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Abstract

Despite advances in surgery, imaging, chemotherapy, and radiotherapy, the poor

overall cancer-related death rate remains unacceptable. Novel therapeutic strategies
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Introduction

The Notch signaling pathway, a highly evolutionarily con-
served pathway in both invertebrate and vertebrate develop-
ment, plays a key role in cell differentiation, survival, and
proliferation. In 1917, Morgan’s group first described Notch
mutant Drosophila, in which the ends of the wings were char-
acterized by a serration." Half of the sons of heterozygous
female flies with Notch mutant wings suffered from embry-
onic period death as a result of multiple defects. This suggests
that notch signaling is indispensable during development.

Notch receptors and ligands

In 1980s, the Notch gene was first cloned by Artavanis-
Tsakonas et al. and identified as a locus affecting neuro-
genesis.” Subsequent studies showed that Notch families
have four receptors (Notch1-4) in mammals, which are type I
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are desperately needed. Nowadays, targeted therapy has become the most promising
therapy and a welcome asset to the cancer therapeutic arena. There is a large body of
evidence demonstrating that the Notch signaling pathway is critically involved in the
pathobiology of a variety of malignancies. In this review, we provide an overview of
emerging data, highlight the mechanism of the Notch signaling pathway in the
development of a wide range of cancers, and summarize recent progress in therapeu-
tic targeting of the Notch signaling pathway.

transmembrane proteins (one kind of protein which anchor
to the cell membrane with an anchor sequence and have their
N-terminal domains targeted to the ER lumen during synthe-
sis).>* Each Notch receptor is synthesized as a full-length pre-
cursor protein (300-350 kDa), consisting of a Notch
extracellular domain (NECD), a transmembrane domain,
and an intracellular domain. All four Notch receptors are
similar except for subtle differences in their extracellular and
cytoplasmic domains. The extracellular domain contains ~30
epidermal growth factor (EGF)-like repeats that participate
in ligand-binding followed by a conserved negative regula-
tory region (NRR or LNR) consisting of three LIN repeats
(Lin-12/Notch repeats) and a heterodimerization region that
is involved in activation of Notch signaling while binding to
the relevant ligands. Notch family members differ in the
number of EGF-like repeats, both Notch-1 and Notch-2 pro-
teins have 36 arranged repeats of EGF-like domain, whereas
Notch-3 and Notch-4 contain 34 and 29 EGF-like repeats,
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Figure 1 Activation of the Notch signaling pathway.

respectively.’ EGF-like repeats mediate ligand binding,
whereas NRR functions to prevent both ligand-dependent
and —independent signaling.® The Notch intracellular
domains (NICD) contain a regulation of amino-acid
metabolism (RAM) domain (high affinity CSL [CBF1, Sup-
pressor of Hairless, Lag-1] binding site, binding to the down-
stream target genes), six ankryin repeats (cell division cycle
gene 10, flanked by nuclear localization signals and regulating
the transfection of downstream genes), nuclear localization
signals (NLS), and a carboxy-terminal praline-glutamate-
serine-threonine (PEST rich region, involved in the deregula-
tion of Notch proteins) sequence.” Five DSL (named for Delta
and Serrate from Drosophila and Lag-2 from C. elegans)
ligands Jaggedl, Jagged2, delta-like 1 (DLL1), DLL3, and
DLL4 have been described in mammals. Similar to Notch
receptors, Notch ligands also contain a set of EGF-like repeats
in their extracellular domain, a DSL domain, and a cysteine-
rich region (CR) in Serrate, which are absent in Delta. Jagged1
and Jagged2 have almost two-fold numbers of EGF-like
repeats compared to Delta.® The DSL domain is highly con-
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served in Ligands families and is essential for Notch activity.
Notch ligands are also transmembrane proteins, while the
intracellular domains only contain 70~215 amino acid resi-
dues.’

