Zhou et al. BVIC Bioinformatics 2013, 14:291
http://www.biomedcentral.com/1471-2105/14/291

BMC
Bioinformatics

SOFTWARE Open Access

BIOCAT: a pattern recognition platform for
customizable biological image classification and

annotation

Jie Zhou", Santosh Lamichhane', Gabriella Sterne?, Bing Ye? and Hanchuan Peng®

Abstract

biology and neuroscience.

classifying both 3D image sets and ROs.

Background: Pattern recognition algorithms are useful in bioimage informatics applications such as quantifying
cellular and subcellular objects, annotating gene expressions, and classifying phenotypes. To provide effective and
efficient image classification and annotation for the ever-increasing microscopic images, it is desirable to have tools
that can combine and compare various algorithms, and build customizable solution for different biological
problems. However, current tools often offer a limited solution in generating user-friendly and extensible tools for
annotating higher dimensional images that correspond to multiple complicated categories.

Results: We develop the BlOimage Classification and Annotation Tool (BIOCAT). It is able to apply pattern
recognition algorithms to two- and three-dimensional biological image sets as well as regions of interest (ROIs) in
individual images for automatic classification and annotation. We also propose a 3D anisotropic wavelet feature
extractor for extracting textural features from 3D images with xy-z resolution disparity. The extractor is one of the
about 20 built-in algorithms of feature extractors, selectors and classifiers in BIOCAT. The algorithms are
modularized so that they can be “chained” in a customizable way to form adaptive solution for various problems,
and the plugin-based extensibility gives the tool an open architecture to incorporate future algorithms. We have
applied BIOCAT to classification and annotation of images and ROIs of different properties with applications in cell

Conclusions: BIOCAT provides a user-friendly, portable platform for pattern recognition based biological image
classification of two- and three- dimensional images and ROIls. We show, via diverse case studies, that different
algorithms and their combinations have different suitability for various problems. The customizability of BIOCAT is
thus expected to be useful for providing effective and efficient solutions for a variety of biological problems
involving image classification and annotation. We also demonstrate the effectiveness of 3D anisotropic wavelet in

Background

Advances in biological imaging in the past decade [1-3]
have brought the field of bioimage informatics to a new
scale [4,5]. Multi-dimensional microscopic images have
played significant roles in biology discovery, such as
exploring neuron system’s structure and function during
neuronal development under genetic manipulation [6].
Much effort has been spent on various aspects of in-
formatics such as storing, visualizing and analyzing
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high dimensional and content-rich biological images [5].
Such efforts have yielded programs like Image] [7], Vaa3D
[8], Cell Profiler [9], FARSIGHT [10], Icy [11], OME [12]
and BISQUE [13].

Pattern recognition algorithms have also gained momen-
tum in automatic analysis and quantification of biological
images. Pattern recognition uses a trained classifier to
automatically assign an image to a category of interest.
To build the trained classifier, the images are typically
transformed into a feature vector via feature extraction
and possibly followed by a subsequent selection [14]. The
trained model can then be used to predict unseen images’
category, with applications such as protein expression
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annotation and characterization, cell phenotype determin-
ation/counting, and subcellular protein arrangement [15-20].
Several pattern recognition-based tools for biological
image classifications are available. Details of the com-
monly known free tools are compared in Table 1. Table 1
shows that current tools have their various limitations.
For example, almost all the related tools use a fixed
pattern recognition model (one fixed classifier and an
often fixed set of features). Some of them only work with
2D images (e.g. Wndchrm [21] and Cell Profiler [9]) or
require commercially licensed software. To summarize,
several challenges in the field remain to be addressed:

e Adaptability to different problems. In pattern
recognition, it is widely believed that no model can
work universally well for every problem [23].

A “model” means image feature descriptors,
classifiers and the combination of them. Currently
most of the bioimage recognition tools provide fixed
(or very limited) choice for models.

e Image-oriented multi-dimensional machine learning
for bioimage quantification. Platforms for 3D and
higher dimensional images classification and analysis
lag behind greatly, compared with their 2D
counterparts. Machine learning libraries that are not
image-oriented, such as Weka [24], fall short on
efficiency when classifying high-content biological
images.

e Automatic annotation of images, which can be
formulated as image classification problems by
treating annotation labels as classification targets,
are seldom addressed by existing tools other
than some efforts for annotating specific images
sets [16,25,26].
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e Usability for non-technical users. Existing tools
often fall short of good usability for biologists who
do not have a lot of knowledge about pattern
recognition and machine learning algorithms—yet
they are the major users of such tools. This has been
recognized as a common issue, and usability has
recently been suggested as a more highly valued goal
in bioimage informatics [27].

BIOCAT (BIO-image Classification and Annotation
Tool) is developed as an effort to address the above chal-
lenges. As shown in the last row of Table 1, it provides a
free, open, portable, GUI-based, extensible platform for
multi-dimensional bioimage classification and annotation.

Compared with existing tools, it has the advantages of
not requiring any commercial licensed software, working
with both 2D and 3D images as well as regions of interest
(ROI), and the capability to extend with new algorithms.
More importantly, it addresses the adaptability challenge
by providing a customizable Lego-like solution. The
user can interactively build many algorithm chains,
each of which consists of a sequence of linked
algorithm modules and represents a model for image
classification/annotation. These chains can then be
compared by BIOCAT, which outputs the most suitable
model for the given data. In contrast to other tools that
use fixed algorithms, BIOCAT provides a systematic
approach for comparing algorithms and their combina-
tions, enables efficient model selection for biological
image classification and detection, and thus provides a
comprehensive tool for building the effective model for a
new task at hand.

