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ABSTRACT 

Streptococcus agalactiae (GBS) is the leading cause of infectious neonatal morbidity and 

mortality in the United States. GBS infections in the gravid female reproductive tract are 

associated with adverse birth outcomes. The ascending pathway of infection begins with GBS 

colonization of the vagina, passes through the cervix and uterine cavity where it can cross the 

extraplacental membranes and infect the fetus. However, the mechanisms by which GBS 

colonizes and infects the extraplacental membranes remain poorly understood. In addition, 

environmental toxicant interaction with the innate immune system during pregnancy-related 

infections remains to be elucidated.  

 

In the present thesis, extraplacental membranes cocultured with GBS increased secretion of the 

antimicrobial peptide human beta defensin (HBD)-2 and killed GBS over time (P < 0.05). 

Notably, a pattern of localized increased HBD-2 in the amnion of GBS-infected membranes was 

observed. Interleukin (IL)-1α and IL-1β secreted from choriodecidual tissue was essential for 

stimulating HBD-2 in the amnion cells. Direct stimulation of amnion cells with live GBS, 

lipoteichoic acid (LTA), or lipopolysaccharide (LPS) did not increase HBD-2 release. Increases 

in cytokine release were GBS strain dependent (P < 0.05). GBS recovery from membranes was 

also GBS strain dependent, with colonizing strains persisting on the choriodecidual side of the 

membranes. The trichloroethylene (TCE) metabolite S-(1,2)-dichlorovinyl-L-cysteine (DCVC) 

significantly inhibited pathogen (LTA, LPS, and GBS)-stimulated TNF-α release from 



xi 
 

extraplacental membranes. Both TNF-α mRNA expression and protein secretion were inhibited 

as early as 4 h after initiating co-treatment of tissue punches with DCVC and LTA (P < 0.05). A 

different TCE metabolite, trichloroacetic acid (10-500 µM), failed to inhibit LTA-stimulated 

cytokine release from extraplacental membranes. 

 

In summary, extraplacental membranes in culture mounted a robust immune response to GBS. 

Cell-to-cell signaling from the choriodecidua to the amnion was critical for GBS-stimulated 

HBD-2 in amnion. Host response in the extraplacental membranes was GBS strain specific. The 

results from the present study provide new insight into the mechanisms of host defense during 

GBS infection and need to be considered for future treatment and prevention strategies. In 

addition, pathogen-toxicant interactions should be considered in the current paradigm for 

increased risk for intrauterine infection. 
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CHAPTER 1. INTRODUCTION  

 

GBS Infection during Pregnancy as a Public Health Problem 

Streptococcus agalactiae (Group B Streptococcus, GBS) is a gram positive bacterium. GBS 

remains the leading cause of infectious neonatal morbidity and mortality and is associated with 

adverse birth outcomes (MMWR) (Verani, McGee et al. 2010). Although GBS disease is 

reported in non-pregnant adults, pregnancy increases the risk of invasive GBS disease (Verani, 

McGee et al. 2010). Genital GBS colonization of pregnant women is associated with early term 

births and low birth weight (Mitchell, Brou et al. 2013). In addition, GBS is associated with 

neonate sepsis and meningitis, and GBS-infected infants born preterm have increased odds of 

infant mortality compared to infants delivered at term (Goldenberg, Hauth et al. 2000, Jordan, 

Farley et al. 2008). GBS was the most common microorganism isolated from maternal and fetal 

tissues of women with midgestation spontaneous abortion (McDonald and Chambers 2000). 

Likewise, histological chorioamnionitis and preterm birth at less than 32 weeks gestation were 

associated with GBS isolation from extraplacental membranes (Hillier, Krohn et al. 1991). 

Despite knowledge that GBS is a public health issue, little is known about the mechanisms by 

which GBS interacts with the host. Understanding the pregnant women’s immune response to 

GBS is essential for developing intervention and treatment strategies prior to neonatal disease.  
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Prevalence of GBS Colonization and Incidence of Infection 

The prevalence of GBS recto-vaginal colonization varies across the world. Approximately 10-

30% of women are colonized recto-vaginally with GBS. Despite recommendations to screen all 

women for GBS during pregnancy (Verani, McGee et al. 2010), many countries still do not 

routinely screen for GBS. Based on available reports at the time, Stoll et al. estimated worldwide 

GBS colonization in 1998 to be approximately 12.7% (Stoll and Schuchat 1998). Since that 

publication, additional reports of GBS rates (summarized in Table 1.1) suggest that maternal 

GBS colonization continues to be a global concern. 

 

In the United States, the incidence of early-onset neonatal GBS disease (with clinical symptoms 

within the first week of life) is 0.34 cases per 1000 live births (Jordan, Farley et al. 2008). The 

incidence of late-onset (> 1 week of age) neonatal GBS disease in the United States is 0.35 cases 

per 1000 live births. With prophylactic antibiotic treatment given to GBS-positive women, the 

incidence of early-onset neonatal GBS disease has decreased approximately 80% since the early 

1990s. However, the incidence of late onset of disease has remained relatively stable, suggesting 

that treatment and intervention strategies need to expand beyond screening and antibiotics. In a 

systematic review and meta-analysis of papers reporting incidence worldwide, Edmond et al. 

found a mean incidence of 0.53 cases per 1000 live births (Edmond, Kortsalioudaki et al. 2012). 

Early-onset disease predominated with an average incidence of 0.43 cases per 1000 live births, 

suggesting that early-onset GBS disease is more prevalent worldwide, compared to the United 

States. Global differences in early-onset GBS disease during pregnancy may reflect differences 

in GBS screening and antibiotic prophylaxis.  
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GBS Strain Differences 

GBS are classified into ten different serotypes based on capsular polysaccharides thought to be 

related to virulence (Slotved, Kong et al. 2007). GBS serotype distribution in pregnant women 

and neonates with disease varies widely across reports, but the most common serotypes appear to 

be III, Ia, and V.  Edmond et al. reported serotype distribution isolated from normally sterile sites 

of neonates with disease (e.g., sepsis, meningitis, etc.) as: III (48.9%), Ia (22.9%), 1B (7.0%), II 

(6.2%), and V (9.1%) (Edmond, Kortsalioudaki et al. 2012). Similarly, Jordan et al. found that 

the serotype distribution isolated from normally sterile sites of neonates with disease was 

predominantly III (53%), Ia (24%), and V (13%) in the United  States (Jordan, Farley et al. 

2008). Even though serotype III appears more prevalent in neonatal disease cases, the 

distribution suggests GBS virulence is not solely reliant on serotype.   

 

In addition to serotype, GBS are categorized into sequence types (ST) based on genetic variation 

in seven conserved genes (Manning, Springman et al. 2009). ST-17 and ST-19 are more 

commonly associated with neonatal disease compared to other sequence types (Manning, 

Springman et al. 2009). Limited studies have examined the mechanisms by which GBS serotypes 

and strain types alter virulence and even fewer studies have evaluated host response to different 

GBS serotypes and strain types. 

 

Role of the Extraplacental Membranes in Ascending Infection 

The current dogma for the progression of infection during pregnancy is the ascending pathway 

by which bacteria first colonize the vagina and cervix, migrate to the placenta and maternal-fetal 

membranes, cross the extraplacental membranes, and then colonize the amniotic cavity and fetus 
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(Figure 1.1) (Goldenberg, Hauth et al. 2000). Healthy extraplacental membranes (also called 

gestational membranes or maternal-fetal membranes), composed primarily of decidual cells, 

chorionic trophoblasts, fibroblasts, and amnion epithelial cells, provide a barrier that protects the 

fetus from infection. The extraplacental membranes also include a small number of resident 

innate immune cells (macrophages and monocytes) (Osman, Young et al. 2003, Osman, Young 

et al. 2006). Macrophage and monocyte cell responses during GBS infection have been reviewed 

elsewhere (Wennekamp and Henneke 2008). Macrophages and monocytes recognize GBS 

through pathogen-associated molecular patterns (PAMPs) and GBS promotes a rapid and robust 

inflammatory response in these cells.  

 

Role of Antimicrobial Peptides in Host Response of the Gestational Tissues  

GBS is capable of invading primary human chorion cells and can move through both ME180 

(human cervical epithelial cell line) and primary chorion cell monolayers without disrupting the 

monolayer integrity (Winram, Jonas et al. 1998, Soriani, Santi et al. 2006). In contrast, GBS has 

not been shown to invade primary human amnion cells (Winram, Jonas et al. 1998). Several 

studies have shown that ex vivo full thickness extraplacental membranes are not penetrated by 

GBS and are capable of killing the bacteria (Kjaergaard, Helmig et al. 1999, Kjaergaard, Hein et 

al. 2001, Boldenow, Jones et al. 2013), though the ability for GBS to invade and persist in the 

whole extraplacental membranes may depend on GBS virulence factors such as pigmentation of 

GBS (Whidbey, Harrell et al. 2013).  

 

The mechanisms by which extraplacental membranes kill bacteria are not fully established, but 

likely include antimicrobial peptides (AMPs) (Zaga-Clavellina, Ruiz et al. 2012, Boldenow, 
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Jones et al. 2013) and inflammatory mediators such as chemokines that recruit immune cells to 

the site to help resist infection (Stock, Kelly et al. 2007). AMPs are thought of as a first line of 

defense against infectious microorganisms during pregnancy because many are constitutively 

expressed and can kill bacteria through membrane disruption, pore formation in the membrane 

wall, and depolarization. Furthermore, AMPs can promote chemotaxis of T and B cells, 

providing an important link between the innate and adaptive immune systems. AMPs are found 

throughout the reproductive tract during pregnancy, including in amniotic fluid and 

extraplacental membranes (Horne, Stock et al. 2008, Frew and Stock 2011). Furthermore, AMPs 

such as human beta defensin (HBD)-2 are increased in amniotic fluid during intrauterine 

infection (Soto, Espinoza et al. 2007). HBDs have a broad spectrum of activity and are effective 

at killing both gram positive and gram negative bacteria (Chen, Niyonsaba et al. 2005). 

 

Both our laboratory and Zaga-Clavellina et al. have shown increases in secreted HBD-2 and 

HBD-3, but not HBD-1, using a transwell tissue culture model of human extraplacental 

membranes cocultured with 1x106 CFU/mL live GBS (Zaga-Clavellina, Garcia-Lopez et al. 

2012, Boldenow, Jones et al. 2013). Our lab also demonstrated through immunohistochemistry 

that amnion cells are particularly critical to the HBD-2 response (Chapter 2).  

 

The mechanism by which AMPs are increased in GBS-stimulated extraplacental membranes has 

not been fully elucidated. However, in other cell types, inflammatory cytokines are important for 

increased AMP expression and secretion (Liu, Destoumieux et al. 2002, Moon, Lee et al. 2002, 

McDermott, Redfern et al. 2003, Pioli, Weaver et al. 2006). Consistent with those studies, Stock, 
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et al. has shown that IL-1β directly increases HBD-2 in amnion epithelial cells (Stock, Kelly et 

al. 2007), and could be an important host response in GBS disease.  

 

Role of Inflammation during GBS Infection in Humans and Animal Models 

Intrauterine infection has been well established as a cause of preterm birth and other adverse 

birth outcomes. Infection increases inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) in the 

amniotic fluid (Hillier, Witkin et al. 1993, Basso, Gimenez et al. 2005, Challis, Lockwood et al. 

2009). High levels of inflammatory cytokines in amniotic fluid have also been associated with 

meningitis and fetal brain damage (Dammann and Leviton 1997, Burd, Balakrishnan et al. 2012). 

Few studies associating infection with elevated cytokine and AMP levels have interrogated 

bacterial species or strain. 

 

A recent report by Mitchell et al. found that maternal recto-vaginal GBS colonization increased 

the odds of early term birth and lower birth weight, and was associated with increased IL-1β in 

both maternal and fetal plasma (Mitchell, Brou et al. 2013). In addition, IL-2 levels were slightly 

elevated in maternal but not fetal plasma in GBS cases, and no differences were observed in IL-

8, IL-6, and TNF-α. In another study two infants with GBS infections had increased plasma IL-

1β, IL-2, and TNF-α compared to neonates without infection (Hodge, Hodge et al. 2004). 

Another study measuring IL-6 and TNF-α in cerebrospinal fluid of 62 infants found that three of 

the 22 infants with meningitis were GBS positive by blood culture (Dulkerian, Kilpatrick et al. 

1995). All three GBS meningitis infants had elevated IL-6 levels compared to control infants 

without meningitis. Two of the GBS meningitis infants also had elevated TNF-α levels. These 
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studies, though limited, highlight differences between maternal and infant immune responses, 

and suggest that pathogen-specific responses occur. 

 

Gravett and colleges developed a non-human primate model in rhesus monkeys (Macaca 

mulatta) to study GBS infection (Gravett, Witkin et al. 1994). Following GBS inoculation (1x106 

CFU) in the amniotic compartment, cytokines IL-1β, IL-6, and TNF-α increased in the amniotic 

fluid, followed by the onset of contractions and preterm parturition. In subsequent primate 

experiments with similar GBS inoculation, ampicillin given in combination with dexamethasone 

and indomethacin suppressed IL-1β, IL-6, TNF-α, PGE2, and PGF2α, and delayed delivery 

(Gravett, Adams et al. 2007). Ampicillin alone eliminated the GBS but did not reduce the 

cytokine levels, signifying that the current routine intervention strategy of antibiotics may not be 

sufficient. In a more recent study, inoculation of the choriodecidua of non-human primates with 

GBS increased amniotic fluid concentrations of IL-1β, IL-6, IL-8, and TNF-α; however, preterm 

labor and chorionic infiltration with neutrophils were not observed in all inoculated animals 

compared to control animals (Adams Waldorf, Gravett et al. 2011). Interestingly, lung injury in 

the neonates was observed even though no GBS was detected in the amniotic fluid, emphasizing 

the importance of the maternal immune response in the gestational tissues and suggesting that 

GBS crossing of the membranes does not have to occur to result in infant injury. In addition, 

intra-amniotic GBS infection in the non-human primate was associated with infant bacteremia 

and early onset sepsis (Rubens, Raff et al. 1991).  

 

In a limited number of studies with mice, GBS infection had similar results as with the non-

human primate model. Pregnant mice delivered within 18 hours following intraperitoneal (i.p.) 
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or intrauterine inoculation with GBS, with increased apoptosis in the placenta and membranes 

(Equils, Moffatt-Blue et al. 2009). Another study using non-pregnant mice injected i.p. with GBS 

showed increased cytokines IL-1β,  TNF-α, IL-2, IFN-γ in spleen cells (Rosati, Fettucciari et al. 

1998). In the latter study, IL-4, IL-5, and IL-10 were not detected or did not change during 

infection. 

 

Role of Inflammation in Host Response of the Gestational Tissues  

Gestational tissues stimulated with GBS also produce unique inflammatory cytokine profiles 

(studies summarized in Table 1.2). Using full thickness human ex vivo extraplacental membranes 

treated with GBS, Menon et al. found increases in secreted IL-1β, IL-6, IL-10, and TNF-α in the 

media (Menon, Peltier et al. 2009). Differences in IFN-γ or IL-8 were not observed. Using a 

similar extraplacental membranes model, Peltier et al. found increased IL-1β and IL-8 protein in 

the medium (Peltier, Drobek et al. 2012), but no changes were observed for IL-2, IL-10, and 

TNF-a. Using extraplacental membranes attached to transwells, Zaga et al. found increases in IL-

1β and TNF-α in the choriodecidual compartment when the choriodecidual compartment or both 

compartments were stimulated with 1x106 CFU live GBS (Zaga, Estrada-Gutierrez et al. 2004).  

 

In addition to tissue culture models using full thickness extraplacental membranes, several 

studies have been conducted using human isolated cells. One study using human villous 

trophoblasts treated with GBS found concentration-dependent increases in IL-1β IL-6, IL-8 and 

IL-10 (Griesinger, Saleh et al. 2001). Kaplan et al. found that live GBS induces death in 

trophoblasts isolated from the membranes (Kaplan, Chung et al. 2008). Another study treated 

amnion cells from the extraplacental membranes with GBS found concentration-dependent 
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increases of IL-6 and IL-8 measured in the medium, but no apparent changes were observed in 

IL-1β or TNF-α secretion. However, no statistical analysis was run because the authors pooled 

samples (Reisenberger, Egarter et al. 1997). Primary isolated decidual cells treated with five 

GBS strains had strain-dependent increased secretion of MIP-1 and IL-8 (Dudley, Edwin et al. 

1997). In addition, human primary chorion cells treated with the five different GBS strains had 

increased secreted MIP-1 with all but one GBS strain, again illustrating that host response may 

be dependent on GBS strain differences (Dudley, Edwin et al. 1996).  

 

Consistent across the studies mentioned above, IL-1β increased with GBS infection. However, 

results varied for other cytokines such as IL-6, IL-8, and TNF-α. These differences could be due 

to different GBS strains used, which are rarely reported (Table 1.2). Strain differences are known 

to affect adherence and invasion, and could impact host response (Manning, Springman et al. 

2010). In the few studies of GBS infections of gestational tissues that did include multiple 

strains, differences in host response across strains were noted. In addition, differences in host 

response could be due to use of live versus heat-killed GBS because heat killing of bacteria 

causes denaturation of key surface molecules and proteins that could affect the innate immune 

response. In particular, hemolysins (from Staphylococcus) that normally increase IL-1β secretion 

from host cells can be denatured by heat (Strunk, Richmond et al. 2011). The results of the prior 

study likely apply to GBS because hemolysin is particularly important to GBS-induced host 

responses as well (Doran, Liu et al. 2003, Whidbey, Harrell et al. 2013).  
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Role of Toll-like Receptors during GBS Infection of Gestational Tissues 

Toll-like receptors (TLRs) reside in host cell membranes and detect bacterial components to 

signal the host cell response. To date, eleven mammalian TLRs have been identified, each 

recognizing different PAMPs (Takeda and Akira 2001). Following ligand recognition, TLRs 

recruit MYD88 (adaptor protein) which then initiates a signaling cascade that involves NF-κB 

and leads to host response including proinflammatory cytokine production (Pioli, Amiel et al. 

2004, Koga, Aldo et al. 2009).  

 

TLRs are found throughout the gestational compartment, and increases in TLRs have been noted 

with intrauterine infection and chorioamnionitis (Kim, Romero et al. 2004, Gillaux, Mehats et al. 

2011). TLR-2 recognizes gram positive bacteria and has been shown to be important in GBS 

disease (Henneke, Morath et al. 2005). Lipoteichoic acid (LTA), a cell wall component of GBS 

and other gram positive bacteria, engages TLR-2 to promote an inflammatory response in 

primary blood monocyte cultures characterized by increased release of cytokines IL-8 and TNF-

α (Henneke, Morath et al. 2005). Non-pregnant TLR-2 knockout mice inoculated intravenously 

with GBS have higher mortality rates, higher microbial loading in the blood, kidneys, and joints, 

and increased serum concentrations of IL-1β, IL-6, and TNF-α compared to wild-type animals 

(Puliti, Uematsu et al. 2009). Similarly, Mancuso et al. found that both adult and neonatal TLR-2 

or MYD88 knockout mice inoculated with a low dose of GBS exhibited decreased survival, 

increased bacterial counts in blood, spleen, and kidney, and increased TNF-α and IL-6 in serum 

compared to controls (Mancuso, Midiri et al. 2004). In contrast, lack of TLR-2 and MYD88 had 

a protective effect in mice inoculated with higher GBS concentrations. TLR-2 knockout mouse 

macrophages treated with live GBS have diminished TNF-α secretion, and impaired mRNA 
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expression of IL-1β, IL-6, and lipocalin 2 compared to wild-type (Draper, Bethea et al. 2006). 

Together, these studies illustrate the importance of TLR-2 during GBS infection. However, a role 

for TLR-2 has yet to be established during pregnancy.   

 

Interestingly, human extraplacental membranes treated ex vivo with GBS do not show increases 

in TLR mRNA expression, whereas TLR expression increases in extraplacental membranes 

exposed to other bacteria, suggesting a TLR-independent mechanism for GBS in the 

extraplacental membranes (Abrahams, Potter et al. 2013). TLR-independent mechanisms of host 

immune activation have been reported. Macrophages isolated from TLR-2 and TLR-6 knockout 

mice treated with GBS still showed normal TNF-α secretion compared to macrophages from 

wild-type mice (Henneke, Takeuchi et al. 2001). Using Chinese hamster ovary cells transfected 

with TLR-2, TLR-2 and CD14 inhibitors did not block TNF-α production, further supporting a 

TLR-2-independent mechanism (Flo, Halaas et al. 2000). 

 

The inflammasome provides an additional mechanism for increases in inflammation during 

infection. Both in vivo and ex vivo, GBS-stimulated increases in IL-1β appear as a common 

finding and suggest an important role for the inflammasome during GBS infection. The 

inflammasome is a multi-protein complex composed in part of caspase-1, which is responsible 

for cleaving intracellular pro IL-1β to the active form, which can then be secreted from the cell. 

Costa et al. has demonstrated the importance of the inflammasome pathway for increasing IL-1β 

and IL-18 during GBS infection using mouse dendritic cells (Costa, Gupta et al. 2012).  
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Although TLRs and the inflammasome have been linked to cytokine secretion in gestational 

tissues stimulated with GBS, few studies have looked at these pathways in human tissues. 

Furthermore, no reports have examined the role of TLRs or the inflammasome in antimicrobial 

peptide responses in gestational tissues.  

 

Toxicant-Pathogen Interactions 

Increasingly, exposure to environmental contaminants have been associated with increased risk 

of adverse pregnancy outcomes (Ferguson, O'Neill et al. 2013). However, little is known about 

environmental toxicant interactions with bacteria, and potential impacts of such interactions on 

infectious disease. Recent articles have highlighted the need to examine toxicant-pathogen 

interactions in the etiology of disease (Birnbaum and Jung 2010, Dietert, DeWitt et al. 2010, 

Feingold, Vegosen et al. 2010). Given the likelihood that pregnant women are exposed to 

pollutants in their workplaces, homes, and outdoor environment, understanding the mechanisms 

involved in potential toxicant-pathogen interactions during pregnancy is essential. To date, only 

one study has examined toxicant-pathogen interactions in the pregnant woman using placental 

explants treated with E.coli and flame retardants (Peltier, Klimova et al. 2012).  

