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Structure of the gut microbiome following
colonization with human feces determines
colonic tumor burden
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Abstract

Background: A growing body of evidence indicates that the gut microbiome plays a role in the development of
colorectal cancer (CRC). Patients with CRC harbor gut microbiomes that are structurally distinct from those of healthy
individuals; however, without the ability to track individuals during disease progression, it has not been possible to
observe changes in the microbiome over the course of tumorigenesis. Mouse models have demonstrated that these
changes can further promote colonic tumorigenesis. However, these models have relied upon mouse-adapted
bacterial populations and so it remains unclear which human-adapted bacterial populations are responsible for
modulating tumorigenesis.

Results: We transplanted fecal microbiota from three CRC patients and three healthy individuals into germ-free mice,
resulting in six structurally distinct microbial communities. Subjecting these mice to a chemically induced model of
CRC resulted in different levels of tumorigenesis between mice. Differences in the number of tumors were strongly
associated with the baseline microbiome structure in mice, but not with the cancer status of the human donors.
Partitioning of baseline communities into enterotypes by Dirichlet multinomial mixture modeling resulted in three
enterotypes that corresponded with tumor burden. The taxa most strongly positively correlated with increased tumor
burden were members of the Bacteroides, Parabacteroides, Alistipes, and Akkermansia, all of which are Gram-negative.
Members of the Gram-positive Clostridiales, including multiple members of Clostridium Group XIVa, were strongly
negatively correlated with tumors. Analysis of the inferred metagenome of each community revealed a negative
correlation between tumor count and the potential for butyrate production, and a positive correlation between tumor
count and the capacity for host glycan degradation. Despite harboring distinct gut communities, all mice underwent
conserved structural changes over the course of the model. The extent of these changes was also correlated with
tumor incidence.

Conclusion: Our results suggest that the initial structure of the microbiome determines susceptibility to colonic
tumorigenesis. There appear to be opposing roles for certain Gram-negative (Bacteroidales and Verrucomicrobia)
and Gram-positive (Clostridiales) bacteria in tumor susceptibility. Thus, the impact of community structure is potentially
mediated by the balance between protective, butyrate-producing populations and inflammatory, mucin-degrading
populations.
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Background
Colorectal cancer (CRC) is the second leading cause of
cancer-related death in the United States each year [1].
Recent evidence suggests that the community of microbes
inhabiting the gastrointestinal tract plays an important
role in the development and progression of CRC [2-4].
This community, termed the gut microbiome, is known to
influence cancer-related functions, including cell prolifera-
tion, angiogenesis, and apoptosis, and it is strongly linked
to diet, obesity, and inflammation, which are known risk
factors of CRC [5-9]. Using a mouse model of CRC, we
have shown that structural changes to the microbiome
occur during tumorigenesis and result in a gut micro-
biome with an increased tumorigenic capacity [10]. These
findings demonstrate that the gut microbiome has a causal
role in the development and progression of CRC.
Several survey-based studies have shown that CRC pa-

tients harbor microbial communities that are structurally
distinct from those of healthy individuals [11-15]. How-
ever, there has been no consensus among these studies as
to which bacterial populations are important. In mouse
models, several gut commensals have been shown to pro-
mote tumorigenesis in the colon. Both enterotoxigenic
Bacteroides fragilis (ETBF) and strains of Escherichia coli
that carry the pks pathogenicity island can promote
tumorigenesis by the production of toxins [3,4]. Fusobac-
terium nucleatum has also been shown to potentiate
tumorigenesis in mouse models and cell culture experi-
ments by stimulating inflammation via myeloid cell re-
cruitment or activation of β-catenin signaling [2,16].
Fusobacterium was also found to be enriched in a subset
of human colon adenomas [15]. Although there is increas-
ing evidence that Fusobacterium is involved in CRC cases,
it was detected in less than half of adenomas, which
suggests that other bacterial populations are capable of
potentiating tumorigenesis [2]. In fact, it may be that CRC
is a polymicrobial disease requiring combinations of these
or other populations to influence tumorigenesis.
While individual bacterial species have been associated

