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BACKGROUND: Actinic cheilitis (AC) is an oral poten-
tially malignant lesion which is the counterpart of actinic
keratosis of the skin and has potential to develop into
squamous cell carcinoma. Regulatory T cells (Tregs)
have a critical role in modulating the antitumor immune
responses. The presence of regulatory T cells in poten-
tially malignant lesions has not been described. We chose
investigate the involvement of regulatory T cells in
potentially malignant lesions.

METHODS: The frequency, phenotype, and activity of
CD4+CD25+ T cells isolated from blood and lesion of AC
patients were analyzed by flow cytometry. Cytokines
were quantified by ELISA. Data were compared with
samples from healthy subjects.

RESULTS: The frequency and suppressor activity of
circulating CD4+CD25+ T cells was similar in AC patients
and control subjects. However, the frequencies of IL-10-
positive Tregs were higher in AC patients, and these cells
inhibited interferon-gamma (IFN-y) and increased inter-
leukin (IL)-10 productions in co-cultures. Furthermore,
CD4+CD25+ T cells accumulate in AC lesions. Lesions-
derived regulatory T cells suppressed lymphocyte prolif-
eration and pro-inflammatory cytokine production.
Moreover, high levels of IL-10 and transforming growth
factor-f (TGF-B), and low IFN-y were detected in the
potentially malignant lesions.

CONCLUSION: Therefore, our data show that Tregs
accumulate in AC lesions, and these cells could be
suppressing immune responses in a potentially malignant
microenvironment.
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Introduction

Actinic cheilitis (AC) is a potentially malignant lesion of
the lip predominantly induced by chronic exposure to the
ultraviolet (UV) sunlight (1). AC lesions are characterized
by epithelial and connective tissue alterations with
increased immune cell infiltration that has potential to
develop oral squamous cell carcinoma (OSCC) (2, 3).
However, the events leading to AC malignant transforma-
tion remain to be elucidated. Molecular markers and
immunoregulatory events that could predict AC malignant
potential are not well established (4).

Regulatory T cells (Tregs), particularly those of the
Foxp3™ subtype, play an important role in immune homeo-
stasis modulating the activation, proliferation, and effector
function of conventional T cells in several immunological
settings (5-7). Tregs also are involved in tumor escape
because of their ability to suppress the effector immune
response of lymphocytes against tumor antigens (6—11).
Tregs limit the development of T helper type 1 (Thl)
immune responses that drive CD8" T cells and IFN-gamma-
dependent antitumor immunity, and blockade of their
activity provides effective therapy against cancer (12, 13).
Malignant environment could also convert naive peripheral
CD4*Foxp3~ into Foxp3™ Tregs after activation by T-cell
receptor (TCR) in the presence of TGF-B (14-16). Although
these reports suggested a direct correlation between Tregs
and the suppression of the immune response in tumor
microenvironment, the presence and characteristics of Tregs
in potentially malignant lesion have not been described. We
hypothesize that Treg cells in a malignant environment
impairs T-cells-mediated immune response, thereby leaving
the development of SCC. To address this hypothesis, we
investigate the presence, functional and phenotypic charac-
teristics of Tregs in the peripheral blood (PBMC) and
lesions from AC patients.



Material and methods

Subjects and study design

We used peripheral blood mononuclear cells (PBMCs) from
thirteen patients with a diagnosis of actinic cheilitis (age
ranged 38—86 years and mean = 65.4 £+ 1.8 years old), as
well as 11 age-matched healthy volunteers (age ranged 27—
74 years and mean = 58.4 + 2.2 years old). To be consid-
ered eligible for inclusion in the study, a patient had to be over
the age of 18 years and to have a histological analysis
showing epithelial changes restricted to the lower two-thirds
of the epithelium, comprising ‘mild’ (grade 1) and ‘moderate’
(grade 2) dysplasia (17) To confirm the clinical diagnosis,
incisional biopsies were performed in areas of erythema,
paleness, ulceration, or atrophy, and hematoxylin and eosin—
stained sections were examined under a light microscope. Of
the thirteen patients enrolled in the study, nine patients had a
vermilionectomy indication as an therapy. Tissue control
samples were obtained from esthetic or orthodontic surgical
indication. All subjects signed an informed consent allowing
the use of specimens (tissues and blood) for research
purposes approved by Bauru School of Dentistry, University
of Sao Paulo (Proc. #04/2006). We collected all blood
samples from subjects with AC and controls at 9:00 a.m. in
heparinized vacutainers (BD Biosciences, Milan, Italy) and
processed them within the following 30 min.

