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Objective: Adolescents view thousands of food commercials annually, but little is known about how indi-

vidual differences in neural response to food commercials relate to weight gain. To add to our under-

standing of individual risk factors for unhealthy weight gain and environmental contributions to the

obesity epidemic, we tested the associations between reward region (striatum and orbitofrontal cortex

[OFC]) responsivity to food commercials and future change in body mass index (BMI).

Methods: Adolescents (N 5 30) underwent a scan session at baseline while watching a television show

edited to include 20 food commercials and 20 nonfood commercials. BMI was measured at baseline and

1-year follow-up.

Results: Activation in the striatum, but not OFC, in response to food commercials relative to nonfood

commercials and in response to food commercials relative to the television show was positively associ-

ated with change in BMI over 1-year follow-up. Baseline BMI did not moderate these effects.

Conclusions: The results suggest that there are individual differences in neural susceptibility to food

advertising. These findings highlight a potential mechanism for the impact of food marketing on adoles-

cent obesity.
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Introduction
Adolescents in the United States see �6,000 food commercials

each year (1). Most commercials promote calorie-dense, nutrient-

poor foods (2) with fast-food restaurants advertising to adoles-

cents more than any other company (3). Food marketing increases

children’s preferences for and consumption of commonly pro-

moted unhealthy foods (4) and has been implicated as an impor-

tant contributor to obesity (5). Viewing television advertising

(commercial television), rather than television viewing per se

(i.e., public television, videos, and DVDs), is positively associ-

ated with greater weight gain in children over 5-year follow-up,

controlling for physical activity (6). Exposure to advertising for

fast food and soft drinks is associated with weight gain over 3-

year follow-up in overweight and obese (but not lean children),

controlling for hours watching television (4). Yet, little is known

about the underlying mechanisms through which food advertising

contributes to obesity. One possibility is that repeated exposure

to unhealthy food advertising activates brain reward regions in

some individuals, prompting cravings for and increase consump-

tion of these foods, contributing to unhealthy weight gain.

Bruce and associates (7) found that healthy-weight children exhibited

greater activation in regions associated with motivational value (orbito-

frontal cortex [OFC]) and processing of visual stimuli (e.g., occipital

gyrus) in response to food logos compared to control logos. Further, obese

versus healthy-weight children showed greater responsivity in somatosen-

sory (postcentral gyrus) and reward-related (midbrain) regions to food

logos compared with control images (8). Burger and Stice (9) found that

adolescents showed greater activation in reward (putamen), gustatory

(insula), and visual processing (occipital gyrus) regions in response to

Coke soft drink advertisements compared to nonfood advertisements and

that habitual Coke consumers versus nonconsumers showed greater acti-

vation in regions encoding salience/attention (posterior cingulate, precu-

neus) toward Coke logo’s compared to control images. The only study

(10) to examine neural response to food commercials, which used baseline

data from the present study, found that adolescents showed elevated activ-

ity in regions implicated in motivational value (OFC), attention (anterior

cingulate cortex), somatosensory response (postcentral gyrus), and visual

processing (occipital gyrus) in response to food commercials versus non-

food commercials and a television program. However, no longitudinal

research has examined the associations between neural response to food

commercials and future weight gain.
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Although prospective research has not examined neural response to food

commercials, two prospective fMRI studies found that activity in

reward-related regions in response to food images is positively corre-

lated with change in body mass index (BMI). One study (11) found that

nucleus accumbens (NAcc) activity in response to food images was posi-

tively correlated with change in BMI over 6-month follow-up. Another

study (12) found that activity in the putamen and OFC in response to pal-

atable food images relative to unpalatable food images was positively

correlated with change in BMI over 1-year follow-up in adolescents

with a genetic propensity for greater dopamine signaling, but not in those

without this genetic vulnerability; however, there were no main effects

regarding BOLD response in brain regions to palatable food images and

future weight gain in this study. These data suggest that individuals who

exhibit greater responsivity in reward-related regions to food cues are

more likely to gain weight, but the stimuli used in these studies were

food images without branding/context, limiting ecological validity. An

improved understanding of how neural response to food advertising is

associated with weight gain should enhance our understanding of how

and for whom food marketing increases the risk of obesity and may

inform the design of obesity prevention programs and policies.

