

in the NAc signals this salient event.  A computational modeling study has proposed that 

a phasic decrease in [DA] occurs to the omission of an expected reward but that there are 

subsequent increases in tonic levels of [DA] following reward omission (Daw and 

Touretzky, 2002).  Additionally, DA transmission measured over hours by microdialysis 

has revealed increased [DA] when environmental contingencies change and subjects need 

to update their strategy.  Therefore, after establishing the behavioral model, we tested 

these hypotheses by examining dopamine transmission dynamics in the NAc on two 

different time scales during the reward omission task.  To examine change in tonic levels 

of extracellular DA in the NAc during reward omission, we utilize rapid-sampling 

microdialysis in which fractions are collected every 60 sec and analyzed with HPLC-MS 

(Song et al., 2012; Vander Weele et al., submitted).  Then, to examine the sub-second, 

phasic components of DA transmission, we utilize FSCV at carbon fiber microelectrodes 

in the NAc during the same behavioral task.   

Finally, we sought to determine the DA receptor subtype within the NAc that 

mediates the behavioral preference for the rewarded option during the reward omission 

test.  DA receptors are divided into two families, the D1-like family and the D2-like 

family.  Modeling data has shown that phasic decreases in [DA] should cause decreased 

binding of DA at both D1-like and D2-like DA receptors (Dreyer et al., 2010).  However, 
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since D2-like receptors have a higher affinity for DA (Richfield et al., 1989; Marcellino 

et al., 2012), phasic decreases in [DA] are hypothesized to preferentially affect D2-like 

receptors (Bromberg-Martin et al., 2010b; Dreyer et al., 2010).  To test this hypothesis, 

we site-specifically infused D1- and D2-like DA receptor agonists and antagonists into 

the NAc core prior to the first session of reward omission.  To ensure that locomotor 

effects of the drugs did not alter the results, we conducted a locomotor experiment in 

which drug-naïve rats received the highest dose of each D1- and D2-like agonist and 

antagonist site-specifically into the NAc core. 

This series of experiments establishes an ecologically valid operant paradigm for 

studying foraging behavior under controlled conditions in the laboratory.  Using this 

paradigm, we show differential phasic and tonic DA transmission dynamics in the NAc 

during reward omission.  Furthermore, we demonstrate that the behavioral preference for 

the rewarded option is mediated by a reduction in D2-like receptor tone in the NAc. 
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Figures 

 

 

 

Figure 1.1.  Rapid in vivo microdialysis sampling coupled with high perforamnce liquid 
chromatography and mass spectrometry detection (HPLC-MS).  A) Dialysate was 
collected every min at a rate of 2.0 µL/min. Dialysate was then reacted with benzoyl 
chloride, and internal standards were added to the mixture for improved quantification.  B)  
A representative total ion chromatogram of a dialysate sample reveals that a tremendous 
numbers of analytes can be measured using this technology compared to traditional 
microdialysis.  (Figure modified from Vander Weele, Porter-Stransky, et al. submitted.) 
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Figure 1.2.  Sub-second DA transmission measured with FSCV.  A) The carbon-fiber 
microelectrode is held at -0.4V for 90 ms between voltage ramps. This is referred to at 
the adsorption phase, because the negative potential attracts positive electroactive 
analytes, such as DA, and causes them to adsorb to the carbon surface.  At a rate of 10 Hz, 
the holding potential is rapidly ramped (400 V/s) to a positive voltage (1.3V; which we 
refer to this as the ‘oxidative scan’) and then back down to the negative holding potential 
(-0.4V; referred to as the ‘reductive scan’).  This triangular scan takes ~10ms and 
produces a robust increase in current at the carbon surface, referred to as the charging 
current.  Each scan, which has a corresponding CV, (in C) is represented along the x-axis 
(150 measures – 150 CVs - in 15 s). Highlighted are several representative scans and the 
resulting current changes which they cause. The charging current is extremely stable 
which allows for FSCV data to be background subtracted. This process permits for 
measures in acute current surges beyond that of the charging current to be clearly 
detected.  B) Background subtracted changes in current measured during the triangular 
ramp are plotted in false color across the change in voltage associated with the ramp (-
0.4V to 1.3V back to -0.4V; plotted on a straight line along the y-axis).  C) Unique CVs 
from three different ramps (from scans 16, 52, and 76) are shown (C - i to - iii).  The blue 
scan (C – i) shows a typical charging current, after background subtraction, (taken from a 
location in the color plot where there was not an obvious change in color).  Conversely, 
the red scan (C – ii) shows the current at scan 52 which is 200 ms after the DA neurons in 
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the VTA received electrical stimulation (yellow box). The CV reveals an increase in 
current caused by an increase in DA concentration at the recording site. Electrical 
stimulation also elicited an expected, delayed decrease in current attributed to a basic 
shift in pH.  The CV for this is shown by scan 76 in C – iii. D) Each voltage ramp 
generates a robust charging current; therefore, because of its consistency, it can be 
subtracted out to reveal the small changes in current due to oxidation and reduction of 
DA and other electroactive compounds.  (Figure modified from Vander Weele, Porter-
Stransky, et al. submitted.) 
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CHAPTER 2:  

LABORATORY MODEL OF FORAGING BEHAVIOR, INCLUDING 

MANIPULATIONS OF REWARD AVAILABILITY 

Introduction 

Motivated behavior, such as foraging, is necessary for survival and reproductive 

goals (Kelley and Berridge, 2002; Aragona and Wang, 2009; Becker, 2009) and is 

paramount for fitness (Pyke, 1984; Stephens and Krebs, 1986).  Since food availability in 

nature is highly dynamic, flexibility in reward-seeking behavior is critical for survival.  

For example, when resource availability depletes, animals must be able to recognize this 

alteration and rapidly adjust their behavior accordingly.  

Dopamine (DA) has been shown to be involved in motivated, goal-directed 

behaviors (Berridge and Robinson, 1998; Wise, 2004; Salamone and Correa, 2012) and 

has also been proposed to be important in modulating behavioral flexibility (Haluk and 

Floresco, 2009; Beeler et al., 2014).  However, to examine the role of DA in altering 

behavior when reward availability unexpectedly changes, we first had to establish a 

behavioral model whereby subjects had choices when “foraging” for food.  We modified 

an instrumental task in which subjects could choose from two different levers (Day et al., 

2010; Gan et al., 2010; Day et al., 2011; Sugam et al., 2012; Sugam et al., 2013).   

Here, we examined two negative changes in reward availability.  Initially, both 

levers would be equally reinforced.  Then, to model changes in reward availability 
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(Papini and Dudley, 1997), we altered the magnitude of reward available on one lever, 

while the other lever remained reinforced as it had been throughout training.  In one 

group, the reward available on one lever was reduced from 2 reward pellets to 1 (a 

reduction of 50%), while in the other group, reward was reduced from 1 pellet to 0 (a 

reduction of 100%).  While both manipulations were a reduction in 1 reward pellet, 

subjects in the latter group developed a quicker and stronger behavioral preference for the 

optimal choice.  

Since sex differences have been reported in a number of rodent behavioral tasks 

(Van Haaren et al., 1990; Jonasson, 2005; Becker and Taylor, 2008; Dalla and Shors, 

2009; Sutcliffe, 2011), and should be examined in new behavioral models (Becker et al., 

2005; Beery and Zucker, 2011), we used both male and female rats and monitored estrous 

cycles.  However, we did not find any statistically significant sex differences or effects of 

estrous cycle in this task. 

Materials & Methods 

Subjects 

 A total of 36 Sprague-Dawley rats between 57-64 days of age (males 251-275 g 

and females 176-200 g) were used in these experiments.  Rats were obtained from 

Charles River Laboratories (Winington, MA, USA) were pair-housed with a same-sex 

cage-mate in transparent plastic cages with metal tops.  Animals were kept on a 12:12 hr 

reverse light-dark cycle.  Experiments were run daily between 9:00 and 17:00 during the 

dark phase.   
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Mild food restriction was employed to train rats to lever-press for the food reward.  

Since rats naturally continue growing, daily feeding accounted for natural growth over 

time, which was important to maintain consistent motivation levels throughout the 

experiment.  Subjects were food restricted to ~90% of their free feeding weight 

accounting for natural growth (Baker et al., 2012).  Natural growth curves for free-

feeding male and female rats were obtained from Charles River Laboratories (Winington, 

MA).  After the operant session each day, rats were weighed and fed based on their 

weight between 15:30 – 16:30 each day during the dark cycle.  Rats had free access to 

water in their home cages.  Subjects experiencing reward reduction (described below) 

were fed less than subjects experiencing reward omission to equate the motivational 

states of the two groups, since reward reduction rats earned larger rewards than reward 

omission subjects. 

Behavioral Paradigm 

 Behavioral training was conducted in MED-Associates chambers (Georgia, VT) 

modified locally by Marc Bradshaw at the University of Michigan.  Each chamber was 

equipped with two cue lights, a pellet dispenser, a reward port, a white noise generator, 

and two Coulbourn (Whitehall, PA) levers.  The reward port was centrally located, 

equidistant between the two levers (see Fig. 2.1A).  The food reward used throughout the 

experiments was 45 mg BioServ chocolate-flavored dustless precision reward pellets (Bio 

Serv, Frenchtown, NJ).   

Initially, subjects received two magazine training sessions, in which 25 reward 

pellets were delivered throughout the session with the inter-trial-interval (ITI) varying 

40-80 sec.  Then, rats learned to press two spatially distinct levers (see Fig. 2.1) to earn 
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up to 50 reward pellets on each lever in 1 hr.  Once subjects earned 100 reward pellets 

(50 on each lever) in less than 60 min for two consecutive sessions (mean number of 

sessions = 5.2 ± 0.7), the next phase of training began in which subjects learned to 

discriminate between the cue lights.  During these trials, one of the two cue lights would 

illuminate, and 5 sec later both levers would extend into the chamber for 15 sec or until 1 

lever was pressed.  If the lever under the illuminated cue light was chosen, a reward was 

delivered into the food receptacle 2 sec later. Choosing the non-illuminated lever was 

defined as an error; the cue light would turn off, levers would be retracted, and no food 

pellet would be delivered.  These sessions contained 100 trials (50 with each cue light).  

Once subjects completed two consecutive sessions with at least 90% accuracy (mean 

number of sessions = 5.7 ± 0.6), they progressed to the final behavioral task described 

below. 

Consistent with previous studies (Day et al., 2010; Gan et al., 2010; Day et al., 

2011; Sugam et al., 2012), the operant paradigm contained two trial types, termed “free 

choice” and “forced choice” trials1 (Fig. 2.1A&C).  A cue light above the levers signaled 

which lever, if chosen, would yield reward.  Five sec after one or both of the cue light 

illuminated, both levers extended into the behavioral chamber.  During free choice trials, 

both cue lights illuminated and a response on either lever yielded reward (Fig. 2.1A), 

whereas on forced choice trials, subjects would receive the reward only if they chose the 

lever below the illuminated cue light (Fig. 2.1C).  Pressing the non-illuminated lever 

counted as an error and no reward was delivered.   

1 In this chapter and in chapter 5, we use the term “forced choice” to describe these trials, since this is the 
terminology used in the literature (Day, et al., 2010; Day, et al., 2011; Sugam, et al., 2012; Sugam, et al., 
2013) and how this data was originally published (Porter-Stransky, et al., 2013).  However, we now 
recognize that this terminology can be confusing so in chapters 3-4, we call these trials “cued choice” trials 
instead. 
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One third of each session’s trials (30 trials) were free choice trials, and an equal 

number of forced choice trials for the left and right levers (30 of each) were given in each 

session.  Trial types were interspersed throughout each session, and the ITI varied from 

10 to 30 sec.  Each subject received a 1 hr training session per day containing 90 trials.  

Consistent with previous work (Day et al., 2010), the schedule of reinforcement 

progressed from FR1 to FR2 to FR4 across sessions.  To advance to each FR schedule, 

subjects must have completed all trial types with at least 90% accuracy for two 

consecutive sessions.  Average number of sessions to progress from FR1 to FR2 was 3.1 

± 0.4 sessions, and mean number of session to advance from FR2 to FR4 was 2.5 ± 0.3 

sessions. 

Throughout training, some subjects (whom later experienced reward omission) 

always received one reward pellet following a correct response.  Others (whom later 

experienced reward reduction) always received two pellets after a correct operant 

response.  Rewards were given in this way so that both conditions would be a reduction 

of 1 reward pellet.  The fact that some subjects received more food reward during the 

operant sessions was accounted for in daily feeding to maintain equivalent motivational 

states among all subjects (see subjects section above).  Regardless of whether subjects 

earned one or two reward pellets per trial, all subjects readily consumed their rewards 

throughout the session, showing no evidence of satiety. 

Once stable responding, defined as a minimum of 3 consecutive days with at least 

90% accuracy on each trial type, occurred on the FR4 schedule of reinforcement, subjects 

experienced one of two negative contingency switches.  During the negative contingency 

switch sessions, the reward normally resulting from a correct operant response on one 
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lever was either reduced by 50% or completely omitted.  Conversely, the other lever 

remained reinforced on the same schedule (i.e. its contingency was unchanged).  In both 

reduction and omission manipulations, reward was reduced by 1 reward pellet.  In other 

words, for subjects that received 2 reward pellets for a correct operant response during 

training, a response on one lever was reduced to 1 reward pellet during reward reduction 

(n = 5 males and 12 females).  For subjects that received 1 reward pellet for each correct 

operant response during training, during reward omission a response on one lever yielded 

0 reward pellets (n = 6 males and 13 females).  More female rats were tested than male 

rats to ensure we tested females across all stages of the estrous cycle (see supplemental 

methods for the monitoring of estrous cycle). 

Whether the lever that ceased to be reinforced was the right or left lever was 

counterbalanced across subjects, and this had no consequence on the results (data not 

shown).  While no statistically significant lever bias was observed, if an individual rat 

tended to have a lever bias, the “biased lever” was chosen to be the one in which 

responding led to altered response contingencies (i.e. reward reduction or omission).  

This ensured that any changes in behavioral preference were due to the contingency 

switch manipulation and not a potential underlying individual lever bias.  Behavior 

during the contingency switches did not differ between rats with no prior lever bias and 

those with a trending bias before the switch (data not shown).   

After the 3 sessions of reward reduction or reward omission, male subjects 

received 6 post switch sessions. These sessions contained free choice trials and forced 

choice trials, and both levers were once again equally reinforced, identically to the 

sessions prior to the contingency switches.  These extra sessions allowed us to test the 
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longer-term effects of reward reduction and omission on behavioral preference.  

Specifically, if the behavioral preference for the optimal choice was due simply to 

learning which lever yielded greater reward, when both levers were once again equally 

reinforced, subjects would be expected to choose them equally (just like they did prior to 

the contingency switch).  However, if the lever yielding reduced or no reward was tagged 

with lasting aversive properties, the worse-choice lever would be expected to be avoided 

even when both levers were equally reinforced again. 

Analysis of Behavior 

 Performance on the free choice and forced choice trials was automated by Med 

Associates software (Georgia, VT).  To compare choice behavior between the reward 

omission and the reward reduction groups, preference scores were calculated for each rat 

(percentage of free choice trials choosing the optimal choice minus the percentage of free 

choice trials choosing the worse choice, i.e. the smaller reward lever in reward reduction 

and the omitted reward lever in reward omission). 

Behavior during a baseline session of training, as well as the first sessions of 

reward reduction and reward omission, were recorded onto DVDs.  Videos were scored 

using Behavior Tracker software to determine the locations of subjects throughout the 

sessions.  For scoring purposes, the behavioral chambers were divided into four equal-

size quadrants plus another portion of the chamber above the reward port into which rats 

sometimes climbed (see Fig. 2.1A for partitioning of quadrants).  One quadrant was 

directly in front of each lever and corresponding cue lights. The percentage of time rats 

spent in each quadrant was analyzed.   
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Individuals scoring the videos were blind to the experimental manipulations and 

hypotheses.  To maintain a high level of inter-rater reliability, certain videos were scored 

by multiple raters.  Behavioral scoring was very consistent (above 96%), with any 

measure varying no more than 4% across raters. 

Monitoring of estrus cycle 

Vaginal lavage was performed routinely on female rats during the dark phase to 

track estrous cycle stage (Becker et al., 2005).  An eyedropper gently inserted into the 

vaginal canal injected and withdrew approximately 0.3 ml saline.  The eyedropper was 

rinsed with distilled water before each lavage to prevent cross-contamination among 

samples.  The vaginal cells in the saline solution were viewed under a light microscope 

and documented by standards previously described (Tropp and Markus, 2001; Becker et 

al., 2005).  Specifically, smears containing predominately cornified cells were classified 

as estrus.  Smears containing a mixture of cornified and leukocytes were classified as 

metestrus.  Smears containing primarily leukocytes were classified as diestrus, and 

smears containing predominantly nucleated epithelial cells were classified as proestrus.  

Consistent with previous experiments (Tropp and Markus, 2001), the relatively mild level 

of food restriction did not prevent the female rats from cycling.  Female and male rats 

were trained identically and given the negative contingency switch once they exhibited 

stable behavioral responding on the operant task.   

Statistics 

Statistical analyses were done using SPSS Statistics 19 (IBM, Armonk, NY), and 

data were graphed using GraphPad Prism version 5.0 (San Diego, CA).  Statistical 

significance for all statistical tests was defined with an α level of 0.05.  Bonferroni 
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corrections were applied to post-hoc tests to reduce the risk of Type I errors (Sarter and 

Fritschy, 2008). 

Consistent with previous behavioral and pharmacological studies (Haluk and 

Floresco, 2009; Day et al., 2010), two-way (multivariate) analyses of variance (ANOVAs) 

were used to examine behavioral data during baseline sessions, the contingency switch 

sessions, and post switch sessions as well as to screen for sex differences.  Metestrus and 

diestrus data showed no statistically significant differences and therefore were combined 

for analysis (Lynch et al., 2000).  The estrous cycle stage was included as a covariate in 

analyses (Girard and Garland Jr, 2002; Pawluski et al., 2006) to determine if it modulated 

the development of behavioral preferences. 

Results 

Establishing behavioral preference for the optimal choice during reward reduction 

and omission 

 Rats were initially trained to press two levers that yielded equal reward.  During 

one-third of the trials termed “free choice trials,” cue lights above both levers illuminated 

and subjects could earn a reward pellet by pressing either lever (Fig. 2.1A).  During these 

trials, subjects earned rewards from both levers, and showed no reliable preference for 

one lever over the other during free choice trials (Fig. 2.1B; t(10) = 1.489, p = 0.167),  

which was expected since both levers were equally rewarded.  Conversely, during two-

thirds of the trials (30 trials for each lever) termed “forced choice trials” (or “cued choice 

trials”) cue lights above the levers signaled which lever, if chosen, would result in a food 

reward (Fig. 2.1C).  Rats learned to distinguish between the two cue lights with near 
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perfect accuracy revealing no side bias during forced choice trials (Fig. 2.1D; t(10) = 0.305, 

p = 0.767). 

Once stable responding on this task was observed, subjects experienced one of 

two negative contingency switches.  In one contingency switch, the reward following a 

correct operant response on one lever was reduced by 50% (from 2 pellets to 1 pellet); in 

the other contingency switch, reward was completely omitted (from 1 pellet to 0 pellets).  

In both cases, the reward was decreased by 1 pellet, and the unchanged lever remained 

reinforced as normal. 

Reducing reward by 50% on one lever did not induce a behavioral preference 

during the first session; however, a preference for the optimal choice emerged over 

subsequent reward reduction sessions (Fig. 2.2A; main effect of reinforcement, F(1,48) = 

86.270, p < 0.001; interaction of reinforcement by session, F(2,48) = 18.082, p < 0.001). 

Specifically, during the first session of reward reduction, subjects did not exhibit a 

behavioral preference for one lever over the other during free choice trials (p = 0.545).  

By the second (p < 0.001) and third (p < 0.001) sessions of reward reduction, subjects 

showed a significant preference for the lever yielding twice as much reward.  These data 

demonstrate that the rats learned this contingency switch; however, a 50% reduction in 

reward was not a salient enough reduction to prompt an immediate alteration in behavior. 

In contrast to reward reduction, when the reward following a correct operant 

response on one lever was unexpectedly omitted (i.e. reduced to 0 pellets), subjects 

displayed a robust behavioral preference for the rewarded lever during the very first 

session (Fig. 2.2B; main effect of reinforcement, F(1,54) = 949.129, p < 0.001; interaction 
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of reinforcement by session, F(2,54) = 37.372, p < 0.001; session 1, p < 0.001).  A strong 

preference for the rewarded lever continued during free choice trials of the second (p < 

0.001) and third (p < 0.001) sessions of reward omission.  In fact, the preference for the 

rewarded lever was even stronger during the second and third sessions of reward 

omission (F(1,12) = 51.280, p < 0.001); subjects chose the omitted reward lever 

significantly fewer times during the second (p < 0.001) and third (p < 0.001) sessions 

compared to the first session.  Choice preference did not significantly increase between 

the second and third sessions of reward omission (p = 0.227) possibly due to a ceiling 

effect: subjects were almost exclusively choosing the rewarded lever during free choice 

trials already by the second session (Fig. 2.2B).  

Although both reward reduction and omission spurred a preference for the more 

valuable option, reward omission prompted a more rapid, robust preference for the 

rewarded option during the very first session, while the preference for the lever yielding 

greater reward during reward reduction was more modest, developing over sessions (Fig. 

2.2C; main effect, F(1,33) = 56.451, p < 0.001).  Indeed, reward omission subjects showed 

a significantly stronger preference for the better option lever during free choice trials than 

reward reduction subjects during all three contingency-switch sessions (Fig. 2.2C; session 

1, p < 0.001; session 2, p < 0.001; session 2, p < 0.001).  Reward omission was the only 

contingency switch which produced robust changes in behavioral preference on the first 

day.  

No sex differences were observed in performance of the foraging task 

Since sex differences exist in a variety of rodent behavioral tasks (Van Haaren et 

al., 1990; Jonasson, 2005; Becker and Taylor, 2008; Dalla and Shors, 2009; Sutcliffe, 
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2011), and should be examined in new behavioral models (Becker et al., 2005; Beery and 

Zucker, 2011), we included both sexes to determine if male and female rats respond 

differently to reduction and omission of an expected reward.   

Male and female rats did not differ in baseline performance of the task (Fig. 2.3).  

Both male and female rats earned rewards from both levers, showing no reliable 

preference for one lever over the other during free choice trials, especially given that each 

lever was equally rewarded (Fig. 2.3A; main effect, F(1,23) = 1.389, p = 0.251; males, p = 

0.819; females, p = 0.143). No significant sex difference was observed in baseline 

performance on free choice trials (Fig. 2.3A; F(1,23) = 0.778, p = 0.387).  Both male and 

female subjects learned to distinguish between the two cue lights with near perfect 

accuracy revealing no side bias during forced choice trials (Fig. 2.3B; main effect, F(1,23) 

= 0.801, p = 0.380; males, p = 0.328; females, p = 0.827), and performance between male 

and female rats did not significantly differ on forced choice trials (Fig. 2.3B; F(1,23) = 

2.375, p = 0.137).  Furthermore, male and female rats did not significantly differ in 

number of sessions to meet criterion for stable responding (FR4: males mean 3.73 ± 2.41, 

females means: 5.00 ± 2.65, t(22) = -1.222, p = 0.235).   

Additionally, both male and female subjects displayed a preference for the lever 

yielding greater reward during the second and third, but not the first, session of reward 

reduction and a preference for the rewarded lever during all three sessions of reward 

omission (Fig. 2.4).  Reducing reward by 50% on one lever did not initially induce a 

behavioral preference (main effect F(1,15) = 0.178, p = 0.679).  Specifically, during the 

first session of reward reduction neither male (p = 1.000) nor female (p = 0.448) subjects 

exhibited a behavioral preference for one lever over the other during free choice trials 
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(Fig. 2.4A), and there was no difference in choice behavior between males and females (p 

= 0.679).  By the second (F(1,15) = 43.986, p < 0.001) and third (F(1,15) = 39.656, p < 0.001) 

sessions of reward reduction, male (Fig. 2.4B; session 2, p = 0.005; session 3, p = 0.006) 

and female (Fig. 2.4C; session 2, p < 0.001; session 3, p < 0.001) subjects showed a 

significant preference for the lever yielding twice as much reward.  These data 

demonstrate that male and female rats learned this contingency switch; however, a 50% 

reduction in reward was not a salient enough reduction to prompt an immediate alteration 

in behavior. 

In contrast to reward reduction, when the reward following a correct operant 

response on one lever was unexpectedly omitted (i.e. reduced to 0 pellets), both male (p < 

0.001) and female (p < 0.001) subjects displayed a robust behavioral preference for the 

rewarded lever during the very first session (Fig. 2.4D; main effect F(1,17) = 55.006, p < 

0.001) with no sex differences (p = 0.513).  A strong preference for the rewarded lever 

continued during free choice trials of the second session (F(1,17) = 475.959, p < 0.001) and 

third session (F(1,17) = 2,517.712, p < 0.001) of reward omission in males (Fig. 2.4E; p < 

0.001) and females (Fig. 2.4F; p < 0.001).   

The lack of sex difference in development of choice preference was not due to 

estrous cycle effects in female subjects  

Estrous cycle stage for each female rat was determined via vaginal lavage (Becker 

et al., 2005) for all reward reduction and omission sessions.  Samples containing 

primarily leukocytes were classified as diestrus (Fig. 2.5A).  Smears containing 

predominantly nucleated epithelial cells were classified as proestrus (Fig. 2.5B).  Smears 

containing predominately cornified cells were classified as estrus (Fig. 2.5C).  Samples 

35 
 



containing a mixture of cornified and leukocytes were classified as metestrus.  Metestrus 

and diestrus data were combined for analysis (Lynch et al., 2000), and estrous cycle stage 

was included as a covariate in analysis (Girard and Garland Jr, 2002; Pawluski et al., 

2006) to determine if it modulated the development of the behavioral preference.   

Female subjects in all stages of the estrous cycle performed similarly to males 

(Fig. 2.5D-I).  Indeed, estrous cycle did not affect development of choice preference 

during the first (Fig. 2.5D; F(1,14) = 0.001, p = 0.973), second (Fig. 2.5E; F(1,14) = 1.327, p 

= 0.269) or third (Fig. 2.5F; F(1,14) = 0.015, p = 0.905) session of reward reduction.  

Similarly, estrous cycle stage did not affect behavioral preference in the first (Fig. 2.5G; 

F(1,16) = 0.669, p = 0.425), second  (Fig. 2.5H; F(1,116) = 2.135, p = 0.163), or third (Fig. 

2.5I; F(1,16) = 0.002, p = 0.970) session of reward omission.   

Aversive components of reward omission 

Reinforcement learning theory (Glimcher, 2011) would predict that through 

experiencing reward omission, subjects would learn to associate the cue light above the 

non-reinforced lever with receiving zero reward and learn that the cue light over the other 

lever predicts reward availability.  While reinforcement learning importantly focuses on 

learning and the predictability of outcomes, frustration theory addresses the emotional 

component of reward omission, stating that the omission of an anticipated reward is 

aversive and “frustrating” (Amsel, 1958).  Since the utilized reward omission paradigm 

prompts a rapid and robust preference for the rewarded lever, we hypothesized that the 

cues for the reward omission lever would develop aversive qualities.  Specifically, we 

predicted that subjects would avoid the quadrant of the behavioral chamber containing 

the reward omission lever and reduce responding during forced choice trials on the 
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reward omission lever.  Since reward reduction did not cause a choice preference during 

the first session, we did not expect that the reduced reward lever would become aversive 

as determined by avoidance, and that responding on forced choice trials for the smaller 

reward would be reduced during the first session.   

Behavioral videos were analyzed to determine where rats were spending time 

throughout the sessions.  During the inter-trial intervals when levers were unavailable 

(which, in total, accounted for over 50% of the length of the session), subjects could 

freely explore the chamber, and since levers did not become available until 5 sec after the 

cue light was illuminated, subjects had time to approach the lever from any place in the 

chamber.   

Video analysis revealed that during baseline sessions when both levers were 

equally reinforced, subjects did not spend more time in the quadrant in front of one lever 

over the other (Fig. 2.6D; t(16) = -0.326, p = 0.748).  Similarly, subjects experiencing 

reward reduction did not display a significant preference for the quadrant containing the 

lever yielding optimal reward during the first session of reward omission (Fig. 2.6D; t(14) 

= 1.007, p = 0.331).  Supporting our hypothesis, subjects experiencing reward omission 

spent significantly less time in the quadrant of the chamber containing the extinguished 

lever and significantly more time in the quadrant containing the reinforced lever (Fig. 

2.6D; t(14) = 7.084, p < 0.001).  These results demonstrate the salience of reward omission 

on goal-directed behavior and support the theory that cues signaling reward omission 

acquire aversive properties and therefore are avoided. 
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Furthermore, performance on forced choice trials during reward reduction did not 

significantly differ during the first session (Table 2.1).  During sessions two and three, 

performance on forced choice trials for the smaller reward (the reward that has been 

reduced by 50%) modestly, but significantly, decreased (Table 2.1).  Conversely, subjects 

experiencing reward omission showed a robust decrease in performance on omitted 

forced choice trials while performance on rewarded forced choice trials remained very 

high over all three sessions (Table 2.1).  Together with the quadrant analyses and free 

choice results, these data demonstrate that reward omission causes greater avoidance of 

the suboptimal choice than reward reduction and are consistent with frustration theory 

showing that the omission of an expected reward is a salient and aversive event. 

After three sessions of reward reduction or omission, responding on both levers 

was once again equally reinforced for six sessions.  Although a response on either lever 

yielded the same reward, subjects did not initially choose both levers equally during free 

choice trials (main effect for performance on free choice trials: subjects that had 

experienced reward reduction: Fig. 2.6E; F(1,5) = 19.298, p < 0.001; subjects that had 

experienced reward omission: Fig. 2.6F; F(1,5) = 85.810, p < 0.001).  Post hoc analyses 

revealed that subjects who previously underwent reward reduction displayed a significant 

preference during the first two post switch sessions for the lever that had previously 

signaled the larger reward (Fig. 2.6E; session 1, p = 0.003; session 2, p = 0.006), but did 

not display a significant preference for one lever over the other the remainder of the post 

switch sessions (session 3, p = 0.097; session 4, p = 0.373; session 5, p = 0.207; session 6, 

p = 0.670).   
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In contrast, subjects that had undergone reward omission maintained a significant 

preference for the lever that had consistently been rewarded and chose the lever that had 

previously resulted in an omitted reward less across all six post switch sessions (Fig. 2.6F; 

session 1, p < 0.001; session 2, p < 0.001; session 3, p = 0.003; session 4, p = 0.024; 

session 5, p = 0.001; session 6, p = 0.002).  The decreased responding on the previously 

non-rewarded lever was not attributable to a deficit in learning (i.e. not knowing that 

choosing this lever would result in reward), since performance on forced choice trials for 

both levers was nearly perfect by the second session (Table 2.2; main effect, F(1,5) = 9.416, 

p = 0.005). Subjects that had undergone the reward reduction contingency switch 

performed equivalently on forced choice trials for both levers (Table 2.2; main effect, 

F(1,5) = 0.889, p = 0.355).  These data are consistent with frustration theory (Amsel, 1958) 

and support the hypothesis that during reward omission the cues predicting an omitted 

reward are tagged with aversive motivational properties (Liu et al., 2008).   

Discussion 

Psychological mechanisms underlying the development of behavioral preferences 

mediated by aversive motivation. 