The entry for Image] in Table 1 is included due to its
common use of ROI annotation. Image] is more for

Table 1 Comparison of existing pattern recognition based bioimage classification tools with BIOCAT (as the writing of

the paper)
Graphic 3D image Classifier Extensible algorithm ROl Automatic Required Platform
user plugin comparison among commercial
interface algorithms software
Wndchrm [21] No No Nearest No No No None Linux,
Neighbor MacOS,
Windows
CellProfiler [9] Yes No Boosting No Yes No Matlab or None  Linux,
MacOS,
Windows
ImageJ/Fiji (http//rsb.info.nih. Yes Yes No Yes Yes No None All
gov/ij/)
PSLID/SLIC (http://laneciwebl1. No Yes BPNet, No Yes No Matlab Linux
compbio.cs.cmu.edu/release/) SVM
llastik [22] Yes Yes Random No Yes No None Linux,
Forest MacOS,
Windows
BIOCAT (http//faculty.csniu. ~ Yes Yes Multiple Yes Yes Yes None All
edu/~zhou/tool/biocat/) Choices
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image processing instead of pattern recognition because
of its lack of classifiers except some plugins (a general
definition of pattern recognition includes unsupervised
algorithms such as clustering. Here we focus on the
supervised discriminative models that use trained classi-
fiers). If excluding Image], BIOCAT is the only tool in
Table 1 that provides an extensible design allowing new al-
gorithms dynamically loaded as plugins, as far as we know.
On the other hand, ImageJ’s processing capabilities such as
denoising and enhancement can be used to pre-process
the images before they are applied to pattern recognition
tasks. The inter-operability of BIOCAT with other tools
such as Image] will be further discussed in later sections.
The paper is organized as follows: We will describe
the design of the tool in Implementation Section. Exper-
iments and discussions are in Experiments and results
Section and Discussion Section, followed by conclusions.

Methods

Pattern recognition algorithms suitable for multiple-
dimensional biological image classification and annota-
tion are central components of BIOCAT, which include
multiple feature extracting and selection algorithms, as
well as classifiers. In this section, we will start with a
brief summary of the adaptive design of BIOCAT that
allows algorithm modules to work together and form a
customizable solution for a given problem. We will then
describe the representative algorithm modules (extrac-
tors, selectors and classifiers). We will also detail a 3D
feature extractor.

Design of BIOCAT

BIOCAT is designed with 1) usability, 2) extensibility, 3)
inter-operability, and 4) portability. Figure 1 shows some
screenshots of the BIOCAT GUL

Usability

BIOCAT is intended to be mainly used by biologists with
no much experience in pattern recognition (although
technical users might also find it useful for algorithm
evaluation). While some training is required, we expect
that the end users can adaptively build a model that is best
fit for their classification problem at hand, facilitated by
the GUI of the tool.

As shown in Figure 1, BIOCAT has a user-friendly GUI
that permits users to conduct: a) customizable model
building, which adaptively selects a model for the given
biological image classification/annotation task. The user
can do so using a training set and a testing set, or cross
validation on a given set. The model can be built,
compared and saved. One important feature of BIOCAT
is its “multi-chain comparison mode” (see Modularized
algorithms and algorithm chain Section), in which mul-
tiple algorithms chains are compared for the given
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problem. b) Annotation and classification of image sets or
ROIs, using the chosen model. BIOCAT can work with
both image classification or multi-label annotation: If each
image in a set corresponds to one label, then it resembles
normal image classification; If each image could corres-
pond to more than one labels, then it is a multi-label
annotation task.

In order to facilitate supervised learning, the training
images (or regions) are associated with corresponding
labels. BIOCAT allows three possible ways of such as-
sociation and the user can pick the most suitable way for
him/her: a) target file input mode: a text file that assigns a
label or multiple labels to each image; b) directory tree
input mode: a directory structure with each subdirectory
being an image category; or c) ROI mode: ROI/landmark
files where the name of the Image] ROI zip file or Vaa3D
landmark file indicates the image category.

Extensibility

BIOCAT has a modular design, and thus is extensible and
developer-friendly. BIOCAT algorithm specification is
provided for extending BIOCAT with more algorithms:
An algorithm developer can add a new algorithm to
BIOCAT as long as it conforms to the API (Applica-
tion Programming Interface) specifications for a feature
extractor, a feature selector, or a classifier. An XML file
can be used by the module developer to specify parame-
ters of the algorithm that will show up on GUL (See
Developer’s Guide on BIOCAT website for tutorial).

Inter-operability

BIOCAT runs as a standalone application that focuses
on classifying/annotating a set of images (or ROIs in
them) using pattern recognition algorithms. It can inter-
operate with other tools with different focus. The ROI
manager in ImageJ and landmark manager in Vaa3D can
be used to save ROIs and import them into BIOCAT for
training. Classification/annotation output files can be
edited to be Vaa3D landmark files for further visualization.
BIOCAT also generates reports in PDF files for algorithm
comparison results and annotation results.

Portability
BIOCAT is developed in Java. Thus this software is port-
able to various operating systems such as Windows,
Mac and Linux as long as Java Virtual Machine is
available.