 

Trichloroethylene as an Environmental Pollutant 

Trichloroethylene (TCE; Figure 1.2A) is an industrial solvent primarily used for metal 

degreasing. TCE is also a widespread environmental contaminant of concern found in 852 of 

1416 superfund sites (ATSDR 2011). In 2011, the Environmental Protection Agency (EPA) 

ranked TCE #16 on the Agency for Toxic Substances and Disease Registry (ATSDR) Priority 

List of Hazardous Substances (ATSDR 2011). TCE has recently been reclassified as a known 
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human carcinogen (U.S. Environmental Protection Agency 2011), and is also implicated in 

developmental, reproductive, and immune toxicity  (U.S. Environmental Protection Agency 2011, 

Chiu, Jinot et al. 2013). TCE is metabolized through one of two pathways (Chiu, Okino et al. 

2006), and metabolism is important for modulating toxicity (Griffin, Gilbert et al. 2000). The 

first pathway metabolizes TCE to trichloroacetic acid (TCA; Figure 1.2B) through cytochrome 

P450-mediated oxidation (Bradford, Lock et al. 2011). The second metabolic pathway 

conjugates TCE with glutathione to form S-(1,2)-dichlorovinyl glutathione (DCVG). DCVG is 

further metabolized to the bioactive metabolite S-(1,2)-dichlorovinyl-L-cysteine (DCVC; Figure 

1.2C) (Kim, Kim et al. 2009). TCA and DCVC have been detected in human and rodents serum 

following exposure to TCE (Lash, Putt et al. 1999, Lash, Putt et al. 2006, Kim, Collins et al. 

2009, Bradford, Lock et al. 2011). Furthermore, TCE has been detected in rodent placentas 

(Withey and Karpinski 1985). Given that the placenta is a highly perfused organ, it should be 

exposed to circulating TCE and its metabolites. Moreover, the human placenta expresses key 

enzymes capable of metabolizing TCE to bioactive forms, including CYP2E1, which is 

important for TCA formation (Hakkola, Raunio et al. 1996, Collier, Tingle et al. 2002), and 

glutathione-S-transferase (GST) (Nogutii, Barbisan et al. 2012), needed to generate DCVC. 

 

Trichloroethylene as a Reproductive/ Immune Toxicant 

Recent reports have implicated TCE in worsening infection in a rodent model. Mice co-treated 

with TCE and Streptococcus zooepidemicus had increased mortality, decreased bacterial 

clearance and decreased alveolar macrophage function. Increased odds of neural tube defects, 

oral clefts, and cardiac defects in humans are associated with TCE-contaminated drinking water 

(Bove, Shim et al. 2002). In addition, TCE exposure during pregnancy is associated with 
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intrauterine growth restriction (IUGR) (Windham, Shusterman et al. 1991). Despite evidence 

demonstrating TCE as a potential reproductive and immune toxicant, as well as the potential for 

TCE to interact with host defense during infection, no studies have examined TCE-pathogen 

interactions in the gestational tissues to date.  

 

Research Objectives of this Thesis 

GBS remains a serious public health issue and yet few studies have examined mechanisms by 

which GBS promote host responses in relevant human tissues. Furthermore, potential toxicant-

pathogen interactions during pregnancy are unexplored. A better mechanistic understanding of 

how GBS interacts with gestational tissues is essential for designing future prevention and 

intervention strategies. This dissertation characterizes the innate immune response of human 

extraplacental membranes to Group B Streptococcus and tests the following hypotheses: 1) that 

human extraplacental membranes resist GBS infection through increased expression of 

antimicrobial peptides; 2) that GBS-stimulated expression of the antimicrobial peptide 

HBD-2  involves paracrine cytokine signaling across the extraplacental membranes; and 3) 

that a metabolite of the common environmental contaminant TCE modifies the cytokine 

response of extraplacental membranes to GBS. The specific aims of this research are to: 1) 

Determine the role of antimicrobial peptides in GBS infection of the extraplacental membranes; 

2) Elucidate the signal transduction mechanisms across extraplacental membranes for HBD-2 

secretion in amnion epithelial cells; 3) Examine the impact of GBS strain on the host response in 

the extraplacental membranes; and 4) Evaluate potential toxicant-pathogen interactions in the 

extraplacental membranes using TCE metabolites and GBS. The findings from this dissertation 

have the potential to expand our current paradigm of environmental impacts on pregnancy and 
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aid in development of improved intervention and treatment strategies for GBS infection prior to 

adverse neonatal disease.  
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Table 1.1. GBS Colonization Rates.  
Author (Year) Country/ 

Region 
Sampling Method Percent Colonized 

El-Aila, et al. (2009)  Belgium Swab culture 24 
Rocchetti, et al. (2011)  Brazil Vaginal swab culture, third 

trimester 
25.4 

Shabayek, et al. (2013)  Egypt Vaginal Swab Culture, 264 preg. 
women, 100 non-preg. women 

27.4 

Mohammed, et al. 
(2013) 

Ethiopia Recto-vaginal swab culture 20.9 

Tsui, et al. (2009)  Hong Kong Swab culture 10.4 
Javanmanesh and 
Eshraghi (2013)  

Iran Recto-vaginal swab culture, third 
trimester 

22.76 

Fatemi, et al. (2010) Iran Swab culture and PCR 20.6 
Kim, et al. (2011)  Korea Recto-vaginal swab culture 8.3 
Hong, et al. (2010) Korea Unreported 10.0 
Uh, et al. (1997)  Korea Recto-vaginal swab culture 3.9 
Al-Sweih, et al. (2005)  Kuwait Recto-vaginal Swab culture at 

delivery 
14.6 

Joao, et al. (2012)  Latin America Recto-vaginal swab cultures during 
preg. 

8.3 

Barcaite, et al. (2012)  Lithuania Recto-vaginal swab culture, preg 
women 

15.3 

Brzychczy-Wloch, et al. 
(2012)  

Poland Recto-Vaginal Swab Culture (CDC 
guidelines), third trimester 

30 

Kwatra, et al. (2013) South Africa Swab culture 37.1 
Turner, et al. (2012)  South East Asia 

Thai-Myanmar 
boarder 

Recto-vaginal swab culture (and 
PCR), during labor 

12.0 (8.6% positive for 
both culture and PCR) 

Ma, et al. (2012)  South Taiwan Recto-Vaginal Swab with PCR 13.25 
Rausch, et al. (2008)  Switzerland Swab culture 21 
Joachim, et al. (2009)  Tanzania Swab culture 23 
Hassan, et al. (2011) UK Recto-vaginal swab culture 19 
Mavenyengwa, et al. 
(2010) 

Zimbabwe Swab culture across pregnancy 47, 24.2, 21 

Stoll, et al. (1998) 
Meta-analysis 

Middle East/North 
Africa 
Asia/Pacific 
Sub-Saharan 
Africa 
India/Pakistan 
Americas 

Adequate methods 
Most recto-vaginal culture methods 

22 
19 
19 
12 
14 
Total culture rate = 12.7% 
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Table 1.2. Host Response to GBS in Gestational Tissues. 
Reference Model GBS Strain (Serotype) Concentration Results/ Outcome 
Mitchell et al. (2013) Human  maternal and fetal plasma N/A  Increased IL-1β and IL-2 in plasma from  

GBS colonized mothers, no differences 
in IL-6, IL-8, TNF-α 

Hodge et al. (2004) Human neonatal serum N/A  Increased IL-1β, IL-2, TNF-α in GBS 
positive neonate serum with sepsis 

Dulkerian et al. (1995) Human neonatal blood  N/A  Increased IL-6 and TNF-α in neonate 
blood 

Gravett et al. (1994) Primate Unspecified (III) 1x106 CFU Increased IL-1β, IL-6, and TNF-α in 
amniotic fluid, PGE2 and PGF2a 

Adams Waldorf et al. 
(2011) 

Primate COH-1 (III) 1x106 CFU Increased IL-1β, IL-6, IL-8, TNF-α in 
amniotic fluid 

Equils et al. (2009)  Mouse Unspecified 1x109 CFU Apoptosis in placenta and membranes 
Rosati et al. (1998) Mouse (non-pregnant) 090 (Ia) 5x103 CFU Increased IL-1β, IL-2, IL-6, IL-12, IFN-

γ, and TNF-α in spleen and peritoneal 
exudates cells. No change in IL-4, IL-5, 
IL-10 

Menon et al. (2009) Human extraplacental membranes BAA-25 1x107 CFU Increased IL-1β, IL-6, IL-10, TNF-α, no 
change in IFN-γ or IL-8 

Peltier et al. (2012) Human extraplacental membranes BAA-25 Unspecified Increased IL-1β and IL-8, No change in 
IL-2, IL-10, or TNF-α 

Zaga et al. (2004) Human extraplacental membranes Unspecified (III) 1x106 CFU/mL Increased IL-1β and TNF-α 
Griesinger et al. (2001) Human placental trophoblast cells CCUG7742 1x106 CFU/mL Increased IL-1β, IL-6, IL-8, and IL-10 
Kaplan et al. (2008) Human extraplacental membranes, 

trophoblasts, placental fibroblasts, and 
JEG3 cells  

COH-1(III) and NCTC 
10/84 (V) 

5x104-1.5x106 
CFU 

Increased LDH release  

Reisenberger et al. (1997) Human amnion cells Unspecified 1x105,6,7 

CFU/mL 
Increased IL-6 and IL-8, no change in 
IL-1β or TNF-α 

Dudley et al. (1997) Human decidual cells Cr (I), Ha (II), Fo (II), 
Co (III), Ru (III) 

1x106 CFU/mL GBS strain specific increases in MIP-1 
and IL-8 

Dudley et al. (1996) Human chorion cells FX, CZ, HN, RL, CK 1x107 CFU/mL GBS strain specific increases in MIP-1 
Zaga-Clavellina et al. (2012) Human extraplacental membranes Unspecified (III) 1x106 CFU/mL Increases in HBD-2 and HBD-3, No 

change in HBD-1 
Boldenow et al. (2013) Human extraplacental membranes A909 (Ia) 1x106 CFU/mL Increased HBD-2, no change in HBD-1 
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Figure 1.1. Ascending uterine infection.  
Image modified from Goldenberg, et al. 2000.  
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Figure 1.2. Structure of trichloroethylene (TCE; A), trichloroacetic acid (TCA; B), and S-
(1,2)-dichlorovinyl-L-cysteine (DCVC; C). 
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CHAPTER 2. ANTIMICROBIAL PEPTIDE RESPONSE TO GROUP B 
STREPTOCOCCUS IN HUMAN EXPTRAPLACENTAL 

MEMBRANES IN CULTURE* 

 

Abstract 

Objective: Streptococcus agalactiae (GBS) is an important cause of chorioamnionitis. This 

study characterizes GBS colonization and stimulation of antimicrobial responses in human 

extraplacental membranes using an ex vivo transwell two-compartment system of full-thickness 

membranes and live GBS.  

Study design: Human extraplacental membranes were affixed to transwell frames (without 

synthetic membranes). Live GBS was added to the decidual side of membranes in transwell 

cultures, and cocultures were incubated for 4, 8 and 24 h. GBS recovery from homogenized 

membranes and culture medium was determined by enumerating colony forming units (CFU) on 

blood agar. Antimicrobial peptide expression was identified using immunohistochemistry and 

ELISA. GBS killing by HBDs was assessed in vitro by incubating GBS with different human 

beta defensins (HBDs) for 3 h, then enumerating CFU. 

Results: GBS recovery from membranes markedly decreased over time (P < 0.05). The 

antimicrobial peptides HBD-1, HBD-2, HBD-3, and lactoferrin were expressed in both GBS-

exposed and non-exposed tissues. Notably, a pattern of localized increased HBD-2 in the amnion 

                                                 
* Boldenow, E., S. Jones, R. W. Lieberman, M. C. Chames, D. M. Aronoff, C. Xi and R. Loch-Caruso 

(2013). "Antimicrobial peptide response to group B Streptococcus in human extraplacental membranes in culture." 
Placenta 34(6): 480-485. 
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of GBS-infected tissue was observed. Moreover, GBS-treated membranes released increased 

amounts of HBD-2 into the amniotic and decidual compartments of the transwell cultures after 

24 h (P < 0.05). In bacterial cultures, HBD-2 decreased GBS viability in a concentration-

dependent manner (P < 0.05). 

Conclusion: Innate immune responses in ex vivo human extraplacental membranes suppress 

GBS growth. HBD-2 was implicated in this GBS suppression with evidence of signal 

transduction across the tissue. Antimicrobial peptides may be important for innate immune 

defense against intrauterine GBS infections during pregnancy. 

Introduction 

Streptococcus agalactiae or Group B Streptococcus (GBS) is associated with adverse pregnancy 

and neonatal outcomes (Verani, McGee et al. 2010). Genital GBS colonization occurs in up to 

30% of pregnant women (Verani, McGee et al. 2010) and is associated with neonatal sepsis and 

meningitis. Moreover, preterm infants with GBS disease have increased risk of mortality 

compared to GBS-infected infants delivered at term (Goldenberg, Hauth et al. 2000, Jordan, 

Farley et al. 2008). In one study, GBS was the microorganism most commonly isolated from 

maternal and fetal tissues in women with midgestation spontaneous abortions (McDonald and 

Chambers 2000). Likewise, histological chorioamnionitis and preterm birth at less than 32 weeks 

gestation were positively associated with GBS isolation from extraplacental membranes (Hillier, 

Krohn et al. 1991). In nonhuman primates, GBS induces preterm labor (Gravett, Haluska et al. 

1996).  Moreover, GBS adheres to and infects human extraplacental membranes and cells 

(Galask, Varner et al. 1984, Gravett, Haluska et al. 1996, Winram, Jonas et al. 1998).  

 

Despite evidence linking GBS infection with adverse birth outcomes, the processes of GBS 
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colonization and infection of extraplacental membranes are poorly understood. Here we adapted 

an ex vivo transwell two-compartment system of full-thickness human extraplacental membranes 

for coculture with live GBS to characterize GBS colonization of membranes and test the 

hypothesis that antimicrobial peptides mediate tissue bactericidal activity.    

 

Materials and Methods 

Reagents and Materials 

The GBS used in this study was strain A909, initially isolated from a septic newborn 

(Lancefield, McCarty et al. 1975) and  transformed with plasmid encoding genes for Green 

Fluorescent Protein and erythromycin resistance (construct RS020, a gift from Amanda Jones, 

University of Washington).  GBS was grown at 37 ºC in planktonic culture using Todd Hewitt 

Broth (THB, Becton-Dickinson, Franklin Lakes, NJ) or on sheep’s blood agar plates (Blood 

Agar Base #2, Remel, Lenexa, KS and BBL defibrinated sheep blood, Franklin Lakes, NJ) with 

5 μg/mL erythromycin (Acros Organics, Geel, Belgium). Media, buffers, fetal bovine serum 

(FBS) and penicillin/streptomycin (pen/strep) were from GIBCO (Grand Island, NY).  

 

Culture of Extraplacental Membranes  

Human extraplacental extraplacental membranes were collected from healthy pregnancies 

undergoing scheduled cesarean delivery prior to onset of labor at the University of Michigan 

Birth Center. Only healthy, non-smoking, singleton mothers were included. Women were 

excluded if they had collagen vascular disease, evidence of bacterial vaginosis, cervical cerclage, 

third trimester bleeding, multifetal pregnancy, immunocompromised conditions, major medical 

conditions (e.g., chronic renal disease, sarcoidosis, hepatitis, HIV), or if pathological evaluation 
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of the placenta or membranes was warranted. Except for pre-operatively administered 

antibiotics, women were excluded if prescription antibiotics were used during the two weeks 

preceding delivery. The University of Michigan Institutional Review Board approved this 

research (IRBMED#HUM0013915). No evidence of necrosis or infection was observed 

histologically. 

 

Extraplacental membranes were cultured in a two-compartment transwell system as described 

previously published (Zaga, Estrada-Gutierrez et al. 2004, Thiex, Chames et al. 2009). Briefly, 

membranes were dissected from placenta immediately following delivery and transported to the 

lab in Dulbecco’s phosphate-buffered saline (DPBS). Membranes were rinsed with medium and 

blood clots were removed. The membranes were then mounted on sterile transwell frames that 

had no synthetic membrane (gift from Corning, NY) and held in place with sterile latex elastic 

bands (ORMCO, Orange, CA). The membranes were affixed with the choriodecidua facing the 

inner chamber of the transwell and the amnion facing the outer chamber. The transwell inserts 

with membranes were placed in wells of 12-well culture plates containing Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 1% FBS and pen/strep.  Our laboratory previously 

demonstrated that 1% FBS was sufficient to maintain tissue health and no benefit was added 

with higher FBS concentration (11). To maintain equal medium levels between the inner and 

outer transwell chambers, and thereby avoid potential confounding of results due to hydrostatic 

pressure, 0.5 mL medium was added to the smaller inner chamber and 1.5 mL medium was 

added to the larger outer chamber. Cultures were incubated at 37 ˚C and 5% CO2. After 4 h, the 

medium was exchanged for DMEM/1% FBS without antibiotics. Sample size was based on 

power estimates using data generated in prior experiments (with cytokines) in our laboratory. 
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GBS Coculture with Extraplacental Membranes 

GBS in early exponential growth phase was diluted with DMEM/1% FBS to 1x106 colony 

forming units/mL (CFU/mL). Inoculant concentrations were validated by overnight growth on 

5% sheep blood agar with erythromycin. Following a 24-h acclimation, the medium of the 

transwell choriodecidual compartment was replaced with 0.5 mL GBS inoculant (1x106 

CFU/mL) or fresh DMEM/1%FBS without GBS (controls). Amnion compartment medium was 

also replaced with DMEM/1%FBS. Cocultures were then incubated for 4, 8, or 24 h. Coculture 

experiments were conducted in triplicate using extraplacental membranes from five women. 

 

At designated time points, medium from each transwell chamber was collected. An aliquot of 

100 µL medium was diluted for CFU determination on 5% sheep blood agar with incubation for 

12-24 h at 37 ˚C, and the remainder was stored at -80 ˚C. Transwell inserts with attached tissue 

were transferred to fresh wells with DPBS in both chambers. The plate was gently rocked for 5 

min to rinse away non-adherent bacteria.  Two 3-mm biopsy punches were taken from each 

transwell-mounted tissue piece, placed in 1 mL PBS, and homogenized on ice with two 40-sec 

pulses. Tissue homogenates were serially diluted 1:10 in PBS, plated on 5% sheep blood agar in 

triplicate, and grown 12-24 h at 37 ˚C. Colony counts of viable bacteria in the membrane 

(CFU/mL/cm2) were determined. 

 

To control for altered GBS growth in tissue culture medium (used for coculture of tissue and 

GBS), GBS growth was observed using the above protocol in transwell culture wells with intact 

polycarbonate membranes but without extraplacental membranes . Medium from the upper and 
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lower compartments was plated on 5% sheep blood agar in triplicate and incubated overnight at 

37 ˚C. 

 

Immunohistochemistry 

While still attached to the transwell insert, extraplacental membranes were fixed with 10% 

phosphate-buffered formalin (Fisher, Waltham, MA) for 24-48 h at 4 ˚C. The fixed tissue was 

gently removed from the transwell insert and a strip of membrane was cut ≤ 4 mm in width. 

Processing and staining were performed by the University of Michigan’s Comprehensive Cancer 

Center Tissue Core. The tissue strips were embedded in paraffin “on edge”, sectioned, and 

mounted on slides. For antimicrobial peptide staining, heat-induced antigen retrieval was 

performed in citrate buffer (pH 6.0). Immunoperoxidase staining was completed on a DAKO 

AutoStainer at room temperature using the LSAB+ System-HRP kit from DAKO. Briefly, 

peroxidase block was followed by a 30-min incubation with primary antibody at the dilutions 

indicated for the following antimicrobial peptides: human beta defensins (HBD)-1 (1:25, rabbit 

polyclonal, Santa Cruz), HBD-2 (1:25, goat polyclonal, Santa Cruz), HBD-3 (1:100, rabbit 

polyclonal, Novus), HBD-5 (1:100, goat polyclonal, Santa Cruz), elafin (1:200, rabbit 

polyclonal, Santa Cruz), or lactoferrin (1:400, rabbit polyclonal, Abcam). Samples were then 

incubated sequentially with biotinylated LINK (30 min), streptavidin-HPR (30 min), and 3, 3’ 

diaminobenzidine (DAB+) chromogen solution (5 min), before being counterstained with 

hematoxylin.  

 

Microscopy image capture and analysis were done using Nikon Elements Software. For amnion 

cell size analysis, images were captured from slides stained for HBD-2 after 24 h in culture. We 
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analyzed 7 images in 6 tissues, but one tissue had the amnion tear off in a way that allowed us to 

get only one image from that tissue. Approximately 5-7 amnion cells were measured per image 

and cell size was averaged for each tissue (N=5).  

 

HBD ELISAs 

HBD-1 and HBD-2 release from the extraplacental membranes into medium was measured using 

a commercially available enzyme linked immunosorbant assay (ELISA) kit according to 

manufacturer’s instructions (Peprotech, Rocky Hill, NJ). The HBD-1 ELISA detection range was 

4-1000 pg/mL and the HBD-2 ELISA detection range was 16-2000 pg/mL. Samples were not 

diluted. The HBD values are reported as pg protein/mL medium. 

 

Antimicrobial Activity of HBDs to GBS 

Antimicrobial activity assays were done according to previously published methods (Aronoff, 

Hao et al. 2008). Briefly, HBDs (Peprotech, Rocky Hill, NJ) were resuspended according to 

manufacturer’s directions in 10 mM acetic acid and diluted in 0.1% BSA in PBS.  GBS were 

grown for 2.5 h to exponential log phase at 37 ˚C with shaking in THB, diluted 1:1000 

(approximately 1 x 104 CFUs) in 10 mM sodium phosphate buffer (pH 7.4), and then treated 

with 0-20 µg/mL of HBD-1, HBD-2, or HBD-3 for 3 h at 37 ˚C in a 96 well plate. Samples were 

serially diluted and 10 µL of each diluent was plated on 5% sheep blood agar in duplicate. 