Accordingly, the current study examined the associations between

reward-related neural response to food commercials and change in

BMI over 1-year follow up in adolescents varying from lean to

obese. Because obese versus lean individuals have shown greater

reward region responsivity to unhealthy food images (13), we tested

whether baseline BMI moderates any relations between reward

region response to food commercials and change in BMI.

Methods
A more detailed description of the sample and measures are dis-

cussed in Gearhardt et al. (10) which presents cross-sectional results

from the present study.

fMRI media paradigm
At baseline, participants (M age 5 15.2 6 1.1; M baseline BMI 5

26.9 6 5.4; 17 females) were scanned while viewing a video of the

television show “Mythbusters” edited to include 20 food commer-

cials and 20 nonfood commercials. Participants rated hunger on a

visual analog scale pre- and postscan. Food commercial recall, rec-

ognition, liking, and familiarity were assessed after the scan (10).

Body mass index
BMI (kg/m2) was used to reflect adiposity at baseline and 1 year

after fMRI scan. Height was measured to the nearest millimeter and

weight was assessed to the nearest 0.1 kg after removal of shoes

and coats (see Supporting Information).

Pubertal development
At baseline, adolescents were asked to report on their state of puber-

tal development using a standardized series of line drawings of

youth at various states of pubertal development (10,14).

Energy intake
We used the 60-item Block Food Frequency Questionnaire (BFFQ)

(15), which inquires about the frequency of consumption of specific

food types, to assess total energy intake over the past 2 weeks at

baseline and 1-year follow-up (see Supporting Information).

fMRI data acquisition, preprocessing, and
analysis
A detailed description of the fMRI data acquisition, preprocessing, and

analyses are provided elsewhere (Supporting Information). Activation

in response to food commercials was assessed by contrasting BOLD

response during food commercials versus nonfood commercials and

during food commercials versus the television show. Because there

were 20 food commercials and 20 nonfood commercials, we used 20

randomly selected segments of the show for the second contrast. Con-

trast images were constructed within each participant. Consistent effects

across subjects were tested using the contrast images in one-sample

random effects t tests, controlling for hunger as hunger modulates neu-

ral response to food images (16). Morphology-based regions of inter-

ests (ROIs) were generated using the Montreal Neurological Institute

(MNI) average adult MRI template. We identified the striatum and

OFC ROIs using results of previous prospective fMRI studies which

found that greater BOLD activation in these regions to food images is

associated with weight gain (11,12). For the striatum, we created an

ROI that included bilateral caudate, putamen, and NAcc. For the cau-

date and putamen, we used the automated anatomical labeling atlas

(17). Due to the lack of a NAcc ROI in the automated anatomical

labeling atlas, we used a spherical ROI (10-mm diameter spheres) that

was built centered at MNI coordinates x 5 29, y 5 6, z 5 24 (left

NAcc) (11,18) and x 5 9, y 5 6, z 5 24 (right NAcc) (18). Due to

the relatively large size of the OFC, we also used a spherical ROI

(10-mm diameter spheres) for this region. The ROI was centered at the

MNI coordinates x 5 36, y 5 27, z 5 215 (12) and x 5 236, y 5

27, z 5 215. Figure 1 shows the identified ROIs.

Mean activity (parameter estimates) was extracted from these ROIs

at the individual level using MarsBar (http://www.marsbar.source-

forge.net) and exported to SPSS. Regression analyses were per-

formed testing the associations between activity in the a priori ROIs

and BMI at 1-year follow-up separately for food commercials versus

nonfood commercials and for food commercials versus the television

show. Baseline BMI was included as a control variable so that the

models functionally predicted change in BMI (19). Sex, pubertal

development, and change in energy intake over 1-year follow-up

were also included as covariates in the analyses. Exploratory whole-

brain analyses were conducted in which we examined the correla-

tions between BOLD response to the food commercials (relative to

the control stimuli) and change in BMI. The significance level for

these analyses was a threshold of P uncorrected < 0.005 combined

with a minimum cluster of (k) � 22, equal to P < 0.05 whole-brain

corrected (see Supporting Information).