Notch activation

Seven key signal transduction pathways that control cell com-
munication during animal development have been identi-
fied: Wnt, transforming growth factor-f (TGF-3), Hedgehog
(Hh), receptor tyrosine kinase (RTK), nuclear receptor, Jak/
STAT, and Notch signaling. Intriguingly, Notch is the only
pathway that relies on cell-cell contact.'®" The activation of
Notch signaling mainly contains three proteolytic events
(Fig. 1). The first cleavage is S1 cleavage: within the Golgi
apparatus, furin-like convertase, the precursor proteins of
Notch receptors are cleaved into two associated peptides
extracellular Notch subunit (ECN) and Notch transmem-
brane subunit (NTM), and then the two fragments are reas-
sembled as a non-covalently linked heterodimeric receptor at
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the cell surface.”*” The second cleavage occurs near the
extracellular side of the plasma membrane. Ligand binding
triggers S2 cleavage by the tumor necrosis factor-alpha-
converting enzyme (TACE), a disintegrin and metallo-
protease (ADAM)," creating a short-lived membrane-bound
intermediate lacking most of the Notch ectodomain that is a
substrate for y-secretase, a multisubunit intramembranous
protease. The y-Secretase-mediated S3 cleavage occurs on
plasma membrane and in endosome, resulting in the release
of NICD into the cytoplasm, where NICD translocates into
the nucleus.”® Once in the nucleus, the NICD forms a
complex by binding to the ubiquitously expressed transcrip-
tion factor CSL" via its RAM and ankryin domains. In the
absence of NICD, CSL functions as a transcriptional repres-
sor because it interplays with ubiquitous corepressor (Co-R)
proteins and histone deacetylases (HDACs) to repress tran-
scription of some target genes.'*?* With the binding of NICD,
the CSL family is converted in to a transcriptional activator by
displacing corepressors (e.g. MTG8, MTG16, and SPEN) and
by recruiting coactivators, such as Mastermind, and the
histone acetyltransferase, to activate transcription of Notch
target genes.” >

Notch signaling target genes

The events of activation of the Notch signaling pathway result
in transcription of target genes. The well-known direct target
genes of CSL are transcriptional repressors, such as Hes (Dro-
sophila genes hairy and Enhancer of split [Hes1-7]) and Hey
subfamilies (Heyl, Hey2, HeyL, HesL/HelT, Dec1/BHLHB2,
Dec2/BHLHB3).** Both Hes and Hey subfamilies contain a
basic domain, which determines DNA binding specificity,
and a basic-helix-loop-helix domain (bHLH), which allows
proteins to form homo- or heterodimers.”” The Hes bHLH
repressor genes play an essential role in the development of
many organs by maintaining progenitor cells and regulating
binary cell fate decisions. In these processes, Hes genes (Hes1
and Hes5) function as effectors of Notch signaling, which
coordinate cellular events via cell-cell interactions.” In the
absence of Hesl and Hes5, the NICD cannot inhibit
neurogenesis, indicating that Hesl and Hes5 are essential
effectors of Notch signaling in the nervous system.'**' In
addition to particular differentiation-related factors, the
transcriptional targets of Notch signaling also include pro-
teins and factors involved in the control of cell cycle and sur-
vival processes, such as in cell cycle regulators. For example,
p21 (a cyclin-dependent kinase inhibitor that acts as both a
sensor and an effector of multiple anti-proliferative signals)
and cyclin D1 (a mitogenic sensor and allosteric activator of
cyclin-dependent kinase CDK4/6), transcription factors,
such as c-MYC (an oncogene and cell cycle regulator, one of
the hallmarks of many cancers) and nuclear factor kappa B
(NF-xB) (a transcriptional factor), growth factor receptors
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such as HER/ErbB genes, regulators of apoptosis survivin (a
member of the inhibitor of apoptosis family of proteins),”***
insulin-like growth factor 1 receptor (IGF1-R),* and Slug.*

Non-canonical Notch signaling pathway

Canonical Notch signaling (CSL-dependent signaling), is
involved in many physiological and pathological events in all
animals, and most of its functions and structures have been
reported. But the knowledge of non-canonical Notch signal-
ing is relatively inadequate. The definition of the non-
canonical signals is broad and mainly contains the following:
DSL-independent activations, interactions with non-DSL
ligands, CSL-independent signaling, signal transduction
without cleavage, differential posttranslational modifica-
tions, and competition/protection for a cofactor.”* Though
the core pathway plays a key role in the development of lives,
the role of non-canonical Notch signaling in many biological
events has drawn increasing attention. In the last decade, a
growing number of studies have reported that non-canonical
Notch signaling affects the occurrence and development of
tumors and other disorders in the manner of interacting with
other signalings.”>" These effects have not been explored,
and the physiological functions of the non-canonical Notch
pathway remain unclear. Studies by Jin et al.* have shown
that the non-canonical Notch pathway contributed to the
tumor process by up-regulating interleukin (IL)-6 in both
basal breast clinical specimens and cancer cells. It has been
demonstrated that Notch acts as an endogenous immune
regulator, which moderates cytokine expression of dendritic
cells through the non-canonical Notch pathway.”