It is well established that the absence of an expected reward is a salient event 

prompting behavioral reactions often described as emotional (Tinklepaugh, 1928; Miller 

and Stevenson, 1936; Crespi, 1942; Skinner, 1953; Salinas et al., 1997; Salinas and Gold, 

2005; Sastre and Reilly, 2006; Young and Williams, 2010; Purgert et al., 2012; Ramot 

and Akirav, 2012; Veeneman et al., 2012).  Based on the many observations that the 

omission of an anticipated reward is an aversive event that has been described as 

“frustrating,” frustration theory emerged (Amsel, 1958; Daly, 1974).  In support of this 
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theory, a series of studies have shown that rats will lever press or jump hurdles to escape 

stimuli that were previously associated with reward but now are associated with the 

omission of reward (Adelman and Maatsch, 1956; Daly, 1969c, b, a, 1974).  Consistent 

with these studies, our results demonstrate that rats quickly recognize the omission of an 

expected reward and rapidly develop a preference for the optimal choice, avoiding the 

extinguished lever and the quadrant of the behavioral chamber containing that lever.  

A 50% reduction of reward (that was an equivalent decrease in the number of 

pellets as the omission condition; i.e. one less reward pellet) eventually elicited a similar 

behavioral preference but not as quickly or robustly as reward omission.  Consistent with 

previous studies (Salinas et al., 1993; Salinas and White, 1998; Sastre and Reilly, 2006; 

Ramot and Akirav, 2012), reward reduction evoked a significant preference for the more 

valuable option by the second session (24 hrs later).  Multiple studies that have reduced 

reward value by 90% have observed behavioral effects during the first session including 

increased latency to retrieve reward in a maze (Salinas et al., 1996; Salinas et al., 1997; 

Kerfoot et al., 2008) and consuming less of the reward (Salinas and Gold, 2005).  

Together with our results, these findings indicate that reward reduction can have 

significant, immediate effects on behavior, but the reduction must be highly salient to the 

animal, often at levels close to omission.  

Lack of sex differences in behavioral performance during the negative contingency 

switches 

Female rats showed similar behavior as male rats in both reward reduction and 

omission tests, and estrous cycle stage did not affect choice preference during either 

contingency switch.  These results are consistent with foraging studies in the field (Clark, 
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1980).  Similarly, other laboratory studies have neither found sex differences during 

certain operant tasks (Van Haaren et al., 1987; Van Hest et al., 1988, 1989; Stratmann 

and Craft, 1997; Carroll et al., 2009) nor estrous cycle effects on operant performance 

(Stratmann and Craft, 1997; Davis et al., 2008; Cummings et al., 2011).   

Although sex differences exist in many motivated behaviors, the lack of sex 

differences in this paradigm is likely due to the fact that basic flexibility in foraging 

strategy is adaptive in both males and females.  However, although no sex differences in 

this behavioral paradigm exist in adult virgin rats, females caring for offspring may 

develop a preference for the optimal choice more rapidly than males and nulliparous 

females, since maternal females must forage for their pups in addition to themselves 

(Kinsley et al., 1999; Love et al., 2005). 

Conclusion 

The present experiments establish a laboratory model of foraging behavior in rats 

(Porter-Stransky et al., 2013).  This behavioral paradigm can capture changes in choice 

behavior following manipulations of reward availability.  Specifically, the omission of an 

expected reward in this behavioral task prompts a strong preference for the rewarded 

option in both male and female rats and across all stages of the estrus cycle.  This 

behavioral paradigm provides a model for our future experiments to elucidate the neural 

mechanisms that mediate changes in reward-seeking behavior due to the omission of an 

expected reward (Porter-Stransky et al., 2013).  Since reward omission causes the most 

robust choice preference during the first session, this is the manipulation that we will 

utilize in the remaining chapters. 
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Figures 

 

 

 

Figure 2.1.  Appetitive operant behavioral paradigm for examining foraging preference 
in rats.  A) Free choice trials facilitate the assessment of an animal’s preference for one 
lever over the other.  During training, choosing either lever resulted in equal amount of 
food reward.  B) Once trained on the task, rats accurately completed free choice trials, 
showing no reliable side bias.  C) During forced choice trials, although both levers are 
extended, subjects only received a food reward for pressing the lever under the 
illuminated cue light.    D) Subjects learned to complete forced choice trials with near 
perfect accuracy. n.s. = not statistically significant, Error bars indicate mean ± SEM. 
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Figure 2.2.  Effects of unexpected reward reduction and reward omission on choice 
preference.  A) During the first session of reward reduction when the reward resulting 
from a correct operant response on one lever was decreased by 50%, subjects displayed 
no preference for the lever yielding twice as much reward.  By the second and third 
sessions of reward reduction, rats exhibited a preference for the lever yielding greater 
reward during free choice trials.  B) When the reward resulting from a correct operant 
response on one lever was unexpectedly decreased by 100%, a robust preference for the 
rewarded lever was observed that continued during all 3 sessions of reward omission.  C) 
Preference for the better option during free choice trials was significantly stronger for 
subjects experiencing reward omission than for those experience reward reduction.  n.s. = 
not statistically significant, **p < 0.01, ***p < 0.001.  Error bars indicate mean ± SEM.  
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Figure 2.3:  Male and female rats performed the behavioral task equally well. A) Neither 
male nor female rats exhibited a significant preference for one lever or the other.  B) Both 
males and females completed forced choice trials with near perfect accuracy.  n.s. = not 
statistically significant.  Error bars indicate mean ± SEM. 

  

44 
 



 

Figure 2.4:  Male and female rats exhibited the same choice preferences during the two 
negative contingency switches.  A-C) Neither male nor female rats displayed a choice 
preference during the first session of reward reduction (A).  Both male (B) and female (C) 
rats displayed a preference for the lever yielding greater reward during the second and 
third sessions of reward reduction.  D-E) Both males and females exhibited a significant 
preference for the rewarded lever during the first reward omission session (D).  Males (E) 
and females (F) similarly showed a robust preference for the rewarded option during all 
sessions of reward omission.  n.s. = not statistically significant, *p < 0.05, **p < 0.01, 
***p < 0.001.  Error bars indicate mean ± SEM. 

  

45 
 



 

Figure 2.5.  Estrous cycle did not affect the development of choice preference. A-C) 
Representative images of vaginal epithelial cells in diestrus (A), proestrus (B), and estrus 
(C).   D-F) Female rats in each estrous cycle stage performed similarly to males (black 
circles) on the first (D), second (E), and third (F) session of reward reduction.  G-I) 
During the first (G), second (H), and third (I) session of reward omission, females in each 
estrous cycle stage performed similarly to males. 
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Figure 2.6.  Additional behavioral effects of reward omission.  A) Percentage of time 
spent in the quadrants containing of the levers did not differ during baseline sessions or 
the first session of reward reduction; however, during the first session of reward omission, 
rats spent significantly more time in the quadrant containing the rewarded lever than the 
quadrant containing the non-reinforced lever.  B-C) When the levers were once again 
equally reinforced, subjects that had experienced reward reduction (B) lost the behavioral 
preference by the third session, whereas subjects that had experienced reward omission 

47 
 



(C) maintained a preference for the lever that continually had been reinforced.  n.s. = not 
statistically significant, **p < 0.01, ***p < 0.001.  Error bars indicate mean ± SEM. 
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Table 2.1.  Percentage of forced choice trials accurately completed. 

 Reward Reduction Reward Omission 

 2 Pellets 1 Pellet 1 Pellet 0 Pellets 

Session 1 96.47 ± 1.32 94.29 ± 1.71 97.72 ± 0.88 71.57 ± 4.58 

 F(1,15) = 0.901, p = 0.358 F(1,17) = 24.849, p < 0.001 

Session 2 99.216 ± 0.45 93.33 ± 1.43 98.42 ± 0.78 59.82 ± 6.16 

 F(1,15) = 8.555, p = 0.010 F(1,17) = 28.085, p < 0.001 

Session 3 98.24 ± 0.91 85.69 ± 2.26 98.42 ± 0.74 27.19 ± 4.53 

 F(1,15) = 22.594, p < 0.001 F(1,17) = 208.197, p < 0.001 

 

Table 2.2.  Percentage of post switch forced choice trials accurately completed.  During 
these trials, responses on both levers were once again equally rewarded. 

 Post Reward Reduction Post Reward Omission 

 Always 2 Pellets Previously 1 Pellet Always 1 Pellet Previously 0 Pellets 

Session 1 98.67 ± 0.82 98.00 ± 1.33 99.44 ± 0.56 77.78 ± 8.59 

                  p = 0.569                  p < 0.001 

Session 2 99.33 ± 0.67 99.33 ± 0.67 100.00 ± 0.00 98.33 ± 0.75 

                  p = 0.260                 p = 0.635 

Session 3 98.00 ± 1.33 98.67 ± 0.82 100.00 ± 0.00 97.22 ± 1.34 

                  p = 0.569                 p = 0.430 

Session 4 98.00 ± 1.33           98.00 ± 1.33            99.44 ± 0.56        100.00 ± 0.00  

                  p = 1.000                 p = 0.874 

Session 5 99.33 ± 0.67           98.67 ± 1.33 99.44 ± 0.56        99.44 ± 0.56 

                  p = 0.569                 p = 1.000 

Session 6 99.33 ± 0.67           98.67 ± 0.82 100.00 ± 0.00      99.44 ± 0.56 

                  p = 0.569                 p = 0.874 
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CHAPTER 3:  

INCREASES IN EXTRACELLULAR DOPAMINE IN THE NUCLEUS 

ACCUMBENS DURING REWARD OMISSION AND CORRESPONDING 

INCREASES IN MOTIVATIONAL VIGOR AND EXPLORATION OF 

ALTERNATIVE RESPONSE STRATEGIES 

Introduction 

 The ability to recognize changes in resource availability and alter behavioral 

strategy accordingly is fundamental to adaptive, reward seeking behavior.  Dopamine 

(DA) transmission has been proposed to modulate behavior flexibility rather than just 

being a “reward neurotransmitter” (Beeler et al., 2014).  Consistent with this idea, 

pharmacological manipulations affecting endogenous DA transmission have been shown 

to impair or enhance certain forms of behavioral flexibility (Ragozzino, 2002; Frank, 

2005; Floresco et al., 2006a; Floresco and Magyar, 2006; Floresco et al., 2006b; Haluk 

and Floresco, 2009; Winter et al., 2009; Skelin et al., 2014).  Recently, we have shown 

that rats promptly develop a preference for a rewarded option when another option that 

previously was reinforced is extinguished, and this form of behavioral flexibility is 

mediated by D2-like DA receptors in the nucleus accumbens (NAc) (Porter-Stransky et 

al., 2013).  However, the DA transmission dynamics that may facilitate this behavior 

have yet to be elucidated. 
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 Unlike many other neurotransmitters which are confined to the synaptic cleft 

when released, DA can escape the synaptic cleft and signal through volume transmission 

(Arbuthnott and Wickens, 2007) and on multiple time scales (Grace et al., 2007; 

Baudonnat et al., 2013).  Transient, sub-second surges in DA release are thought to be the 

result of burst firing of midbrain DA neurons, and much attention has been given to these 

phasic release events since they frequently occur in relation to behaviorally relevant 

events (Schultz, 2002; Day et al., 2010; Gan et al., 2010).   In addition to burst firing 

(Grace and Bunney, 1984a), DA neurons also exhibit a low, single-spike firing rate 

(Grace and Bunney, 1984b).  This baseline firing rate of DA neurons, as well as effects 

from terminal modulation (Grace, 1991; Keefe et al., 1993; Howland et al., 2002), are 

likely responsible for tonic, extra-cellular levels of DA concentration ([DA]) in striatal 

regions that are captured by microdialysis (Floresco et al., 2003; Grace et al., 2007); 

however, phasic release of DA also may contribute to these levels (Owesson-White et al., 

2012). 

While phasic DA activity has been proposed to mediate temporally precise 

learning about changes in reward availability (Schultz et al., 1997; Steinberg et al., 2013) 

or the attribution of incentive motivational properties to cues (Berridge, 2012), tonic 

levels of striatal DA have been hypothesized to signal other important factors 

contributing to motivated behavior that occur over longer time scales.  For example, tonic 

levels of DA have been suggested to track the average rate of reward (Niv et al., 2007), 

the average rate of punishment (Daw et al., 2002; Daw and Touretzky, 2002), the vigor of 

behavioral responses (Niv et al., 2005; Niv, 2007), effort (Salamone et al., 2007), thrift 

(Beeler, 2012), and the balance between exploration and exploitation (Beeler et al., 2010; 
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Humphries and Prescott, 2010).  Although there appear to be numerous competing 

theories for the role of tonic levels of DA, there are common themes among them.  First, 

DA may track the goodness of the available options; this could encompass theories of 

DA’s role in signaling reward rate (Niv, 2007) or punishment rate (Daw et al., 2002).  

Second, DA could signal motivational vigor, which could include response vigor (Niv et 

al., 2007) and incentive salience (Berridge and Robinson, 1998).  Third, DA may signal 

changes in behavioral strategies, which could include the trade-off between explorative 

versus exploitive strategies (Humphries et al., 2012; Beeler et al., 2014).  Additionally, 

this could include the regulation of energy expenditure, including thrift (Beeler, 2012), 

and response strategies based on effort (Salamone et al., 2007; Salamone and Correa, 

2012).  All of these factors could importantly contribute to behavioral flexibility when 

reward outcomes change. 

One of the primary hurdles in determining the relationship between tonic levels of 

DA and the aforementioned behaviors has been the lack of a suitable technique for 

capturing such changes in DA.  Electrophysiology is excellent for capturing changes in 

baseline firing rate of neurons; however, there have been issues with reliable 

identification of VTA DA neurons in vivo (Margolis et al., 2006a; Ungless and Grace, 

2012), and electrophysiology does not capture other sources of neurotransmission that 

affect tonic levels of DA in the striatum.  While fast-scan cyclic voltammetry (FSCV) 

provides sub-second temporal resolution and excellent spatial resolution, it is inherently a 

differential technique, limited to examining change in [DA] over 30-90 sec periods of 

time.  Since a large current is background subtracted out, FSCV cannot examine absolute 

levels of [DA] over minutes to hours.  Microdialysis, although having inferior temporal 
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and spatial resolution compared to FSCV, is able to examine changes in [DA] over 

minutes to hours.  Traditionally, microdialysis conducted in behaving animals generates 

one sample every 10-20 min.  Since numerous behaviors can occur within these long 

ranges of time, the precise relationship between DA and behavior has been obscured.  

Recent advances in analytical chemistry have significantly improved the temporal 

resolution of microdialysis if samples are analyzed with mass spectrometry (Song et al., 

2012) instead of traditional electrochemical detection.   

Here, we utilize a one minute sampling microdialysis in the NAc of rats engaged 

in a task prompting changes in choice behavior due to the omission of an expected 

reward (Porter-Stransky et al., 2013).  In addition to examining changes in [DA] during 

the extinction of one lever, we also examine the relationship between changes in [DA] 

and a number of behavioral measures to test some of the hypotheses of tonic DA 

transmission.  If [DA] tracks the “goodness” of the current options, either by signaling 

average rate of reward (Niv et al., 2007) or rate of punishment (Daw et al., 2002), [DA] 

would be expected to decrease during periods of reward omission and increase when 

reward is available, or vice versa.  If DA signals behavioral motivation (Niv, 2007), then 

[DA] could correspond to the vigor of behavioral responding.  Finally, if tonic levels of 

DA regulate behavioral strategy, including thrift (Beeler, 2012) and the balance between 

exploitation and exploration (Beeler, 2012; Humphries et al., 2012), then a relationship 

between the allocation of these behaviors and [DA] could be expected.  
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Methods 

Subjects 

Data from a total of 13 male, Sprague Dawley rats, obtained from Charles River 

(Winington, MA), were included in this experiment (experimental group, n = 8; control 

group, n = 5).  Animals were kept on a reverse light/dark cycle, and tested during their 

dark cycle.  Subjects had free access to water in their cages and were mildly food 

restricted to approximately 90% of free-feeding weight, as previously described (Porter-

Stransky et al., 2013). 

Behavioral Paradigm 

 The operant behavioral task to model foraging behavior was the same as 

previously described in chapter 2 (Porter-Stransky et al., 2013).  The task included two 

trial types, cued choice trials (previously termed forced choice trials) and free choice 

trials (Fig. 3.1).  Both trial types were interspersed throughout the session.  Cued choice 

trials were important to ensure that subjects were discriminating between the two cue 

lights, and free choice trials probed for preferences for one lever over the other.  Rewards 

were 45 mg BioServ chocolate pellets. 

 On cued choice trials, one cue light would illuminate, and then five seconds later, 

both levers would extend.  Subjects could earn a reward by choosing the lever under the 

illuminated cue light (Fig. 3.1A).  Pressing the lever under the non-illuminated cue light 

was considered an error and not rewarded.  After a time out, the next trial began.  On free 

choice trials, both cue lights were illuminated, and subjects could earn a reward on either 
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lever.  Throughout training, the illuminated levers were always rewarded (Fig. 3.1A-B).  

Subjects were trained on the FR4 version of the task (Porter-Stransky et al., 2013). 

During microdialysis and FSCV test sessions, subjects first received 18 trials of 

this baseline version of the task.  Then the reward omission manipulation began, during 

which the reward usually given from a correct response on one lever was omitted.  The 

other lever continued to be reinforced as usual (Fig. 3.1C-D).  The non-rewarded lever 

remained consistent within a subject for the duration of the test session in both cued 

choice trials (Fig. 3.1C) and free choice trials (Fig. 3.1D); however, which lever was 

extinguished was counter-balanced across subjects.  Throughout training, the trial types 

were pseudo-randomly interspersed.  Since the rate of collecting dialysis fractions was 1 

min, trial types were blocked during the test session so that each min only contained one 

trial type.  Throughout the results sections in chapters 3 and 4, trials during the reward 

omission session are coded as follows: cued choice trials for the rewarded lever are coded 

in green, cued choice trials for the non-rewarded lever are coded in red, and free choice 

trials are coded in blue.  Each of these trial types prior to experiencing reward omission 

(i.e. baseline and the control group) are coded in gold. 

Behavioral Analysis 

MED Associates (St. Albans, VT) software recorded which lever subjects pressed 

each trial as well as the duration of time from lever extension until subjects completed 

lever pressing each trial.  In addition to lever pressing, subjects displayed a number of 

other behaviors during the trials and inter-trial intervals that could serve as proxies for 

exploratory behavior.  Specifically, using Behavior Tracker software, we coded rearing 

behavior, grooming behavior, time exploring the back half of the chamber (where no cues 
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or food was available), and when subjects engaged the cues (including the cue lights and 

the ports where the levers recess into the wall) and food cups, defined as orienting toward, 

sniffing, biting, or pawing at these stimuli.  We documented each occurrence of these 

behaviors and also calculated the number of times subjects switched from one event to 

another during each trial type within each session block. 

Surgery 

 All procedures were approved by the University of Michigan Committee on the 

Use and Care of Animals and performed in accordance with their policies.  Subjects were 

anesthetized with an intramuscular injection of ketamine hydrochloride (90 mg/kg) and 

xylazine hydrochloride (10 mg/kg).  Rats were also given the analgesic ketoprofin (5 

mg/kg) and antibiotic cefazolin (70 mg/kg). 

During surgery, guide cannulae (Eicom, San Diego, CA) were positioned over the 

NAc core (AP: +1.4; ML: +/- 1.3) and fixed in place with skull screws and dental acrylic.  

Additionally, a flattened wound clip was cemented onto the headcap to tether subjects 

during the microdialysis experiment.  Subjects were fed ad libitum until fully recovered 

from surgery, after which food restriction and behavioral training resumed. 

After the experiment had concluded, subjects were euthanized with sodium 

pentobarbital (70 mg/kg).  Brains were sliced on a cryostat at 50 µm, and probe 

placements were examined under 10x magnification on a microscope. 

Microdialysis 

 On the day of testing, microdialysis probes were inserted into the guide cannulae.  

Probes projected 1mm below the cannulae to sample from fresh tissue.  Artificial 
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cerebrospinal fluid (aCSF) was perfused through the probe at the rate of 2 µL/min using a 

Chemyx Fusion pump (Stafford, TX).  Consistent with previous experiments (Colivicchi 

et al., 2013; Hossain et al., 2013), we waited at least 90 min after the probe was inserted 

into brain before dialysate collection began.  For the duration of the experiment, fractions 

were collected every 60 sec.  

To establish baseline levels of [DA] prior to the behavioral task, samples were 

collected for 9 min.  Then the behavioral task began.  Trials were blocked so that each 

dialysate sample contained only one trial type.  Three trials occurred each min.  Subjects 

were first given 18 trials of the baseline operant task in which both levers were equally 

reinforced (Fig.3.1).  Then, the reward omission manipulation began in which the reward 

following a correct response on one lever was omitted while the other lever continued to 

be reinforced as usual (Fig. 3.1).   

Throughout the experiment, each 2 µL sample was immediately derivatized as 

previously described (Song et al., 2012).  Specifically, to prepare fractions for analysis, 

1.5 µL of 100mM sodium tetraborate, 1.5 µL of benzoyl chloride in 2% acetonitrile, and 

1.5 µL of stable-isotope labeled internal standards were added, in that order, to each 

sample of dialysate.   

Fractions were analyzed using high performance liquid chromatography with 

mass spectrometry via a nanoAcquity HPLC system (Waters, Milford, MA) equipped 

with a Waters 1 mm x 100 mm HSS T3 reverse-phase HPLC column operated at 100 

µL/min.  Eluting analytes were detected using an Agilent 6410 triple quadrupole MS 
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(Agilent, Santa Clara, CA) operating in positive mode performing dynamic multiple-

reaction-monitoring.  The limits of detection for DA on this instrument were 0.0969 nM. 

Statistics 

 Statistical analyses were performed using IBM SPSS Statistics 21 (Armonk, NY) 

and GraphPad Prism (La Jolla, CA).  To examine minute by minute changes in [DA], a 

linear mixed model was used for its ability to handle correlated, repeated measures data, 

as previously described (Aragona et al., 2008; Aragona et al., 2009).  This model was 

used to examine within-subject changes in [DA] as well as to compare control subjects to 

the experimental group receiving reward omission (Fig. 3.2A).  The model adjusts 

degrees of freedom based on the distance between comparisons, which is why reported 

degrees of freedom values are often non-integers.   

Changes in choice preference as well as the other behavioral measures were 

analyzed using repeated measures ANOVAs.  Dunnett’s post hoc tests were used to 

examine changes in specific behaviors during the different trial types in the reward 

omission session compared to baseline levels of those behaviors (Fig. 3.3A-C,E,G,I).  

Bonferroni corrections were used for the remainder of statistical tests in which multiple 

comparisons were performed (Fig. 3.2B-D and 3.3D).  Finally, linear regression was used 

to test for correlations between [DA] and behavior.   

Results 

To examine changes in [DA] across minutes in response to reward omission, one 

min sampling microdialysis was employed.  During the baseline trials when both levers 

were equally reinforced (Fig. 3.1A-B), [DA] significantly increased to ~150% of basal 
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levels (Fig. 3.2A, main effect, F(6, 54.572) = 2.619, p = 0.027).  During these trials, subjects 

sampled from both levers equally (Fig. 3.2B) and there were no differences in [DA] 

among trial types (F(2, 36) = 0.169, p = 0.845). 

When the reward omission manipulation began, [DA] increased to ~200% of 

basal levels.  Indeed, [DA] significantly increased during the very first trials of reward 

omission (min 16, p = 0.028; min 17, p = 0.044; min 18, p = 0.054), and [DA] was 

significantly greater in subjects experiencing reward omission compared to subjects 

performing the regular task with both levers being equally reinforced (Fig. 3.2A; effect of 

group in blocks 1-3, F(1, 46.059) = 16.324, p < 0.001).  The elevation in [DA] during reward 

omission trials persisted throughout the entire session (Fig. 3.2A).  Importantly, changes 

in [DA] in the reward omission group were not attributable to any inherent differences 

between the two groups.  Indeed, raw levels of basal [DA] did not differ between the two 

groups prior to the behavioral experiment (t(11) = 1.821, p = 0.100; experimental group 

mean, 0.683 nM; control group mean, 0.195 nM).  Additionally, percentage of basal 

levels across the 9 fractions prior to the behavioral experiment did not vary between 

groups, F(1, 44.631) = 0.459, p = 0.502) or during the baseline task prior to the reward 

omission switch (F(1, 16.785) = 2.292, p = 0.149).   

Behaviorally, subjects quickly developed a preference for the rewarded lever 

during free choice trials (Fig. 3.2C; interaction of reinforcement by block, F(2,21) = 4.167, 

p = 0.030) that was evident during the very first block (p < 0.001) and continued for the 

remainder of the session (p < 0.001 on blocks 2 & 3 as well, Bonferroni corrections).  

Additionally, subjects reduced responding on cued choice trials for the non-rewarded 

lever while continuing to respond correctly on the rewarded lever (Fig. 3.2D; interaction 
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of reinforcement by block, F(2,21) = 8.925, p = 0.002).  However, the reduced responding 

during non-rewarded cued choice trials did not emerge until the second block (post hoc 

tests with Bonferroni corrections: Block 1, p = 0.664; Block 2, p = 0.075; Block 3, p < 

0.001). 

Interestingly, after experiencing reward omission, [DA] remained elevated for a 

number of the rewarded trials as well (Fig. 3.2A).  Indeed, while [DA] increased 

following reward omission, levels of [DA] did not correlate with number of rewards 

earned (Fig. 3.2E), suggesting that tonic levels of DA in the NAc do not signal reward 

rate.  

Since tonic levels of [DA] have been proposed to signal the vigor of behavioral 

response (Niv et al., 2007) as well as the balance between exploring new options and 

exploiting known resources (Beeler et al., 2012), we examined changes in response vigor 

and exploratory behaviors throughout the session.  Response vigor was determined by the 

amount of time it took subjects to complete the required lever presses on the lever 

underneath the illuminated cue light for each trial.  Three measures of exploratory 

behavior were quantified: 1) amount of time spent investigating the back of the 

behavioral chamber away from the lever; 2) percentage of time rearing; and 3) frequency 

in which rats switched their behavioral focus (such as moving from one lever to the other 

lever, running to the back of the chamber, grooming, etc.).  Finally, behavioral responses 

on the two levers were used as a proxy for exploitative behavior. 

 Consistent with the vigor hypothesis of DA, as [DA] increased during the first 

few trials of reward omission (Fig. 3.1F; t(6) = 3.060, p = 0.018), latency to complete the 
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ratio requirement decreased on the non-rewarded lever (Fig. 3.2F; t(6) = 3.199, p = 0.019).  

Indeed, there was a significant correlation between response vigor and [DA] across trial 

types (Fig. 3.2G; linear regression, R2 = 0.175, p = 0.001), indicating that subjects lever 

pressed faster when levels of [DA] were higher in the NAc. 

In addition to responding more vigorously, rats also displayed a number of 

behaviors indicative of exploitation during periods of reward availability and exploration 

when no reward was available. Subjects spent significantly more time engaging the 

reward predictive cues during trials in which they could obtain reward compared to 

baseline levels of engaging those same cues (Fig. 3.3A; main effect, F(9, 63) = 9.956, p < 

0.001; Dunnett’s post hoc, p < 0.05 during cued rewarded trials in each block and free 

choice trials in blocks 2 &3).  Conversely, during trials in which subjects could obtain 

reward, they spent significantly less time engaging the cues signaling no reward 

availability (Fig. 3.3B; main effect, F(9, 63) = 14.763, p < 0.001; Dunnett’s post hoc, p < 

0.05 during cued rewarded trials in each block and free choice trials in blocks 2 &3).  

Additionally, subjects decreased the amount of time engaging the cues during cued trials 

for the non-rewarded lever throughout the session (Fig. 3.3B inset; main effect, F(2,14) = 

6.632, p = 0.009.).  Subjects spent less time engaging the non-rewarded cues specifically 

during non-reinforced cued choice trials within block 2 (p = 0.009) and block 3 (p = 

0.017) compared to the first block.  And the linear contrast was significant (Fig. 3.3B 

inset, F(1, 7) = 9.790, p = 0.017), indicating that subjects decreased engagement with the 

non-rewarded cues in a linear fashion throughout the session.  To facilitate easier visual 

comparisons of behaviors with levels of DA, changes in [DA] from Fig. 3.2A are shown 

in 3 min bins in Fig. 3.3C. 
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In addition to spending less time engaging the non-rewarded cues, subjects 

employed alternative response strategies, including pressing the non-illuminated lever 

and not pressing either lever.   These alternative response strategies occurred significantly 

more often on cued-choice trials for the non-rewarded lever than on cued-choice trials for 

the rewarded lever (Fig.3.3D; main effect of trial type, F(1,21) = 19.353, p < 0.001; 

interaction of trial type by block, F(2,21) = 8.524, p = 0.002).  This effect was 

predominantly seen during the second and third blocks (Fig. 3.3D; Block 2, p = 0.024; 

Block 3, p < 0.001; post hoc tests with Bonferroni adjustments).  

During trials in which no reward could be obtained, subjects spent a significantly 

greater amount of time engaged in other exploratory behaviors.  Since exploratory 

behavior has been hypothesized to correspond to tonic levels of [DA] (Beeler et al., 2012; 

Humphries et al., 2012), we also correlated changes in [DA] to exploratory behaviors.   

Rats spent more time rearing during each block of reward omission trials compared to 

baseline levels of rearing (Fig. 3.3E; main effect, F(9, 63) = 4.021, p < 0.001; Dunnett’s 

post hoc, p < 0.05 during reward omission trials of each block), and there was a 

significant positive correlation between percentage of time rearing and [DA] (Fig. 3.3F; 

linear regression; R2 = 0.074, p = 0.043).  Additionally, consistent with the exploratory 

hypothesis, subjects switched their behavioral focus significantly more times during 

reward omission trials in each block (Fig. 3.3G; main effect, F(9, 63) = 7.617, p < 0.001; 

Dunnett’s post hoc, p < 0.01 during reward omission trials of each block) but not during 

the other trial types (p > 0.05), and there was a significant positive correlation between 

the number of times in which subjects switched their behavioral focus and [DA] (Fig. 

3.3H; linear regression, R2 = 0.100, p = 0.003).  Finally, subjects explored the back half 
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of the chamber away from the task-related cues significantly longer during the non-

rewarded trials (Fig. 3.3I; F(9, 63) = 4.447, p < 0.001) during all three blocks (Block 1, p = 

0.020; Block 2, p = 0.076; Block 3, p = 0.014), and amount of time exploring the back of 

the chamber significantly correlated with increases in [DA] across trial types (Fig. 3.3J; 

R2 = 0.119, p = 0.001). 

Discussion 

Tonic changes in [DA] during the reward omission task 

Using one-minute sampling microdialysis coupled with high performance liquid 

chromatography-tandem mass spectrometry, we examined changes in extra-cellular 

levels of DA in the nucleus accumbens (NAc) throughout the instrumental foraging task.  

We found that during the baseline, rewarded version of the task, DA concentration ([DA]) 

increased to ~150% of basal levels.  Then, when the reward omission manipulation began, 

[DA] increased to ~200% basal levels.  Interestingly, [DA] remained elevated during 

many of the rewarded trials as well as the non-rewarded trials.   

These results support a prediction in a temporal difference algorithm made by 

Daw that, under situations of negative reward or aversion, a prolonged increase in tonic 

levels of DA was expected to occur (Daw et al., 2002; Daw and Touretzky, 2002).  Tonic 

levels of DA were suggested to represent the average rate of punishment (Daw et al., 

2002).  The increase we observe in [DA] following the reward omission manipulation is 

consistent with this view; however, it does not appear consistent with why [DA] is higher 

during the baseline, rewarded version of the task (prior to the omission manipulation) 

compared to pre-task levels of [DA].   
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The increase in [DA] following reward omission is also consistent with other 

studies revealing an increase in [DA] during the extinction of a reward (Ahn and Phillips, 

2007).  It is worth noting that some experiments have shown no changes in [DA] during 

extinction (Lecca et al., 2006), while others have shown a decrease in [DA] (Ranaldi et 

al., 1999).  Differences in [DA] during periods of non-reward across these studies are 

likely attributable to the marked differences in the experimental designs, differences in 

the types of reward being extinguished (food versus different drugs of abuse), or to 

differences in the frequency of collecting dialysis fractions.  Additionally, most previous 

studies were constrained to substantially longer sampling periods (10-20 min per sample), 

which could obscure dynamic changes in [DA] across minutes (Kennedy, 2013).   