Chemical reagents

Leukocytes obtained from blood and oral tissues were
cultivated in RPMI 1640 medium (Invitrogen Life Tech-
nologies, Carlsbad, CA, USA) supplemented with 10%
heat-inactivated fetal calf serum (FCS, GIBCO), 100 U/ml
penicillin, 100 pg/ml streptomycin, 2 mM L-glutamine,
10 mM HEPES, 0.1 mM nonessential amino acids, and
I mM sodium pyruvate (all from Sigma-Aldrich, St. Louis,
MO, USA). Phytohemagglutinin (PHA) and PE-conjugated
streptavidin were purchased from Invitrogen Life Technol-
ogies. All cultures and co-cultures were performed in RPMI
1640 plus 10% fetal bovine serum (FBS), 2 mM-glutamine,
50 U/ml penicillin, and 50 pg/ml streptomycin (GIBCO
BRL)—complete RPMI.

Histopathologic analysis

For histological analysis, excised tissue samples were fixed
with 10% buffered formalin and processed using routine
histological techniques. Tissue sections were stained with
H&E and analyzed by light microscopy.

Flow cytometry

For immunostaining, PerCP, PE- and FITC-conjugated Abs
against CD3 (UCHT 1), CD4 (RPA-T4), CD8 (RPA-TS),
CD19 (HIB 19), CD25 (M-A251), CD45RO (UCHL 1),
CDI152 (BNI3.1), CD103 (Ber-ACTS), CD69 (FN50),
CCR4 (1G1), Foxp3 (PCH101) (BD Biosciences, San
Diego, CA, USA), and respective mouse and rat isotype
controls were used (BD). PE-conjugated mice monoclonal
antibody (mAb), antihuman GITR (110416), and biotiny-
lated anti-TGF-B1 (LAP, 27240) were purchased from R&D
Systems. PE-conjugated anti-IL-10 (JES3-19F1) and bioti-
nylated anti-TGF-B (4492) (R&D Systems, Minneapolis,
MN, USA) were used for intracellular cytokine staining.
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The cell acquisition was performed on a FACSort flow
cytometer using and CellQuest software (BD Biosciences).
Unconjugated anti-CD3 (UCHT 1) and anti-CD28 (CD28.2)
(BD Biosciences) were used for polyclonal activation.

PBMC and lesion mononuclear cell isolation

Peripheral blood mononuclear cells from AC patients and
health controls subjects were obtained by centrifuging
whole blood through a Ficoll-Hypaque gradient (Sigma-
Aldrich). The AC biopsies were collected from the lesions
using a 4-mm biopsy punch, and digested in serum-free
RPMI medium with 500 pg/ml liberase CI (Roche, Basel,
Switzerland) for 1 h at 37°C. They were then macerated in
medcons (BD Biosciences). The cell suspension was
centrifuged through a Ficoll-Hypaque gradient (Sigma-
Aldrich), and the mononuclear cells were isolated and
quantified. The leukocytes viability was evaluated by
Trypan blue exclusion.

CD4+CD25"¢" T-cell separation and cultures

CD4*CD25"" T cells were enriched using a CD4*CD25*
Treg isolation kit (Miltenyi Biotec), according to manufac-
turer’s instructions. CD4*CD25" T cells were isolated from
PBMCs and AC lesions by a first step of negative sorting
using a cocktail of hapten-conjugated CD8, CD11b, CD16,
CD19, CD36, and CD56 antibodies and microbeads coupled
to an antihapten monoclonal antibody (CD4" T-cell isola-
tion kit; Miltenyi Biotec, Bergisch Gladbach, Germany).
This was followed by a step of positive selection of CD25"
cells by microbead separation (CD25 microbeads; Miltenyi
Biotech), a procedure yielding to 90% or more purity as
assessed by flow cytometric counting of CD4*CD25" cells.

Immunosuppression assay

In order to verify the suppressor activity of Tregs,
CD4"CD25™T cells (1 x 10° cells/well) were first activated
as previously described (18, 19). For Immunosuppression
assay, the total PBMC from autologus individuals were
stained with CFSE and cultured alone or in presence of
CD4*CD25" T cells (1 x 10* cells/well) with or without
1 pg/ml PHA (18).

T cell proliferation

Cells were cultured for 96 h at 37 C in a 5% CO,
atmosphere, and CFSE" cells were analyzed regarding
staining dilution (proliferative response). For each sample,
CFSE dilution was evaluated in PHA-stimulated cultures, in
the presence or absence of different amounts of purified
CD4*CD25" cells. T-cells proliferation was characterized
by sequential halving of CFSE fluorescence, generating
equally spaced peaks on a logarithmic scale (19). Data
represent the percentage of inhibition calculated on the
PHA-induced proliferation of allogeneic T cells cultured
with PHA in the absence of CD4"CD25"T cells.

