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Testing departure from additivity in
Tukey’s model using shrinkage:
application to a longitudinal setting
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Pantel S. Vokonas,e,f,g Jinbo Chenh and Ana V. Diez-Rouxi

While there has been extensive research developing gene–environment interaction (GEI) methods in case-control
studies, little attention has been given to sparse and efficient modeling of GEI in longitudinal studies. In a two-
way table for GEI with rows and columns as categorical variables, a conventional saturated interaction model
involves estimation of a specific parameter for each cell, with constraints ensuring identifiability. The estimates
are unbiased but are potentially inefficient because the number of parameters to be estimated can grow quickly
with increasing categories of row/column factors. On the other hand, Tukey’s one-degree-of-freedom model for
non-additivity treats the interaction term as a scaled product of row and column main effects. Because of the
parsimonious form of interaction, the interaction estimate leads to enhanced efficiency, and the corresponding test
could lead to increased power. Unfortunately, Tukey’s model gives biased estimates and low power if the model is
misspecified. When screening multiple GEIs where each genetic and environmental marker may exhibit a distinct
interaction pattern, a robust estimator for interaction is important for GEI detection. We propose a shrinkage
estimator for interaction effects that combines estimates from both Tukey’s and saturated interaction models and
use the corresponding Wald test for testing interaction in a longitudinal setting. The proposed estimator is robust
to misspecification of interaction structure. We illustrate the proposed methods using two longitudinal studies—
the Normative Aging Study and the Multi-ethnic Study of Atherosclerosis. Copyright © 2014 John Wiley & Sons,
Ltd.

Keywords: adaptive shrinkage estimation; gene–environment interaction; longitudinal data; Tukey’s one-DF test
for non-additivity

1. Introduction

The presence of gene–environment interactions (GEIs) implies that the effect of an environmental expo-
sure (E) is enhanced or reduced for a sub-group with a certain genotype or vice versa. Investigation of
GEI is essential to better understand the etiology and development of common, complex diseases. Many
longitudinal environmental epidemiology studies have been collecting genetic data with the goal of iden-
tifying GEI. In these cohort studies, GEI is often investigated by focusing on an established association
between an exposure biomarker (e.g., lead levels in blood or bone) and a quantitative trait (e.g., pulse
pressure (PP)) and how this association is modified by a selected set of genetic markers. The set of genes
(candidate genes) to be studied is often determined by the metabolic pathway related to the exposure
instead of an agnostic search across the genome.
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While there has been extensive literature on GEI regarding ways to enhance the efficiency of interac-
tion test in case-control studies [1–3], statistical methods for GEI in longitudinal settings remain limited.
Methods to study disease–gene association in longitudinal settings, however, have started to receive atten-
tion. For instance, Wang et al. [4] proposed to estimate and test for time-varying genetic effects using
semiparametric models with penalized splines. Fan et al. [5] also used penalized spline models to esti-
mate the mean function and genetic regression coefficients with extensions to linkage disequilibrium (LD)
mapping. Nevertheless, a very limited number of studies have focused on testing of gene–gene interac-
tions (GGIs) or GEI for complex traits in longitudinal settings. The multivariate adaptive splines presented
by Zhang [6, 7] have been applied to analyze GEI in longitudinal cohort studies (e.g., Zhu et al. [8]).
Xu [9] developed an empirical Bayes method to estimate GGI effects under the mixed model framework
and compared it with several variable selection procedures. Malzahn et al. [10] developed a nonparamet-
ric test for investigation of GGI in repeated measures data using a rank procedure. Mukherjee et al. [11]
proposed to explore the GEI structure with various parsimonious classical analysis of variance (ANOVA)
models for non-additivity by taking the average of repeated measurements and forming cell means of a
two-way GEI table. Along the same lines, Ko et al. [12] extended the classical ANOVA models under
a mixed model framework and developed a resampling-based test for GEI that accounts for correlation
within repeated measures.

Typically, an interaction model including cross-product terms of gene and environment under the mixed
model framework is used for testing GGI and GEI in longitudinal studies [13]. In considering the esti-
mation of GEI for longitudinal data where both genetic factor (G) and E are categorical variables, this
conventional modeling approach involves distinct parameter estimation for each configuration of GEI
(i.e., a saturated interaction form) with sum-to-zero type constraints to ensure identifiability. Estimation
bias is minimized because the model does not impose any structural assumptions on the interaction term.
However, the number of parameters and, hence, the corresponding degrees of freedom (DFs) for the
interaction test can become substantially large as the number of categories of G and/or E increases. In
addition, under a saturated interaction model, only observations in a cell can contribute to the parameter
estimation for that cell. This may result in reduced efficiency and loss of power for detecting interactions
because of small cell sample size in human studies involving a gene with a modest minor allele frequency.

Tukey’s one-DF model for non-additivity [14], originally proposed for data with no replication per
cell, has been applied to the modeling of GGI in cohort studies. Maity et al. [15] used Tukey’s form
of interaction for repeated measures data to test main genetic associations in the presence of GGI. The
interaction term in Tukey’s model is treated as a scaled product of main effects, implying that the existence
of interaction is conditional on the presence of main effects. When a GEI study is based on a two-stage
strategy, namely, the candidate genes are selected based on marginal genetic associations [16,17], it may
be reasonable to adopt Tukey’s interaction form for GEI. Chatterjee et al. [18] proposed that Tukey’s
model is also consistent with the notion that individual markers within a gene are associated with disease
through a common biological mechanism. However, when candidate genes are chosen in relation to an
exposure pathway, genes may not necessarily have main effects. Also, when the assumption of Tukey’s
interaction structure is violated (e.g., absence of genetic main effects), the estimate for the interaction
effect using Tukey’s model will be biased, and the corresponding one-DF test can result in extremely low
power [11, 19].

When searching for GEI across multiple genetic markers, it is possible that GEIs exhibit distinct
interaction patterns, departing from Tukey’s model. Conducting multiple tests under a fixed interaction
structure (e.g., Tukey) may not capture interactions of alternative forms. At the same time, it would be
advantageous to leverage the power of Tukey’s test if it is indeed a plausible model. Given as such, we
propose to model GEI using a shrinkage estimator that combines estimates from Tukey’s model and from
the saturated interaction model. An adaptive framework is utilized similar to that described by Mukherjee
et al. [2]. This estimator will shrink the maximum likelihood estimates (MLEs) under a flexible interac-
tion structure toward Tukey’s model estimates. The amount of shrinkage is data adaptive, so that in large
samples, such estimator is unbiased even if Tukey’s assumption is violated. More importantly, when com-
pared with a saturated model, the shrinkage estimator has reduced mean squared error (MSE) for small
samples [20]. Although Tukey’s model has been used to model GEI or GGI under a generalized linear
model setting [15,18,19], no prior work has been carried out to data-adaptively combine Tukey’s model
and saturated interaction model to take advantage of both models for testing GEI. Thus, the shrinkage
approach is not only novel for longitudinal data but also a new approach for cross-sectional data.