DA and Behavioral Vigor 

Another hypothesis in the reinforcement learning field is that tonic levels of [DA] 

track the average rate of rewards and thereby determine the vigor of responding (Niv, 

2007; Niv et al., 2007).  Our results, which show that DA levels remain above baseline 

during the majority of non-rewarded and rewarded trials following the reward omission 

manipulation, initially appear incongruent to this hypothesis, since there is explicitly not 

a relationship between reward rate and tonic levels of DA.  However, an integral 

component of Niv and colleagues’ theory is that response rates are optimized by 

balancing the desire to obtain rewards quickly and the costs of effort and time.  

Importantly, slow responding delays reward acquisition; therefore, sluggish responding 

results in the cost of wasted time (Choi et al., 2014).  Therefore, in situations when 

reward rate is high, it can be advantageous for hungry subjects to vigorously respond to 

obtain as much reward as possible, since slower responding accrues the cost of time spent 
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not earning rewards (Niv et al., 2005).  Just as the “cost of sloth” can be detrimental when 

one is hungry and potential reward rate is high (Niv et al., 2007), lazy behavior can be 

counter-productive when hungry and resources are low.  So when reward is unexpectedly 

omitted, invigorated behavioral responding may be advantageous to energize the hungry 

animal to examine what changes have occurred in the environment and to explore other 

potential avenues of acquiring reward.   

Consistent with this logic, our data reveal that as [DA] increases during reward 

omission, response vigor also increases.  In fact, there is a linear relationship between 

response vigor and [DA] throughout the test session.  Subjects completed the ratio 

requirement of lever pressing faster when DA levels were higher.  Therefore, while under 

some circumstances, response vigor may be greater during periods of high reward (Niv et 

al., 2007), this does not preclude the possibility that response vigor could increase during 

other salient environmental factors, such as the omission of an expected reward.  In fact, 

reacting to diminished resource availability or aversive situations might require just as 

much, if not even higher, levels of invigorated behavior.  Supporting this notion, other 

studies have observed increased DA in the NAc during aversive situations (Louilot et al., 

1986; Horvitz, 2000; Levita et al., 2002; Badrinarayan et al., 2012).  Interestingly, the 

increases in [DA] during aversive conditions were higher when animals had the 

opportunity to escape the situation (Rada et al., 1998).  Additionally, depletions of NAc 

DA (McCullough et al., 1993) or the administration of DA receptor antagonists (Prinssen 

et al., 1996; Natesan et al., 2006) are sufficient to attenuate escape behavior, suggesting a 

necessary role of DA in the NAc for active avoidance.  Finally, research utilizing viral 
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gene therapy with DA deficient mice has shown that striatal DA is necessary for both the 

acquisition and maintenance of instrumental shock avoidance (Darvas et al., 2011). 

With the wealth of data revealing increased DA transmission in the NAc during 

aversive events that correspond to increases in behavioral responses, DA cannot merely 

be tracking reward rate or mediating only appetitive behaviors.  Perhaps the most 

parsimonious explanation consistent with the aforementioned studies is that tonic, extra-

cellular levels of DA in the ventral striatum may scale the appropriate motivational vigor 

of behavior, regardless of whether the valence is appetitive or aversive.  A number of 

factors including motivational state, reward availability, potential predation, and other 

dynamics of the current environment would likely contribute to tonic levels of DA in the 

ventral striatum and motivational vigor.  This interpretation is consistent with  the 

“opportunity cost of time” theory (Niv, 2007), since when the cost of slow responding is 

too high, the solution is more vigorous responding (Niv, 2007).  Therefore, it is plausible 

that, regardless of valence of the situation, tonic DA levels in the NAc may signal the 

vigor of behavioral actions, which could be higher during appetitive or aversive situations.   

DA and the Balance of Exploration versus Exploitation 

A fundamental issue in decision making is determining what the best course of 

action is for the current state of the environment.  This issue holds true for a wide range 

of circumstances and is applicable to human and non-human animals (March, 1991; 

Cohen et al., 2007; Fang and Levinthal, 2009).  In a foraging environment, individuals do 

not always have complete knowledge of all available options; therefore, they need to 

explore the environment.  While spending time investigating the environment is 

necessary, there is the cost of time and potentially wasted opportunities of gathering 
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resources (Beeler et al., 2012).  Animals have to balance the amount of time spent 

exploring the environment to learn about the options versus the amount of time actively 

obtaining and consuming resources.  Even after an animal has initially explored its 

options, resource availability can unexpectedly change.  Therefore, individuals face the 

decision of continuing a strategy that is currently working or exploring alternative options, 

which may be superior or may be worse.  This trade-off has been termed the exploration-

exploitation dilemma (Laureiro-Martínez et al., 2010).  Strongly favoring either an 

exploration-focused strategy or an exploitation-dominant can lead to suboptimal results 

(March, 1991; Laureiro-Martínez et al., 2010); a balance between the two is important, 

and which strategy is optimal depends on the environmental state. 

Generally, if the current environment is stable and one’s strategy is yielding 

plenty of reward, exploiting knowledge of the current environment and strategy can be 

the optimal choice.  However, if conditions are changing, exploring may be more 

advantageous to gain new information and discover other possible outcomes (Humphries 

et al., 2012).  This framework poses clear predictions for subjects’ behavior in the present 

study.  Initially, since subjects have undergone many days of training for the task, errors 

during baseline performance of the cued choice trials should be minimal.  However, 

when environmental contingencies change following the reward omission manipulation, 

subjects would be expected to attempt alternative response strategies and increase 

exploratory behavior.   

Consistent with these hypotheses, subjects accurately perform the baseline version 

of the task making very few errors on cued choice trials and sampling from both levers 

during free choice trials.  Critically, following the reward omission manipulation, rats 
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exhibited more exploratory behaviors and appeared to employ different response 

strategies.   Specifically, subjects pressed the non-illuminated lever significantly more 

times during cued-choice trials for the lever signaling reward omission than during cued-

choice trials for the rewarded lever.  Rats also spent more time in the back of the operant 

chamber, changed behavioral focus more frequently, and spent a greater amount of time 

rearing during periods of reward omission.  Together, these behavioral results support the 

idea that uncertain environments should bias behavior towards exploration and alternative 

strategies. 

 This exploration-exploitation trade-off has led to a theory in which DA is 

proposed to regulate the balance between exploration and exploitation (Humphries et al., 

2012).  Specifically, Beeler and colleagues have suggested that DA modulates the target 

of behavioral energy along an explore-exploit axis and a conserve-expend axis.  Reward 

is argued to determine the distribution of energy expenditure across these axes (Beeler et 

al., 2012).  This theory suggests that when DA is high, energy is expended and behavior 

focused toward exploration.  Conversely, when DA is low, behavioral energy is 

conserved and current knowledge is exploited.  A stream-lined version of this hypothesis 

is that tonic levels of DA regulate thrift; specifically, increasing DA decreases thriftiness, 

whereas decreasing DA increases thriftiness (Beeler, 2012).  Supporting this hypothesis, 

when given a choice between a lower effort lever and a high effort lever, 

hyperdopaminergic (DA transporter knock-down) mice will lever press the higher effort 

lever more than wild-type mice (Beeler et al., 2010).  Importantly, learning deficits do not 

appear to account for differences in behavior between the two strains of mice.  
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 If tonic levels of DA regulate behavior across the explore-exploit axis, changes in 

these behaviors would be expected to correspond to the changes in [DA]. Consistent with 

this prediction, we observed significant correlations between [DA] and three measures of 

exploratory behavior, specifically, the percentage of time rearing, amount of time spent in 

the back of the operant chamber, and number of times in which rats switched behavioral 

activities.  However, no significant relationship between [DA] and different response 

strategies (such as choosing the non-illuminated lever or ceasing to respond) was 

observed.  Overall, these results are consistent with the interpretation that DA may 

control the balance between exploration and exploitation (Humphries et al., 2012); 

however, future studies are needed to determine the causal role of manipulations of tonic 

DA transmission on these specific behaviors. 

Conclusion 

 The current study tested a number of predicted relationships between DA and 

behavior and, importantly, changes in response to manipulations of reward availability.  

While we have shown that tonic levels of DA increase during reward omission, at least 

under the current experimental parameters, [DA] does not purely track reward rate, since 

[DA] remains elevated during many of the rewarded trials as well.  However, [DA] in the 

NAc does correspond to changes in motivational vigor and a number of exploratory 

behaviors.  Together, these findings support a role of tonic DA in the NAc in behavioral 

flexibility (Beeler et al., 2014). 
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Figure 3.1.  Operant, reward seeking task to model foraging behavior.  A&B) During the 
baseline version of this task, rats could earn 1 reward pellet by choosing the lever under 
the illuminated cue light on cued choice trials (A) or by pressing either lever on free 
choice trials (B).  C&D) During the reward omission session, the reward normally 
resulting from a correct response on one lever is omitted (C).  The same lever will cease 
to be reinforced during the free choice trials as well (D).  During the microdialysis 
session, all subjects received 18 trials of the baseline version of the task (A-B).  Then, the 
reward omission manipulation began (C-D), which persisted for the duration of the 
session.  A control group of animals received the rewarded, baseline task (A-B) for the 
entire session. 
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Figure 3.2.  Dopamine transmission, choice behavior, and response vigor during the 
switch from the rewarded task to reward omission.  A) Initially, [DA] increases above 
basal levels during the baseline, rewarded version of the task.  Then, there is a further 
increase in [DA] following unexpected reward omission, which persists throughout the 
majority of the session.  B-D) Choice behavior during the test session.  During the 
baseline trials, subjects press both levers equally (B).  However, following the reward 
omission manipulation, rats develop a robust preference for the rewarded option (C) and 
decrease responding on cued-choice trials for the non-rewarded option (D).  E) The 
amount of reward earned does not account for changes in [DA].  F-G) However, the 
changes in [DA] do correspond to changes in vigor (defined as amount of time it takes to 
complete lever pressing).  When [DA] increases during the first block of reward omission, 
response vigor simultaneously decreases (F).  Furthermore, there is a correlation between 
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[DA] and response vigor throughout the session and across trial types (G).  Error bars 
represent standard error of the mean.  n.s. = not statistically different, *p  < 0.05, **p < 
0.01, ***p <0.001. 
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Figure 3.3.  Changes in [DA] correspond to behavioral allotment between the 
exploitation of knowledge and the exploration of new options.  A) Amount of time spent 
engaging the reward predictive cues.  B) Percentage of time engaging the cues signaling 
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no reward availability.  C) Changes in [DA] organized in 3 min bins to facilitate 
comparisons with behavior.  D) Percentage of cued choice trials in which subjects made 
“incorrect” responses, which includes pressing the non-illuminated cue light or not 
pressing either lever.  E) Percentage of time subjects exhibited rearing behavior.  F) 
Relationship between rearing behavior and [DA].  G) The number of times subjects 
changed their behavioral focus from one activity to another.  H) Correlation of switching 
behavioral focus with changes in [DA].  I) Changes in percentage of time spent exploring 
the back half of the chamber away from the cues and food port.  J) Relationship between 
[DA] and time exploring the back half of the chamber.  Error bars represent standard 
error of the mean.  n.s. = not statistically different, † = 0.076, *p  < 0.05, **p < 0.01, 
***p <0.001.  
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CHAPTER 4: 

PHASIC CHANGES IN DOPAMINE TRANSMISSION IN THE NUCLEUS 

ACCUMBENS CORE FOLLOWING UNEXPECTED REWARD OMISSION 

Introduction 

 In chapter 3, we demonstrated that reward omission causes an increase in tonic 

levels of dopamine (DA) in the nucleus accumbens (NAc) lasting many minutes, and that 

these increases correspond to changes in motivational vigor and exploratory behaviors.  

While such increases in DA concentration ([DA]) may be necessary to invigorate the 

animal to search for reward elsewhere, the temporal precision of these changes is not 

adequate to signal which lever is being extinguished.  Here, we explore the DA 

transmission dynamics occurring on a sub-second time course during the same behavioral 

paradigm. 

Based upon a number of elegant electrophysiology studies recording from a sub-

population of putative midbrain DA neurons, these neurons have been proposed to signal 

reward prediction errors (Schultz, 2002).  When an unexpected reward is received or an 

outcome is better than expected, DA neurons have been shown to burst fire; whereas, 

when an outcome is worse than predicted, these neurons can exhibit a pause in firing 

(Schultz et al., 1997; Matsumoto and Hikosaka, 2009).  These observations have 

provided a potential neurobiological substrate for temporal difference learning.    

Specifically, these phasic changes in neural activity have been proposed to mediate 
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learning about the change in reward (Schultz, 2002; Bromberg-Martin et al., 2010b; 

Steinberg et al., 2013) or the incentive value of rewards (Flagel et al., 2011; Berridge, 

2012).  While most of the electrophysiology studies have been done in non-human 

primates, these prediction errors have also been observed in rats (Hyland et al., 2002b; 

Roesch et al., 2007), and similar effects have been detected in the human ventral striatum 

using fMRI to detect changes in BOLD signal (McClure et al., 2003; Haruno et al., 2004; 

Abler et al., 2006), suggesting a common mechanism across these species. 

Fast-scan cyclic voltammetry (FSCV) studies recording changes in extra-cellular 

[DA] have revealed that a number of DA transmission dynamics in the NAc are 

consistent with predictions made about DA release by electrophysiological studies.  For 

example, when an unexpected reward is received, a phasic increase in DA release occurs, 

termed reward-evoked DA, and if a cue predicts the reward, as animals learn the 

relationship between the cue and reward, the increase in [DA] transfers to the reward-

predictive cue (Day et al., 2007).  These patterns of DA transmission have been observed 

for Pavlovian conditioned stimuli (Day et al., 2007; Flagel et al., 2011; Clark et al., 2013) 

as well as discriminative stimuli requiring an operant response to obtain the reward (Day 

et al., 2010; Gan et al., 2010; Wanat et al., 2010; Sugam et al., 2012).  Very recently,  

DA release in the NAc has been shown to encode the reward prediction error term (Hart 

et al., 2014); however, it is noteworthy the timing of the detected reward prediction error 

DA signal in that study occurred 2 sec after reward onset (later than electrophysiology 

studies would predict).   

Furthermore, the magnitude of cue-evoked DA has been shown to track the 

relative utility of currently available options.  For example, cue-evoked DA can be higher 
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for discriminative stimuli signaling the availability of a larger reward versus an option in 

which less reward is available (Gan et al., 2010).  Additionally, cue-evoked DA has been 

shown to track effort-related costs, whereby there is greater cue-evoked DA to 

discriminative stimuli signaling a low effort option versus a high effort option (Day et al., 

2010).   

Here, using fast-scan cyclic voltammetry (FSCV), we examine changes in DA 

release in the NAc during our reward omission paradigm.  We hypothesize that the 

omission of an expected reward may be coded through decreases in DA in the NAc.  

Additionally, we hypothesize that the cue-evoked DA for the extinguished option would 

decrease throughout the session if it signals the value of the available outcomes.  At first, 

the magnitude of cue-evoked DA would be expected to be equivalent on all cued-choice 

trials, since the available reward from both discriminative stimuli has been equal 

throughout training; however, as the animal experiences and learns about the reward 

omission, we hypothesize that the magnitude of the cue-evoked DA on the extinguished 

lever would decrease, compared to cue-evoked DA on rewarded trials, throughout the 

session. 

Methods 

Subjects 

Sprague Dawley rats obtained from Charles River (Winington, MA) were used as 

subjects for this study.  Once rats were trained on the behavioral task (exactly as 

described in chapter 2), they underwent surgery.  Out of 34 rats that underwent FSCV 

surgery and testing, 8 subjects rendered usable data and are included in this experiment.   
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Animals were kept on a 12:12 hr reverse light/dark cycle (lights off at 8am) and 

tested during their dark cycle.  Prior to surgery, rats were pair house, and after surgery, 

subjects were single housed.  Subjects had free access to water in their home cages and 

were mildly food restricted to approximately 90% of free-feeding weight (Porter-

Stransky et al., 2013).  Subjects were fed daily after testing. 

Surgery 

 All procedures were approved and performed in accordance with the University 

of Michigan Committee on the Use and Care of Animals.  Subjects were anesthetized 

with an intramuscular injection of ketamine hydrochloride (90 mg/kg) and xylazine 

hydrochloride (10 mg/kg).  Rats were also given the analgesic ketoprofen (5 mg/kg) and 

the antibiotic cefazolin (70 mg/kg). 

A guide cannula (Bioanalytical Systems, West Lafayette, IN) was positioned over 

the NAc core (relative to bregma: 1.4 mm anterior and 1.3 mm lateral) and cemented into 

place.  Additionally, a Ag/AgCl reference electrode (6-7 mm long) was implanted into 

contralateral cortex.  Then, a carbon fiber microelectrode was acutely lowered through 

the guide cannula into the dorsal portion of the NAc (15 turns), and a bipolar stimulating 

electrode was lowered into the VTA (relative to Bregma: 5.2 mm posterior and 0.8 mm 

lateral).  To optimize placement of the stimulating electrode, stimulations of the VTA (60 

pulses at 60 Hz, 120 µA) were given while recording the electrically-evoked DA release 

in the NAc at a carbon fiber microelectrode, as previously described (Porter-Stransky et 

al., 2011).  The average optimized position of the stimulator was 8.6 mm ventral (relative 

to top brain surface).  Stimulators were cemented in place to facilitate electrically-evoked 

DA release on the day of testing, which was necessary for the chemometrics used to 
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convert recorded current into [DA] (Keithley et al., 2010).  The carbon fiber recording 

electrode was removed after the stimulator was cemented into place, so that a fresh 

recording electrode could be used the day of testing. 

 Fast-scan cyclic voltammetry 

 Carbon fiber microelectrodes encased in glass capillary (exposed carbon fiber 

105-125 µm) were pre-calibrating using known concentrations of DA in a flow cell 

(Sinkala et al., 2012).   On the day of testing, these recording electrodes were lowered 

through the guide cannulae into fresh brain tissue in the NAc.  Depth into brain is 

monitored by voltammetrists by the number of turns the electrodes is lowered through the 

standard micromanipulator  (Robinson and Wightman, 2007); the average site of 

recordings was 17.5 turns into brain (recording sites are depicted in Fig. 4.1).  A 

triangular waveform ramping from -0.4 V to +1.3 V and back to -0.4 V was applied 

against the implanted Ag/AgCl reference electrode at 60 Hz for 20 min and then 10 Hz 

for an additional 10 min to facilitate electrode stabilization.  Throughout the experiment, 

changes in current were recorded 10 times per second.   

Since FSCV captures changes in current from the oxidation and reduction of a 

variety of electro-active compounds, changes in current specifically due to DA can be 

extracted using principle components regression (Heien et al., 2004; Keithley et al., 

2010).  To facilitate this process, electrically-evoked DA release was elicited by 

stimulation of the VTA before and after the experiment, as previously described (Porter-

Stransky et al., 2011).  Additionally, a few unexpected pellets were given to subjects, 

since these are known to reliably evoke transient increases in [DA] in the NAc (Day et al., 

2007; Clark et al., 2013).  Details about the chemometric analyses are provided below. 
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Behavioral testing  

Behavioral testing during FSCV recordings was conducted as described in chapter 

3.  Subjects first completed 18 trials of the baseline version of the task (Fig. 3.1A-B).  

Then, the reward omission manipulation began where one lever was extinguished while 

the other lever continued to be reinforced as usual (Fig. 3.1C-D).   To facilitate 

comparison with the results of the microdialysis experiment, trials were blocked during 

FSCV testing the same way as during the microdialysis experiment (Fig. 3.2A). 

Histology  

After FSCV experiments, lesions were made at the same depth in the brain as the 

recording occurred (Robinson and Wightman, 2007), since carbon fiber microelectrodes 

do not leave tissue damage detectable with light microscopy (Khan and Michael, 2003; 

Peters et al., 2004).  Brains were sliced 50 µm thick on a cryostat.  Electrode placements 

were examined under 10x magnification with a light microscope (Leica, Buffalo Grove, 

IL).  Recording sites are depicted in Figure 4.1. 

Data Analysis 

Conversion of recorded current into dopamine concentration  

Recorded current was converted into changes in [DA] using chemometric analysis 

with principle components regression (Heien et al., 2004; Keithley et al., 2009).   Since 

both DA and pH can both substantially contribute to changes in recorded current, DA and 

pH were included into the chemometric analysis.  DA traces were obtained from 

electrically-evoked DA release in vivo and pellet-evoked DA (by giving an unexpected 

reward to the rat).  Following electrically-evoked DA release, a shift in pH is often 
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observed (Michael et al., 1998; Phillips et al., 2003).  This conveniently provides 

example traces in pH for each electrode.  Examples of both acidic and basic changes in 

pH were included into the pH component of the chemometric analysis, since both are 

observed during the experiments.  Malinowski’s F-test was used to determine the number 

of factors to keep in the regression model (Keithley et al., 2010).   

Since FSCV works through background subtracting out a large current, traces are 

depicted as changes (Δ) in [DA].  Consistent with previous studies (Day et al., 2010), 

data “snippets” were created for each trial and aligned to the illumination of the cue lights.  

As a rule, the lowest point in the 5 sec prior to cue light illumination was chosen as the 

point to background subtract.  Therefore, bar graphs indicating DA values are relative to 

this pre-cue point.  Any data points that exceeded the Qα value in the residual analyses 

were excluded (Keithley et al., 2010).  To examine changes in DA during reward 

delivery and reward omission, snippets of changes in [DA] for each trial were realigned 

to lever retraction, which occurred immediately after the operant response was completed.   

Statistical Analyses 

 Changes in [DA] traces between reward delivery and reward omission were 

calculated using a linear mixed model because of its ability to properly handle correlated, 

repeated measures data (Aragona et al., 2008; Aragona et al., 2009).  The baseline value 

for detecting significant changes in [DA] during reward delivery and reward omission 

was the [DA] value when the operant response concluded (time point 0 in Fig. 4.3B). 

Cue-evoked DA was quantified in two ways.  Consistent with previous studies 

(Gan et al., 2010), the peak cue-evoked DA was determined by the highest point within 2 
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sec of the cue light illuminating (although, here, the peak was generally observed 0.3 - 

0.6 sec after the onset of the cue light, as seen in Figs. 4.2-4.6).  Additionally, since DA 

release has been shown to last up to a few seconds after a behaviorally-relevant event 

(Wanat et al., 2010; Wanat et al., 2013; Hart et al., 2014), we examined changes in DA 

during the 5 sec period while the cue lights were illuminated before levers were available 

by quantifying area under the curve (AUC).  For comparisons in which there were only 

two conditions, paired t-tests were used. 

To examine changes in behavior, cue-evoked DA, and relative [DA] during 

reward delivery versus reward omission across the 3 blocks, repeated measures ANOVAs 

were used with Bonferroni corrections applied to post hoc tests.  Subjects whom did not 

have data in one or more conditions in the time course analyses were excluded from these 

comparisons, as not to skew the within subject statistical tests.  For all analyses, and α 

level of 0.05 was used, and statistical analyses were performed using IBM SPSS 

Statistics 21 (Armonk, NY) and GraphPad Prism (La Jolla, CA). 

Results 

To examine changes in sub-second DA transmission during unexpected reward 

omission, FSCV was conducted in the NAc of rats.  Fig. 4.1 depicts the recording sites.  

Placements of the carbon fiber microelectrode were in the NAc core for 7 rats, and 1 

placement was on the borderline of the medial NAc shell.  Data from this recording site 

did not appear different from those fully in NAc core, so the shell placement was 

combined with the core placements and included in the analyses below. 
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During the FSCV test session, subjects first received 18 baseline trials in which 

both levers were equally reinforced.  Subjects completed cued choice trials for both the 

left and right levers equally (Fig. 4.2A; t(7) = 0.189, p = 0.856). Similarly, on free choice 

trials, subjects pressed both levers, not demonstrating a significant preference for one 

lever over the other (Fig. 4.2B; t(7) < 0.001, p = 1.000).  The average changes in [DA] are 

shown in Fig. 4.2C.  As expected, peak cue-evoked DA release did not significantly 

differ across baseline trial types (Fig. 4.2D; F(2,12) = 0.615, p = 0.557).  Finally, there was 

not a statistically significant change in [DA] when the reward pellets were delivered (Fig. 

4.2E; linear mixed model, p > 0.05 at all time points). 

After the baseline trials concluded, the reward omission manipulation began.  

During this portion of the session, one lever was extinguished while the other lever 

continued to be reinforced.  The same lever was reinforced on cued choice and free 

choice trials for each subject, although which lever was extinguished was counter-

balanced across subjects.  Consistent with the experiment in chapter 3, subjects reduced 

responding on cued choice trials for the non-rewarded lever over the course of the session 

(Fig. 4.3A; main effect, F(1,19) = 66.385, p < 0.001).  Initially, before subjects had learned 

about the extinguished lever, subjects completed both trial types equally (block 1, p = 

0.583).  Then, throughout the second and third blocks, subjects completed significantly 

fewer non-rewarded cued choice trials (Fig. 4.3A; blocks 2 and 3, p < 0.001).   

During block 1 when subjects were experiencing unexpected reward omission for 

the first time, there was a significant decrease in [DA] when the anticipated reward was 

omitted (Fig. 4.3Bi.; linear mixed model, p < 0.05 for time points 3.0 – 4.6 on graph, p < 

0.1 at time points 2.2-2.8 and 4.8).  On cued rewarded trials, a brief increase in [DA] was 
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detected when the reward was delivered (Fig. 4.3Bi.; p = 0.029 at time point 2.4).  During 

the second block, which is when subjects began to reduce responding on the non-

rewarded lever, there were no significant changes in [DA] during reward delivery or 

reward omission (Fig. 4.3Bii.; p > 0.05 at all time points).  By the third block, subjects 

rarely pressed the non-illuminated lever (Fig. 4.3A).  On the rare occasion that they did 

choose the non-rewarded lever, a decrease in [DA] after the reward omission was seen 

(Fig. 4.3Biii.; p ≤ 0.05 at time points 4.4-6.0).  There were no statistically significant 

changes in [DA] when subjects received the rewarded in block 3 (Fig. 4.3Biii.; p > 0.05 

at all time points).  DA transmission at the moment of reward delivery on rewarded trials 

significantly differed from the same time point in non-rewarded trials when the reward 

was omitted during the first block; however, DA transmission did not statistically differ 

during blocks 2 and 3 (Fig. 4.3C; main effect, F(1,16) = 8.587, p = 0.010; block 1, p = 

0.007; block 2, p = 0.453; block 3, p = 0.168).  Together, these data reveal phasic 

changes in [DA] in the NAc core that are consistent with reward prediction errors.  

Fig. 4.4A shows the average changes in [DA] on rewarded and non-rewarded, 

cued choice trials during blocks 1 (i.), 2 (ii.), and 3 (iii.).  Consistent with behavioral 

performance, cue-evoked DA did not initially differ between the two trial types during 

the first block.  However, by the second and third blocks, when subjects were responding 

differently on these trials (Fig. 4.3A), cue-evoked DA began to differentiate between the 

two discriminative stimuli (Fig.4.4A-C).  During blocks 2 and 3, the overall DA 

transmission during the 5 sec presentation of the discriminative stimulus (Fig. 4A), 

quantified by area under the curve, was lower to the cue light signaling no reward 

availability compared to the cue light signaling reward would be available (Fig. 4.4B; 
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main effect, F(1,15) = 6.360, p = 0.023; block 1, p = 0.985; block 2, p = 0.027; block 3, p = 

0.077).  Additionally, the peak cue-evoked DA was significantly different between 

rewarded and non-rewarded cued choice trials during by the last block (Fig. 4C; main 

effect, F(1,15) = 4.323, p = 0.055; block 1, p = 0.567; block 2, p = 0.123; block 3, p = 

0.022).  Together, these results demonstrate that cue-evoked DA in the NAc tracks the 

changing value of discriminative stimuli. 

In chapter 3 we showed that during the cued, non-rewarded trials, subjects 

employed alternative response strategies, such as pressing the non-illuminated lever (Fig. 

3.3D).  Here, we replicated this effect; on some cued, non-reward trials subjects chose the 

illuminated lever, while other times choosing the non-illuminated lever (Fig. 4.5A).  

While neither response resulted in a reward, rats did choose the illuminated lever more 

often than the non-illuminated lever (Fig. 4.5B; t(6) = 2.804, p = 0.031).  DA transmission 

differed on these cued choice trials depending on which lever the subject choose (Fig. 

4.5C).  Even before the rats could press the lever, the peak cue-evoked DA was higher on 

trials in which subjects subsequently pressed the illuminated lever than on trials in which 

the pressed the non-illuminated lever (Fig. 4.5D, t(6) = 2.804, p = 0.031).   

During the free choice trials, subjects could choose either the rewarded lever or 

the non-rewarded lever (Fig. 4.6A).  Consistent with our previous experiments, rats 

developed a strong preference for the rewarded option during free choice trials (Fig. 4.6B; 

F(1,19) = 89.507, p < 0.001), that was evident during all three blocks (block 1, p = 0.019; 

block 2, p < 0.001; block 3, p < 0.001).   
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DA transmission during the free choice trials was very similar to that on cued 

choice trials for the rewarded lever and was higher than on cued choice trials for the non-

rewarded option (Fig. 4.6C).  The DA transmission on the trials was separated into two 

groups based upon the animals’ responses (choosing the rewarded versus the non-

rewarded option).  Since subjects rarely chose the non-rewarded lever during blocks 2 

and 3, there were not enough trials to do proper time course analyses on the free choice 

trials, so the data below are from all three blocks combined.  [DA] appeared less on the 

non-rewarded trials compared to the rewarded trials (Fig. 4.6D); however, there was 

more variation in average [DA] in the non-rewarded trials (likely due to a much smaller 

sample size of trials in which they chose the non-rewarded option; Fig.4.6B).  The peak 

cue-evoked [DA] for free choice trials did not significantly differ between trials in which 

subjects choose the rewarded lever versus the non-rewarded lever (Fig. 4.6E).   

Discussion 

Decreased DA transmission during the omission of an expected reward 

Using FSCV, we examined the sub-second DA transmission dynamics in the NAc 

as subjects experienced the omission of an expected reward and developed a behavioral 

preference for the rewarded option.  Consistent with the predictions make by 

electrophysiology studies of putative midbrain DA neurons (Schultz et al., 1997; 

Bromberg-Martin et al., 2010b) and a recent FSCV study (Hart et al., 2014), DA 

transmission decreased when expected rewards were omitted (Fig. 4.3B-C).   

DA has been hypothesized to function as a teaching signal, detecting when 

violations of expectation occur (Hollerman and Schultz, 1998).  If DA detects violations 
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of expectation, then the decreased DA transmission during reward omission would be 

predicted to dissipate as subjects learned about this contingency switch and the omission 

was no longer surprising.  Importantly, the reduced [DA] during reward omission was 

most evident during the first block of the session, when the omission of reward was most 

unexpected, and this effect disappeared by the second block (Fig. 4.3B-C).  Critically, the 

“negative prediction error” in the DA corresponds to learning measured by changes in 

behavior.  Specifically, the decrease in [DA] was strongest during the first block when 

subjects were responding and expecting reward; however, it disappeared by the second 

block when subjects decreased responding on the non-rewarded lever.  This finding is 

consistent with electrophysiology experiments revealing that the decreases in DA 

neuronal activity to reward omission lessen as the omission becomes expected (Roesch et 

al., 2007).  

Some have questioned whether dips in [DA] in terminal regions from a pause in 

the firing rate of DA neurons are detectable or substantial enough to function as a reliable 

learning signal (Niv and Schoenbaum, 2008).  Indeed, the baseline firing rate of classical 

DA neurons in the rat is low, less than 10 Hz (Hyland et al., 2002a; Pan et al., 2008), and 

the magnitude of increases in firing rate can be much greater than decreases in firing rate.  