Detection of cytokine by ELISA

Actinic cheilitis samples were thawed on ice and home-
geneized in a solution containing 2 mg of protease inhibitor
(Boehringer I Mannheim, Indianapolis, IN, USA). Organ
extracts were centrifuged to remove all particulate material.
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IL-10, TGF-B, and IFN-y levels were measured using
ELISA kits (BD or R&D Systems), according to the
manufacturer’s instructions. The cytokine levels in skin
homogenates were normalized to the protein levels mea-
sured using a Bradford assay. IL-10, TGF-B, and IFN-y
levels also were quantified in the supernatants immunosup-
pression assay.

Statistical analysis

Data obtained from flow cytometry and cells proliferation
assay were expressed as the standard error of the mean
(SEM). Statistical analysis was performed using one way
ANOVA followed by the Tukey’s multiple comparison test
(PRISM Software; GraphPad, La Jolla, CA, USA). P values
<0.05 were considered statistically significant.

Results

Phenotypic and functional characterization of Treg cells in
PBMC from AC patients

First, we analyzed lymphocytes profiles in PBMC samples
from AC patients and healthy controls subjects (Fig. 1).
There was no significant difference in the percentage of
CD3*CD4", CD3"CD8*, and CD4"CD25" cells in PBMC
from patients and healthy subjects (Fig. 1A). Next, we used
cell surface markers to define regulatory T cells. Patients
and controls showed similar percentage of CD4"CD25" T
cells expressed CTLA-4, GITR, CD103, CD45RO, CD69,
Foxp3, and CCR4 (data not shown); however, higher
percentage of CD4*CD25*IL-10"T cells (26.8 4+ 8%) was
detected in AC samples compared with control samples
(9.4 &+ 3.8%) (Fig. 1B). Furthermore, we found no signif-
icant differences in suppression activity of CD4*CD25" T
cells from patients and controls (Fig. 1B). However, only
CD4"CD25" cells from AC patients inhibited PHA-stimu-
lated IFN-y secretion and induced increased levels of IL-10
(Fig. 10).

CD4*CD25" T cells isolated from AC lesions present
regulatory profile and exert suppressive activity
Histological analysis revealed that AC lesions presented
hyperkeratosis, epithelial atrophy and acanthosis, vasodila-
tation, and elastosis (Fig. 2A). In the dermis was observed
the presence of inflammatory infiltrate of intensity varying.
To determine the lymphocytes profiles in AC lesions,
isolation of leukocytes and flow cytometric experiments
was performed. As shown in the insert in Fig. 2B, a great
number of leukocytes (4.8 £ 0.5 x 10° cells) were isolated
from AC lesions. AC samples exhibited accumulation of the
CD3" T cells (2.3 + 0.2 x 10%), CD4" T cells (2 x 10*
to 2.4 x 10° cells/biopsy), CD8" T cells (0.5 x 10*
to 4.4 x 10° cells/biopsy), CD19% B cells (0.2 x 10* to
1.4 x 10° cells/biopsy), CD4*CD25" T cells (0.5 x 10* to
1.2 x 10° cells/biopsy), and CD8*CD25* T cells
(0.5 x 10* to 1.2 x 10° cells/biopsy). As expected, AC
lip-derived Treg cells express GITR (74.4 £ 7.4%), CTLA-
4 (67 £13%), CCR4 (755 £ 17.5%), Foxp3
(76.3 £ 5.3%), and IL-10 (82.1 £ 15.1%) (Fig. 2A) More
intriguingly, a lower accumulation was observed of
CD45RO™ (23.5 + 20%), LAP" (3.3 + 0.2%), and
CD103" (1.4 £ 0.2%) Treg cells in AC lesions (Fig. 2A).
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In addition, lower levels of IFN-y and higher levels of IL-10
and TGF-p into AC lesions were observed as compared to
healthy gingival tissue (Fig. 2C). To verify the suppressor
activity of AC lesion-derived CD4*CD25" T cells, prolifer-
ative experiments were performed. CD4*CD25* T cells
isolated from AC samples inhibited the allogeneic T-cells
proliferation induced by PHA (SI =29.8 £+ 2.8%)
(Fig. 2D). These results confirmed that functional Treg cells
accumulate in AC lesions.

Discussion

Regulatory T cells are known to control the intensity of
efficient responses through a large number of mechanisms,
including the production of TGF-, CTLA-4 expression on
their cell membrane, and intracellular Foxp3 (11, 20-26).
Growing evidences show that Tregs dampen T-cell immu-
nity to tumor-associated antigens being one of the most
important barrier damaging successful immune response
and active vaccination (11, 25, 26).