To summarize, the uniqueness of the BIOCAT tool,
other than the list of built-in pattern recognition al-
gorithms suitable for image classification tasks (to be
explained in next section), is that the algorithms are mod-
ularized so that they can be “chained” in a customizable
way to form adaptive solution for various problems, and
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the plugin-based extensibility gives the tool an open and
flexible architecture to include future algorithms.

Modularized algorithms and algorithm chain

The BIOCAT’s algorithms are modularized to facilitate
the adaptive comparison of what we call “algorithm
chains”, which is a sequence of several pattern recognition
algorithms that include some feature extractors, one or
more optional feature selector(s), and a classifier.

For feature extraction, we consider 2D and 3D textural,
morphological and structural features. Texture features
are an important category of effective image features such
as wavelet features. Morphological features describe the
shape and structure of 2D and 3D objects. A pixel in a 2D
digital image consists of 4 or 8 neighbor pixels depending
on whether the diagonal neighbors are considered. Some
3D features can be extended from 2D by extending an
8-connected neighborhood to a 3D 26-connected neigh-
borhood. Examples of morphological features include Hu
moments, which are statistical summaries of intensity in
the 2D or 3D object neighborhood, and measures in rela-
tion to the center of mass of the images [28] or Zernike
moments which are orthogonal invariant moments using
a set of complex polynomials [29]. Other algorithms in-
clude Hessian features which are suitable for detecting

tube-like neuronal structures, Gaussian derivatives and
Laplacian features [30], as well as object statistics [21].
Currently 14 different feature extractors are available in
BIOCAT with the following examples, each providing one
to multiple measures extracted from an image:

e 82D Hu Moments, invariant to translation, scale
and rotation.

e 83D Hu Moments: 3D extension of 2D Hu
Moments;

e Zernike moments: Default to the first 20 Zernike
moments.

e 7 statistics for the objects in an image: number of
objects; their average size and variance, and their
spatial location in relation to center of mass of the
image, both average and variance; ratio of the size of
the largest object to the smallest; ratio of the
distances to center of mass between the furthest and
the closest.

e Object territory: overall territory the foreground
object.

Image’s Hessian and Laplacian features.

2D and 3D wavelet features. The 3D anisotropic
wavelet texture feature will be detailed in 3D
Anisotropic Wavelet Texture Feature Section.
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BIOCAT has feature selectors such as Fisher’s criterion
that select a subset of features. BIOCAT also provides
several classifiers including support vector classifiers
[31], nearest neighbor, Naive Bayes, decision tree, and
random forest.

As explained in Implementation Section, BIOCAT
supports an extensible design, so the above algorithms
are of a growing list. Currently, BIOCAT has about
20 algorithms for 2D/3D feature extractors, selectors
and classifiers. The list includes the 3D anisotropic
wavelet feature extractor and re-implementations of
known algorithms (a majority of the feature extractors
are re-implementations). The (re)implementations are
memory- and efficiency-aware for working with high con-
tent multidimensional bioimages. These feature extractors
in BIOCAT reuse the memory space for each image. In
addition, due to the extensible design, libraries may be
wrapped and incorporated as plugins whenever such
algorithms become available. For example, Hessian features
is a plugin wrapped around Feature] implementation [30].

Note that the “algorithm chain” in our paper refers to
a sequential flow of feature extraction, selection and
classification, which is different from the narrower sense
of supervised (or unsupervised) learning of pattern
recognition. When multiple feature extractors are used,
these features are linearly aggregated. The combined
feature’s dimensionality is the sum of all individual fea-
ture vectors. Such combination may lose some property
(e.g. invariance) of certain features if they are not com-
bined with features with similar property, yet it provides
the flexibility for extending to many feature extractors
that are often useful for biological image classification.
When multiple selectors are used, it is a cascading
design: the feature vector goes through the first selector.
The resulting feature vector is then filtered by the sec-
ond selector and so on.

With all the algorithm modules as building blocks,
BIOCAT can conveniently build algorithm chains to
compare multiple alternative models. One example al-
gorithm chain can be an anisotropic 3D wavelet fea-
ture extractor along with a 3D Hu Moments feature
extractor, followed by a Fisher feature selection and
ultimately a support vector classifier. The chains with
the same types of algorithms but different parameters
are considered to be different chains, so that dissimi-
lar parameters (e.g. multiple wavelets) can be compared
to find the suitable ones for the model. Figure 1b shows
BIOCAT'’s screenshot of building and comparing the algo-
rithm chains.

In addition, functionality is included in BIOCAT for
ROI annotation (Here the term “annotation” refers to
the computational task of automatically labeling a new
image which is formulated as a supervised pattern rec-
ognition task):
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1. Sliding window-based ROI annotation. With a
model learned and selected, BIOCAT can conduct
automatic ROI annotation on a new image using a
window sliding algorithm. A sliding interval
parameter is defined which represents how many
pixels apart will the trained model be applied to a
pixel/voxel. Because it represents the frequency of
decision making, a small interval leads to a higher
annotation resolution with longer running time.
When the interval is set to 1, then every pixel in the
image is annotated: a ROI is extracted surrounding
each pixel/voxel, and a classification is performed to
assign a category to the pixel/voxel. The parameter
can be adjusted via GUL

2. In the case of 3D image annotation, it is possible
that a large portion of the 3D image is black. To
improve annotation efficiency, local maxima can be
calculated using morphological dilation. The
decision can thus be made only on the set of local
maximum voxels. Such scenarios are useful for 3D
object quantification (objects are labeled based on
the pixel classification of BIOCAT), such as synapse
or cell counting using 3D confocal images, where
objects of interest are the bright regions in largely
dark images.