To elucidate if the small reductions in DA transmission during the omission of an 

expected reward are functionally relevant for the observed changes in behavioral 

response to reward omission, we are conducting a follow up experiment utilizing 

optogenetics in transgenic rats whereby a brief optical stimulation is given during the 

reward omission to counteract the dip in DA transmission on non-rewarded trials.  
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Since the phasic decreases in [DA] are small in magnitude compared to phasic 

increases, the downstream mechanisms that signal this information are likely quite 

different.  Phasic increases in DA release are thought to stimulate low-affinity, D1-like 

receptors, whereas phasic decreases in [DA] are hypothesized to be signaled through 

decreased binding at high-affinity, D2-like receptors (Bromberg-Martin et al., 2010b; 

Dreyer et al., 2010).  Indeed, modeling data have shown that phasic decreases in [DA] 

briefly reduce D1- and D2-like receptor occupancy to 0% (Dreyer et al., 2010).  While 

phasic decreases in DA may affect both families of DA receptors, the decreased binding 

at D2-like receptors is likely the receptor class that is functionally affected, since these 

receptors have a high affinity to DA and high baseline occupancy (Richfield et al., 1989).  

Supporting this mechanism of action, in chapter 5 we show that preventing a decrease in 

DA tone at D2-like receptors through site-specific microinfusion of D2-like, but not D1-

like, agonists dose-dependently prevents the behavioral preference for the rewarded 

option (Porter-Stransky et al., 2013).  

It is important to note that while the predominant view in reinforcement learning 

is that phasic decreases in [DA] signal a negative prediction error that could function as a 

teaching signal, this is not the only plausible explanation.  The change in [DA] to the 

omission of an expected reward could potentially signal other qualities such as 

motivational disappointment (Berridge, 2012), frustration (Amsel, 1958, 1962), or even 

aversion (Daly, 1974; McCutcheon et al., 2012).  Indeed, DA transmission in the NAc 

has been shown not to be necessary for all types of learning (Palmiter, 2007).  Utilizing 

naturally occurring individual differences in the propensity to attribute incentive value to 

reward predictive stimuli, it has been shown that DA is specifically involved in the 
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attribution of incentive motivational qualities to cues (Flagel et al., 2011).  Therefore, 

reduced DA transmission during the reward omission could be signaling a decrease in the 

incentive value of the non-rewarded option and the cues signaling that option.   

Much as the time course of decreased DA transmission during non-reward 

attenuates as the session progresses, and as it has been used to support DA’s role in 

learning, the same logic could be applied to the alternative theories of DA.  The reduction 

of incentive value, disappointment, or frustration could all be expected to be most intense 

during the first few experiences of the omitted reward (i.e. during block 1) and reduce 

intensity through the session, mapping onto the time course of changes in DA 

transmission throughout the session (Fig. 4.3B-C).  Therefore, while emphasis has been 

biased to the learning theories of DA since they have provided clear predictions of phasic 

DA transmission, there are definitely other plausible, competing interpretations for the 

role of phasic DA transmission in the NAc.  Much follow up research is needed to parse 

apart the specific functions of phasic DA transmission in the NAc on motivated behavior. 

Changes in cue-evoked DA transmission as subjects learn about the extinguished 

option and alter behavioral responses 

Since many of the original electrophysiology studies used simpler, non-choice 

tasks, there had been a paucity of research on if and how DA codes decision making and 

choice behavior (Niv et al., 2006).  Over the past few years, more studies have 

incorporated choice tasks to determine the relationship between DA and specific actions.  

Some studies have revealed that cue-evoked DA codes the best available option, 

regardless of which option is chosen (Roesch et al., 2007; Day et al., 2010).  Others, 
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however, have suggested that DA codes which option will be chosen, thereby playing a 

more prominent role in decision making (Morris et al., 2006). 

Here, we found that during free choice trials, cue-evoked DA did not differ based 

upon the subsequent action of the rat (Fig. 4.6E).  This finding is consistent with other 

studies indicating that DA signals the best available option (Roesch et al., 2007; Day et 

al., 2011; Sugam et al., 2012).  However, an important caveat is that subjects chose the 

non-rewarded lever significantly less often during the free choice (Fig. 4.6B), and, 

specifically in this paradigm, subjects rarely choose the non-rewarded lever during free 

choice trials after the first block (Fig. 3.2C).   Therefore, while these data appear most 

consistent with the notion that cue-evoked DA signals the best available option, this 

finding does not preclude the possibility that cue-evoked DA could differentiate between 

options.  Indeed, there were not enough free choice trials in which subjects divided their 

responding between the two options across the session blocks to perform time course 

analyses on free choice trials.  For this very reason, cued choice trials were included in 

the test session.  Since subjects continue to respond during cued choice trials for the non-

rewarded lever (Fig. 4.3A) longer than during free choice trials (Fig. 4.6B), these cued 

choice trials provide a larger sample to compare changes in DA and behavior between 

rewarded and non-rewarded trials across the session. 

During the first third of the test session, cue-evoked DA was equal between the 

rewarded and non-rewarded trials (Fig. 4.4B-C), during which subjects were still 

responding equally on rewarded and non-rewarded cued choice trials (Fig. 4.3A).  As 

subjects gained experience with the reward omission, cue-evoked DA began to 

differentiate between the two options and changes in behavioral responses emerged.  

90 
 



Specifically, subjects reduced responding on the non-rewarded lever (Fig. 4.3A), and DA 

transmission decreased to the cue light signaling no available reward compared to the cue 

light signaling reward availability (Fig. 4.4B-C).  These data demonstrate that as learning 

about contingency changes occurs (or as the non-rewarded option loses incentive value), 

the magnitude of cue-evoked DA updates, reflecting the new value of the available 

options. 

To elucidate if the magnitude of cue-evoked DA predicted behavioral response 

within a trial type, we analyzed differences in cue-evoked DA on non-rewarded trials 

when subjects pressed the illuminated lever (which was considered a correct response and 

rewarded during training) versus pressing the non-illuminated lever (which was an 

incorrect, non-rewarded response during training and testing).  Peak cue-evoked DA 

significantly differed when the cue-evoked DA was grouped by subjects’ subsequent 

responses on each trial (Fig. 4.5).  On average, cue-evoked DA was higher when subjects 

choose the illuminated lever than the non-illuminated lever (Fig. 4.5C-D).  This 

demonstrates a relationship between variations in cue-evoked DA for a single cue and the 

response strategy that subjects would choose for a given trial.   

Conclusion 

Here, we demonstrated that sub-second changes in [DA] in the NAc code when 

violations of expected outcomes occur.  Additionally, DA transmission to cues predicting 

the ability of reward updates as subjects learn about the changing value of the options 

signaled by these cues.  Together, the changes in cue-evoked DA in this study 

demonstrate that as reward contingencies change, this DA signal in the NAc can 

differentiate among the value of the attainable options within trials based on the cues 
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presented in each trial.  In these ways, DA transmission in the NAc appears to be both 

predictive of what outcomes are available (and in some cases which option will be chosen) 

and reactive when expected outcomes do not occur. 
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Figure 4.1.  FSCV recording sites in the NAc (n = 8). 
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Figure 4.2.  Baseline behavior and DA transmission prior to reward omission.  A&B) 
Behavioral performance on cued choice trials (A) and free choice (B) trials.  C) Average 
changes in [DA] during baseline trials aligned to cue light onset (at 5 sec into file).  D) 
Average peak cue-evoked DA relative to before cue onset.  E) Average changes in [DA] 
during reward delivery (for all trial types).  Graphs indicate mean ± SEM, n.s. = not 
statistically different. 
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Figure 4.3.  DA transmission on cued choice trials during the omission of a previously 
expected reward.  A) Percentage of cued choice trials in which subjects responded on the 
illuminated lever.  Throughout the session, subjects consistently completed cued choice 
trials for the rewarded lever (green) with near perfect accuracy; however, they 
significantly decreased responding on cued choice trials for the non-rewarded lever (red).  
B) Average DA transmission aligned to the completion of the operant response (time 0).  
On rewarded trials, the pellet was delivered 2 sec after the levers recessed.  C) Changes 
in [DA] relative to a pre-cue baseline during the moment of reward delivery or omission.  
Graphs indicate mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 0.05, † p < 0.1, n.s. = not 
statistically different.  
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Figure 4.4.  Time course of changes in cue-evoked DA transmission between rewarded 
and non-rewarded cued choice trials.  A) Average DA traces during cued rewarded trials 
(green) and cued non-rewarded trials (red) during block 1 (i.), block 2 (ii.), and block 3 
(iii.).  B) Differences in cue-evoked DA measured by area under the curve during the 5 
sec before the levers became available (i.e. between the dotted gray lines in A for each 
block).  C) Peak cue-evoked DA during each block.  Graphs represent mean ± SEM, n.s. 
= not statistically different, † p = 0.077, *p  < 0.05,  * p < 0.01, *** p = 0.001. 
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Figure 4.5.  Differential DA transmission on non-rewarded, cued choice trials correspond 
to behavioral response.  A) Two possible behavioral responses on non-rewarded, cued 
choice trials. B) Response allocation on the two available levers during the cued choice 
trials for the non-rewarded lever.  C) DA transmission on non-rewarded, cued choice 
trials.  D) Average peak cue-evoked DA on non-rewarded cued choice trials based upon 
subject’s subsequent response on each trial.  Graphs represent mean ± SEM, n.s. = not 
statistically different, ** p < 0.01. 
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Figure 4.6.  Changes in DA and behavior during free choice trials.  A) The two available 
response options during free choice trials.  B) Behavioral preferences during free choice 
trials.  C) Comparison of DA transmission during free choice and rewarded and non-
rewarded cued choice trials (all blocks combined).  D) DA transmission during free 
choice trials based upon which lever subjects chose.  E) Average peak cue-evoked DA on 
free choice trials. 
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CHAPTER 5:  

REDUCTIONS IN D2 RECEPTOR TONE IN THE NUCLEUS ACCUMBENS 

MEDIATE BEHAVIORAL PREFERENCES FOR THE OPTIMAL CHOICE 

FOLLOWING UNEXJPECTED REWARD OMISSION 

Introduction 

Neurobiologically, mesolimbic dopamine (DA) has been strongly implicated in 

motivated behavior (Nicola, 2007; Berridge, 2012).  Although DA has long been known 

to be involved in appetitive, reward-seeking behaviors (Schultz, 1998; Brown and Peters, 

2004; Phillips et al., 2007a; Dalley and Everitt, 2009), there is growing evidence that 

mesolimbic DA is also involved in aversive motivation (Young, 2004; Anstrom et al., 

2009; Badrinarayan et al., 2012; Salamone and Correa, 2012).  Previous studies have 

demonstrated that the reduction or omission of an expected reward is a salient and even 

aversive event that can significantly alter behavior (Tinklepaugh, 1928; Miller and 

Stevenson, 1936; Amsel, 1958; Daly, 1974; Kerfoot et al., 2008), and aversive responses 

to reward omission are phylogenetically ancient (Vindas et al., 2012).  While the nucleus 

accumbens (NAc) core has been shown to mediate behavioral flexibility (Cardinal et al., 

2001; Corbit et al., 2001; Floresco et al., 2006a; Haluk and Floresco, 2009), little is 

known about the role of DA in this system following decreased responding when reward 

is omitted (Annett et al., 1989; Reading and Dunnett, 1991).   
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Electrophysiological recordings demonstrate phasic reductions in firing rate by 

conventional putative DA neurons [projecting to the NAc core (Ikemoto, 2007; Lammel 

et al., 2008)] when an expected reward is omitted (Schultz et al., 1997; Roesch et al., 

2007), and this is believed to cause a phasic decrease in DA concentration ([DA]) in 

terminal regions.  Modeling data demonstrate that these phasic decreases reduce D1- and 

D2-like receptor occupancy to 0% (Dreyer et al., 2010).  The impact of reducing DA 

receptor tone has been understudied, and which DA receptor subtype impacts behavior 

following unexpected reward omission remains unknown.  However, phasic decreases in 

[DA] are hypothesized to preferentially alter D2-like receptor occupancy, since these 

receptors have greater affinity for DA (Richfield et al., 1989), and therefore a higher 

baseline occupancy (Dreyer et al., 2010; Marcellino et al., 2012).  It has therefore been 

suggested that behavioral alterations resulting from phasic decreases in [DA] are 

mediated by D2, but not D1, receptors (Frank, 2005; Bromberg-Martin et al., 2010b).   

Here, we utilized the same behavioral task as used in the previous three chapters 

allowing subjects to “forage” for reward in two different locations (two spatially distinct 

levers).  We tested the aforementioned hypothesis by administering D1- and D2-like 

receptor agonists and antagonists into the NAc core prior to the first sessions of the 

reward omission.   

Methods 

Subjects 

A total of 122 male, Sprague-Dawley rats (251-275 g at beginning of experiment) 

were used in these experiments.  Rats were obtained from Charles River Laboratories 
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(Winington, MA, USA) were pair-housed in transparent plastic cages with metal tops.  

Animals were kept on a 12:12 hr reverse light-dark cycle.  Experiments were run daily 

between 9:00 and 17:00 during the dark phase.   

Mild food restriction was employed to train rats to lever-press for the food reward.  

Since rats naturally continue growing, daily feeding accounted for natural growth over 

time, which was important to maintain consistent motivation levels throughout the 

experiment.  Subjects were food restricted to ~90% of their free feeding weight 

accounting for natural growth (Baker et al., 2012).  Natural growth curves for free-

feeding male and female rats were obtained from Charles River Laboratories (Winington, 

MA).  After the operant session each day, rats were weighed and fed based on their 

weight between 15:30 – 16:30 each day during the dark cycle.  Rats had free access to 

water in their home cages.   

Surgery  

 All procedures were conducted in accordance with the National Institute of Health 

Guide for the Care and Use of Laboratory Animals and were approved by the University 

of Michigan Committee on the Use and Care of Animals.  Subjects in the behavioral 

pharmacology experiment underwent surgery after initial behavioral training.  They were 

returned to free-feeding the day prior to surgery.  On the day of surgery, rats were 

anesthetized with an intramuscular injection of ketamine hydrochloride (90 mg/kg) and 

xylazine hydrochloride (10 mg/kg) and implanted with 22 gauge bilateral stainless-steel 

guide cannulae (Plastics One, Roanoke, VA) above the NAc core (AP = +1.4 mm and 

ML = +1.3 mm relative to bregma; DV = -3.0 from surface of the skull).  Guide cannulae 

were permanently fixed in place with two stainless-steel surgical screws and dental 
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acrylic.  Stainless-steel obturators flush with the end of the guide cannulae were inserted 

until the experimental day.  After surgery, all subjects were given ketoprofen (5 mg/kg) 

for pain relief and ad libitum access to food and water until fully recovered.   

 Once fully recovered from surgery (as determined by the return of normal weight 

gain), food restriction resumed, and subjects were re-trained on the FR4 operant task for a 

minimum of 4 days or until stable performance (defined as a minimum of 3 consecutive 

days with at least 90% accuracy on each trial type) on the task was observed.  Obturators 

were removed, cleaned, and reinserted daily to keep the cannulae unclogged. 

Drugs and Microinfusion Procedure 

 Since the behavioral manipulations in this study previously have been shown to 

phasically alter putative DA neurons (Schultz et al., 1997) projecting to the NAc core 

(Ikemoto, 2007), we extensively examined the effects of DA transmission in the NAc 

core on changes in behavior resulting from reward omission.  We tested two doses of a 

variety of dopaminergic agents.  The D1-like receptor agonist SKF-38393 (0.1, 1.0 µg), 

D1-like receptor antagonist SCH-23390 (0.1, 1.0 µg), D2-like receptor agonist quinpirole 

(0.1, 1.0 µg), and D2-like receptor antagonist eticlopride (0.1, 1.0 µg) were chosen, and 

doses were selected based on previous studies showing these compounds to be 

behaviorally relevant when infused into this brain region, especially at the higher dose 

(Wolterink et al., 1993; Ranaldi and Beninger, 1994; Swanson et al., 1997; Pezze et al., 

2007; Haluk and Floresco, 2009; Moreno et al., 2013; Stopper et al., 2013).  These drugs 

were obtained from Sigma Aldrich (St. Louis, MO) and dissolved into sterile saline 

(Haluk and Floresco, 2009).  Drugs were mixed fresh each day of behavioral testing (i.e. 

the experimental day). 
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On the day of behavioral testing, stainless-steel injectors (28 gauge) attached to 

PE-20 polyethylene tubing (Plastics One, Roanoke, VA) were inserted into the secured 

guide cannulae and extended approximately 3.5 mm below the tip of the guide cannulae 

(i.e. into fresh tissue), resulting in accurate targeting of the NAc core (see Fig. 5.1).  Each 

subject received a bilateral infusion into the NAc core (saline control, n = 6; 0.1 µg SCH-

23390, n = 6; 1.0 µg SCH-23390, n = 6; 0.1 µg SKF-38393, n = 7; 1.0 µg SKF-38393, n 

= 6; 0.1 µg eticlopride, = 7; 1.0 µg eticlopride, n = 9; 0.1 µg quinpirole, n = 8; 1.0 µg 

quinpirole, n = 5).  The infusion volume of 0.5 µL per side was delivered over 60 sec via 

a 10 µL Hamilton syringe (Reno, NV) and Harvard Apparatus pump (Holliston, MA).  

Injectors remained in place for an additional 60 sec following the end of the infusion to 

allow the drug to diffuse; then, injectors were removed, obturators were reinserted, and 

behavioral testing began 10 min later (Haluk and Floresco, 2009; Hanlon et al., 2010).  

To ensure that observed drug effects were not attributed to drug spreading outside of the 

NAc core, a subset of quinpirole (i.e. the drug that produced a robust behavioral effect) 

subjects (n = 7) received the effective dose of quinpirole, except in a smaller volume (1.0 

µg/0.3 µL per side), infused into the core.  Additionally, to determine if the quinpirole 

effect was unique to the NAc core subregion or more broadly to the NAc, additional rats 

(n = 6) received the effective dose of quinpirole (1.0 µg quinpirole/0.3 µL) into the 

medial shell.  The volume of 0.3 µL was chosen since previous work has successfully 

utilized this volume to study nucleus accumbens core versus shell differences in the rat 

(Pulvirenti et al., 1994; Pierce and Kalivas, 1995; Floresco et al., 2006a; Floresco et al., 

2008).  This is important, since many studies have revealed differences in core versus 
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shell regulation in motivated behavior (Di Chiara, 2002; Meredith et al., 2008; Reynolds 

and Berridge, 2008; Aragona et al., 2009). 

In total, sixty-seven subjects with accurate bilateral injector placements in the 

NAc core were included in the analyses (saline controls, n = 6; 0.1 µg SKF-38393, n = 7; 

1.0 µg SKF-38393, n = 6; 0.1 µg quinpirole, n = 8; 1.0 µg quinpirole, n = 12; 0.1 µg 

SCH-23390, n = 6; 1.0 µg SCH-23390, n = 6; 0.1 µg eticlopride, n = 7; 1.0 µg eticlopride, 

n = 9).  Six subjects receiving 1.0 µg quinpirole had placements in the NAc medial shell 

and were included in analyses. 

Locomotor Testing 

Since drugs acting on DA receptors in the NAc can alter general locomotor 

activity, which could affect behavioral performance and therefore impact the results, we 

tested the locomotor effects of the higher dose (1.0 µg) of each chosen D1-like and D2-

like receptor agonists and antagonists.  A separate drug-naive group of rats was used so 

that drug infusions were made into fresh, undamaged tissue, since previous work has 

shown decreased spread of drug effect from repeated microinfusions (Mahler et al., 2007; 

Richard and Berridge, 2011).  These subjects (total n = 48) were implanted with guide 

cannulae as described above.  A between-subjects design, whereby each subject only 

received one drug, was utilized to exclude the possibility of sensitization effects (Henry 

et al., 1998; Vezina, 2004).  Once fully recovered from surgery, subjects were maintained 

at approximately 90% of their free-feeding weight so they would be in the same 

motivational state as those tested in the behavioral pharmacology experiments.     
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Consistent with previous work (Badiani et al., 1995; Crombag et al., 1999), 

locomotor testing was conducted in plastic rectangular cages (45 x 24 x 18 cm) with a 

block in the center so rats could only explore the perimeter of the cage.  These cages were 

equipped with photobeams to quantify two measures of locomotor activity: total number 

of photobeam breaks and number of crossovers, defined as moving from one end of the 

cage to the other.  Crossovers captured locomotion across the cage and not the repetitive 

disruption of a single photobeam (Robinson and Camp, 1987; Paulson et al., 1991).  

Subjects were run in waves of 6-8 rats with saline control animals in every wave to 

account for any potential variation across days testing sessions (which is why more saline 

control rats were tested than drug treatments).  Forty-nine rats received infusions, which 

were conducted as described above (saline controls, n = 20; 1.0 µg SKF-38393, n = 7; 1.0 

µg quinpirole, n = 9; 1.0 µg SCH-23390, n = 7; 1.0 µg eticlopride, n = 5) and locomotor 

activity was monitored for 1 hr, the same length of time as the operant reward-seeking 

sessions. One outlier was excluded, so 48 subjects were included in analysis.   

Histology 

Upon completion of operant and locomotor testing, all subjects were euthanized 

with an overdose of ketamine delivered intraperitoneally, and brains were extracted for 

histological verification.  After soaking in formalin solution, brains were rapidly frozen 

and sliced on a cryostat in 50 µm sections.  Brain sections were stained with cresyl violet 

and viewed under 10x magnification.  Placements were identified by where the end of the 

tract from the injector tip was located and compared to the Paxinos & Watson brain atlas 

(Paxinos and Watson, 1998). 
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Statistics 

Statistical analyses were done using SPSS Statistics 19 (IBM, Armonk, NY), and 

data were graphed using GraphPad Prism version 5.0 (San Diego, CA).  Statistical 

significance for all statistical tests was defined with an α level of 0.05.  Bonferroni 

corrections were applied to post-hoc tests to reduce the risk of Type I errors (Sarter and 

Fritschy, 2008). 

Two-way (multivariate) ANOVAs and post-hoc tests with Bonferroni corrections 

were used to examine the effects of drugs and doses on choice preference during free 

choice and forced choice trials.  Since the 0.3 µL and 0.5 µL volumes of 1.0 µg 

quinpirole in the NAc core did not statistically differ from each other, they were 

combined to increase power to confidently interpret the null result.  Because of the robust 

effect of reward omission and the increased sample size of quinpirole subjects from 

combining both infusion volumes in the core, the quinpirole-induced blockade of the 

development of a behavioral preference is interpretable, and the likelihood of it being a 

Type 2 error is very low. Specifically, the effect of reward omission on behavioral 

preference is very robust causing a statistically significant choice preference in groups 

with as few as five subjects, and throughout the study the robust behavioral effects of 

reward omission were replicated in behavior-only subjects as well as in many of the drug 

treatment groups.   

Additionally, one-way ANOVAs were used to analyze performance on specific 

trial types (free choice trials choosing non-rewarded lever and rewarded forced choice 

trials) among drug and control conditions.  Dunnett’s post hoc tests were used to compare 
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drug groups to controls. Locomotor data were analyzed using a one-way ANOVA with 

planned contrasts (Gonzalez, 2009).   

Results 

Pharmacologically holding D2-like, but not D1-like, receptor tone in the NAc core 

prevents a behavioral preference for the rewarded option during unexpected 

reward omission 

Reward omission has been shown to alter the firing of putative DA neurons 

(Schultz, 1998; Waelti et al., 2001; Matsumoto and Hikosaka, 2009) which should affect 

DA transmission in the NAc core (Ikemoto, 2007).  To test whether the effects of altering 

DA receptor tone are indeed differentially mediated in a receptor specific manner within 

the NAc core, multiple doses of D1-like and D2-like receptor agonists and antagonist 

were microinfused into the NAc core (see Fig. 5.1A for a representative image and 

corresponding cartoon representation) 10 min prior to the first session of reward omission.  

Specifically, subjects received bilateral microinfusions of saline (Fig. 5.1B), the D1-like 

agonist SKF-38393 (Fig. 5.1C), the D2-like agonist quinpirole (Fig. 5.1D), the D1-like 

antagonist SCH-23390 (Fig. 5.1E), or the D2-like antagonist eticlopride (Fig. 5.1F).  Two 

doses of each drug were tested (see methods for justifications of chosen doses). 

If a decrease in occupancy of either D1- or D2-like receptors is necessary for 

establishing a preference for the better option (Dreyer et al., 2010), then both the D1- and 

D2-like receptor agonists should block the choice preference for the more optimally 

rewarded option.  However, if only D2-like receptors are necessary for suppressing 

responding to the omitted reward lever [as would be predicted by (Frank et al., 2004; 
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Bromberg-Martin et al., 2010b; Hikida et al., 2010)], then the D2-, but not D1-like, 

receptor agonist would be expected to prevent a choice preference for the rewarded lever.  

Multiple research groups have suggested that decreases in [DA] preferentially affect D2-

like receptors, because D2-like receptors have a higher affinity for DA (Richfield et al., 

1989) and higher basal occupancy (Dreyer et al., 2010) than D1-like receptors. 

Indeed, drug treatment had a significant effect on preference behavior during free 

choice trials (main effect of drug treatment, F(8,58) = 3.084 p = 0.006; interaction of 

choice preference and drug dose received, F(8,56) = 2.665, p = 0.015).  Comparable to 

behavior only subjects (Fig. 2.2B), control rats that received infusions of saline into the 

NAc core exhibited a robust preference for the rewarded lever on free choice trials (Fig. 

5.2A; p < 0.001).  Neither dose of the D1-like receptor agonist prevented subjects from 

exhibiting a significant preference for the rewarded lever (Fig. 5.2B; 0.1 µg SKF-38393, 

p = 0.003; 1.0 µg SKF-38393, p < 0.001).  However, administration of the D2-like 

receptor agonist dose-dependently prevented a behavioral preference for the rewarded 

lever during the first session of reward omission, with the higher dose being the effective 

dose (Fig. 5.2C).  Subjects receiving the lower dose of quinpirole developed a moderate 

preference for the rewarded lever (p = 0.048), but the higher dose of quinpirole attenuated 

the development of a choice preference during unexpected reward omission (p = 0.213).  

These data support the hypothesis that phasic decreases in DA transmission from 

unexpected reward omission (Schultz, 1998; Pan et al., 2008) have functional 

consequences at high affinity D2-like receptors (Richfield et al., 1989) necessary for 

altering behavior (Frank, 2005).  
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In contrast to infusions of DA agonists which can functionally hold DA tone 

stable at specific DA receptor subtypes, administration of DA antagonists were largely 

without effect in this behavioral paradigm.  Similarly to controls, subjects receiving either 

dose of the D1-like receptor antagonist displayed a significant behavioral preference for 

the rewarded lever (Fig. 5.2D; 0.1 µg SCH-23390, p = 0.002; 1.0 µg SCH-23390, p < 

0.001).  Subjects that received either dose of the D2-like receptor antagonist also 

developed a preference for the rewarded lever (Fig. 5.2E; 0.1 µg eticlopride, p = 0.016; 

1.0 µg eticlopride, p = 0.041).    

In addition to examining the effects of D1-like and D2-like agonists and 

antagonists on the development of behavioral preferences for the rewarded lever, we also 

compared how frequently subjects receiving each drug chose the omitted-reward lever.  

Rats receiving either dose of the D2-like, but not D1-like, receptor agonist chose the lever 

yielding no reward significantly more times than controls during free choice trials (Fig. 

5.2F; main effect of drug treatment, F(8,58) = 2.782, p = 0.011; Dunnett’s post-hoc 

comparisons: 0.1 µg quinpirole, p = 0.047; 1.0 µg quinpirole, p = 0.004; 0.1 µg SKF-

38393, p = 0.311; 1.0 µg SKF-38393, p = 0.994).  To determine whether the quinpirole 

effect on choice preference persisted throughout the session, we divided the free choice 

trials into two blocks and analyzed the percentage of trials in which subjects receiving 1.0 

µg quinpirole chose the non-reinforced lever compared to controls.  Quinpirole subjects 

chose the non-rewarded lever significantly more times than controls during both blocks 

of trials (Fig. 5.2F inset; block 1, t(16) = 2.879, p = 0.011; block 2, t(16) = 2.620, p = 0.019), 

demonstrating that quinpirole attenuated responding for the optimal choice throughout 

the session. 
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Although no significant changes were seen in subjects receiving the D1-like 

antagonist (0.1 µg SCH-23390, p = 0.514; 1.0 µg SCH-23390, p = 0.926), subjects 

receiving the higher (p = 0.042) but not lower (p = 0.162) dose of the D2-like antagonist 

chose the lever yielding no reward a modest but significant number of times more than 

controls.  However, this was likely attributable to the significantly altered locomotor 

activity and/or motivation resulting from eticlopride (see locomotor results below).  

Indeed, subjects in the high eticlopride dose group completed fewer rewarded forced 

choice trials than controls (Fig. 5.2G; p = 0.047), while no statistical differences were 

seen among any of the other groups (F(8,58) = 2.848, p = 0.010; 0.1 µg eticlopride, p = 

1.000; 0.1 µg SCH-23390, p = 0.988; 1.0 µg SCH-23390, p = 0.702; 0.1 µg SKF-38398, 

p = 1.000, 1.0 µg SKF-38398, p = 1.000; 0.1 µg quinpirole, p = 0.919, 1.0 µg quinpirole, 

p = 1.000).  This supports the interpretation that differences in performance of eticlopride 

rats (from D2-like receptor blockage within the NAc core) were at least partially 

attributable to other effects of the drug.  It is important to emphasize that we utilized such 

high doses, despite their locomotor impairments, to demonstrate that such manipulations 

have no impact on altering behavioral choice in this paradigm. 

Similarly to behavior-only controls (Table 2.1), saline controls (Fig. 5.2H, p = 

0.009) and D1-like receptor agonist groups (Fig. 5.2I; 0.1 µg SKF-38393, p = 0.001, 1.0 

µg SKF-38393, p = 0.015) completed significantly fewer forced choice trials for the 

omitted reward lever than for the rewarded lever.  The D2-like receptor agonist, however, 

dose-dependently altered performance on forced choice trials (Fig. 5.2J).  Subjects 

receiving the lower dose of quinpirole completed fewer forced choice reward-omitted 

trials (Fig. 5.2J; p = 0.019), while the higher dose caused no statistically significant 
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reduction in performance (Fig. 5.2J; p = 0.217) on forced choice trials even though 

subjects were not receiving a reward on these trials.  Similarly to controls, both D1-like 

(Fig. 5.2K, 0.1 µg SCH-23390, p = 0.015, 1.0 µg SCH-23390, p < 0.001) and D2-like 

(Fig. 5.2L; 0.1 µg eticlopride marginally significant, p = 0.063; 1.0 µg eticlopride, p = 

0.001) receptor antagonist groups completed fewer forced choice trials for the omitted 

reward lever than for the rewarded lever.  These results further support the interpretation 

that preventing a reduction of D2-, but not D1-like, receptor tone precludes the alteration 

in reward-seeking strategy in this task when a “foraging patch” is depleted. 

Since reward omission can cause subjects to avoid the quadrant of the chamber 

containing the omitted-reward lever (Fig. 2.6A), videos of the sessions of subjects 

receiving the higher dose of each drug were analyzed to determine the effects of DA 

receptor agonists and antagonists on which quadrants of the chamber rats were occupying 

throughout the reward omission sessions (see Fig. 2.1A).  Similarly to behavior-only 

controls (Fig. 2.6A), saline controls spent significantly more time in the quadrant 

containing the rewarded lever than the quadrant containing the non-reinforced lever (Fig. 

