In Vivo Predictive Dissolution: Transport Analysis of the CO₂, Bicarbonate In Vivo Buffer System

BRIAN J. KRIEG,1 SEYED MOHAMMAD TAGHAVI,2 GORDON L. AMIDON,1 GREGORY E. AMIDON1

1University of Michigan, College of Pharmacy, Ann Arbor, Michigan 48109
2McGill University, Department of Chemical Engineering, Montreal, Quebec H3A 2B2, Canada

Received 7 February 2014; revised 13 June 2014; accepted 14 July 2014
Published online 11 September 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jps.24108

ABSTRACT: Development of an oral in vivo predictive dissolution medium for acid drugs with a pKa in the physiological range (e.g., Biopharmaceutics Classification System Class II) requires transport analysis of the complex in vivo CO₂/bicarbonate buffering system. In this report, we analyze this buffer system using hydrodynamically defined rotating disk dissolution. Transport analysis of drug flux was predicted using the film model approach of Mooney et al1 based on equilibrium assumptions as well as accounting for the slow hydration reaction, CO₂ + H₂O → H₂CO₃. The accuracy of the models was compared with experimentally determined results using the rotating disk dissolution of ibuprofen, indomethacin, and ketoprofen. The equilibrium and slow hydration reaction rate models predict significantly different dissolution rates. The experimental results are more accurately predicted by accounting for the slow hydration reaction under a variety of pH and hydrodynamic conditions. Although the complex bicarbonate buffering system requires further consideration given its dynamic nature in vivo, a simplifying irreversible reaction (IRR) transport analysis accurately predicts in vitro rotating disk dissolution rates of several carboxylic acid drugs. This IRR transport model provides further insight into bicarbonate buffer and can be useful in developing more physiologically relevant buffer systems for dissolution testing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3473–3490, 2014
Keywords: mathematical model; dissolution; transport; physicochemical; in vitro models; acid–base equilibria; diffusion

INTRODUCTION

When a drug product is administered orally, the absorption may be limited by the rate at which the drug dissolves in the gastrointestinal tract. For Biopharmaceutics Classification System Class II low solubility drugs, dissolution can be the rate-limiting step.2 The composition of the intestinal fluid plays a critical role in determining this rate. One of the main components of intestinal fluid is the bicarbonate buffer species that controls luminal pH. Buffers can have a large effect on the dissolution of ionizable drugs by affecting the pH at the solid liquid interface (surface) of the dissolving drug.1-6

Bicarbonate (HCO₃⁻) is secreted by epithelial cells and the pancreas into the small intestine where it is the main buffer in the lumen and acts to maintain a relatively constant pH in the intestinal tract. Bicarbonate is thought to follow the Jacobs Stewart Cycle in the small intestine.7-8 Bicarbonate (HCO₃⁻) present in the intestinal lumen can react with hydrogen ions (H⁺) to form carbonic acid (H₂CO₃), which then produces carbon dioxide [CO₂(aq)] and water (H₂O) through the dehydration reaction. This process is reversible (see Reaction 2 below) and carbon dioxide can diffuse into the intestinal cells or react with water to form carbonic acid through the hydration reaction. Carbonic acid can also ionize to form hydrogen ions and bicarbonate. In the intestinal cells, the same reversible process can occur, resulting in the formation of CO₂ (aq) and HCO₃⁻. The HCO₃⁻ formed in the intestinal cells can be transported back into the intestinal lumen. The concentration of each of the species formed is dependent on the corresponding equilibrium constants.

Concentrations of aqueous carbon dioxide and bicarbonate are directly related in the luminal fluid of the GI tract.10-12 In the stomach of healthy humans, the percent CO₂ typically ranges between 4% and 10% CO₂ (30–76 mmHg) and similar values are observed in the proximal jejunum.12,13 McGeese and Hastings measured an average of 13.2% (100 mmHg) CO₂ in the jejunum at an average pH of 6.5.14 In the proximal duodenum, where there is a lower pH, these values are typically significantly higher and can be as high as 66% CO₂ (500 mmHg).15 These %CO₂ levels can be compared with normal atmospheric conditions, which are approximately 0.04%. The stomach secretes about 400 mmol of H⁺ per day (17 mmol/h), which enters the duodenum. Therefore, bicarbonate must be secreted at a rate in the duodenum that is high enough to neutralize the incoming H⁺. This increase in bicarbonate and H⁺ will result in an increase in the concentration of CO₂ partial pressure in the duodenum. Bicarbonate secretions have been shown to range from approximately 150–600 μmol cm⁻² h⁻¹ (~6 mmol/h) in the proximal duodenum to approximately 25–200 μmol cm⁻² h⁻¹ (~2 mmol/h) in the distal duodenum depending on the H⁺ concentration.11 The differences in the H⁺ stomach secretions and duodenal bicarbonate secretions result in the pH of the proximal duodenum fluctuating up to 5 pH units transiently.9

An important consideration in more fully understanding the bicarbonate system are the individual reaction rates associated with the equilibrium constants Kc and Ks in Reaction 2 below. In particular, the hydration and dehydration reactions associated with Kc are six to 10 orders of magnitude slower than the reaction rates associated with Ks. The enzyme carbonic anhydrase is present in the intracellular fluid and membranes of the epithelial cells of the intestinal tract.3,10 It functions...
to significantly accelerate the hydration and dehydration reactions in these regions. However, there is no evidence that carbonic anhydrase is secreted or present in the luminal fluid. Therefore, it is likely that the hydration and dehydration reactions occur at their slow rates in the bulk luminal fluid.

Understanding the role of bicarbonate buffer and the reactions involved in its formation is essential in understanding the dissolution of weak acid and weak base drugs in the intestinal tract and, ultimately, to creating a more physiologically relevant dissolution medium. Although the impact that buffers have on a dissolving drug has been modeled accurately and is well understood, there has been little consideration of the effect of bicarbonate buffer on drug dissolution in the intestine. There have been several studies characterizing the effect bicarbonate buffer has on drug dissolution and attempts have been made at modeling the process. However, a thorough examination of how the CO$_2$ reaction chemistry of bicarbonate buffer affects drug dissolution has not been explored, although this is an area that has been studied rigorously and applied in geology and other sciences. It is anticipated that a better understanding of the impact of bicarbonate buffer on the pH at the surface of a dissolving ionizable drug will provide the foundation for creating buffer systems that more closely resemble in vivo conditions and dissolution.

The significant role the slow hydration and dehydration rates have on the formation of bicarbonate and its ability to function as a buffer and alter the pH at the surface of dissolving drug (i.e., at the solid liquid interface) has been investigated in this study. The simultaneous convective diffusion and chemical reaction within the boundary layer model assuming either: (a) instantaneous chemical equilibrium, or (b) slow hydration and dehydration will be compared with experimental results using the defined hydrodynamics of the rotating disk dissolution system for weak acid drugs. Our analysis and experimental results demonstrate that the slow irreversible reaction rate (IRR) model best matches the experimental rotating disk dissolution rate of the weak acid drugs studied. This analysis can be helpful in developing buffering systems that are more physiologically relevant for in vivo dissolution predictions and testing. A similar analysis may be applied to weak base and amphoteric drugs. We have successfully applied this approach to weak base drugs and is the subject of a future publication.

Reactions and Kinetics of the Bicarbonate Buffer System

Conversion of CO$_2$(g) to CO$_2$(aq)

Bicarbonate buffer can be produced experimentally by controlling the partial pressure of CO$_2$ (g) equilibrated with water as shown in reactions 1 and 2.

$$\text{CO}_2(g) \rightleftharpoons \text{CO}_2(aq) \quad \text{(Reaction 1)}$$

$$\text{CO}_2(aq) + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \quad \text{(Reaction 2)}$$

The concentration of carbon dioxide dissolved in water, CO$_2$(aq), follows Henry’s Law constant (K_H) and the partial pressure of carbon dioxide gas [P$_{CO_2,g}$].

$$K_H = \frac{\text{CO}_2(aq)}{P_{CO_2(g)}} \quad \text{(1)}$$

Table 1. Measured Values from Literature and Estimated Values of Henry’s Law Constant for Carbon Dioxide at Different Temperature and Ionic Strength

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Henry’s Law Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>35</td>
<td>0.027 (Ref. 26)</td>
</tr>
<tr>
<td>Water</td>
<td>40</td>
<td>0.024 (Ref. 26)</td>
</tr>
<tr>
<td>0.2 M NaCl Solution</td>
<td>35</td>
<td>0.026 (Ref. 26)</td>
</tr>
<tr>
<td>0.2 M NaCl Solution</td>
<td>40</td>
<td>0.025 (Ref. 26)</td>
</tr>
<tr>
<td>Isotonic solution (0.0154 M)</td>
<td>37</td>
<td>0.024a</td>
</tr>
</tbody>
</table>

aEstimated using the van’t Hoff Equation for temperature dependence and ionic strength dependence from Butler.