3D anisotropic wavelet texture feature
One important category of effective image features is
texture features, which is a family of features that meas-
ure the texture of images such as wavelet features. In
particular, wavelet features are obtained using discrete
wavelet transform (DTW) with wavelet functions [32].
Two dimensional wavelet features had performed well in
our previous work with gene-expression annotation of
fruit fly [16]. However, full extension of these features
from 2D to 3D can lead to a big increase in the number
of features, and consequently the storage and computa-
tional need. For example, for wavelet transform, a full
extension to 3D wavelet features will lead to a number
of features that is cubic to the side length of the object
(instead of being quadratic in 2D). We thus designed a
multi-scale anisotropic 3D wavelet feature. Such features
can be particularly suitable for 3D confocal microscopic
images since it adapts to the anisotropic nature of
confocal imaging where z resolution is typically less
than x-y resolution.

The feature for a voxel of interest at (x,y,z) is extracted
from its surrounding 3D volume:

zt+rz y+ry  xtrx
fenw 22y = > wiz) > > viawy) (x0,9,2)
zi=z-1Z Vi =Y-1y Xi=Xx-T1X

where [ is the intensity, the size of the extracted volume
is (2*rx+1)*(2*ry+1)*(2*rz+1), ¢ is the discrete Haar
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wavelet basis function, k, n are the dilation and transla-
tion factors of wavelet with k=0,1 (for two-level wave-
lets), n=0....2rx+1)*(2ry+1), and (2*rz+1) is the number
of slices included in calculation. w(.) is a Gaussian func-
tion with middle z slices weighted heavier than other
slices.

The multi-scale component of the 3D anisotropic
wavelet is represented by the dilation factor k of the
wavelet transform. The number of the scales is also
called wavelet level. At each level, a Haar-based discrete
wavelet transform is done on the approximation image
from the previous finer resolution. Figure 2 shows an ex-
ample of level-2 3D isotropic wavelet, where 2*rz+1
slices are involved in calculating the feature for a 3D
image of a fluorescently labeled fruitfly brain.

Note that other tools also use wavelet for image ana-
lysis. For example, Icy [11]’s spot detector plugin [33]
uses wavelet adaptive threshold for object detection,
which is an unsupervised scheme different from the
method presented in BIOCAT.

Experiments and results

BIOCAT is able to associate a biological image to one of
many categories of interest, and perform 2D/3D ROI
annotation based on ROI classification, as well as multi-
label image annotation. This section shows experiments
on using BIOCAT for these tasks and demonstrates the
effectiveness of the algorithm modules as well as the
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automatic algorithm selection conducted by BIOCAT.
These case studies are also selected due to their diver-
sity. In particular, 3D ROI Classification and Quantifica-
tion section and 2D ROI Classification and Quantification
section describe how BIOCAT can assist in some popular
quantification problems encountered in cell biology and
neuroscience.

2D/3D image set classification and model selection

We tested BIOCAT with thirteen biological image sets
for classification. Additional file 1: Table S1 shows the
properties of the image sets, which shows that the image
sets are from different sources with various imaging
modalities and characteristics. Among the image sets,
K150 2D and K150 3D are fluorescent-labeled confocal
microscopic images of fruitfly brain for expressed neur-
onal bundles of different genetic lines. Others are image
sets corresponding to different types of sub-cellular loca-
tions (e.g. CHO) or different cellular types (e.g. Binucleate)
[21]. When classifying an image, if the image contains
multiple channels (as is often the case with fluorescent
stained microscopic images), BIOCAT can work on a
selected channel. For k150 2D and 3D image sets which
are three-channel RGB images, the classification is done
on the green channel which corresponds to the GEFP
expression. For data sets do not separate between training
set and testing set (all except k150), we report the recogni-
tion rates using five-fold cross-validation. We repeat the

Figure 2 An example of extracted isotropic wavelet features from a 3D neuronal image.

+rz
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cross-validation for five times (by randomly shuffling data)
for a total of 25 runs. The mean and variance of recogni-
tion rates over the runs are computed and reported in
Table 2.

Table 2 also gives the comparison of performances
between BIOCAT and the benchmarking results in
literature. Literature results are from the Wndchrm tool
which achieves the best accuracy on the sets so far.
Wndchrm has a fixed option of extracting about 1000 or
2600 features regardless of the problem. For comparison,
we also report the number of features used by BIOCAT
in Table 2.

Results in Table 2 show that BIOCAT can effectively
classify various biological image sets. For nine out of the
thirteen data sets, BIOCAT achieves the state-of-the-art
or better accuracy. For Binuleate and LiverGenderCR,
only 40 features per image were used to achieve about
100% accuracy. For MuscleAge, LiverAging and
LiverGenerAL sets, BIOCAT is able to greatly improve
the current best results. For the CHO set, by using
object statistics alone, which is a set of 7 features,
BIOCAT achieves comparable results with Wndcharm
and 6.3% more than the original literature (Random
Forest is used as the classifier). Comparatively, Wndchrm
needs a much larger number of features to achieve the
reported results. Wndchrm’s need of calculating thou-
sands of complex features can lead to a much higher
computational complexity which would make it slow on
larger images (Wndchrm does not have a classification
functionality for 3D images which would be more compu-
tational demanding.) BIOCAT’s adaptive design, on the
other hand, allows the best suitable algorithms to be
selected for a given biological image classification prob-
lem, which can sometimes be simple, as in the case of the
CHO problem.