5.2M; p = 0.011).  As expected, subjects receiving the D1-like agonist also spent 

significantly less time in the omitted-reward lever quadrant than the rewarded lever 

quadrant (Fig. 5.2N; p = 0.013).  However, subjects receiving the D2-like agonist spent 

equivalent time in the quadrants containing the rewarded and omitted levers (Fig. 5.2O; p 

= 0.333).  Also, similarly to controls, subjects infused with the D1-like (Fig. 5.2P; p = 

0.004) or D2-like (Fig. 5.2Q; p = 0.012) antagonists spent significantly less time the 

quadrant containing the non-reinforced lever compared to time spend in the quadrant 

containing the rewarded lever.  
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Together, these results strongly suggest that holding D2-, but not D1-like, 

receptor tone stable prevents a choice preference for the reinforced option following a 

reward omission manipulation, and these data are consistent with previous work 

revealing that higher (1.0 or 10.0 µg) but not lower (0.1 µg) doses of quinpirole into the 

NAc core impairs strategy set shifting and reversal learning, which are other important 

assays of behavioral flexibility (Haluk and Floresco, 2009).  Although basal, steady-state 

levels of DA have been estimated to be in the low (6-20) nanomolar range (Kawagoe et 

al., 1992; Sam and Justice, 1996; Shou et al., 2006; Owesson-White et al., 2012), the 

higher dose of quinpirole is likely better maintaining D2-like receptor tone to prevent the 

putative phasic reduction in D2-like receptor occupancy during reward omission (Hong 

and Hikosaka, 2011).  Our findings support the hypothesis that a phasic reduction in D2-

like receptor signaling is necessary for guiding motivated behavior away from suboptimal 

choices (Frank, 2005; Bromberg-Martin et al., 2010b; Dreyer et al., 2010).  

To investigate whether the quinpirole-induced lack of a preference for the 

rewarded option during reward omission (Fig. 5.3A) was due to impairment in learning 

about the omitted reward, rats were tested drug-free in a second reward omission session 

the following day.  If quinpirole caused a learning deficit, quinpirole subjects when tested 

drug-free would be expected to choose the suboptimal option more times than controls 

since they would have to learn about the contingency switch during the second session.  

Conversely, if quinpirole impaired the expression of the behavioral preference without 

impairing learning, quinpirole subjects when tested drug free would be expected to 

immediately perform as well as controls during the second, drug-free session of reward 
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omission, since learning would have occurred even though the expression of the 

behavioral preference was not observed during the first session (Fig. 5.3A). 

During the second reward omission session when subjects did not receive any 

microinfusions, a robust behavioral preference was observed for the rewarded lever 

during free choice trials (Fig. 5.3B, main effect, F(1,59) = 1,032.841, p < 0.001; Bonferroni 

post hoc results of all drug conditions was p < 0.001).  Regardless of drug treatment the 

previous day, subjects chose the omitted reward lever infrequently on free choice trials 

(Fig. 5.3C); no significant differences in percentage of free choice trials choosing the 

omitted reward lever were observed compared to controls (F(8,60) = 1.146, p = 0.347).  

Additionally, subjects did not differ in number of times they chose the omitted reward 

option during the first five free choice trials of the second session compared to controls 

(Fig. 5.3D; F(8,60) = 1.629, p = 0.136), demonstrating that all subjects, including those 

who had received quinpirole, performed similarly during the beginning of the second 

session regardless of previous drug treatment.  These results support the interpretation 

that the D2-like agonist attenuated the behavioral preference for the optimal choice 

during reward omission without impairing learning about the omitted reward.   

Both the NAc core and shell subregions facilitate the development of a behavioral 

preference during unexpected reward omission through reduction of DA tone at D2-

like receptors 

 Subregions of the NAc, primarily the NAc core and shell, are anatomically and 

functionally distinct (Kelley, 1999; Zahm, 1999; Di Chiara, 2002; Aragona et al., 2006; 

Ikemoto, 2007; Aragona et al., 2008; Aragona, 2011).  The NAc core and shell 

subregions can serve different roles in certain types of behavioral flexibility (Floresco et 
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al., 2006a).  Since the NAc shell can facilitate memory of arousing experiences, such as a 

significant reduction in expected reward (Kerfoot et al., 2008), and it recently has been 

shown that under certain experimental conditions aversive stimuli phasically decrease 

[DA] in the shell (McCutcheon et al., 2012), we investigated whether the effect described 

above, demonstrating that the D2-like receptor agonist prevents the development of a 

behavioral preference for the rewarded option, is unique to the NAc core or whether it is 

also true in the NAc shell.   

Since 1.0 µg quinpirole (0.5 µL volume) in the NAc core blocks the development 

of a choice preference during reward omission (Fig. 5.2C), we infused this effective dose, 

but at a smaller volume (0.3 µL), into the NAc core or medial shell prior to the first 

session of reward omission (Fig. 5.4A; core, n = 7, shell, n = 6).  Neither the main effect 

(F(1,11) = 2.818, p = 0.121) nor the interaction of choice behavior by subregion (F(1,11) = 

0.152, p = 0.704) was significant, demonstrating that D2-like agonism in both the NAc 

core and medial shell attenuates a choice preference for the rewarded option following 

unexpected reward omission (Fig. 5.4B).  Indeed, while control subjects displayed a 

robust preference for the rewarded lever (t(7) = 5.347, p = 0.001), subjects receiving 

quinpirole into the core (p = 0.363) or shell (p = 0.186) did not significantly prefer the 

rewarded lever compared to the non-reinforced lever. 

General locomotor-effects of quinpirole are not responsible for the lack of choice 

preference following unexpected reward omission 

To examine if the quinpirole-induced blockade of the development of the 

behavioral preference during reward omission was attributable to alterations in locomotor 

activity caused the drug, separate groups of drug-naive rats received bilateral 
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microinfusions of saline or the D1-like or D2-like receptor agonists or antagonists (1.0 

µg/0.5µL) into the NAc core.  Each subject received only one drug to exclude the 

possibility of sensitization effects (Henry et al., 1998; Vezina, 2004).  Locomotor 

behavior was monitored for 1 hr – the identical length of time as the operant task.  Two 

measures of locomotor activity were recorded: the total number of photobeam breaks and 

the number of “crossovers” (see methods for details).   

One-way ANOVAs revealed that drug treatment significantly affected locomotor 

activity assessed by total number of beam breaks (Fig. 5.5A; F(4,42) = 7.88, p < 0.001) as 

well as total number of crossovers (Fig. 5.5B; F(4,42) = 6.866, p < 0.001).  Specifically, 

D1-like activation within the NAc core significantly increased (beam breaks, p = 0.002; 

crossovers, p = 0.001) while D1-like blockade (beam breaks, p = 0.007; crossovers, p = 

0.043) and D2-like blockade (beam breaks, p = 0.025; crossovers, p = 0.044) 

significantly decreased the number of photobeam breaks and crossovers compared to 

controls (Fig. 5.5A&B).  D2-like activation (via quinpirole), however, did not 

significantly alter locomotor activity (beam breaks, p = 0.715; crossovers, p = 0.687).   

Both number of beam breaks and crossovers reveal similar effects of the drugs on 

locomotor activity.  Indeed, there was a significant and robust correlation between these 

two measures (Fig. 5.5C; r(45) = 0.971, p < 0.001).  The similarity between beam break 

and crossover data within each drug treatment demonstrates that these variables are 

highly reliable measures of general locomotor activity and are sensitive to alterations 

from dopaminergic drugs.   
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These locomotor data demonstrate that all doses of the dopaminergic agents used 

were sufficient to modulate behavior in a predicted way.  Consistent with the literature, 

both D1- (McGregor and Roberts, 1993; Baldo et al., 2002; Haluk and Floresco, 2009) 

and D2-like antagonists (Boye et al., 2001; Haluk and Floresco, 2009) significantly 

decreased locomotor activity.  Conversely, the D1-like agonist significantly increased 

locomotor activity, consistent with previous work (Dreher and Jackson, 1989; Phillips et 

al., 1995; David et al., 2004).  Quinpirole, as expected (Haluk and Floresco, 2009; 

Stopper et al., 2013), did not significantly alter locomotion.  While quinpirole did not 

affect general locomotion here, it is noteworthy that its effects appear to be more variable: 

some have detected that quinpirole site-specifically infused into the NAc modestly 

increased (Dreher and Jackson, 1989; Phillips et al., 1995) or decreased (David et al., 

2004) locomotor activity.   

Since quinpirole did not significantly alter locomotor activity, the quinpirole-

induced attenuation of the behavioral preference during reward omission cannot be 

attributed to drug effects on locomotor activity.  And, importantly, the lack of effects 

from all other dopaminergic drugs tested in the behavioral choice paradigm was not due 

to insufficient doses, because the doses utilized were sufficient to alter general locomotor 

behavior in expected ways. 

Although the dopaminergic drugs were given at behaviorally relevant doses (Fig. 

5.5A&B), response latencies of subjects during free choice trials in the reward omission 

experiment revealed that the locomotor effects of these drugs did not affect the ability of 

subjects to perform the operant response (Fig. 5.5D).  Only the high dose (1.0 µg) of 

SCH-23390 revealed a trend for increasing response latency (p = 0.062).   Response 
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latencies of subjects receiving the other drugs and doses did not significantly differ from 

controls (one-way ANOVA: F(8,59) = 3.000, p = 0.007; 0.1 µg SKF-38398, p = 0.995; 1.0 

µg SKF-38398, p = 0.970; 0.1 µg quinpirole, p = 0.641; 1.0 µg quinpirole, p = 0.994; 0.1 

µg SCH-23390, p = 0.668; 0.1 µg eticlopride, p = 1.000; 1.0 µg eticlopride, p = 1.000).  

Together, these data demonstrate that the dopaminergic manipulations on choice behavior 

were not attributable to general locomotor effects of the drugs. 

Discussion 

Reduction of D2-like receptor tone in the NAc mediates behavioral preferences for 

optimal choices 

When an expected reward is omitted, conventional DA neurons [known to project 

to the NAc core (Ikemoto, 2007; Lammel et al., 2008; Liss and Roeper, 2008; Lammel et 

al., 2011)] phasically decrease their firing rate (Schultz et al., 1997; Schultz, 1998; Pan et 

al., 2005; Roesch et al., 2007; Pan et al., 2008).  This is associated with a decrease in [DA] 

in the forebrain terminal regions to which they project (Ikemoto, 2007; Dreyer et al., 

2010), such as the NAc core (Day et al., 2007).  Decreases in striatal [DA] are 

hypothesized to have greater functional consequences to D2-like receptors because these 

receptors have greater affinity for DA (Richfield et al., 1989; Marcellino et al., 2012) and 

therefore a higher baseline occupancy compared to low affinity D1-like receptors (Frank, 

2005; Bromberg-Martin et al., 2010b; Hong and Hikosaka, 2011). 

A reduction in D2 receptor tone has been hypothesized to promote action 

suppression and No-Go learning (Frank, 2005; Bromberg-Martin et al., 2010b).  D2 

expressing neurons are predominantly in the indirect pathway (Gerfen and Surmeier, 
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2011) and have been shown to mediate aversive learning (Hikida et al., 2010).  Recently, 

it has been shown that freezing behavior to an aversive stimulus is strongly associated 

with phasic decreases in [DA] within the NAc core (Badrinarayan et al., 2012; Oleson et 

al., 2012), and optogenetic depolarization of neurons expressing D2 receptors within the 

dorsomedial striatum [a region which shows similar DA transmission dynamics as the 

NAc core (Brown et al., 2011)] causes mice to instantaneously freeze (Kravitz et al., 

2010).  Moreover, mice will avoid a trigger activating neurons that express D2 receptors 

within this region (Kravitz et al., 2012).  These recent studies suggest that phasic 

reductions in [DA] may activate D2 expressing neurons in the NAc core and may, at least 

in part, mediate aversive motivated behavior. 

Here, using site-specific microinfusions of D1- and D2-like receptor agonists and 

antagonists, we found that only the D2-like agonist quinpirole dose-dependently 

prevented the rapid expression of a behavioral preference for the rewarded option.  

Importantly, the locomotor effects of quinpirole are not responsible for the lack of a 

behavioral preference.  Administration of the D1-like agonist or D1- or D2-like 

antagonists did not impair the development of a preference for the rewarded lever, which 

is consistent with previous work demonstrating that DA blockade does not affect the 

ability of rats to choose a larger reward (Salamone et al., 1994).  These findings further 

support the hypothesis that guiding motivated behavior away from aversive cues is 

mediated through a phasic reduction in the occupancy of D2-like receptors.   

Parkinson’s disease, which occurs when DA neurons degenerate, can cause 

cognitive impairments in addition to the well-known motor impairments (Rana et al., 

2013).  Our finding that D2-like agonists attenuate the avoidance of a sub-optimal choice 
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is consistent with and has implications for research examining reinforcement learning in 

Parkinson’s patients.  Specifically, when off their medications in a DA depleted state, 

Parkinson’s patients have been observed to be better at learning to avoid negative 

outcomes than positive outcomes; however, when on their medications, primarily D2-like 

agonists, they did not learn as well from negative feedback (Frank et al., 2004; Cools et 

al., 2006; Cools et al., 2007; Voon et al., 2010).  Importantly, fMRI studies reveal that 

DA agonists which disrupt learning from negative feedback in Parkinson’s patients 

correspond to smaller decreases in ventral striatal activity in response to losses (Voon et 

al., 2010).  In combination with our results, these data strongly support the idea that 

performance in avoiding suboptimal choices is attenuated by D2-like agonists filling in 

the phasic dips in DA from reward omission (Frank et al., 2004). 

In addition to binding to post-synaptic D2-like receptors, quinpirole also binds to 

pre-synaptic D2 autoreceptors.  Binding of D2-like agonists to autoreceptors can decrease 

basal levels of DA (Kalivas and Duffy, 1991; Pierce et al., 1995; Koeltzow et al., 2003) 

and decrease stimulated phasic DA release in the dorsal striatum (Joseph et al., 2002; 

O'Connor and Lowry, 2012) as well as in the NAc core and shell (Maina and Mathews, 

2010).  In the present study, even though basal levels of DA may be altered due to 

quinpirole’s effects at autoreceptors, D2-like tone at post-synaptic receptors would be 

maintained.  Indeed, the effective dose of quinpirole in attenuating the preference for the 

rewarded option is in the range of doses that are presumed to bind to post-synaptic D2-

like receptors (Swanson et al., 1997; Boschen et al., 2011).  Therefore, regardless of the 

amount of DA being released, the post-synaptic D2-like receptors would be expected not 

to functionally experience the reduced binding from decreased levels of DA since the 
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quinpirole would be bound to these receptors, and the results of this study support this 

interpretation. 

Indeed, basal levels of DA are sufficient to inhibit D2-expressing indirect 

pathway neurons (Surmeier et al., 2011), and quinpirole inhibits such neurons (Hooper et 

al., 1997).  Together, in combination with the quinpirole attenuation of behavioral 

response to reward omission, these data are consistent with the hypothesis that decreases 

in DA, which would preferentially affect high-affinity D2-like receptors (Kreitzer and 

Berke, 2011), are necessary for altering behavior away from a sub-optimal choice. 

Conclusion 

The present experiments demonstrate that the omission of an expected reward is a 

salient, aversive event prompting a robust preference for the rewarded option. The 

expression of this behavioral choice preference is dose-dependently attenuated by a D2-, 

but not D1-like, agonist in the NAc.  These results support the hypothesis that phasic 

reductions in [DA], as would occur during the omission of an expected reward, 

preferentially affect D2-like receptors.  Specifically, decreased occupancy of D2-like 

receptors in the NAc facilitates motivated behavior that drives animals away from a non-

rewarded option.   
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Figures 

 

Figure 5.1.  Histological verification of injectors targeting the NAc core.  A) 
Representative image of injector placement and corresponding cartoon image.  B-F) 
Placements of injector tips in the NAc core where drug was infused prior to the first 
session of reward omission.  Black circles represent control saline infusions (B).  Color 
circles indicate where the D1-like agonist (C), D2-like agonist (D), D1-like antagonist (E), 
and D2-like antagonist (F) were infused into the NAc core.  Orange circles indicate 1.0 
µg of drug, and cyan circles represent 0.1 µg of drug. 
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Figure 5.2.  Disrupting D2-, but not D1-like, receptor tone in the NAc core prevents the 
rapid development of behavioral preference for the rewarded option during unexpected 
reward omission.  A-E) Similarly to controls (A), subjects receiving either dose of the D1 
agonist (B) or the D1 or D2 antagonists (D and E, respectively) expressed a significant 
preference for the rewarded lever.  However, the D2 agonist dose-dependently blocked 
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the normally robust behavioral preference for the rewarded lever (C).  F) Interfering with 
D2-, but not D1-like, receptor tone resulted in rats choosing the non-reinforced lever 
more often than controls (white bar) during free choice trials  Inset demonstrates that the 
disruption of D2-like receptor tone via quinpirole affects choice preference throughout 
the session.  G) Only the higher dose of eticlopride reduced the number of correctly 
completed forced choice trials for the rewarded lever compared to controls.  H-L) During 
reward omission, subjects completed fewer forced choice trials for the non-reinforced 
lever than for the rewarded lever.  Much like controls (H), subjects administered with 
either dose of the D1-like receptor agonist (I) displayed reduced performance on non-
rewarded forced choice trials.  The higher, but not lower, dose of the D2 agonist 
prevented the relative decrease in performance on non-reinforced compared to rewarded 
forced choice trials (J).  Subjects receiving the D1-like (K) or D2-like (L) receptor 
antagonists completed fewer forced choice trials for the non-rewarded lever, similarly to 
controls.  M-Q) During reward omission, rats avoided the quadrant of the chamber 
containing the omitted-reward lever, spending more time in the quadrant containing the 
rewarded lever.  Similarly to controls (M), subjects receiving the D1 agonist (N) or either 
the D1-like (P) or D2-like (Q) antagonist spent less time in front of the non-reinforced 
lever (green bars).  However, the D2-like agonist (O) prevented subjects from spending 
significantly more time in front of the rewarded lever (gray bars).  n.s. = not statistically 
significant, † p=0.06, *p < 0.05, **p < 0.01, ***p < 0.001.  Error bars indicate mean ± 
SEM. 
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Figure 5.3.  Behavioral preferences for the optimal option during the second, drug-free 
session of reward omission reveal that quinpirole did not block learning about the omitted 
reward.  A) Choice preference from the first session is re-shown for comparison.  B) 
During the second session of reward omission, rats (now drug-free) demonstrated a 
robust behavioral preference for the rewarded lever during free choice trials regardless of 
the drug they received the previous day.  C-D) Drug received during the previous session 
did not significantly affect the percentage of free choice trials in which subjects chose the 
lever yielding no reward (C) or the number of times rats chose the omitted reward lever 
during the first 5 trials of the second switch day when subjects did not receive drug (D).  
n.s. = not statistically significant compared to saline controls, *p < 0.05, **p < 0.01, ***p 
< 0.001.  Error bars indicate mean ± SEM. 
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Figure 5.4.  The D2-like receptor agonist administered into the NAc core or shell 
prevented a behavioral choice preference during reward omission.  A) Injector 
placements in the NAc.  Black circles represent saline controls.  Red circles indicate shell 
and blue circles indicate core placements.  B) 1 µg quinpirole bilaterally infused into the 
NAc core or shell attenuated the development of a preference for the optimal choice. n.s. 
= not statistically significant.  Error bars indicate mean ± SEM.  
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Figure 5.5.  Locomotor effects of the utilized D1- and D2-like receptor agonists and 
antagonists.  A-B) The D1-like receptor agonist increased while the D1- and D2-like 
receptor antagonists decreased locomotor activity compared to controls in separate, drug 
naive groups of rats as measured by total beam breaks (A) and crossovers (B) in a 1 hr 
session.  The D2-like agonist did not affect locomotor behavior.  C) The two measures of 
locomotor activity, beam breaks and crossovers, were highly correlated.  D) Response 
latencies on free choice trials during reward omission reveal that only the higher dose of 
the D1-like antagonist affected performance on the task compared to controls (white bar).  
† p=0.06, *p < 0.05, **p < 0.01.  Error bars indicate mean ± SEM. 
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CHAPTER 6: 

GENERAL DISCUSSION 

Foraging Behavior during Reductions in Reward Availability 

In dynamic environments where resource availability frequently varies, animals 

must be able to identify changes in resource availability and employ adaptive foraging 

strategies.  To model this behavior in the laboratory, in chapter 2, we modified an operant 

behavioral task (Day et al., 2010; Day et al., 2011; Sugam et al., 2013)  to examine 

choice preferences in rats.  On cued choice trials (also termed forced choice trials in the 

literature), subjects could earn a food reward by choosing the lever under the illuminated 

cue light.  On free choice trials, the cue lights above both levers illuminated, and subjects 

could earn a reward by responding on either lever.     

Once trained on this task, rats learned to discriminate between the cue lights with 

near perfect accuracy.  Specifically, rats consistently learned to correctly complete the 

cue-choice trials, ensuring subjects were discriminating between the cue lights and 

responding on both levers.  On free choice trials, when both levers were equally 

reinforced, we showed that rats sample equivalently from both levers (Porter-Stransky et 

al., 2013).  On the test day, to model a rapid depletion, the reward following a correct 

response on one lever was omitted, while the other lever continued to be reinforced.  

During this first reward omission session, rats exhibited a strong behavioral preference 

for the rewarded option during free choice trials.  Additionally, they decreased 
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responding on cued choice trials for the non-rewarded lever, while responding correctly 

on cued choice trials for the rewarded lever.  This behavioral response to the reward 

omission manipulation remained consistent in both male and female rats and across all 

stages of the estrous cycle (Porter-Stransky et al., 2013). 

 In contrast to reward omission, some other negative manipulations of reward did 

not cause the same behavioral responses.  If the reward following a correct response on 

one lever was reduced by 50% (instead of by 100%), rats did not show a choice 

preference for the optimal choice until the second reward reduction session (Porter-

Stransky et al., 2013).  These results are consistent with studies from other labs showing 

that the reduction of an expected reward causes a preference for the better option during 

the second session (Salinas et al., 1993; Salinas and White, 1998; Sastre and Reilly, 2006; 

Ramot and Akirav, 2012).    

 From an ecological perspective, if an animal is hungry and the food in one 

foraging patch has run out, it is imperative that the animal quickly adjust its foraging 

strategy, since successful foraging is paramount for fitness (Pyke, 1984).  If, however, 

there still is food, albeit less food, there may not be the same sense of urgency in adapting 

foraging strategy.  Optimal foraging theory would, however, predict that animals should 

adjust to the change in reward availability (Pyke, 1984), and, indeed, they do by the 

second session (Porter-Stransky et al., 2013). 

 Adaptive foraging behavior has been necessary for the survival of most species 

(Stephens and Krebs, 1986).  In evolutionary history, foraging has been foremost critical 

in the direct acquisition of resources, such as food.  However, the skills required for 
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adaptive foraging have likely paved the way for goal-directed cognition (Hills, 2006; 

Stout, 2010).   Indeed, the processes that facilitate semantic memory (Hills et al., 2012), 

visual search (Wolfe, 2013), and human foraging (Hills et al., 2013) have ties to basic 

foraging behavior that predates the divergence between vertebrates and invertebrates 

(Hills, 2011). 

Dopamine Transmission in the Nucleus Accumbens Following  

Unexpected Reward Omission 

 Being able to exhibit flexible, reward-seeking behavior is advantageous in the 

numerous aforementioned situations.  Since the neurotransmitter dopamine (DA) has 

been heavily implicated in reward-seeking behaviors (Berridge and Robinson, 1998; 

Schultz, 2002; Wise, 2004; Berridge, 2012; Salamone and Correa, 2012), we conducted a 

series of experiments investigating DA transmission in NAc during decreased reward 

availability.  After establishing the behavioral paradigm, as detailed in chapter 2, we 

sought to examine DA’s involvement in the development of behavioral preferences for 

the rewarded option during the extinction of one foraging option.  We utilized rapid-

sampling microdialysis to examine changes in levels of DA over minutes in chapter 3, 

fast-scan cyclic voltammetry to investigate sub-second changes in phasic DA signaling in 

chapter 4, and site-specific microinfusions of DA receptor agonists and antagonists in 

chapter 5 to elucidate which DA receptor subtype mediates the behavioral preference for 

the optimal choice. 

Changes in tonic [DA] captured by microdialysis  

Using one-minute sampling microdialysis coupled with high performance liquid 

chromatography-tandem mass spectrometry, we examined changes in extra-cellular 
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levels of DA in the nucleus accumbens (NAc) throughout the instrumental foraging task.  

During the baseline version of the task, DA concentration ([DA]) increased to ~150% of 

basal levels.  Then, when the reward omission manipulation began, [DA] increased to 

~200% basal levels.  Interestingly, [DA] remained elevated during many of the rewarded 

as well as non-rewarded trials of the first two blocks.  However, near the end of the 

second block, DA transmission reduced to comparable levels to the control group (Fig. 

3.2A).  During the third block, [DA] significantly increased only during the three minutes 

of non-rewarded trials, suggesting that tonic levels of DA can adjust rapidly to 

environmental events (Fig. 3.2A). 

Previously, it had been suggested that DA may signal the hedonic value of 

rewards (Wise, 2004; Wise, 2008).  This seemed plausible, because [DA] has been shown 

to increase to a number of outcomes that animals like, such as eating, mating, and taking 

drugs (Berridge and Robinson, 1998).  Here, although [DA] increased during the 

microdialysis experiment, this increase in [DA] did not correlate to the number of 

rewards received (Fig. 3.2E), and [DA] did not track the hedonic value of the outcomes.  

Indeed, rats did not appear to ‘like’ when an anticipated reward was omitted; in fact, rats 

will lever press and jump hurdles to escape stimuli associated with reward omission 

(Adelman and Maatsch, 1956; Daly, 1969c, b, a, 1974) and exhibit a number of behaviors 

indicating that reward omission can be frustrating (Amsel, 1958, 1962; Daly, 1974) and 

even aversive (Papini and Dudley, 1997).  Additionally, manipulations of DA 

transmission do not alter hedonic values measured by taste reactivity (Wyvell and 

Berridge, 2000; Smith et al., 2011).  Together, these results refute the idea that tonic 

levels of [DA] in the NAc track the hedonic value of outcomes. 
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Additionally, [DA] in the NAc over minutes did not appear to signal reward 

prediction errors.  While phasic decreases in [DA] are predicted to occur during the 

specific moment that an expected reward is omitted (Schultz, 1998), tonic levels of [DA] 

in the NAc actually increased, rather than decreased, during reward omission (Fig. 

3.2A&F).  The fact that decreases in [DA] during reward omission were not detected with 

microdialysis is not surprising for two reasons.  First, even if basal levels of [DA] 

remained constant except for a few brief decreases in [DA], microdialysis would likely 

not be able to distinguish such a short-lasting event from noise (Schultz, 2007).  Second, 

microdialysis is likely capturing a distinct DA signal that is different from the phasic 

changes (Grace, 1991; Niv et al., 2005; Niv, 2007; Niv et al., 2007). 

Similarly, [DA] did not track the average rate of rewards (Niv et al., 2007) or rate 

of punishment (Daw et al., 2002); indeed, there was an initial increase in [DA] when 

subjects could work for rewards during the baseline version of the task, and then there 

was a further increase in [DA] when one lever was extinguished and subjects could not 

earn rewards (Fig. 3.2). 

Consistent with theories of DA’s role in the vigor and effort of responding (Niv et 

al., 2005; Niv, 2007; Niv et al., 2007; Salamone et al., 2007), the increases in [DA] 

detected by microdialysis correlated to changes in the vigor of behavioral responding.  

Additionally, consistent with theories of DA in the balancing of behavioral exploration 

versus exploitation (Beeler et al., 2010; Beeler, 2012; Beeler et al., 2012; Humphries et 

al., 2012), the increases in [DA] during the reward omission session correlated with more 

time engaged in exploratory behaviors, measured by time rearing, time spent exploring 

the back half of the chamber away from the cues and reward port, and number of 
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transitions from one behavioral focus to another.  While the vigor and 

exploration/exploitation hypotheses are theoretically framed differently, these two 

measures may be often be related.  During periods of reward omission, invigorated 

behavior could be adaptive to facilitate the exploration of the changing environment and 

motivate the animal to find alternative avenues of acquiring food.  

These neurochemical and behavioral results are also consistent with an incentive 

motivation interpretation (Berridge and Robinson, 1998).  Pharmacologically increasing 

DA transmission in the NAc by site-specifically administering amphetamine increases 

motivated behavior toward a reward predictive cue (Wyvell and Berridge, 2000) and 

increases how hard animals were willing to work for food (Zhang et al., 2003).  The 

exploratory behaviors could alternatively be interpreted as increases in motivated 

behavior searching for and ‘wanting’ the missing reward.  Alternatively, the increases in 

[DA] could signal an aversive motivational component of the reward omission (Amsel, 

1958, 1962; Papini and Dudley, 1997; Faure et al., 2008; Richard and Berridge, 2011). 

Sub-second DA transmission measured with FSCV 

 Phasic changes in DA release have been proposed to signal reward prediction 

errors.  Specifically, when an outcome is better than anticipated, a subset of putative 

midbrain DA neurons reveal a phasic burst of firing; when an outcome is worse than 

expected, these neurons reveal a brief pause in tonic firing (Schultz et al., 1997; Roesch 

et al., 2007).  Based upon these electrophysiology studies, phasic increases in DA release 

signaling positive prediction errors and phasic decreases in [DA] signaling negative 

prediction errors were hypothesized to occur in terminal regions (Schultz, 2002).  While 

much research has focused on such phasic increases in DA release, fewer studies have 
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examined the effects of brief decreases in DA release, although decreases may be as 

important, behaviorally, as increases (Goto et al., 2007).  Since electrophysiology cannot 

measure the amount of neurotransmitter release, rapid changes in [DA] needed to be 

measured at terminal regions in order to understand the resulting changes in 

neurotransmitter release from previously reported changes in the firing rate of DA 

neurons.  Specifically, during the reward omission manipulation in the utilized behavioral 

paradigm, a brief decrease in [DA] was expected to occur; to test if this actually happens 

in the NAc, we utilized FSCV. 

 Consistent with the reward prediction hypothesis, a decrease in [DA] was detected 

during the omission of an expected reward during the first block of reward omission (Fig. 

4.3Bi.).  Once subjects learned about the extinguished lever and reduced responding on 

this lever (Fig. 4.3A), a significant decrease was no longer detected (block 2; Fig. 4.3Bii.).  

By the last block of the test session, subjects rarely pressed on the non-rewarded lever.  

On the few trials in which they did press the non-rewarded lever, a small decrease in [DA] 

was detected.  These few trials could be due to mistakenly pressing the non-rewarded 

lever; alternatively, subjects could be testing if that lever was still non-rewarded or if the 

contingencies changed again.  Additionally, as subjects gained experience with the non-

rewarded lever, cue-evoked DA to the cue light signaling non-rewarded trials decreased, 

relative to cue-evoked DA for the rewarded option (Fig. 4.4).   

Alternative interpretations and challenges to the reward prediction theory of DA neurons  

While the theory that midbrain DA neurons signal reward prediction errors has 

gained strong momentum in the fields of behavioral and computational neuroscience, 

there is evidence that DA transmission may mediate the attribution of incentive salience 
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to cues rather than learning the predictive outcomes that the cues signal.  Kent Berridge 

and Terry Robinson have pioneered the theory that DA signals the incentive salience, 

rather than the learned value or hedonic properties, of stimuli (Robinson and Berridge, 

1993; Berridge and Robinson, 1998; Berridge et al., 2009).  Indeed, there is evidence that 

DA is not critical for all forms of learning (Robinson et al., 2005); instead, DA is 

necessary for endowing reward predictive cues with incentive value and for exhibiting 

behaviors indicative of cues being incentive stimuli (Flagel et al., 2011; Saunders and 

Robinson, 2012).   