In spite of studies concerning Tregs and cancer, there are
limited data relating these cells and potentially malignant
lesion. As we have previously demonstrated that Tregs are
abundant in OSCC lesions (11, 27) and AC is described as a
lesion with potential to develop in OSCC (2), we decided to
evaluate the presence and function of these cells in blood
and lesions from AC patients. We hypothesize that Treg
cells in a malignant environment impairs T-cells-mediated
immune response, thereby leaving the development of SCC.
Because Tregs on AC lesion are originated from systemic
circulation, first, we analyzed the phenotypic difference of
circulating CD4*CD25* T cells from AC individuals and
controls subjects. No difference was found related to the
proportion of CD4"CD25™T cells in PBMC from healthy
individuals and AC patients. Circulating CD4*CD25"T cells
from AC patients expressed high levels of IL-10 and
significantly suppresses IFN-y production. However, these
cells presented similar Foxp3 expression and suppressor
function compared with those cells from healthy control
individuals. Although our data demonstrated that Tregs
existed at the same frequency in both groups, the frequen-
cies of IL-10-positive Tregs were higher in AC patients.
This variability observed in the groups could be indicating a
direct association between high frequencies of circulating
IL-10-positive Treg cells which a presence of the anti-
inflammatory response in AC patients (28). For example, in
diseases with an IL-10 over-production, undesired immu-
nosuppressive effects of IL-10 and the growth of some
tumors can be observed (28).

It is possible that circulating IL-10-positive Tregs migrate
to the potentially malignant lesion where they impair
anticancer Thl immunity. In fact, our results show that
CD4"CD25™T cells were present in AC lesions and around
80% of them were Foxp3*. Tregs may be subdivided based
on Foxp3 expression and cytokine profile (29). The main
task of Foxp3*Treg cells is to migrate to inflammation sites
and suppress various effector lymphocytes, especially
helper T (Th) cell subsets: Thl, Th2, Th17, and follicular
Th (Tth) cells (30). Besides, Tregs have a core module of
suppression driven by Foxp3 expression, where they are
also able to adapt to changes in their environment and
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Figure 1 Characterization of blood lymphocytes from control subjects and actinic cheilitis patients. Peripheral blood mononuclear cells (PBMC) isolated
from control subjects (red circle) and patients with actinic cheilitis (AC) (blue square) were analyzed by flow cytometry. (A) The subpopulations of
lymphocytes in PBMC were represented as percentage of gated lymphocytes. Each dot plot in the right panel represents the percentages of CD3*, CD4*,
CD8", CD25%, and CD19" cells. (B) Blood CD4*CD25" T cells from controls and patients were analyzed for IL-10 positivity. Representative histograms of
the percentage of IL-10* Tregs in total T cells are shown. In the left panel is represented the suppressor activity of magnetic bead-sorted CD4*CD25" T cells.
(C) IL-10, transforming growth factor-p (TGF-f), and IFN-y production in supernatants from in vitro suppression assays. The error bar indicate + SEM.

#P < 0.05 compared with controls.

harness additional modules by the expression of other
transcription factors normally associated with other T cell
subtypes in order to better control immunopathology (30).
Foxp3 regulates expression of a large number of genes
including those responsible for key features of Tregs, such
as high expression of cytotoxic T lymphocyte antigen-4