The solubility of carbon dioxide in water decreases as the temperature and ionic strength increases and K_H may be adjusted to account for physiologically relevant conditions (37 °C, isotonic solution, $K_H = 0.024$). This value is in close agreement with experimental values shown in Table 1.

The Reversible Reaction Between CO$_2$(aq) and H$_2$O(1) to Form H$_2$CO$_3$ (Hydration and Dehydration Reactions)

Reaction 2 is composed of two separate steps and the equilibrium constants of each reaction (K_a and K_f) govern the overall reaction. The reaction of CO$_2$(aq) with water to form H$_2$CO$_3$ is given by:

$$\text{CO}_2(aq) + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \quad \text{(Reaction 3)}$$

The value for K_c is equal to the ratio for the hydration rate of CO$_2$(aq) and the dehydration rate of H$_2$CO$_3$.

$$K_c = \frac{k_{dh}}{k_{dl}} \quad \text{(2)}$$

$$K_c = \frac{[\text{H}_2\text{CO}_3]}{[\text{CO}_2(aq)]} \quad \text{(3)}$$

The hydration (k_{dh}) and dehydration rate constants (k_{dl}) vary with temperature and ionic strength. Values obtained experimentally in the range of 30 °C–40 °C are shown in Table 2. The reaction rate values are approximately ~0.1–0.16 s$^{-1}$ for the hydration rate and ~50–80 s$^{-1}$ for the dehydration rate. These reaction rates are very slow (e.g., 106 to 1010 times slower) relative to typical ionization reaction rates that are considered to be instantaneous as discussed below.

The Reversible Ionization of H$_2$CO$_3$ to form HCO$_3^-$ and H$^+$

The value for K_{al} shown in Reaction 2 is composed of the forward reaction rate ($k_{al,f}$) for the ionization of carbonic acid to form HCO$_3^-$ and H$^+$ and the reverse reaction rate ($k_{al,r}$) where HCO$_3^-$ reacts with H$^+$ to form H$_2$CO$_3$.

$$\text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \quad \text{(Reaction 4)}$$

$$K_{al} = \frac{k_{al,f}}{k_{al,r}} \quad \text{(4)}$$

Table 2. Henry’s Law Constant for Carbon Dioxide at Different Temperature and Ionic Strength

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Henry’s Law Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>35</td>
<td>0.027 (Ref. 26)</td>
</tr>
<tr>
<td>Water</td>
<td>40</td>
<td>0.024 (Ref. 26)</td>
</tr>
<tr>
<td>0.2 M NaCl Solution</td>
<td>35</td>
<td>0.026 (Ref. 26)</td>
</tr>
<tr>
<td>0.2 M NaCl Solution</td>
<td>40</td>
<td>0.025 (Ref. 26)</td>
</tr>
<tr>
<td>Isotonic solution (0.0154 M)</td>
<td>37</td>
<td>0.024a</td>
</tr>
</tbody>
</table>

aEstimated using the van’t Hoff Equation for temperature dependence and ionic strength dependence from Butler.
Experimental Values from Literature Obtained for the Hydration and Dehydration Rate Constant of Carbonic Acid, Carbon Dioxide, and Water

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Solvent</th>
<th>K_h (s$^{-1}$)</th>
<th>K_d (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Buffer mixture with gaseous CO$_2$</td>
<td>0.161 (Ref. 27)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Water</td>
<td>0.143 (Ref. 28)</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Phosphate buffer</td>
<td>0.062 (Ref. 29)</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Imidazole buffer with CO$_2$ gas or sodium bicarbonate</td>
<td>0.145 (Ref. 30)</td>
<td>49.5 (Ref. 30)</td>
</tr>
<tr>
<td>32.5</td>
<td>HCl and sodium bicarbonate mixture (made to ionic strength of 0.65 with NaCl)</td>
<td>0.057 (Ref. 31)</td>
<td>50.2 (Ref. 31)</td>
</tr>
<tr>
<td>36.7</td>
<td>HCl and sodium bicarbonate mixture</td>
<td>80 (Ref. 32)</td>
<td></td>
</tr>
<tr>
<td>36.9</td>
<td>HCl and sodium bicarbonate mixture</td>
<td>49.04 (Ref. 33)</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>HCl and potassium bicarbonate mixture (0.1 M ionic strength)</td>
<td>72 (Ref. 34)</td>
<td></td>
</tr>
</tbody>
</table>

$K_{a1} = \frac{[H^+][HCO_3^-]}{[H_2CO_3]}$ (5) $K_a = \frac{[H_2CO_3]}{[CO_2(aq)]}, \frac{[H^+][HCO_3^-]}{[H_2CO_3]} = \frac{[H^+][HCO_3^-]}{[CO_2(aq)]}$ (6a)

$K_a = \frac{[H^+][HCO_3^-]}{[CO_2(aq)]}$ (6b)

The value of K_{a1} depends on temperature and ionic strength. Table 3 presents experimental values of $pK_a \sim 3.55$ reported at approximately 37 °C. Information regarding exact values for the forward and reverse ionization rates at 37 °C is limited. However, values for the reaction rate constants determined by Eigen and Hammes35 at 25 °C were s$^{-1}$ and $k_{a1r} = 4.7 \times 10^{10}$ s$^{-1}$. These values are 6–10 orders of magnitude greater than the hydration (k_h) and dehydration rate (k_d) constants described above. It can be assumed that Reaction 4 occurs instantaneously compared with rates of diffusion.

The Overall Equilibrium Reaction Constant K_a

It is often assumed that the entire reaction (Reaction 2) is at equilibrium where K_a and K_{a1} are combined to give an overall K_a value (Eqs. (6a) and (6b)) and Reaction 2 is simplified to Reaction 5.

$$CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+ \quad \text{(Reaction 5)}$$

K_a has been determined at different temperatures and ionic strengths to be $pK_a \sim 6$. Using experimentally obtained data as shown in Table 4, it is possible to adjust K_a based on temperature and ionic strength.

When assuming equilibrium, Eq. (6b) can be rearranged to calculate the bicarbonate concentration in solution as a function of dissolved carbon dioxide [CO$_2$$_{(aq)}$] and pH:

$$[HCO_3^-] = \frac{K_a [CO_2(aq)]}{[H^+]^2}$$ (7)

Alternatively, this can be written as a function of the partial pressure of carbon dioxide (P_{CO_2}) using K_{hi}, assuming...
Figure 1. Total buffer and bicarbonate buffer concentrations (mM) at physiologically relevant pH values as function of %CO₂ in the solution (100% = 1 atm) at 37°C. Key (■) 5% CO₂; (▲) 10% CO₂; (▲▲) 20% CO₂; (▲▲▲) 40% CO₂; (▲▲▲▲) 60% CO₂.

The values for $P_{CO₂}$ and $[H⁺]$ can be adjusted to yield a desired bicarbonate buffer concentration. At low pH values, the total buffer concentration, when $CO₂$ (aq) concentration is included, is relatively high due to high $CO₂$ (g) partial pressures found in vivo in the duodenum. Because of the solubility limitations of carbon dioxide and the effect of $[H⁺]$ on the concentration of bicarbonate, the presence of bicarbonate is most significant for pH values in the range: $5.5 \leq pH \leq 7.5$. For pH below 5.5, only very dilute bicarbonate buffer concentrations can be produced even at high $CO₂$ (g) partial pressures. At pH values above 7.5, only low $CO₂$ (g) values are required to achieve relevant bicarbonate buffer concentrations though the buffer capacity is substantially reduced. The relationship between $CO₂$ (g), $CO₂$ (aq), $[H⁺]$, and $[HCO₃⁻]$ is shown in Figure 1. Typical physiologic conditions of pH and carbon dioxide levels result in total buffer concentrations ($CO₂$ (aq) + $HCO₃⁻$) in the duodenum and jejunum in the range of 3–20 mM as shown in Figure 1. Figure 1 also compares the total buffer concentration to the bicarbonate concentration as a function of pH. The bicarbonate concentration present is significantly less than the total buffer concentration especially at low pH values.

Simultaneous Diffusion and Reaction Model

Dissolution of drugs from a solid surface are generally accurately predicted by considering the simultaneous diffusion and chemical reactions as described by Mooney et al. Applying this to a rotating disk dissolution apparatus permits the estimation of pH at the surface of a compacted drug by taking into account the properties of the drug and buffer system and assuming simultaneous and instantaneous diffusion and chemical reaction in the hydrodynamic boundary layer near the surface of the rotating disk. Levich characterized this boundary layer thickness for a rotating disk based on liquid viscosity, rotational speed, and diffusion coefficient:

$$h = 1.61D^{1/3}\omega^{-1/2}r^{1/6}$$

When the Levich theory is applied to rotating disk drug dissolution, h is the thickness of the diffusion layer, D is the diffusion coefficient of the drug in the dissolving medium (aqueous buffer), v is the kinematic viscosity (at 37°C water = 0.007 cm²/s), and ω is the rotational speed (100 rpm = 10.47 radians/s). The diffusion layer thickness is a constant for each specific drug under fixed conditions of rotational speed (see Table 5). Following Mooney et al., the simultaneous

<table>
<thead>
<tr>
<th>h (μm)</th>
<th>t_D</th>
<th>t_{rd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 (50 rpm)</td>
<td>0.76</td>
<td>8.2</td>
</tr>
<tr>
<td>43 (100 rpm)</td>
<td>0.38</td>
<td>16</td>
</tr>
<tr>
<td>27 (250 rpm)</td>
<td>0.15</td>
<td>42</td>
</tr>
<tr>
<td>19 (500 rpm)</td>
<td>0.076</td>
<td>82</td>
</tr>
<tr>
<td>14 (1000 rpm)</td>
<td>0.04</td>
<td>156</td>
</tr>
</tbody>
</table>

diffusion and chemical reaction model assuming instantaneous reaction was applied to the bicarbonate buffer system.

