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Abstract The crustal remnant field on Mars rotates with the planet at a period of 24 h 37 min, constantly
varying the magnetic field configuration interacting with the solar wind. Until now, there has been
no self-consistent modeling investigation on how this varying magnetic field affects the solar wind
plasma interaction. Here we include the rotation of this localized crustal field in a multispecies single-fluid MHD
model of Mars and simulate an entire day of solar wind interaction under normal solar wind conditions. The
MHD model results are compared with Mars Global Surveyor (MGS) magnetic field observations and show very
close agreement, especially for the field strength along almost all of the 12 orbits on the day simulated. Model
results also show that the ion escape rates slowly vary with rotation, generally anticorrelating with the strength
of subsolar magnetic crustal sources, with some time delay. In addition, it is found that in the intense crustal
field regions, the densities of heavy ion components enhance significantly along the MGS orbit, implying strong
influence of the crustal field on the ionospheric structures.

1. Introduction

Mars has a spatially varying crustal field [Acuna et al.,, 1998]. The intense crustal sources as detected by the
Mars Global Surveyor (MGS) are mainly concentrated in the southern hemisphere in the Terra Sirenum region
in the longitude range of 150°E to 240°E and latitude range of 30°S to 85°S [Acuna et al., 1999; Connerney et al.,
1999]. As Mars rotates, different magnetic stresses contribute to the dayside ionospheric thermal pressure to
counterbalance forces exerted by the solar wind plasma [Brain, 2006]. This could modulate the plasma
environment around Mars and also has a potential to alter the ionospheric plasma escape rate.

Using Mars Global Surveyor (MGS) premapping data, Crider et al. [2003] found that the magnetic pileup
boundary (MPB) is located higher in the southern hemisphere than in the northern hemisphere, suggesting
that crustal magnetic fields have strong influence on the plasma boundary. This was confirmed later by Brain
et al. [2005], who used more than 5 years of MGS data and showed that during southern summer, strong
crustal fields near the subsolar point raise the altitude of the MPB over the entire dayside, implying that
Martian crustal fields modify the solar wind interaction globally.

Observational data have also been used to investigate relations between plasma escape rates and the crustal
field. Using data from Analyzer of Space Plasmas and Energetic Atoms 3 on Mars Express, Lundin et al. [2011]
examined ion flux intensity patterns when the strong crustal magnetic field is located at different local times,
and they found high fluxes of energized ionospheric O* on the dayside when the strong crustal field is near
noontime. However, they found no discernible hemispheric difference in the total escape flux through the
tail. Nilsson et al. [2011] used more than 4 years of Mars Express ion data to examine heavy ion escape from
different positions in near-Mars space and found that the escape rate is statistically significantly higher from the
northern quadrant than from the southern quadrant, indicating that the strong crustal field anomalies in the
southern hemisphere cause the reduced ion outflow. Both studies suggest that the crustal field has a strong
influence on the ion flow patterns; however, it is still unknown how the total plasma escape varies as the planet
rotates or whether different ions have similar responses due to limited data coverage. This has been partly
examined using numerical models in the past with steady state approximations [Ma and Nagy, 2007; Fang et al,,
2010], in which a limited number of cases were simulated for the same solar wind condition but with different
subsolar longitudes. It was found that escape fluxes are the weakest when the strongest crustal source is facing the
Sun. Although these earlier numerical studies provide some basic ideas about how the crustal fields affect
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ionospheric escape, in reality, the subsolar longitude continuously varies with time; thus, the system may never
achieve a steady state. In other words, the steady state approximation may not be able to fully represent the real
situation. Even though the bow shock and the MPB adjust almost instantaneously to the new solar wind
conditions as suggested by Modolo et al.[2012], a recent study of Ma et al. [2014] showed that ionospheric escape
rates depend not only on current solar wind dynamic pressure but also on the earlier solar wind conditions and
that it could take a few hours for the ionospheric/atmospheric system to reach a new quasi-equilibrium state.