Table 2 Image set classification results of BIOCAT
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We also see that BIOCAT does not outperform litera-
ture on four sets of Pollen, Hela, Lymphoma and RNAI. It
may be due to that reported results are based on current
built-in algorithms in BIOCAT and Wndchrm’s longer list
of descriptors including Halalick textures could have
helped on these specific sets. Further effort on parameter
fine tuning may also help improving the results. In this
paper, we have been focusing on demonstrating the tool’s
capability of empirical model comparison. Given the
extensible design of BIOCAT, we expect to continue
improving the accuracy as new algorithm modules suit-
able for the problems being added in.

On the other hand, it has also been pointed out that
some low level descriptors could cause bias on classifying
some biological images sets [34]. For example, CHO and
Binucleate datasets can be biased in the sense that back-
ground artifacts could contribute in classification [34], so
the accuracies may be optimistic. In general, it is worth
noting that features and results should be validated in
terms of biological relevance and best practice on this
regard will be further studied.

In Additional file 2: Table S2, we demonstrate the 3D
anisotropic wavelet feature for the K1503D image set, and
how BIOCAT was used to do chain comparison. The
anisotropic wavelet feature has rz set to 1 (3 neighboring
z-slices are used). Wavelet level is set to 2. The nearest
neighbor is a 3NN. Support Vector Machine classifier has
a linear kernel and the regularization parameter set to 1.
Fisher selector selects the best 500 features. As we see
from Additional file 2: Table S2, the three algorithm
chains containing 3D anisotropic wavelet (chains 1-3)
deliver very satisfactory results. Both chain 1 and chain 2
achieve 100% accuracy with SVM as the classifier, regard-
less of whether Fisher’s feature selection is performed.
Chain 3 has 90% accuracy with Random Forest as the

Image set Literature accuracy (%) BIOCAT accuracy (%) BIOCAT variance BIOCAT number of features per image
K1502D - 100 - 40
K1503D - 100 0.0 500
CHO 93 93.1 0.12 7
Binucleate 100 100 0.0 40
LiverGenderCR 99 99.0 0.002 40
LiverGenderAL 69 91.7 0.65 100
MuscleAge 53 89.6 0.10 100
Pollen 97 87.5 1.15 40
Hela 84 68.3 0.15 40
Termbulb 49 51.1 0.31 21
Lymphoma 85 709 0.07 22
LiverAging 51 73.8 0.81 14
RNAI 82 550 0.08 40

The bold numbers indicate the higher accuracy.



Zhou et al. BMC Bioinformatics 2013, 14:291
http://www.biomedcentral.com/1471-2105/14/291

classifier, while the alternative feature Hu Moments has a
mediocre performance compared with Anisotropic wave-
let even when the same type of classifier is used (Chain 4).
This shows the potential effectiveness of the anisotropic
wavelet feature as a 3D feature extractor. The bar chart
that compares and reports the results of the five chains is
directly from BIOCAT’s GUI, as part of its model selec-
tion functionality.

Figure 3 further exemplifies how BIOCAT selects an
effective chain on some image sets in Additional file 1:
Table S1. For each dataset, BIOCAT dynamically looks
for a suitable combination of feature extractors, selectors
and classifier, chooses the most effective algorithm chain
for the given image set among candidate chains. For
example, for the Binucleate set, the algorithm chain of
“HAAR extractor; Fisher selector; 3-Nearest Neighbor
classifier” out-wins other chains and gain 100% accuracy.

3D ROI classification and quantification

3D ROI quantification such as cell counting in high
content images is a common problem in biology. Trad-
itionally, it has been done using approaches such as
connected component analysis or template matching
without training a classifier. The general consensus on
supervised learning using of a trained model has been
that it can produce robust quantification results
[15-19,21,35] and is suitable for large-scale analysis due
to minimal user intervention [36]. Recent visualization
tools such as Vaa3D has also made tagging of the 3D
images more convenient (thus creating the training set is
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easier). BIOCAT can further facilitate pattern recognition
based approach for 3D ROI classification and quantification.

Figure 4 shows an example of neurons in Drosophila
m. (fruit fly) larvae nervous system, where gray clusters
are the nuclei. Such images may contain thousands of
cells per image. Often the cells form crowded clusters
and the boundary among the objects may be blurry (see
the zoomed area in Figure 4), which make such object
counting in 3D biological images a challenging task.

We formulate the object counting as a pattern recog-
nition problem based on voxel classification: For each
voxel, we develop a model using BIOCAT to detect if it
is potentially a center of a nuclei. A training set for ROIs
on a training image with associated labels (e.g. positive
and negative ROIs) needs to be generated. The process
for 3D ROI classification then starts with loading the
image and labeled ROIs into BIOCAT for running the
model selection. Once the model is picked, new images
are loaded into BIOCAT, ROIs are classified. Classifica-
tion can be limited to images’ local maxima if needed.

Additional file 3: Table S3 shows the example algo-
rithm chains compared during the model selection
process of BIOCAT for the case study. We labeled 560
positive voxels and 430 negative voxels in the image. The
3D ROI volume is 7*7*5. The rz in 3D anisotropic wavelet
is set to 2. SVM classifier uses linear kernel with
regularization parameter set to 1. Five-fold cross valid-
ation is used to report the results. Chains are built and
compared by BIOCAT to select effective models for the
classification of 3D ROI around a fruitfly nuclei center.