(CTLA-4), a critical molecule involved with the suppression
function of Tregs (30). In fact, we found more than 70% of
CD4"CD25™T cells expressing CTLA-4 in AC lesions but
not in the blood from patients. Besides, high percentages of
CD4"CD25™T cells from AC lesions expressed GITR,
CCR4, and CTLA-4. Importantly, IL-10 and TGF- were
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Figure 2 Phenotypic characterization of leukocytes derived from actinic cheilitis lesions (AC) and cytokine profiles of AC lesions and control tissue. (A)
Representative of H&E-stained sections of lesions from AC patients. Magnification 200x (left side) 400x (center and right side). (B) Data represent the total
number of CD3"CD4*, CD3"CD8*, CD4"CD25*, CD8*CD25", and CD19" cells in lip actinic cheilitis lesions. Insert shows total number of lymphocytes
infiltrating AC lesions. Data represent the percentage of CD4*CD25* express CCR4, CTLA-4, GITR, CD103, CD45RO, CD69, LAP, Foxp3, and IL-10.(C)
L-10, transforming growth factor-p (TGF-B), and IFN-y protein levels were measured in AC lesions and control tissue by ELISA. (D) CD4"CD25" T cells
(1 x 10* cells/well) isolated from AC lesions of patients were expanded with 0.5 pg/ml anti-CD3, 1 pg/ml anti-CD28, 1 pg/ml PHA, and exogenous 10 ng/
ml rhIL-2 and tested for their ability to suppress the proliferation of allogeneic peripheral blood mononuclear cells (PBMC). Representative histograms of
CFSE labeled allogeneic PBMC cultivated with PHA (red line) or PHA plus CD4*CD25" T cells (blue line). The error bar indicates = SEM. *P < 0.05 and
##P < 0.01 when compared with controls.
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strongly detected in the AC microenvironment. High levels
of IL-10 and TGF- are a strong indicative the presence of
Tregs in the AC microenvironment (29). Our data demon-
strated that 75% of CD4"CD25™T cells expressed IL-10.
Although many cell types might be producing them (26,
27), our results indicated that the Tregs might be the major
source of IL-10 in AC microenvironment. IL-10-producing
cells have been suggested to contribute to an immune
suppressive tumor microenvironment (31, 32). It is possible
to speculate that circulating IL-10* Tregs migrate to the
potentially malignant lesion and impair anticancer Thl
immunity. In fact, recently, it has been shown that tumor-
associated IL-10 was produced by an activated Treg
population (31). IL-10" Tregs in the tumor required type I
IFN signaling pathway and that, together, IL-10 and type I
IFN act in a network that is required to limit Th17-type
inflammation specifically in tumor microenvironment (31,
33). Although in this study, we not have focused on the role
of Th17 cells on antitumor response, others have observed
that Th17 cells and Thl7-associated cytokines have been
shown to have both antitumorigenic and pro-tumorigenic
functions (34). Tregs and Th17 cells shared immunosup-
pressive mechanisms and have their function associated to
TGF- production (34). TGF- contributes to the inhibition
of anticancer immunity (15). During tumor progression,
excess TGF-B suppresses immune surveillance by attenuat-
ing the antitumor functions of CD8" T cells, CD4" T cells,
and dendritic cells (35). In this way, the presence of TGF*
Tregs could be impair anticancer Thl immunity (19, 21,
35-37). The expression of Tregs-associated markers IL-10,
TGE-B, Foxp3, and CTLA-4, as well as the influx of Tregs
into the AC microenvironment could determine a worse
prognosis to the host, as observed in others types of tumor
(38, 39).

Actinic cheilitis lesions consists in morphologically
altered tissue in which external factor is responsible for
the etiology and malignant transformation; it carries the risk
of oral OSCC (40). From this point, the presence of Foxp3™
Tregs accumulated in AC lesions would be able to inhibit T-
cell proliferation in situ, generating a microenvironment
poor in cytokines with known antitumor activity, high levels
of suppressor cytokines (IL-10 and TGF-) (20, 26, 27, 29,
30, 36-39, 41). In fact, our data demonstrated low levels of
IFN-v in AC lesions. Evidence has suggested a critical role
of IFN-y on tumor immunity, and this cytokine plays a role
important in the antitumor effector mechanisms (42—44).
Blockage of IFN-y has been shown to inhibit the tumor
regression as it plays two distinct roles in expressing the
antitumor efficacy of IL-12: one is to support the T-cell
acceptability of tumor masses, and the other is to mediate
the antitumor effects of migrated T cells (43, 45). Thus, as
the effective T cell antitumor response depends on the IFN-
v, its low levels detected in the lesions might facilitate the
AC persistence, recurrence, progression, or malignization.

The specific inhibitor/regulatory role of CD25*Foxp3* T
cells in AC lesions had not been previously investigated.
We observed that AC microenvironment exhibited infiltra-
tion of Tregs cells presenting phenotype and function
consistent with natural Tregs (45). Treg-mediated immuno-
suppression may characterize one of the immune evasion
mechanisms facilitating the relapse of this disease or even
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its malignization to OSCC (2, 46, 47). According to our
results, the presence of Tregs in AC lesions may be, in part,
responsible for downregulation of immune responses
impairs T-cell proliferation and cytokines production. As
AC is a potentially malignant lesion, the presence of Treg
cells could be one important factor addressing the tumor
onset (2, 47). Further studies are necessary to establish exact
influence of Tregs on activated T cells and their role in the
regulation of AC lesion. Understanding the role of Tregs
infiltrating AC lesion might contribute with novel thera-
peutic interventions. The presence of these cells might be
responsible for impaired cellular immunity against this
potentially malignant lesion and, consequently, be involved
in its malignant transformation.
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