In Section 2, we introduce the notations for GEI models using a mixed-effects model framework.
The parameter estimation for Tukey’s model with repeated measures data is described in Section 3. In
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Section 4, we propose a shrinkage estimator and derive its approximate variance estimate. In Section 5,
we summarize the test for interaction corresponding to each method. In Section 6, we evaluate the
performance of our proposed methods via simulation studies. In particular, we compare the average per-
formance by generating GEIs with different interaction structures to mimic a hypothetical GEI search
study involving multiple genetic markers. In Section 7, we apply the proposed methods to search GEI
between 105 single-nucleotide polymorphisms (SNPs) within 22 genes in the iron metabolism pathway
and cumulative lead exposure on PP using the Normative Aging Study (NAS) data. We also test GEI
between 27 SNPs and energy intake and intentional exercise on body mass index (BMI) using data from
the Multi-ethnic Study of Atherosclerosis (MESA). These 27 SNPs have been shown to be significantly
associated with BMI in previous genome-wide association studies (GWAS). In NAS, genes are chosen
in relation to the exposure pathway. In MESA, the question is whether the loci identified by GWAS (with
marginal effects) modify the effect of certain exposures. Another distinction between the two data exam-
ples is that one of the exposure variables considered in MESA, intentional exercise, is a time-varying
variable, while the other two, energy intake in MESA and cumulative lead exposure in NAS, are time
invariant (i.e., both are baseline measurements).

2. Model

Let ykt be the value of the t-th repeated measure on a phenotypic response Y corresponding to the k-
th individual (t = 1,… , nk, k = 1,… ,N). Define a mixed-effects model for the nk × 1 response
vector yk = (yk1, yk2,… , yknk

)⊤ such that it is related to an nk × 𝜈 matrix of explanatory variables
Xk = (xk1, xk2,… , xknk

)⊤, with each xkt a 𝜈×1 vector associated with ykt, through some nonlinear function
f . Namely,

yk = f (𝜼,Xk) + zkbk + ek, (1)

where 𝜼 is the p-dimensional vector of fixed effects, f (𝜼,Xk) is the nk × 1 mean vector, bk ∼  (0,𝚿) is
the q-dimensional vector of random effects, zk is the design matrix of size nk × q for the random effects
satisfying rank (zk) = q ⩽ nk for all k, and ek = (ek1,… , eknk

)⊤ ∼  (0,𝚺k) is the nk-dimensional vector
of random errors. The random effects bk are assumed to be independent of ek. Let Vk(𝝎) be the variance
matrix of yk,Vk(𝝎) = Zk𝚿Z⊤

k + 𝚺k. Here, 𝝎 consists of parameters in 𝚿 and 𝚺k.
We use (1) to model the association between the phenotypic response of interest and genetic and envi-

ronmental exposure factors. Let Gk be the genotype and Ekt be the exposure level for the k-th subject at
the t-th measurement, Gk = i, i = 1, 2,… , I, Ekt = j, j = 1, 2,… , J. Both Gk and Ekt are assumed to be
categorical variables. Without considering any covariates, the mean structure for ykt under Tukey’s model
[14] has the following form:

f (𝜼, xkt) = f (𝜷, 𝜃, xkt) = 𝛽0 +
I∑

i=1

𝛽G
i I(Gk = i) +

J∑
j=1

𝛽E
j I(Ekt = j) + 𝜃

I∑
i=1

J∑
j=1

𝛽G
i 𝛽

E
j I(Gk = i,Ekt = j). (2)

Here, 𝜼 has two components, 𝜼 = (𝜷⊤, 𝜃)⊤. 𝜷 consists of the intercept 𝛽0, the parameters for genetic
main effects, 𝜷G = (𝛽G

1 ,… , 𝛽G
I )

⊤, and exposure main effects, 𝜷E = (𝛽E
1 ,… , 𝛽E

J )
⊤. 𝜃 is a scale parameter

representing the interaction effect. A saturated interaction model, on the other hand, allows for separate
interaction parameters for each GEI configuration:

f (𝜼, xkt) = f (𝜷, 𝝉 , xkt) = 𝛽0 +
I∑

i=1

𝛽G
i I(Gk = i) +

J∑
j=1

𝛽E
j I(Ekt = j) +

I∑
i=1

J∑
j=1

𝜏ijI(Gk = i,Ekt = j), (3)

where 𝝉 = (𝜏11,… , 𝜏IJ)⊤ is the interaction parameter vector with length IJ. Because of the constraints
for parameter identifiability,

∑
i 𝛽

G
i =

∑
j 𝛽

E
j = 0, 𝜷G and 𝜷E are left with (I − 1) and (J − 1) independent

parameters to be estimated, respectively. Similarly,
∑

i 𝜏ij =
∑

j 𝜏ij = 0, so (I − 1)(J − 1) parameters in 𝝉

are left to be estimated.
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3. Parameter estimation for Tukey’s model with repeated measures data

We describe the estimation strategy for the parameters of Tukey’s model. The log-likelihood for the data
y1,… , yN is

𝓁(𝜼,𝝎|y1,… , yN) = const. − 1
2

N∑
k=1

log |Vk(𝝎)|
− 1

2

N∑
k=1

{[
yk − f (𝜼,Xk)

]⊤
Vk(𝝎)−1

[
yk − f (𝜼,Xk)

]}
.

(4)

Given Vk(𝝎), maximizing the likelihood is equivalent to minimizing the objective function

Q(𝜼|𝝎) = N∑
k=1

[
yk − f (𝜼,Xk)

]⊤
Vk(𝝎)−1

[
yk − f (𝜼,Xk)

]
(5)

with respect to 𝜼. The solution for 𝜼 is the generalized least-squares (GLS) estimator. Because the esti-
mation for fixed effects in Tukey’s model does not have a closed-form solution, the iterative linearization
method is considered.