K150 2D

Edges; SVM |

Derivatives; SVM | |

HAAR; Fisher; NN ;
} | ! |

75% 80% 85% 90% 95%

Structure; SVM

HAAR; SVM

100%

Binucleate
Statistics; Fisher; RF .
Statistics; Fisher; NN
Hessian; Fisher; NN
HAAR Wavlet; Fisher; NN : |[
?5,-0% 80..096 85:0% 90.0% 95.0% 100.0%

unless otherwise specified.

MSH + Statistics + Derivatives; RF

MSH + Statistics; Fisher; RandomForest

MSH + Statistics; RandomForest

Statistics + HuMoments; Fisher; RF

Figure 3 BIOCAT performs algorithm chain comparison adaptively for different data sets. Acronym: RF: Random Forest Classifier;
NN: Nearest Neighbor Classifier. MSH: Moments (Hu) + Structure Features + HAAR Wavelets. Default parameters are used for all the algorithms

Pollen

MSH + Edges; RF

raw image; SVM

50.0% 60.0% 70.0% 80.0% 90.0%

Rat Liver Gender

HuMoments; Fisher; RF
Statistics; Fisher; RF

Statistics; Fisher; NN

75.0% 80.0% 85.0% 90.0% 95.0% 100.0%
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is 512%512*148.

Figure 4 A 3D confocal image of fruitfly larvae neurons (the channel of cell nuclei). Red dots are the marked centers of nuclei. Dimension

We experiment the cases when only 3D Anisotropic wave-
let features are used; only 3D Hu Moments features are
used; and the combination of 3D Anisotropic wavelet and
Hu Moments features are used.

Additional file 3: Table S3 shows that 3D anisotropic
wavelet feature alone can effectively yield 98.6% recogni-
tion rate. On the other hand, if only 3D Moments are used
as the features extracted from the 3D ROI surrounding
the voxel, recognition rate is only 96%. The combination
of both features can further improve the recognition rate
to 99.2%. It again shows that the 3D Anisotropic wavelet
may be an effective 3D feature extractor for biological
image classification. Additional file 3: Table S3 also shows
that the use of random-forest classifier or support vec-
tor machine yields about the same result. All the compari-
sons among algorithm chains listed in Additional file 3:
Table S3 are done by BIOCAT and the bar chart is the
output of the tool.

The predicted center candidates by BIOCAT can be
exported. They may be used for further quantification
purposes. For example, the cell counting application de-
scribed in [17] does neuron counting by performing
mean shifting on the detected centers to move them to
the closest center of mass. The nearby centers are
merged before yielding the cell count. The advantage of
such cell counting based on ROI classification is that

when the cells are largely clustered and the boundary
are blurry (which can be common in biological objects
such as cells), the approach can give a count without the
need of segmentation, especially when the shape of the
object is oval.

2D ROl classification and quantification

To demonstrate BIOCAT’s 2D ROI classification, we
describe a case study of axon detection for neuron
morphology profiling in this experiment, in which we
employ BIOCAT to detect axon pixels from the neur-
onal image to assist quantification of neuronal dendritic
territory.

Intricate morphology is a striking feature of neurons
and plays an important role in functional analysis and
quantification of neuronal systems [37]. Among the
neuronal morphometrics, the territory occupied by the
dendritic tree is an important measure of the neuron
morphology that not only indicates defective shapes of
potential (dys)function of neurons, but also serves as an
important parameterization factor for further quantifica-
tion analysis in mutant screening. We consider GFP-
labeled lobula plate tangential cells (LPTCs) in the brain
of the adult Drosophila m. (fruit fly) (Figure 5). To
extract the dendritic tree, we first automatically detect
and remove non-dendritic subcellular components (soma
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and axon) from the image. Upon removal of the axon and
soma, the territory of the dendritic tree can be easily esti-
mated. In this paper, we focus on explaining the use of
BIOCAT for axon detection: Similar as 3D ROI annota-
tion, the flow starts with tagging the ROIs for training,
then BIOCAT employs a trained model to detect axon
candidate pixels from the neuronal image.

A training set consisting of 4 categories of image regions
are randomly extracted from two neuron images —
one wild type and one mutant type. The training set in-
cludes 10 axons, 50 branches, 7 soma and 9 background
image regions. We make use of BIOCAT, which performs
comparison of various combinations of extractors, selec-
tors and classifiers as explained in previous sections. The
winner algorithm chain consists of 2D HAAR discrete
wavelet as features, Fisher’s criterion that selects top 40
features, and the Support Vector Machine as the classifier.
Once the model was built, it was applied to other LPTC
images to automatically annotate image regions and ex-
port the regions identified as axon candidates. Figure 6b
visualizes how BIOCAT can be used to annotate axon,
dendrites, soma and background. It is an overlay of the an-
notation results on the original image: The original neuron
was light green; The axon and soma pixels are annotated
using bright green and blue, respectively. A sliding win-
dow algorithm with interval parameter being 1 pixel is
used in annotation. The axon candidates detected by
BIOCAT will then be post-processed by finding the area
using length and orientation considering that the axon is a
long tubular structure. Once the axon (and soma) is re-
moved, a rolling-ball algorithm is done to estimate the
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territory of the dendritic tree. Figure 6¢ shows the results
of extracted dendritic territories from wild type and mu-
tant neurons.