Additionally, a study utilizing FSCV in subjects who differed in their propensity 

to attribute incentive salience to cues found different DA transmission dynamics in the 

NAc of these two groups (Flagel et al., 2011).  Specifically, in subjects that tend to 

attribute incentive value to reward predictive cues (termed “sign trackers”), cue-evoked 

DA release to the conditioned stimulus developed over the course of sessions and became 

greater than DA release to the unconditioned stimulus.  However, these changes did not 

emerge in rats for which reward predictive cues do not function as incentive stimuli 

(“goal trackers”).  Importantly, it has been well documented that both sign trackers and 

goal trackers learn the associative relationship between the cue and reward (Yager and 

Robinson, 2013; Robinson et al., 2014), so difference in DA transmission between the 

two groups cannot be attributed to a deficit in learning.  The DA transmission dynamics 

in the NAc core are consistent with the reward prediction error theory in sign trackers but 

not goal trackers.  Because both groups learned the predictive nature of the cues and 

exhibited conditioned responses, if DA transmission in the NAc signals learning, then 

DA transmission should have been equivalent in both groups.  Since DA release differed 
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between these two subpopulations of rats, this study suggests that DA transmission in the 

NAc core facilitates the attribution of incentive salience to reward predictive cues and not 

mere associative learning. 

In light of this study, the changes in DA transmission detected in our experiments 

could represent changes in the incentive value of reward predictive cues.  Robust cue-

evoked DA was observed in the NAc of our subjects (Fig. 4.2, 4.4), similar to the sign 

trackers in the aforementioned study (Flagel et al., 2011).  The observed decreases in 

[DA] during the omission of an expected reward could represent inconsistencies between 

the actual outcome and the expected outcome based upon the incentive stimulus.  

Additionally, the reduced cue-evoked DA to the non-rewarded cue could signal the loss 

of incentive value of the non-reinforced cue.  Together, our results are consistent with the 

interpretation that DA is more of a motivational neurotransmitter that attributes incentive 

value to cues rather than a learning neurotransmitter. 

A noteworthy point of divergence between our FSCV data and the classical 

electrophysiology studies is the time course in which the pause in neuronal firing and the 

decrease in [DA], respectively, occur.  The pauses in firing detected by electrophysiology 

of midbrain DA neurons in primates have been seen to be temporally locked to the exact 

moment that the reward was omitted, often within ~100 ms (Schultz et al., 1997).  The 

decrease in [DA] in the NAc that we detect with FSCV reveals a slower, longer-lasting 

change (Fig. 4.3B), which is consistent with another very recent FSCV study (Hart et al., 

2014).   
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There are a few possible explanations to reconcile this difference in results 

between FSCV and electrophysiology studies.  First, since the utilized behavioral 

paradigm normally delivers the reward 2 sec after the operant response is completed and 

the levers recess, the time-locked nature of the decrease in [DA] would be dependent on 

the rats’ abilities to accurately and consistently time exactly 2 sec with millisecond 

precision.  On trials in which rats responded on the non-rewarded lever, no cues indicated 

precisely 2 sec after the completion of the operant response, other than the passage of 

time.  Therefore, if their timing of 2 sec was even off by a few hundred milliseconds, the 

decrease in [DA] could occur at a different time.  Indeed, based upon behavioral 

observations of subjects completing this task, we know that they generally approach the 

food port immediately after the lever recess, not waiting 2 sec until the reward is 

delivered.  Second, a closer examination of the raster plots depicting the pauses in 

neuronal firing during the omission of an expected reward reveals that the decrease in 

firing does not always occur during the exact same time point during each trial; indeed, 

consistent with our FSCV results, the pause in neuronal firing can vary and last up to 0.5-

0.75 seconds (Schultz, 2002; Roesch et al., 2007).  Third, electrophysiology experiments 

recording from midbrain DA neurons cannot capture terminal modulation of DA release 

from other neurons.  Therefore, it is possible that inputs from other areas are modulating 

DA release irrespective of the firing rate of midbrain DA neurons.  Additionally, 

differing densities of the DA transporter can cause differences in extra-cellular [DA] 

(Wickens et al., 2007; Humphries and Prescott, 2010).  Fourth, we now know that the 

classical studies revealing reward prediction errors through the firing patterns of DA 

neurons were only recording from a subset of DA neurons, and the midbrain population 
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of DA neurons is much more heterogeneous than was thought 10 years ago (Ungless et 

al., 2004; Margolis et al., 2006a; Lammel et al., 2008; Brischoux et al., 2009; Ungless 

and Grace, 2012).  For example, an electrophysiology study examining reward prediction 

errors in the DA neurons of rats recorded from 258 neurons in the VTA and substantia 

nigra but only 36 of these neurons were classified as dopaminergic based upon traditional 

electrophysiological criteria of DA neurons (Roesch et al., 2007), although anatomical 

studies reveal that approximately 55% of VTA neurons and at least 88% of substantia 

nigra neurons are dopaminergic (Margolis et al., 2006a).  Therefore, it is possible that 

some of the firing patterns affecting DA release in terminal regions have not been fully 

captured by electrophysiology. 

 Similarly, it has been suggested that the temporal precision of the phasic changes 

in DA neuronal firing occur too rapidly to actually signal reward prediction errors 

(Redgrave and Gurney, 2006; Redgrave et al., 2008).  The phasic changes in putative 

midbrain DA neuronal firing can occur very rapidly, within ~100 ms (Schultz, 2002).  

For these changes to be signaling violations of expectation, the stimulus or outcome must 

be identified by the brain in order to compute whether a violation of expectation has 

occurred.  Peter Redgrave has drawn attention to the fact that the identity of visual stimuli 

(which are primarily used in electrophysiology and reward prediction error experiments) 

may not be well discriminated by the brain until ~80-160 ms after stimuli onset (Schall, 

2003; Redgrave et al., 2008).  However, a direct projection from the superior colliculus to 

the VTA and substantia nigra pars compacta has been discovered, and this projection is 

functionally important for the ability of visual stimuli to evoked phasic increases in 
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putative DA neuronal firing (Comoli et al., 2003; Dommett et al., 2005; Overton et al., 

2014).    

Based upon these findings, it has been proposed that DA neurons may reinforce 

the discovery of unpredicted sensory events rather than signaling specific prediction 

errors (Redgrave et al., 2008).  And, indeed, there is evidence that some DA neurons fire 

to salient sensory events, regardless of their valence or predictive value (Matsumoto and 

Hikosaka, 2009; Bromberg-Martin et al., 2010b).  However, this does not necessarily 

preclude the possibility that some DA neurons may signal reward prediction errors based 

upon the variations in the timing of the responses explained in the previous paragraph.  

Indeed, recent experiments demonstrate that a subpopulation of DA neurons (primarily in 

the VTA and ventromedial substantia nigra pars compacta) appear to signal reward 

prediction errors while more dorsolateral DA neurons (primarily in the substantia nigra 

pars compacta) respond to salient stimuli necessary for completing a working memory 

task (Matsumoto and Takada, 2013). 

 Another growing problem for the reward prediction error hypothesis of DA 

neurons is that there is accumulating evidence that many DA neurons do not behave 

according to the classical reward prediction error theory proposed by Schultz.  Indeed, 

some DA neurons increase firing to aversive events (Brischoux et al., 2009; Matsumoto 

and Hikosaka, 2009; Lammel et al., 2011) and, as stated above, some DA neurons fire to 

novel stimuli, regardless of the valence that these stimuli signal (Horvitz, 2000; 

Matsumoto and Hikosaka, 2009; Overton et al., 2014).   
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 Converging evidence suggests that there are different subpopulations of DA 

neurons that function differently, signaling different things.  Indeed, there is growing 

consensus that midbrain DA neurons are not homogenous, as was once thought (Lammel 

et al., 2008; Lammel et al., 2011).   Therefore, Okihide Hikosaka and colleagues have 

suggested that there are at least three types of midbrain DA neurons: DA neurons that 

signal motivational salience, neurons that signal motivational value, and some that 

provide alerting signals (Bromberg-Martin et al., 2010b).   Furthermore, there is evidence 

that the same neurons can mediate more than one of the aforementioned roles, such as 

signaling valence and salience (Bromberg-Martin et al., 2010a).   

Given the diverse projections (Ikemoto, 2007; Lammel et al., 2011) and the 

varying electrophysiological characteristics of DA midbrain DA neurons (Margolis et al., 

2006a; Lammel et al., 2008), it is plausible that DA neuronal responses to environmental 

events can be very diverse.  Additionally, environmental factors (such as stress) can 

affect the proportions of the NAc in which glutamate transmission elicits appetitive 

versus aversive behaviors (Reynolds and Berridge, 2008), and these effects are dependent 

on DA transmission (Faure et al., 2008; Richard and Berridge, 2011).   

Much debate has centered on the role of DA transmission in motivated behavior 

(Berridge and Robinson, 1998; Wise, 2004; Salamone and Correa, 2012).  However, 

when taken together, the converging results from the numerous experiments trying to 

elucidate the role of DA suggest that DA does not do any one particular thing.  Rather, 

DA neurons receiving various inputs and projecting to varying forebrain regions likely 

convey different signals depending upon the environment and motivational state of the 

animal.   
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Behavioral preferences prompted by the omission of an expected reward are 

mediated by D2-like receptors in the NAc 

Electrophysiology studies of classical midbrain DA neurons have revealed that 

this subpopulation of neurons exhibit a phasic reduction in firing rate when an expected 

reward is omitted, and in chapter 4, we demonstrated that there is a decrease in [DA] 

during this event.  Modeling data has shown  that phasic decreases in [DA] reduce D1 

and D2 receptor occupancy to 0% (Dreyer et al., 2010)2.  However, because of the 

differing affinities of D1 and D2 receptors to DA (Richfield et al., 1989; Dreyer et al., 

2010), decreases in [DA] have been hypothesized to preferentially affect D2 receptors 

(Frank et al., 2004; Frank, 2005; Bromberg-Martin et al., 2010b; Dreyer et al., 2010).  

Specifically, baseline occupancy of D1 receptors during regular tonic activity is estimated 

to be ~ 3.5%, whereas D2 occupancy is ~75%; therefore, a reduction in [DA] due to 

pauses in dopaminergic neuronal firing (as would happen during reward omission) would 

have greater effects at D2 receptors (Dreyer et al., 2010).   

If reductions in [DA] to the omission of an expected reward are critical for 

altering behavior in response to the extinguished lever, and if these reductions in [DA] 

are signaled through reductions in binding at post-synaptic D2 receptors, then preventing 

the decrease in occupancy of DA at D2 receptors through administration of a D2-like 

agonist would be expected to attenuate the effects of reward omission.  We tested this 

hypothesis by site-specifically administering D1-like and D2-like DA receptor agonists 

and antagonists prior to subjects experiencing reward omission.  We found that only the 

2 While the modeling data was primarily focused on DA receptors in the dorsal striatum, D1 and D2 
receptors in the NAc core have similar affinities to DA as they do in the dorsal striatum (Richfield et al., 
1989). 
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D2-like agonist dose dependently attenuated the behavioral preference for the rewarded 

option (Fig. 5.2).  Furthermore, any general locomotor effects of the drug are not 

responsible for the lack of behavioral preference for the rewarded option (Fig. 5.5).  

These results support the hypothesis that phasic reductions in [DA] acting via D2-like 

receptors in the NAc are important for altering behavioral strategy following the omission 

of an expected reward.  

Additionally, these data support the theory that striatal neurons containing D2 

receptors, which are part of the indirect pathway, suppress actions and modify future 

behavior away from aversive outcomes (Bromberg-Martin et al., 2010b; Hikida et al., 

2010; Kravitz and Kreitzer, 2012; Kravitz et al., 2012). The majority of neurons in the 

striatum (~95-97%) are medium spiny neurons (Kemp and Powell, 1971; Tepper and 

Bolam, 2004; Matamales et al., 2009), and these medium spiny neurons in the striatum 

primarily express either D1 or D2 receptors, although co-localization of both these 

receptor types is found on some neurons (Matamales et al., 2009).  D1-expressing 

neurons are generally part of the direct pathway, whereas D2-expressing neurons are 

predominantly part of the indirect pathway (Humphries and Prescott, 2010; Gerfen and 

Surmeier, 2011).  In the dorsal striatum, the direct pathway projects “directly” to the 

internal globus pallidus and substantia nigra pars reticulada, whereas the indirect pathway 

detours through the external globus pallidus and subthalamic nucleus before arriving in 

the substantia nigra (Berke and Hyman, 2000; Kravitz and Kreitzer, 2012).   

While much research has focused on the direct and indirect pathways of the dorsal 

striatum due to its roles in movement and Parkinson’s disease, less has focused on the 

ventral striatum (Humphries and Prescott, 2010).  The core subregion of the NAc is 
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anatomically similar to the dorsal striatum with projections to the dorsal portion of the 

substantia nigra pars reticulate (Deniau et al., 1994); however, a number of neurons in the 

NAc core project to the ventral pallidum (Maurice et al., 1997).  Indeed, many D1-

expressing neurons in the NAc core project directly to midbrain DA neurons (Deniau et 

al., 1994; Lu et al., 1997), while a proportion of D1-expressing neurons project to the 

ventral pallidum (Robertson and Jian, 1995; Zhou et al., 2003).  D2-expressing neurons 

in the NAc core project to the ventral pallidum (Lu et al., 1997).  Additionally, since DA 

transmission dynamics in the NAc core are similar to in the dorsal striatum (Brown et al., 

2011), the indirect pathway from the NAc core may serve a similar role in directing 

motivated behavior away from a negative outcome, as the indirect pathway exiting the 

dorsal striatum does (Frank, 2005; Hikida et al., 2010; Kravitz and Kreitzer, 2012; 

Kravitz et al., 2012; Freeze et al., 2013).  Supporting this idea, other recent studies have 

shown that decreased phasic DA transmission in the NAc core is correlated with aversive 

cues and freezing behavior (Badrinarayan et al., 2012; Oleson et al., 2012).   

Reconciling simultaneous increase and decreases in [DA] 

 In chapter 3 we revealed that when an expected reward is omitted, a tonic increase 

in [DA] occurs in the NAc measured by microdialysis, while in chapter 4, we emphasize 

the importance of phasic decreases in DA transmission during reward omission detected 

with FSCV.  Reporting increases and decreases in DA transmission during the same 

behavioral manipulation may initially appear contradictory, but this need not be the case.  

Indeed, DA transmission is complex acting on multiple timescales (Grace et al., 2007; 

Schultz, 2007).  In Fig. 6.1, I propose a model synthesizing the FSCV and microdialysis 
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data in which increases and decreases in [DA] are both occurring and behaviorally 

relevant for distinct reasons.   

Overall, there is an increase in tonic levels of [DA] in the NAc; however, 

embedded within this change in basal levels are phasic increases and decreases in DA 

release (Fig. 6.1A).  The longer lasting changes in tonic levels of DA may signal 

important changes in the environmental state or motivational state of the animal.  For 

example, when [DA] increases during reward omission, this tonic increase in [DA] could 

motivate and invigorate the animal to search for ways to obtain food.  This is supported 

by the fact that these levels of DA correlate to motivational vigor and exploration (Figs. 

3.2-3.3). In contrast, phasic, sub-second changes in [DA] often appear to signal 

temporally precise, behaviorally relevant events as opposed to longer lasting states.  For 

example, phasic changes in [DA] occur to cues (cue-evoked DA) and adjust to the 

changing value of those cues (Figs. 4.4-4.5).  Additionally, small phasic increases and 

decreases in [DA] occur to reward delivery or reward omission, respectively (Fig. 4.3).  

Phasic increases and decreases in DA likely are signaled through different 

mechanisms and DA receptors on striatal medium spiny neurons.  Much of the 

differences in signaling have to do with the different affinities that D1 and D2 receptors 

have for DA (Richfield et al., 1989).  Models of D1 and D2 receptor occupancy in 

relation to tonic and phasic DA release events have been generated based upon 

experimental data (Dreyer et al., 2010).  As stated earlier, low-affinity D1 receptors only 

are ~3.5% occupied, whereas high-affinity D2 receptors are ~75% occupied, during 

baseline, tonic levels of DA in the striatum (Dreyer et al., 2010).  Phasic bursts of DA 

release (which can exceed 1 µM) briefly saturate the low-affinity D1 receptors (for a few 
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milliseconds) and then only continue to stimulate D1 receptors closer to the DA release 

sites (for ~60 milliseconds).  Additionally, phasic bursts increase binding of DA at D2 

receptors (to >95% occupancy), but since the binding of these receptors is already high 

(at least 75% occupancy), the relative change in binding at D2 receptors in not nearly as 

drastic as the changes occurring at D1 receptors.  Therefore, phasic increases in DA 

release are thought to be signaled through increased stimulation of D1 receptors (Fig. 

6.1B).   

In contrast, brief decreases in [DA] (resulting from pauses in DA release) can 

reduce DA binding to ~0% at D1 and D2 receptors.  Although there is a reduction in 

binding at both D1 and D2 receptors, since DA occupancy at D1 receptors is already 

quite low (~3.5%), the reduction would have more profound effects at D2 receptors; 

therefore, decreases in [DA] are hypothesized to be signaled through decreased 

occupancy of DA at D2 receptors (Fig. 6.1C).  This theory is supported by the fact that 

phasic decreases in [DA] are detected during reward omission (Fig. 4.3) and holding D2 

receptor occupancy high, via an agonist, prevents a reduction in responding on the non-

rewarded lever (Fig. 5.2).  Additionally, reducing [DA]  by DA depletion (from reserpine) 

decreases spine density, dendritic length, and dendritic branching in striatopallidal 

neurons (predominantly D2-expressing neurons) but not striatonigral neurons 

(predominantly D1-expressing neurons), supporting the idea that reductions in DA are 

signaled preferentially through D2 receptors (Day et al., 2006; Surmeier et al., 2007). 

So far we have shown that decreases in DA are likely signaled through a 

reduction in occupancy of DA at D2 receptors.  Based upon the transmission dynamics of 

DA and the affinity of D2 receptors for DA, decreases in [DA] are likely detected by the 
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high affinity D2 receptors during normal, tonic levels of extracellular DA (Dreyer et al., 

2010).  However, in chapter 3 we saw that tonic levels of DA increase to about 200% of 

baseline levels (Fig. 3.2A).  I hypothesize that given what we know about DA 

transmission and D2 receptors, having higher levels of tonic [DA] in the NAc may 

actually result in more effective signaling of the phasic decreases in DA release.  

Extracellular levels of [DA] in ventral striatum are generally low, and these low levels 

can be advantageous for contrasting certain tonic and phasic signals (Zhang et al., 2009).  

Indeed, a stimulus train mimicking phasic firing patterns causes greater DA release in the 

NAc core and shell, where tonic levels of [DA] are lower, compared to the dorsolateral 

striatum, where tonic levels of [DA] are higher (Keck et al., 2002; Fadda et al., 2005; 

Zhang et al., 2009).  In other words, the contrast between low basal levels and high 

phasic release events can be beneficial in signaling behaviorally relevant events through 

phasic increases in DA release.  However, if decreases in [DA] are signaled through 

reductions in activity at D2 receptors (Bromberg-Martin et al., 2010b; Porter-Stransky et 

al., 2013), then the effects of the reduction in DA at D2 receptors would be most 

pronounced when basal levels of DA are high.   

Behaviorally, given the different hypothesized roles of tonic and phasic DA 

transmission in the NAc, higher tonic levels of DA may be particularly adaptive when 

phasic decreases related to negative events occur.  As stated above, when environmental 

contingencies change, it can be adaptive to have higher levels of tonic [DA] to invigorate 

motivated behavior and bias behavior towards exploring the new environment and 

employing new behavioral strategies (Beeler et al., 2010; Beeler et al., 2012; Humphries 

et al., 2012; Baudonnat et al., 2013; Beeler et al., 2014).  When testing new behavioral 
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responses and strategies in this invigorated state, undesirable outcomes may be signaled 

more clearly through decreases in DA transmission at D2 receptors when tonic levels of 

[DA] are high.   

Furthermore, decreased binding of DA at D2 receptors, as would happen during 

the omission of an expected reward, has been shown to facilitate prefrontal cortical inputs 

into the nucleus accumbens (Goto and Grace, 2005).  Additionally, stimulation of 

prefrontal cortical neurons can attenuate glutamatergic inputs from the hippocampus and 

thalamus into the ventral striatum, thus biasing the ventral striatum toward incoming 

information from the prefrontal cortex (Calhoon and O’Donnell, 2013), and the prefrontal 

cortex has been shown to be important for mediating certain forms of behavioral 

flexibility (Ragozzino et al., 2003; Ragozzino, 2007; Floresco, 2013).  Together, 

reductions in D2 receptor activation could cause synaptic plasticity and thereby function 

as a neural mechanism for altering response strategy and mediating behavioral flexibility 

(Meck and Benson, 2002; Goto and Grace, 2005). 

An important caveat not yet addressed is that while D2 receptors generally have a 

higher affinity for DA than D1 receptors, D2 receptors can switch between a high (D2High) 

and low (D2Low) affinity state (Richfield et al., 1989; Seeman, 2011; van Wieringen et al., 

2013).  When in the D2High state, DA would more readily bind to the D2 receptors than 

when the receptors are in the D2Low state; thus, the D2High state is thought to be the 

functional state of the receptor (George et al., 1985).  Therefore, the estimations provided 

in the above model (Dreyer et al., 2010) could be affected by changes in the affinity 

states of D2 receptors.  While D2 receptors have previously been shown to primarily be 

in the D2High state (Richfield et al., 1989), other studies have more recently shown the 
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percentage of D2High receptors to be ~20% (Seeman et al., 2005; Seeman, 2009). 

Additionally, pharmacological manipulations can substantially alter the proportion of 

D2Low versus D2High, suggesting that a number of D2 receptors are in the D2Low state.  For 

example, cocaine self-administration can cause a significant increase (~150%) in the 

proportion of D2High state receptors without altering the overall number of D2 receptors 

(Briand et al., 2008).  However, it is important to remember that most studies examining 

the affinity states of D2 receptors have been done in homogenized brain tissues; therefore, 

the proportion of D2High versus D2Low receptors in vivo during specific motivated 

behaviors has yet to be elucidated (Seeman, 2011).   

Of particular relevance to the current experiments, individual variation has been 

observed in the exploratory behavior of rats.  Interestingly, rats that are classified as high 

explores have higher extracellular levels of [DA] in the dorsal striatum (measured by 

microdialysis) and a higher proportion of D2High state receptors than low explorer rats 

(Alttoa et al., 2009).  Additionally, these high explorer rats also show greater increases in 

striatal [DA] to amphetamine than low explorer rats (Alttoa et al., 2009), demonstrating 

that while they may have higher baseline levels of striatal [DA], substantial increases in 

[DA] are still possible in these rats.  While much is still unknown about changes in 

affinity states of D2 receptors in relation to behavioral events, and thus far the data are 

only correlational, these experiments raise the intriguing possibility that the increased 

exploration observed during reward omission, along with the corresponding increases in 

[DA] in the NAc, may relate to a shift in D2 receptors to the D2High state.  Having a 

greater percentage of D2 receptors in the D2High state could potentially be a neural 

mechanism for signaling increased exploratory behaviors.  Furthermore, the phasic 
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decreases in [DA] that would occur to non-reinforced actions could cause more 

substantial reductions in D2 receptor binding when a greater number of receptors are in 

this D2High state.  Currently, these ideas are still speculative, so future studies are needed 

to test these hypotheses. 

Conclusion 

In this dissertation, I have revealed multiple, distinct DA transmission patterns in 

the NAc core during the omission of an expected reward in an operant foraging task.  

Specifically, tonic levels of [DA] measured by microdialysis increase to ~200% of 

baseline levels and correspond to increases in motivational vigor and exploration of 

alternative strategies.  Concurrently, sub-second, phasic changes in DA release are 

occurring to behaviorally relevant events.  Specifically, when an expected reward is not 

received, a phasic decrease in [DA] occurs, which could be facilitating learning about the 

non-rewarded option or reducing the incentive value of that option.  As subjects learn 

about the non-rewarded lever, cue-evoked DA to the non-rewarded option decreases, and, 

behaviorally, subjects develop a strong preference for the rewarded option and avoid the 

non-rewarded option.  Finally, this alteration in behavioral preference is mediated by a 

reduction in occupancy of D2 receptors in the NAc core.  Together, this series of 

experiments provides insight into the complex transmission dynamics of DA in the NAc 

in relation to flexible behavior during reductions in reward availability.  

Future Directions 

While techniques like microdialysis and FSCV provide insight into the 

neurotransmission dynamics of DA, they do not reveal causal roles of neurotransmission 

on behavior.  The ability of a D2 agonist in the NAc to cause subjects to keep responding 
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on the non-rewarded lever suggests that decreases in [DA] are necessary for altering 

behavioral strategy; however, the D2 agonist is presumably acting continually on 

receptors throughout the session.  To determine if the temporally precise phasic decrease 

during the omission of the expected reward is the key to modifying behavioral response, 

a technique that can alter DA transmission with sub-second precision is necessary.   

Optogenetics is a technique utilizing light-sensitive proteins, often in combination 

with transgenic mice or rats, that can facilitate the manipulation of specific 

neurotransmitter systems with millisecond precision (Deisseroth, 2011; Fenno et al., 2011; 

Witten et al., 2011; Johansen et al., 2012).  A recent study suggests that preventing phasic 

decreases in [DA] during Pavlovian extinction attenuates learning (Steinberg et al., 2013).   

To test whether the phasic decrease in [DA] that we observed  with FSCV is necessary 

for altering behavioral strategy away from the non-rewarded option, in a follow up study, 

we are delivering a brief optical stimulation to dopaminergic neurons in the VTA to “fill 

in the dip” of [DA] (Frank, 2005) after subjects respond on the non-rewarded levers, 

causing [DA] on the non-rewarded trials to be similar to that on the rewarded trials (Fig. 

4.3B).  While the experiment is not yet complete, we have pilot data supporting this 

hypothesis.  After subjects complete the operant response on the non-rewarded lever, blue 

light is delivered to the VTA.  Optical stimulation of the VTA of TH-Cre+ rats 

expressing channelrhodopsin (Fig. 6.2A) can attenuate the behavioral preference for the 

rewarded option (Fig. 6.2B).  And, high levels of optic stimulation actually appear to 

create a preference for the non-rewarded lever (Fig.6.2B).  While these data are 

preliminary, they suggest that the phasic decrease in [DA] is functionally necessary to 

alter reward seeking behavior away from the non-rewarded option. 
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Similarly, optogenetics may be useful to elucidate if the tonic increases in [DA] 

observed using microdialysis during reward omission mediate changes in response vigor 

and exploration.  First, we would need to determine the appropriate parameters of optic 

stimulation that cause the same magnitude of an increase in [DA] measured using 

microdialysis.  Then, tonic levels of [DA] could be altered optogenetically and changes in 

behavioral response vigor and exploration recorded. 
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Figures 

 

 

Figure 6.1.  Model of DA transmission in the NAc core during unexpected reward 
omission.  A)  Distinct phasic (purple) and tonic (violet) components of DA transmission 
can occur simultaneously.  Examples of phasic increases and decreases (circled in gray, 
dotted lines), which often occur in relation to behaviorally relevant events, can ride on 
top of slower changing basal levels of extracellular [DA].  B-C) Increases and decreases 
in [DA] likely signaled via different DA receptors.  Specifically, phasic increases in DA 
can activate low affinity D1 receptors (B), whereas decreases in [DA] are likely 
transmitted through a reduction in DA binding at high affinity D2 receptors. 
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Figure 6.2.  Optogenetic activation of DA neurons during reward omission attenuates the 
behavioral preference for the rewarded option.  A) A representative image taken from a 
TH-Cre+ rat injected with a Cre-dependent channelrhodopsin-containing viral vector.  B) 
Behavioral responding on free choice trials.  While low levels of stimulation in TH-Cre-+ 
rats do not impair the behavioral preference for the rewarded option, medium levels 
attenuate the behavioral preference.  Additionally, high levels of stimulation actually 
cause greater responding on the non-rewarded lever.  These effects are not seen in wild-
type littermates (TH-Cre-).  N ~ 3-4 per group. 

  

152 
 



REFERENCES 

Abler B, Walter H, Erk S, Kammerer H, Spitzer M (2006) Prediction error as a linear 
function of reward probability is coded in human nucleus accumbens. 
Neuroimage 31:790-795. 

Adelman HM, Maatsch JL (1956) Learning and extinction based upon frustration, food 
reward, and exploratory tendency. Journal of Experimental Psychology 52:311. 

Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K (2010) Understanding wiring 
and volume transmission. Brain Research Reviews 64:137-159. 

Aharonovich E, Hasin DS, Brooks AC, Liu X, Bisaga A, Nunes EV (2006) Cognitive 
deficits predict low treatment retention in cocaine dependent patients. Drug and 
Alcohol Dependence 81:313-322. 

Ahn S, Phillips AG (2007) Dopamine efflux in the nucleus accumbens during within-
session extinction, outcome-dependent, and habit-based instrumental responding 
for food reward. Psychopharmacology 191:641-651. 

Alttoa A, Seeman P, Koiv K, Eller M, Harro J (2009) Rats with persistently high 
exploratory activity have both higher extracellular dopamine levels and higher 
proportion of D 2High receptors in the striatum. Synapse 63:443-446. 

Amsel A (1958) The role of frustrative nonreward in noncontinuous reward situations. 
Psychological Bulletin 55:102. 

Amsel A (1962) Frustrative nonreward in partial reinforcement and discrimination 
learning: Some recent history and a theoretical extension. Psychological Review; 
Psychological Review 69:306. 

Annett LE, McGregor A, Robbins TW (1989) The effects of ibotenic acid lesions of the 
nucleus accumbens on spatial learning and extinction in the rat. Behav Brain Res 
31:231-242. 

Anstrom KK, Miczek KA, Budygin EA (2009) Increased phasic dopamine signaling in 
the mesolimbic pathway during social defeat in rats. Neuroscience 161:3-12. 

Aragona BJ (2011) The regional specificity of rapid actions of cocaine. Nature Reviews 
Neuroscience 12:700-700. 

Aragona BJ, Wang Z (2009) Dopamine regulation of social choice in a monogamous 
rodent species. Frontiers in behavioral neuroscience 3. 

Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) 
Preferential enhancement of dopamine transmission within the nucleus 
accumbens shell by cocaine is attributable to a direct increase in phasic dopamine 
release events. J Neurosci 28:8821-8831. 

Aragona BJ, Day JJ, Roitman MF, Cleaveland NA, Wightman RM, Carelli RM (2009) 
Regional specificity in the real-time development of phasic dopamine 
transmission patterns during acquisition of a cue-cocaine association in rats. Eur J 
Neurosci 30:1889-1899. 

153 
 



Aragona BJ, Liu Y, Yu YJ, Curtis JT, Detwiler JM, Insel TR, Wang Z (2006) Nucleus 
accumbens dopamine differentially mediates the formation and maintenance of 
monogamous pair bonds. Nat Neurosci 9:133-139. 

Arbuthnott GW, Wickens J (2007) Space, time and dopamine. Trends Neurosci 30:62-69. 
Badiani A, Morano MI, Akil H, Robinson TE (1995) Circulating adrenal hormones are 

not necessary for the development of sensitization to the psychomotor activating 
effects of amphetamine. Brain research 673:13-24. 

Badrinarayan A, Wescott SA, Vander Weele CM, Saunders BT, Couturier BE, Maren S, 
Aragona BJ (2012) Aversive Stimuli Differentially Modulate Real-Time 
Dopamine Transmission Dynamics within the Nucleus Accumbens Core and 
Shell. The Journal of neuroscience 32:15779-15790. 

Baker TW, Weisman RG, Beninger RJ (2012) Reinforcer devaluation by extinction 
depends on the food restriction protocol. Behavioural processes. 

Baldo BA, Sadeghian K, Basso AM, Kelley AE (2002) Effects of selective dopamine D1 
or D2 receptor blockade within nucleus accumbens subregions on ingestive 
behavior and associated motor activity. Behavioural brain research 137:165-177. 