The linearization method uses a first-order Taylor series expansion to approximate solutions of a gen-
eral function by a linear function [21], which has been applied to nonlinear mixed-effects models [22–24].
Let 𝜼∗ = 𝜼̂(0) = (𝜷̂(0)⊤

, 𝜃̂(0))⊤ denote the initial estimate of 𝜼 = (𝜷⊤, 𝜃)⊤. The first-order Taylor series
expansion of f (𝜼,Xk) about 𝜼 = 𝜼∗ is

f (𝜼,Xk) ≈ f (𝜼∗,Xk) + D∗
k (𝜼 − 𝜼∗), (6)

where D∗
k is an nk × p matrix D∗⊤

k = D⊤

k (𝜼
∗) =

{
𝜕f (𝜼)∕𝜕𝜂1,… , 𝜕f (𝜼)∕𝜕𝜂p

} |||𝜼∗ . Initial values of 𝜼∗ can
be obtained by fitting a saturated interaction model (via standard linear mixed-effects model) and using
the main effect estimates as 𝜷∗. After removing main effects, the residuals can then be regressed on the
product term 𝛽G∗

i 𝛽E∗
j (without intercept) to obtain 𝜃∗. The mean function of Tukey’s model for the k-th

subject at the t-th measurement is

f (𝜼, xkt) ≈ f
(
𝜼∗, xkt

)
+
(
𝛽0 − 𝛽∗0

)
+
∑

i

∑
j

[(
1 + 𝜃∗𝛽E∗

j

) (
𝛽G

i − 𝛽G∗
i

)
+
(
1 + 𝜃∗𝛽G∗

i

) (
𝛽E

j − 𝛽E∗
j

)
+ 𝛽G∗

i 𝛽E∗
j (𝜃 − 𝜃∗)

]
I(Gk = i,Ekt = j),

where f (𝜼∗, xkt) = 𝛽∗0 +
∑

i 𝛽
G∗
i I(Gk = i) +

∑
j 𝛽

E∗
j I(Ekt = j) + 𝜃∗

∑
i

∑
j 𝛽

G∗
i 𝛽E∗

j I(Gk = i,Ekt = j).
Following (1), the expansion in (6) yields the approximation

yk = f (𝜼∗,Xk) + D∗
k (𝜼 − 𝜼∗) + Zkbk + ek,

which can be expressed as a linear model

y∗k = D∗
k𝜼 + Zkbk + ek, (7)

where y∗k = yk − f (𝜼∗,Xk) + D∗
k𝜼

∗. Then, the GLS estimator for 𝜼 is given by

𝜼̂GLS =

(
N∑

k=1

D∗⊤
k V̂

∗−1

k D∗
k

)−1 N∑
k=1

D∗⊤
k V̂

∗−1

k y∗k , (8)

where V̂
∗
k is the assumed covariance matrix of y∗k evaluated at 𝝎 = 𝝎∗. When 𝜼 and 𝝎 are unknown, a

common strategy is to replace V(𝝎) with a consistent estimate and minimize the corresponding weighted
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sum of squares to yield an initial estimate of 𝜼. The MLE of 𝝎 is obtained by maximizing (4) with respect
to 𝝎, after 𝜼 is replaced by the estimate in (8).

This iteratively reweighted GLS (IRGLS) algorithm involves iterations between [a] Taylor series
linearization—given the w-th iterates 𝜼̂(w) and 𝝎̂(w), construct D(w)

k = D(𝜼̂(w)) and r̂(w)k = yk − f (𝜼̂(w),Xk)+
D(w)

k 𝜼̂(w) to yield a pseudo-model that is of the form of (7)—and [b] updating estimates 𝜼̂(w+1) in (8) and
𝝎̂(w+1). Steps [a] and [b] are repeated until a convergence criterion is achieved.

The linearization method provides an easy calculation for nonlinear models by translating the non-
linear estimation problem into a linear model. Only the first-order derivatives are required. Although
the assumption of normality is not required for estimates from this IRGLS procedure, minimizing the
objective function (5) is equivalent to maximizing the joint log-likelihood function of yk in (4). Hence,
this procedure yields MLEs [25]. Vonesh et al. [26] argued that the IRGLS estimator is consistent and
asymptotically normal even when the variance–covariance structure is misspecified if the mean func-
tion f (𝜼,Xk) is correctly specified. Our experience is that the proposed estimation algorithm for Tukey’s
model converges relatively fast, and the final estimates are insensitive to initial values. Nevertheless, seri-
ously slow convergence or possibly non-convergence could occur when one or both of the main effects
are truly absent, a situation where 𝜃 is not identifiable.

4. Shrinkage estimator

We now construct a shrinkage estimator for interaction that is a weighted average of the estimators from
Tukey’s model and a saturated interaction model. Denote the interaction parameters to be estimated for an
I×J GEI table by 𝝉 = (𝜏11, 𝜏21,… , 𝜏(I−1)1, 𝜏12,… , 𝜏(I−1)(J−1))⊤. Let 𝝉 tuk and 𝝉sat be the asymptotic limits of
the estimator of 𝝉 from Tukey’s model and saturated interaction model, respectively, each being a length-
(I − 1)(J − 1) vector. When the true model is a Tukey’s one-DF model, we have 𝝉 tuk − 𝝉sat = 𝜹(say) = 0.

To relax the model assumption, let 𝜹 ∼  (0,𝚯). A conservative estimate of 𝚯 is given by 𝜹̂𝜹̂
⊤

, where

𝜹̂ = 𝝉̂ tuk − 𝝉̂sat and 𝝉̂ tuk = 𝜃̂
(
𝛽G

1 𝛽
E
1 , 𝛽

G
2 𝛽

E
1 ,… , 𝛽G

I−1𝛽
E
J−1

)⊤
. We define B = V̂𝜏

(
V̂𝜏 + 𝜹̂𝜹̂

⊤
)−1

, where

V̂𝜏 is the estimated variance–covariance matrix of 𝝉̂sat. Then, the proposed shrinkage estimator for 𝝉 is
given by

𝝉̂shk = 𝝉̂sat + B(𝝉̂ tuk − 𝝉̂sat), (9)

where 𝝉̂ tuk and 𝝉̂sat are MLEs from (2) and (3), respectively.
The shrinkage factor B in (9) determines the amount of shrinkage of 𝝉̂sat toward 𝝉̂ tuk. As 𝜹̂ → 0 and

B → I, 𝝉̂shk → 𝝉̂ tuk (data are indicative of Tukey’s interaction structure). On the other hand, as the bias
of Tukey’s model estimator 𝜹̂ increases, the largest eigenvalue of B goes to 0 and 𝝉̂shk → 𝝉̂sat (data are
not in favor of Tukey’s form of interaction). Now express the shrinkage estimator in (9) as

𝝉̂shk = 𝝉̂sat + V̂𝜏

⎛⎜⎜⎝V̂
−1

𝜏
−

V̂
−1

𝜏
𝜹̂𝜹̂

⊤
V̂

−1

𝜏

1 + 𝜹̂
⊤

V̂
−1

𝜏
𝜹̂

⎞⎟⎟⎠ 𝜹̂ = 𝝉̂sat + 𝜹̂ − 𝜹̂

⎛⎜⎜⎝
𝜹̂
⊤

V̂
−1

𝜏
𝜹̂

1 + 𝜹̂
⊤

V̂
−1

𝜏
𝜹̂

⎞⎟⎟⎠ .
When data are under Tukey’s model, 𝜹̂ → 0 as N → ∞. When data are not under Tukey’s model, the
largest eigenvalue of V̂𝜏 goes to 0 and 𝜹̂