Cross-talk among Notch pathway and
other pathways

Notch plays critical roles in both invertebrate and vertebrate
development and nearly correlates with the process of
forming and developing many diseases, especially tumors,
largely through its interaction with other signaling pathways,
such as developmental signals, growth factors, and inflamma-
tory cytokines, as well as transcriptional factors. It has been
summarized by several reviews.””™ In this review, we will
summarize the cross-talk among Notch and other pathways,
such as Wnt, IL-6, and the urokinase-type plasminogen acti-
vator (uPA)/urokinase plasminogen activator receptor
(uPAR) axis in tumor progression.

Wnt signaling pathway

Similar to Notch signaling, Wnts were first discovered in Dro-
sophila. The Wnt signaling pathway (named as a hybrid of
Wingless and Int) is highly conserved in mammals and plays a
crucial role in the development of tissues and organisms.”

© 2014 Tianjin Lung Cancer Institute and Wiley Publishing Asia Pty Ltd 475



Notch signaling pathway in cancer

Three different Wnt-regulated pathways: the canonical Wnt/
B-catenin and two non-canonical pathways (planar cell
polarity pathway, Wnt/Ca2 + pathway) have been identified.
Canonical Wnt signals are transduced through Frizzled
family receptors and LRP5/LRP6 coreceptors to the 3-catenin
signaling cascade. Increasing evidence demonstrates that
dysregulation of Wnts signaling is involved in carcinogenesis
and tumorigenesis, especially in the intestine.”™° Wnts are
also critical in bone metastasis of multiple cancers, such as
multiple myeloma, prostate and breast cancers.”

Both Notch signaling and Wnt signaling are developmen-
tal signaling pathways, and the cross-talk between them are
very common in biological events. LEF1, a transcription
factor of the TCF/LEF family, which participates in the tWnt
signaling pathway, was found to bind multiple sites in DLL1
promoter in vertebrate somitogenesis.® Among Notch ligand
genes, the Jaggedl gene also was predicted as an evolution-
arily conserved target of the canonical Wnt signaling
pathway, based on the conservation of double TCF/LEF—
binding sites within the 5" promoter region of mammalian
Jagged1 orthologues.”**** Ayyanan et al. demonstrated that
the activation of Wnt signaling can significantly increase the
expression of Notch receptors (Notch3, Notch4) and Notch
target genes (Hes1, Hes5, RBP-JK), and in addition to Notch
ligand genes, these events would result in the triggering of
oncogenic conversion of human breast epithelial cells.”®
These observations suggest that the Wnt signal is mechanisti-
cally epistatic to the Notch signal. Therefore, the mode of
cooperation might be convergent up-regulation of a
common target. However, a study of loss and gain-of-
function mutation of LNX2 (involved in regulating Notch
signaling) in colorectal cancers (CRC) has provided convinc-
ing evidence to support an aberrant Notch-Wnt axis in
CRC.* These findings outline a positive feedback-signaling
axis by which Wnt signaling regulates Notch signaling to
promote tumor proliferation. Intriguingly, an antagonistic
effect could also be found in the cross-talk between Notch
and Wnt signaling. On osteoblastogenesis, Notch over-
expression decreased the transactivating effect of Wnt 3a,
cytoplasmic P-catenin levels, and Wnt-dependent gene
expression by up-regulating the expression of Hes1.”” Like-
wise, Galceran et al. demonstrated that LEF1 binds to the
DLL1 promoter sites, which regulates the somitogenesis in
vertebrate.® Another experiment conducted by Phng et al.,*®
however, resulted in the opposite effect where DLL4/Notch-
induced expression of Notch-regulated ankyrin repeat
protein (Nrarp) limits Notch signaling and promotes Wnt/(3-
catenin signaling in endothelial stalk cells through interac-
tions with LEF1. The molecular mechanisms of these
different results are still unclear, which may because of the
context-dependent event. Notch signaling is indispensable to
the formation of the segments, but may not be critical to the
formation of other organs, while Wnt signaling molecules
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play key roles during embryogenesis, tissue regeneration, and
carcinogenesis.” As another line of evidence, activation of
Wnt/B-catenin and inhibition of Notch signaling pathways
efficiently induce intestinal differentiation of embryonic
stem cells.” Further studies will be necessary to unravel the
molecular mechanism underlying the effect of cross-talk
between Notch and Wnt signaling.