Applying a Simultaneous Diffusion and Reaction Model to Bicarbonate Buffer

The reaction rate for the hydration of carbon dioxide to carbonic acid is a slow process as described above. If the time the diffusing molecule spends in the diffusion layer is less than the reaction time, then the reaction would primarily be occurring only in the bulk solution and not in the diffusion layer. The average residence time of a molecule in the diffusion layer is determined by diffusion layer thickness and the diffusivity of the molecule (Eq. (10)). The reaction time depends on the first order rate constant and it defines the time needed for the reaction to be 63% complete (Eq. (11)). Equations (10) and (11) can be used to assess the extent that a reaction will go to completion within the diffusion layer:

\[
t_0 = \frac{b^2}{2D_1} = \frac{1.3v^{1/3}}{D^{1/3}w}
\]

where \(t_0\) is the average residence time of a diffusing molecule in the diffusion layer. The reaction time, \(t_r\), is given by Eq. (11) where \(k\) is the first order rate constant.

\[
t_r = \frac{1}{k}
\]

If the hydration reaction between \(CO_2(aq)\) and \(H_2O\) does not occur sufficiently fast, the reaction will not go to completion in the diffusion layer and the flux of bicarbonate throughout the diffusion layer will be less than predicted. Table 5 compares the ratio of \(t_r\) (~6.25 s^-1) and \(t_0\) at different diffusion layer thickness values (based on ibuprofen) calculated at different rotational speeds. These values were calculated according to the Levich equation for boundary layer thickness at the surface of a rotating disk (Eq. (9)). The table shows that \(t_r > t_0\) even at large diffusion layer thickness values (low rpm) and that \(t_r\) can vary between an order of magnitude to two orders of magnitude greater than \(t_0\). This analysis indicates that the hydration reaction is occurring to a very limited extent in the diffusion layer, whereas the dehydration reaction appears sufficiently fast that it may be assumed to be occurring rapidly enough that these differences in reaction rates will impact the buffer capacity of bicarbonate in the diffusion layer. It is worth noting that these differences are relevant in the diffusion layer but not in the bulk aqueous phase where all the reactions occur sufficiently fast to be considered instantaneous and Reaction 5 and \(K_a\) apply.

As the results will show, this slow reaction has a large effect on the experimental flux in comparison with predictions applying the instantaneous reaction film model to bicarbonate buffer. Initially, two different chemical equilibrium approaches were applied. The first approach was to assume that all of the reactions in the formation of bicarbonate buffer are sufficiently fast so that the chemical equilibrium that is assumed to occur in the bulk solution (and displayed in Reaction 5) can be applied to the boundary layer in the film model [pK_a = 6.04; bulk chemical equilibrium (BCE) model]. When applying the BCE model, \(CO_2\) is the nonionized form of the buffer and \(HCO_3^-\) is the ionized form of the buffer. The second approach assumed that both the hydration reaction and dehyration reaction are so slow in comparison with the ionization reactions that the formation of bicarbonate is dependent only on Reaction 4 [pK_a = 3.55, carbonic acid ionization (CAI) model]. In the case of the CAI model, \(H_2CO_3\) is the nonionized form of the buffer and \(HCO_3^-\) is the ionized form. It is notable that the concentration of \(CO_2(aq)\) is 300 times greater than carbonic acid. Therefore, the total buffer concentration used in the CAI model is less than that used in the BCE model, which includes the \(CO_2(aq)\) concentration. However, the results show that these two assumptions do not accurately describe experimental results. Therefore, a modification to the transport analysis that incorporates the slow reaction rates for the hydration and dehydration reactions is necessary.

Incorporating Reaction Rates into a Simultaneous Diffusion and Chemical Reaction Model

The experimental results (see below) indicate that when reactions occur non-instantaneously, the film model needs to account for the slow reactions. There are multiple species reacting in the diffusion layer during the dissolution of a weak acid or weak base drug, which makes adding reaction rates into the film model challenging. Therefore, to follow the same steps using the simultaneous diffusion and chemical reaction model, two assumptions were made to simplify the process. The first assumption is that only the hydration and dehydration reaction rates need to be considered and all other reactions can be assumed to take place instantaneously. The second assumption is that since the hydration reaction (\(k_h\)) happens very slowly, it can be assumed to not be taking place at all in the diffusion layer (although it will occur in the bulk) and the only reaction rate that needs to be included in the modeling process is the dehydration reaction rate (\(k_d\)). These assumptions describe a situation where the protons formed at the surface of the dissolving weak acid drug will react with \(HCO_3^-\) to form \(H_2CO_3\), which can then form \(CO_2\) and \(H_2O\) through an irreversible chemical reaction (irreversible reaction model, IRR). This assumption, when applied to the film model changes the resulting equation for calculating the surface pH and the total buffer concentration does not include \(CO_2\) concentration. The surface pH is no longer independent of reaction rates and diffusion layer thickness because the dehydration reaction rate and diffusion layer thickness remain included in the equation for surface pH. The experimental results show that using the irreversible reaction model (IRR model) allows for accurate predictions of drug flux in bicarbonate buffer. The derivation of the IRR model is presented in the appendix and the cubic equation needed to solve for surface pH and drug flux are shown in Appendix Eqs. (A34) and (A35d).

MATERIALS AND METHODS

Ibuprofen (Albermarle - Baton Rouge, Louisiana, USA U; Lot#11550–0005), indomethacin (Alexis Biochemicals - San Diego, California USA; ≥98%, Lot#L25666, and ketoprofen (Sigma–Aldrich - St. Louis Missouri, USA; Lot#044K0790) were used as received and all other chemicals used were of analytical grade. Distilled water was used for all experiments. Mineral oil United States Pharmacopeia (USP) grade was used for the titration experiment to prevent the escape of \(CO_2(g)\). All dissolution runs were performed in a jacketed beaker at 37°C. Two runs were done for each experimental condition described.
below. Samples were analyzed using a UV spectrophotometer (Agilent Technologies - Santa Clara, California, USA; Model# 61103A). The samples were obtained using a flow through system that recycled the analyzed solution back into the dissolution vessel. The standard curves were also made using the UV flow through system.

Ibuprofen solubility was measured by agitating a suspension of ibuprofen particles in 50 mM acetate buffer at pH 4.5 while being kept at 37°C. The pH of the saturated solution at 37°C was measured to be 4.5. Samples were taken from the solutions and filtered before they were diluted with 50 mM acetate buffer at pH 4.5. The measured solubility was 0.150 mg/mL and based on the pH-solubility profile this solubility is in good agreement with an intrinsic solubility of 0.068 mg/mL used in this paper and reported by Karl et al.\(^{44}\). The intrinsic solubility of indomethacin was measured by agitating a suspension of indomethacin particles in 0.1 N hydrochloric acid solution while being kept at 37°C. Samples were taken from the solutions and filtered before they were diluted with 0.1 N hydrochloric acid.

The intrinsic solubility of ketoprofen was measured by agitating a suspension of ketoprofen particles in 0.1 N hydrochloric acid solution while being kept at 37°C. Samples were taken from the solutions and filtered before they were diluted with pH 6.7 25 mM phosphate buffer.

The pH values of the bicarbonate buffer were measured by adjusting 100% dry compressed air and 100% carbon dioxide (at appropriate ratios to give physiologically relevant conditions) in a 100 mL 0.9%NaCl solution in a jacketed beaker at 37°C. Solid NaOH and a 5 N NaOH solution were used to adjust the buffer pH to ~7.0. Next, the sources of the gas mixture were eliminated from the solution and USP grade mineral oil (heated to 37°C) was added to the buffer solution where it produced an oil layer on top of the aqueous buffer to limit the escape of carbon dioxide gas. 1.0 M HCl solution was added in 0.1 mL increments to the aqueous phase and the pH was monitored until it dropped to ~5.0. In addition, the %CO\(_2\) in the aqueous phase was monitored throughout using a CO\(_2\) monitor (YSI 8500 CO\(_2\) monitor - Yellow Springs, Ohio, USA).