⊤
V̂

−1

𝜏
𝜹̂ → ∞ as N → ∞. So, the term (𝜹̂⊤V̂

−1

𝜏
𝜹̂)∕(1 + 𝜹̂

⊤
V̂

−1

𝜏
𝜹̂)

converges to 1. This indicates that 𝝉̂shk is asymptotically equivalent to 𝝉̂sat, which is an unbiased estimator
of 𝝉 . But with moderate sample size, 𝜹̂ creates a small bias in 𝝉̂shk that can be traded for a larger decrease
in variance, leading to an improvement in finite sample MSE [2]. In addition, when main effects are not
present, the shrinkage estimator will guard against the instability of parameter estimates under Tukey’s
model by shrinking 𝝉̂shk toward 𝝉̂sat.

4.1. Variance estimation for the shrinkage estimator

We proceed to estimate the covariance matrix for 𝝉̂shk. As a result of asymptotic equivalence of 𝝉̂shk and
𝝉̂sat, the covariance matrix for 𝝉̂sat can be used as an estimator for the covariance matrix of 𝝉̂shk in large
samples. Because this estimator is often too conservative in finite samples, we develop an approximate
covariance matrix estimator for 𝝉̂shk using the delta method.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 5177–5191
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Define 𝝓̂ =
(
𝝉̂⊤sat, 𝜼̂

⊤

tuk

)⊤
as the MLEs under a saturated form of interaction and Tukey’s model with

𝜼̂tuk =
(
𝛽G

1 ,… , 𝛽G
I−1, 𝛽

E
1 ,… , 𝛽E

J−1, 𝜃̂
)⊤

. Further define 𝝃̂ = (𝝉̂sat, 𝝉̂ tuk)⊤ = h(𝝓̂) such that 𝝉̂shk = g(𝝃̂) =
g(h(𝝓̂)), where 𝝃̂ and g(𝝃̂) have 2(I − 1)(J − 1) and (I − 1)(J − 1) elements, respectively. We first derive
the joint distribution of the components in 𝝓̂. Let  be the information matrix with dimension (I −1)(J −
1) × (I − 1)(J − 1) and 𝓁 be the log-likelihood corresponding to a saturated interaction model (3). Let
0 be the information matrix with dimension (I + J − 1) × (I + J − 1) and 𝓁0 be the log-likelihood for
Tukey’s model (2). By the consistency of 𝝓̂, the MLE 𝝉̂sat has an asymptotic linear representation

√
N(𝝉̂sat − 𝝉) = 1√

N

N∑
k=1


−1𝓁̇k + op(1) as N → ∞, where 𝓁̇k = 𝜕𝓁(Xk)∕𝜕𝝉 .

Similarly,

√
N(𝜼̂tuk − 𝜼) = 1√

N

N∑
k=1


−1
0 𝓁̇0k + op(1) as N → ∞, where 𝓁̇0k = 𝜕𝓁0(Xk)∕𝜕𝜼tuk.

Denote the asymptotic variance–covariance matrix of 𝝓̂ by 𝚺𝝓̂. Then by multivariate Taylor series
expansion, the variance–covariance matrix of 𝝃̂ = h(𝝓̂) is approximated by

𝚺̂𝝃̂ ≈ {▽h(𝝓̂)}⊤𝚺̂𝝓̂▽h(𝝓̂),

where ▽h = 𝜕h∕𝜕𝝓 is the gradient matrix of h evaluated at 𝝓̂. Finally, the variance–covariance matrix
of 𝝉̂shk is approximated by applying the delta method:

𝚺̂𝝉̂shk
= ̂cov(𝝉̂shk) = ̂cov(g(𝝃̂)) ≈ {▽g(𝝃̂)}⊤𝚺̂𝝃̂▽g(𝝃̂), (10)

where ▽g = 𝜕g∕𝜕𝝃 evaluated at 𝝃̂ (refer to the supporting information for ▽h(𝝓̂) and ▽g(𝝃̂). Com-
paring 𝚺̂𝝉̂shk

with the empirical estimate of variance–covariance matrix through simulations, we found
that variance components can be estimated very well by 𝚺̂𝝉̂shk

but not necessarily the covariance. Either
a small variance for the random measurement errors or a large sample size is needed to obtain accurate
estimates of covariance terms (see Table 1 in the supporting information). Because the magnitudes of
covariance estimates are smaller compared with the variance estimates, the influence of covariance esti-
mates on the Wald test statistic is expected to be small. Thus, the proposed shrinkage test (see later in the
text) is still an approximately valid test with conservative type-I error rates.

5. Tests for interaction effects

We are interested in testing the null hypothesis of no interaction effects H0 ∶ 𝝉 = 0 versus H1 ∶ 𝝉 ≠ 0.
For Tukey’s model, it is equivalent to H0 ∶ 𝜃 = 0 versus H1 ∶ 𝜃 ≠ 0. A likelihood ratio test (LRT)
statistic is given by TL = −2(l0 − l1), where l0 and l1 are the maximized log-likelihoods obtained under
H0 and H1, respectively. Under regularity conditions, TL ∼ 𝜒2

1 for Tukey’s model and TL ∼ 𝜒2
(I−1)(J−1)

for saturated model under H0 for large samples. Based on (9) and [20], the limiting distribution of the
shrinkage estimator is technically not normal. The simulation results, however, reveal that this estimator
is well approximated by a normal density and the amount of departure from normality is small (see Figure
1 in the supporting information). Hence, the Wald test is used as an approximate test for interaction.
The test statistic for H0 ∶ 𝝉 = 0 is given by T̃W = 𝝉̂⊤shk𝚺̂

−1

𝝉̂shk
𝝉̂shk, where 𝚺̂𝝉̂shk

can be found in (10). T̃W

approximately follows a𝜒2 with DF = (I−1)(J−1) under H0 (see Figure 2 in the supporting information).