with some human CRC cases, in other cases the capacity
of the microbiome to modulate tumorigenesis could be
determined by the structure of the community as a
whole rather than the presence or absence of individual
populations [4,17]. The potentially polymicrobial influence
of the gut microbiome on this disease necessitates the dis-
entangling of the complex interactions between bacterial
populations in the gut. Understanding these interactions
requires investigation of the relationship between the
microbiome and tumorigenesis under a diverse set of com-
munity structures. Unfortunately, mechanistic studies
typically rely on experiments with conventionally reared in-
bred mice living in homogenous, controlled environments,
leading to relatively little variation in microbiome structure
between individual animals. Although, experiments in con

ventional mice are useful for understanding the mecha-
nisms by which the microbiome modulates tumorigenesis,
they are limited by investigating only those bacterial strains
found in laboratory mice, many of which are absent in
human beings. It is reasonable to expect that incorporating
human-associated microbial populations into these experi-
ments would increase the ability to translate results to hu-
man beings.
To investigate the role of microbiome structure in

tumorigenesis, we combined the advantages of the high
interpersonal variation among human beings and the con-
venience of a mouse model. We inoculated germ-free
mice with microbiota from human subjects harboring dis-
tinct microbiomes. This technique enabled us to test the
effect of different baseline microbiome communities with
variation beyond what is seen in conventionally reared
mice. The transfer of human microbiota to germ-free
mice, sometimes referred to as ‘humanization’, has been
employed to study the microbiome in the context of
several other diseases. In studies of diabetes, obesity, and
malnutrition, colonization with human feces has been
reported to recapitulate the phenotype of the human
donors in the recipient mice [18-21]. Thus, in addition to
searching for tumor-modulating community structures,
we sought to determine whether this strategy could be
used to recapitulate the tumor-promoting capacity of
CRC patients’ microbiota in mice.

Methods
Mouse experiments
Fecal samples from three healthy individuals and three pa-
tients found to harbor carcinomas were obtained through
the Early Detection Research Network (Additional file 1:
Table S1). Diagnoses were determined based on colonos-
copy and histology. All six samples were PCR-negative for
the ETBF toxin and the E. coli pks island [4,22]. Collection
of the human feces used in this study was approved by the
University of Michigan Institutional Review Board. All
enrollees granted consent to participate in the study. Inoc-
ula were prepared by mixing 200 mg of each sample in 5
ml of PBS. Age-matched (6 to 10 weeks), male, germ-free
C57BL/6 mice were inoculated by oral gavage with 100 μl
of inoculum (n = 10 for groups H1 and C1, n = 5 for
others). Mice were housed five mice per cage. Three
weeks after inoculation, mice received a single intraperito-
neal injection of azoxymethane (AOM; 10 mg/kg of body
weight). Five days later, mice were subjected to the first of
three five-day rounds of 2% dextran sulfate sodium (DSS)
administered ad libitum in the drinking water (Figure 1).
Sixteen days of recovery separated each round of DSS.
Three weeks after the third and final round of DSS, mice
were euthanized and colonic tumors were enumerated.
With this model, mice consistently develop noninvasive
adenomas with dysplastic changes [23,24]. Throughout
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the experiment, the mice were housed in germ-free isola-
tors at the University of Michigan Germ-free Facility. This
animal experiment was approved by the University Com-
mittee on Use and Care of Animals at the University of
Michigan.

DNA extraction and 16S rRNA gene sequencing
Mouse fecal samples were collected throughout the
experiment and frozen at −20°C. Genomic DNA from
samples collected on days 0 and 73 and the human inoc-
ula were isolated using the PowerSoil-htp 96 Well Soil
DNA isolation kit (MO BIO, Carlsbad, CA, USA) using
an epMotion 5075 automated pipetting system. The V4
region of the 16S rRNA gene was amplified using
custom barcoded primers and sequenced as described
previously using an Illumina MiSeq sequencer [25]. All
fastq files and the MIMARKS spreadsheet are available
online [26].

Sequence curation and analysis
The 16S rRNA gene sequences were curated using the
mothur software package, as described previously [25,27].
Briefly, paired end reads were assembled into contigs and
aligned to the SILVA 16S rRNA sequence database [28].
Sequences that failed to align or were flagged as possible
chimeras by UCHIME were removed [29]. Each sequence
was classified using a naive Bayesian classifier trained
against a 16S rRNA gene training set provided by the
Ribosomal Database Project [30,31]. Finally, sequences
were grouped based on their taxonomic classification or
clustered into operational taxonomic units (OTUs) based
on a 97% similarity cutoff. The number of sequences in
each sample was rarefied to 3,306 sequences per sample,
to minimize the effects of uneven sampling. Parallel se-
quencing and processing of a mock community indicated
that the error rate of the curated sequences was 0.085%.
The dissimilarity in community structure between sam-