For the dissolution experiments in bicarbonate buffer, different concentrations of bicarbonate buffer were prepared by adjusting quantities of 100% dry compressed air and 100% carbon dioxide in a 0.9%NaCl solution at appropriate ratios to make physiologically relevant concentrations of bicarbonate buffer. See Table 6 for the experimental parameters used for the dissolution tests. The %CO\(_2\)(aq) in solution was determined using a CO\(_2\) monitor (YSI 8500) and pH was monitored using a pH meter (Beckman Φ 40 - Brea, California, USA).

The mixture of carbon dioxide gas and air was continuously pumped in throughout the dissolution runs to maintain bulk equilibrium. Solid sodium hydroxide and sodium hydroxide solution was added to adjust pH. The volume of the bicarbonate buffer dissolution medium for ibuprofen and indomethacin was 100 mL and for ketoprofen it was 200 mL. Differences in volume used for the experiments were made according to the solubility and predicted flux of each drug to achieve desirable experimental conditions (sink conditions and adequate sensitivity for UV analysis). All experiments were carried out at 100 rpm. However, dissolution tests for ibuprofen were also done at rotational speeds of 50, 250, and 500 rpm. Ibuprofen was also performed at bulk pH values 5.5, 6.0, and 7.0 (see Table 6 for buffer concentration at each pH).

The flux of the drug was predicted by applying the mathematical models outlined in this paper and the parameters that are given in Table 6 and 7 using MATLAB (MathWorks - Natick, Massachusetts, USA).

RESULTS

Bicarbonate Buffer Measured pH

Figure 2 shows the measured pH as a function of the amount of 1.0 M HCl added during the titration and the experimental buffer capacity (dn/dpH) as a function of pH. This titration data suggest that the pKa of the bulk solution is ~6. A statistical analysis was performed by comparing the residual sum of squares and the result was a best fit bulk pKa of 6.04. This value was used for calculating the bulk bicarbonate buffer concentrations for all of the rotating disk dissolution experiments. Additionally, this was the pKa that was used in the BCE model for predicting drug flux in bicarbonate buffer. One factor to note is that bicarbonate concentration is continuously changing throughout the titration because the%CO\(_2\) increases as the pH decreases. However, it was observed in the bulk solution that CO\(_2\) (aq) acts as a buffer component and therefore the total buffer concentration remains relatively constant. The measured value of 6.04 for the pKa of the overall reaction (Reaction 5) is consistent with experimentally determined values in the literature (Table 4).

Ibuprofen Results

Figure 3 shows the predicted impact of rotational speed (change in diffusion layer thickness) on the surface pH and the relative buffering ability of bicarbonate based on the different model approaches for ibuprofen. Assuming instantaneous

<table>
<thead>
<tr>
<th>Species</th>
<th>Solubility (M)</th>
<th>pKa</th>
<th>Diffusion Coefficient (cm(^2)/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen</td>
<td>3.30 × 10(^{-4}) (Ref. 44)</td>
<td>4.43 (Ref. 44)</td>
<td>7.93 × 10(^{-6a})</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>5.963 × 10(^{-6})</td>
<td>4.27 (Ref. 45)</td>
<td>6.8 × 10(^{-6}) (Ref. 46)</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>5.303 × 10(^{-4})</td>
<td>4.02 (Ref. 47)</td>
<td>9.3 × 10(^{-6}) (Ref. 5)</td>
</tr>
<tr>
<td>Bulk bicarbonate</td>
<td>6.04(^b)</td>
<td></td>
<td>14.6 × 10(^{-6}) (Ref. 48)</td>
</tr>
<tr>
<td>Carbonic acid</td>
<td>3.55 (Ref. 11)</td>
<td></td>
<td>14.6 × 10(^{-6}) (Ref. 48)</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>0.02403</td>
<td></td>
<td>24.9 × 10(^{-6}) (Ref. 49)</td>
</tr>
</tbody>
</table>

\(^a\)Estimated using the Wilke–Chang equation.

\(^b\)Measured experimentally.

Other values were taken from literature.

Table 7. Rotating Disk Dissolution Experimental Parameters Applied to the Weak Acid Drugs Examined

<table>
<thead>
<tr>
<th>Drug</th>
<th>Ibuprofen</th>
<th>Indomethacin</th>
<th>Ketoprofen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk pH</td>
<td>5.5</td>
<td>6.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Percent CO₂</td>
<td>50</td>
<td>45</td>
<td>7–8, 14–16, 21–22</td>
</tr>
<tr>
<td>Bicarbonate concentration [HCO₃⁻] (mM)</td>
<td>3.5</td>
<td>9.9</td>
<td>5–5.5, 10–11, 14.5–15.5</td>
</tr>
<tr>
<td>rpm</td>
<td>100</td>
<td>100</td>
<td>50, 100, 250, 500</td>
</tr>
</tbody>
</table>

*aThe concentration used for the ibuprofen experiments at 50, 250, and 500 rpm. For ibuprofen at pH 6.5 and 100 rpm, all buffer concentrations listed were used.

Figure 2. Titration curve for a closed bicarbonate buffer system at 37°C and isotonic ionic strength (0.154 M).

The hydration/dehydration reactions (BCE model: pKₐ = 6.04) predicts bicarbonate to have the greatest buffer capacity and highest surface pH. When it is assumed that the hydration/dehydration reactions do not occur at all in the diffusion layer (CAI model: pKₐ 3.55), bicarbonate is predicted to have a low buffer capacity and low predicted surface pH. Assuming carbonic acid undergoes the irreversible dehydration reaction (IRR model), the predictions of buffer capacity and surface pH fall between the BCE and CAI models. Additionally, Figure 3 shows that the predicted surface pH decreases using the IRR model as the rotational speed increases. The thickness of the diffusion layer has no effect on surface pH for the BCE and CAI models because it is assumed that chemical equilibrium is achieved instantaneously in each case.

Figure 4 shows the experimental and predicted results for the flux of ibuprofen in bicarbonate buffer at different rotational speeds. As will be seen with all of the experimental data, the BCE model overestimates the effect bicarbonate buffer has on increasing the surface pH and the flux of ibuprofen. The CAI model underestimates the effect of bicarbonate buffer and the flux of ibuprofen. The flux predictions for the BCE and CAI models in Figure 4 are influenced only by the changing diffusion layer thickness as the rotational speed is changed because the surface pH is constant and independent of diffusion layer thickness (see Fig. 3). The predicted flux in the IRR model also depends on diffusion layer thickness but in a more complicated fashion. The surface pH is dependent on the residence time of the diffusing species, H₂CO₃, and this impacts the consumption.
of H\(^+\) through the irreversible dehydration reaction (see Fig. 3 and Appendix Eq. 34). The IRR model more accurately predicts the effect of a changing diffusion layer thickness as well as the diffusing species residence time in the diffusion layer on the ability of bicarbonate to buffer the pH at the surface of the dissolving drug.

Figure 5 shows the predicted and experimental flux of ibuprofen in bicarbonate buffer over a range of buffer
concentrations at pH 6.5. There is a large difference in flux predictions when comparing the BCE versus CAI models. The experimental flux of ibuprofen in bicarbonate buffer falls between predictions assuming instantaneous hydration/dehydration reactions (BCE model) or no hydration/dehydration reactions (CAI model). When the hydration reaction is assumed to not occur and the dehydration reaction rate is incorporated into the mathematical analysis (IRR model), the predicted flux matches the experimental flux very well.

Figure 6 shows the effect bulk pH has on the flux of ibuprofen in 10–11 mM bicarbonate buffer at pH values of 6, 6.5, and 7 as well as 3.5 mM bicarbonate buffer at pH 5.5. The experimental

Figure 5. The experimental and predicted flux of ibuprofen in bicarbonate buffer ([HCO$_3^-$] only) at multiple concentrations (at pH 6.5 and 37°C). Key (●) experimental flux; (.....) BCE model flux predictions; (—) IRR model flux predictions; (—) CAI model flux predictions.

Figure 6. The experimental and predicted flux of ibuprofen in 10 mM bicarbonate buffer ([HCO$_3^-$] only) at bulk pH values of 5.3(3.5 mM HCO$_3^-$), 6, 6.5, and 7 at 37°C. Key (●) experimental flux; (.....) BCE model flux predictions; (—) IRR model flux predictions; (—) CAI model flux predictions.
Figure 7. The experimental and predicted flux of ketoprofen in bicarbonate buffer ([HCO$_3^-$] only) at multiple concentrations (at pH 6.5 and 37°C). Key (•) experimental flux; (…….) BCE model flux predictions; (——) IRR model flux predictions; (— — —) CAI model flux predictions.

flux shows little variation as bulk solution pH is changed. The BCE model overestimates the effect that bulk pH and bicarbonate buffer have on increasing the pH at the surface of the dissolving drug and the flux of ibuprofen. The CAI model underestimates the effect that bulk pH and bicarbonate buffer have on increasing the pH at the surface of the dissolving drug and the flux of ibuprofen. The flux of ibuprofen in bicarbonate buffer over different bulk pH values is accurately predicted using the IRR model.