Following overnight incubation at 37 ˚C, CFUs were enumerated. Data are expressed as bacterial 

survival relative to vehicle control (0.1 mM acetic acid, 0.01% BSA).  
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Statistical Analysis 

Data are expressed as mean ± SEM and were analyzed using GraphPad Prism 5 software 

(GraphPad Software, La Jolla, CA). For transwell coculture GBS CFU quantification and HBD 

antimicrobial activity, ANOVAs with Tukey’s post hoc test were performed. For HBD ELISA 

and cell size analysis, Student’s paired t-test was used for each time point. Data were considered 

significant if the p-value was < 0.05. 

Results 

GBS Growth in Extraplacental Membranes  

To simulate an ascending intrauterine infection, GBS was applied to the choriodecdiual 

compartment of the transwell-mounted extraplacental membranes. No GBS colonies formed 

from membranes of unexposed control tissues after 4, 8 or 24 h of coculture (Figure 2.1). GBS-

infected tissues initially yielded increased CFUs after 4 h of coculture, but CFUs subsequently 

decreased in GBS-exposed membranes at 8 and 24 h (Figure 2.1; P < 0.05). A similar time-

dependent pattern was observed for CFU recovery from medium of the cultures (data not 

shown). No GBS was recovered from the amnion compartment medium (not shown), suggesting 

that GBS did not cross the extraplacental membranes. Furthermore, GBS growth was robust in 

standard transwells (with synthetic membrane) containing DMEM tissue culture medium but 

lacking gestational tissue (Figure 2.2), indicating that the decreased CFU recovery from 

coculture with gestational tissues was dependent on the presence of the tissue and not an artifact 

of the DMEM medium or transwell system.  

 

Immunohistochemical Detection of Antimicrobial Peptides in Extraplacental Membranes  
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Immunohistochemial staining assessed expression of AMPs in GBS-exposed and unexposed 

extraplacental membranes. Although HBD-2 antibody stained throughout the membranes in both 

the nucleus and the cytoplasm, HBD-2 staining increased in GBS-treated membranes after 24 h, 

especially in the amnion epithelium (Figure 2.3). In addition, amnion cells in GBS-treated tissues 

were significantly larger (8.3 µm) in diameter compared to amnion cells in untreated tissue (6.7 

µm) (P < 0.05) at 24 h. Regardless of whether membranes were exposed in vitro to GBS or not, 

the amnion epithelial cells, chorionic trophoblasts, and decidual cells stained positive for HBD-1, 

HBD-3, and lactoferrin at all time points (Figure 2.4). Extraplacental membranes did not show 

staining for HBD-5 or elafin in control tissues or those exposed to GBS (Figure 2.4).  

 

HBD-2 Secretion from Extraplacental Membranes  

Extraplacental membranes in transwell culture released increased amounts of HBD-2 into the 

medium of the choriodecidual (1.65-fold) and amniotic compartments (1.59-fold) after 24 h of 

exposure to GBS (Figure 2.5; P < 0.05 compared with controls). There were no statistically 

significant differences in HBD-2 at 4 h and 8 h. Likewise, a 3.6-fold difference of HBD-1 

between GBS and control tissues in amniotic chamber culture medium at 24 h was not 

statistically significant (Figure 2.6), though this negative result should be interpreted with 

caution due to the modest sample size.   

 

HBD Bactericidal Activity against GBS  

To investigate whether HBDs are capable of killing GBS directly, GBS was incubated with 

HBD-1, HBD-2, or HBD-3 in sodium phosphate buffer. HBD-2 killed GBS in a concentration-

dependent manner, with nominal CFU recovered at 7.5 µg/ml and no GBS surviving exposure to 
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the highest concentration of at 10 µg/mL of HBD-2 (Figure 2.6; P < 0.05). In contrast, HBD-1 

and HBD-3 did not completely kill GBS at 10 µg/mL (data not shown).  

Discussion 

Although GBS remains the leading cause of infection-related neonatal morbidity and mortality, 

the mechanisms by which it interacts with and crosses extraplacental membranes as an ascending 

infection are poorly understood (Verani, McGee et al. 2010). Using a two-compartment tissue 

culture model, the present study provides evidence that GBS did not readily cross healthy term 

extraplacental membranes.  Notably, antimicrobial innate immune responses, in particular HBD-

2, were stimulated in amnion following GBS inoculation on the decidual side of the membranes, 

suggesting signal transduction across the tissue.  

 

Although previous studies noted antimicrobial properties of extraplacental membranes to live 

bacteria (Trelford and Trelford-Sauder 1979, Kjaergaard, Hein et al. 2001, Gomes, Romano et al. 

2005, Insausti, Alcaraz et al. 2010), few studies quantified bactericidal activity of the tissue. The 

extraplacental membranes exhibited robust resistance to infection in vitro in our experiments. 

Viable GBS recovery from inoculum medium was reduced by at least half at 4, 8, and 24 h when 

cultured with extraplacental membranes, in agreement with Kjaergaard et al. who found reduced 

CFU counts of GBS recovered from inoculum medium over a 20-h incubation using a different 

two-compartment model of extraplacental membranes (Kjaergaard, Helmig et al. 1999). In 

addition, we provide new information that GBS recovered from the tissue itself decreased over 

time, indicating that GBS adherence to and penetration into extraplacental membranes was 

inhibited.  
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HBDs are small cationic antimicrobial peptides thought to permeabilize microbial membranes 

(King, Paltoo et al. 2007). We show, for the first time to our knowledge, that extraplacental 

membranes express the antimicrobial peptide lactoferrin in the amniotic, chorionic trophoblast, 

and decidual cell layers, independent of exposure to GBS. Furthermore, similar to findings in 

extraplacental membranes of women delivering at term (King, Kelly et al. 2007, King, Paltoo et 

al. 2007), we demonstrate that the antimicrobial peptides HBD-1, HBD-2, and HBD-3 were 

localized to the amnion, chorionic trophoblasts, and decidua of cultured extraplacental 

membrane explants, regardless of exposure to GBS. In particular, HBD-1 was highly expressed 

in all cell layers of extraplacental membranes irrespective of GBS treatment, consistent with 

other studies that suggest HBD-1 is constitutively expressed (Krisanaprakornkit, Weinberg et al. 

1998, Valore, Park et al. 1998). Moreover, we found that secretion of HBD-1 into the medium 

did not change significantly with GBS stimulation. Our findings with HBD-1 are in agreement 

with reports by Garcia-Lopez et al. and Zaga-Clavellina et al. who had similar results with a 

different strain of GBS and E. coli. (King, Paltoo et al. 2007, Garcia-Lopez, Flores-Espinosa et 

al. 2010, Zaga-Clavellina, Garcia-Lopez et al. 2011). No evidence of necrosis or tissue 

degradation was observed in histological H&E slides, supporting evidence from the GBS killing 

and HBD-2 production data that the explants remained viable in culture throughout the 

experimental period.  

 

GBS inoculation at the choriodecidual face of the membranes stimulated increased expression of 

HBD-2 in the amnion as visualized by immunostaining. The latter finding, in conjunction with 

reduced CFU recovery over time from the membranes, provides support that GBS stimulates 

signaling across the layers of the extraplacental membranes to increase HBD-2 production in 
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amnion cells. Moreover, our observation that GBS stimulated an increase of amniotic cell size 

further supports the occurrence of cross-tissue signaling. Although novel with respect to HBD-2, 

previous reports suggest similar cross-tissue signaling in release of cytokines and prostaglandins 

by extraplacental membranes stimulated with LPS (Zaga, Estrada-Gutierrez et al. 2004, Thiex, 

Chames et al. 2009, Thiex, Chames et al. 2010).  

 

In addition to increased HBD-2 expression in amniotic cells, we observed increased HBD-2 in 

medium of the amniotic and choriodecidual compartments following choriodecidual stimulation 

with GBS, similar to findings reported by Zaga-Clavellina et al. (Zaga-Clavellina, Garcia-Lopez 

et al. 2011). In contrast to the latter study, we used a different GBS strain and no antibiotics in 

our culture system, allowing us to quantify the bacterial death directly related to the 

extraplacental membranes innate immune response. In addition, this is the first report of the 

time-dependent increase of HBD-2 in both amniotic and choriodecidual compartments with GBS 

stimulation.  

 

Recently, Garcia-Lopez and colleagues suggested that IL-1β may be a key mediator in the tissue-

specific HBD-2 responses that they observed with Escherichia coli stimulation of extraplacental 

membranes in a similar transwell system (Garcia-Lopez, Flores-Espinosa et al. 2010). Just as 

GBS stimulation of the choriodecidua produced a tissue-specific increase of IL-1β secretion from 

the choriodecidua (Zaga, Estrada-Gutierrez et al. 2004), E. coli stimulation of choriodecidua 

produced the same tissue-specific IL-1β secretion effect by the choriodecidua (Zaga-Clavellina, 

Garcia-Lopez et al. 2007). A similar mechanism within the innate immune system of 

extraplacental membranes may be employed to protect against infection by Gram positive 
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bacteria like GBS or Gram negative bacteria like E. coli. The cross-tissue signaling underlying 

the tissue-specific HBD responses observed in extraplacental membranes is not yet well 

characterized and warrants further study.  

 

In studies comparing direct microbicidal activities of HBD-1, HBD-2 and HBD-3, we found that 

GBS strain A909 was most sensitive to killing by HBD-2 compared to HBD-1 and HBD-3, 

suggesting that increased HBD-2 secretion is linked to the GBS killing observed by us in 

extraplacental membranes.  It is important to note that most in vitro bacterial viability studies 

(including ours) use synthetic or recombinant antimicrobial peptides at significantly higher levels 

than found in vivo (Starner, Agerberth et al. 2005), suggesting that antimicrobial peptides may be 

working synergistically in vivo (Chen, Niyonsaba et al. 2005). 

 

Finally, formalin fixation of extraplacental membranes while mounted on the transwell frame, 

followed by “on edge” paraffin embedding of tissue strips, produced improved images for 

immunohistochemical assessment. The common technique for formalin fixation of extraplacental 

membranes is the “membrane roll,” which can produce histological sections with artifacts such 

as amnion shearing, in which amnion separates from choriodecidua. In the present study, amnion 

shearing was minimized and the sections better approximated a true cross section of the tissue.  

 

In conclusion, this study utilized a two-compartment transwell extraplacental membrane tissue 

culture system to show that the antimicrobial response to GBS stimulation of extraplacental 

membrane explants was sufficiently robust to inhibit GBS colonization. We show for the first 

time signal transduction across the tissue increased HBD-2 production in the amnion epithelial 
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cells in response to GBS. Moreover, we demonstrated that HBD-2 directly decreased GBS 

viability in a tissue-free system, suggesting a major role for HBD-2 in killing GBS in the 

extraplacental membranes.  
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Figure 2.1. Recovered GBS from extraplacental membranes.  
Recovered GBS (expressed as CFU) from homogenized tissue punches of the extraplacental 
membranes following coculture with 1x106 CFU/mL. GBS inoculants for 4, 8, and 24 h. Control 
tissues were not exposed to GBS. Columns are mean ± SEM (N=4-5 women, 3 replicates per 
woman). Asterisks (*) represent significant differences when compared by Tukey’s post-hoc test 
following ANOVA (P < 0.05). 
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Figure 2.2. GBS growth on agar.  
GBS was recovered from DMEM medium in transwells lacking extraplacental membranes. GBS 
(1x106 CFU) was grown in transwell inserts lacking extraplacental membranes with 
DMEM/1%FBS, incubated for 4, 8, and 24 h, and plated on 5% sheep blood agar. Plates in the 
left-most column are derived from transwells with no GBS. Plates in adjacent columns are 
representative of bacterial growth at 4, 8 and 24 h. The top row shows growth of bacteria 
recovered from medium of the inner transwell chamber, and the bottom row shows growth of 
bacteria recovered from medium of the outer transwell chamber. In most cases, the vigorous 
bacterial growth formed a lawn, such that individual colony forming units (CFUs) could not be 
distinguished. These images show that GBS exhibited robust growth in the transwell system in 
medium used for culturing extraplacental membranes but lacking extraplacental membranes. 
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Figure 2.3. Immunohistochemical staining for HBD-2 in human extraplacental membranes. 
Extraplacental membranes were cocultured with GBS added to the choriodecidual chamber of 
the Transwell cultures. The top row (A, B, and C) shows representative images for no treatment 
controls. The middle row (D, E, and F) shows representative images for GBS-treated tissues 
(decidual side only). The bottom row (G, H, and I) shows representative images of negative 
control sections incubated with secondary antibody only. Tissues within a column were cultured 
from the same subject. Intense staining is visible in amnion epithelium (AM) of GBS-stimulated 
membranes (arrows), despite lack of direct contact of the amnion with GBS. 
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Figure 2.4. Immunohistochemical staining for antimicrobial peptides in human extraplacental membranes.  
The top row (A-E) shows representative images from non-treatment controls. The bottom row (F-J) shows representative images from 
GBS treated tissues. A and F are stained for HBD-1. B and G are stained for HBD-3. C and H are stained for HBD-5. D and I are 
stained for lactoferrin. E and J are stained for elafin. Tissues within a column were cultured from the same subject. AM is amnion 
epithelial layer and CD is choriodecidua layer. No notable differences were seen between non-treatment controls and GBS treated 
tissues for the antimicrobial peptides shown. No staining was observed with no primary controls. 
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Figure 2.5. HBD-2 release into medium by extraplacental membranes.  
HBD-2 release into medium by extraplacental membranes in transwell cultures with GBS (dark 
columns) and without GBS (light columns) exposure on the choriodecidual side. (A) Decidual 
compartment and (B) amniotic compartment. HBD-2 protein in the medium was measured by 
ELISA. Columns are mean ± SEM (N=4-5 women, 3 replicates per woman).  Asterisks (*) 
represent significant differences (P < 0.05) by paired student t-test. 
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Figure 2.6. HBD-1 release by extraplacental membranes.  
HBD-1 release into the amnion compartment medium by extraplacental membranes in transwell 
cultures with GBS (dark columns) and without GBS (light columns) exposure on the 
choriodecidual side. HBD-1 protein in the medium was measured by ELISA. Columns are mean 
± SEM (N=5 women, 3 replicates per woman). No statistical significance was seen over 24 h 
using a paired student t-test.  
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Figure 2.7. HBD-2 kills GBS.  
GBS were incubated in the presence of different concentrations of HBD-2 for 3 h. Data shown 
are mean ± SEM (N=4 independent experiments), expressed as a percentage of bacterial survival 
relative to vehicle control. Asterisks (*) represent significant differences when compared by 
Tukey’s post-hoc test following ANOVA (P < 0.05). 
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CHAPTER 3. GROUP B STREPTOCOCCUS-STIMULATED HUMAN 
CHORIODECDUA RELEASES IL-1α and IL-1β TO INCREASE 
HUMAN BETA DEFENSIN-2 IN AMNION EPITHELIAL CELLS 

 

Abstract 

Problem: Streptococcus agalactiae or Group B Streptococcus (GBS) is the leading cause of 

infectious neonatal morbidity and mortality in the United States. Recently, we demonstrated in 

an in vitro two-compartment model of full thickness human extraplacental membranes that 

human beta defensin-2 (HBD-2) expression is stimulated in the amnion epithelial cells following 

GBS inoculation on the decidual side of the membranes. Here, we test our hypothesis that the 

choriodecidua plays a necessary role in GBS-stimulated HBD-2 increases in amnion epithelial 

cells through a secreted factor of choriodecidual origin. 

Method of Study: Human extraplacental membranes from term cesarean sections were blunt 

dissected to separate amnion from choriodecidua. Choriodecidual tissue was cultured with GBS, 

lipoteichoic acid (LTA), or lipopolysaccharide (LPS) for 24 h to access responses and to 

generate choriodecidual conditioned medium. Human amnion epithelial cells were isolated and 

treated with the choriodecidual conditioned medium, live GBS, LTA, LPS, or recombinant 

cytokines with and without IL-1 inhibitors. Cytokines and HBD-2 in choriodecidual and amnion 

epithelial cell culture medium were determined by ELISA.
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Results: GBS choriodecidual conditioned medium significantly stimulated release of HBD-2 in 

human amnion epithelial cell cultures. In contrast, direct stimulation of amnion epithelial cells 

with live GBS, LTA, or LPS did not increase HBD-2 release, implicating a critical role for 

choriodecidua. Choriodecidual tissue punches stripped of amnion released significantly increased 

amounts of IL-1α and IL-1β in response to GBS, and recombinant IL-1α and IL-1β stimulated 

HBD-2 release in amnion epithelial cell cultures in a concentration-dependent manner. 

Neutralizing antibody for IL-1β significantly inhibited, and IL-1 receptor antagonist (IL-1Ra) 

nearly abolished, the stimulated release of HBD-2 from amnion epithelial cells treated with GBS 

choriodecidual conditioned medium. Although both IL-α and IL-1β stimulate HBD-2 production 

in the amnion epithelial cells, they do not appear to work synergistically.  

Conclusions: Increases in HBD-2 from the amnion epithelial cells are from secreted IL-1α and 

IL-1β from the choriodecidual tissue. These data demonstrate cell-cell communication critical for 

host defense during GBS infection in the extraplacental membranes. In addition, this study 

shows that IL-1 is vital for HBD-2 production in the amnion epithelial cells.  

 

Introduction 

Streptococcus agalactiae or Group B Streptococcus (GBS) is the leading cause of infectious 

neonatal morbidity and mortality in the United States (Verani, McGee et al. 2010). GBS 

infections in the gravid female reproductive tract are associated with adverse birth outcomes 

such as sepsis and meningitis. The ascending pathway of infection begins with colonization of 

the vagina. GBS then passes through the cervix and enters the uterine cavity where it can cross 

the extraplacental membranes and infect the neonate. Despite the importance of the 
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extraplacental membranes, the mechanisms by which GBS colonizes the extraplacental 

membranes and causes infection remain poorly understood.  

 

Human beta defensins (HBDs) are an important part of the innate immune system and play 

critical roles responding to infectious microorganisms. HBDs are expressed throughout the 

reproductive tract including the extraplacental membranes. HBDs are considered a first defense 

during pregnancy because they can kill bacteria directly through membrane disruption, pore 

formation in the membrane wall, and polarization (King, Kelly et al. 2007, King, Paltoo et al. 

2007, Lai and Gallo 2009, Frew and Stock 2011). Furthermore, HBDs can promote chemotaxis, 

providing an important link between the innate and adaptive immune systems. HBD-2 has been 

shown to be higher in amniotic fluid from women with intrauterine microbial infection compared 

to women without intrauterine infection (Soto, Espinoza et al. 2007). In addition, HBD-2 

concentrations in second trimester amniotic fluid have been positively correlated with preterm 

premature rupture of the extraplacental membranes (Iavazzo, Tassis et al. 2010). However, 

infants born preterm had lower HBD-2 levels measured in cord blood compared to term neonates 

(Olbrich, Pavon et al. 2013). Infants that suffered from late onset sepsis tended to have lower 

levels of HBD-2 in cord blood suggesting HBD-2 is critical for effectively fighting infections. 

Despite the importance of HBD-2 for pregnancy- related infections, few studies have looked at 

potential stimuli and mechanisms of HBD-2 in the extraplacental membranes and amnion 

epithelial cells. Pathogens increase HBD-2 in ex vivo extraplacental membranes models yet little 

is known about how the pathogens are interacting with the tissue or which cells are primarily 

responsible for the HBD-2 production (Garcia-Lopez, Flores-Espinosa et al. 2010, Zaga-

Clavellina, Martha et al. 2012, Zaga-Clavellina, Ruiz et al. 2012). In addition, recombinant IL-1β 
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has been shown to stimulate HBD-2 secretion in amnion epithelial cell culture (Stock, Kelly et 

al. 2007).  

 

Recently, we demonstrated in an in vitro two-compartment model of full thickness human 

extraplacental membranes that HBD-2 is stimulated in the amnion epithelial cells following GBS 

inoculation on the decidual side of the membranes (Boldenow, Jones et al. 2013). No bacteria 

were observed invading or crossing the tissue, suggesting a trans-tissue signaling mechanism. 

Here, we utilized separated extraplacental membranes cocultured with GBS to test our 

hypothesis that the choriodecidua plays a necessary role in GBS-stimulated HBD-2 increases in 

amnion epithelial cells through a secreted factor of choriodecidual origin. Moreover, we provide 

evidence that IL-1α and IL-1β are the choriodecidual signaling molecules critical for the HBD-2 

response in amnion epithelial cells. 

 

Materials and Methods 

Reagents and Materials 

The GBS strain used in this study (A909, construct RS020, a gift from Amanda Jones, University 

of Washington), was initially isolated from a septic newborn (Lancefield, McCarty et al. 1975). 

GBS was grown at 37 ºC in culture using Todd Hewitt Broth (THB, Becton-Dickinson, Franklin 

Lakes, NJ) or on sheep’s blood agar plates (Blood Agar Base #2, Remel, Lenexa, KS and BBL 

defibrinated sheep blood, Franklin Lakes, NJ) with 5 μg/mL erythromycin (Hemostat Labs, 

Dixon, CA). Media (DMEM catalog # 21063 and DMEM:F12 catalog #11039), buffers, fetal 

bovine serum (FBS; catalog #10438), trypsin-EDTA (catalog #25200), and 

penicillin/streptomycin (pen/strep; catalog #15140) were from GIBCO (Grand Island, NY). 
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Epidermal growth factor (EGF), and recombinant cytokines (IL-1β, IL-6, IL-8, IL-17, TNF-α) 

were from Peprotech (Rocky Hill, NJ). Lipoteichoic acid (LTA) from Staphylococcus aureus, 

IL-1β neutralizing antibody, and IgA isotype control were from Invivogen (San Diego, CA). 

Lipopolysaccaride (LPS) from Salmonella typhimurium was from List Biological Laboratories 

(Campbell, CA). IL-1Ra was from Sigma-Aldrich (Saint Louis, MO).  

 

Culture of Extraplacental Choriodecidual Membranes  

Human extraplacental membranes were collected from healthy, non-smoking, singleton 

pregnancies undergoing scheduled cesarean delivery prior to onset of labor at the University of 

Michigan Birth Center as previously described (Boldenow, Jones et al. 2013). The University of 

Michigan Institutional Review Board approved this research (IRBMED#HUM0037054).  

 

Immediately following delivery the membranes were transported to the lab in Dulbecco’s 

phosphate-buffered saline (DPBS). Membranes were rinsed with medium and blood clots 

removed. Membranes were then blunt dissected to separate the choriodecidua from the amnion. 