Interleukin (IL)-6

Inflammatory microenvironment signaling has been shown
to play a crucial role in cancer progression (i.e. cancer cell
proliferation, survival, angiogenesis, and metastasis) in many
types of human malignancies. As a pleiotropic and pro-
inflammatory cytokine, IL-6 is important for immune
responses, cell survival, apoptosis, and proliferation.”*”" It can
be produced by various types of cells, including T cells, mac-
rophages, fibroblasts, and vascular endothelial cells. IL-6 acti-
vates IL-6 receptor (IL-6R) to initiate signaling through the
Janus kinase (JAK)/signal transducers and activators of tran-
scription (STAT) signaling pathway.”” Accumulating evidence
implicates IL-6 and its major effector STAT3 as pro-
tumorigenic agents found in cancers, including breast, lung,
prostate, and hematological cancers and melanoma. Elevated
levels of IL-6 correlate with poor prognosis for breast cancer
patients”° because elevated levels promote chemoresistance
by expanding the cancer stem cell population.”””® Sansone
et al. have proven that the Notch pathway is a critical down-
stream target of IL-6 and this is the first time a relationship
between IL-6 and Notch signaling has been described.”
Administration of anti-IL-6 yielded down-regulation in the
level of Notch-3 gene expression and administration of IL-6
elicited up-regulation of Notch-3 mRNA. Similar to Sansone
et al.’s result, Sethi et al.” confirmed that IL-6 secreted by
osteoblasts may potentially stimulate tumor growth, which
was significantly up-regulated with the stimulation of
Jaggedl. Conversely, co-culture of MC3T3-E1 cells with
tumor cells, recombinant IL-6 significantly enhanced the
tumor cell proliferation. Moreover, after treatment with
v-secretase inhibitor MRK-003, the transcription and secre-
tion of IL-6 from osteoblasts were remarkably reduced.
Wongchana and Palaga’s® results demonstrated that in mac-
rophages, the up-regulation of Notch1 increases the IL-6 gene
expression, which can be blocked by treatment with
v-secretase inhibitor, which is consistent with Sethi et al.’s
findings. More recently, the most intriguing observation
made by Jin ef al.* suggested that IL-6 expression is regulated
by non-canonical, CSL-independent, Notch signaling. The
observed up-regulation of IL-6 expression by Notch led to the
autocrine and paracrine activation of JAK/STAT signaling.
These findings outline a positive feedback-signaling axis by
which Notch signaling stimulates the release of IL-6 to
promote cancer cell proliferation. The molecular mechanism
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of the Notch-IL-6 axis is probably a result of the genetic struc-
ture site. Within the IL-6 gene promoter region, the signature
binding motif of CSL, a key DNA-binding protein in the
Notch signaling pathway, was identified and found to overlap
with a consensus NF-kB-binding site.* That might provide a
reliable analysis for the reason why in IL-6 over-expressing
tumors, y-secretase inhibitor-RO4929097 no longer impacts
angiogenesis or the infiltration of tumor associated fibro-
blasts.* A high level of IL-6 may bind to the key DNA-binding
protein in the Notch signaling pathway and promote biologi-
cal effects, which abrogate the preclinical efficacy of the
y-secretase inhibitor. Further understanding of the molecular
nature will allow avoidance of adverse effects during possible
clinical treatments.

uPA/uPAR axis

The uPA system is composed of uPA, its glycolipid
(glycosylphosphatidylinositol) uPAR, plasminogen, and
plasminogen activator inhibitors (PAI-1 and PAI-2). The
plasminogen activator system is implicated in multiple
physiological and pathologic processes including cell migra-
tion, angiogenesis, embryogenesis, tumor growth, and
metastasis. The binding of uPA and its receptor uPAR cata-
lyzes the inactive plasminogen to the active plasmin,*>*
which would lead directly or indirectly to epithelial-
mesenchymal transition (EMT), degradation of the base-
ment membrane and release of active metalloproteinases
(MMPs) that result in metastasis.*** Striking experimental
data suggest that uPA and uPAR are over-expressed in
diverse human malignant tumors including breast,**
creatic,” lung,””' and andand prostate cancers’”
associated with poor patient survival,”**® suggesting that the
uPA/uPAR axis is a cancer therapeutic target. The metastasis
of a primary tumor to distant organs must undergo a multi-
stage process that includes local cell invasion through the

pan-
and are

degradation of extracellular cell matrix (ECM) components,
intravasation into the bloodstream, extravasation from the
circulation, and colonization in a distant organ.” The uPA/
uPAR axis plays a critical role in cancer metastasis, not only
in its role in degrading EMT, but also regulating cell migra-
tion as a signal transduction molecule through interacting
with other signals. In glioblasoma cells, down-regulating
uPA/uPAR abolished in vitro invasion and in vivo tumor
development by suppressing Notch1-pertinent gene expres-
sion and signaling events, resulting in the deduction of
phosphorylation of protein kinase B (AKT)/extracellular
signal-regulated kinases (ERK) and NF-xB.** Similarly,
studies of several cancer types demonstrated that the down-
regulation of Notch-1 or Jagged-1 led to the decreased
expression and diminished bioactivity of uPA, which con-
tributed to the inhibition of cancer cell migration, invasion,
and apoptosis.*™**!® These studies implicate that uPA/uPAR
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could be the potential functional link between Notch signal-
ing and tumor metastasis.