Ketoprofen Results

Figure 7 shows the experimental and predicted flux of ketoprofen in bicarbonate buffer over a range of buffer concentrations at pH 6.5. The predictions show that an increase in buffer concentration results in a significant increase in the flux. In comparison with ibuprofen, the solubility of ketoprofen is similar but it has a lower drug pK$_a$. Therefore, ketoprofen acts as a similar self-buffer to ibuprofen but will be impacted by increasing buffer concentrations more under the experimental conditions. As was seen with ibuprofen, the experimental flux of ketoprofen in bicarbonate buffer is not predicted accurately by the BCE and CAI models and is only accurately predicted when the dehydration reaction rate is incorporated by applying the IRR model.

Indomethacin Results

Figure 8 shows the experimental and predicted flux of indomethacin in bicarbonate buffer over a range of buffer concentrations at pH 6.5. In comparison with ibuprofen and ketoprofen, the solubility of indomethacin is much lower. Therefore, indomethacin does not serve as an effective self-buffer, which leads to the surface pH approaching the bulk pH at low buffer concentrations. As was seen for with the other weak acid drugs, the experimental flux of indomethacin in bicarbonate buffer is not predicted accurately by the BCE or CAI models and is only accurately predicted by applying the IRR model.

To provide further confirmation for the accuracy of the IRR model, previous experimental work involving rotating disk dissolution in bicarbonate buffer was evaluated. A specific example is work by McNamara et al.10 that also looked at the weak acid drug indomethacin using rotating disk dissolution. Their work focused on dissolution at different bicarbonate buffer concentrations (different bulk P_{CO_2}) at a bulk pH of 6.8. Figure 9 shows that the IRR model gives accurate predictions for the flux of indomethacin that was interpolated from the rotating disk experiments of McNamara et al. (Fig. 3 in their paper) using the parameters in Table 7 as well as the pK$_a$ for indomethacin that was reported in their paper (pK$_a = 4.17$).

DISCUSSION

The results show that the ability of bicarbonate to buffer the surface pH of a dissolving drug is dependent on the hydration/dehydration reaction kinetics. The boundary layer IRR model predicts the pH at the surface of the dissolving drug and allows for accurate predictions of drug flux consistent with the mass transport analysis. The success of the boundary layer IRR model indicates that H_2CO_3 will form CO$_2$ and H$_2$O through an irreversible reaction in the diffusion layer while undergoing its instantaneous, reversible ionization reaction to form bicarbonate. The IRR model, in effect, means that bicarbonate buffer behaves differently at the solid surface and in the boundary layer of a dissolving drug than it does in the bulk dissolution medium where the hydration/dehydration reaction is at equilibrium. In effect, bicarbonate has a “dynamic buffer capacity” represented by the IRR model at the dissolving surface and boundary layer where the hydration reaction can be assumed to not occur while it has the standard buffer capacity expected of bicarbonate buffer in the bulk.
Based on drug solubility and drug pKa, each drug studied has a different self-buffering effect at its dissolving surface. The results show that the IRR model accurately predicts surface pH and drug flux even when large differences in drug properties exist. For example, indomethacin has an intrinsic solubility ~100 times lower than ibuprofen and ketoprofen but this does not impact the accuracy of the predictions. Additionally, the ibuprofen and indomethacin data from this paper and from McNamara et al. show the robustness of the IRR model to changes in experimental conditions and the accuracy of the IRR model predictions.
model to be replicated in different laboratories. The IRR model can accurately account for surface pH changes when the bulk pH and diffusion layer thickness is altered. When the diffusion layer thickness decreases, less time is available for the protons that have formed \(\text{H}_2\text{CO}_3 \) to undergo the dehydration reaction and form \(\text{CO}_2 \) and \(\text{H}_2\text{O} \). This changes the ability of bicarbonate to function as a buffer and it becomes similar to a situation where only the ionization reaction occurs. Therefore, changing the rotational speed of the disk will change the surface pH and this can be well accounted for by the IRR model. The impact on surface pH that results from the changing diffusion layer thickness in the IRR model is one of the many factors taken into account in the cubic equation (Appendix Eq. (34)) that calculates the pH at the surface of the dissolving drug. The IRR and the CAI models have different mass transfer coefficients for the flux of carbonic acid. The mass transfer coefficient of carbonic acid for the IRR model is \(\sqrt{D \cdot h \cdot \text{CO}_3} \) and the mass transfer coefficient for the CAI model is \(\frac{D \cdot \text{H}_2\text{CO}_3}{h} \). When the ratio of the mass transfer coefficients equals one (\(h = 5.4 \mu m \)) then the pH at the surface becomes equal to the CAI model because the irreversible reaction is no longer consuming protons that will allow for an increase in the buffer capacity beyond the CAI model. Conversely, Figures 3 and 4 show that as the diffusion layer thickness becomes larger, the proton consumption caused by the irreversible chemical reaction increases, which allows for the IRR model to provide a similar buffer effect that is seen in the BCE model, However, this effect would only occur at unrealistically large diffusion layer thickness values.

Although bicarbonate is the buffer present in the GI tract, using it as a buffer in dissolution testing is challenging because of long preparation times and hydrodynamic concerns (i.e., presence of air and \(\text{CO}_2 \) gas bubbles in the apparatus) that make it less than ideal. However, the accuracy of the IRR model in predicting drug flux in bicarbonate buffer using known physicochemical parameters allows for the possibility of predicting a more physiologically relevant buffer based on the physicochemical properties of the drug. Aunins et al.\(^3\) demonstrated that the dissolution of weak acid drugs can be accurately predicted in standard buffers (i.e., phosphate) using the standard film model. The accuracy of these models creates the basis for the development of an in vitro dissolution buffer system with more standard buffers that would be more predictive of the in vivo buffer conditions. However, the work carried out in this paper and by Aunins et al.\(^3\) applies only to rotating disk dissolution with fixed experimental conditions in the bulk solution. A dissolving ionizable dosage form could have an effect on the bulk pH or introduce additional ionic or buffering species that could impact experimental and predicted dissolution rates. Additionally, the dynamic nature of the in vivo environment with dynamic intestinal secretion of bicarbonate, the absorption of water, and transit through the intestine continues to make prediction of in vivo dissolution complex.

CONCLUSIONS

Applying the boundary layer model with the assumption of instantaneous BCE (BCE model) does not accurately predict the buffer capacity of bicarbonate in the diffusion layer of a dissolving drug. Assuming that the hydration and dehydration reactions happen instantaneously overestimates the ability of bicarbonate to buffer the pH at the surface of the dissolving drug. On the other hand, assuming that both the dehydration and hydration reactions are too slow to occur in the diffusion layer (CAI model) underestimates the impact of bicarbonate buffer in the diffusion layer and at the surface of the tablet.

The predicted and experimental flux in bicarbonate buffer indicates the importance of the reaction kinetics in the bicarbonate buffer system. The effect of the slow hydration reaction in the diffusion layer has a significant impact on the buffer capacity of bicarbonate at the surface of a dissolving drug and drug dissolution. The assumption that \(\text{CO}_2 \) does not react with \(\text{H}_2\text{O} \) in the diffusional boundary layer, and thus assuming that \(\text{H}_2\text{CO}_3 \) undergoes an irreversible chemical reaction forming \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) in addition to its ionization reaction (\(\text{pK}_a = 3.55 \)), accurately predicts the effect that bicarbonate buffer has on the pH in the diffusion layer. The IRR model is intermediate between the BCE and CAI models and most accurately describes the experimental results. In effect, bicarbonate has:

(a) a “dynamic buffer capacity” represented by the IRR model at the dissolving surface where the hydration reaction can be assumed to not occur and, (b) the standard buffer capacity expected of bicarbonate buffer in the bulk where the hydration reaction can be assumed to occur sufficiently quickly to appear to be instantaneous (i.e., is at equilibrium). The irreversible reaction in the diffusion layer where \(\text{H}_2\text{CO}_3 \) forms \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) allows protons to be consumed and assists in buffering the pH at the surface of the tablet. The protons consumed by the irreversible reaction is a function of the time \(\text{H}_2\text{CO}_3 \) spends in the diffusion boundary layer and is therefore dependent on the thickness of the diffusion layer. Unlike the film models, assuming instantaneous chemical equilibrium (BCE and CAI), the pH at the surface in the IRR model is a function of diffusion layer thickness.

The IRR model has been shown to accurately predict the rotating disk dissolution rate of the weak acid drugs studied. More experimental work is needed to assess its applicability to weak bases and amphoteric drugs. However, for ionizable drugs, the pH at the surface is a key component in determining the rate at which the drug will dissolve, and the IRR model is accurate at predicting surface pH under various experimental conditions examined in this paper. Therefore, the IRR model may be used to identify buffers that more closely resemble the bicarbonate buffer of the luminal fluid and provide an approach for the development of more relevant in vivo dissolution media.