Baudonnat M, Huber A, David V, Walton ME (2013) Heads for learning, tails for 
memory: reward, reinforcement and a role of dopamine in determining behavioral 
relevance across multiple timescales. Frontiers in Neuroscience 7. 

Becker JB (2009) Sexual differentiation of motivation: a novel mechanism? Horm Behav 
55:646-654. 

Becker JB, Taylor JR (2008) Sex differences in motivation. In: Sex differences in the 
brain: from genes to behavior (Becker JB, ed), pp 177-199: Oxford University 
Press. 

Becker JB, Arnold AP, Berkley KJ, Blaustein JD, Eckel LA, Hampson E, Herman JP, 
Marts S, Sadee W, Steiner M, Taylor J, Young E (2005) Strategies and methods 
for research on sex differences in brain and behavior. Endocrinology 146:1650-
1673. 

Beeler JA (2012) Thorndike's Law 2.0: Dopamine and the Regulation of Thrift. Frontiers 
in Neuroscience 6. 

Beeler JA, Frazier CR, Zhuang X (2012) Putting desire on a budget: dopamine and 
energy expenditure, reconciling reward and resources. Frontiers in integrative 
neuroscience 6. 

Beeler JA, Daw ND, Frazier CR, Zhuang X (2010) Tonic dopamine modulates 
exploitation of reward learning. Frontiers in behavioral neuroscience 4:170. 

Beeler JA, Cools R, Luciana M, Ostlund SB, Petzinger G (2014) A kinder, gentler 
dopamine… highlighting dopamine's role in behavioral flexibility. Frontiers in 
Neuroscience 8. 

Beery AK, Zucker I (2011) Sex bias in neuroscience and biomedical research. Neurosci 
Biobehav Rev 35:565-572. 

Benedix J (1993) Area-restricted search by the plains pocket gopher (Geomys bursarius) 
in tallgrass prairie habitat. Behavioral Ecology 4:318-324. 

Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of 
memory. Neuron 25:515-532. 

Berridge KC (2012) From prediction error to incentive salience: mesolimbic computation 
of reward motivation. European Journal of Neuroscience 35:1124-1143. 

154 
 



Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic 
impact, reward learning, or incentive salience? Brain Research Reviews 28:309-
369. 

Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting components of reward: 
'liking', 'wanting', and learning. Curr Opin Pharmacol 9:65-73. 

Bonci A, Malenka RC (1999) Properties and plasticity of excitatory synapses on 
dopaminergic and GABAergic cells in the ventral tegmental area. The Journal of 
neuroscience 19:3723-3730. 

Borgkvist A, Mrejeru A, Sulzer D (2011) Multiple Personalities in the Ventral Tegmental 
Area. Neuron 70:803-805. 

Boschen SL, Wietzikoski EC, Winn P, Cunha CD (2011) The role of nucleus accumbens 
and dorsolateral striatal D2 receptors in active avoidance conditioning. 
Neurobiology of learning and memory 96:254-262. 

Boye SM, Grant RJ, Clarke P (2001) Disruption of dopaminergic neurotransmission in 
nucleus accumbens core inhibits the locomotor stimulant effects of nicotine and 
D-amphetamine in rats. Neuropharmacology 40:792-805. 

Briand LA, Flagel SB, Seeman P, Robinson TE (2008) Cocaine self-administration 
produces a persistent increase in dopamine D2 High receptors. Eur 
Neuropsychopharmacol 18:551-556. 

Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of 
dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 
106:4894-4899. 

Britt JP, McGehee DS (2008) Presynaptic opioid and nicotinic receptor modulation of 
dopamine overflow in the nucleus accumbens. The Journal of neuroscience 
28:1672. 

Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010a) Distinct tonic and phasic 
anticipatory activity in lateral habenula and dopamine neurons. Neuron 67:144-
155. 

Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010b) Dopamine in motivational 
control: rewarding, aversive, and alerting. Neuron 68:815-834. 

Brown HD, McCutcheon JE, Cone JJ, Ragozzino ME, Roitman MF (2011) Primary food 
reward and reward-predictive stimuli evoke different patterns of phasic dopamine 
signaling throughout the striatum. Eur J Neurosci. 

Brown SD, Peters JC (2004) Hydrogenolysis of [PhBP3]Fe[triple bond]N-p-tolyl: 
probing the reactivity of an iron imide with H2. J Am Chem Soc 126:4538-4539. 

Cachope R, Mateo Y, Mathur BN, Irving J, Wang H-L, Morales M, Lovinger DM, Cheer 
JF (2012) Selective activation of cholinergic interneurons enhances accumbal 
phasic dopamine release: setting the tone for reward processing. Cell reports. 

Calhoon GG, O’Donnell P (2013) Closing the gate in the limbic striatum: prefrontal 
suppression of hippocampal and thalamic inputs. Neuron 78:181-190. 

Cameron D, Wessendorf M, Williams J (1997) A subset of ventral tegmental area 
neurons is inhibited by dopamine, 5-hydroxytryptamine and opioids. 
Neuroscience 77:155-166. 

Cannon CM, Palmiter RD (2003) Reward without dopamine. The Journal of 
neuroscience 23:10827-10831. 

155 
 



Cardinal RN, Pennicott DR, Lakmali C, Robbins TW, Everitt BJ (2001) Impulsive choice 
induced in rats by lesions of the nucleus accumbens core. Science 292:2499-2501. 

Carroll ME, Mach JL, La Nasa RM, Newman JL (2009) Impulsivity as a behavioral 
measure of withdrawal of orally delivered PCP and nondrug rewards in male and 
female monkeys. Psychopharmacology 207:85-98. 

Choi JE, Vaswani PA, Shadmehr R (2014) Vigor of movements and the cost of time in 
decision making. The Journal of neuroscience 34:1212-1223. 

Clark DA (1980) Age- and Sex-Dependent Foraging Strategies of a Small Mammalian 
Omnivore. Journal of Animal Ecology 49:549-563. 

Clark JJ, Collins AL, Sanford CA, Phillips PE (2013) Dopamine Encoding of Pavlovian 
Incentive Stimuli Diminishes with Extended Training. The Journal of 
neuroscience 33:3526-3532. 

Cohen JD, McClure SM, Angela JY (2007) Should I stay or should I go? How the human 
brain manages the trade-off between exploitation and exploration. Philosophical 
Transactions of the Royal Society B: Biological Sciences 362:933-942. 

Colivicchi MA, Stefanini C, Freinbichler W, Ballini C, Bianchi L, Tipton KF, Della 
Corte L (2013) Monitoring Extracellular Amino Acid Neurotransmitters and 
hROS by In Vivo Microdialysis in Rats: A Practical Approach. In: Microdialysis 
Techniques in Neuroscience, pp 225-247: Springer. 

Colzato LS, Huizinga M, Hommel B (2009) Recreational cocaine polydrug use impairs 
cognitive flexibility but not working memory. Psychopharmacology 207:225-234. 

Comoli E, Coizet V, Boyes J, Bolam JP, Canteras NS, Quirk RH, Overton PG, Redgrave 
P (2003) A direct projection from superior colliculus to substantia nigra for 
detecting salient visual events. Nature neuroscience 6:974-980. 

Cools R, Altamirano L, D’Esposito M (2006) Reversal learning in Parkinson's disease 
depends on medication status and outcome valence. Neuropsychologia 44:1663-
1673. 

Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Mechanisms of cognitive set 
flexibility in Parkinson's disease. Brain 124:2503-2512. 

Cools R, Lewis SJG, Clark L, Barker RA, Robbins TW (2007) L-DOPA disrupts activity 
in the nucleus accumbens during reversal learning in Parkinson's disease. 
Neuropsychopharmacology 32:180-189. 

Corbit LH, Muir JL, Balleine BW (2001) The role of the nucleus accumbens in 
instrumental conditioning: Evidence of a functional dissociation between 
accumbens core and shell. J Neurosci 21:3251-3260. 

Cragg SJ (2006) Meaningful silences: how dopamine listens to the ACh pause. Trends in 
neurosciences 29:125-131. 

Crespi LP (1942) Quantitative variation of incentive and performance in the white rat. 
Am J Psychol 55:467-517. 

Crombag H, Mueller H, Browman K, Badiani A, Robinson T (1999) A comparison of 
two behavioral measures of psychomotor activation following intravenous 
amphetamine or cocaine: dose-and sensitization-dependent changes. Behavioural 
Pharmacology 10:205. 

Cummings JA, Gowl BA, Westenbroek C, Clinton SM, Akil H, Becker JB, Cummings J, 
Gowl B, Clinton S (2011) Effects of a selectively bred novelty-seeking phenotype 

156 
 



on the motivation to take cocaine in male and female rats. Biology of sex 
differences 2:1-10. 

Dalla C, Shors TJ (2009) Sex differences in learning processes of classical and operant 
conditioning. Physiology & Behavior 97:229-238. 

Dalley JW, Everitt BJ (2009) Dopamine receptors in the learning, memory and drug 
reward circuitry. Seminars in Cell & Developmental Biology 20:403-410. 

Daly HB (1969a) Learning of a hurdle-jump response to escape cues paired with reduced 
reward or frustrative nonreward. Journal of Experimental Psychology 79:146. 

Daly HB (1969b) Aversive properties of partial and varied reinforcement during runway 
acquisition. Journal of Experimental Psychology 81:54. 

Daly HB (1969c) Is instrumental responding necessary for nonreward following reward 
to be frustrating? Journal of Experimental Psychology 80:186. 

Daly HB (1974) Reinforcing properties of escape from frustration aroused in various 
learning situations. The psychology of learning and motivation 8:187-231. 

Darvas M, Fadok JP, Palmiter RD (2011) Requirement of dopamine signaling in the 
amygdala and striatum for learning and maintenance of a conditioned avoidance 
response. Learning & memory 18:136-143. 

David HN, Sissaoui K, Abraini JH (2004) Modulation of the locomotor responses 
induced by D1-like and D2-like dopamine receptor agonists and D-amphetamine 
by NMDA and non-NMDA glutamate receptor agonists and antagonists in the 
core of the rat nucleus accumbens. Neuropharmacology 46:179-191. 

Davis BA, Clinton SM, Akil H, Becker JB (2008) The effects of novelty-seeking 
phenotypes and sex differences on acquisition of cocaine self-administration in 
selectively bred High-Responder and Low-Responder rats. Pharmacology 
Biochemistry and Behavior 90:331-338. 

Daw ND, Touretzky DS (2002) Long-term reward prediction in TD models of the 
dopamine system. Neural Computation 14:2567-2583. 

Daw ND, Doya K (2006) The computational neurobiology of learning and reward. 
Current opinion in neurobiology 16:199-204. 

Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and 
dopamine. Neural Networks 15:603-616. 

Day JJ, Jones JL, Carelli RM (2011) Nucleus accumbens neurons encode predicted and 
ongoing reward costs in rats. European Journal of Neuroscience 33:308-321. 

Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates 
dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 
10:1020-1028. 

Day JJ, Jones JL, Wightman RM, Carelli RM (2010) Phasic nucleus accumbens 
dopamine release encodes effort- and delay-related costs. Biol Psychiatry 68:306-
309. 

Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, Wokosin D, Ilijic E, Sun Z, 
Sampson AR, Mugnaini E, Deutch AY, Sesack SR, Arbuthnott GW, Surmeier DJ 
(2006) Selective elimination of glutamatergic synapses on striatopallidal neurons 
in Parkinson disease models. Nature neuroscience 9:251-259. 

Dayan P, Berridge KC (2014) Model-based and model-free Pavlovian reward learning: 
Revaluation, revision, and revelation. Cognitive, Affective, & Behavioral 
Neuroscience:1-20. 

157 
 



Deisseroth K (2011) Optogenetics. Nature methods 8:26-29. 
Deniau J, Menetrey A, Thierry A (1994) Indirect nucleus accumbens input to the 

prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical 
and electrophysiological study in the rat. Neuroscience 61:533-545. 

Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in 
behavior and addiction. Behavioural brain research 137:75-114. 

Dommett E, Coizet V, Blaha CD, Martindale J, Lefebvre V, Walton N, Mayhew JE, 
Overton PG, Redgrave P (2005) How visual stimuli activate dopaminergic 
neurons at short latency. Science 307:1476-1479. 

Dreher JK, Jackson DM (1989) Role of D1 and D2 dopamine receptors in mediating 
locomotor activity elicited from the nucleus accumbens of rats. Brain research 
487:267-277. 

Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD (2010) Influence of phasic and tonic 
dopamine release on receptor activation. J Neurosci 30:14273-14283. 

Dugast C, Suaud-Chagny MF, Gonon F (1994) Continuous in vivo monitoring of evoked 
dopamine release in the rat nucleus accumbens by amperometry. Neuroscience 
62:647-654. 

Fadda P, Scherma M, Fresu A, Collu M, Fratta W (2005) Dopamine and serotonin release 
in dorsal striatum and nucleus accumbens is differentially modulated by morphine 
in DBA/2J and C57BL/6J mice. Synapse 56:29-38. 

Fang C, Levinthal D (2009) Near-term liability of exploitation: exploration and 
exploitation in multistage problems. Organization science 20:538-551. 

Faure A, Reynolds SM, Richard JM, Berridge KC (2008) Mesolimbic dopamine in desire 
and dread: enabling motivation to be generated by localized glutamate disruptions 
in nucleus accumbens. The Journal of neuroscience 28:7184-7192. 

Fenno L, Yizhar O, Deisseroth K (2011) The development and application of 
optogenetics. Annual review of neuroscience 34:389-412. 

Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, 
Phillips PE, Akil H (2011) A selective role for dopamine in stimulus-reward 
learning. Nature 469:53-57. 

Floresco S, McLaughlin R, Haluk D (2008) Opposing roles for the nucleus accumbens 
core and shell in cue-induced reinstatement of food-seeking behavior. 
Neuroscience 154:877-884. 

Floresco SB (2013) Prefrontal dopamine and behavioral flexibility: shifting from an 
“inverted-U” toward a family of functions. Frontiers in Neuroscience 7. 

Floresco SB, Magyar O (2006) Mesocortical dopamine modulation of executive 
functions: beyond working memory. Psychopharmacology 188:567-585. 

Floresco SB, Zhang Y, Enomoto T (2009) Neural circuits subserving behavioral 
flexibility and their relevance to schizophrenia. Behav Brain Res 204:396-409. 

Floresco SB, Ghods-Sharifi S, Vexelman C, Magyar O (2006a) Dissociable roles for the 
nucleus accumbens core and shell in regulating set shifting. J Neurosci 26:2449-
2457. 

Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of 
dopamine neuron firing differentially regulates tonic and phasic dopamine 
transmission. Nature neuroscience 6:968-973. 

158 
 



Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MT (2006b) Multiple 
dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-
shifting. Neuropsychopharmacology 31:297-309. 

Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a 
neurocomputational account of cognitive deficits in medicated and nonmedicated 
Parkinsonism. Journal of cognitive neuroscience 17:51-72. 

Frank MJ, Seeberger LC, O'reilly RC (2004) By carrot or by stick: cognitive 
reinforcement learning in parkinsonism. Science 306:1940-1943. 

Freeze BS, Kravitz AV, Hammack N, Berke JD, Kreitzer AC (2013) Control of Basal 
Ganglia Output by Direct and Indirect Pathway Projection Neurons. The Journal 
of neuroscience 33:18531-18539. 

Gallup Jr GG (1965) Aggression in rats as a function of frustrative nonreward in a 
straight alley. Psychonomic Science. 

Gan JO, Walton ME, Phillips PE (2010) Dissociable cost and benefit encoding of future 
rewards by mesolimbic dopamine. Nat Neurosci 13:25-27. 

Garris PA, Rebec GV (2002) Modeling fast dopamine neurotransmission in the nucleus 
accumbens during behavior. Behav Brain Res 137:47-63. 

Garris PA, Ciolkowski EL, Pastore P, Wightman R (1994) Efflux of dopamine from the 
synaptic cleft in the nucleus accumbens of the rat brain. The Journal of 
neuroscience 14:6084-6093. 

George S, Watanabe M, PAOLO TD, Falardeau P, Labrie F, Seeman P (1985) The 
Functional State of the Dopamine Receptor in the Anterior Pituitary Is in the High 
Affinity Form*. Endocrinology 117:690-697. 

Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. 
Annual review of neuroscience 34:441-466. 

Gill TM, Castaneda PJ, Janak PH (2010) Dissociable roles of the medial prefrontal cortex 
and nucleus accumbens core in goal-directed actions for differential reward 
magnitude. Cerebral Cortex 20:2884-2899. 

Girard I, Garland Jr T (2002) Plasma corticosterone response to acute and chronic 
voluntary exercise in female house mice. Journal of applied Physiology 92:1553-
1561. 

Glimcher PW (2011) Understanding dopamine and reinforcement learning: The 
dopamine reward prediction error hypothesis. Proceedings of the National 
Academy of Sciences 108:15647-15654. 

Gonzalez R (2009) Data Analysis for Experimental Design. New York: Guilford Press. 
Goto Y, Grace AA (2005) Dopaminergic modulation of limbic and cortical drive of 

nucleus accumbens in goal-directed behavior. Nat Neurosci 8:805-812. 
Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new 

perspective. Neuropharmacology 53:583-587. 
Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine 

system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 
41:1-24. 

Grace AA, Bunney BS (1984a) The control of firing pattern in nigral dopamine neurons: 
burst firing. J Neurosci 4:2877-2890. 

Grace AA, Bunney BS (1984b) The control of firing pattern in nigral dopamine neurons: 
single spike firing. J Neurosci 4:2866-2876. 

159 
 



Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic 
neurons and control of goal-directed behaviors. Trends Neurosci 30:220-227. 

Haber SN (2003) The primate basal ganglia: parallel and integrative networks. Journal of 
chemical neuroanatomy 26:317-330. 

Haluk DM, Floresco SB (2009) Ventral striatal dopamine modulation of different forms 
of behavioral flexibility. Neuropsychopharmacology 34:2041-2052. 

Hanlon EC, Benca RM, Baldo BA, Kelley AE (2010) REM sleep deprivation produces a 
motivational deficit for food reward that is reversed by intra-accumbens 
amphetamine in rats. Brain Res Bull 83:245-254. 

Hart AS, Rutledge RB, Glimcher PW, Phillips PE (2014) Phasic Dopamine Release in 
the Rat Nucleus Accumbens Symmetrically Encodes a Reward Prediction Error 
Term. The Journal of neuroscience 34:698-704. 

Haruno M, Kuroda T, Doya K, Toyama K, Kimura M, Samejima K, Imamizu H, Kawato 
M (2004) A neural correlate of reward-based behavioral learning in caudate 
nucleus: a functional magnetic resonance imaging study of a stochastic decision 
task. The Journal of neuroscience 24:1660-1665. 

Haskell DG (1997) Experiments and a model examining learning in the area-restricted 
search behavior of ferrets (Mustela putorius furo). Behavioral Ecology 8:448-449. 

Heien ML, Phillips PE, Stuber GD, Seipel AT, Wightman RM (2003) Overoxidation of 
carbon-fiber microelectrodes enhances dopamine adsorption and increases 
sensitivity. Analyst 128:1413-1419. 

Heien MLAV, Johnson MA, Wightman RM (2004) Resolving neurotransmitters detected 
by fast-scan cyclic voltammetry. Analytical chemistry 76:5697-5704. 

Henry DJ, Hu XT, White FJ (1998) Adaptations in the mesoaccumbens dopamine system 
resulting from repeated administration of dopamine D1 and D2 receptor-selective 
agonists: relevance to cocaine sensitization. Psychopharmacology 140:233-242. 

Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S (2010) Distinct roles of synaptic 
transmission in direct and indirect striatal pathways to reward and aversive 
behavior. Neuron 66:896-907. 

Hills T, Brockie PJ, Maricq AV (2004) Dopamine and glutamate control area-restricted 
search behavior in Caenorhabditis elegans. The Journal of neuroscience 24:1217-
1225. 

Hills TT (2006) Animal Foraging and the Evolution of Goal‐Directed Cognition. 
Cognitive Science 30:3-41. 

Hills TT (2011) The Evolutionary Origins of Cognitive Control. Topics in Cognitive 
Science 3:231-237. 

Hills TT, Jones MN, Todd PM (2012) Optimal foraging in semantic memory. 
Psychological Review 119:431. 

Hills TT, Kalff C, Wiener JM (2013) Adaptive Lévy processes and area-restricted search 
in human foraging. PLoS One 8:e60488. 

Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal 
prediction of reward during learning. Nat Neurosci 1:304-309. 

Hong S, Hikosaka O (2011) Dopamine-mediated learning and switching in cortico-
striatal circuit explain behavioral changes in reinforcement learning. Frontiers in 
behavioral neuroscience 5. 

160 
 



Hooper KC, Banks DA, Stordahl LJ, White IM, Rebec GV (1997) Quinpirole inhibits 
striatal and excites pallidal neurons in freely moving rats. Neuroscience Letters 
237:69-72. 

Horvitz J (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-
reward events. Neuroscience 96:651-656. 

Hossain MM, Suzuki T, Richardson JR, Kobayashi H (2013) Acute Effects of 
Pyrethroids on Serotonin Release in the Striatum of Awake Rats: An In Vivo 
Microdialysis Study. Journal of biochemical and molecular toxicology 27:150-
156. 

Howland JG, Taepavarapruk P, Phillips AG (2002) Glutamate receptor-dependent 
modulation of dopamine efflux in the nucleus accumbens by basolateral, but not 
central, nucleus of the amygdala in rats. The Journal of neuroscience 22:1137-
1145. 

Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at 
the crossroads of space, strategy, and reward. Prog Neurobiol 90:385-417. 

Humphries MD, Khamassi M, Gurney K (2012) Dopaminergic control of the 
exploration-exploitation trade-off via the basal ganglia. Frontiers in Neuroscience 
6:9. 

Hyland B, Reynolds J, Hay J, Perk C, Miller R (2002a) Firing modes of midbrain 
dopamine cells in the freely moving rat. Neuroscience 114:475-492. 

Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002b) Firing modes of midbrain 
dopamine cells in the freely moving rat. Neuroscience 114:475-492. 

Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral 
midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 
56:27-78. 

Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned 
dopamine release in the nucleus accumbens core and shell in response to cocaine 
cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489-7495. 

Johansen JP, Wolff SB, Lüthi A, LeDoux JE (2012) Controlling the elements: an 
optogenetic approach to understanding the neural circuits of fear. Biological 
Psychiatry 71:1053-1060. 

Jonasson Z (2005) Meta-analysis of sex differences in rodent models of learning and 
memory: a review of behavioral and biological data. Neuroscience & 
Biobehavioral Reviews 28:811-825. 

Jones S, Kornblum JL, Kauer JA (2000) Amphetamine blocks long-term synaptic 
depression in the ventral tegmental area. The Journal of neuroscience 20:5575-
5580. 

Joseph J, Wang Y-M, Miles P, Budygin E, Picetti R, Gainetdinov R, Caron M, Wightman 
R (2002) Dopamine autoreceptor regulation of release and uptake in mouse brain 
slices in the absence of D< sub> 3</sub> receptors. Neuroscience 112:39-49. 

Josiassen RC, Curry LM, Mancall EL (1983) Development of neuropsychological 
deficits in Huntington's disease. Archives of Neurology 40:791. 

Kalivas PW, Duffy P (1991) A comparison of axonal and somatodendritic dopamine 
release using in vivo dialysis. Journal of neurochemistry 56:961-967. 

Kareiva P, Odell G (1987) Swarms of predators exhibit" preytaxis" if individual 
predators use area-restricted search. American Naturalist:233-270. 

161 
 



Kawagoe KT, Garris PA, Wiedemann DJ, Wightman RM (1992) Regulation of transient 
dopamine concentration gradients in the microenvironment surrounding nerve 
terminals in the rat striatum. Neuroscience 51:55-64. 

Keck M, Welt T, Müller M, Erhardt A, Ohl F, Toschi N, Holsboer F, Sillaber I (2002) 
Repetitive transcranial magnetic stimulation increases the release of dopamine in 
the mesolimbic and mesostriatal system. Neuropharmacology 43:101-109. 

Keefe K, Zigmond M, Abercrombie E (1993) In vivo regulation of extracellular 
dopamine in the neostriatum: influence of impulse activity and local excitatory 
amino acids. Journal of Neural Transmission/General Section JNT 91:223-240. 

Keithley RB, Mark Wightman R, Heien ML (2009) Multivariate concentration 
determination using principal component regression with residual analysis. TrAC 
Trends in Analytical Chemistry 28:1127-1136. 

Keithley RB, Carelli RM, Wightman RM (2010) Rank estimation and the multivariate 
analysis of in vivo fast-scan cyclic voltammetric data. Anal Chem 82:5541-5551. 

Kelley AE (1999) Functional specificity of ventral striatal compartments in appetitive 
behaviors. Ann N Y Acad Sci 877:71-90. 

Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to 
addictive drugs. The Journal of neuroscience 22:3306-3311. 

Kemp JM, Powell T (1971) The structure of the caudate nucleus of the cat: light and 
electron microscopy. Philosophical Transactions of the Royal Society of London 
Series B, Biological Sciences:383-401. 

Kennedy RT (2013) Emerging trends in in vivo neurochemical monitoring by 
microdialysis. Current opinion in chemical biology 17:860-867. 

Kerfoot EC, Chattillion EA, Williams CL (2008) Functional interactions between the 
nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating 
memory for arousing experiences. Neurobiology of learning and memory 89:47-
60. 

Khan AS, Michael AC (2003) Invasive consequences of using micro-electrodes and 
microdialysis probes in the brain. TrAC Trends in Analytical Chemistry 22:503-
508. 

Kinsley CH, Madonia L, Gifford GW, Tureski K, Griffin GR, Lowry C, Williams J, 
Collins J, McLearie H, Lambert KG (1999) Motherhood improves learning and 
memory: Neural activity in rats is enhanced by pregnancy and the demands of 
rearing offspring. Nature. 

Koeltzow TE, Austin JD, Vezina P (2003) Behavioral sensitization to quinpirole is not 
associated with increased nucleus accumbens dopamine overflow. 
Neuropharmacology 44:102-110. 

Kravitz AV, Kreitzer AC (2012) Striatal Mechanisms Underlying Movement, 
Reinforcement, and Punishment. Physiology 27:167-177. 

Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway 
striatal neurons in reinforcement. Nature neuroscience 15:816-U823. 

Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer AC 
(2010) Regulation of parkinsonian motor behaviours by optogenetic control of 
basal ganglia circuitry. Nature 466:622-626. 

Kreitzer A, Berke J (2011) Investigating striatal function through cell-type-specific 
manipulations. Neuroscience 198:19-26. 

162 
 



Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous 
midbrain dopamine system. Neuropharmacology 76:351-359. 

Lammel S, Ion DI, Roeper J, Malenka RC (2011) Projection-Specific Modulation of 
Dopamine Neuron Synapses by Aversive and Rewarding Stimuli. Neuron 70:855-
862. 

Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J (2008) Unique properties of 
mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. 
Neuron 57:760-773. 

Laureiro-Martínez D, Brusoni S, Zollo M (2010) The neuroscientific foundations of the 
exploration− exploitation dilemma. Journal of Neuroscience, Psychology, and 
Economics 3:95. 

Lecca D, Cacciapaglia F, Valentini V, Gronli J, Spiga S, Di Chiara G (2006) Preferential 
increase of extracellular dopamine in the rat nucleus accumbens shell as 
compared to that in the core during acquisition and maintenance of intravenous 
nicotine self-administration. Psychopharmacology 184:435-446. 

Levita L, Dalley JW, Robbins TW (2002) Nucleus accumbens dopamine and learned fear 
revisited: a review and some new findings. Behavioural brain research 137:115-
127. 

Liss B, Roeper J (2008) Individual dopamine midbrain neurons: functional diversity and 
flexibility in health and disease. Brain Research Reviews 58:314-321. 

Liu ZH, Shin R, Ikemoto S (2008) Dual role of medial A10 dopamine neurons in 
affective encoding. Neuropsychopharmacology 33:3010-3020. 

Lode T (2000) Functional response and area‐restricted search in a predator: seasonal 
exploitation of anurans by the European polecat, Mustela putorius. Austral 
Ecology 25:223-231. 

Louilot A, Le Moal M, Simon H (1986) Differential reactivity of dopaminergic neurons 
in the nucleus accumbens in response to different behavioral situations. An in 
vivo voltammetric study in free moving rats. Brain research 397:395-400. 

Love G, Torrey N, McNamara I, Morgan M, Banks M, Hester NW, Glasper ER, DeVries 
AC, Kinsley CH, Lambert KG (2005) Maternal experience produces long-lasting 
behavioral modifications in the rat. Behavioral neuroscience 119:1084. 

Lu X-Y, Behnam Ghasemzadeh M, Kalivas P (1997) Expression of D1 receptor, D2 
receptor, substance P and enkephalin messenger RNAs in the neurons projecting 
from the nucleus accumbens. Neuroscience 82:767-780. 

Lynch WJ, Arizzi MN, Carroll ME (2000) Effects of sex and the estrous cycle on 
regulation of intravenously self-administered cocaine in rats. 
Psychopharmacology (Berl) 152:132-139. 

Mahler SV, Smith KS, Berridge KC (2007) Endocannabinoid hedonic hotspot for sensory 
pleasure: Anandamide in nucleus accumbens shell enhances 'liking' of a sweet 
reward. Neuropsychopharmacology 32:2267-2278. 

Maina FK, Mathews TA (2010) Functional fast scan cyclic voltammetry assay to 
characterize dopamine D2 and D3 autoreceptors in the mouse striatum. ACS 
chemical neuroscience 1:450-462. 

Marcellino D, Kehr J, Agnati LF, Fuxe K (2012) Increased affinity of dopamine for D2‐
like versus D1‐like receptors. Relevance for volume transmission in interpreting 
PET findings. Synapse. 

163 
 



March JG (1991) Exploration and exploitation in organizational learning. Organization 
science 2:71-87. 

Margolis EB, Hjelmstad GO, Bonci A, Fields HL (2003) Kappa-opioid agonists directly 
inhibit midbrain dopaminergic neurons. J Neurosci 23:9981-9986. 

Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006a) The ventral tegmental area 
revisited: is there an electrophysiological marker for dopaminergic neurons? J 
Physiol 577:907-924. 

Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL (2006b) 
Kappa opioids selectively control dopaminergic neurons projecting to the 
prefrontal cortex. Proc Natl Acad Sci U S A 103:2938-2942. 

Matamales M, Bertran-Gonzalez J, Salomon L, Degos B, Deniau J-M, Valjent E, Hervé 
D, Girault J-A (2009) Striatal medium-sized spiny neurons: identification by 
nuclear staining and study of neuronal subpopulations in BAC transgenic mice. 
PLoS One 4:e4770. 

Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron distinctly convey 
positive and negative motivational signals. Nature 459:837-841. 

Matsumoto M, Takada M (2013) Distinct representations of cognitive and motivational 
signals in midbrain dopamine neurons. Neuron 79:1011-1024. 

Maurice N, Deniau J, Menetrey A, Glowinski J, Thierry A (1997) Position of the ventral 
pallidum in the rat prefrontal cortex–basal ganglia circuit. Neuroscience 80:523-
534. 

McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive 
learning task activate human striatum. Neuron 38:339-346. 

McCullough L, Sokolowski J, Salamone J (1993) A neurochemical and behavioral 
investigation of the involvement of nucleus accumbens dopamine in instrumental 
avoidance. Neuroscience 52:919-925. 

McCutcheon JE, Ebner SR, Loriaux AL, Roitman MF (2012) Encoding of Aversion by 
Dopamine and the Nucleus Accumbens. Frontiers in Neuroscience 6:137. 

McGregor A, Roberts D (1993) Dopaminergic antagonism within the nucleus accumbens 
or the amygdala produces differential effects on intravenous cocaine self-
administration under fixed and progressive ratio schedules of reinforcement. 
Brain research 624:245-252. 

Meck WH, Benson AM (2002) Dissecting the brain's internal clock: how frontal–striatal 
circuitry keeps time and shifts attention. Brain and cognition 48:195-211. 