Notch in cancer

A role for Notch signaling in cancer was originally suggested
because a chromosomal translocation that was found in a
patient with T cell acute lymphoblastic leukaemia (T-ALL),'"
which opened the door to an ever-widening understanding of
tumor growth controlled or influenced by Notch signaling.
Notch has been shown to promote or limit tumor growth,
which is highly dependent on signal dose, Notch homolog,
and context.* Accumulating data have demonstrated that
Notch signaling is a more complex process than originally
thought. Here we provide a brief overview on the roles of the
Notch signaling pathway in the progression of a wide range of
cancers.

Notch as an oncogene

The first data which described Notch signaling as a cancer
promoting factor was derived from human acute lympho-
blastic leukaemia (T-ALL), a neoplastic disorder accounting
for ~10-20% of all T-ALL. In 1991, Ellisen et al.'”" first iden-
tified a recurrent translocation t [7;9][q34;q34.4] in T-ALL
patients. The translocation fused the 3" portion of Notch1 to
the T cell receptor B promoter/enhancer, resulting in the con-
stitutively active and over-expression of an active form of
Notchl protein (N1ICD). In this seminal discovery, however,
it appeared that <1% of T-ALL cases contained this translo-
cation, thus it didn’t illustrate the causal role for Notch in
T-ALL carcinogenesis. More compelling evidence of the
central role of Notchl in human T-ALL was discovered by
Weng et al.,* when they reported that of two types of activat-
ing mutations of Notchl — the extracellular heterodi-
merization domain (that induces ligand-independent
activation) and the C-terminal PEST domain (that increases
the stability of N1ICD)'"* — at least one of which can be
examined in more than 50% of human T-ALL. Consistent
with these results, Reschly et al.'” demonstrated that T cell
lymphomas accumulate mutations in or near the PEST
domain, which mediates degradation of the active form of
Notchl. These data, however, do not classify whether these
mutations are initiating or collaborating secondary events
and further studies will be necessary to unravel the molecular
mechanism. Further evidence for Notch signaling as an
oncogene may lie in that Notchl regulates the expression of
c-MYC, a potent driver of cell cycle entry, contributing to cell
cycle progression in T-ALL.* Sharma et al."* demonstrated
that Notch1 directly induces the expression of c-MYC and
that inhibition of Notch1 using small molecule inhibitors of
the y-secretase complex resulted in cell cycle arrest and apop-
tosis and decreased c-MYC levels. These studies and those
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performed by Palomero ef al.'” in human T-ALL cell lines,
which elegantly showed that the interaction of Notchl and
¢-MYC was composed of a feed-forward-loop regulatory
motif controlling leukemic cell growth, demonstrate that this
interaction of Notch1 and c-MYC is required to maintain the
growth. Beverly et al.'” suggested that Notch1 also suppressed
p53 function in T-ALL cells, which could promote oncogen-
esis through increased cell survival and genomic instability.
Collectively, these studies delineate how Notch 1 mediated cel-
lular transformationinhuman T-ALL and providea more reli-
able theoretical basis for the treatment of T-ALL.

After the discovery of its involvement in T-ALL, Notch sig-
naling was also implicated in breast cancer."”"'"* The onco-
genic potential of Notch activation in solid tumors was first
observed in murine mammary cancer,"" which is induced by
the mouse mammary tumor virus (MMTV). The MMTV
induced a mammary tumor by insertion into the genome and
deregulating expression of adjacent integration (int3) genes,
later identified as the Notch4 locus.'? A substantial body of
evidence in subsequent decades, derived not only from pre-
clinical, but also clinical studies, has accumulated in support
of Notch signaling playing important oncogenic roles in
human breast cancer as well. Breast cancer patients with high
levels of Notchl and Jaggedl showed a poorer prognostic
profile and lower survival rates.">'"” Similarly, one study has
shown that more than 50% of human breast tumors express
reduced protein levels of Numb, a negative regulator of Notch
signaling, which has been associated with high-grade breast
cancers."* As in T-ALL, c-MYC is a direct downstream effec-
tor of Notchl, and co-expression of Notchl and c-MYC has
been found in a large fraction of examined human breast
cancers by comparative expression profile analysis using
microarrays.* Furthermore, the most intriguing observation
made by Sethi ef al.”* indicated that tumor-derived Jagged1
promoted the bone metastasis of breast cancer by stimulating
IL-6 release, which can be reversed after treatment with
Y-secretase inhibitor. Taken together, these findings suggest
that aberrant Notch signaling may be of great importance in
human breast cancer and provide a rationale for targing
Notch signaling in breast cancer.