ACKNOWLEDGMENTS

Financial support provided by USP Fellowship (2010–2012), the Chingju Wang Sheu Graduate Student Fellowship (2009–2011) AstraZeneca Grant, and FDA Contract HHSP23201310144C is gratefully acknowledged.

APPENDIX

Irreversible reaction (IRR) model for the dissolution of weak acid drugs (\(\text{HA} = \text{unionized form of the weak acid drug}; \text{A}^- = \text{ionized form of the weak acid drug} \)) in bicarbonate buffer. Below are the equilibrium reactions before the irreversible dehydration reaction assumption is introduced:

\[
\text{H}^+ + \text{OH}^- \xrightleftharpoons{K_w} \text{H}_2\text{O}
\]
\[\text{HA} \rightleftharpoons \text{H}^+ + \text{A}^- \]
\[\text{HA} + \text{OH}^- \rightleftharpoons \text{H}_2\text{O} + \text{A}^- \]
\[\text{HA} + \text{HCO}_3^- \rightleftharpoons \text{H}_2\text{CO}_3 + \text{A}^- \]
\[\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \]
\[\text{H}_2\text{CO}_3 \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \]

\[\text{CO}_2 + \text{OH}^- \rightleftharpoons \text{HCO}_3^- \] is not considered because research has shown that this reaction would not play a role at the pH the experiments were performed at.\(^{50}\)

Chemical equilibrium constant equations:
\[K_w = [\text{H}^+] [\text{OH}^-] \] (A1)
\[K_\text{a}^\text{HA} = \frac{[\text{A}^-] [\text{H}^+]}{[\text{HA}]} \] (A2)
\[K_1 = \frac{[\text{A}^-]}{[\text{HA}] [\text{OH}^-]} = \frac{K_\text{a}^\text{HA}}{K_w} \] (A3)
\[K_2 = \frac{[\text{H}_2\text{CO}_3]}{[\text{HA}] [\text{HCO}_3^-]} = \frac{K_\text{a}^\text{HA}}{K_\text{a}^\text{HCO}_3^-} \] (A4)
\[K_\text{a}^\text{HCO}_3^- = \frac{[\text{H}_2\text{CO}_3][\text{H}^+]}{[\text{HCO}_3^-]} = \frac{k_{\text{a}_{1r}}}{k_{\text{a}_{1f}}} \] (A5)

Differential equations defining the flux of the different species:
\[\frac{\delta [\text{HA}]}{\delta t} = D_{\text{HA}} \frac{\delta^2 [\text{HA}]}{\delta x^2} + \vartheta_1 = 0 \] (A7)
\[\frac{\delta [\text{A}^-]}{\delta t} = D_A \frac{\delta^2 [\text{A}^-]}{\delta x^2} + \vartheta_2 = 0 \] (A8)
\[\frac{\delta [\text{H}^+]}{\delta t} = D_{\text{H}^+} \frac{\delta^2 [\text{H}^+]}{\delta x^2} + \vartheta_3 = 0 \] (A9)
\[\frac{\delta [\text{OH}^-]}{\delta t} = D_{\text{OH}^-} \frac{\delta^2 [\text{OH}^-]}{\delta x^2} + \vartheta_4 = 0 \] (A10)

Defining \(\vartheta \) 1–7 for the differential equations:
\[\vartheta_1 = -k_{\text{a}_{1f}} [\text{HA}] + k_{\text{a}_{1f}} [\text{H}^+] [\text{A}^-] - k_{\text{a}_{1r}} [\text{HA}] [\text{OH}^-] \]
\[+ k_{\text{a}_{1r}} [\text{A}^-] - k_{\text{a}_{2f}} [\text{HA}] [\text{HCO}_3^-] + k_{\text{a}_{2r}} [\text{H}_2\text{CO}_3] [\text{A}^-] \]
\[\vartheta_2 = k_{\text{a}_{1f}} [\text{HA}] - k_{\text{a}_{1f}} [\text{H}^+] [\text{A}^-] + k_{\text{a}_{1r}} [\text{HA}] [\text{OH}^-] \]
\[- k_{\text{a}_{1r}} [\text{A}^-] + K_{\text{a}_{2f}} [\text{HA}] [\text{HCO}_3^-] - k_{\text{a}_{2r}} [\text{H}_2\text{CO}_3] [\text{A}^-] \]
\[\vartheta_3 = k_{\text{a}_{1f}} [\text{HA}] - k_{\text{a}_{1f}} [\text{H}^+] [\text{A}^-] + k_{\text{a}_{1r}} [\text{H}_2\text{CO}_3] - k_{\text{a}_{1r}} [\text{H}^+] [\text{HCO}_3^-] \]
\[\vartheta_4 = -k_{\text{a}_{1r}} [\text{HA}] [\text{OH}^-] + k_{\text{a}_{1r}} [\text{A}^-] \]
\[\vartheta_5 = -k_{\text{a}_{2f}} [\text{HA}] [\text{HCO}_3^-] + k_{\text{a}_{2f}} [\text{H}_2\text{CO}_3] [\text{A}^-] \]
\[+ k_{\text{a}_{2r}} [\text{H}_2\text{CO}_3] - k_{\text{a}_{2r}} [\text{H}^+] [\text{HCO}_3^-] \]
\[\vartheta_6 = k_{\text{a}_{2f}} [\text{HA}] [\text{HCO}_3^-] - k_{\text{a}_{2f}} [\text{H}_2\text{CO}_3] [\text{A}^-] + k_{\text{b}_{1f}} [\text{CO}_2] \]
\[- k_{\text{b}_{1r}} [\text{H}_2\text{CO}_3] - k_{\text{a}_{1f}} [\text{H}_2\text{CO}_3] + k_{\text{a}_{1r}} [\text{H}^+] [\text{HCO}_3^-] \]
\[\vartheta_7 = -k_{\text{b}_{1r}} [\text{CO}_2] + k_{\text{a}_{1r}} [\text{H}_2\text{CO}_3] \]

Setting up relations for \(\vartheta \) and the diffusion terms based on assumptions from Mooney et al.:\(^{1}\)

The first relation is that the amount of components reacting as acids must equal the amount of components acting as bases.

\[\vartheta_4 + \vartheta_5 = \vartheta_1 + \vartheta_3 \] (A14)

Equation (A14) based on the definitions for phi above:
\[(-k_{\text{a}_{1f}} [\text{HA}] [\text{OH}^-] + k_{\text{a}_{1r}} [\text{A}^-]) + (-k_{\text{a}_{2f}} [\text{HA}] [\text{HCO}_3^-]) \]
\[+ k_{\text{b}_{2f}} [\text{H}_2\text{CO}_3] [\text{A}^-] + k_{\text{b}_{2r}} [\text{H}_2\text{CO}_3] - k_{\text{a}_{1r}} [\text{H}^+] [\text{HCO}_3^-] \]
\[= (-k_{\text{a}_{1f}} [\text{HA}] + k_{\text{a}_{1r}} [\text{H}^+] [\text{A}^-] - k_{\text{a}_{1f}} [\text{HA}] [\text{OH}^-] + k_{\text{a}_{1r}} [\text{A}^-]) \]
\[- k_{\text{a}_{2f}} [\text{HA}] [\text{HCO}_3^-] + k_{\text{b}_{2r}} [\text{H}_2\text{CO}_3] [\text{A}^-] + (k_{\text{a}_{1f}} [\text{HA}] \]
\[- k_{\text{a}_{1r}} [\text{H}^+] [\text{A}^-] + k_{\text{a}_{1r}} [\text{H}_2\text{CO}_3] - k_{\text{a}_{1r}} [\text{H}^+] [\text{HCO}_3^-]) \] (A15)
The like terms cancel on each side of the above equation which leads to Eq. (A15) becoming: 0 = 0

The second assumption is that the acid drug in solution is neither created nor destroyed.

\[\varnothing_1 + \varnothing_2 = 0 \]

(A16)

Equation (A16) based on the definitions for phi above:

\[0 = (-k_{ar}[HA] + k_{ar}[H^+][A^-] - k_{tr}[HA][OH^-]) + k_{tr}[A^-] - k_{tr}[HA][HCO_3^-] + k_{tr}[H_2CO_3][A^-])
+ (k_{ar}[HA] - k_{ar}[H^+][A^-] + k_{tr}[HA][OH^-])
+ k_{tr}[A^-] + k_{tr}[HA][HCO_3^-] - k_{tr}[H_2CO_3][A^-]) \]

Equation (A16) allows for the relation made in Eq. (A17) based on the assumption of steady state.

\[D_{HA} \frac{\partial^2 [HA]}{\partial x^2} + D_L \frac{\partial^2 [A^-]}{\partial x^2} = 0 \]

(A17)