ples was calculated using the ΘYC metric [32]. The ΘYC

distances between samples were used for ordination
analysis by nonmetric dimensional scaling (NMDS) in two
dimensions. Ten iterations were performed and the result-
ing ordination that had the lowest stress was used for data
visualization. Dirichlet multinomial mixture models were
generated to group samples into enterotypes based on the

abundance of bacterial genera in each sample [33]. To
identify conserved changes that occurred over the course
of the AOM/DSS model, the samples from each mouse on
day 0, and the samples collected at the end of the model
were grouped into ‘baseline’ and ‘endpoint’ categories,
respectively. The R randomForest package was used to
identify the OTUs that best distinguished between the two
categories based on their importance for the classification
model [34,35].
The Phylogenetic Investigation of Communities by Re-

construction of Unobserved States (PICRUSt) software
package was used to infer the metagenomic content of
each sample, based on the taxonomy and abundance of
each OTU [36]. Although this method is limited by the
number of available genomes, it has been shown to
replicate metagenomes to a high degree of accuracy,
especially for human-adapted bacterial communities.
The weighted nearest sequenced taxon index (NSTI) for
our samples was 0.056 ± 0.01. In general, NSTI values
below 0.06 suggest that closely related reference
genomes were available for the dataset [37]. From the
inferred metagenomes, we identified KEGG orthologs
that could be used as markers for butyrate production
or host glycan degradation. Because either butyrate kin-
ase or butyryl-CoA:acetate CoA-transferase is required
for butyrate production in the gut, the KEGG orthologs
chosen as markers for butyrate production were K00929
(butyrate kinase (EC:2.7.2.7)), K01034 (acetate CoA-
transferase α subunit (EC:2.8.3.8)), K01035 (acetate CoA-
transferase β subunit (EC:2.8.3.8)) [38]. To choose
markers for glycan degradation, we found all of the KEGG
orthologs annotated as sialidases, fucosidases, sulfatases,
or members of the glycoside hydrolase family 18, as these
classes of enzymes are necessary, and moderately specific
for host glycan degradation [39,40]. Ten such KEGG
orthologs were found in the metagenomes and used as
markers: K01138 (uncharacterized sulfatase (EC:3.1.6.−)),
K01130 (arylsufatase (EC:3.1.6.1)), K01135 (arylsufatase B
(EC:3.1.6.12)), K01137 (N-acetylglucosamine-6-sulfatase
(EC:3.1.6.14)), K01134 (arylsufatase A (EC:3.1.6.8)), K011
86 (sialidase-1 (EC:3.2.1.18)), K01206 (α-L-fucosidase
(EC:3.2.151)), K01183 (1,4-β-poly-N-acetylglucosamini-
dase (EC:3.2.1.14)), K01205 (α-N-acetylglucosaminidase
(EC:3.2.1.50)), and K05970 (sialate O-acetylesterase
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Figure 1 Experimental design. Germ-free mice were inoculated by oral gavage with one of six human inocula. Twenty-one days later (day 0),
they received a single intraperitoneal injection of AOM (10 mg/kg). Mice were subsequently administered three five-day rounds of 2% DSS in the
drinking water, with 16 days of rest in between. Mice were euthanized 73 days after the AOM injection for enumeration of colonic tumors. The
inocula and samples collected on day 0 and day 73 were used for 16S rRNA gene sequencing. AOM, azoxymethane; DSS, dextran sulfate sodium.
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(EC:3.1.1.53)). Finally, we calculated the Spearman correl-
ation coefficients between tumor counts and these KEGG
orthologs.

Statistical analysis
Differences in tumor counts between Dirichlet multi-
nomial mixture (DMM) partitions were examined using
a Wilcoxon rank-sum test. To test whether there was a
significant difference in tumor counts between groups
that received healthy or cancer-associated inocula, we
rank transformed the tumor counts to correct for hetero-
scedasticity and performed a nested analysis of variance
(ANOVA). Differences in community structure were
examined using analysis of molecular variance (AMOVA)
in mothur [41].