The expression of Notch receptors and their downstream
target genes is also up-regulated in primary human pancre-
atic,'™""*lung,"” and liver cancers.""® The enforced expression
of constitutively active Notch also promotes melanoma pro-
gression.''*?® Because it plays a key role in three tumor sur-
vival processes: tumor cell transformation, survival, and
angiogenesis,""'* the Notch axis is often considered as onco-
genic. In addition, although underlying mechanisms are yet
to be fully elucidated, Notch has been shown to facilitate
epithelial-mesenchymal transition'*'* and induce cancer
stem cell-like properties in breast cancer cells.'”®'* Although
this is true in some cases, it certainly does not represent all
tumor types.
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Notch as tumor suppressor

Although Notch was originally identified as an oncogene,
studies have also demonstrated that components of the same
pathway may have growth-suppressive functions in some
hematopoietic cells, skin, and pancreatic epithelium, as well
as in hepatocytes, illustrating the highly context-dependent
nature of the pathway. The first evidence describing Notch
signaling as a factor for suppressing tumors was derived from
Nicolas et al. In their study, mice with Notch1-deficient epi-
thelia increased and sustained expression of Gli2, which is a
downstream component of the Sonic-hedgehog (SHH)-
signaling pathway, causing the development of spontaneous
basal-cell-carcinoma-like tumors over time."” Consistent
with this, Thelu et al.'"” reported that expressions of Notchl,
Notch2, and Jagged1l were down-regulated in human basal-
cell carcinomas. These results indicated that a loss of Notch
signaling in human epidermis, as well as in mouse epithelia,
could lead to the development of basal-cell carcinomas
through suppression of the SHH pathways. Another Notch
target gene that appears to contribute tumor suppressive
effects in the epidermis is B-catenin, a regulator of Wnt
signaling. Researchers have demonstrated that activation of
Wnt signaling is observed in basal-cell-carcinoma-like
tumors,'?*!? however, these results do not illustrate the causal
role for Wnt signaling in these tumors. Instead, they highlight
the ability of the Notch pathway in Notch1-deficient mouse
skin where the Wnt pathway is re-activated resulting in
increased B-catenin-mediated signalling, which generates
these cancers.'” Furthermore, Wnt4 was found to be nega-
tively regulated by Notch in mouse keratinocytes and skin
through p21WAFVCPL 3 negative transcriptional regulator of
Wnt4 expression.'”” Thus, mechanistically, tumor inhibition
in the skin may involve feedback with the microenvironment
in addition to cross-talk between Notch and other signaling
pathways.