6. Simulation study

6.1. Settings for evaluation of test properties for a single GEI test

We investigated the type-I error and power properties of the following three test procedures for interac-
tion: the LRT under Tukey’s model of interaction, the Wald test using the proposed adaptive shrinkage
estimator, and the LRT using a saturated interaction model. Two null hypotheses of no interactions were
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considered: (i) the genetic main effects were present (additive) and (ii) the genetic main effect were
absent (null). The main effects of the exposure were always present in our simulations to represent a
study looking for genetic modification effects on an established phenotype–exposure association. For
these comparisons, we used 3 × 3 table settings for GEI with N = 1200. The number of repeated mea-
surements per subject was generated from a multinomial distribution similar to the example data: nijk ∈
{2, 3, 4, 5, 6}, n = {nijk ∶ 1 ⩽ k ⩽ Nij, 1 ⩽ i ⩽ I, 1 ⩽ j ⩽ J} ∼ Mult(N, p), p = (0.15, 0.2, 0.3, 0.2, 0.15),
which implies that dropouts are missing completely at random. Data were simulated under a first-order
autoregressive (AR-1) covariance structure: 𝜎2𝜌|t−t′| for the (t, t′)-th element in𝚺k(𝜎2 = 4, 8 and 𝜌 = 0.7).
Additionally, the test properties were evaluated under misspecification of correlation structure. Again,
data were still generated under the AR-1 correlation structure but were analyzed using a compound
symmetric covariance structure. A total of 1000 datasets were generated for each setting. Type-I error
and power were estimated by the sample proportions of null hypothesis being rejected under various
simulation settings.

In the 3 × 3 GEI table settings, three genotype categories were considered for G with minor allele
frequency 0.4 and following the Hardy–Weinberg equilibrium. An environmental exposure with three
categories (with probabilities 0.25, 0.25, and 0.50) was considered. Cell means for all GEI configurations
were first generated under a pre-specified interaction model. Given a mean and covariance structure, the
vector of observations per individual was generated from a multivariate normal distribution. In addition to
Tukey’s and saturated models, we considered simulations under additive main effects and multiplicative
interaction models [27, 28]. Additive main effects and multiplicative interaction (AMMI) models are
a class of interaction models that have a flexible structure, which essentially entails a singular value
decomposition of the cell residual matrix after removing the additive main effects. Following the notations
in (2), the mean structure for ykt under an AMMI model is given by

f (𝜼, xkt) = f (𝜷, d,𝜶, 𝜸, xkt)

= 𝛽0 +
I∑

i=1

𝛽G
i I(Gk = i) +

J∑
j=1

𝛽E
j I(Ekt = j) +

I∑
i=1

J∑
j=1

M∑
m=1

dm𝛼im𝛾jmI(Gk = i,Ekt = j).

The m-th interaction factor is subject to the constraints
∑I

i=1 𝛼
2
im =

∑J
j=1 𝛾

2
jm = 1 and

∑I
i=1 𝛼im =∑J

j=1 𝛾jm = 0, as well as the 2(M − 1) orthogonality restrictions
∑

i 𝛼im𝛼im′ =
∑

i 𝛾jm𝛾jm′ = 0 for m ≠ m′.
Specifically, AMMI models with M = 1 (AMMI1) were considered in the simulation as an intermedi-
ate model between Tukey’s and saturated models. AMMI2 would be equivalent to a saturated interaction
model in the 3× 3 table settings. We compared test performance under AMMI1 models because Tukey’s
test may not be capable of capturing the interaction of AMMI1 form. Although AMMI1 is nested within
the saturated interaction model, the test based on a saturated interaction model may not have as much
power to detect the interaction.

6.2. Settings for assessment of average performance for multiple GEI tests

When GEI tests are conducted across a moderately large number of SNPs within several gene regions,
the average performance of each method over many GEI tests is of particular interest rather than a sin-
gle specific GEI test. As such, we assessed the type-I error and power of the tests for interaction using
Tukey’s model, saturated interaction model, and the proposed shrinkage estimator, averaged over a set
of genetic markers. We based our simulation studies on the setting of the NAS data example where the
candidate genes were chosen based on some pathway analysis. For each dataset, one exposure factor and
100 independent SNPs (without LD) were generated, with the minor allele frequencies ranging from 0.3
to 0.5. (Simulations with a wider range of minor allele frequencies can be found in the supporting infor-
mation). The exposure had five categories, each with probability 0.2. Thus, a 3× 5 table was constructed
for each GEI test.

We considered two simulation schemes for multiple GEI tests: (i) 100 marginal models, Yi|Gi,E,
i = 1,… , 100, were generated with a common E for each subject, and (ii) a joint multivariate model,
Y|G1,G2,… ,G100,E, was generated. In both (i) and (ii), 15 out of 100 SNPs were assigned to have GEI
effects on Y. Another five SNPs were generated to have only additive main effects on Y. The rest 80 SNPs
were not associated with Y. The simulation design represents a study where GEI over multiple SNPs is
being tested, the majority of SNPs do not have GEI effects, and only a relatively small number of SNPs
exhibit GEI effects.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 5177–5191
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To assess the sensitivity of tests in response to the underlying composition of different interaction
models, we created three scenarios by assigning each of the 15 GEIs to have either a Tukey’s or a saturated
form of interaction: scenario (A): all 15 were of Tukey’s form of interaction; scenario (B): 10 were of
Tukey’s form, and five had saturated interaction structures; and scenario (C): 10 had saturated interaction
structures, and five were of Tukey’s form. For example, the mean function of the simulation model for
subject k under scenario (B) in simulation scheme (ii), following the notations in (3), is given by

f (𝜼, xkt) = 𝛽0 +
J∑

j=1

𝛽E
j I(Ekt = j)

+
I∑

i=1

J∑
j=1

{
10∑

s=1

[
𝛽Gs

i I(Gsk = i) + 𝜃s𝛽Gs
i 𝛽E

j I(Gsk = i,Ekt = j)
]

+
15∑

s=11

[
𝛽Gs

i I(Gsk = i) + 𝜏s
ij(Gsk = i,Ekt = j)

]}
+

I∑
i=1

20∑
s=15

𝛽Gs
i I(Gsk = i),

where 𝛽Gs
i represents the genetic main effect of the i-th genotype from the s-th SNP, Gsk is the genotype

of the s-th SNP for the k-th subject, and 𝜃s and 𝜏s
ij are the interaction parameters corresponding to the

s-th SNP. An individual-level outcome Y with repeated measures was generated for 1000 subjects in each
simulation using (1) with ek ∼  (0, 𝜎2

e Ink
), bk = bk1nk

, bk ∼  (0, 𝜎2
b). We set 𝜎2

b = 2.8, and 𝜎2
e = 1.2.

The number of repeated measurements per subject was generated using the same multinomial distribution
described previously.

The average performance for each test procedure was quantified by true positive rate (TPR) and false
positive rate (FPR). The TPR is defined as the proportion of interactions detected in the 15 simulated
SNPs with GEI associations. The FPR is the proportion of interactions detected among the 85 simulated
SNPs without GEI effects. The TPR and FPR were then averaged over 10,000 simulation datasets. To
control the family-wise error rate (FWER), the significance level was adjusted according to the total
number of SNPs (i.e., number of GEI tests) using Bonferroni correction, 𝛼∗ = 0.05∕100 = 5 × 10−4.