Meredith GE, Baldo BA, Andrezjewski ME, Kelley AE (2008) The structural basis for 
mapping behavior onto the ventral striatum and its subdivisions. Brain Struct 
Funct 213:17-27. 

Michael D, Travis ER, Wightman RM (1998) Peer Reviewed: Color Images for Fast-
Scan CV Measurements in Biological Systems. Analytical chemistry 70:586A-
592A. 

Miller NE, Stevenson SS (1936) Agitated behavior of rats during experimental extinction 
and a curve of spontaneous recovery. Journal of Comparative Psychology 21:205. 

Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive 
dysfunctions in Huntington's disease. Journal of Psychiatry and Neuroscience 
31:21. 

164 
 



Moreno M, Economidou D, Mar AC, Lopez-Granero C, Caprioli D, Theobald DE, 
Fernando A, Newman AH, Robbins TW, Dalley JW (2013) Divergent effects of 
D(2/3) receptor activation in the nucleus accumbens core and shell on impulsivity 
and locomotor activity in high and low impulsive rats. Psychopharmacology 
(Berl). 

Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H (2006) Midbrain dopamine neurons 
encode decisions for future action. Nat Neurosci 9:1057-1063. 

Mustard JA, Beggs KT, Mercer AR (2005) Molecular biology of the invertebrate 
dopamine receptors. Archives of insect biochemistry and physiology 59:103-117. 

Nandi P, Lunte SM (2009) Recent trends in microdialysis sampling integrated with 
conventional and microanalytical systems for monitoring biological events: a 
review. Analytica chimica acta 651:1-14. 

Natesan S, Reckless GE, Nobrega JN, Fletcher PJ, Kapur S (2006) Dissociation between 
in vivo occupancy and functional antagonism of dopamine D2 receptors: 
comparing aripiprazole to other antipsychotics in animal models. 
Neuropsychopharmacology 31:1854-1863. 

Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection 
circuit. Psychopharmacology 191:521-550. 

Nishino H, Ono T, Muramoto K, Fukuda M, Sasaki K (1987) Neuronal activity in the 
ventral tegmental area (VTA) during motivated bar press feeding in the monkey. 
Brain research 413:302-313. 

Niv Y (2007) Cost, Benefit, Tonic, Phasic.  What do response rates tell us about 
dopamine and motivation? Annals of the New York Academy of Sciences 
1104:357-376. 

Niv Y, Schoenbaum G (2008) Dialogues on prediction errors. Trends in cognitive 
sciences 12:265-272. 

Niv Y, Daw ND, Dayan P (2005) How fast to work: Response vigor, motivation and 
tonic dopamine. In: NIPS, pp 1019-1026. 

Niv Y, Daw ND, Dayan P (2006) Choice values. Nat Neurosci 9:987-988. 
Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the 

control of response vigor. Psychopharmacology (Berl) 191:507-520. 
O'Connor JJ, Lowry JP (2012) A comparison of the effects of the dopamine partial 

agonists aripiprazole and (−)-3-PPP with quinpirole on stimulated dopamine 
release in the rat striatum: studies using fast cyclic voltammetry< i> in vitro</i>. 
European Journal of Pharmacology. 

Oleson EB, Gentry RN, Chioma VC, Cheer JF (2012) Subsecond Dopamine Release in 
the Nucleus Accumbens Predicts Conditioned Punishment and Its Successful 
Avoidance. The Journal of neuroscience 32:14804-14808. 

Overton P, Vautrelle N, Redgrave P (2014) Sensory regulation of dopaminergic cell 
activity: phenomenology, circuitry and function. Neuroscience. 

Owesson-White CA, Roitman MF, Sombers LA, Belle AM, Keithley RB, Peele JL, 
Carelli RM, Wightman RM (2012) Sources contributing to the average 
extracellular concentration of dopamine in the nucleus accumbens. Journal of 
neurochemistry. 

Palmiter RD (2007) Is dopamine a physiologically relevant mediator of feeding behavior? 
Trends in neurosciences 30:375-381. 

165 
 



Pan WX, Schmidt R, Wickens JR, Hyland BI (2005) Dopamine cells respond to predicted 
events during classical conditioning: evidence for eligibility traces in the reward-
learning network. J Neurosci 25:6235-6242. 

Pan WX, Schmidt R, Wickens JR, Hyland BI (2008) Tripartite mechanism of extinction 
suggested by dopamine neuron activity and temporal difference model. The 
Journal of neuroscience 28:9619-9631. 

Papini MR, Dudley RT (1997) Consequences of surprising reward omissions. Review of 
General Psychology 1:175. 

Paulson P, Camp D, Robinson T (1991) Time course of transient behavioral depression 
and persistent behavioral sensitization in relation to regional brain monoamine 
concentrations during amphetamine withdrawal in rats. Psychopharmacology 
103:480-492. 

Pawluski JL, Walker SK, Galea LAM (2006) Reproductive experience differentially 
affects spatial reference and working memory performance in the mother. 
Hormones and behavior 49:143-149. 

Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. San Diego: 
Academic Press. 

Peters JL, Miner LH, Michael AC, Sesack SR (2004) Ultrastructure at carbon fiber 
microelectrode implantation sites after acute voltammetric measurements in the 
striatum of anesthetized rats. J Neurosci Methods 137:9-23. 

Pezze MA, Dalley JW, Robbins TW (2007) Differential roles of dopamine D1 and D2 
receptors in the nucleus accumbens in attentional performance on the five-choice 
serial reaction time task. Neuropsychopharmacology 32:273-283. 

Phillips GD, Howes SR, Whitelaw RB, Everitt BJ, Robbins T (1995) Analysis of the 
effects of intra-accumbens SKF-38393 and LY-171555 upon the behavioural 
satiety sequence. Psychopharmacology 117:82-90. 

Phillips PE, Walton ME, Jhou TC (2007a) Calculating utility: preclinical evidence for 
cost–benefit analysis by mesolimbic dopamine. Psychopharmacology 191:483-
495. 

Phillips PE, Walton ME, Jhou TC (2007b) Calculating utility: preclinical evidence for 
cost-benefit analysis by mesolimbic dopamine. Psychopharmacology (Berl) 
191:483-495. 

Phillips PE, Robinson DL, Stuber GD, Carelli RM, Wightman RM (2003) Real-time 
measurements of phasic changes in extracellular dopamine concentration in freely 
moving rats by fast-scan cyclic voltammetry. Methods Mol Med 79:443-464. 

Pierce RC, Kalivas PW (1995) Amphetamine produces sensitized increases in 
locomotion and extracellular dopamine preferentially in the nucleus accumbens 
shell of rats administered repeated cocaine. Journal of Pharmacology and 
Experimental Therapeutics 275:1019-1029. 

Pierce RC, Duffy P, Kalivas PW (1995) Sensitization to cocaine and dopamine 
autoreceptor subsensitivity in the nucleus accumbens. Synapse 20:33-36. 

Porter-Stransky KA, Seiler JL, Day JJ, Aragona BJ (2013) Development of behavioral 
preferences for the optimal choice following unexpected reward omission is 
mediated by a reduction of D2‐like receptor tone in the nucleus accumbens. 
European Journal of Neuroscience. 

166 
 



Porter-Stransky KA, Wescott SA, Hershman M, Badrinarayan A, Vander Weele CM, 
Lovic V, Aragona BJ (2011) Cocaine must enter the brain to evoke unconditioned 
dopamine release within the nucleus accumbens shell. Neurosci Lett 504:13-17. 

Prinssen EP, Kleven MS, Koek W (1996) Effects of dopamine antagonists in a two-way 
active avoidance procedure in rats: interactions with 8-OH-DPAT, ritanserin, and 
prazosin. Psychopharmacology 128:191-197. 

Pulvirenti L, Berrier R, Kreifeldt M, Koob GK (1994) Modulation of locomotor activity 
by NMDA receptors in the nucleus accumbens core and shell regions of the rat. 
Brain research 664:231-236. 

Purgert RJ, Wheeler DS, McDannald MA, Holland PC (2012) Role of Amygdala Central 
Nucleus in Aversive Learning Produced by Shock or by Unexpected Omission of 
Food. The Journal of neuroscience 32:2461-2472. 

Pyke G (1984) Optimal Foraging Theory: A Critical Review. Annual Review of Ecology 
and Systematics 15:523-575. 

Rada PV, Mark GP, Hoebel BG (1998) Dopamine release in the nucleus accumbens by 
hypothalamic stimulation-escape behavior. Brain research 782:228-234. 

Ragozzino ME (2002) The effects of dopamine D(1) receptor blockade in the prelimbic-
infralimbic areas on behavioral flexibility. Learn Mem 9:18-28. 

Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal 
cortex, and dorsomedial striatum to behavioral flexibility. Annals of the New 
York Academy of Sciences 1121:355-375. 

Ragozzino ME, Kim J, Hassert D, Minniti N, Kiang C (2003) The contribution of the rat 
prelimbic-infralimbic areas to different forms of task switching. Behavioral 
neuroscience 117:1054. 

Ramot A, Akirav I (2012) Cannabinoid receptors activation and glucocorticoid receptors 
deactivation in the amygdala prevent the stress-induced enhancement of a 
negative learning experience. Neurobiology of learning and memory. 

Rana AQ, Masroor MS, Khan AS (2013) A review of methods used to study cognitive 
deficits in Parkinson's disease. Neurol Res 35:1-6. 

Ranaldi R, Beninger RJ (1994) The effects of systemic and intracerebral injections of D1 
and D2 agonists on brain stimulation reward. Brain Res 651:283-292. 

Ranaldi R, Pocock D, Zereik R, Wise RA (1999) Dopamine fluctuations in the nucleus 
accumbens during maintenance, extinction, and reinstatement of intravenous D-
amphetamine self-administration. The Journal of neuroscience 19:4102-4109. 

Reading PJ, Dunnett SB (1991) The effects of excitotoxic lesions of the nucleus 
accumbens on a matching to position task. Behav Brain Res 46:17-29. 

Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering 
novel actions? Nature Reviews Neuroscience 7:967-975. 

Redgrave P, Gurney K, Reynolds J (2008) What is reinforced by phasic dopamine signals? 
Brain Research Reviews 58:322-339. 

Reid AK, Staddon J (1998) A dynamic route finder for the cognitive map. Psychological 
Review 105:585. 

Reiner A, Medina L, Veenman CL (1998) Structural and functional evolution of the basal 
ganglia in vertebrates. Brain Research Reviews 28:235-285. 

167 
 



Reynolds SM, Berridge KC (2008) Emotional environments retune the valence of 
appetitive versus fearful functions in nucleus accumbens. Nature neuroscience 
11:423-425. 

Richard JM, Berridge KC (2011) Nucleus Accumbens Dopamine/Glutamate Interaction 
Switches Modes to Generate Desire versus Dread: D1 Alone for Appetitive 
Eating But D1 and D2 Together for Fear. The Journal of neuroscience 31:12866-
12879. 

Richfield EK, Penney JB, Young AB (1989) Anatomical and affinity state comparisons 
between dopamine D1 and D2 receptors in the rat central nervous system. 
Neuroscience 30:767-777. 

Robertson G, Jian M (1995) D1 and D2 dopamine receptors differentially increase fos-like 
immunoreactivity in accumbal projections to the ventral pallidum and midbrain. 
Neuroscience 64:1019-1034. 

Robinson DL, Wightman RM (2007) Rapid Dopamine Release in Freely Moving Rats. 
Robinson DL, Venton BJ, Heien MLAV, Wightman RM (2003) Detecting subsecond 

dopamine release with fast-scan cyclic voltammetry in vivo. Clinical chemistry 
49:1763. 

Robinson S, Sandstrom SM, Denenberg VH, Palmiter RD (2005) Distinguishing whether 
dopamine regulates liking, wanting, and/or learning about rewards. Behavioral 
neuroscience 119:5. 

Robinson TE, Camp DM (1987) Long-lasting effects of escalating doses of d-
amphetamine on brain monoamines, amphetamine-induced stereotyped behavior 
and spontaneous nocturnal locomotion. Pharmacology Biochemistry and Behavior 
26:821-827. 

Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-
sensitization theory of addiction. Brain Res Brain Res Rev 18:247-291. 

Robinson TE, Yager LM, Cogan ES, Saunders BT (2014) On the motivational properties 
of reward cues: Individual differences. Neuropharmacology 76:450-459. 

Roeper J (2013) Dissecting the diversity of midbrain dopamine neurons. Trends in 
neurosciences 36:336-342. 

Roesch MR, Calu DJ, Schoenbaum G (2007) Dopamine neurons encode the better option 
in rats deciding between differently delayed or sized rewards. Nat Neurosci 
10:1615-1624. 

Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic 
dopamine. Neuron 76:470-485. 

Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of 
haloperidol and nucleus accumbens dopamine depletion on instrumental response 
selection in a T-maze cost/benefit procedure. Behavioural brain research 65:221-
229. 

Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of 
nucleus accumbens dopamine and associated forebrain circuits. 
Psychopharmacology (Berl) 191:461-482. 

Salinas JA, White NM (1998) Contributions of the hippocampus, amygdala, and dorsal 
striatum to the response elicited by reward reduction. Behavioral Neuroscience; 
Behavioral Neuroscience 112:812. 

168 
 



Salinas JA, Gold PE (2005) Glucose regulation of memory for reward reduction in young 
and aged rats. Neurobiol Aging 26:45-52. 

Salinas JA, Packard MG, McGaugh JL (1993) Amygdala modulates memory for changes 
in reward magnitude - reversible post-training inactivation with lidocaine 
attenuates the response to a reduction in reward. Behavioural brain research 
59:153-159. 

Salinas JA, Williams CL, McGaugh JL (1996) Peripheral Post-training Administration of 
4-OH Amphetamine Enhances Retention of a Reduction in Reward Magnitude. 
Neurobiology of learning and memory 65:192-195. 

Salinas JA, Introini-Collison IB, Dalmaz C, McGaugh JL (1997) Posttraining 
intraamygdala infusions of oxotremorine and propranolol modulate storage of 
memory for reductions in reward magnitude. Neurobiology of learning and 
memory 68:51-59. 

Sam PM, Justice JB, Jr. (1996) Effect of general microdialysis-induced depletion on 
extracellular dopamine. Anal Chem 68:724-728. 

Sarter M, Fritschy JM (2008) Reporting statistical methods and statistical results in EJN. 
European Journal of Neuroscience 28:2363-2364. 

Sastre A, Reilly S (2006) Excitotoxic lesions of the gustatory thalamus eliminate 
consummatory but not instrumental successive negative contrast in rats. 
Behavioural brain research 170:34-40. 

Saunders BT, Robinson TE (2012) The role of dopamine in the accumbens core in the 
expression of Pavlovian‐conditioned responses. European Journal of 
Neuroscience 36:2521-2532. 

Schall JD (2003) Neural correlates of decision processes: neural and mental chronometry. 
Current opinion in neurobiology 13:182-186. 

Schultz KN, Kennedy RT (2008) Time-resolved microdialysis for in vivo neurochemical 
measurements and other applications. Annu Rev Anal Chem 1:627-661. 

Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1-27. 
Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241-263. 
Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev 

Neurosci 30:259-288. 
Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. 

Science 275:1593-1599. 
Seeman P (2009) Schizophrenia model of elevated D2High receptors: Haloperidol reverses 

the amphetamine-induced elevation in dopamine D2High. Schizophrenia research 
109:191-192. 

Seeman P (2011) All roads to schizophrenia lead to dopamine supersensitivity and 
elevated dopamine D2High receptors. CNS neuroscience & therapeutics 17:118-
132. 

Seeman P, Weinshenker D, Quirion R, Srivastava LK, Bhardwaj SK, Grandy DK, 
Premont RT, Sotnikova TD, Boksa P, El-Ghundi M (2005) Dopamine 
supersensitivity correlates with D2High states, implying many paths to psychosis. 
Proceedings of the National Academy of Sciences of the United States of America 
102:3513-3518. 

169 
 



Shou M, Ferrario CR, Schultz KN, Robinson TE, Kennedy RT (2006) Monitoring 
dopamine in vivo by microdialysis sampling and on-line CE-laser-induced 
fluorescence. Analytical chemistry 78:6717-6725. 

Sinkala E, McCutcheon JE, Schuck MJ, Schmidt E, Roitman MF, Eddington DT (2012) 
Electrode calibration with a microfluidic flow cell for fast-scan cyclic 
voltammetry. Lab on a Chip 12:2403-2408. 

Skelin I, Hakstol R, VanOyen J, Mudiayi D, Molina LA, Holec V, Hong NS, Euston DR, 
McDonald RJ, Gruber AJ (2014) Lesions of dorsal striatum eliminate lose‐
switch responding but not mixed‐response strategies in rats. European Journal of 
Neuroscience. 

Skinner BF (1953) Science and human behavior: Free Press. 
Slaney TR, Mabrouk OS, Porter-Stransky KA, Aragona BJ, Kennedy RT (2013) 

Chemical Gradients within Brain Extracellular Space Measured using Low Flow 
Push–Pull Perfusion Sampling in Vivo. ACS chemical neuroscience. 

Smeets WJ, González A (2000) Catecholamine systems in the brain of vertebrates: new 
perspectives through a comparative approach. Brain Research Reviews 33:308-
379. 

Smith KS, Berridge KC, Aldridge JW (2011) Disentangling pleasure from incentive 
salience and learning signals in brain reward circuitry. Proceedings of the 
National Academy of Sciences 108:E255-E264. 

Song P, Mabrouk OS, Hershey ND, Kennedy RT (2012) In Vivo Neurochemical 
Monitoring using Benzoyl Chloride Derivatization and Liquid Chromatography–
Mass Spectrometry. Analytical chemistry. 

Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak PH (2013) A causal 
link between prediction errors, dopamine neurons and learning. Nature 
neuroscience. 

Stephens DW, Krebs JR (1986) Foraging theory: Princeton Univ Pr. 
Stopper CM, Khayambashi S, Floresco SB (2013) Receptor-Specific Modulation of Risk-

Based Decision Making by Nucleus Accumbens Dopamine. 
Neuropsychopharmacology. 

Stout D (2010) The evolution of cognitive control. Topics in Cognitive Science 2:614-
630. 

Stratmann JA, Craft RM (1997) Intracranial self-stimulation in female and male rats: no 
sex differences using a rate-independent procedure. Drug and Alcohol 
Dependence 46:31-40. 

Stuber GD, Wightman RM, Carelli RM (2005) Extinction of cocaine self-administration 
reveals functionally and temporally distinct dopaminergic signals in the nucleus 
accumbens. Neuron 46:661-669. 

Sugam JA, Saddoris MP, Carelli RM (2013) Nucleus Accumbens Neurons Track 
Behavioral Preferences and Reward Outcomes During Risky Decision Making. 
Biological Psychiatry. 

Sugam JA, Day JJ, Wightman RM, Carelli RM (2012) Phasic Nucleus Accumbens 
Dopamine Encodes Risk-Based Decision-Making Behavior. Biological Psychiatry. 

Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. 
Neuron 69:628-649. 

170 
 



Sulzer D, Pothos EN (2000) Regulation of quantal size by presynaptic mechanisms. 
Reviews in the Neurosciences 11:159-212. 

Surmeier D, Carrillo-Reid L, Bargas J (2011) Dopaminergic modulation of striatal 
neurons, circuits, and assemblies. Neuroscience 198:3-18. 

Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor 
modulation of striatal glutamatergic signaling in striatal medium spiny neurons. 
Trends in neurosciences 30:228-235. 

Sutcliffe JS (2011) Female Rats Are Smarter than Males: Influence of Test, Oestrogen 
Receptor Subtypes and Glutamate. Biological Basis of Sex Differences in 
Psychopharmacology:37-56. 

Swanson CJ, Heath S, Stratford TR, Kelley AE (1997) Differential behavioral responses 
to dopaminergic stimulation of nucleus accumbens subregions in the rat. 
Pharmacol Biochem Behav 58:933-945. 

Taghzouti K, Louilot A, Herman JP, Le Moal M, Simon H (1985) Alternation behavior, 
spatial discrimination, and reversal disturbances following 6-hydroxydopamine 
lesions in the nucleus accumbens of the rat. Behav Neural Biol 44:354-363. 

Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal 
interneurons. Current opinion in neurobiology 14:685-692. 

Thoma P, Wiebel B, Daum I (2007) Response inhibition and cognitive flexibility in 
schizophrenia with and without comorbid substance use disorder. Schizophrenia 
research 92:168-180. 

Tinklepaugh OL (1928) An experimental study of representative factors in monkeys. 
Journal of Comparative Psychology 8:197. 

Tropp J, Markus EJ (2001) Effects of mild food deprivation on the estrous cycle of rats. 
Physiology & Behavior 73:553-559. 

Ungless MA, Grace AA (2012) Are you or aren’t you? Challenges associated with 
physiologically identifying dopamine neurons. Trends in neurosciences 35:422-
430. 

Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the 
ventral tegmental area by aversive stimuli. Science 303:2040-2042. 

Van Haaren F, Wouters M, Van de Poll NE (1987) Absence of behavioral differences 
between male and female rats in different radial-maze procedures. Physiology & 
Behavior 39:409-412. 

Van Haaren F, Van Hest A, Heinsbroek RPW (1990) Behavioral differences between 
male and female rats: effects of gonadal hormones on learning and memory. 
Neuroscience & Biobehavioral Reviews 14:23-33. 

Van Hest A, Van Haaren F, Van de Poll NE (1988) The behavior of male and female 
Wistar rats pressing a lever for food is not affected by sex differences in food 
motivation. Behavioural brain research 27:215-221. 

Van Hest A, Van Haaren F, Van de Poll NE (1989) Operant conditioning of response 
variability in male and female Wistar rats. Physiology & Behavior 45:551-555. 

van Wieringen J-P, Booij J, Shalgunov V, Elsinga P, Michel MC (2013) Agonist high-
and low-affinity states of dopamine D2 receptors: methods of detection and 
clinical implications. Naunyn-Schmiedeberg's archives of pharmacology 386:135-
154. 

171 
 



Vander Weele CM, Porter-Stransky KA, Mabrouk OS, Lovic V, Singer BF, Kennedy RT, 
Aragona BJ (submitted) Differential responses in rapid dopamine transmission 
within the nucleus accumbens following morphine and oxycodone delivery. 

Veeneman M, van Ast M, Broekhoven M, Limpens J, Vanderschuren L (2012) Seeking–
taking chain schedules of cocaine and sucrose self-administration: effects of 
reward size, reward omission, and α-flupenthixol. Psychopharmacology 220:771-
785. 

Vezina P (2004) Sensitization of midbrain dopamine neuron reactivity and the self-
administration of psychomotor stimulant drugs. Neuroscience & Biobehavioral 
Reviews 27:827-839. 

Vindas MA, Folkedal O, Kristiansen TS, Stien LH, Braastad BO, Mayer I, Overli O 
(2012) Omission of expected reward agitates Atlantic salmon (Salmo salar). Anim 
Cogn 15:903-911. 

Voon V, Pessiglione M, Brezing C, Gallea C, Fernandez HH, Dolan RJ, Hallett M (2010) 
Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. 
Neuron 65:135-142. 

Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply with basic 
assumptions of formal learning theory. Nature 412:43-48. 

Wanat MJ, Kuhnen CM, Phillips PE (2010) Delays conferred by escalating costs 
modulate dopamine release to rewards but not their predictors. J Neurosci 
30:12020-12027. 

Wanat MJ, Bonci A, Phillips PE (2013) CRF acts in the midbrain to attenuate accumbens 
dopamine release to rewards but not their predictors. Nature neuroscience 16:383-
385. 

Wanat MJ, Hopf FW, Stuber GD, Phillips PE, Bonci A (2008) Corticotropin-releasing 
factor increases mouse ventral tegmental area dopamine neuron firing through a 
protein kinase C-dependent enhancement of Ih. J Physiol 586:2157-2170. 

Wang M, Hershey ND, Mabrouk OS, Kennedy RT (2011) Collection, storage, and 
electrophoretic analysis of nanoliter microdialysis samples collected from awake 
animals in vivo. Analytical and bioanalytical chemistry 400:2013-2023. 

Wang M, Roman GT, Schultz K, Jennings C, Kennedy RT (2008) Improved temporal 
resolution for in vivo microdialysis by using segmented flow. Analytical 
chemistry 80:5607-5615. 

Weimerskirch H, Pinaud D, Pawlowski F, Bost CA (2007) Does Prey Capture Induce 
Area‐Restricted Search? A Fine‐Scale Study Using GPS in a Marine Predator, 
the Wandering Albatross. The American Naturalist 170:734-743. 

Wheeler RA, Aragona BJ, Fuhrmann KA, Jones JL, Day JJ, Cacciapaglia F, Wightman 
RM, Carelli RM (2011) Cocaine Cues Drive Opposing Context-Dependent Shifts 
in Reward Processing and Emotional State. Biological Psychiatry. 

White J, Tobin TR, Bell WJ (1984) Local search in the housefly Musca domestica after 
feeding on sucrose. Journal of Insect Physiology 30:477-487. 

Wickens JR, Horvitz JC, Costa RM, Killcross S (2007) Dopaminergic mechanisms in 
actions and habits. The Journal of neuroscience 27:8181-8183. 

Winter S, Dieckmann M, Schwabe K (2009) Dopamine in the prefrontal cortex regulates 
rats behavioral flexibility to changing reward value. Behavioural brain research 
198:206-213. 

172 
 



Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483-494. 
Wise RA (2008) Dopamine and reward: the anhedonia hypothesis 30 years on. 

Neurotoxicity research 14:169-183. 
Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, 

Cho SL, Gong S, Ramakrishnan C (2011) Recombinase-driver rat lines: tools, 
techniques, and optogenetic application to dopamine-mediated reinforcement. 
Neuron 72:721-733. 

Wolfe JM (2013) When is it time to move to the next raspberry bush? Foraging rules in 
human visual search. Journal of vision 13. 

Wolterink G, Phillips G, Cador M, Donselaar-Wolterink I, Robbins TW, Everitt BJ (1993) 
Relative roles of ventral striatal D1 and D2 dopamine receptors in responding 
with conditioned reinforcement. Psychopharmacology (Berl) 110:355-364. 

Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned 
incentive salience of sucrose reward: enhancement of reward “wanting” without 
enhanced “liking” or response reinforcement. The Journal of neuroscience 
20:8122-8130. 

Yager LM, Robinson TE (2013) A classically conditioned cocaine cue acquires greater 
control over motivated behavior in rats prone to attribute incentive salience to a 
food cue. Psychopharmacology 226:217-228. 

Young AM (2004) Increased extracellular dopamine in nucleus accumbens in response to 
unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis 
in rats. Journal of neuroscience methods 138:57-63. 

Young EJ, Williams CL (2010) Valence Dependent Asymmetric Release of 
Norepinephrine in the Basolateral Amygdala. Behavioral neuroscience 124:633-
644. 

Zahm DS (1999) Functional-anatomical Implications of the Nucleus Accumbens Core 
and Shell Subterritories. Annals of the New York Academy of Sciences 877:113-
128. 

Zhang L, Doyon WM, Clark JJ, Phillips PE, Dani JA (2009) Controls of tonic and phasic 
dopamine transmission in the dorsal and ventral striatum. Mol Pharmacol 76:396-
404. 

Zhang M, Balmadrid C, Kelley AE (2003) Nucleus accumbens opioid, GABaergic, and 
dopaminergic modulation of palatable food motivation: contrasting effects 
revealed by a progressive ratio study in the rat. Behavioral neuroscience 117:202. 

Zhang X, Rauch A, Lee H, Xiao H, Rainer G, Logothetis NK (2007) Capillary 
hydrophilic interaction chromatography/mass spectrometry for simultaneous 
determination of multiple neurotransmitters in primate cerebral cortex. Rapid 
Communications in Mass Spectrometry 21:3621-3628. 

Zhou L, Furuta T, Kaneko T (2003) Chemical organization of projection neurons in the 
rat accumbens nucleus and olfactory tubercle. Neuroscience 120:783-798. 

 

 

173 
 


	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1:  GENERAL INTRODUCTION
	Adaptive Reward Seeking Behavior
	Dopaminergic Coding of Reward
	The challenges of studying dopamine transmission in behaving animals
	Electrophysiological recordings of putative midbrain DA neurons
	Measuring DA transmission in terminal regions
	Microdialysis
	Fast-scan cyclic voltammetry



	Role of dopamine in modulating choice behavior  following unexpected reward omission
	Figures

	CHAPTER 2:  LABORATORY MODEL OF FORAGING BEHAVIOR, INCLUDING MANIPULATIONS OF REWARD AVAILABILITY
	Introduction
	Materials & Methods
	Subjects
	Behavioral Paradigm
	Analysis of Behavior
	Monitoring of estrus cycle
	Statistics

	Results
	Establishing behavioral preference for the optimal choice during reward reduction and omission
	No sex differences were observed in performance of the foraging task
	The lack of sex difference in development of choice preference was not due to estrous cycle effects in female subjects
	Aversive components of reward omission

	Discussion
	Psychological mechanisms underlying the development of behavioral preferences mediated by aversive motivation.
	Lack of sex differences in behavioral performance during the negative contingency switches
	Conclusion


	CHAPTER 3:  INCREASES IN EXTRACELLULAR DOPAMINE IN THE NUCLEUS ACCUMBENS DURING REWARD OMISSION AND CORRESPONDING INCREASES IN MOTIVATIONAL VIGOR AND EXPLORATION OF ALTERNATIVE RESPONSE STRATEGIES
	Introduction
	Methods
	Subjects
	Behavioral Paradigm
	Behavioral Analysis
	Surgery
	Microdialysis
	Statistics

	Results
	Discussion
	Tonic changes in [DA] during the reward omission task
	DA and Behavioral Vigor
	DA and the Balance of Exploration versus Exploitation
	Conclusion


	CHAPTER 4: PHASIC CHANGES IN DOPAMINE TRANSMISSION IN THE NUCLEUS ACCUMBENS CORE FOLLOWING UNEXPECTED REWARD OMISSION
	Introduction
	Methods
	Subjects
	Surgery
	Fast-scan cyclic voltammetry
	Behavioral testing
	Histology
	Data Analysis
	Conversion of recorded current into dopamine concentration
	Statistical Analyses


	Results
	Discussion
	Decreased DA transmission during the omission of an expected reward
	Changes in cue-evoked DA transmission as subjects learn about the extinguished option and alter behavioral responses
	Conclusion


	CHAPTER 5:  REDUCTIONS IN D2 RECEPTOR TONE IN THE NUCLEUS ACCUMBENS MEDIATE BEHAVIORAL PREFERENCES FOR THE OPTIMAL CHOICE FOLLOWING UNEXJPECTED REWARD OMISSION
	Introduction
	Methods
	Subjects
	Surgery
	Drugs and Microinfusion Procedure
	Locomotor Testing
	Histology
	Statistics

	Results
	Pharmacologically holding D2-like, but not D1-like, receptor tone in the NAc core prevents a behavioral preference for the rewarded option during unexpected reward omission
	Both the NAc core and shell subregions facilitate the development of a behavioral preference during unexpected reward omission through reduction of DA tone at D2-like receptors
	General locomotor-effects of quinpirole are not responsible for the lack of choice preference following unexpected reward omission

	Discussion
	Reduction of D2-like receptor tone in the NAc mediates behavioral preferences for optimal choices
	Conclusion


	CHAPTER 6: GENERAL DISCUSSION
	Foraging Behavior during Reductions in Reward Availability
	Dopamine Transmission in the Nucleus Accumbens Following  Unexpected Reward Omission
	Changes in tonic [DA] captured by microdialysis
	Sub-second DA transmission measured with FSCV
	Alternative interpretations and challenges to the reward prediction theory of DA neurons

	Behavioral preferences prompted by the omission of an expected reward are mediated by D2-like receptors in the NAc
	Reconciling simultaneous increase and decreases in [DA]

	Conclusion
	Future Directions

	REFERENCES