In this experiment, BIOCAT plays a similar role as
segmentation, except that most segmentation tools deal
with two classes (foreground and background), while the
ROI classification gives multiple classes to annotate a
pixel/voxel. We used a Fiji plug-in, “trainable segmenta-
tion” [38], to compare the results of the multi-class
annotation for the given image. The plugin uses a train-
able model (a fixed set of features and random forest
classifier) to classify each pixel of the image. Figure 6d
shows its output image, where the 4 gray levels, from
deep to light, represent soma, background, dendrite and
soma, respectively. We can see that although the plugin
can also detect soma, it is less effective in separating
axon from dendrite (many axon pixels are classified as
dendrites). BIOCAT can extract the entire axon (the
bright green region in Figure 6b. We can also see that
BIOCAT classifies the background pixels accurately as
indicated by a cleanly labeled background region
(because Figure 6b is an overlay of output and original
image, the annotated background shows as gray).

Discussions

Adaptive algorithm chain selection

BIOCAT provides a flexible and adaptive platform that
accommodates the ever-growing image samples and
emerging pattern recognition and machine learning
algorithms. Table 2, Additional file 2: Table S2 and Figure 3
show that different algorithms and their combinations

Figure 5 Example images of case applications. a) A wild type LPTC Vertical System 1 (VS1) neuron in a fruitfly adult brain; b) A mutant of VS1
neuron. Neuron morphology of a) and b) are labeled using green fluorescent protein; ¢) A LPTC Horizontal System (HS) neuron whose
morphology is labeled with a membrane-tethered red fluorescent protein. Images shown in a, b, and c) are maximal projections of 3D image
obtained by laser scanning confocal microscopy. Scale bar: 10 microns.




Zhou et al. BMC Bioinformatics 2013, 14:291
http://www.biomedcentral.com/1471-2105/14/291

Page 11 of 14

[a]

| EuE
I ercite
background

[ axon

Figure 6 Territory quantification for wild type and mutant type neurons assisted by BIOCAT. a) The territory extraction where axon
removal is assisted by BIOCAT. b) BIOCAT's output of ROl annotation (overlay on the original image.) €) Examples of extracted territories for wild
type and mutant neurons; d) ROl annotation from a Fiji plugin “trainable segmentation” [38].

A

indeed have different suitability for various problems.
For example, in Figure 3, we see that while the random
forest classifier does not perform ideally for the Binucleate
set, it is effective for the Rat LiverGenderCR set (both with
default parameter setting). Similar variations of efficacy
can be found in feature sets.

The advantage of such an adaptive design is to find a
good set of features for a given problem, without paying
the cost of extracting a huge set of features or using a
unsuitable classifier. Current related tools exploit two
major approaches: 1) Use a fixed model including a
feature set of medium size; 2) Start with a huge feature
set, gaining accuracy at the cost of computational com-
plexity. The former typically works better on some prob-
lems but not others. The latter can be an overkill on some
cases and not suitable for large scale images due to com-
putational complexity. For example, Wndchrm extracts
thousands of features for any problem, among them
Zernike features has a factorial complexity due to its radial

polynomial coefficients. Some features are extracted using
transforms based on the result of other transforms which
are also very computationally demanding.

BIOCAT takes a different approach. It provides the
platform of adaptively building different models for
different problems, which may lead to fewer feature
descriptors that are yet effective for classification. Note
that such model selection is different from the computa-
tional selection of feature columns using statistical or
other criteria as what Fisher’s (or similar) feature
selector would do. It is because feature selectors just
select indexed columns for a large matrix which may
belong to different extractors. As a result, the annotation/
testing stage would still need to start with all the feature
extractors that are involved, which can negatively impact
the performance for large images/sets. On the other hand,
such features selectors can of course be part of an algo-
rithm chain for BIOCAT, to further reduce the bandwidth
for the classifier. Such approach also brings a better
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interpretability, which may potentially lead to a reversed
way to understand some mechanism of differentiation
among different biological structures or developmental
stages.

BIOCAT also allows the selection of a suitable classi-
fier as part of the algorithm chain, which few other tool
for biological image classification offers (see Table 1).
Instead of having computer scientists comparing (and
often re-implementing) various classifiers, it provides
biologists a GUI-based and objective approach to find a
good pattern recognition model. BIOCAT GUI also
allows to build the algorithm chains incrementally, to
save/load chains and for generating reports after the
chains are compared.

Speed and computational complexity

BIOCAT is able to process the datasets in Additional file
1: Table S1 within a reasonable period of time. The speed
ranges from several seconds to several minutes with the
sets on a typical PC (Intel Core i5 2.67 GHz 8 GRAM).

At the framework level, BIOCAT is designed to be
memory-aware. Specifically, BIOCAT’s built-in feature
extractors run on the image set in sequential fashion to
reduce the memory footprint. In the case of 2D image
sets, one image is loaded at a time. In the case of 3D
images, one slice of an image is loaded at a time. After
features are calculated, the same memory space is reused
by the next image/slice. Since only the most current
stack slice of the most current image is cached in mem-
ory, BIOCAT has a low requirement of computer mem-
ory at feature extraction stage. After feature extraction,
subsequent feature selection and classification’s memory
requirements are affected by image set size and feature
set size (but not the original image size). We need to point
out that individual algorithms have different levels of
memory requirements and some third-party algorithms
(e.g. Weka classifiers) may require bigger memory to
process large sets. The speed of model comparison is
linear with the number of models to be compared.