6.3. Power and type-I error

The upper panel of Table I shows the power and type-I error of tests using Tukey’s model, the saturated
model, and the shrinkage estimator for GEI. In general, the saturated interaction model has less power to
detect interactions when the true interaction has a Tukey’s form. For example, the LRT for Tukey’s form
of interaction has power 0.76 for 𝜎2 = 4, while the saturated model has a power of 0.54. On the other hand,
when the true interaction has a saturated form, Tukey’s model can hardly detect the interaction effects.
The saturated model has a power of 0.81 for 𝜎2 = 4, but Tukey’s model using the LRT only has power
0.09. Under both situations, the interaction test using the shrinkage estimator has power 0.69. When the
true interaction has an AMMI1 form, the saturated interaction and the shrinkage estimator can detect 82%
and 72% of interactions, respectively, but Tukey’s model can only detect 30% of interactions. The type-
I error rates are maintained at the nominal level for all testing procedures under additive models except
the Wald test using the shrinkage estimator being a slightly conservative test. However, both Tukey’s test
and the shrinkage estimator have inflated type-I error under the completely null model when one of the
main effects is not present.

When the within-subject correlation structure is misspecified (lower panel of Table I), the patterns of
power comparison are similar to the upper panel. Under the null hypothesis of an additive model where
both main effects are present, the type-I error rates for the two LRTs are still maintained at the 0.05 level
when 𝜎2 = 4 but are inflated when 𝜎2 = 8. Only the proposed Wald test using the shrinkage estimator
maintains the nominal level of type-I error. Under the null that genetic main effects are absent, the type-I
error is no longer maintained at 0.05 for all of the tests.

6.4. Average performance for multiple GEI tests

The upper panel of Table II shows the average performance of the three GEI tests for marginal mod-
els under three scenarios. Under scenario (A) where all 15 simulated GEI are of Tukey’s form, the LRT
using Tukey’s model has a TPR of 0.72, whereas the saturated model has a TPR of 0.43. Under scenario
(B) where 2/3 of the simulated GEI are of Tukey’s form, the LRT using Tukey’s model and the saturated
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Table I. Power for detecting gene–environment interaction and type-I error rates using
Tukey’s model, the proposed adaptive shrinkage estimator, and the saturated interaction
model under different interaction structures in 3 × 3 table settings (N = 1200).

Test model

𝜎2 = 4 𝜎2 = 8

Tukey Shrinkage Saturated Tukey Shrinkage Saturated
True model LRT Wald LRT LRT Wald LRT

Correctly specified correlation structure (AR-1)
Tukey’s one DF 0.758 0.686 0.540 0.479 0.409 0.273
AMMI1 0.303 0.720 0.817 0.211 0.398 0.514
Saturated 0.094 0.690 0.806 0.086 0.325 0.459

H0 ∶ 𝜃 = 0 (additive) 0.047 0.042 0.053 0.053 0.043 0.051
H0 ∶ 𝜃 = 0 (null) 0.104 0.081 0.049 0.107 0.087 0.052

Misspecified correlation structure (compound symmetric)
Tukey’s one DF 0.730 0.640 0.496 0.435 0.376 0.244
AMMI1 0.287 0.708 0.792 0.185 0.372 0.489
Saturated 0.060 0.646 0.775 0.065 0.308 0.432

H0 ∶ 𝜃 = 0 (additive) 0.048 0.046 0.053 0.070 0.048 0.060
H0 ∶ 𝜃 = 0 (null) 0.118 0.064 0.053 0.143 0.065 0.061

Data were simulated under an autoregressive-1 (AR-1) correlation structure while analysis was
performed under correctly specified and misspecified correlation structures (see Section 6.1 for
simulation details).
LRT, likelihood ratio test; DF, degree of freedom.

Table II. Average performance of tests using Tukey’s model, the saturated
interaction model, and the adaptive shrinkage estimator for detecting gene–
environment interaction (GEI) across 100 simulated single-nucleotide polymor-
phisms under scenarios: (A): all simulated GEI are of Tukey’s form; (B): 2/3 of
simulated GEIs are of Tukey’s form, and 1/3 are of saturated form; and (C): 2/3
of simulated GEIs are of saturated form, and 1/3 are of Tukey’s form.

Tukey Shrinkage Saturated
Measure Scenario LRT Wald LRT

Marginal models
True positive rate (A) 0.7221 0.5766 0.4302

(B) 0.5611 0.6317 0.5769
(C) 0.4923 0.6699 0.7357

False positive rate 0.0024 0.0007 0.0006

Multivariate models
True positive rate (A) 0.3264 0.2810 0.0706

(B) 0.2882 0.2602 0.2247
(C) 0.2073 0.2507 0.2911

False positive rate 0.0045 0.0027 0.0006

LRT, likelihood ratio test.

interaction test have comparable performance. Under scenario (C) where 2/3 of the interactions are of
saturated forms, the Wald test using the shrinkage estimator and the saturated interaction tests have com-
parable performance, but the TPR for the LRT using Tukey’s model is substantially lower. The FPRs are
maintained at the nominal level for the tests using a saturated model and slightly inflated for the shrinkage
estimator. However, the LRT for Tukey’s model has the highest FPR.

The lower panel of Table II shows the results of a multivariate model (single outcome) from 100
simulated GEIs. The LRT using a saturated interaction form yields relatively low TPRs. The test based
on the shrinkage estimator still maintains at the same level of TPR across scenarios. In summary, the GEI
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test using the shrinkage estimator has the most robust average performance with respect to various GEI
structures compared with the tests using Tukey’s and saturated interaction models.

7. Application

7.1. Normative Aging Study (NAS)

The NAS is a multidisciplinary longitudinal study initiated by the US Veterans Administration in 1963 to
investigate the effects of aging on various health outcomes [29]. We focus on PP, which is an important
risk factor for heart disease [30]. Several studies have indicated a relationship between iron deficiency
and increased lead absorption [31, 32], and increased cumulative lead exposure has been shown to be
associated with elevated PP [33]. Thus, it may be reasonable to hypothesize that genes responsible for
iron metabolism could potentially alter lead absorption and modify the effect of lead exposure on PP. The
objective of this pathway-driven GEI study was to test the GEI between the cumulative lead exposure
and the iron metabolic genes on PP.