Results
Colonization of germ-free mice with human microbiota
We colonized germ-free mice with human feces from six
individuals to determine whether different initial commu-
nity structures would yield different numbers of tumors
after going through the AOM/DSS model. This model
was selected because the progression tumors in the
AOM/DSS model closely resembles that of human CRC,
including early mutations in APC or β-catenin signaling
[42]. Furthermore, the model achieves colonic tumors and
complete penetrance in the widely available C57BL/6
strain within 73 days. Three of the donors had healthy co-
lons (H1, H2, H3) and three had colonic carcinomas (C1,
C2, C3). Samples were chosen because they represented
broad variation in community structure (Figure 2A). Fol-
lowing gavage and a 21-day colonization period, groups
showed varying levels of similarity to their inocula based
on phylum level relative abundances and the ΘYC dis-
tances calculated from OTU abundances (Figure 2A,B).
Low ΘYC distances between mice within groups suggested
that individual communities were consistent within each
group, while large ΘYC distances between groups
suggested that each group harbored a gut microbiome
that was structurally distinct from the others. Pairwise
AMOVA between groups revealed that colonization with
different inocula resulted in significantly different commu-
nity structures (P < 0.01, Benjamini-Hochberg correction).
These results suggest that although mice do not closely
resemble their inoculum, all sets of mice developed stable,
structurally distinct gut communities.

Tumor incidence is linked to initial community structure
Once colonized, mice were subjected to the AOM/DSS
model of CRC. We observed significant variation in the
number of tumors between mice (Figure 3A). These dif-
ferences were associated with the inoculum they received,
but not the cancer status of the human donor (nested
ANOVA P < 0.0005). Thus, the phenotypes of the human

subjects were not transferred to their mouse counterparts.
Ordination of the communities revealed an association
between the community structure of each group at the be-
ginning of the AOM/DSS model and their median tumor
counts (Figures 3B and Additional file 1: Figure S1). To
test for cage effects, groups H1 and C1 were each inocu-
lated into duplicate cages of five mice each (n = 10 per
inoculum). There was no significant difference in baseline
microbiome structure (P > 0.05, AMOVA) or tumor
counts (P > 0.05, Wilcoxon test) between cages within
each group.
To determine which OTUs were driving this trend, we

generated a biplot using the NMDS axes generated from
the ΘYC distances between samples collected at the time
of AOM injection (day 0; Figure 3B). Among the OTUs
most strongly correlated with high tumor counts were
two OTUs from the genus Bacteroides (OTUs 1 and 4).
More detailed characterization of these OTUs indicated
that OTU 1 was closely affiliated with B. uniformis and
OTU 4 was affiliated with a mixture of Bacteroides spe-
cies, including B. fragilis, B. ovatus, B. xylanisolvens, and
B. thetaiotaomicron. Both of these OTUs were found in
all six cohorts of mice and their initial abundances were
positively correlated with tumor counts (ρ = 0.47 and
0.49, respectively; both P < 0.005; Spearman correlation).
Interestingly, all samples were PCR-negative for the
ETBF toxin gene, suggesting that OTU 4 was not ETBF.
Other OTUs associated with high tumor counts were
affiliated with the genera Parabacteroides (OTU 18) and
Alistipes (OTU 19), as well as an OTU affiliated with the
species Akkermansia muciniphila (OTU 11). In addition,
several OTUs associated with Clostridium Group XIVa
(OTUs 7, 9, 15, and 17), Clostridium Group IV (OTU
49), and unclassified members of the Lachnospiraceae
(OTUs 67 and 13) were correlated with lower tumor
counts. These results indicate that the relative abundance
of specific OTUs in the starting community could be asso-
ciated with tumor counts.
To further test the association between the starting

community structure and tumor incidence we clustered
samples into community types using DMM models based
on the abundance of bacterial genera found in the mice.
This approach allowed us to quantify the association
between the starting community structure and tumor
burden in an unbiased manner. The DMM model with
the highest likelihood partitioned the samples into three
enterotypes (Figures 4A and Additional file 1: Figure S2).
Enterotype 1 was composed exclusively of samples from
the three treatment groups with the highest tumor counts
(H2, C3, H1). Enterotype 2 was composed of samples
from C1, which had the third lowest tumor count.
Enterotype 3 was composed entirely of samples from
the two groups with the lowest tumor counts (C2, H3).
As a result, mice in enterotype 1 had significantly more
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tumors than the other two partitions (P < 0.05, Wilcoxon
test; Figure 4B). Consistent with the OTU analysis, the
DMM partition with the highest tumor counts was enriched
for the genus Bacteroides (Figure 4C). In addition, other gen-
era within the order Bacteroidales (Parabacteroides andAlis-
tipes), as well asAkkermansia, were enriched in enterotype 1.
An unclassified member of the Porphyromonodaceae, was
enriched in enterotype 2, which had significantly fewer tu-
mors than enterotype 1. Enterotype 3, which had the fewest
tumors, was enriched for several genera within the order