The studies on Notch function in skin lead to an interesting
question: Is the tumor suppressive activity of Notch mani-
fested in a broader range of tissues? Evidence from several
studies on Notch function in neuroendocrine tumors
(NETs), such as small-cell lung cancer (SCLC), pancreatic
carcinoid, and medullary thyroid cancer (MTC), seem to
support this notion.”*"”*"** In non-small cell lung cancer
(NSCLC), Notch shows a growth promoting function,''”'**%
whereas in SCLC it exerts an inhibitory effect.”**® These
apparent but paradoxical functions clearly indicate that the
role of Notch signaling is dependent on its cellular context. In
SCLC, constitutively active Notch receptors (Notchl,
Notch2) have been shown to cause a profound growth
arrest,”* which may be associated with a G1 cell cycle block
through up-regulating the expression of p21"“P' and
p275PL1 In Sriuranpong et al.’s study, they also illuminated
another possible mechanism of Notch as a tumor suppressor,
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the constitutive activation of Notch proteins led to the reduc-
tion of human achaete-scute homologue-1 (hASH1) expres-
sion, a transcription factor of basic-helix-loop-helix (bHLH),
as well as the activation of phosphorylated ERK1 and ERK2,
resulting in cell cycle arrest in SCLC cells. Similarly, the dele-
tion of Notchl accelerates PanIN development'® and
increases the incidence and progression of pancreatic ductal
adenocarcinoma (PDAC), which is induced by the most com-
monly mutated oncogene K-ras,'*! implying that Notchl can
function as a tumor suppressor gene in PDAC. Viatour et al.'**
showed that the expression of Notch receptors (Notch1-4), as
well as a downstream transcriptional target of the Notch
pathway, was higher in TKO hepatocellular carcinoma
(HCC) models than that in other HCC mouse models, which
raised the question that Notch signaling in the liver might act
as an oncogene. Unexpectedly, inhibition of Notch signaling
with DAPT in TKO mice increased the development of
cancer, and liver-specific inactivation of Notchl expression
also leads to the proliferation of hepatocytes in mice.'"” In
contrast, increased Notch activity leads to cell cycle arrest in
G2 and/or cell death in TKO fibroblasts,'** as well as in human
HCC cell lines."” The discrepancies in these studies may
result from loss-of-function versus gain-of-function
approaches, as well as differences in the model systems. To
address the relevance of these observations, Viatour et al.'*
found that liver cancer patients with significantly higher
expression of Notch1 and Hes1 could survive longer, showing
TKO dataset preferentially. Viatour et al.’s study also indi-
cates that Notch signaling acts as a tumor suppressor feed-
back mechanism in response to activation of E2F
transcription factors in TKO liver cells. Finally, Notch1 also
seems to be a p53"™ target gene, which negatively regulates
Rho GTPase effector genes, thereby decreasing cell adhesion
and stimulating terminal differentiation."*** However, the
growth inhibitory role of Notch has been mainly suggested on
the basis of activated Notchl overexpression studies. Thus,
the extent and frequency of Notch to inhibit the proliferation
of cancer must still be verified.

Notch in cancer stem cells

Cancer stem cells (CSCs, also known as tumor-initiating
cells) are rare cells with indefinite potential for self-renewal
that drive tumorigenesis.”*® CSCs are an attractive candidate
as the origin of cancer, and may be responsible for the
relapse and metastasis of tumors, which are still major
obstacles for improving overall cancer survival. Bonnet and
Dick’s studies first described cancer stem cells,”" specifically
that human acute myeloid leukaemia (AML) cells originate
from a primitive hematopoietic cell, which shows cell
surface markers CD34" CD38, exclusively, and target
for leukaemia transformation. A number of studies have
also identified CSCs in many solid tumors, such as
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pancreatic,”
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prostate, colon,*"” liver,"® lung, and
breast cancers.

As cancer stem cells behave like normal stem cells, it is
believed that genetic alterations in critical signaling pathways
that govern stem cells would also play important roles in
cancer stem cells. These pathways include: Notch, Wnt, bone
morphogenic protein (BMP), and Sonic hedgehog signaling
pathways.'* "% The deregulation of these pathways, resulting
in stem cell expansion, may be a key event originating CSCs
and, thereby, initiating carcinogenesis. But the causal rela-
tionship between Notch signaling and CSCs is not clear.
Gain-of-function of Notch studies in mouse mammary stem
cells (MaSCs) suggest that inappropriate Notch activation
contributes to mammary carcinogenesis by promoting the
self-renewal and transformation of luminal progenitor
cells.'® Similarly, experiments on human breast cancer stem
cells, which were enriched using cell surface markers, such as
CD44+4/CD24—, showed an upregulation of Notch gene
expression. Contrary to this finding, blocking the Notch sig-
nalling pathway with a y-secretase inhibitor, DAPT, reduces
DCIS mammosphere formation.'” Taken together, these
results strongly suggest that Notch pathways play a critical
role in breast CSCs and, thus, may represent novel therapeu-
tic targets to prevent recurrence of pre-invasive and invasive
breast cancer. Likewise, Fan et al. found that the growth of
neurospheres in vitro and the growth of tumour xenografts
in vivo have been reduced while Notch receptors were block-
aded by GSIs.'® This study also interpreted that Notch
pathway inhibition reduced proliferation and increased
apoptosis resulting in the depletion of stem-like cancer cells
through decreasing AKT and STAT3 phosphorylation.'®
Interestingly, there are controversial conclusions on Notch
in human hematopoietic stem cells. It was reported that
Jaggedl-expressing osteoblasts regulated hematopoietic stem
cell function through Notchl activation."” Conversely,
Maillard et al. showed that blocking Notch-mediated
transcriptional  activation  using  dominant-negative
Mastermind-likel (DNMAML), a highly specific inhibitor of
canonical Notch signaling through the CSL/RBPJ-ICN-
MAML complex, did not impair hematopoietic stem cell
(HSC) numbers or function, suggesting that cell-
autonomous canonical Notch signals are dispensable for
adult HSC maintenance.'® Similar results were observed in
bone marrow progenitors and/or bone marrow stromal cells
with inactivation of the Jaggedl gene, which did not impair
HSC self-renewal or differentiation in all blood lineages. In
addition, HSCs with Notch1-deficient were able to reconsti-
tute mice with inactivated Jaggedl in the BM stroma, sug-
gesting an unessential role for Jaggedl-mediated Notch
signaling during hematopoiesis.'® As there are different roles
of Notch in stem cells, further molecular and mechanistic
studies are needed to clarify the specific roles of the Notch
family in CSCs.
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Notch in clinical cancer therapy