Zhang et al. [34] observed a significant interaction between polymorphisms in the hemochromatosis
(HFE) gene (rs1799945) and cumulative lead exposure on PP. We revisited the study to include 105 SNPs
in 22 genes with minor allele frequency > 0.1 in the iron metabolic pathway to test for GEI using the
proposed shrinkage estimation framework. Candidate genes were chosen based on a priori knowledge
of iron metabolism and previous studies on iron-related genes [35, 36]. We analyzed 729 participants
from a subset of the NAS data who were successfully genotyped for the iron metabolism genes and
had baseline measurements of cumulative lead concentrations (measured at the tibia bone and patella
bone). The majority (97%) of the participants were Caucasian. The average age was 66.37 ± 7.12 (range
48–93) at the time of bone lead measurement. Since 1991, blood pressure had been measured every
3–5 years until 2011 with a median follow-up time of 12 years. More than 94% of subjects had repeated
measurements of blood pressure, and over 48% of them had at least four measurements during the study
period contributing to a total of 3013 observations (see Table 7 in the supporting information).

Each of the 105 SNPs had three possible genotypes (homozygous wild type, heterozygous, and
homozygous mutant). For illustration purposes, we categorized bone lead concentrations into three
groups—Low: ⩽15, Medium: (15, 25], and High: >25 μg/g for the tibia bone lead and Low: ⩽20,
Medium: (20, 32], and High: >32 μg/g for the patella bone lead. We used Tukey’s model, saturated inter-
action model, and the shrinkage approach to model the GEI structures for each SNP × Lead interaction.
Covariates in the model included baseline age, time since baseline, and squared time. According to the
Akaike information criterion (AIC) for model fit, we chose a random-intercept mixed-effects model for
analysis given by yk = f (𝜼,Xk) + bk1nk

+ ek, where bk ∼  (0, 𝜎2
b), ek ∼  (0, 𝜎2

e Ink).
Given that these SNPs are located in a small number of genomic regions, they are in close proximity

to each other and thus may exhibit LD. To control for the FWER while accounting for the potentially
correlated SNPs in the multiple testing procedure, we adjusted the significance level according to the
effective number of independent tests (denoted by Meff) using the simple M method [37]. This method
involves first estimating the correlation matrix among the 105 SNPs by the composite LD, calculating
the corresponding eigenvalues, 𝜆1 ⩾ 𝜆2 ⩾ · · · ⩾ 𝜆105, and then finding Meff through principal component
analysis:

∑Meff

s=1 𝜆s∕
∑105

s=1 𝜆s > C. We chose Meff = 89 so that the corresponding eigenvalues explained
at least C = 99.5% of the variation for the SNP data. Thus, the adjusted significance level was 𝛼∗ =
0.05∕Meff = 0.05∕89 = 5.6 × 10−4.

Table III lists the smallest p-values of GEI tests for the three top-ranked SNPs by using Tukey’s model,
the proposed shrinkage estimator, and saturated interaction model within iron gene regions in the NAS
data. The Wald test via the shrinkage estimator yielded the smallest p-values across all top ranked SNPs
listed in the table (and three of which reached statistical significance), compared with Tukey’s and satu-
rated interaction models. For tibia bone lead, we found a significant modifying effect of SNPrs1799945
in the HFE gene using the shrinkage estimator (p = 1 × 10−4). For the wild-type participants, mean
PP remained nearly unchanged between the High and the Low tibia lead groups. In contrast, mean PP
was estimated to be 20.35 mmHg (95% CI = [14.53, 26.17]) higher for the High tibia lead group than
the Low tibia lead group among the homozygous mutant carriers. The results replicate the findings in
Zhang et al. [34] that the positive association between PP and lead exposure was strongest among HFE
homozygous mutant carriers. For patella bone lead, significant modifying effects of SNP rs17484524 in
the iron-responsive element binding protein 2 (IREB2) gene (p = 3 × 10−4) and SNP rs7165535 in the
beta-2-microglobulin (B2M) gene (p = 4× 10−4) were detected using the Wald test based on the shrink-
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Table III. The p-values of gene–environment interaction tests for the top three (ranks in paren-
theses) single-nucleotide polymorphisms by using Tukey’s model, the proposed shrinkage
estimator, and the saturated interaction model within iron gene regions in the Normative Aging
Study data (adjusted 𝛼 = 5.6 × 10−4).

Bone Tukey Shrinkage Saturated
lead SNP ID Gene LRT Wald LRT

Tibia rs1799945 HFE 0.003 (1) 1 × 10−4 (1) 0.006 (1)
rs2285228 DMT1 0.005 (2) 0.001 (2) 0.017 (2)
rs3821716 MFI2 0.014 (3) 0.012 0.120
rs422982 DMT1 0.016 0.003 (3) 0.072 (3)

Patella rs7165535 B2M 0.001 (1) 4 × 10−4 (2) 0.014 (1)
rs17484524 IREB2 0.002 (2) 3 × 10−4 (1) 0.021 (2)
rs7866419 ACO1 0.009 (3) 0.005 0.054
rs1358024 TF 0.016 0.004 (3) 0.038
rs2304704 SLC40A1 0.044 0.030 0.034 (3)

SNP, single-nucleotide polymorphism; LRT, likelihood ratio test.

age estimator (but were not captured by the LRTs using Tukey’s or saturated interaction model). For the
wild-type and the heterozygous mutant participants, higher lead levels corresponded to higher mean PP
(the estimated difference in mean PP between High and Low patella lead groups ranged from 3.12 to
4.32 mmHg at both SNPs). However, mean PP was estimated to be 3.90 (95% CI = [1.45, 6.35]) and
7.73 (95% CI = [1.88, 13.58]) mmHg lower for the High lead group than the Low lead group among
the homozygous mutant carriers at SNP rs17484524 in the IREB2 gene and SNP rs7165535 in the B2M
gene, respectively. As such, the two homozygous mutant genotypes may indicate protective effects (i.e.,
preventing PP from elevating with increased lead exposure).

7.2. Multi-ethnic Study of Atherosclerosis (MESA)

The MESA is a longitudinal study to investigate characteristics related to progression of subclinical to
clinical cardiovascular disease [38]. More than 6800 men and women aged 45–84 years were recruited
from six US communities. Participants had a baseline examination (exam 1) in 2000–2002 and three
additional follow-up examinations 18–24 months apart (exams 2–4). We aimed to explore GEI effects
on BMI in the four race groups: Caucasians (N = 2526), Chinese (N = 775), African Americans (N =
1611), and Hispanics (N = 1449). Most (84%) of the participants had four BMI measurements, and
over 92% had at least two measurements during the study period from 2000 to 2007 (see Table 3 in the
supporting information). A total of 27 SNPs that have demonstrated significant and replicated evidence of
marginal association with BMI were selected as the candidate SNPs [39]. The environmental exposures
of interest were energy intake, measured at exam 1, and total intentional exercise, measured at exams 1–3.
Both exposure variables were categorized into five groups: 0, (0, 7], (7, 14], (14, 28], >28 (MET-hr/week)
for total intentional exercise and <1000, (1000, 1300], (1300, 1600], (1600, 2000], >2000 (kcal/day) for
energy intake.