After dissection, the choriodecidua was punched using a 12-mm biopsy punch. Tissue punches 

were placed in 12-well plates with 1 mL medium containing Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 1% FBS and pen/strep. Cultures were incubated at 37 ˚C 

and 5% CO2. After 4 h, the medium was exchanged for DMEM/1% FBS without antibiotics.  

 

GBS Coculture with Extraplacental Choriodecidual Membranes 

GBS in early exponential growth phase was diluted with DMEM/1% FBS to and estimated 1x106 

colony forming units/mL (CFU/mL). Inoculant concentrations were validated by overnight 
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growth on 5% sheep blood agar with erythromycin. GBS was heat killed by incubating bacterial 

culture at 70 ˚C for 15 min. Lack of viability was confirmed by plating GBS on 5% sheep blood 

agar. LTA and LPS treatments were made in DMEM/1% FBS. Following a 24-h acclimation, the 

medium of the choriodecidual punches was replaced with 1 mL GBS inoculant (~1x106 

CFU/mL), LTA (1 µg/mL), LPS (100 ng/mL), or fresh DMEM/1%FBS (control). Following 24 

h of incubation with GBS , medium from the choriodecidual punches was filtered through a 0.2 

µm pore filter to remove the bacteria, and then stored at -80 °C: this medium is referred to as 

GBS conditioned choriodecidual medium in this study. Medium from choriodecidual punches 

treated with LTA or LPS for 24 h was also 0.2 µm filtered and then stored at -80 °C: this 

medium is referred to as LTA or LPS conditioned choriodecidual medium. Coculture 

experiments were conducted in triplicate using extraplacental membranes from a minimum of 

seven women. 

 

Amnion Epithelial Cell Isolation 

Amnion epithelial cells were isolated from the same membranes used for choriodecidual punch 

cultures, using methods adapted from three protocols (Ilancheran, Michalska et al. 2007, Liu, 

Cheng et al. , Pratama, Vaghjiani et al.). Briefly, blunt-dissected amnion was digested with 

0.25% trypsin-EDTA at 37 °C for 30 minutes. Amnion tissue pieces were transferred to fresh 

trypsin-EDTA and the digestion was repeated. Following each digestion, the trypsin-EDTA was 

neutralized in the digest with medium (DMEM:F12) supplemented with 10% FBS and pen/strep. 

Cells were pelleted by centrifugation at 128 g for 5 minutes, suspended in medium, repelleted, 

and resuspended in medium containing EGF (DMEM:F12 supplemented with 10% FBS, 

pen/strep, and 10 ng/mL EGF). Amnion epithelial cells were plated at 500,000 cells/ well (12-
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well plates) in 1 mL medium, and grown to 70-80% confluence. Medium was changed two days 

after seeding, and cells were treated on day 3.  

 

Amnion epithelial cells were treated with either GBS choriodecidual conditioned medium, LTA 

(10 µg/mL), LPS (100 ng/mL), live GBS (~1x106 CFU/mL), or one of the following 

recombinant cytokines: IL-1α (1 ng/mL), IL-1β (1 ng/mL), IL-6 (100 ng/mL), IL-8 (100 ng/mL), 

IL-17 (100 ng/mL), or TNF-α (100 ng/mL). In addition, cells were untreated (controls), treated 

with increasing concentrations of IL-1α (12.5-1000 pg/mL), IL-1β (12.5-1000 pg/mL), or co-

treated with IL-1α + IL-1β. Cells were incubated with treatments for 24 h. The medium used for 

these amnion epithelial cell treatments was the same as that used with choriodecidual punches 

(DMEM supplemented with 1% FBS and pen/strep), except that no pen/strep antibiotic was 

included for cultures with live GBS. No changes in cellular morphology, cytokine secretion, or 

HBD-2 secretion were noted with the medium change. Experiments were conducted in triplicate 

using extraplacental membranes from a minimum of five women. 

 

IL-1 Inhibitors 

To inhibit IL-1 activity, amnion epithelial cells were treated with GBS choriodecidual 

conditioned medium for 24 h with and without IL-1β neutralizing antibody (1000 ng/mL), IgA 

isotype control (1000 ng/mL), or IL-1 receptor antagonist (IL-1Ra; 100 ng/mL; 5.8 nM). IL-1β 

neutralizing antibody was incubated with the GBS choriodecidual conditioned medium for 30 

minutes prior to incubation with the amnion epithelial cells. The concentration used for IL-1β 

neutralizing antibody and IL-1Ra was determined by concentration-response curves generated by 

treating amnion epithelial cells with 1 ng/mL IL-1α or IL-1β and increasing concentrations of IL-
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1β neutralizing antibody or IL-1Ra (Figures 3.1 and 3.2). Reported Kd values for IL-1Ra range 

from 0.2 – 14 nM (Arend 1991, Symons, Young et al. 1995). Experiments were conducted in 

triplicate using amnion epithelial cells from five women. 

 

Cytokine and HBD ELISAs 

HBD-2 concentrations in GBS choriodecidual conditioned medium were measured using a 

commercially available enzyme linked immunosorbant assay (ELISA) kit according to 

manufacturer’s instructions (Peprotech, Rocky Hill, NJ). The HBD-2 ELISA detection range was 

16-2000 pg/mL. Cytokine concentrations in GBS choriodecidual conditioned medium were 

measured by the University of Michigan Immunology Core using commercially available ELISA 

kits (R&D Systems). Cytokine detection ranges were as follows: 7.81-500 pg/mL for IL-1α; 

2.91-2500 pg/mL for IL-1β; 9.38-125,000 pg/mL for IL-6; 31.2-2000 pg/mL for IL-8; and 15.6-

5000 pg/mL for TNF-α. Samples were diluted as necessary. Cytokine and HBD-2 concentrations 

are reported as pg or ng protein/mL medium. 

 

Statistical Analysis 

Data are expressed as mean ± SEM and were analyzed using GraphPad Prism 5 software 

(GraphPad Software, La Jolla, CA) or SigmaStat 3.5 software (SigmaStat Software, San Jose, 

CA). ANOVAs with Tukey’s post hoc test were performed. Data were considered significant if 

the p-value was < 0.05. When values were below the ELISA kit limit of detection (LOD), values 

were transformed to LOD/√2 prior to statistical analysis (Croghan and Egeghy 2003).  
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Results 

HBD-2 Release in Amnion Epithelial Cell Cultures Stimulated with Choriodecidual Conditioned 

Medium  

To determine if choriodecidua secretes factors that stimulate HBD-2 production in amnion 

epithelial cells, GBS was applied to choriodecidual punch cultures that had been stripped of the 

amnion, and the GBS choriodecidual conditioned medium was added to amnion epithelial cell 

cultures. Amnion epithelial cells exposed to the GBS choriodecidual conditioned medium for 24 

h showed a robust (11.2 fold) increase in HBD-2 release (Figure 3.3; P < 0.05) compared to 

amnion epithelial cells exposed to control choriodecidual conditioned medium. In contrast, 

neither LTA choriodecidual conditioned medium nor LPS choriodecidual conditioned medium 

stimulated release of HBD-2 from amnion epithelial cells. Furthermore, amnion epithelial cells 

directly stimulated with live GBS, LTA, or LPS did not exhibit an increased HBD-2 response. 

HBD-2 was not detected in choriodecidual medium alone (data not shown), indicating that the 

HBD-2 increases observed with GBS choriodecidual conditioned medium were the result of 

HBD-2 secretion from amnion epithelial cells in culture. 

 

Cytokine Release by Choriodecidual Punch Cultures 

Cytokines were measured in the medium of cultured choriodecidual punches exposed to 

pathogenic stimuli, in order to identify cytokines that may contribute to the HBD-2 response in 

amnion epithelial cells. First, heat-killed GBS and live GBS were compared for stimulation of 

IL-1β and TNF-α release. Heat-killed GBS failed to stimulate secretion of IL-1β or TNF-α from 

choriodecidual punches, in contrast to live GBS which elicited a strong IL-1β (287.2 ± 44.7 

pg/mL) and TNF-α (1969 ± 456.7 pg/mL) response (Figure 3.4; P < 0.05).  Additional cytokines 
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were then probed to compare stimulated release by live GBS, LTA, and LPS. Live GBS 

significantly increased IL-1α (38.5 fold), IL-1β (71.1 fold), TNF-α (10.2 fold), IL-6 (4.5 fold), 

and IL-8 (2.4 fold) compared to controls (Figure 3.5; P < 0.05). Live GBS did not change IL-17 

secretion from choriodecidual punches compared to control. LTA significantly increased only 

IL-8 (2.9 fold) and TNF-α (11.7 fold), and LPS significantly increased IL-6 (5.3 fold), IL-8 (3.3 

fold), and TNF-α (33.4 fold). Neither LTA nor LPS stimulated increased release of IL-1α or IL-

1β. 

 

Effect of IL-1 Inhibitors on HBD-2 Release from Amnion Epithelial Cells 

To test the hypothesis that IL-1α and IL-1β secreted from choriodecidua mediates amnion-

secreted HBD-2, amnion epithelial cell cultures were treated with GBS choriodecidual 

conditioned medium containing IL-1β neutralizing antibody or IL-1Ra as inhibitors of IL-1. To 

determine the appropriate concentration of inhibitors, we established concentration-response 

curves for each inhibitor in amnion epithelial cells treated with 1 ng/mL IL-1α or 1 ng/mL IL-1β 

(Figures 3.1 and 3.2). Inhibitor concentrations were selected based on manufacturer 

recommendations and minimal inhibitory concentrations. The IL-1β neutralizing antibody 

partially suppressed HBD-2 secretion stimulated by GBS choriodecidual conditioned medium 

(1.8 fold reduction), whereas IL-1Ra almost abolished the response (9.7 fold reduction) (Figure 

3.6; P < 0.05). IL-1β (10 ng/mL) was used as positive control for HBD-2 secretion from amnion 

epithelial cells.   

 

HBD-2 Release from Amnion Epithelial Cells Stimulated with Recombinant Cytokines  
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Because experiments with IL-1 inhibitors suggested a role for IL-1α and IL-1β in the HBD-2 

response in amnion epithelial cells, we treated amnion epithelial cells with recombinant 

cytokines (Figure 3.7). HBD-2 release was significantly increased in a concentration-dependent 

manner by either IL-1α or IL-1β (Figure 3.7 and 3.8; P < 0.05), demonstrating that IL-1α and IL-

1β directly stimulate HBD-2 release. However, co-treatment with equal concentrations of each 

IL-1α and IL-1β did not produce an increased HBD-2 response compared with exposure to either 

recombinant cytokine alone (Figure 3.8). Treatment with recombinant cytokines, IL-6, IL-8, IL-

17, or TNF-α had no significant effect on HBD-2 from amnion epithelial cell cultures (Figure 

3.7). 

 

Discussion 

As one of the leading causes of neonatal morbidity and mortality, GBS infection during 

pregnancy remains a serious public health problem (Verani, McGee et al. 2010). The 

mechanisms by which GBS interacts with the host immune response have yet to be fully 

elucidated in gestational tissues.  We previously reported that HBD-2 expression increases in 

amnion epithelial cells of full thickness extraplacental membranes following GBS inoculation on 

the decidual side of the membranes in vitro, in the apparent absence of direct contact with the 

amnion epithelial cells directly (Boldenow, Jones et al. 2013). Here, we show for the first time 

that secreted factors from GBS stimulated choriodecidual tissue are essential for secretion of 

HBD-2 from the amnion. In addition we show that LTA and LPS choriodecidual conditioned 

medium fail to stimulate HBD-2 release from amnion epithelial cell cultures. Likewise, live GBS 

failed to stimulate HBD-2 release from cultured amnion epithelial cells. In contrast to our study, 

other cell types demonstrate direct bacterial stimulated HBD-2 secretion, suggesting that our 
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observations reflect tissue specificity (O'Neil, Porter et al. 1999, Krisanaprakornkit, Kimball et 

al. 2000, Wehkamp, Harder et al. 2004, Pivarcsi, Nagy et al. 2005).  

 

The large increase in IL-1α and IL-1β in the medium from GBS-treated choriodecidual tissue 

suggests that IL-1 is important for HBD-2 secretion in amnion epithelial cells. LTA and LPS 

treated choriodecidual tissues did not have increased IL-1α or IL-1β secretion. We further 

demonstrated the importance of IL-1 in the HBD-2 pathway by inhibiting HBD-2 secretion from 

amnion epithelial cells using an IL-1β neutralizing antibody and the IL-1Ra (non selective IL-1 

receptor antagonist). We observed near complete inhibition of HBD-2 secretion when using IL-

1Ra and only partial inhibition when using IL-1β neutralizing antibody suggesting that both IL-

1α and IL-1β secreted from the choriodecidual tissue have a redundant function in HBD-2 

secretion from amnion epithelial cells. A similar mechanism, demonstrating the necessity of IL-

1β in stimulating HBD-2 secretion has been proposed for pulmonary epithelial cells (Tsutsumi-

Ishii and Nagaoka 2003). Previous studies suggest that amnion epithelial cells are incapable of 

producing IL-1, which further implicates dependence of amnion epithelial cells on the 

choriodecidua for HBD-2 production (Menon, Swan et al. 1995, Reisenberger, Egarter et al. 

1998).  

 

Previous studies have shown that both IL-1α and IL-1β are present in placenta and extraplacental 

membranes of healthy women (Hu, Yang et al. 1992, Keelan, Marvin et al. 1999, Young, 

Thomson et al. 2002). We demonstrated that recombinant IL-1β is capable of stimulating HBD-2 

in our amnion epithelial cell cultures, consistent with previous studies (Stock, Kelly et al. 2007). 

In addition, we show for the first time that recombinant IL-1α also stimulates HBD-2 secretion in 
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human amnion cells, and does so at concentrations similar to IL-1α concentrations we detected in 

medium of GBS-stimulated choriodecidual tissue punch cultures. Our results are consistent with 

increases in IL-1α reported in bladder tissue and urine of mice treated with pathogenic GBS 

(Ulett, Webb et al. 2010). Furthermore, IL-1α and IL-1β are implicated in stimulating HBD-2 

secretion from other cell and tissue types including human keratinocytes, uterine macrophages, 

corneal epithelial cells and middle ear epithelial cells (Liu, Destoumieux et al. 2002, Moon, Lee 

et al. 2002, McDermott, Redfern et al. 2003, Pioli, Weaver et al. 2006).  

 

Cytokines mediate parturition-activating pathways by increasing prostaglandins, matrix 

metalloproteinases, and recruitment of neutrophils and macrophages in the gestational tissues. In 

particular, IL-1β has been implicated in adverse birth outcomes. Recently, Mitchell et al. linked 

maternal recto-vaginal GBS colonization during pregnancy with increased IL-1β in maternal and 

fetal serum and early term births (Mitchell, Brou et al. 2013). Primates inoculated with GBS had 

increased amniotic fluid concentrations of IL-1β, as well as IL-6, and TNF-α, PGE2 and PGF2α, 

prior to the onset of contractions and parturition (Gravett, Witkin et al. 1994). Furthermore, 

direct infusion with IL-1β stimulated the onset of contractions and preterm labor in primates 

(Sadowsky, Adams et al. 2006). Fewer studies have examined the role of IL-1α in adverse birth 

outcomes. One study found that IL-1α treated pregnant mice have increased prostaglandin E2 

(PGE2) and fetal deaths (Silver, Edwin et al. 1997).  

 

Although recombinant IL-1α and IL-1β each stimulated HBD-2 release in amnion epithelial 

cells, other cytokines (IL-6, IL-8, IL-17, and TNF-α) did not significantly increase HBD-2 

secretion. The concentrations of IL-6, IL-17, and TNF-α we used to treat amnion epithelial cells 
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were higher than the concentrations we observed in the medium of the GBS-stimulated 

choriodecidual punch cultures. IL-17 is secreted from Th17 cells and implicated in HBD-2 

secretion in pulmonary epithelium and keratinocytes (Kao, Chen et al. 2004, Liang, Tan et al. 

2006, Pennino, Eyerich et al. 2010). Although IL-17 appears to produce a slight increase in 

HBD-2 (not statistically significant) in our amnion epithelial cells, no IL-17 was detected when 

choriodecidual punches were treated with GBS. Thus, IL-17 does not appear to be an important 

immune mediator of HBD-2 release in human extraplacental membranes ex vivo and is likely 

because of minimal immune cells present in the healthy tissue we collect. However, Th17 cells 

may play a role in vivo.   

 

In our study, bacteria cell wall or membrane components LTA and LPS did not stimulate IL-1α 

or IL-1β secretion from the choriodecidual tissue. Other studies have observed an increase in IL-

1β secretion from full thickness extraplacental membranes treated with LPS (Fortunato, Menon 

et al. 1996, Zaga, Estrada-Gutierrez et al. 2004, Miller and Loch-Caruso 2010, Hoang, Potter et 

al. 2014). In contrast to our study which used only choriodecidual tissue, these studies use full 

thickness membranes and the magnitude of the changes was modest and varied between studies. 

In agreement with our study, King, et al. found that LPS and LTA had no effect on antimicrobial 

peptide mRNA expression in human endometrial epithelial cells (King, Fleming et al. 2002). 

Likewise, we observed that heat-killed GBS failed to elicit IL-1β or TNF-α secretion from the 

choriodecidual tissue, suggesting that cytokine stimulation relies on either a heat-liable protein or 

internalization of the live bacterium. The latter results are similar to those showing that live S. 

auerus engages inflammatory pathways and cytokine secretion differently than heat-killed S. 

auerus in mononuclear cells (Strunk, Richmond et al. 2011). Although, not tested here, cellular 
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internalization of live GBS may be critical for cytokine secretion in our model, as has been 

demonstrated previously in mouse dendritic cells (Costa, Gupta et al. 2012). 

 

Our data showing an integral role for IL-1β in the stimulation of HBD-2 secretion suggest a role 

for the inflammasome. The inflammasome is a multi-protein complex composed in part of 

caspase-1 which is responsible for cleaving pro IL-1β in the cell to the active form, which can 

then be secreted from the cell.  One study has shown that caspase-1 is slightly elevated in the 

amniotic fluid of laboring women at term compared to non-laboring, at term women and of 

particular interest caspase-1 was significantly elevated in amniotic fluid from women who 

delivered preterm with an infection compared to women who delivered preterm without an 

infection (Gotsch, Romero et al. 2008). Additional components of the inflammasome: NLRP3 

and ASC (apoptosis-associated speck-like protein) are important for mediating caspase-1 

regulated IL-1β secretion during GBS infection in mouse dendritic cells (Costa, Gupta et al. 

2012). Future studies will explore the role of the inflammasome in the IL-1β secretory pathway.   

 

In conclusion, this study utilized human extraplacental membranes to show that GBS treated 

choriodecidual tissue secrete IL-1α and IL-1β. Furthermore, we show that IL-1α and IL-1β from 

the choriodecidual tissues are important for GBS stimulated HBD-2 secretion from the amnion 

epithelial cells.   
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Figure 3.1. Effects of IL-1Ra on IL-1α and IL-1β stimulated HBD-2. 
HBD-2 release into medium by primary amnion epithelial cells treated with IL-1Ra and 
recombinant IL-1α (A; 1 ng/mL) or IL-1β (B; 1 ng/mL) after 24 h. HBD-2 protein in the medium 
was measured by ELISA. Columns are mean ± SEM (N=3 women). Asterisks (*) represent 
significant differences between treatment and IL-1α or IL-1β (1 ng/mL) when compared by 
Tukey’s post hoc test following ANOVA (P < 0.05). 
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Figure 3.2. Effects of IL-1β neutralizing antibody on IL-1β stimulated HBD-2.  
HBD-2 release into medium by primary amnion epithelial cells treated with IL-1β neutralizing 
antibody and recombinant IL-1β (1 ng/mL) after 24 h. HBD-2 protein in the medium was 
measured by ELISA. Columns are mean ± SEM (N=3 women).  Asterisks (*) represent 
significant differences between treatment and IL-1β (1 ng/mL) when compared by Tukey’s post 
hoc test following ANOVA (P < 0.05). 
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Figure 3.3. HBD-2 release into medium by amnion epithelial cell cultures. 
HBD-2 release in human amnion epithelial cell cultures treated directly with pathogenic stimuli 
(live GBS, LTA, or LPS) or with choriodecidual (CD) conditioned medium generated by 
culturing CD tissue punches with live GBS, LTA, or LPS for 24 h. HBD-2 protein in the medium 
was measured by ELISA. Columns are mean ± SEM (N=24 women for GBS CD conditioned 
medium, N=5 women for live GBS, and N=7 women for remaining treatment groups). The 
asterisk (*) represents a significant difference between treatment and control when compared by 
Tukey’s post hoc test following ANOVA (P < 0.05). 
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Figure 3.4. IL-1β and TNF-α release into medium by choriodecidual punch cultures.  
L-1β and TNF-α release by choriodecidual punch cultures treated with medium alone (control), 
heat-killed GBS, or live GBS. IL-1β (A) and TNF-α (B) in the medium were measured by 
ELISA. Columns are mean ± SEM (N=5 women). Asterisks (*) represent significant differences 
between treatment and control when compared by Tukey’s post hoc test following ANOVA (P < 
0.05). 
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Figure 3.5. Cytokine release into medium by choriodecidual punch cultures.  
Cytokine release into medium by choriodecidual punch cultures treated with medium alone 
(control), live GBS, LTA, or LPS. IL-1α (A), IL-1β (B), IL-6 (C), IL-8 (D), IL-17 (E), and TNF-
α (F) in the medium were measured by ELISA. Columns are mean ± SEM (N=21 women for 
Control and live GBS treatment groups; N=6 women for LTA and LPS treatment groups). 
Asterisks (*) represent significant differences between treatment and control when compared by 
Tukey’s post hoc test following ANOVA (P < 0.05). 
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Figure 3.6. The effect of IL-1 inhibitors on HBD-2 release by amnion epithelial cells.  
Amnion epithelial cells were treated with choriodecidual (CD) conditioned medium with and 
without IL-1 inhibitors for 24 h. IL-1β (10 ng/mL) treatment for 24 h was used as a positive 
control for HBD-2 secretion from amnion epithelial cells. HBD-2 protein in the amnion cell 
culture medium was measured by ELISA. Columns are mean ± SEM (N=5 women). Pound 
symbols (#) represent significant differences between treatment and control (medium only) and 
asterisks (*) represent significant differences between treatment and GBS CD Medium when 
compared by Tukey’s post hoc test following ANOVA (P < 0.05). 
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Figure 3.7. HBD-2 release by primary amnion epithelial cells treated with cytokines. 
HBD-2 release into medium by primary amnion epithelial cells treated with recombinant 
cytokines after 24 h. HBD-2 protein in the medium was measured by ELISA. Columns are mean 
± SEM (N=3-6 women). Asterisks (*) represent significant differences between treatment and 
control when compared by Tukey’s post hoc test following ANOVA (P < 0.05). 
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Figure 3.8. HBD-2 release by amnion epithelial cells treated with IL-1α and IL-1β.  
HBD-2 release by amnion epithelial cells treated with recombinant IL-1α and IL-1β after 24 h. 
Equal concentrations of each cytokine were used for the IL-1α + IL-1β treatment group. HBD-2 
protein in the medium was measured by ELISA. Columns are mean ± SEM (N=7 women). 
Asterisks (*) represent significant differences compared to medium only control when compared 
by Tukey’s post hoc test following ANOVA (P < 0.05).  No statistical differences were observed 
between cytokines treatments at any given concentration. 
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CHAPTER 4. GROUP B STREPTOCOCCUS STRAIN VARIATION 
IMPACTS CYTOKINE AND CHEMOKINE HOST RESPONSE IN 

HUMAN EXTRAPLACENTAL MEMBRANES IN VITRO 

   

Abstract 

Problem: Streptococcus agalactiae (GBS) is an important cause of chorioamnionitis and 

neonatal disease, yet little is known about how GBS strain differences impact host response in 

the extraplacental membranes. This study characterizes colonization and stimulation of cytokines 

and chemokines in human extraplacental membranes by five GBS strains using an ex vivo 

transwell two-compartment culture system of full-thickness membranes. 