Numerous global models have been applied to Mars [see reviews of Nagy et al., 2004; Ledvina et al., 2008;
Brain et al., 2010; Kallio et al., 2011, and references therein]; those earlier numerical studies are usually
restricted to stationary situations under various steady conditions of the solar wind and solar radiation. Until
now, there has been no self-consistent modeling investigation on how this varying magnetic field affects the
solar wind plasma interaction. To do that, the crustal fields and their rotation have to be included in the
model. The inclusion of the crustal field rotation is time-consuming, because the model has to be run in time-
accurate mode for at least a Martian day as opposed to obtaining a steady state solution with efficient
algorithms (local time stepping). In this paper, for the first time, we will show how the rotation affects the
solar wind plasma interaction process and how accurate the steady state approximation is when evaluating
the ion escape rates. The model used in the study is briefly discussed in section 2. Model results and
comparisons with MGS observations are presented in section 3. A short summary is presented in section 4.

2. Model Description

A multispecies single-fluid MHD model of Mars is used for the time-dependent calculation employing the
University of Michigan Block-Adaptive Tree Solar Wind Roe Upwind Scheme (BATS-R-US) code [Powell et al.,
1999; Toth et al., 2012]. The MHD model has been described in detail by Ma et al. [2004]. The model
calculations are performed in the Mars-centered Solar Orbital (MSO) coordinate system: the x axis points from
Mars to the Sun, the y axis points antiparallel to Mars’ orbital velocity, and the z axis completes the right-
handed coordinate system. In order to compare with MGS observations, the rotation axis of Mars is chosen to
be that for a specific day on 16 May 2005. On this day, the rotation axis is tilted in both negative x and
negative y directions in the MSO coordinates. The rotation axis vector is taken to be (—0.23, —0.36, and 0.90)
in the coordinates, corresponding to the value in the middle of the selected day. The tiny variation of the
rotation axis over the course of the day is neglected. At the beginning of the day on 16 May 2005, the
subsolar location is 58.9°W, 13.0°S; the season on Mars during that time was between southern spring and
southern summer. The rotation period relative to the Sun was 24.664 h, slightly longer than the sidereal day.

The computational domain is set to be —24 Ry, < x <8 Ry, —16 Ryy <y, and z < 16 Ry, where Ry, is the radius
of Mars (3396 km). We use a nonuniform, spherical grid structure with the radial resolution varying from

10 km at the inner boundary (100 km altitude) to ~630 km near the outer boundary. The angular resolution is
3°in both longitudinal and latitudinal directions throughout the computation domain. The total number of
cells is slightly over 1.1 million. This grid has a similar radial resolution in the ionosphere but coarser angular
resolution than the one used in the work of Ma et al. [2004], so that the time-dependent calculation can be
performed with reasonable computational resources. The inner boundary conditions are the same as used in
Ma et al. [2004]. The time step is dt =0.02 s. The crustal field is calculated based on the 60-order spherical
harmonics from Arkani-Hamed [2001] and is updated every 4 min corresponding to ~1° rotation, which is
smaller than the 3° angular resolution used in the calculation. Typically, the simulation requires 30,000 CPU
hours to finish one Mars rotation. In order to avoid the possible influence from the initial condition, we use
the preconditioning technique by starting the simulation 4 h before the time of interest.

No solar wind monitor is available for Mars, so we simply assume that the solar wind has typical values
New=4cm ™3, Usyw =400 km/s, Tpo=3.5% 10°K, By=1.6 nT, and By= —2.5nT (corresponding to the 3 nT Parker
spiral magnetic field) and does not vary with time. This set of parameters corresponds to a dynamic pressure
of 1.1 nPa and magnetosonic Mach number of 5.7. Based on the small sunspot numbers for year 2005, the
photoionization rates used in the calculation correspond to solar minimum conditions [Ma et al., 2004].

3. Model Results

We first compared the magnetic field from the model (blue lines) with MGS in situ observations (black lines) along
the spacecraft trajectory, as shown in Figure 1. The model results (especially the magnetic field strength) closely
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Figure 1. Comparison with MGS magnetometer observations along the
spacecraft orbit during 16 May 2005. The black line shows the MGS
observations, while the blue line is from the time-dependent multispe-
cies single-fluid MHD model with rotation of the crustal field included.
The color bars in Figure 1 (bottom) are the correlation coefficients for By
(solid blue), Box (blue lines), By (solid green), Bgy (green lines), Bz (solid
red), Boz (red lines), B (solid black), and Bg (black lines), respectively, for
each corresponding orbit as separated by the vertical dashed lines.