We applied Tukey’s model, saturated interaction model, and the shrinkage test to examine the GEI
structure for each SNP × energy intake and SNP × exercise interaction. Covariates in the model included
age at the time of data collection (centered), squared age, gender, having a college degree, household
income, and the exposure variable (either intentional exercise or energy intake). We also accounted for
population stratification by including the first two principal components. Except age, BMI, and inten-
tional exercise that changed with time, all other variables were time invariant. We chose an unstructured
covariance matrix for this analysis based on AIC. A random gender effect was added to allow men and
women to have different variances in BMI. Let F = 1nk

for women and F = 0nk
for men. The analysis

model is given by yk = f (𝜼,Xk) + Fkbk + ek, where bk ∼ (0, 𝜎2
b), ek ∼  (0,𝚺k). We first analyzed

data by race group (see Table 8 in the supporting information) and then applied Fisher’s method [40] to
combine four race groups into a single meta-analysis p-value for each SNP. Not every race group allowed
for GEI tests across all 27 SNPs because of small sample size in certain GEI configurations. The DF for
deriving the combined p-values was based on the number of available race groups. The adjusted p-value
to control for the FWER was set at 0.05/27 = 0.0019.
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Table IV. Findings of gene–environment interaction with significant meta-analysis
p-values for the single-nucleotide polymorphisms that have demonstrated significant and
replicated evidence of marginal association with body mass index in the Multi-ethnic
Study of Atherosclerosis data (adjusted 𝛼 = 1.9 × 10−3).

Tukey Shrinkage Saturated
Exposure SNP ID Gene LRT Wald LRT

Energy rs543874 SEC16B < 1.0 × 10−8 < 1.0 × 10−8 1.8 × 10−4

intake rs1558902 FTO 4.8 × 10−5 7.4 × 10−4 0.130
rs10767664 BDNF 1.2 × 10−3 0.103 0.124

Exercise rs206936 NUDT3, HMGA1 1.4 × 10−4 0.006 0.005

SNP, single-nucleotide polymorphism; LRT, likelihood ratio test.

Table IV lists the combined p-values for significant SNPs using the three interaction tests. For the
association of energy intake with BMI, significant modifying effect of SNP rs543874 on the SEC16B
gene was observed using all three tests. SNP rs1558902 within the FTO gene was detected by Tukey’s
model (p = 4.8 × 10−5) and the shrinkage test (p = 7.4 × 10−4). SNP rs10767664 (on the BDNF gene)
was also detected by Tukey’s model (p = 1.2 × 10−3). For the association between intentional exercise
and BMI, we found significant modifying effect of SNP rs206936 within the NUDT3 and HMGA1 genes
using Tukey’s model (p = 1.4×10−4). Overall, only one interaction was detected by a standard saturated
interaction model used in the current practice. Both the examples illustrate the utility of enhancing power
of a test for interaction by leveraging Tukey’s model. The shrinkage estimator also offers protection
against false positive.The findings require further replication studies.

8. Discussion

We proposed a novel adaptive shrinkage estimator that combines estimates from Tukey’s one-DF model
and a saturated interaction model for GEI effects. The shrinkage estimator shrinks the MLEs under a
general, saturated interaction structure toward Tukey’s one-DF model estimator that allows for data-
adaptive relaxation of the structural assumption in Tukey’s product form.

The unique simulation setting of multiple GEI tests represents the search for GEI over many candidate
SNPs with different interaction patterns. The results indicate that the test based on the shrinkage estima-
tor can be considered as a robust and unified approach for interaction detection. More importantly, the
shrinkage method not only can be applied to the context of GEI or GGI detection but also can be extended
to any two-way table.

We evaluated MSE and bias of these estimators of interaction effects through simulations (Table 2 in
the supporting information). The performance of the shrinkage estimator was compared with the MLE
under a general saturated interaction model using the ratio of MSE,

Ê

{∑
i

∑
j

(𝜏shkij
− 𝜏ij)2

}
∕Ê

{∑
i

∑
j

(𝜏satij
− 𝜏ij)2

}
.

Based on simulation results, the ratio is uniformly less than 1, suggesting an efficiency advantage for
the shrinkage estimator via bias–variance trade-off. In our simulation studies, we noted that the Wald
test using the shrinkage estimator is slightly conservative, so the small bias of the shrinkage estimator
in finite samples does not lead to inflated type-I error. In addition, we compared the shrinkage estimates
of interaction parameters using only the diagonal elements of B (i.e., scalar shrinkage) versus using the
whole B matrix (i.e., multivariate shrinkage). We found that multivariate shrinkage is required under
certain situations (see Table 3 in the supporting information). Chen et al. [20] proposed both multivariate
and scalar shrinkage estimators in case-control studies, and they also found that the scalar shrinkage
estimator can lead to appreciable bias.

Although the methods that we discussed have been developed for a two-dimensional interaction struc-
ture (i.e., the genetic and interaction effects are assumed to be invariant with time), they can be easily
modified to allow for time-dependent effects. To allow for temporal changes in the main effects and
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interaction effects, one may use spline functions. For example, the mean function for Tukey’s model at
time (or age) of measurement t can be expressed as

f (𝜼(t), xkt) = f (𝜷(t), 𝜃(t), xkt) = 𝛽0(t) + 𝛽G(t)gk + 𝛽E(t)ekt + 𝜃(t)𝛽G(t)𝛽E(t)gkekt,

where the genotype gk and the exposure variable ekt for subject k at time t can be treated as continuous,
𝛽0(t) is the baseline function, 𝛽G(t) and 𝛽E(t) are the time-varying genetic and exposure functions, and 𝜃(t)
is the time-varying interaction function. These functions can be approximated by a linear combination
of basis functions [41]. We plan to address the issues of estimation and testing for the temporal dynamic
changes in interaction effects using alternative models in future studies.

We have proposed a new approach in the area of longitudinal GEI cohort studies. The Tukey’s one-DF
test for non-additivity can be very powerful in terms of detecting GEI for studies where the search for GEI
is based on the presence of genetic main effects (e.g., MESA), but the test can suffer from misspecification
of interaction structure. The proposed shrinkage estimation procedure, on the other hand, is useful for
pathway-driven GEI studies (e.g., NAS) where there is no prior knowledge of the existence of genetic
main effects. It also performs well across many scenarios. Despite the advantage of efficiency, the adaptive
shrinkage estimation approach still uses the same DF for interaction parameters as a saturated model. As
such, the increase in power by shrinking parameter estimates toward Tukey’s model estimates may be
limited. However, the robust performance across multiple loci with different interaction structures remain
an appealing feature of such adaptive screening tests.
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