Clostridiales (Clostridium Group XIVa, Clostridium Group
XI, ClostridiumGroupXVIII, Flavonifractor, and unclassified
Lachnospiraceae). These data suggest a potentially tumori-
genic role for certain members of Bacteroidales and a pro-
tective role for certainmembers of Clostridiales.

Changes in the microbiome during the AOM/DSS model
To determine the extent to which the microbiomes of
each group changed over the course of the AOM/DSS
model, we calculated the ΘYC distances between the

A

B

Figure 2 Taxonomic composition and beta diversity across treatment groups and time. (A) Phylum level relative abundance of the fecal
microbiome of each group on days 0 and 73 and in its inoculum. (B) Average ΘYC distances (±standard error in the mean) within and between
groups at various time points; between each group and its inoculum, within each group at day 0, each group compared with others at day 0,
between day 0 and day 73 for each group, each group compared with others at day 73, and between the inoculum and day 73.
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communities in mice at the time of AOM injection and
at the end of the experiment. Interestingly, the two
groups with the highest tumor counts (H2, C3) changed
very little over time (ΘYC = 0.12 and 0.14), while the
microbiomes of the three groups with the lowest tumor
counts (C2, H3, C1) changed substantially (ΘYC = 0.73,
0.76, 0.83) (Figure 2A). Thus, the closer the initial com-
munity of each group was to the tumor-associated end-
point community, the more tumors those mice developed.
To identify which OTUs changed over time, we com-

bined samples from all six treatment groups and used the
Random Forest machine-learning algorithm to identify
the OTUs that allowed us to differentiate between the
samples from the beginning and end of the model, regard-
less of the inoculum. The resulting model was able to

distinguish between the baseline and endpoint samples
with 98.6% accuracy. The OTUs that provided the greatest
mean decrease in accuracy when removed from the
analysis were affiliated with Turicibacter (OTU 36), Bac-
teroides (OTU 4), Porphyromonadaceae (OTU 59), and
several genera within the Clostridiales (OTUs 113, 25, 28,
127, 144, 42, and 17; Figure 5). Despite harboring drastic-
ally different community structures, all treatment groups
underwent conserved changes in microbiome structure
over the course of the model.

Tumor incidence is linked to butyrate production and
host glycan degradation
Our experiments suggested that Clostridiales, Bacteroidales,
and Akkermansia played a role in modulating tumorigenesis.

A

B

Figure 3 Correlation of tumor incidence with initial gut community structure. (A) Strip chart of tumor counts (with line at median) for each
group. (B) NMDS plot based on ΘYC distances between samples at day 0 with biplot of the 15 OTUs most strongly correlated with the NMDS
axes (stress = 0.21). Median tumor counts for each group are adjacent to their corresponding dots. NMDS, nonmetric dimensional scaling; OTU,
operational taxonomic unit.
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Members of the Clostridiales, especially Clostridium Group
XIVa, are the predominate producers of intestinal butyrate,
an important anti-inflammatory and anti-tumorigenic me-
tabolite in the gut [38,43,44]. Bacteroides and Akkermansia,
on the other hand, are known to break down host-derived
glycans, especially mucin. Mucin degradation has been
linked to intestinal inflammation and can facilitate
colonization of intestinal pathogens [45-47]. To test whether
the genomic potential for these metabolic activities is linked
to tumor incidence, we used the PICRUSt software package
to predict the metagenomic content for each sample at the
time of AOM injection. Butyrate production in the gut re-
quires either butyryl-CoA:acetate CoA-transferase or bu-
tyrate kinase [32]. KEGG orthologs (KOs) of the α and β
subunits of butyryl-CoA:acetate CoA-transferase were
negatively correlated with tumor incidence (ρ < −0.35, P <
0.05). Butyrate kinase had the same trend, but the correl-
ation was not statistically significant (ρ = −0.30, P = 0.08).