The third assumption is that since \(k_b \) is so small (~0.1–0.16 s\(^{-1}\)) it is going to be assumed that it is not playing a role in formation of any \(H_2CO_3 \) in the diffusion layer. Therefore, \(H_2CO_3 \) is undergoing an irreversible chemical reaction to form \(CO_2 \) and \(H_2O \) in addition to the reversible ionization reaction that forms \(H^+ \) and \(HCO_3^- \). The change in carbon dioxide concentration has no effect on the other buffer components leading to the IRR model.

\[CO_2 (aq) + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^- \]

Therefore, it is assumed that the only two buffer components are \(H_2CO_3 \) and \(HCO_3^- \). The change in bicarbonate is based only upon the change in carbonic acid. This assumption leads to Eq. (A18):

\[D_{H_2CO_3} \frac{\partial^2 [H_2CO_3]}{\partial x^2} - k_{tr}[HA][HCO_3^-] + k_{tr}[H_2CO_3][A^-]
+ k_{tr}[H_2CO_3] - k_{tr}[H^+][HCO_3^-])
= - \left(D_{H_2CO_3} \frac{\partial^2 [H_2CO_3]}{\partial x^2} + k_{tr}[HA][HCO_3^-] - k_{tr}[H_2CO_3][A^-]
- k_{tr}[H_2CO_3] + k_{tr}[H^+][HCO_3^-] - k_{tr}[H_2CO_3] \right) \]

(A18)

All of the like terms cancel and Eq. (A18) simplifies to Eq. (A19).

\[D_{H_2CO_3} \frac{\partial^2 [HCO_3^-]}{\partial x^2} = - \left(D_{H_2CO_3} \frac{\partial^2 [H_2CO_3]}{\partial x^2} - k_{tr}[H_2CO_3] \right) \]

(A19)

At this point, all of the second order differential equations can be solved. For all of the terms that are diffusion controlled, the boundary conditions and general solution are shown below.

\[D_{C} \frac{\partial^2 C}{\partial X^2} = 0 \]

(A20)

Boundary conditions:

\[a x = h; C = C_h \]

\[a x = 0; C = C_0 \]

The general solution to the second order differential is shown below.

\[c = \left(C_h - C_0 \right) x + C_o \]

(A21)

\(H_2CO_3 \) is not only diffusion controlled because it also undergoes an irreversible chemical reaction. The boundary conditions are the same for the species but its general solution is different.

\[D_{H_2CO_3} \frac{\partial^2 [H_2CO_3]}{\partial x^2} - k_{tr}[H_2CO_3] = 0 \]

(A22)

Boundary conditions:

\[a x = h; C = [H_2CO_3]_h \]

\[a x = 0; C = [H_2CO_3]_0 \]

The general solution to the second order differential for carbonic acid is shown below.

\[\left([H_2CO_3]_h e^{-\sqrt{\frac{D_{H_2CO_3}}{h}}} + [H_2CO_3]_h \right) e^{\sqrt{\frac{D_{H_2CO_3}}{h}}} = \frac{e^{\sqrt{\frac{D_{H_2CO_3}}{h}}}}{e^{\sqrt{\frac{D_{H_2CO_3}}{h}}} - e^{-\sqrt{\frac{D_{H_2CO_3}}{h}}}} \]

\[\left([H_2CO_3]_h - [H_2CO_3]_h e^{\sqrt{\frac{D_{H_2CO_3}}{h}}} \right) e^{-\sqrt{\frac{D_{H_2CO_3}}{h}}} = \frac{e^{\sqrt{\frac{D_{H_2CO_3}}{h}}}}{e^{\sqrt{\frac{D_{H_2CO_3}}{h}}} - e^{-\sqrt{\frac{D_{H_2CO_3}}{h}}}} \]

(A23a)

The diffusion coefficient of carbonic acid is a constant \((D_{H_2CO_3} = 14.6 \times 10^{-6} \text{ cm}^2/\text{s}) \) and so is the dehydration rate constant \((k_d = 50 \text{ s}^{-1}) \). The diffusion layer thickness changes based on the Levich equation but it is on the order of 0.001–0.005. Therefore, \(e^{-\sqrt{\frac{D_{H_2CO_3}}{h}}} \) is so small (~4 × 10^{-5}) in comparison with \(e^{\sqrt{\frac{D_{H_2CO_3}}{h}}} \) (~2.5 × 10^{4}) that it can be assumed.
that $\frac{e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}{\sqrt{h_{\text{CO}_2}}} [\text{H}_2\text{CO}_3]_0 e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}} ($\sim 10^{-7} - 10^{-9}$) and

$- \frac{\pi^2}{h_{\text{CO}_2}} [\text{H}_2\text{CO}_3]_0 e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}} ($\sim 10^{-9} - 10^{-10}$) is equal to zero and equation (A23a) becomes Eq. (A23b).

$$
\frac{[\text{H}_2\text{CO}_3]_0 e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}{e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}} - \frac{\left([\text{H}_2\text{CO}_3]_0 e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}} \right) e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}{e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}} = 0 \quad (A23b)
$$

In order to apply the rest of the assumptions to the film model, the derivative to all of the general solutions must be obtained in order to define all of the species in terms of flux.

Taking the derivative of all of the diffusion controlled species gives the equation below:

$$
\frac{\partial [C]}{\partial X} = \frac{(C_h - C_o)}{h} \quad (A24)
$$

Equation (A24) must be multiplied by the diffusion coefficient to give the flux of the species.

$$
D \frac{\partial [C]}{\partial X} = D \frac{(C_h - C_o)}{h} \quad (A25)
$$

Taking the derivative of the general solution for H_2CO_3 (Eq. (A23b) gives Eq. (A26).

$$
\frac{[\text{H}_2\text{CO}_3]_h \sqrt{k_{\text{de}} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}}{\sqrt{D_{\text{H}_2\text{CO}_3} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}} - \frac{[\text{H}_2\text{CO}_3]_0 \sqrt{k_{\text{de}} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}}{\sqrt{D_{\text{H}_2\text{CO}_3} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}} = 0 \quad (A26)
$$

In order to solve for the flux from $x = h$ to $x = 0$, the h and x must be inserted into Eq. (A26).

At $x = 0$

$$
\frac{[\text{H}_2\text{CO}_3]_h \sqrt{k_{\text{de}} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}}{\sqrt{D_{\text{H}_2\text{CO}_3} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}} - \frac{[\text{H}_2\text{CO}_3]_0 \sqrt{k_{\text{de}} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}}{\sqrt{D_{\text{H}_2\text{CO}_3} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}} = 0 \quad (A27)
$$

$e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}$ is equal to 1 which simplifies the above equation:

$$
\frac{[\text{H}_2\text{CO}_3]_h \sqrt{k_{\text{de}}}}{\sqrt{D_{\text{H}_2\text{CO}_3} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}} - \frac{[\text{H}_2\text{CO}_3]_0 \sqrt{k_{\text{de}}}}{\sqrt{D_{\text{H}_2\text{CO}_3} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}} = 0 \quad (A28)
$$

Therefore $\frac{[\text{H}_2\text{CO}_3]}{h}$ from $x = h$ (bulk solution) to the surface of the tablet ($x = 0$) is

$$
\frac{\partial [\text{H}_2\text{CO}_3]}{\partial X} = \frac{\sqrt{k_{\text{de}}}}{\sqrt{D_{\text{H}_2\text{CO}_3} e^{-\sqrt{\frac{\pi^2}{h_{\text{CO}_2}}}}}} ([\text{H}_2\text{CO}_3]_h - [\text{H}_2\text{CO}_3]_0) \quad (A29)
$$

If you multiply each side by the diffusion coefficient of carbonic acid, then that will give the flux of carbonic acid.

$$
D_{\text{H}_2\text{CO}_3} \frac{\partial [\text{H}_2\text{CO}_3]}{\partial X} = ([\text{H}_2\text{CO}_3]_h - [\text{H}_2\text{CO}_3]_0) \sqrt{D_{\text{H}_2\text{CO}_3} k_{\text{de}}} \quad (A30)
$$

It is assumed that electric neutrality is maintained at every point in the diffusion layer so the positively charged species flux must be equal to the negatively charged species flux.

$$
\sum \zeta_i J_i = 0 \quad (A31)
$$

Another assumption is that since no boundary or internal sources of buffer exist, then the total buffer flux must be equal to 0.

$$
D_{\text{H}_2\text{CO}_3} \frac{([\text{H}_2\text{CO}_3]_h - [\text{H}_2\text{CO}_3]_0)}{h} + ([\text{H}_2\text{CO}_3]_h - [\text{H}_2\text{CO}_3]_0) \sqrt{D_{\text{H}_2\text{CO}_3} k_{\text{de}}} = 0 \quad (A32)
$$

DOI 10.1002/jps.24108

Krieg et al., JOURNAL OF PHARMACEUTICAL SCIENCES 103:3473–3490, 2014
\begin{align}
D_{\text{HCO}_3} &\left([\text{HCO}_3^-]_h - [\text{HCO}_3^-]_0 \right) \\
&= - \left([\text{H}_2\text{CO}_3]_h - [\text{H}_2\text{CO}_3]_0 \right) \sqrt{D_{\text{H}_2\text{CO}_3} k_d} \quad (A33) \\