Method of Study: Human extraplacental membranes were affixed to transwell frames (without 

synthetic membranes). Live GBS was added to the decidual side of membranes in transwell 

cultures, and cocultures were incubated for 24 h. Cytokines were identified in the medium using 

ELISA. Data were statistically analyzed using a linear mixed model. GBS recovery from 

homogenized membranes was determined by enumerating colony forming units (CFU) on blood 

agar. Formalin fixed tissues were Hucker-Twort stained to determine the presence of GBS within 

the membranes. 

Results: GBS-treated membranes released increased amounts of the proinflammatory cytokines 

IL-1β, IL-6, TNF-α, and IL-8 into the amniotic and decidual compartments of the transwell 

cultures after 24 h (P < 0.001), regardless of GBS strain type. The magnitude of the cytokine 
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response was strain dependent. GBS recovery from membranes was observed for the two 

colonizing strains only, with both colonizing strains persisting on the choriodecidual side of the 

membranes. 

Conclusions: Host cytokine and chemokine responses in human extraplacental membranes are 

GBS strain specific, suggesting that strain GBS strain variation should be considered for future 

treatment and prevention strategies. Because the observed GBS strain differences could be 

related to expression of virulence factors, future studies will explore how GBS virulence factors 

impact the extraplacental membranes host response.  

Introduction 

Streptococcus agalactiae or Group B Streptococcus (GBS) continues to be a serious public 

health problem and is associated with adverse pregnancy and neonatal outcomes (Verani, McGee 

et al. 2010) including neonatal sepsis and meningitis. Genital GBS colonization during 

pregnancy occurs in up to 30% of women and is the primary risk factor for neonatal GBS disease 

(Schuchat and Wenger 1994, Phares, Lynfield et al. 2008, Verani, McGee et al. 2010). Prior to 

neonatal infection, GBS colonizes the maternal vagina and can ascend to the uterine 

compartment through the extraplacental membranes (also called gestational or maternal-fetal 

membranes). However, GBS colonization of the vagina does not always translate to invasive 

GBS disease (Jones, Bohnsack et al. 2003, Luan, Granlund et al. 2005, Bohnsack, Whiting et al. 

2008, Manning, Springman et al. 2009). Although the extraplacental membranes serve as an 

important barrier to infection, the mechanism by which GBS crosses the membranes during 

infection has not been fully elucidated. GBS has been shown to adhere to and infect human 

extraplacental membranes and cells (Galask, Varner et al. 1984, Gravett, Haluska et al. 1996, 

Winram, Jonas et al. 1998). In addition, the extraplacental membranes mount a robust host 
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immune response, including cytokine and antimicrobial peptide secretion to pathogenic 

organisms in culture (Menon, Swan et al. 1995, Zaga, Estrada-Gutierrez et al. 2004, Garcia-

Lopez, Flores-Espinosa et al. 2010, Zaga-Clavellina, Martha et al. 2012, Zaga-Clavellina, Ruiz et 

al. 2012).  

 

GBS virulence is thought to involve genomic variation and suppression or evasion of host 

immunity. To date, most studies have focused on GBS virulence mechanisms across strains with 

little attention on the host response. Conversely, host response studies have focused on the 

vaginal epithelium and few studies have examined multiple GBS strains within a single tissue to 

compare the differences in host response. Here we adapted an ex vivo transwell two-

compartment system of full-thickness human extraplacental membranes for coculture with 

different strains of live GBS to test the hypothesis that GBS strain impacts the strength and 

nature of the extraplacental membranes cytokine response, which are an important for resisting 

infection by promoting chemotaxis and antimicrobial peptides secretion.  

Materials and Methods 

Reagents and Materials 

Five GBS strains were selected for this study (Table 4.1) with differing capsular and sequence 

types. Invasive strains were associated with neonatal sepsis, while colonizing strains were from 

routine screening and were not associated with either maternal or neonatal disease. GBS strain 

A909 was initially isolated from a septic newborn (Lancefield, McCarty et al. 1975) and  

subsequently transformed with plasmid encoding genes for Green Fluorescent Protein and 

erythromycin resistance (construct RS020, a gift from Amanda Jones, University of 

Washington). GB37 and GB411 were isolated from newborn blood samples with early onset 
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disease (Spaetgens, DeBella et al. 2002) and GB112 and GB590 were isolated from pregnant or 

postpartum women during vaginal rectal screening (Davies, Raj et al. 2001) (gift from Shannon 

Manning, Michigan State University). All GBS strains were grown at 37 °C in planktonic culture 

using Todd Hewitt Broth (THB, Becton-Dickinson, Franklin Lakes, NJ) or on sheep’s blood agar 

plates (Blood Agar Base #2, Remel, Lenexa, KS and BBL defibrinated sheep blood, Franklin 

Lakes, NJ). Media, buffers, fetal bovine serum (FBS; catalog #10438) and 

penicillin/streptomycin (pen/strep; catalog #15140) were from GIBCO (Grand Island, NY).  

 

Culture of Extraplacental Membranes  

Human extraplacental membranes were collected from healthy pregnancies undergoing 

scheduled cesarean delivery at term prior to onset of labor at the University of Michigan Birth 

Center as previously described (Boldenow, Jones et al. 2013). The University of Michigan 

Institutional Review Board approved this research (IRBMED#HUM0013915).  

 

Extraplacental membranes were cultured in a two-compartment transwell system as described 

previously published (Boldenow, Jones et al. 2013, Zaga, Estrada-Gutierrez et al. 2004, Thiex, 

Chames et al. 2009). Briefly, membranes were dissected from placenta immediately following 

delivery and transported directly to the laboratory in Dulbecco’s phosphate-buffered saline 

(DPBS). Membranes were rinsed with medium and blood clots were removed. The membranes 

were then mounted on sterile transwell frames that had no synthetic membrane (gift from 

Corning, NY) and held in place with sterile latex elastic bands (ORMCO, Orange, CA). The 

membranes were affixed with the choriodecidua facing the inner chamber of the transwell and 

the amnion facing the outer chamber. The transwell inserts with membranes were placed in wells 



86 
 

of 12-well culture plates containing Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 1% FBS and pen/strep. To maintain equal medium levels between the inner and outer 

transwell chambers, 0.5 mL medium was added to the smaller inner chamber and 1.5 mL 

medium was added to the larger outer chamber. Cultures were incubated at 37 °C and 5% CO2. 

After 4 h, the medium was exchanged for DMEM/1% FBS without antibiotics.  

 

GBS Coculture with Extraplacental Membranes 

GBS in early exponential growth phase was diluted with DMEM/1% FBS to 1x106 colony 

forming units/mL (CFU/mL). Inoculant concentrations were validated by overnight growth on 

5% sheep blood agar. Following a 24 h acclimation, the medium of the transwell choriodecidual 

compartment was replaced with 0.5 mL GBS inoculant (1x106 CFU/mL) or fresh 

DMEM/1%FBS without GBS (controls). Amnion compartment medium was also exchanged 

with fresh DMEM/1%FBS. Cocultures were then incubated for 24 h. Coculture experiments 

were conducted in triplicate or quadruplicate using extraplacental membranes from seven or 

thirteen women. 

 

After 24h, medium was collected and stored at -80 °C. In a subset of experiments (N=3 women), 

transwell inserts with attached tissue were transferred to fresh wells with DPBS in both 

chambers. The plate was gently rocked for 5 min to rinse away non-adherent bacteria. Two 3-

mm biopsy punches were taken from each transwell-mounted tissue piece, placed in 1 mL PBS, 

and homogenized on ice with two 40-sec pulses. Tissue homogenates were serially diluted 1:10 

in PBS, plated on 5% sheep blood agar in triplicate, and grown 12-24 h at 37 ˚C. Colony counts 

of viable bacteria in the membrane (CFU/mL/cm2) were determined. 
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Gram Staining  

While still attached to the transwell insert, extraplacental membranes were fixed with 10% 

phosphate-buffered formalin (Fisher, Waltham, MA) for 24-48 h at 4 ˚C. The fixed tissue was 

gently removed from the transwell insert and a strip of membrane was cut ≤ 4 mm in width. 

Processing and staining were performed by the University of Michigan’s Comprehensive Cancer 

Center Tissue Core. The tissue strips were embedded in paraffin “on edge”, sectioned, and 

mounted on slides. Hucker-Twort tissue gram staining was performed by the University of 

Michigan’s Unit for Laboratory Animal Medicine. Two sections in three tissues were examined 

for all treatments. Microscopy image capture was done using Nikon Elements Software.  

 

Cytokine ELISAs 

Cytokine release from the choriodecidual membranes punches into medium was measured by the 

University of Michigan Immunology Core using commercially available enzyme linked 

immunosorbant assays (ELISA; R&D Systems). The ELISA detection range was: 7.81-500 

pg/mL for IL-1α, 2.91-2500 pg/mL for IL-1β, 39.1-2000 pg/mL for IL-1Ra, 9.38-125,000 pg/mL 

for IL-6, and 31.2-2000 pg/mL for IL-8, 15.6-1000 pg/mL for IL-10, 15.6-1000 pg/mL for IL-17, 

15.6-1000 pg/mL for MCP-1, and 15.6-5000 pg/mL for TNF-α. The IL-18 detection range was 

20-5000 pg/mL using antibodies were purchased from MBL International (Woburn, MA). 

Samples were diluted as necessary. Values are reported as pg or ng protein/mL medium. 

 

Statistical Analysis 

Data presented in graphs and tables are expressed as mean ± SEM and were analyzed using 
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GraphPad Prism 5 software (GraphPad Software, La Jolla, CA). For transwell coculture GBS 

CFU quantification, ANOVAs with Tukey’s post hoc test were performed. Differences were 

considered significant if the p-value was < 0.05. Linear mixed models analyses were performed 

using R 3.0. with the nlme package. Data for IL-1β, IL-6, IL-8, and TNF-α were log transformed 

(on measurement +1). For each of the four cytokines, a linear mixed model was used to test for 

response differences among different GBS strains including control. Random effects were 

assumed for each woman, and interactions between GBS strain and transwell side were included 

in the model. The same analysis was performed among different GBS strains excluding control. 

In addition, pair wise comparisons across GBS strains were performed.   

Results 

Cytokine Secretion from Extraplacental Membranes  

To simulate an ascending intrauterine infection, GBS was added to the choriodecidual 

compartment of the transwell-mounted extraplacental membranes. Inter- and intra-individual 

differences were noted, with approximately 30% of the variability attributable to differences 

among women. Cytokines IL-1β, IL-6, TNF-α, and IL-8 were positively correlated. All GBS 

strains significantly increased IL-1β, IL-6, IL-8, and TNF-α secretion from the extraplacental 

membranes compared to medium only control (Table 4.2). For all cytokines, concentrations were 

higher in the choriodecidual compartment compared to the amnion compartment (Table 4.2). 

Each GBS strain produced a unique cytokine profile and the magnitude of cytokine increases 

was strain dependent, also. Large increases in IL-1β (20-44 fold) and TNF-α (11-36 fold) were 

observed in the choriodecidual compartment after 24 h coculture with GBS (Figure 4.1). The 

amnion compartment also had increased IL-1β (2.2-5.9 fold) and TNF-α (2.2-9.8 fold). More 
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modest increases were noted for IL-6 (2.3-5.8 fold) and IL-8 (1.4-2.4 fold) in the choriodecidual 

compartment after 24 h.  

Linear mixed models analysis, revealed statistically significant differences in cytokine 

concentrations between GBS strains for IL-1β (P = 0.005), IL-8 (P = 0.0280), and TNF-α (P < 

0.001). Although not statistically significant, data suggested that IL-6 response was also GBS 

strain specific (P = 0.054). Overall, strain A909 promoted the strongest increases in IL-1β (38 

fold), IL-6 (5.8 fold), IL-8 (2.4 fold), and TNF-α (36 fold) secretion in the choriodecidual 

compartment compared to medium only control (Table 4.2). Pairwise comparison (Table 4.3) 

demonstrated that A909 increases TNF-α significantly compared to all other GBS strains. 

Although, GB112 and GB411 have the same sequence type and serotype, extraplacental 

membranes treated with GB411 had increased IL-1β compared to membranes treated with 

GB112 (P = 0.016). We were interested in comparing GB37 and GB590 because mice treated 

with GB37 have increased mortality compared to GB590 (Rogers, Singh et al. 2014). GB590 

stimulated greater TNF-α secretion compared to GB37 (P = 0.025). Although, not comparable in 

our model due to insufficient GBS strains, no obvious patterns emerged in cytokine secretion 

comparing invasive to colonizing strains (Figure 4.1).  

 

Although, not included in the mixed model analysis because samples were measured in a subset 

of women (N=4), it appears that all GBS strains increase IL-1α (4-7 fold), IL-1Ra (2-5.5 fold), 

and IL-10 (2-7 fold) compared to no treatment control in the choriodecidual compartment (Table 

4.2). These data should be interpreted with caution due to the smaller sample size measured (N= 

4 women for IL-1α and IL-1Ra). In addition, IL-17, IL-18, and MCP-1 concentrations were very 
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low in the medium and did not show increased secretion with GBS treatment, regardless of strain 

(data not shown).  

 

GBS Growth in Extraplacental Membranes  

In a subset of experiments, CFUs were measured from homogenized tissue. No GBS colonies 

formed from membranes of unexposed control tissues after 24 h of coculture (not shown). GBS 

invasive strains A909, GB37, and GB411 had virtually no recoverable CFUs after coculture with 

extraplacental tissue for 24 h (Figure 4.2). GB112 was highly variable, but had recoverable 

CFUs in all experiments. GB590 was also highly variable, but had some CFUs after coculture 

with the extraplacental membranes. Furthermore, GBS growth of all strains was robust in 

DMEM/ 1% FBS, indicating that the decreased CFU recovery from coculture with extraplacental 

tissues was dependent on the presence of the tissue and not an artifact of the medium or transwell 

system (data not shown). 

 

Tissue Gram Staining 

Hucker-Twort staining was performed to identify GBS in the extraplacental membranes tissue 

following GBS treatment. No GBS was identified in extraplacental membranes without GBS 

coculture or in membranes exposed on the choriodecidual side to GBS strains A909, GB37, or 

GB411 (Figure 4.3 A, B, C, and E, respectively). Clusters of GB112 were identified on the 

choriodecidual side (Figures 4.3 D and Figure 4.4). GB590 was found both on the choriodecidual 

surface and within the tissue (Figure 4.3 F and Figure 4.5).  
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Discussion 

This is the first study to examine multiple GBS strains in a full thickness extraplacental 

membranes model. This study showed that five GBS strains of differing capsular and sequence 

types stimulated cytokine release in human extraplacental membranes, and that GBS strain 

difference influenced the magnitude of the host response. Previous studies demonstrated 

increased cytokine release from extraplacental membranes and cells stimulated with GBS 

(Reisenberger, Egarter et al. 1997, Griesinger, Saleh et al. 2001, Zaga, Estrada-Gutierrez et al. 

2004, Menon, Peltier et al. 2009). However, these former studies typically used only one or two 

GBS strains. Consistent with previous reports, the present study further shows that cytokine 

release from choriodecidual side of the membranes was greater than release from the amnion 

side (Zaga, Estrada-Gutierrez et al. 2004, Miller and Loch-Caruso 2010).  

 

GBS are classified into ten different serotypes based on capsular polysaccharides which were 

originally proposed as the major contributing factor to virulence (Slotved, Kong et al. 2007). 

Among the few studies to examine host response to more than one GBS strain in gestational 

tissues, human decidual cells treated with five different heat-killed GBS had strain-specific 

increases of macrophage inflammatory protein (MIP)-1α and IL-8 (Dudley, Edwin et al. 1997), 

and chorion cells treated with five different heat-killed GBS had increased MIP-1α dependent on 

GBS strain (Dudley, Edwin et al. 1996). Although the authors of both the previous studies 

suggested that serotype may be partially responsible for the results, the reports failed to provide 

any description of the GBS strains used. Moreover, epidemiological data, indicate that different 

regions around the world have different serotype prevalence yet serotype alone does not account 

for disease incidence (Ippolito, James et al. 2010).  
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In addition to serotypes, GBS strains are classified into sequence types (ST) based on genetic 

variation in seven conserved genes. One particular ST (ST-17) is more commonly associated 

with neonatal disease compared to other sequence types (Manning, Springman et al. 2009). Of 

particular interest was comparing GB112 and GB411 because they are both the same serotype 

and sequence type (ST-17). However, as noted in Table 4.1, GB411 caused invasive GBS 

disease, while GB112 is a colonizing strain, suggesting that virulence goes beyond simple 

serotype and sequence type classification. In our study, GB411 caused significant increases in 

IL-1β compared to GB112. In addition, GB112 was recovered from the extraplacental 

membranes, whereas GB411 was not. Recently, we showed that IL-1β is important in the release 

of the antimicrobial peptide HBD-2 which is capable of killing GBS (Chapter 2 and 3). 

Although, not studied here directly, GB112 may be capable of persisting in the extraplacental 

membranes by not promoting a strong IL-1β increase, thereby not increasing HBD-2.   

 

Recently, Aronoff and colleagues showed that strain GB37 is significantly more lethal compared 

to GB590 in a nonpregnant mouse model (Rogers, Singh et al. 2014). Furthermore, human 

monocyte THP-1 cells secreted more TNF-α treated with GB37 compared to GB590 (Rogers, 

Singh et al. 2014). In contrast, our study shows extraplacental membranes treated with GB590 

secreted more TNF-α compared to membranes treated with GB37, illustrating potential host 

response differences across cell and tissue types. Additional studies are needed to determine how 

these differences in host response across cells and tissue types contribute to the entire immune 

response during infection.  
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In our study, the two colonizing strains persisted in the tissue whereas the three invasive strains 

did not. Clusters of GB112 were noted on the surface of the choriodecidual side of the membrane 

(the site of infection), yet GB112 did not appear to invade the tissue. The presence of clusters 

were not uniform throughout, which may have contributed to the variability observed in the CFU 

recovery. The bacterial clustering suggests biofilm formation. Biofilm formation has been 

identified in the vaginal epithelium and in amniotic fluid (Swidsinski, Mendling et al. 2005, 

Romero, Kusanovic et al. 2007, Romero, Schaudinn et al. 2008). Furthermore, GBS is capable of 

forming biofilms (Cucarella, Solano et al. 2001, Rinaudo, Rosini et al. 2010). In contrast to other 

GBS strains, GB590 was found both on the choriodecidua surface and within the tissue, 

suggesting invasion into the tissue is possible. Although not assayed in the present study, we 

previously recovered GBS strain A909 CFUs from transwell culture medium of human 

extraplacental membranes that were comparable to CFUs in homogenized tissue (Boldenow, 

Jones et al. 2013). It’s important to note that the present study was done in tissue from healthy 

women. Women with poor health could be more susceptible to colonization or invasive 

infection.  

 

In addition to serotypes and sequence types, GBS virulence may be related to adaptability. The 

GBS transcriptome changes after contact with human tissues (Mereghetti, Sitkiewicz et al. 2008, 

Mereghetti, Sitkiewicz et al. 2009, Sitkiewicz, Green et al. 2009). GBS changes its virulence 

gene expression patterns when grown in human amniotic fluid. These changes include adhesion, 

capsule, and hemolysin gene expression (Sitkiewicz, Green et al. 2009). Although we did not 

examine GBS gene expression or characteristics post coculture, GBS gene expression patterns in 

one GBS strain differed between human subjects after culture in human blood (Mereghetti, 
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Sitkiewicz et al. 2008, Mereghetti, Sitkiewicz et al. 2009, Sitkiewicz, Green et al. 2009). In 

addition, the host cytokine secretion differed among individuals. We did observe considerable 

variability in host response between women, consistent with inter-individual cytokine differences 

previously reported (Miller and Loch-Caruso 2010).  

 

Furthermore, GBS are named for their beta hemolytic activity as assayed by their ability to 

completely lyse red blood cells. Hemolytic activity may contribute to differences observed in 

host response. Hemolysins are thought to cause cellular damage and aid in invasion (Doran, Liu 

et al. 2003, Maisey, Doran et al. 2008). Despite original reports that the extraplacental 

membranes and amnion epithelial cells provide a competent barrier to GBS (Winram, Jonas et al. 

1998, Kjaergaard, Helmig et al. 1999), recent work shows that GBS invade extraplacental 

membranes in a hemolysin-dependent manner (Whidbey, Harrell et al. 2013). In addition, hyper-

hemolytic activity significantly increased IL-1β release in amnion epithelial cells. Moreover, 

another study found that GBS strains lacking beta hemolysin and cytolysin resulted in a marked 

reduction in IL-8, GRO-α/β, IL-6, and GM-CSF gene expression in human brain microvascular 

endothelial cells (Doran, Liu et al. 2003). In our study, all GBS strains were hemolytic except 

GB37. Although not statistically significant across all GBS strains, GB37 tended to increase 

cytokine expression to a lesser extent compared to other GBS strains.  