Next, we identified KOs for sialidases, fucosidases, sulfa-
tases, and N-acetylglucosaminidases, which are indicative
of host glycan degradation [39,40]. Of the ten such KOs
found in our metagenomes, seven (two arylsulfatases, an
uncharacterized sulfatase, α-L-fucosidase, sialate O-acety-
lesterase, α-N-acetylglucosaminidase, 1,4-β-poly-N-acetyl-
glucosaminidase) were positively correlated with tumor
count (ρ > 0.47, P <0.01). None of the three remaining KOs
correlated with tumors. Together, these data suggest that
the correlation between tumor incidence and the micro-
biome might be dependent on metabolic activity rather
than bacterial phylogeny.

Discussion
The results of this study demonstrate that the structure of
the gut microbiome is important for determining suscepti-
bility to inflammation-associated tumorigenesis. We ob-
served strong correlations between the initial community

A B

C

Figure 4 Correlation of enterotypes with tumor incidence. (A) NMDS plot based on genus level abundances with median tumor counts for
each group (stress = 0.13). Samples are circled based on their DMM enterotype. (B) Tumor counts for the mice in each DMM enterotype (* P < 0.05,
**P < 0.01, Wilcoxon rank-sum test). (C) Relative abundance of the genera with the largest differences between enterotypes. NMDS, nonmetric
dimensional scaling.
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structure of the gut microbiome and tumor multiplicity.
This relationship is driven primarily by two distinct
groups of bacteria. In general, we found that members of
the Bacteroidales (Bacteroides, Parabacteroides, Alistipes,
and Porphyromonodaceae) were associated with a higher
rate of tumorigenesis, while members of the Clostridiales,
especially Clostridium Group XIVa, were associated with
a decreased rate of tumorigenesis. There were exceptions
to this pattern, however, as a few OTUs associated with

Clostridiales (OTUs associated with Roseburia, Blautia,
and Subdoligranulum) were enriched in the groups with
higher tumor counts (Figure 3B). However, these OTUs
were less abundant (<0.7% mean abundance) than those
Clostridiales that were negatively correlated with tumors
(≈2% mean abundance). Therefore, the data generally sup-
port a model in which susceptibility to colonic tumorigen-
esis is determined by the balance between the abundance
of members of Bacteroidales and Clostridiales. One

Figure 5 Temporal changes in the microbiome are conserved between groups. Strip chart showing the relative abundances of the ten
OTUs with the highest importance for distinguishing between baseline (day 0) and endpoint (day 73) communities by Random Forest as
measured by the MDA when the OTU was removed from the model. Each dot represents a single mouse. The black lines represent the mean
relative abundance for all mice. MDA, mean decrease accuracy; OTU, operational taxonomic unit.
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limitation of this study is that we only assayed the fecal
communities. While this was necessary for correlating
baseline community structure with the numbers of tumors
that developed, characterization of the mucosal microbiota
could potentially yield additional associations with tumor
burden. It is also important to note that, although we ob-
served variation in the number of tumors within inoculum
groups, we were unable to correlate these differences with
any differences in their microbiomes.
Based on our predicted metagenomic analysis, the roles

of Clostridiales and Bacteroidales could be dependent on
specific metabolic activities. Members of Clostridium
Group XIVa are the predominant producers of butyrate in
the gut [38]. Given the anti-inflammatory and anti-
tumorigenic properties of intestinal butyrate, its produc-
tion by members of Clostridium Group XIVa could
explain the association with lower susceptibility to colon
tumorigenesis [43,44]. This hypothesis is supported by our
predicted metagenomic data, which correlated the in-
creased potential for butyrate production with decreased
tumorigenesis. Bacteroides and Akkermansia were the two
genera most strongly correlated with higher rates of
tumorigenesis. Both are known mucin degraders, and
several genes linked to mucin degradation were positively
correlated with tumor incidence. Additionally, previous
studies have linked mucin degradation by Bacteroides and
Akkermansia with intestinal inflammation [45-47]. It is
possible that an overabundance of these or other mucin
degraders could undermine the integrity of the mucosal
barrier, leading to increased inflammation. Such a mech-
anism could be an alternative to the ETBF-based model of
tumorigenesis, as we were unable to detect the gene for
the ETBF toxin in any of our samples. While we cannot
exclude the possibility of a novel toxin in the Bacteroides
populations in our experiment, the additional correlation
with Akkermansia muciniphila supports a model in which
inflammation is induced by mucin degradation. If further
experiments confirm this model, blocking mucin degrad-
ation could be used as a therapeutic for preventing or
slowing the progression of tumorigenesis.
In this study, we observed a relationship between tumor