The role of Notch signaling in the pathophysiology of cancer
and cancer stem cells has provided a potential therapeutic
target for cancer management. Specifically, given the well-
documented role of overactive Notch signaling in several
solid tumors, inhibition therapy, such as using y-secretase
inhibitors or antibodies against Notches in the treatment of
cancer seems to be a promising option. Phase I pharmaco-
logic and pharmacodynamic studies of GSI MK-0752'7%1"!
and RO4929097°"'"* have demonstrated that toxicity was
time- and dose-dependent, and rational combination would
be needed to maximize clinical benefit with this agent.
Common GSI-related toxicities involving diarrhea, nausea,
vomiting, and fatigue are partly a result of non-selective
inhibiting Notch receptors."”>'” Studies on lung cancer
therapy have demonstrated that MRK-003, a 7y-secretase
inhibitor, inhibited the growth and apoptosis of lung cancer
cell lines, both in vitro and in vivo, through specific action on
the Notch3 receptor,””® suggesting that specific inhibition of
one of the Notch receptors would be effective. In addition,
Meng et al.'”’ reported that Notchl was up-regulated in
response to oxaliplatin treatment in colon cancer. The combi-
nation of GSI with oxaliplatin significantly enhanced chemo-
therapeutic efficacy. Similarly, in triple negative breast cancer
(TNBC), combinations of GSIs and taxanes have shown syn-
ergistic efficacy."”® Down-regulation of Notch signaling by
GSI resulted in enhanced radiosensitivity of nasopharyngeal
carcinoma cells.””” Taken together, these results suggest that
combining GSIs with chemotherapy or radiotherapy may
represent a novel approach. Not all Notch receptors are sensi-
tive to GSIs, but Notch4 has been shown to be resistant to
some GSIs.'"™ Antibodies downregulated the expression of
Notches, to positive effect in preclinical and clinical trials.""
Based on the characteristics of the structure, function, and
regulation of Notch receptors and ligands, Notch signaling as
a selected target for therapy will include methods of inhibit-
ing the expression of ligands, blocking ligand-receptor
binding, and down-regulating target genes.'*>'®

Conclusion

A considerable body of evidence has implicated Notch signal-
ing as involved in the pathogenesis and development of
cancers through a variety of mechanisms. But is also raises
some questions. First, incontestable evidence has indicated
that Notch signaling facilitates a variety of solid tumors. It is
also sobering to realize that artificial over-expression of
Notchl or Notch2 in SCLC causes a profound growth
arrest,” highlighting that the role of Notch in cancer is
dependent upon cell context and cancer type. In addition, the
cross-talk between Notch signaling and other pathways
appears to have the opposite effect in cancers, for example, the
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cross-talk between Notch and Wnt may be partly responsible
for the controversial roles of Notch in cancer. Finally, four
Notch receptors present distinct, even opposite, roles in
tumors. Notchl1 is a suppressor in embryonal brain tumors,
while Notch2 contributes to the growth of tumors,'** which
may be a result of the differences in their structure, specifi-
cally the EGF-like repeats in the extracellular domain.'® As
the exact mechanism of the paradoxical roles of the Notch
pathway in different cancers is still unclear, further studies are
required. Interestingly, the Notch pathway has positive corre-
lation with the maintenance and proliferation of CSCs, sug-
gesting that targeting the Notch pathway in cancer treatment
reduces the latency and recurrence of tumors, thereby
decreasing the morbidity and mortality of cancer. Hence,
future research should aim to decipher the complex cross-talk
networks of Notch, as insight into Notch signaling will
increase our ability to better design rational regimens that are
more likely to be proven safe and effective.
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