 

In summary, GBS regardless of strain increased cytokine secretion from the extraplacental 

membrane cytokines; however, we show for the first time that GBS strain impacts the magnitude 

of cytokine secretion from the extraplacental membranes. No single GBS virulence factor 

examined thus far can completely account for invasive GBS disease. The mechanisms of GBS 
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pathogenesis have not been fully elucidated and identifying molecular targets for vaccine 

development have progressed slowly. Future work will focus on evaluating host response with 

additional GBS strains and characterizing the virulence factors of the GBS strains used in this 

study.   
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Table 4.1. GBS Strain Variations.  

Abbreviations: ST, sequence types, cps, capsular type   

Strain  Sequence Type Serotype 
A909 Invasive ST-7 cpsIa 
GB37 Invasive ST-1 cpsV 
GB112 Colonizing ST-17 cpsIII 
GB411 Invasive ST-17 cpsIII 
GB590 Colonizing ST-19 cpsIII 
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Table 4.2. Cytokine Concentrations in Choriodecidual and Amniotic Compartment Medium.  
Medium from transwell cultures of human extraplacental membranes treated with different GBS 
strains. Data are presented as mean (SEM). 
    Choriodecidua Compartment Amnion Compartment 
Interleukin-1αc Control < LODa 

  
< LOD 

 (pg/mL) A909 39.26b (3.90) 
 

< LOD 
 

 
GB112 38.95 (5.26) 

 
< LOD 

 
 

GB411 60.89 (27.31) 
 

< LOD 
 

 
GB37 33.10 (6.24) 

 
< LOD 

 
 

GB590 33.82 (4.46) 
 

< LOD 
 

       Interleukin-1β Control 12.81 (1.58) 
 

12.19 (2.21) 
(pg/mL) A909 494.29 (150.28) 

 
43.44 (7.91) 

 
GB112 263.73 (63.30) 

 
34.76 (13.69) 

 
GB411 570.51 (162.67) 

 
72.58 (27.42) 

 
GB37 275.85 (115.52) 

 
26.93 (8.97) 

 
GB590 377.04 (189.17) 

 
40.36 (13.81) 

       Interleukin-1Rac Control 313.30 (45.91) 
 

701.20 (95.33) 
(pg/mL) A909 1743.00 (412.10) 

 
972.70 (184.80) 

 
GB112 1061.00 (392.20) 

 
970.80 (149.00) 

 
GB411 698.20 (88.49) 

 
783.00 (165.50) 

 
GB37 713.50 (85.32) 

 
718.60 (116.70) 

 
GB590 1088.00 (410.10) 

 
801.80 (102.00) 

       Interleukin-6 Control 20.79 (3.51) 
 

14.79 (3.38) 
(ng/mL) A909 122.17 (47.74) 

 
28.82 (4.18) 

 
GB112 65.30 (8.42) 

 
21.07 (3.53) 

 
GB411 70.09 (8.81) 

 
23.52 (3.89) 

 
GB37 49.36 (8.94) 

 
23.12 (5.80) 

 
GB590 48.61 (11.08) 

 
24.14 (5.47) 

       Interleukin-8 Control 178.50 (29.76) 
 

135.39 (25.61) 
(ng/mL) A909 437.32 (46.36) 

 
164.41 (23.41) 

 
GB112 320.46 (33.60) 

 
159.71 (24.90) 

 
GB411 364.63 (29.78) 

 
158.51 (23.76) 

 
GB37 402.03 (73.84) 

 
155.84 (31.54) 

 
GB590 259.46 (33.51) 

 
167.21 (23.65) 

       Interleukin-10 Control 67.09 (29.40) 
 

71.94 (34.27) 
(pg/mL) A909 469.17 (197.94) 

 
121.73 (49.21) 

 
GB112 202.91 (84.98) 

 
127.82 (67.40) 

 
GB411 143.37 (41.18) 

 
59.70 (24.36) 

 
GB37 364.18 (147.59) 

 
79.66 (45.02) 

 
GB590 162.66 (41.98) 

 
72.84 (33.53) 

       Tumor Necrosis Factor-α Control 49.90 (10.48) 
 

31.83 (5.89) 
(pg/mL) A909 1818.28 (349.67) 

 
313.24 (120.14) 

 
GB112 1113.46 (335.49) 

 
290.01 (206.54) 

 
GB411 1164.23 (260.04) 

 
229.98 (130.01) 
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GB37 597.00 (124.01) 

 
70.27 (16.35) 

  GB590 1200.71 (329.05)   240.03 (111.54) 
a Limit of detection(LOD) was 2.91 pg/mL for Interleukin-1α. 
 

b Data are presented as mean (SEM). N=13 membranes for Control, A909, GB112, and GB411 treatment 
groups, N=7 membranes for the GB37 and GB590 treatment groups. Cytokines were measured 24 h after 
incubation with or without GBS (1x106 CFU/mL).  
 
cIL-1α and IL-1Ra were measured in only measured in a subset of samples N=4 membranes for Control, 
A909, GB37, GB112, GB411, and GB590. 
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Table 4.3. P-Values for Linear Mixed Model Pairwise Comparisons of GBS Strains by 
Cytokine.  
 

  
Interleukin-1β 

    
 

A909 GB37 GB112 GB411 
 A909   

  
  

 GB37 < 0.001 
  

  
 GB112 0.003 0.168 

 
  

 GB411 0.642 0.151 0.016   
 GB590 0.027 0.246 0.559 0.564 
 

      Interleukin-6 
    

 
A909 GB37 GB112 GB411 

 A909   
  

  
 GB37 0.028 

  
  

 GB112 0.148 0.044 
 

  
 GB411 0.316 0.116 0.588   
 GB590 0.045 0.931 0.036 0.136 
 

      InterleukinL-8 
    

 
A909 GB37 GB112 GB411 

 A909   
  

  
 GB37 0.208 

  
  

 GB112 0.004 0.379 
 

  
 GB411 0.193 0.666 0.068   
 GB590 0.004 0.214 0.411 0.411 
 

      Tumor Necrosis Factor-α 
   

 
A909 GB37 GB112 GB411 

 A909   
  

  
 GB37 < 0.001 

  
  

 GB112 < 0.001 0.006 
 

  
 GB411 < 0.001 0.392 0.848   
 GB590 0.015 0.025 0.658 0.074 
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Figure 4.1. Cytokine release into medium by extraplacental membranes treated with GBS. 
Total cytokine release (from both the choriodecidua and amnion compartments) into medium by 
extraplacental membranes in transwell cultures with invasive (dark columns) and colonizing 
GBS (light columns) exposure on the choriodecidual side. IL-1β (A), IL-6 (B), IL-8 (C), and 
TNF-α (D) in the medium were measured by ELISA. Columns are mean ± SEM (N=13 women 
for control, A909, GB112, and GB411 treatment groups; N=7 women for GB37 and GB590 
treatment groups). The asterisk (*) represents significant differences compared to medium only 
control analyzed by a linear mixed model (P < 0.05). Pairwise comparisons are reported in Table 
3. 
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Figure 4.2. Recovered GBS from extraplacental membranes.   
Recovered GBS (expressed as CFU) from homogenized tissue punches of extraplacental 
membranes following coculture with 1 x 106 CFU/mL GBS inoculants for 24 h. Columns are 
mean ± SEM. (N=3 women). The asterisk (*) represents significant differences compared to 
A909, GB37, and GB411 when compared by Tukey’s post-hoc test following ANOVA (P < 
0.05). 
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Figure 4.3. Hucker-Twort tissue gram straining in human extraplacental membranes. 
Membranes were cocultured with GBS added to the choriodecidual chamber of the transwell 
cultures (20x). Representative images for no GBS control (A), A909 (B), GB37 (C), GB112 (D), 
GB411 (E), and GB590 (F). Arrows indicate GBS clusters.    
  



104 
 

 

Figure 4.4. Higher magnification image of Hucker-Twort tissue gram stain.  
Human extraplacental membranes were cocultured with GBS strain GB112 added to the 
choriodecidual chamber of the transwell cultures (40x). Arrow indicates GBS cluster identified 
on the choriodecidual side of the membrane. 
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Figure 4.5. Higher magnification of Hucker-Twort tissue gram stain.  
Human extraplacental membranes were cocultured with GBS strain GB590 added to the 
choriodecidual chamber of the transwell cultures. 40x (A) and 100x (B). Arrows indicate GBS 
clusters identified on the choriodecidual side and within the membranes. 
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CHAPTER 5. THE TRICHLOROETHYLENE METABOLITE 
DICHLOROVINYL CYSTEINE INHIBITS PATHOGEN-
STIMULATED TNF-α IN HUMAN EXTRAPLACENTAL 

MEMBRANES IN VITRO 

 

Abstract 

Problem: Infection in pregnancy increases risk for adverse birth outcomes such as preterm birth, 

neonatal sepsis, and neurodevelopmental disorders. Despite this clinical significance, the 

mechanisms by which pathogens interact with host tissues of the female gravid reproductive tract 

are poorly understood. Even less studied is the potential for environmental chemicals to modify 

susceptibility of gestational tissues to infection. TCE is a widespread environmental contaminant 

implicated in reproductive and immune system toxicity. Here we test our hypothesis that a 

bioactive metabolites of trichloroethylene (TCE), decreases the innate immune response of 

extraplacental membranes.  

Method of Study: Full thickness term human extraplacental membranes were punched and 

cultured for 4, 8, and 24 h with the TCE metabolites trichloroacetate (TCA) or dichlorovinyl 

cysteine (DCVC) in the absence or presence of lipoteichoic acid (LTA; gram positive cell wall 

component) or lipopolysaccharide (LPS; gram negative cell membrane component) to simulate 

an infection. In addition, full thickness human extraplacental membranes were mounted on 

transwell inserts and cocultured with DCVC and live Group B Streptococcus (GBS) for 24 h. 

Cytokines from the medium were determined by ELISA. TNF-α mRNA expression was 

measured by PCR. 
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Results: LTA and LPS significantly increased TNF-α secretion from extraplacental membranes 

punch and transwell cultures (p ≤ 0.05). DCVC (5-50 µM) significantly inhibited LTA- and 

LPS-stimulated TNF-α release from tissue punches of extraplacental membranes after 24 h (p ≤ 

0.05). Both TNF-α mRNA expression and protein secretion were inhibited as early as 4 h after 

initiating co-treatment of tissue punches with DCVC and LTA. DCVC also inhibited GBS-

stimulated IL-1β, IL-8, and TNF-α release from extraplacental membranes in transwell cultures 

(p ≤ 0.05). Among the cytokines analyzed, DCVC had the greatest inhibition on pathogen-

stimulated TNF-α release. In contrast, TCA (up to 500 µM) did not inhibit LTA-stimulated 

cytokine release from tissue punches. 

Conclusions: DCVC inhibits pathogen-stimulated TNF-α mRNA and protein expression. 

Because cytokines are important mediators for responding to infectious organisms and TNF-α is 

specifically involved in neutrophil recruitment and stimulation of phagocytosis in macrophages, 

these findings suggest that environmental contaminant exposure could potentially modify 

susceptibility to and severity of infection during pregnancy. In addition, this study demonstrates 

a new model for studying toxicant-pathogen interactions in the extraplacental membranes. 

 

Introduction 

The primary pathway of intrauterine infection is via the ascending pathway, progressing from the 

vagina and across the extraplacental membranes to enter the amniotic cavity (Romero, Mazor et 

al. 1991, Goldenberg, Hauth et al. 2000). Other pathways through maternal-fetal blood exchange 

in the placenta contribute to intrauterine infection to a lesser extent. Thus, the extraplacental 

membranes form a critical barrier to infection of the gestational compartment. The innate 
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immune response includes cytokines and antimicrobial peptides that are important components 

of host defense against microbial infection.  

 

Although intrauterine infection, including infection of the extraplacental membranes, is 

recognized as a leading etiological factor associated with adverse birth outcomes (Dammann and 

Leviton 1997, Goldenberg, Hauth et al. 2000, Pararas, Skevaki et al. 2006, Romero, Espinoza et 

al. 2007, Goldenberg, Culhane et al. 2008), the ability of common environmental contaminants 

to modify susceptibility of the female reproductive tract to infection during pregnancy has 

scarcely been explored. Indeed, recent articles have highlighted the need for increased research 

on toxicant-pathogen interactions, in general (Birnbaum and Jung 2010, Dietert, DeWitt et al. 

2010, Feingold, Vegosen et al. 2010). Given the likelihood that pregnant women are exposed to 

pollutants in their workplaces, homes, and outdoor environment, limited knowledge of toxicant 

actions on host defense of extraplacental membranes (also known as gestational and maternal-

fetal membranes) to infection is a critical barrier to understanding the mechanisms of adverse 

pregnancy outcomes.  

 

Trichloroethylene (TCE) is colorless volatile industrial solvent primarily used for metal 

degreasing. TCE is also a widespread environmental contaminant of concern, ranked #16 on the 

ATSDR 2011 Priority List of Hazardous Substances (ATSDR 2011) and recently reclassified as 

a known human carcinogen by the US EPA (U.S. Environmental Protection Agency 2011). Recent 

reports show increased mortality, decreased bacterial clearance and decreased alveolar 

phagocytosis in rodents co-treated with TCE and Streptococcus zooepidemicus (Aranyi, O'Shea 

et al. 1986, Selgrade and Gilmour 2010). Metabolism appears to be necessary for at least some of 
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TCE’s immunomodulatory activity in vivo (Griffin, Gilbert et al. 2000). Most absorbed TCE is 

rapidly metabolized via one of two irreversible pathways (Chiu, Okino et al. 2006). The first 

pathway involves cytochrome P450-mediated oxidation, with trichloroacetic acid (TCA) the 

major bioactive metabolite (Bradford, Lock et al. 2011). The second TCE metabolic pathway 

involves conjugation with glutathione to form S-(1,2)-dichlorovinyl glutathione (DCVG), which 

is further metabolized to the bioactive metabolite S-(1,2)-dichlorovinyl-L-cysteine (DCVC) 

(Kim, Kim et al. 2009). TCA and DCVC have been detected in serum of exposed rodents (Lash, 

Putt et al. 2006, Kim, Collins et al. 2009, Bradford, Lock et al. 2011) and humans (Lash, Putt et 

al. 1999). The placenta is a highly perfused organ that would readily be exposed to circulating 

TCE and metabolites. In addition, the human placenta expresses key enzymes necessary to 

initiate TCE metabolism to bioactive forms, including CYP2E1,  which is important for TCA 

formation (Hakkola, Raunio et al. 1996, Collier, Tingle et al. 2002) and glutathione-S-transferase 

(GST) (Nogutii, Barbisan et al. 2012), needed to generate DCVC.  

 

Here we utilized human extraplacental membranes cocultured with LTA, LPS, and GBS to test 

our hypothesis that trichloroethylene, through its metabolites, decreases the innate immune 

response of extraplacental membranes.  

 

Materials and Methods 

Reagents and Materials 

TCA was from Sigma-Aldrich (St. Lewis, MO). DCVC was synthesized at the University of 

Michigan Medicinal Chemistry Core Synthesis Lab. The GBS strain used in this study (A909, 

construct RS020, a gift from Amanda Jones, University of Washington), was initially isolated 
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from a septic newborn (Lancefield, McCarty et al. 1975). GBS was grown at 37 ºC in culture 

using Todd Hewitt Broth (THB, Becton-Dickinson, Franklin Lakes, NJ) or on sheep’s blood agar 

plates (Blood Agar Base #2, Remel, Lenexa, KS and BBL defibrinated sheep blood, Franklin 

Lakes, NJ) with 5 μg/mL erythromycin (Hemostat Labs, Dixon, CA). Media, buffers, fetal 

bovine serum (FBS; catalog #10438), 0.25% trypsin-EDTA (catalog #25200), and 

penicillin/streptomycin (pen/strep; catalog #15140) were from GIBCO (Grand Island, NY). 

Lipoteichoic acid (LTA) from Staphylococcus aureus was from Invivogen (San Diego, CA). 

Lipopolysaccaride (LPS) from Salmonella typhimurium was from List Biological Laboratories 

(Campbell, CA).  

 

Culture of Extraplacental Choriodecidual Membranes  

Human extraplacental membranes were collected from healthy, non-smoking, singleton 

pregnancies undergoing scheduled cesarean delivery prior to onset of labor at the University of 

Michigan Birth Center as previously described (Boldenow, Jones et al. 2013). The University of 

Michigan Institutional Review Board approved this research (IRBMED#HUM0013915).  

 

Immediately following delivery, the membranes were transported to the research laboratory in 

Dulbecco’s phosphate-buffered saline (DPBS). Membranes were rinsed with medium and blood 

clots removed. Membranes were then punched using a 12-mm biopsy punch and placed in 12-

well plates with 1 mL of Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 1% 

FBS and pen/strep. Cultures were incubated at 37 ˚C and 5% CO2. After 4 h, the medium was 

changed, and cultures were incubated and additional 24 h. LTA and LPS treatments were 

initially dissolved in water and diluted in DMEM/1% FBS. Following acclimation, the medium 
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of the extraplacental membranes punches was replaced with exposure medium of 

DMEM/1%FBS with LTA (1 µg/mL), LPS (100 ng/mL), or no LTA or LPS (controls). Tissue 

punch experiments were conducted in triplicate using extraplacental membranes from seven or 

eight women.  

 

Next, to better simulate the ascending uterine infection model, extraplacental membranes were 

cultured in a two-compartment transwell system as described previously published (Zaga, 

Estrada-Gutierrez et al. 2004, Thiex, Chames et al. 2009). The membranes were then mounted on 

sterile transwell frames that had no synthetic membrane (gift from Corning, NY) and held in 

place with sterile latex elastic bands (ORMCO, Orange, CA). The membranes were affixed with 

the choriodecidua facing the inner chamber of the transwell and the amnion facing the outer 

chamber. The transwell inserts with extraplacental membranes were placed in wells of 12-well 

culture plates containing Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 1% 

FBS and pen/strep.  The smaller inner chamber had 0.5 mL medium and the larger outer chamber 

had 1.5 mL medium. Cultures were incubated at 37 ˚C and 5% CO2. After 4 h, the medium was 

exchanged for DMEM/1% FBS without antibiotics. GBS in early exponential growth phase was 

diluted with DMEM/1% FBS to 1x106 colony forming units/mL (CFU/mL). Inoculant 

concentrations were validated by overnight growth on 5% sheep blood agar with erythromycin. 

Following a 24-h acclimation, the medium in the inner choriodecidua-facing chamber was 

replaced with fresh DMEM/1%FBS medium containing 0.5 mL GBS inoculant (1x106 

CFU/mL), DCVC (1, 5, or 10 µM), DCVC (1, 5, or 10 µM) + GBS (1x106 CFU/mL). Medium in 

the outer amnion compartment was replaced with fresh DMEM/1%FBS containing DCVC (1, 5, 

or 10 µM). Control cultures had fresh medium without DCVC or GBS. Transwell experiments 
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were conducted in duplicate or triplicate using extraplacental membranes from four women. 

 

Cytokine ELISAs 

Cytokine release from the extraplacental membranes punches into medium was measured by the 

University of Michigan Immunology Core using commercially available enzyme linked 

immunosorbant assays (ELISA; R&D Systems). The ELISA detection ranged from 2.91-2500 

pg/mL for IL-1β,9.38-125,000 pg/mL for IL-6, 31.2-2000 pg/mL for IL-8, and 15.6-5000 pg/mL 

for TNF-α. Samples were diluted as necessary. Values are reported as pg or ng protein/mL 

medium. 

 

RNA Extraction and PCR 

Total RNA from tissue punches was extracted using RNeasy Plus Mini kits (Quigen, Valencia, 

CA). The cDNA was synthesized with 1 µg total RNA using the iScript cDNA Synthesis Kit 

(BioRad, Hercules, CA) according to manufacturer’s instructions. Replicates within each woman 

were pooled. Forward and reverse primers used were: (TNF-α) 5’-

GGAGGACGAACATCCAACCTT-3’ and 5’-GGTTGAGGGTGTCTGAAGGAG; beta-2-

microglobulin (B2M) 5’-TGGAGGCTATCCAGCGTACT-3’ and 5’-

CGGATGGATGAAACCCAGACA-3’. Quantitative RT-PCR reactions were performed on a 

Bio-Rad CFX Connect Real-Time System according to SsoAdvanced SYbR Green Supermix 

directions (BioRad, Hercules, CA). The following conditions were used for PCR: initial 

denaturation at 95 °C for 10 min, followed by 40 cycles of 15 sec at 95 °C, 5 sec at 60 °C. Signal 

intensities of target genes were quantified using standard curves and normalized to the signal of 
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β-microglobulin using Bio-Rad CFX manager software. All samples were run in triplicate. Data 

were analyzed using CFX software (BioRad, Hercules, CA).  

 

GBS Viability 

GBS viability in the presence of DCVC and TCA was assessed using the AlamarBlue assay 

(Serotec) according to manufacture directions and previously published methods (Chen, et al). 

Briefly, GBS was grown to exponential log phase at 37 °C with shaking in THB and diluted to  

1x106 CFU/mL in DMEM medium supplemented with 1% FBS. Bacterial suspension, DCVC or 

TCA, and AlamarBlue dye (10%) were incubated in 96-well plates at 37 °C. Fluorescence was 

measured after 8 h on a SpectraMax M2e plate reader (excitation 560nm, emission 590nm) and 

percent cell viability was determined. Three independent experiments were performed with five 

replicates per treatment.  

 

Statistical Analysis 

Data are expressed as mean ± SEM and were analyzed using GraphPad Prism 5 software 

(GraphPad Software, La Jolla, CA). ANOVAs with Tukey’s post hoc test were performed. Data 

were considered significant if the p-value was < 0.05. 