Multi-label annotation
In Experiments and Results Section, we demonstrated
annotating an image by classifying ROIs surrounding a
pixel/voxel. In addition, an entire image can also be
automatically annotated, by formulating the task into a
pattern recognition problem. Such annotation often in-
volves multi-labels per image since an image may have
multiple tags to be assigned. Annotation of biological
images has traditionally been manual work, done by
domain experts in a labor-intensive way. Recently, auto-
mated annotation has been attempted [16,25,26,39].

The difference between multi-label annotation and the
usual image classification is that typically an image clas-
sification task is single-objective (e.g. an image or a ROI
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corresponds to one and only one category in classifica-
tion), whereas an automatic annotation task can be
multi-objective. For example, fruit fly embryonic gene
expression involves the annotation of multiple developed
body parts in each gene expression image [16]. For such
cases, BIOCAT chooses to formulate the annotation task
as multiple binary problems, with each problem focusing
on whether or not a label is present. Such labeling can
be described using a text file (“target file” as mentioned
in 3D Anisotropic Wavelet Texture Feature Section),
which associates a training image with multiple labels.
Model selection can be conducted for each sub-problem
individually. During annotation, the collection of learned
models, each for a label of interest, will be applied to the
testing image. BIOCAT’s reporting tool outputs a consoli-
dated annotation report, summarizing each testing image’s
labels, ranging from zero to many. BIOCAT’s website
shows an example and screenshot of such multi-label
annotation task.

Connection with other tools and limitations

BIOCAT is designed with different purpose from tools
such as Image] (for image processing) or CellProfiler
(mostly for 2D cell segmentation/measurement). It does
not reinvent the wheel. Instead, it focuses on the area
where current tools are lacking, and meets the need of
adaptable and extendable pattern recognition algorithms
for image and ROI classification. On the other hand,
they can certainly work together to complement each
other. For example, ImageJ can be used to label ROIs in
order to generate training sets for BIOCAT, or for pre-
processing before the images are being classified. Other
visualization tools such as Vaa3D can also be used for
3D ROI labeling and visualization, to complement
BIOCAT.

ROI annotation is not the same as segmentation: For
example, in the 3D ROI classification example, the cell
counting may be done without knowing the exact
boundaries of objects. Segmentation in a traditional
sense is typically the issue of separating foreground from
background and often unsupervised, while BIOCAT can
work with multiple classes for the purpose of labeling/
annotation. Segmented images by other tools such as
ITK (Insight Segmentation and Registration Toolkit) can
be used as input for classification by BIOCAT, while
BIOCAT’s detection results may also be post-processed
to deliver results similar as segmentation when every
pixel/voxel is annotated.

BIOCAT is also different from general sense pattern
recognition tools in that the built-in algorithms pay
more attention to efficiency and memory since an image
typically contains large number of pixels which is the
raw dimension of data. It also has other functionalities
specifically related to biological images. For example, if
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the image contains multiple channels, as is often the case
with florescent stained microscopic images, BIOCAT can
work on a selected channel. It can also limit the annota-
tion of images to local maxima, useful for 3D ROI classifi-
cation in fluorescent stained microscopic images. Its
extensible design, on the other hand, can facilitate the
inclusion of state-of-the-art algorithms in the fields of
pattern recognition and machine learning, as they appear.

BIOCAT presents several limitations (or things it is not
designed to do): There are no image processing algorithms
in BIOCAT such as denoising or enhancement and the
tool’s output often needs further post-processing to get
results for the specific quantification. So BIOCAT is not
intended as a replacement for either image processing or
segmentation tools. Instead, it is for choosing a suitable
supervised pattern recognition model, which can then be
used as a discriminative model in classifying 2D/3D image
sets or ROIs. The tool currently does not do exhaustive
search of all combinations of algorithms for the consider-
ation of computational feasibility. As the result, the
selected chain is the best among all compared chains, but
not necessarily optimal. It is also noted that some machine
learning algorithms can be slow. When the user works
with a large image set with high dimensionality, a
GUI-based tool on a PC is not always the best choice.
HPC version of BIOCAT for distributed model selec-
tion is currently under development.

Conclusions

BIOCAT generalizes pattern recognition based image
classification to three dimensional images and ROIs
and provides a comparison mechanism among algo-
rithms. It provides good flexibility and adaptability com-
pared to most related tools, which we expect to facilitate
the use of pattern recognition algorithms in a range of
biological problems. For future directions, more algorithm
modules are being developed and a version of BIOCAT
for cluster computing is also under development for very
large biological image sets.

Availability and requirements

e Project name: BIOCAT

e Project home page: http://faculty.cs.niu.edu/~zhou/
tool/biocat/

Operating system(s): Platform independent
Programming language: Java

Other requirements: Java 1.6.1 or higher

e License: FreeBSD

Availability of supporting data

The software, along with supplementary materials can
be found at http://faculty.cs.niu.edu/~zhou/tool/biocat/.
The example images sets are available for download
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either from BIOCAT website (e.g. k150) or from the ori-
ginal provider’s site.

Additional files

Additional file 1: Table S1. Biological image sets.
Additional file 2: Table S2. Algorithm chain comparison algorithm
chains for K150 3D.

Additional file 3: Table S3. Algorithm chain comparison for
classification of 3D ROI around a fruit fly nuclei center).
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