follows the corresponding MGS
observations. To quantify the comparison,
we calculated the correlation coefficient,
the root-mean-square error (RMSE), and
the normalized root-mean-square error
(NRMSE) for magnetic field components
and strength for the whole time period
using 10 s average data. The nRMSE is
calculated using RMSE divided by the
root-mean-square of the variable. The
results are listed in Table 1. As shown in the
table, the agreement is the best for B
magnitude (corresponding
coefficient=0.88, RMSE=10.8 nT, and
NRMSE = 0.32). The excellent agreement
between model and data for B magnitude
suggests that during the entire day, the
solar wind pressure was fairly steady and
was similar to the input dynamic pressure
used in the model. The agreement for the
magnetic field components is also very
good considering the fact that the solar
wind magnetic field orientation is
unknown and could be variable.

We make similar calculations for each of
the 12 MGS orbits during the day, and
the corresponding correlation

coefficients for both the calculated magnetic field from the MHD model and the crustal field model are
plotted at the bottom of Figure 1. We also plotted the geographic longitude-latitude map of the Martian

crustal field with the MGS orbits superposed as supporting information to provide additional information for
the geometry of MGS orbits. The start of each orbit is defined by the northward crossing of the MSO equator
on the dayside as indicated by the vertical dashed lines. The correlation coefficients, in general, are fairly high
(>0.60 for most cases); however, they do vary significantly from orbit to orbit, especially for the field
components. The best correlation coefficient exceeds 0.9 for all the field components and reaches 0.98 for
the field strength for orbit 12. This indicates that solar wind interplanetary magnetic field (IMF) is roughly in
the same direction as the Parker spiral that is used in the calculation during the orbit. For orbit 2 and orbit 3,
the simulated B, and B, components anticorrelate with the observations with negative coefficient,
respectively. It is likely that during those two orbits, the actual solar wind IMF was in the opposite direction
than the one used in the calculation, or it was highly variable during the orbit period. The range of the
correlation coefficient for the magnetic field strength ranges from 0.65 to 0.98, showing very good
agreement for all of the 12 orbits of the day. We also calculated the P values to determine the statistical
significance of the correlation coefficients, and we found that they are all statistically highly significant (with
p < 0.001, meaning that there is less than one in a thousand chances of not being correlated) except for the
B, component in orbit 3, which gives a P value of 0.015 (still indicating that it is statistically significant). As for
all orbits, the P value is sufficiently low

Table 1. Correlation Coefficient, Root-Mean-Square Errors (RMSE), and
Normalized RMSE for Magnetic Components and Strength for the
Whole Time Period Using 10's Average Data

Correlation Coefficient RMSE (nT) nRMSE
By 0.64 16.1 0.82
By 0.65 14.4 0.80
B, 0.76 14.3 0.68
B 0.88 10.8 0.32

to ensure significant statistics; we
conclude that the MHD model results
are in close agreement with the
observations. Also for most of the
orbits, the calculated magnetic

field (including both vector
components and field strength) from
the MHD model has significantly
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higher correlation coefficients with the
MGS observations as compared with the
pure crustal field. We also note that for
some orbits (such as orbits 5,6, 11, and 12),
the correlation coefficients of the pure
crustal field are as good as those calculated
using the MHD magnetic field results. This
happens when MGS passed strong crustal
field regions (with By > 100 nT), so the
induced fields are only a small contribution
to the total fields. As a result, even
though we see the improvement of the
agreement during certain periods when
the crustal field is weak (see Figure 2 for
example), the overall correlation
coefficients for those orbits are not
noticeably improved by considering the
induced fields from the model.

B, [nT]

B, [nT]

B, [nT]

Figure 2 shows a 3 h zoom-in view of the

model-data comparison for orbit 6 and

part of orbit 7, overplotted with the crustal

field (red dashed lines) and local time (gray

_ S dashed line only in Figure 2 (bottom)). It
Ll shows that in the strong crustal field

Time I May 16, 2008 (houn regions (regions 1 and 3), the total

Figure 2. Zoom-in view of the comparison between model and obser- magnetic field closely follows the crustal
vations for a 3 h period. The black line shows the MGS observations, field with only small contributions from the
the red dashed line is the crustal magnetic field By, and the blue lineis  induced field. In the weak crustal field
from the MHD model. The gray dashed line in Figure 2 (bottom) is the region (regions 2 and 4), the induced
corresponding local time for the MGS spacecraft. The green dashed
lines separate strong (1 and 3) and weak (2 and 4) crustal field regions
along the MGS trajectory.