 

Results 

DCVC Effects on LTA-Stimulated and LPS-Stimulated TNF-α Release from Tissue Punch 

Cultures of Extraplacental Membranes 

To investigate TCE metabolite-pathogen interactions on cytokine release, human extraplacental 

membranes were cocultured with the TCE metabolites TCA or DCVC in the absence or presence 
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of LTA or LPS for 24 h. Exposure to TCA or DCVC alone did not significantly increase 

cytokine release from extraplacental membranes, whereas both LTA and LPS significantly 

increased TNF-α release from approximately 20 pg/mL to 830 pg/mL and 4300 pg/mL 

respectively (Figure 5.1; P < 0.05). Nonetheless, 5 µM DCVC significantly inhibited LTA-

stimulated TNF-α release by 5 fold. In addition, 10 µM DCVC (the lowest concentration tested) 

significantly inhibited LPS-stimulated TNF-α release with a 21-fold reduction. To investigate the 

toxicodynamics of DCVC inhibition of pathogen-stimulated TNF-α release, extraplacental 

membranes were cocultured with DCVC or LTA for 4, 8, and 24 h. LTA stimulated a robust 

increase in TNF-α by 4 h, and 10 µM DCVC inhibited the LTA-stimulated response at 4 h 

(Figure 5.2; P < 0.05). To further probe the mechanism by with DCVC inhibited pathogen-

stimulated TNF-α release, RNA was extracted from tissue punches treated for 4 h with 10 µM 

DCVC, LTA, LTA + 10 µM DCVC, or no treatment (control). Similar to the protein results, 

LTA-stimulated TNF-α mRNA expression was inhibited by 4 h of exposure to DCVC by 

approximately 8 fold (Figure 5.3; P < 0.05). In contrast, the TCE metabolite TCA did not inhibit 

LTA-stimulated cytokines (Figure 5.4) at up to 500 µM. 

 

DCVC Effects on GBS-Stimulated Release of Pro-Inflammatory Cytokines from Extraplacental 

Membranes in Transwell Cultures 

Extraplacental membranes in transwell culture released increased amounts of IL-1β (66 fold), IL-

8 (4.7 fold), and TNF-α (54 fold) into the medium of the choriodecidual compartment after 24 h 

of exposure to GBS (Figure 5.5; P < 0.05). Although, exposure to GBS appeared to increase IL-6 

slightly, the data were not statistically different. In addition GBS-stimulated IL-1β and TNF-α 

release was completely inhibited by coculture with 5 µM and 10 µM DCVC. GBS-stimulated IL-
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8 release was inhibited 3.3 fold with 5 µM DCVC and 3.5 fold with 10 µM DCVC. Membranes 

exposed to GBS with 1 µM DCVC increased IL-6 secretion in the choriodecidual compartment 

compared to medium only control. However, at higher concentrations, DCVC (5 µM and 10 µM) 

and GBS co treatment do not increase IL-6. To determine if decreased cytokines were a result of 

DCVC or TCA killing the bacteria directly, GBS was incubated with DCVC or TCA for 8 h and 

viability was assessed. DCVC only decreased cell viability at 50 µM, a higher concentration than 

we used for the punch and transwell tissue culture experiments (Figure 5.6; P < 0.05).  

Discussion 

Despite the recent attention to toxicant-pathogen interactions in the literature, few studies have 

been published examining the role of toxicant-pathogens interactions during pregnancy. 

Cytokines are essential for recruitment and function of immune cells during infection. An 

inhibition of cytokine secretion during infection could result in loss of immune cell recruitment 

and increased severity of infection. Here, we show for the first time that the TCE metabolite 

DCVC is capable of inhibiting pathogen-stimulated cytokine (IL-1β, IL-8, and TNF-α) release in 

a concentration-dependent manner. In addition, we show that this happens both at the protein and 

mRNA expression level as early as 4 h. 

 

TCE is a common drinking water contaminant (ATSDR 2011) implicated in developmental, 

reproductive and immune system toxicity (U.S. Environmental Protection Agency 2011, Chiu, Jinot 

et al. 2013). Drinking water contaminated with TCE has been associated with increased neural 

tube defects, oral clefts, and cardiac defects in humans (Bove, Shim et al. 2002). TCE exposure 

during pregnancy is associated with intrauterine growth restriction (IUGR) (Windham, 

Shusterman et al. 1991). In addition to environmental exposures, infection is associated with 
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adverse birth outcomes. Given the likelihood that pregnant women are exposed to both 

environmental contaminants such as TCE and infectious agents, few studies have elucidated 

toxicant-pathogen interactions during pregnancy. Our study is among the first to explore 

toxicant-pathogen interactions in a relevant target tissue: the extraplacental membranes. 

Although the extraplacental membranes model is useful for exploring mechanisms of toxicity in 

vitro, our findings of DCVC suppression of pathogen-stimulated cytokines, warrant further 

validation in additional pregnant animal models.  

 

Studies in humans and mice implicate a role for TCE in some autoimmune diseases (Cooper, 

Makris et al. 2009). Workers exposed to TCE have altered cytokine levels including increased 

IL-2, increased IFN-γ, and reduced IL-4 cytokine levels compared to non-exposed workers 

(Iavicoli, Marinaccio et al. 2005). Mice exposed to TCE had increased IL-2, TNF-α, and IFN-γ 

secretion from CD4+ T-cells (Blossom, Doss et al. 2008). TCE also affects the developing 

immune system in mice with increased delayed type hypersensitivity, suppressed SRBC-specific 

IgM production, decreased B220 cells in the spleen, and increased thymic T cell subpopulations 

(Peden-Adams, Eudaly et al. 2006). Despite evidence linking TCE to reproductive and immune 

outcomes, few if any studies have examined TCE and immune outcomes (such as cytokines) in 

pregnant women. Our study is one of the first studies to use a gestational tissue model to 

examine effects of TCE metabolites on cytokine secretion. In our study, neither DCVC nor TCA 

affected proinflammatory cytokine secretion directly; instead we saw pathogen stimulated 

suppression. Although the aforementioned studies did not report cytokine suppression, the 

response could have been overlooked. Without stimulating with an infectious agent we would 

not have observed suppression in our experiments.  
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TCE exposure increases susceptibility to bacterial lung infection in mice (Aranyi, O'Shea et al. 

1986, Selgrade and Gilmour 2010). Mice co-treated with TCE and Streptococcus zooepidemicus 

show increased mortality, decreased bacterial clearance in the lung and decreased alveolar 

phagocytosis. Although the mechanisms for this immunosuppression during TCE and 

Streptococcus zoopidemicus infection have not yet been elucidated, this study, along with our 

data provide the first evidence of toxicant-pathogen interactions with trichloroethylene.  

 

TNF-α has a diversity of functions including cellular growth and differentiation (Semenzato 

1990) and proper regulation throughout gestation is essential (Bowen, Chamley et al. 2002, 

Bowen, Chamley et al. 2002). TNF-α is found to be expressed in placental villi during normal 

pregnancy and regulates apoptotic death in villous cytotrophoblasts (Yui, Garcia-Lloret et al. 

1994). Moreover, TNF-α is involved in both neutrophil recruitment and macrophage 

phagocytosis (Lukacs, Strieter et al. 1995, Arcuri, Toti et al. 2009). Suppression of TNF-α 

inhibits nitric oxide (NO) production and microbial properties in macrophages (Oswald, Wynn et 

al. 1992, Leenen, Canono et al. 1994, Kolls, Xie et al. 1995, Xie, Kolls et al. 1995). Toxicant 

inhibition of TNF-α may have implications for pathways necessary for fighting infection 

especially in macrophages.  

 

IL-1β has been implicated in antimicrobial peptide production (Singh, Jia et al. 1998, Moon, Lee 

et al. 2002, McDermott, Redfern et al. 2003, Pioli, Weaver et al. 2006). Antimicrobial peptides 

are critical components of the innate immune response to pathogens responsible for killing 

pathogens and recruiting immune cells (Zasloff 2002, Chen, Niyonsaba et al. 2005, Peschel and 

Sahl 2006). Recently, we found that GBS stimulation of extraplacental membranes increases IL-
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1 (Chapter 3) which is responsible for increasing human β-defensin-2 (HBD-2) in amniotic 

epithelium (Boldenow, Jones et al. 2013). Here, we found that DCVC inhibits GBS stimulated 

IL-1β in the choriodecidual compartment. Although, not studied here, inhibition of IL-1β could 

be implicated in inhibiting antimicrobial peptide production and possibly increased susceptibility 

to infection.  

 

Although TCE can be detected in rat fetuses following maternal exposure to TCE (Withey and 

Karpinski 1985), metabolites were utilized in the present study because most TCE is rapidly 

metabolized after absorption into the body (Chiu, Okino et al. 2006, U.S. Environmental Protection 

Agency 2011) Furthermore, TCE metabolites are significantly more biologically active than the 

parent compound (Chiu, Okino et al. 2006), and metabolism appears to be necessary for at least 

some of TCE’s immunomodulatory activity (Griffin, Gilbert et al. 2000). DCVC has been 

detected in serum of exposed rodents (Lash, Putt et al. 2006, Kim, Collins et al. 2009, Bradford, 

Lock et al. 2011) and humans (Lash, Putt et al. 1999), and the human placenta expresses key 

enzymes necessary to initiate metabolism of TCE to this bioactive metabolite (Hakkola, Raunio 

et al. 1996, Collier, Tingle et al. 2002, Nogutii, Barbisan et al. 2012). LTA, LPS, and GBS 

stimulation of TNF-α release was inhibited at 5 µM DCVC. The DCVC concentrations used 

were at or near the lowest bioactive concentrations of DCVC reported in kidney cells (Xu, 

Papanayotou et al. 2008). Estimates for concentrations of DCVC relevant to human exposure are 

difficult to make due to insufficient data (Chiu, Okino et al. 2006). Humans exposed to levels as 

low as 100 ppm TCE in air transiently exhibit levels as high as 50 µM of the DCVC precursor 

DCVG in serum (Lash, Putt et al. 1999), although typical environmental exposures to TCE are 

<5 ppb in air (U.S. Environmental Protection Agency 2011). Although the concentrations we used 
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are higher than the average person in the United States would encounter through an ambient 

environmental exposure, they are within occupational exposure levels. 

 

Human extraplacental membranes were incubated ex vivo with lipoteichoic acid (LTA), 

lipopolysaccharide (LPS), and live Group B Streptococcus (GBS; S. agalactiae) as model 

infectious agents. LTA and LPS are cell wall or membrane components of gram positive and 

gram negative bacteria, respectively, that are highly immunogenic in tissue cultures of human 

extraplacental membranes (Zaga, Estrada-Gutierrez et al. 2004, Thiex, Chames et al. 2009) and 

induce preterm birth in rodent models (Kajikawa, Kaga et al. 1998, Elovitz and Mrinalini 2004). 

Moreover, GBS is a gram positive bacterium associated with adverse pregnancy outcomes 

(Anderson, Simhan et al. 2007, Winn 2007, Verani, McGee et al. 2010) in women and able to 

induce preterm labor in subhuman primates (Gravett, Haluska et al. 1996). Despite interventions 

aimed at reducing GBS infections during pregnancy, GBS remains the leading cause of 

infection-related neonatal death and disease in the United States (Verani, McGee et al. 2010). 

We previously reported that human extraplacental membranes mount a robust defense to live 

GBS in tissue culture (Boldenow, Jones et al. 2013). In this study we also show that live GBS 

mounts a robust cytokine release in extraplacental membranes. Furthermore, we show that LTA 

and LPS, cell wall or membrane components from different microbial species mount similar 

cytokine responses compared to GBS. Despite the differences in molecular structure of the 

infectious agents used in this study, DCVC inhibition of pathogen-stimulated cytokines was 

similar between all three infectious agents (LTA, LPS, and GBS), suggesting the observed 

cytokine inhibition is not pathogen specific.  
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In summary, we have shown that the TCE metabolite DCVC inhibits pathogen-stimulated TNF-α 

mRNA expression and release in the extraplacental membranes. These findings have 

implications for mechanisms involved in innate immune dysregulation during pregnancy, 

potentially leading to increased susceptibility to infection. Future studies will focus on additional 

aspects of immune function such as macrophage function and antimicrobial peptide response. 

Current limited knowledge of mechanisms by which GBS acts on the host immune system 

during pregnancy and the potential toxicant interactions on host defense are critical barriers to 

the development of targeted preventive and therapeutic approaches to reduce adverse pregnancy 

outcomes. Findings from this project have the potential to expand current paradigms about GBS 

infections and environmental contaminant exposures that may put pregnant women at increased 

risk for intrauterine infection. 
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Figure 5.1. DCVC effects on LTA-stimulated and LPS-stimulated cytokines.  
Punches of full thickness human extraplacental membranes were floated in culture with and 
without DCVC and LTA (A; 1 µg/mL) or LPS (B; 100 ng/mL) for 24 h, and then the medium 
was assayed by ELISA for TNF-α. Columns represent mean ± SEM; N=3-7 women. #, 
Significant differences compared to control (medium only). *, Significant compared to LTA or 
LPS alone by ANOVA with Tukey’s post-hoc test (p≤ 0.05). 
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Figure 5.2. DCVC effects on LTA-stimulated TNF-α over time. 
Punches of full thickness human extraplacental membranes were floated in culture with and 
without DCVC and LTA (1 µg/mL) for 4, 8, and 24 h, and then the medium was assayed by 
ELISA for TNF-α. Columns represent mean ± SEM; N=5 women. #, Significant differences 
compared to control (medium only). *, Significant compared to LTA alone by ANOVA with 
Tukey’s post-hoc test (p≤ 0.05). 
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Figure 5.3. DCVC effects on LTA-stimulated TNF-α mRNA expression.  
Punches of full thickness human extraplacental membranes were floated in culture with and 
without DCVC (10 µM) and LTA (1 µg/mL) for 4 h, and then the RNA was extracted and 
assayed by PCR for TNF-α expression and the data presented as fold change in mRNA 
expression compared to control. Columns represent mean ± SEM; N=3 women. #, Significant 
differences compared to control (medium only). *, Significant compared to LTA alone by 
ANOVA with Tukey’s post-hoc test (p≤ 0.05). 
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Figure 5.4. TCA effects on LTA-stimulated release of TNF-α. 
Punches of full thickness human extraplacental membranes were floated in culture with and 
without TCA and LTA (1 µg/mL) for 24 h, and then the medium was assayed by ELISA for 
TNF-α. Columns represent mean ± SEM; N=3 women. #, Significant differences compared to 
control (medium only) by ANOVA with Tukey’s post-hoc test (p≤ 0.05).  
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Figure 5.5. DCVC effects on GBS-stimulated cytokines.  
DCVC effects on GBS-stimulated release of pro-inflammatory cytokines from extraplacental 
membranes in transwell cultures. Full thickness human extraplacental membranes were 
cocultured with live GBS for 24 h, and then the medium from the choriodecidua compartment 
was assayed by ELISA for IL-1β (A), IL-6 (B), IL-8 (C), and TNF-α (D). Columns represent 
mean ± SEM; N=5 women (N=2 women for 1 µM DCVC and N=3 for 1 µM DCVC + GBS). #, 
Significant differences compared to control (medium only). *, Significant compared to GBS 
alone by ANOVA with Tukey’s post-hoc test (p≤ 0.05). 
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Figure 5.6. DCVC and TCA effects on GBS viability.  
GBS was cultured with DCVC or TCA for 8 h and bacterial viability was assessed by 
AlamarBlue. Columns represent mean ± SEM; N=3 experiments, five replicates per experiment. 
*, Significantly decreased compared with nontreated control and other DCVC treatment groups 
using ANOVA with Tukey’s post-hoc test (p≤ 0.05). 
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CHAPTER 6. DISCUSSION 

 

Group B Streptococcus (GBS) remains a serious public concern as the leading cause of 

infectious neonatal morbidity and mortality in the United States (Verani, McGee et al. 2010). 

Elucidating host-pathogen interactions is essential for understanding why this pathogen persists. 

This thesis explores mechanisms by which GBS stimulates host responses within the 

extraplacental membranes (Figure 6.1). GBS stimulates host response in immune cells 

(Wennekamp and Henneke 2008); however, few studies have examined GBS-host responses in 

the gestational tissues, which represent one the first tissues to interact with GBS during an 

ascending infection during pregnancy. Furthermore, this thesis explores toxicant-pathogen 

interactions using a bioactive metabolite of trichloroethylene as a model toxicant and GBS, LTA, 

or LPS as model infectious agents.  

 

As the first line of defense, antimicrobial peptides represent an important part of the innate 

immune response, yet the mechanisms and implications of antimicrobial peptide expression in 

the extraplacental membranes remain understudied. Consistent with previous reports, we found 

multiple antimicrobial peptides constitutively expressed throughout the extraplacental 

membranes (Chapter 2). In addition, human beta defensin (HBD)-2 secretion into the medium 

increased in the choriodecidual and amnion compartments after GBS treatment on the 

choriodecidual side of the membranes. Of particular note, amnion epithelial cells appear to be the 
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major contributor of HBD-2 in the extraplacental membranes (Chapter 3). Although we did not 

conduct an exhaustive study, our data suggest that HBD-2 is likely the antimicrobial peptide 

responsible for killing GBS on the choriodecidual side of the membrane (Chapter 2). 

Immunohistochemical data (Figure 2.3) suggest HBD-2 is present across various cell types in the 

extraplacental membranes. However, our ELISA data (Appendix 3.5) suggest that amnion 

epithelial cells, not choriodecidual tissue, are primarily responsible for increases in HBD-2 

during GBS infection. Constitutive expression of HBD-2 in the choriodecidual tissue may be 

enough to kill the GBS or HBD-2 may migrate through the tissue. To our knowledge, no studies 

have demonstrated HBD-2 migration through the tissue. However, cytokines transfer through 

extraplacental membranes (Kent, Sullivan et al. 1994) and HBD-2 secreted by the amnion 

epithelial cells may act similarly to cytokines. Alternatively, additional antimicrobial peptides 

could be responsible for killing GBS on the choriodecidual side of the membrane.  

 

Though the link between infection and increased cytokine secretion has been previously 

established in gestational tissues (Gravett, Witkin et al. 1994, Menon, Swan et al. 1995, 

Griesinger, Saleh et al. 2001, Zaga, Estrada-Gutierrez et al. 2004, Menon, Peltier et al. 2009, 

Adams Waldorf, Gravett et al. 2011), the link between cytokine increases and antimicrobial 

peptides during infection has not been fully elucidated in the extraplacental membranes. Using 

novel culture methods of the extraplacental membranes, the present study is the first to identify a 

mechanism by which HBD-2 is increased in the amnion epithelial cells (Chapter 3). Our results 

demonstrate that IL-1α and IL-1β secreted from the choriodecidua are responsible for the 

increase in HBD-2 in the amnion epithelial cells. In addition, blocking IL-1α or IL-1β with either 

an IL-1β neutralizing antibody or IL-1Ra (receptor antagonist) inhibits the HBD-2 secretion from 
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the extraplacental membranes. This represents one potential mechanism by which antimicrobial 

peptides are regulated and is consistent with cell models from other tissue types such as lung 

(Tsutsumi-Ishii and Nagaoka 2003). GBS increases IL-1α, IL-1β, and IL-1Ra secretion from the 

extraplacental membranes (Chapter 4). Because IL-1α and IL-1β seem biologically redundant for 

increasing HBD-2 and because IL-1Ra inhibits the increase, it may be beneficial to look at ratios 

of the three secreted factors in the future to help define some of the intra-individual differences 

we observed. Here, we investigated mechanisms on only one antimicrobial peptide. However, as 

demonstrated in chapter 2, a host of antimicrobial peptides are present in the tissue and the 

mechanisms by which they act to help eliminate infection needs to be explored further.  

 

Several literature reviews have suggested that TLRs are involved in antimicrobial peptide 

production in the extraplacental membranes (King, Paltoo et al. 2007, Horne, Stock et al. 2008), 

yet few studies have studied this directly. Although we showed that TLR-2 is present in various 

cells throughout the extraplacental membranes, LTA, a classic TLR-2 ligand, did not increase 

HBD-2 secretion in full thickness extraplacental membranes or in amnion epithelial cells 

(Chapter 3). TLR-4 is also present in the extraplacental membranes; however, we found that 

LPS, a classic TLR-4 ligand, also does not stimulate HBD-2 secretion. Furthermore, heat-killed 

GBS does not stimulate cytokine or HBD-2 secretion from the membranes. In contrast, live GBS 

stimulates HBD-2 secretion from whole membranes. Taken together, the data are consistent with 

a model wherein TLR stimulation alone is not sufficient to stimulate HBD-2 secretion. 

Additionally, we propose that cellular internalization is critical for activating the immune 

response, which has been demonstrated during GBS infection of mouse dendritic cells (Costa, 

Gupta et al. 2012).    
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Although not directly tested, we propose that data in this dissertation support a role for 

inflammasome activation during GBS infection. The inflammasome is a multi-protein complex 

composed in part of caspase-1, which is responsible for cleaving pro-IL-1β to the active form 

which can then be secreted from the cell (Latz 2010). To activate the inflammasome, a cell or 

tissue needs be stimulated by both a TLR ligand and an additional component such as ATP and 

calcium. Our data (Chapter 3) suggest that IL-1β secretion, which is dependent on the 

inflammasome, plays a particularly important role during GBS infection of the extraplacental 

membranes. In addition, Mitchell et al. has demonstrated increases in IL-1β in maternal and fetal 

plasma from GBS-colonized mothers (Mitchell, Brou et al. 2013). Caspase-1 has been shown to 

be significantly elevated in amniotic fluid from women who delivered preterm with an infection 

(Gotsch, Romero et al. 2008) compared to women who delivered preterm without an infection. 

Furthermore, the inflammasome has been shown to be important in IL-1β, but not TNF-α 

secretion during GBS infection of dendritic cells (Costa, Gupta et al. 2012). These studies 

highlight the complexity of the pathways involved in GBS-stimulated host defense and suggest 

that IL-1β and TNF-α have different secretion pathways. Inflammasome activation is likely 

needed for GBS-stimulated IL-1β secretion, whereas, TNF-α may rely more simply on TLR-2 

binding. Future studies need to further examine the inflammasome during GBS infection of the 

extraplacental membranes.  

 

GBS strains utilize different virulence mechanisms to infect host cells and tissues. Although, the 

virulence mechanisms by which GBS act on host cells remain to be elucidated, this is the first 

study to link the magnitude of different cytokine secretion from the extraplacental membranes to 
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GBS strain differences (Chapter 4). One particular virulence mechanism for future work may be 

biofilm formation. Biofilm formation is thought to be present in human infections and represents 

a significant problem in treatment because biofilms are physiologically distinct from planktonic 

(or free floating) cells and more difficult for antibiotic treatment (Costerton, Stewart et al. 1999). 