multiplicity and the extent to which the microbiome
shifted over the course of the model. The gut community
of mice with high tumor counts changed very little over
the course of the model, while the microbiome of groups
with low tumor counts changed drastically. Thus, the
more similar the baseline community was to the endpoint
community, the more tumors the host developed. We
hypothesize that the microbiome of these mice was not
significantly altered by the AOM/DSS model since it was
already in a state of dysbiosis. Therefore, there was a
greater exposure to a tumorigenic microbiome. Similarly,
in a previous study, we colonized germ-free mice with the
feces of conventional mice that had already gone through

the model [10]. These mice developed more tumors than
germ-free mice colonized with feces from normal mice.
Thus, in addition to needing a dysbiotic community to
exacerbate tumorigenesis, the length of exposure to that
community is important to tumor formation.
In contrast with earlier studies where human feces were

used to colonize germ-free mice, we were unable to recap-
itulate the structures of the human microbiota donors, as
numerous members of the donor community failed to
colonize the recipients and others colonized in different
abundances. For example, one of the donor communities
(C1) was dominated by Fusobacterium species (58% rela-
tive abundance). Another inoculum (C3), contained F.
nucleatum at 2% relative abundance [2]. However, we did
not recover any sequences from the phylum Fusobacteria
in the recipient mice. We were also unable to culture it
from the original human stool sample, suggesting that it
might not have survived the freezing and thawing of the
sample or was never alive in the stool. Colonizing germ-
free mice with human feces and recovering a similar
microbiome is probably an unreasonable expectation. The
mouse host certainly selects for specific populations of
bacteria based on its immune system and metabolic pro-
file [48,49]. In addition, some bacteria will only colonize
after other bacteria have suitably prepared the environ-
ment. In the oral cavity, Fusobacterium only colonizes
after streptococcal populations have first attached to the
tooth surface [50]. Although we did not fully recapitulate
the community structure or phenotype of the human
donors, colonizing mice with human fecal communities
did serve as a useful tool for generating novel community
structures to test the influence of specific bacterial popula-
tions on tumorigenesis. This strategy also allowed us to
investigate the role of human microbiota, which should be
more clinically relevant, while maintaining the tractability
of a mouse model.

Conclusions
In this study, we found that the process of colonizing
germ-free mice with human fecal communities did not
recapitulate the phenotype of the human donors in this
particular mouse model of CRC. Nonetheless, our findings
demonstrate the importance of the initial microbiome
structure in determining the rate of tumorigenesis. Fur-
thermore, we identified several bacterial populations
correlated with tumor incidence in the context of six
distinct gut communities. Multiple OTUs associated with
the order Bacteroidales and the species Akkermansia
muciniphila were correlated with exacerbated tumorigen-
esis, while several OTUs associated with Clostridium
Group XIVa and other Clostridiales were correlated with
protection. Based on inferred metagenomes of the base-
line communities, we provided evidence that the positive
correlations between Akkermansia and Bacteroidales and
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tumor incidence could be a result of their ability to de-
grade mucin, and the negative correlation between the
Clostridiales and tumor incidence could be due to the
production of butyrate. The results are consistent with a
model in which susceptibility is determined by the balance
between mucin degradation and short chain fatty acid
production. More studies are needed to confirm these re-
sults and to test the mechanisms by which these or other
bacterial populations influence colon tumorigenesis. A
better understanding of microbiome structures with a
propensity to promote or inhibit tumorigenesis could lead
to the development of prebiotic or probiotic therapies to
prevent or slow the development and progression of CRC.

Additional file

Additional file 1: Table S1. Metadata for the six inoculum donors.
Figure S1. Temporal changes in community structure. NMDS ordination
based the differences in OTU abundances between samples on day 0
and day 73. Distances were calculated with ΘYC. Figure S2. Samples
remain in same enterotypes over the course of the model. NMDS
ordination showing DMM enterotypes generated based on genus level
abundances on day 73. Distances were calculated with ΘYC. Despite
changes in OTU abundance over the course of the model, all mice
clustered into the same enterotypes on day 73 as they did on day 0.
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