B [nT]
Local Time (h)

field dominates and significantly improves
the agreement. Also note that both
regions 2 and 4 are in the dayside
crossing, as indicated by the local time, so that the induced fields are relatively strong relative to the night
side passage.

Generally, the good model-data agreement near the strong crustal field region indicates that the crustal field
model [Arkani-Hamed, 2001] included in the MHD model is quite accurate. Around the dayside weak crustal
field region, the induced field is needed to match the observations. The discrepancy between the data and
model results could be caused by three different factors: (1) the variation in the solar wind (pressure and IMF
direction change), (2) the inaccuracy in the crustal field model, and (3) the limitation of the MHD model that is
used in the study.

Sometimes it is possible to identify the cause of the discrepancy. For example, the discrepancy around 10:10-
10:20 UT for B, is likely caused by the inaccuracy of the crustal field model, since the induced field normally
could not cause such a big difference. However, in most cases, it is hard to distinguish the main source that
contributes to the discrepancy, for example, the discrepancy in B, around 10:20 UT. The overall good
agreement between the model and observations indicates that the crustal field model is quite accurate and
the single-fluid MHD model works well at MGS circular orbit (around 400 km altitude).

We also calculate the ion escape rates throughout the day as shown in Figure 3. The escaping plasma is

dominated by O," for the majority of the day. The averaged total ion escape rate is about 2.3 x 10>* (s7"), in
the same range as the average heavy ion escape rate estimated from Mars Express (MEX) observations near
solar minimum condition [Lundin et al., 2013]. Carlsson et al. [2006] analyzed data from the lon Mass Analyzer
sensor on MEX to determine the mass composition of the escaping ion species at Mars, and they found that
on average, the O,*/0" ratio is about 0.9, which is different from the mass composition that is predicted by
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[ CO; (X10) our simulation. However, their
individual events show a wide spread of
the ratio range from 0.2 to 2.0 (Carlsson
et al. [2006], Figure 9), while the ratio of
0,*/0* from our MHD model ranges
sopssl L e = ‘\‘;5 from 0.9 to 1.8 for the specific day

Time in May 16, 2005 (hour) simulated. In addition, Carlsson et al.'s

Figure 3. Variation of the modeled escape rates with time and subsolar [2006] study was base‘d on data

east longitude. The solid lines are the integrated loss rates for 0" (blue), collected from 23 April 2004 to 31
Of(red), and COf(green, increased by a factor of 10 for better compar- December 2004, which is in the

ison) The black dashed line is the subsolar longitude. The symbols are the  declining phase (close to median solar
escape rates estimated using the steady state solution. Note that at 8 UT, activity). Our simulation results suggest
the three symbols reside almost at the same location.
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that the dominant ion species (O* or
0,") largely depends on the solar cycle.
For solar minimum condition, which is the case in our study, O,* is the dominant species being lost to space,
while for solar maximum condition, O* is the dominant one (see Ma et al. [2014]). Note that in the plot, the
escape rate of CO," is enlarged by a factor of 10 for easy comparison. The loss rates of the two heavy ions O,*
and CO," share very similar trends and vary significantly as the crustal magnetic field rotates with the planet.
The loss rate of O*, the dominant ion species at high altitude, has a much smaller variation with time. Also in
the plot, we add predictions of escape rates using steady state solutions at four different times. These times
correspond to the strong crustal magnetic source being in the dawn (2 UT), subsolar (8 UT), dusk (14 UT), and
midnight (20 UT) sectors, respectively. The escape rates are represented by symbols for comparison. As can
be seen from the plot, the steady state solution can reproduce quite well only the escape rates of O*. The
escape rates for the heavy ions are significantly less from the time-dependent simulation results at 8 UT and
20 UT. The difference for O," is about 30% of the corresponding time-dependent results. This demonstrates
that the ionosphere system needs time to respond to the continuous changes of the crustal field and that the
interaction process cannot be simply assumed to be under a steady state. Thus, we should be cautious when
using steady state solutions to approximate the escape rates, especially for the heavy ions. Also, the ion
escape rates for the two heavy ions reach a local minimum near 11 UT, which is about 3 h after the strong
crustal field passing by subsolar location, indicating in a general anticorrelation with the strength of the
crustal field near subsolar region, consistent with what was found by Ma and Nagy [2007]. As suggested by
Lundin et al. [2011], when the dayside strong crustal magnetic field anomalies interact with the solar wind,
“minimagnetospheres” form and act as cellular structures, which effectively reduce the tailward transport
and escape of ionospheric plasma. The escape rates peak when the strong crustal source is located in the
morning and afternoon sectors and dip near noon and midnight. As mentioned in the Introduction, Nilsson et al.
[2011] found that the escape rate is statistically significantly higher (by about 50%) from the northern quadrant
than from the southern quadrant. We also examined the loss rates versus locations from our model results and
found that when the crustal field is located near the morning and noon sectors, the escape rates from the
northern quadrant is about twice the value from the southern quadrant. While when the crustal field is located
near dusk and midnight, the escape rates from the two quadrants are about the same. The detailed relation
between escape rates and crustal field location will be investigated in more detail in future studies.