GBS forms biofilms (Kaur, Kumar et al. 2009, Borges, Silva et al. 2012, Ho, Li et al. 2013), and 

previous studies have identified biofilm formation in the amniotic compartment (Kusanovic, 

Espinoza et al. 2007, Romero, Kusanovic et al. 2007, Romero, Schaudinn et al. 2008). Our initial 

finding that extraplacental membranes were capable of killing GBS (strain A909; Chapter 2) 

appears to be GBS strain specific (Chapter 4). We identified clusters of GBS strain GB112 on 

the surface of the extraplacental membranes. This latter strain also promoted a less robust 

cytokine response compared to the invasive GBS strains, suggesting a possible mechanism by 

which GB112 evades host responses. Although compelling, these experiments were only 

collected in a small number of women and need to be validated in a larger sample size. 

Exploration into additional GBS strains and the mechanisms by which the GBS strains tested in 

this dissertation colonize and invade gestational tissues is critical to gain a more complete 

understanding of host-pathogen interactions.  

 

The lack of knowledge of toxicant actions on host defense to infection of extraplacental 

membranes is a critical barrier to the development of targeted preventive and therapeutic 

approaches to reduce adverse pregnancy outcomes. Previous studies from our lab have 

demonstrated the potential role of environmental toxicants in adverse birth outcomes. However, 

this is the first study to explore toxicant-pathogen interactions in the extraplacental membranes 

which form a critical barrier to infection of the gestational compartment. We found a decrease in 
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pathogen-stimulated inflammatory cytokines (IL-1β and TNF-α) with the trichloroethylene 

metabolite DCVC treatment (Chapter 5). These findings of alterations of the normal host 

response have implications for increased risk and severity of intrauterine infection during 

environmental exposures. As demonstrated in Chapter 3, IL-1β is critical for HBD-2 secretion in 

the amnion epithelial cells and is likely involved in bacterial clearance. These findings suggest 

that DCVC inhibition of pathogen-stimulated TNF-α could also impact monocyte recruitment 

and macrophage killing of the bacteria, which are both reliant on TNF-α (Esparza, Mannel et al. 

1987, Ming, Bersani et al. 1987, Bermudez and Young 1988). We recognize that these data are 

preliminary and could represent the opposite of expected – intrauterine inflammation is 

associated with neonatal brain damage, consequently the inhibition of pathogen stimulated 

inflammatory cytokines could actually benefit the fetus during infection. Complete inhibition of 

stimulated TNF-α could have different implications at different times during pregnancy such as 

placentation, which is regulated in part by cytokines. Regardless, the data generated from our 

experiments expand current paradigms of risk for intrauterine infection to include exposure to 

environmental contaminants. Furthermore, these data could have implications for immune 

inhibition during infection in more general populations and should be explored further in 

additional models.  

 

DCVC and TCA are the critically bioactive metabolites responsible for TCE toxicity in the 

kidney and liver, respectively. Both metabolites circulate in the blood and can reach the placenta 

and membranes through the maternal blood supply (Lash, Putt et al. 1999, Lash, Putt et al. 2006, 

Kim, Collins et al. 2009, Bradford, Lock et al. 2011). Furthermore, the placenta has the 

necessary enzymes to metabolize TCE to DCVC and TCA (Hakkola, Raunio et al. 1996, Collier, 
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Tingle et al. 2002, Noguti, Barbisan et al. 2012). Studies in our lab are currently underway to 

identify TCE metabolites in rat amniotic fluid and placenta. The concentrations of DCVC (1 – 50 

µM) used in the present study are in the lower effective concentration range of DCVC for 

cultured renal proximal tubular cells, known targets for DCVC toxicity (Lash, Qian et al. 2001, 

Lash, Putt et al. 2007, Xu, Papanayotou et al. 2008). Estimates for concentrations of DCVC 

relevant to human exposure are difficult to make due to insufficient data; however, humans 

exposed to levels as low as 100 ppm TCE in air transiently exhibit levels as high as 50 μM of the 

DCVC precursor DCVG in serum (Lash, Putt et al. 1999). Although, no changes in cytokine 

secretion were noted for TCA, the concentrations used in the present study (10-500 µM) were 

also comparable to occupational exposures: TCA concentrations are approximately 40 μM in 

blood from humans exposed for 4 h to 50 ppm TCE (the 8-h timeweighted average threshold 

limit recommended by the American Conference of Governmental Industrial Hygienists) (Fisher, 

Mahle et al. 1998).  

 

This study employed new applications of tissue culture models to examine toxicant actions in the 

extraplacental membranes. The benefits of using ex vivo human tissues include availability, 

relevant target tissue, and ability to capture cell-cell interactions. We recognize that this model 

has limitations, which include heterogeneity of cell populations, and inter- and intra-individual 

differences. We did not control for environmental factors when collecting the tissue. Although 

we have specific inclusion criteria for tissue collection we did not control for fetal sex, fetal age, 

maternal BMI, etc. In most of our studies, we noted high responders and low responders. 

Therefore, future studies should be conducted in whole animal models (especially for toxicant-

pathogen interaction) to validate findings. In addition, more studies are needed linking the 
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immune markers identified in this study (such as increases in IL-1α, IL-1β and HBD-2) to 

adverse birth outcomes and neonatal infection from GBS-positive pregnant women.  

 

In summary, the findings from this compendium of related studies demonstrate: 1) Antimicrobial 

peptides, especially HBD-2, appear to be an important immune response during GBS infection in 

the extraplacental membranes; 2) cytokines produced by the choriodecidua, namely IL-1α and 

IL-1β, are responsible for increasing HBD-2 in the amnion epithelial cells during GBS infection 

of the extraplacental membranes; 3) host response in the extraplacental membranes is GBS strain 

dependent; and 4) exposure to environmental toxicants such as trichloroethylene can alter host 

response mechanisms during infection (Figure 6.1). These studies provide new insight into host 

response of the extraplacental membranes during GBS infection with special emphasis placed on 

the necessity of IL-1 secretion for HBD-2 increases. Furthermore, this dissertation provides data 

that expands our current thinking of infection during pregnancy to include toxicant-pathogen 

interactions as a potential concern.  
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Figure 6.1. Conceptual model of GBS infection in the extraplacental membranes.  
Live GBS increases secretion of cytokines IL-1α, IL-1β, IL-6, IL-8, and TNF-α in a strain-
dependent manner in the choriodecidual tissue. Heat-killed GBS fails to elicit an increased 
cytokine response. IL-1α and IL-1β from the choriodecidual tissue increase HBD-2 in the 
amnion epithelial cells. HBD-2 then kills GBS. IL-1β NA (neutralizing antibody) and IL-1Ra 
(receptor antagonist) inhibit IL-1 stimulated increases in HBD-2. Finally, S-(1,2)-dichlorovinyl-
L-cysteine (DCVC) inhibits GBS-stimulated TNF-α.   
 

  



146 
 

 

References 

Adams Waldorf, K. M., M. G. Gravett, R. M. McAdams, L. J. Paolella, G. M. Gough, D. J. Carl, 
A. Bansal, H. D. Liggitt, R. P. Kapur, F. B. Reitz and C. E. Rubens (2011). "Choriodecidual 
group B streptococcal inoculation induces fetal lung injury without intra-amniotic infection and 
preterm labor in Macaca nemestrina." PLoS One 6(12): e28972. 

Bermudez, L. E. and L. S. Young (1988). "Tumor necrosis factor, alone or in combination with 
IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium 
complex." J Immunol 140(9): 3006-3013. 

Borges, S., J. Silva and P. Teixeira (2012). "Survival and biofilm formation by Group B 
streptococci in simulated vaginal fluid at different pHs." Antonie Van Leeuwenhoek 101(3): 
677-682. 

Bradford, B. U., E. F. Lock, O. Kosyk, S. Kim, T. Uehara, D. Harbourt, M. DeSimone, D. W. 
Threadgill, V. Tryndyak, I. P. Pogribny, L. Bleyle, D. R. Koop and I. Rusyn (2011). "Interstrain 
differences in the liver effects of trichloroethylene in a multistrain panel of inbred mice." Toxicol 
Sci 120(1): 206-217. 

Collier, A. C., M. D. Tingle, J. W. Paxton, M. D. Mitchell and J. A. Keelan (2002). 
"Metabolizing enzyme localization and activities in the first trimester human placenta: the effect 
of maternal and gestational age, smoking and alcohol consumption." Hum Reprod 17(10): 2564-
2572. 

Costa, A., R. Gupta, G. Signorino, A. Malara, F. Cardile, C. Biondo, A. Midiri, R. Galbo, P. 
Trieu-Cuot, S. Papasergi, G. Teti, P. Henneke, G. Mancuso, D. T. Golenbock and C. Beninati 
(2012). "Activation of the NLRP3 inflammasome by group B streptococci." Journal of 
immunology 188(4): 1953-1960. 

Costa, A., R. Gupta, G. Signorino, A. Malara, F. Cardile, C. Biondo, A. Midiri, R. Galbo, P. 
Trieu-Cuot, S. Papasergi, G. Teti, P. Henneke, G. Mancuso, D. T. Golenbock and C. Beninati 
(2012). "Activation of the NLRP3 inflammasome by group B streptococci." J Immunol 188(4): 
1953-1960. 

Costerton, J. W., P. S. Stewart and E. P. Greenberg (1999). "Bacterial biofilms: a common cause 
of persistent infections." Science 284(5418): 1318-1322. 

Esparza, I., D. Mannel, A. Ruppel, W. Falk and P. H. Krammer (1987). "Interferon gamma and 
lymphotoxin or tumor necrosis factor act synergistically to induce macrophage killing of tumor 
cells and schistosomula of Schistosoma mansoni." J Exp Med 166(2): 589-594. 

Fisher, J. W., D. Mahle and R. Abbas (1998). "A human physiologically based pharmacokinetic 
model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol." 
Toxicol Appl Pharmacol 152(2): 339-359. 



147 
 

Gotsch, F., R. Romero, T. Chaiworapongsa, O. Erez, E. Vaisbuch, J. Espinoza, J. P. Kusanovic, 
P. Mittal, S. Mazaki-Tovi, C. J. Kim, J. S. Kim, S. Edwin, C. L. Nhan-Chang, N. Hamill, L. 
Friel, N. G. Than, M. Mazor, B. H. Yoon and S. S. Hassan (2008). "Evidence of the involvement 
of caspase-1 under physiologic and pathologic cellular stress during human pregnancy: a link 
between the inflammasome and parturition." J Matern Fetal Neonatal Med 21(9): 605-616. 

Gravett, M. G., S. S. Witkin, G. J. Haluska, J. L. Edwards, M. J. Cook and M. J. Novy (1994). 
"An experimental model for intraamniotic infection and preterm labor in rhesus monkeys." Am J 
Obstet Gynecol 171(6): 1660-1667. 

Griesinger, G., L. Saleh, S. Bauer, P. Husslein and M. Knofler (2001). "Production of pro- and 
anti-inflammatory cytokines of human placental trophoblasts in response to pathogenic bacteria." 
J Soc Gynecol Investig 8(6): 334-340. 

Hakkola, J., H. Raunio, R. Purkunen, O. Pelkonen, S. Saarikoski, T. Cresteil and M. Pasanen 
(1996). "Detection of cytochrome P450 gene expression in human placenta in first trimester of 
pregnancy." Biochem Pharmacol 52(2): 379-383. 

Ho, Y. R., C. M. Li, C. H. Yu, Y. J. Lin, C. M. Wu, I. C. Harn, M. J. Tang, Y. T. Chen, F. C. 
Shen, C. Y. Lu, T. C. Tsai and J. J. Wu (2013). "The enhancement of biofilm formation in Group 
B streptococcal isolates at vaginal pH." Med Microbiol Immunol 202(2): 105-115. 

Horne, A. W., S. J. Stock and A. E. King (2008). "Innate immunity and disorders of the female 
reproductive tract." Reproduction 135(6): 739-749. 

Kaur, H., P. Kumar, P. Ray, J. Kaur and A. Chakraborti (2009). "Biofilm formation in clinical 
isolates of group B streptococci from north India." Microb Pathog 46(6): 321-327. 

Kent, A. S., M. H. Sullivan and M. G. Elder (1994). "Transfer of cytokines through human fetal 
membranes." J Reprod Fertil 100(1): 81-84. 

Kim, S., L. B. Collins, G. Boysen, J. A. Swenberg, A. Gold, L. M. Ball, B. U. Bradford and I. 
Rusyn (2009). "Liquid chromatography electrospray ionization tandem mass spectrometry 
analysis method for simultaneous detection of trichloroacetic acid, dichloroacetic acid, S-(1,2-
dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine." Toxicology 262(3): 230-238. 

King, A. E., A. Paltoo, R. W. Kelly, J. M. Sallenave, A. D. Bocking and J. R. Challis (2007). 
"Expression of natural antimicrobials by human placenta and fetal membranes." Placenta 28(2-
3): 161-169. 

Kusanovic, J. P., J. Espinoza, R. Romero, L. F. Goncalves, J. K. Nien, E. Soto, N. Khalek, N. 
Camacho, I. Hendler, P. Mittal, L. A. Friel, F. Gotsch, O. Erez, N. G. Than, S. Mazaki-Tovi, M. 
L. Schoen and S. S. Hassan (2007). "Clinical significance of the presence of amniotic fluid 
'sludge' in asymptomatic patients at high risk for spontaneous preterm delivery." Ultrasound 
Obstet Gynecol 30(5): 706-714. 



148 
 

Lash, L. H., D. A. Putt, W. T. Brashear, R. Abbas, J. C. Parker and J. W. Fisher (1999). 
"Identification of S-(1,2-dichlorovinyl)glutathione in the blood of human volunteers exposed to 
trichloroethylene." J Toxicol Environ Health A 56(1): 1-21. 

Lash, L. H., D. A. Putt, S. E. Hueni, S. G. Payton and J. Zwickl (2007). "Interactive toxicity of 
inorganic mercury and trichloroethylene in rat and human proximal tubules: effects on apoptosis, 
necrosis, and glutathione status." Toxicol Appl Pharmacol 221(3): 349-362. 

Lash, L. H., D. A. Putt and J. C. Parker (2006). "Metabolism and tissue distribution of orally 
administered trichloroethylene in male and female rats: identification of glutathione- and 
cytochrome P-450-derived metabolites in liver, kidney, blood, and urine." J Toxicol Environ 
Health A 69(13): 1285-1309. 

Lash, L. H., W. Qian, D. A. Putt, S. E. Hueni, A. A. Elfarra, R. J. Krause and J. C. Parker (2001). 
"Renal and hepatic toxicity of trichloroethylene and its glutathione-derived metabolites in rats 
and mice: sex-, species-, and tissue-dependent differences." J Pharmacol Exp Ther 297(1): 155-
164. 

Latz, E. (2010). "The inflammasomes: mechanisms of activation and function." Curr Opin 
Immunol 22(1): 28-33. 

Menon, R., M. R. Peltier, J. Eckardt and S. J. Fortunato (2009). "Diversity in cytokine response 
to bacteria associated with preterm birth by fetal membranes." Am J Obstet Gynecol 201(3): 306 
e301-306. 

Menon, R., K. F. Swan, T. W. Lyden, N. S. Rote and S. J. Fortunato (1995). "Expression of 
inflammatory cytokines (interleukin-1 beta and interleukin-6) in amniochorionic membranes." 
Am J Obstet Gynecol 172(2 Pt 1): 493-500. 

Ming, W. J., L. Bersani and A. Mantovani (1987). "Tumor necrosis factor is chemotactic for 
monocytes and polymorphonuclear leukocytes." J Immunol 138(5): 1469-1474. 

Mitchell, K., L. Brou, G. Bhat, C. O. Drobek, M. Kramer, A. Hill, S. J. Fortunato and R. Menon 
(2013). "Group B Streptococcus colonization and higher maternal IL-1beta concentrations are 
associated with early term births." J Matern Fetal Neonatal Med 26(1): 56-61. 

Noguti, J., L. F. Barbisan, A. Cesar, C. Dias Seabra, R. B. Choueri and D. A. Ribeiro (2012). 
"Review: In vivo models for measuring placental glutatione-S-transferase (GST-P 7-7) levels: a 
suitable biomarker for understanding cancer pathogenesis." In Vivo 26(4): 647-650. 

Romero, R., J. P. Kusanovic, J. Espinoza, F. Gotsch, C. L. Nhan-Chang, O. Erez, C. J. Kim, N. 
Khalek, P. Mittal, L. F. Goncalves, C. Schaudinn, S. S. Hassan and J. W. Costerton (2007). 
"What is amniotic fluid 'sludge'?" Ultrasound Obstet Gynecol 30(5): 793-798. 

Romero, R., C. Schaudinn, J. P. Kusanovic, A. Gorur, F. Gotsch, P. Webster, C. L. Nhan-Chang, 
O. Erez, C. J. Kim, J. Espinoza, L. F. Goncalves, E. Vaisbuch, S. Mazaki-Tovi, S. S. Hassan and 
J. W. Costerton (2008). "Detection of a microbial biofilm in intraamniotic infection." Am J 
Obstet Gynecol 198(1): 135 e131-135. 



149 
 

Tsutsumi-Ishii, Y. and I. Nagaoka (2003). "Modulation of human beta-defensin-2 transcription in 
pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via 
proinflammatory cytokine production." J Immunol 170(8): 4226-4236. 

Verani, J. R., L. McGee, S. J. Schrag, N. C. f. I. Division of Bacterial Diseases, C. f. D. C. 
Respiratory Diseases and Prevention (2010). "Prevention of perinatal group B streptococcal 
disease--revised guidelines from CDC, 2010." MMWR Recomm Rep 59(RR-10): 1-36. 

Wennekamp, J. and P. Henneke (2008). "Induction and termination of inflammatory signaling in 
group B streptococcal sepsis." Immunol Rev 225: 114-127. 

Xu, F., I. Papanayotou, D. A. Putt, J. Wang and L. H. Lash (2008). "Role of mitochondrial 
dysfunction in cellular responses to S-(1,2-dichlorovinyl)-L-cysteine in primary cultures of 
human proximal tubular cells." Biochem Pharmacol 76(4): 552-567. 

Zaga, V., G. Estrada-Gutierrez, J. Beltran-Montoya, R. Maida-Claros, R. Lopez-Vancell and F. 
Vadillo-Ortega (2004). "Secretions of interleukin-1beta and tumor necrosis factor alpha by 
whole fetal membranes depend on initial interactions of amnion or choriodecidua with 
lipopolysaccharides or group B streptococci." Biol Reprod 71(4): 1296-1302. 

 



150 
 

 

Appendix 1. Immunohistochemical staining for TLR-2 in extraplacental membranes. 
The top shows a representative image for TLR-2 staining in human extraplacental membranes. 
The bottom shows a representative image of negative control sections incubated with secondary 
antibody only. No differences were noted between no treatment controls and GBS treated tissues 
(data not shown).  
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Appendix 2. Cytokine release by extraplacental membranes treated with LTA over time. 
Cytokine release into medium by extraplacental transwell cultures treated with medium alone 
(control) or LTA (1 µg/mL) in the choriodecidua compartment.  Cytokines in the medium were 
measured by ELISA in the choriodecidual compartment (A) and amnion compartment (B). 
Columns are mean ± SEM (N=6 women). Asterisks (*) represent significant differences between 
treatment and control when compared by Tukey’s post hoc test following ANOVA (P < 0.05) on 
non transformed data. These results show that the choriodecidua (side of treatment) produces a 
more robust cytokine response. In addition, TNF-α is secreted early compared to IL-1β, IL-6, 
and IL-8 which are produced later.  
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Appendix 3. HBD-2 release into medium by extraplacental membranes treated with LTA. 
HBD-2 release into medium by extraplacental transwell cultures treated with medium alone 
(control) or LTA (1 µg/mL) on the choriodecidua for 24 h. HBD-2 in the medium of the amnion 
compartment was measured by ELISA. Columns are mean ± SEM (N=6 women). No significant 
differences were observed between treatment and control when compared by Tukey’s post hoc 
test following ANOVA. These data suggest that LTA does not stimulated HBD-2 in the 
extraplacental transwell model.   
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Appendix 4. Cytokine release by extraplacental membranes treated with GBS over time.  
Cytokine release into medium by extraplacental membranes choriodecidua punch cultures treated 
with medium alone (control) or GBS (1x106 CFU/mL) for 4, 8, or 24 h. Cytokines in the medium 
were measured by ELISA. Columns are mean ± SEM (for IL-1β, IL-6, IL-8 and TNF-α N=7-8 
women, for IL-1α N=3-19 women). Asterisks (*) represent significant differences between 
treatment and control when compared by Tukey’s post hoc test following ANOVA (P < 0.05). 
These results show that TNF-α is secreted early compared to IL-1α and IL-1β which are 
produced later.   
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Appendix 5. HBD-2 release by extraplacental choriodecidua punches treated with IL-1β.  
HBD-2 release into medium by extraplacental choriodecidua punch cultures treated with medium 
alone (control) or IL-1β (10 ng/mL). HBD-2 in the medium was measured by ELISA. Columns 
are mean ± SEM (N=5 women). No significant differences were observed between treatment and 
control when compared by student’s t-test. This result suggest that choriodecidua is not the 
primary producer of HBD-2 in the extraplacental membranes.  
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Appendix 6. Cytokine release by extraplacental membranes treated with TNF-α.  
Cytokine release into medium by extraplacental membranes punch cultures treated with medium 
alone (control) or TNF-α (100 ng/mL) for 24 h. Cytokines in the medium were measured by 
ELISA. Columns are mean ± SEM (N=4 women). Asterisks (*) represent significant differences 
between treatment and control when compared by student’s t-test (P < 0.05).The results suggest 
that TNF-α is the not the driver of IL-1β expression in the extraplacental membranes. 
  



156 
 

 
Appendix 7. LDH release into medium by extraplacental choriodecidua punch cultures.  
LDH release into medium by extraplacental choriodecidua punch cultures treated with medium 
alone (control) or GBS (1x106 CFU/mL) for 4, 8, or 24 h. LDH in the medium was measured by 
LDH cytotoxicity assay kit. Columns are mean ± SEM (N=4-5 women). Asterisks (*) represent 
significant differences between treatment and control when compared by Tukey’s post hoc test 
following ANOVA (P < 0.05). 
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