\text{Equation (33) can be used to find the concentration of bicarbonate at the surface of the tablet. First it must be put in terms of known values and H}^+ \text{ at the surface of the tablet as shown below.}

\begin{align*}
D_{\text{HCO}_3} &\left([\text{HCO}_3^-]_h - [\text{HCO}_3^-]_0 \right) \\
&= - \left([\text{H}_2\text{CO}_3]_h - [\text{H}_2\text{CO}_3]_0 \right) h \sqrt{D_{\text{H}_2\text{CO}_3} k_d} \\
- D_{\text{HCO}_3} &\left([\text{HCO}_3^-]_0 - [\text{H}_2\text{CO}_3]_0 \right) \left(h \sqrt{D_{\text{H}_2\text{CO}_3} k_d} \right) \\
&= - [\text{H}_2\text{CO}_3]_h \left(h \sqrt{D_{\text{H}_2\text{CO}_3} k_d} \right) - D_{\text{HCO}_3} \left([\text{HCO}_3^-]_h \right) \\
[\text{H}_2\text{CO}_3]_0 &= \frac{[\text{HCO}_3^-]_0 [\text{H}^+]_0}{k_{a1}} \\
D_{\text{HCO}_3} &\left([\text{HCO}_3^-]_0 + \left[[\text{HCO}_3^-]_0 [\text{H}^+]_0 \right] \left(h \sqrt{D_{\text{H}_2\text{CO}_3} k_d} \right) \right) \\
&= [\text{H}_2\text{CO}_3]_h \left(h \sqrt{D_{\text{H}_2\text{CO}_3} k_d} \right) + D_{\text{HCO}_3} \left([\text{HCO}_3^-]_h \right) \\
[\text{HCO}_3^-]_0 &= \frac{K_{a1} \left([\text{H}_2\text{CO}_3]_h h \sqrt{D_{\text{H}_2\text{CO}_3} k_d} + D_{\text{HCO}_3} \left([\text{HCO}_3^-]_h \right) \right)}{K_{a1} + D_{\text{HCO}_3} \left([\text{H}^+]_0 \left(h \sqrt{D_{\text{H}_2\text{CO}_3} k_d} \right) \right)} \\

\text{The above equation can be inserted into Eq. (A31) where electric neutrality is assumed in the diffusion layer.}

\begin{align*}
D_{\text{H}} &\left([\text{H}^+]_h - [\text{H}^+]_0 \right) \\
&= D_{\text{OH}} \left([\text{OH}^-]_h - [\text{OH}^-]_0 \right) + D_{\text{A}} \left([\text{A}^-]_h - [\text{A}^-]_0 \right) \\
+ &\frac{D_{\text{HCO}_3}}{h} \left([\text{HCO}_3^-]_h \right) \\
- &\left(K_{a1} \left([\text{H}_2\text{CO}_3]_h h \sqrt{D_{\text{H}_2\text{CO}_3} k_d} + D_{\text{HCO}_3} \left([\text{HCO}_3^-]_h \right) \right) \right)}{K_{a1} + D_{\text{HCO}_3} \left([\text{H}^+]_0 \left(h \sqrt{D_{\text{H}_2\text{CO}_3} k_d} \right) \right)} \\
(A31b)
\end{align*}

The pH at the surface can be calculated by applying the boundary conditions to equation (31C).

\begin{align*}
[\text{HA}] &= [\text{HA}]_h \simeq 0 \\
[\text{A}^-] &= [\text{A}^-]_h \simeq 0 \\
[\text{H}^+] &= [\text{H}^+]_h \text{(known) = bulk pH} \\
[\text{OH}^-] &= [\text{OH}^-]_h \text{(known)} \\
&= \text{known based on bulk pH and chemical equilibrium} \\
[\text{H}_2\text{CO}_3] &= [\text{H}_2\text{CO}_3]_h \text{(known) = experimental buffer concentration} \\
[\text{H}_2\text{CO}_3] &= [\text{H}_2\text{CO}_3]_h \text{(known) = experimental buffer concentration} \\
[\text{CO}_2] &= [\text{CO}_2]_h \text{(known) = analyzed with a CO}_2 \text{ monitor} \\
\end{align*}

\begin{align*}
\text{Boundary conditions at } X = 0 \text{ (surface of the drug):}
[\text{HA}] &= [\text{HA}]_0 \text{(Weak acid intrinsic Solubility)} \\
[\text{A}^-] &= [\text{A}^-]_0 \text{(unknown)} \\
[\text{H}^+] &= [\text{H}^+]_0 \text{(unknown)} \\
[\text{OH}^-] &= [\text{OH}^-]_0 \text{(unknown)} \\
[\text{H}_2\text{CO}_3] &= [\text{H}_2\text{CO}_3]_0 \text{(unknown)} \\
[\text{H}_2\text{CO}_3] &= [\text{H}_2\text{CO}_3]_0 \text{(unknown)} \\
\end{align*}
\[[CO_2] = [CO_2]_0 \text{ (unknown)} \]

\[
\begin{align*}
D_H \frac{([H^+]_h - [H^+]_0)}{h} &= \frac{D_{OH} \left(\frac{[OH^-]_h - K_w}{[H^+]_0} \right)}{h} + \frac{D_A}{h} \left(-\frac{[HA]_0 K_A}{[H^+]_0} \right) \\
&+ \frac{D_{HCO}_3}{h} \left([HCO_3^-]_h \right) \\
&- \left(\frac{K_{12} \left([HCO_3^-]_h \left(h \sqrt{D_{HCO}_3 K_A} + D_{HCO}_3 [HCO_3^-]_0 \right) \right)}{K_{21} D_{HCO}_3 + \left(h \sqrt{D_{HCO}_3 K_A} \right) \left(h \sqrt{D_{HCO}_3 K_A} \right)} \right)
\end{align*}
\]
(A31d)

Multiplying Eq. (A31d) by \(h \) and subtracting the left side of the equation from the right side results in the following cubic equation to solve for \([H^+]_0\):

\[
(p) [H^+]_0^3 + q [H^+]_0^2 + r [H^+]_0 + s = 0 \quad (A34)
\]

\[
q = -D_H \left(h \sqrt{D_{HCO}_3 K_A} \right) + D_{OH} \left(\frac{[OH^-]_h}{[H^+]_0} \right) h \sqrt{D_{HCO}_3 K_A} \\
+ D_{HCO}_3 \left(h \sqrt{D_{HCO}_3 K_A} \right) + K_{21} D_{HCO}_3 D_H
\]

\[
r = -K_{12} D_{HCO}_3 D_H [H^+]_0 + K_{12} D_{HCO}_3 D_{OH} [OH^-]_h \\
- D_{OH} K_w \left(h \sqrt{D_{HCO}_3 K_A} \right) - D_A \left([HA]_0 K_A \right) h \sqrt{D_{HCO}_3 K_A} \\
- D_{HCO}_3^2 K_{12} \left([HCO_3^-]_h \right) - D_{HCO}_3 [HCO_3^-]_0 K_{12} \left(h \sqrt{D_{HCO}_3 K_A} \right) \\
+ D_{HCO}_3^2 K_{12} \left([HCO_3^-]_h \right)
\]

\[
s = -K_{12} D_{HCO}_3 D_{OH} K_w - K_{12} D_{HCO}_3 D_A \left([HA]_0 \right) K_A
\]

The total drug flux is dependent on the interfacial pH.

\[
D_{HA} \frac{([HA]_h - [HA]_0)}{h} + D_A \frac{([A^-]_h - [A^-]_0)}{h} = \text{total drug flux} \quad (A35a)
\]

\[
[HA] = [HA]_h \cong 0
\]

\[
[A^-] = [A^-]_h \cong 0
\]

\[
D_{HA} \frac{([HA]_h - [HA]_0)}{h} + D_A \frac{([A^-]_h - [A^-]_0)}{h} = \text{total drug flux} \quad (A35b)
\]

\[
D_{HA} \frac{([HA]_h - [HA]_0)}{h} - D_A \frac{([HA]_h K_A)}{([H^+]_0)} = \text{total drug flux} \quad (A35c)
\]

Assuming the diffusion coefficient of the ionized form of the drug is equal to the unionized form of the drug simplifies Eq. (35c) to Eq. (35d).

\[
-D_{HA} \frac{[HA]_h}{h} \left(1 + \frac{K_A}{[H^+]_0} \right) = \text{total drug flux} \quad (A35d)
\]

REFERENCES

22. Dreybrodt W, Lauckner J, Zaihua L, Svensson U, Buhmann D. 1996. The kinetics of the reaction $\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}^+ \text{HCO}_3^-$ as one of the rate limiting steps for the dissolution of calcite in the system $\text{H}_2\text{O}-\text{CO}_2-\text{CaCO}_3$. Geochim Cosmochim Acta 60(18):3375–3381.