Figure 4 shows the MGS latitude and solar zenith angle (SZA), simulated plasma density, plasma flow velocity,
and magnetic field strength along a few orbits during the day. As shown in the figure, the dominant ion
species is still 05" even at 400 km altitude along MGS orbits. O* never exceeds O,* during the whole period. The
densities of the planetary ions show clear dependence on SZA as expected. Also during daytime passes, we
usually see double peaks in the O," density. This is caused by the changes in ram angle (which is the same
as SZA). The dips usually happen very close to the SZA minimum location when the crustal field is weak

(for example, near 14 UT) or have a small time shift when the crustal field near the SZA minimum is strong. This
is because when the crustal field is negligible, the ionosphere is more compressed at smaller SZA due to larger
normal solar wind dynamic pressure. The peak of the O," density also has a clear correlation with the peak
crustal magnetic field strength. When the crustal field is strongest near 12 UT, the peak density of O," is
almost twice as large as the other peaks. The main reason for the density increase is the expansion of the
ionosphere to high altitude with the help of the magnetic field pressure (mainly contributed by the crustal field) to
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stand off the incoming solar wind
plasma flow. The plasma flow was
normally small in the radial direction
along the MGS orbit as shown in the
third panel, but can sometimes have a
significant component in theta and phi
directions. The large flow is normally
predicted when MGS is above the
equator shortly after the density
minimum and was moving in a
direction diverting around the planet:
positive UT when MGS is in dayside,
then negative when MGS moves into
the nightside.
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4. Summary

In this study we investigated how the
rotation of Mars and its crustal
magnetic field affect the solar wind
interaction using a time-dependent
multispecies MHD model. The model
results closely agree with the MGS
magnetometer observations along
almost all of the 12 orbits we have
simulated. It also found that the
simulated ion loss rates slowly vary
with the subsolar longitude,
anticorrelating with the intensity of the
dayside crustal field source, with some
time delay. A steady state
approximation can only reproduce
reasonably well the escape rate of O", while the loss rates of heavy ions (O," and CO," ) are more time
dependent. Model results also suggest that plasma distribution along the MGS orbit (around 400 km altitude)
is significantly affected by the strong crustal field location, and O* density seldom exceeds O, " density along
the MGS orbit (400 km) during the whole period simulated. These findings could be tested using the
observations of MEX and the upcoming NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission.

Velocity (km/s)
o

|
(&)}

B 10 PR YR 18
Time in May 16,2005 (hour)

Figure 4. MGS latitude and local time, simulated plasma density, simulated
plasma flow velocity, and simulated and observed magnetic field strength
along several orbits. In Figure 4 (bottom), By is the strength of the crustal field.

This is the first time we have included the temporal variation of the rotating crustal magnetic field into a
global interaction model of Mars. This is also a necessary step to have a meaningful comparison with
spacecraft magnetometer observations and to predict what MAVEN will observe after it goes into orbit. The
case presented here is for 16 May 2005, between southern spring and southern summer, for the solar
minimum case (with subsolar latitude 13°S). This is similar to the season at the beginning of the mapping
period of the MAVEN mission. We expect the variation of ion loss rates to be larger for southern summer,
when the subsolar latitude is located farther in the southern hemisphere.
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