Results
Of the total sample (N 5 30), we were unable to collect objective

height and weight data at 1-year follow-up for six subjects. For four

of these subjects, self-reported height and weight data at 1-year follow-

up was used to calculate BMI. Measured baseline BMI correlated

highly with self-reported BMI at 1-year follow-up for the participants

with both data (r 5 0.98, P < 0.05). Two subjects did not provide any

1-year follow-up data. We used maximum likelihood imputation to
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estimate BMI for these latter two subjects because this method pro-

vides more accurate parameter estimates than listwise deletion or alter-

native method for handling missing data (e.g., mean substitution) (20).

Subjects who did not provide objective weight data at 1-year follow-up

did not differ with respect to sex (F1,29 5 2.2, P 5 0.2), age (F1,29 5

0.9, P 5 0.4), or baseline BMI (F1,29 5 0.0, P 5 0.9) compared to

those with complete measured BMI data. Weight gain over 1-year fol-

low-up (M BMI change 5 1.0 6 1.4) was significant (t (29) 3.6, P <
0.001) and remained significant after excluding subjects without objec-

tive weight data (t (23) 5 3.6, P < 0.01). There were no significant

sex differences on baseline BMI and change in BMI and no significant

differences between lean, overweight, and obese individuals on change

in BMI (Supporting Information). Baseline BMI was not significantly

correlated with activation in the a priori ROIs (Table 1).

Associations between brain response to food
commercials and change in BMI
Activity in the striatum ROI in response to food commercials >
nonfood commercials (partial r 5 0.57; Figure 2A) and in response

to food commercials > television show (partial r 5 0.51; Figure

2B) correlated positively with increases in BMI over 1-year follow-

up (Table 2). Identified mean response in the constructed striatum

ROI was mainly located in the caudate (Figure 2). This effect was

replicated with whole-brain analyses (Table 3). There were no sig-

nificant correlations between activity in the OFC ROI in response to

food commercials versus the control stimuli and change in BMI

(Table 2). The effects of the OFC ROI remained nonsignificant

when excluding the striatum ROI from the model (food commercials

> nonfood commercials: partial r 5 20.03; food commercials >
television show: partial r 5 0.19). We also did not find any signifi-

cant correlations between OFC activity in response to food commer-

cials relative to the control stimuli and change in BMI with whole-

brain analyses (Table 3). Baseline BMI did not significantly moder-

ate the associations between striatum and OFC activity in response

to food commercials and change in BMI (Table 2). The positive cor-

relation between activity in the striatum ROI and change in BMI

remained significant when the six subjects without directly measured

follow-up BMI data were excluded from the analyses (food commer-

cials > nonfood commercials: partial r 5 0.57, P < 0.01; food com-

mercials > television show: partial r 5 0.46, P < 0.05).

To gain a deeper understanding of the positive associations between

activity in the striatum ROI in response to food commercials relative

to the control stimuli and change in BMI, we tested whether stria-

tum ROI activity correlated with prescan hunger, change in hunger

levels over the scan, change in energy intake over 1-year follow-up,

and food commercial recall, recognition, liking, and familiarity.

Activity in the striatum ROI in response to food commercials >
nonfood commercials was significantly correlated with food com-

mercial recognition (r 5 0.43, P < 0.05), but not with hunger (r 5

0.24), changes in hunger (r 5 20.28), change in energy intake (r 5

20.14), food commercial recall (r 5 20.03), liking (r 5 20.03),

and familiarity (r 5 20.14). The positive correlation between stria-

tum ROI activity in response to food commercials > nonfood com-

mercials and change in BMI remained significant (r 5 0.50, P <
0.05) when including food commercial recognition in the model.

There were no significant correlations between activity in the stria-

tum ROI in response to food commercials > television show and

hunger (r 5 20.00), change in hunger (r 5 20.08), change in

TABLE 1 Correlations between baseline BMI and BOLD
activation in response to food commercials

Variables 1 2 3 4 5

1. Baseline BMI -

Food > nonfood commercials
2. Striatum 20.07 -

3. Orbitofrontal cortex 20.09 0.34 -

Food commercials > television show
4. Striatum 0.06 0.52** 20.21 -

5. Orbitofrontal cortex 20.07 0.36* 0.17 0.03 -

*Correlation is significant at P < 0.05. **Correlation is significant at P < 0.01.

Figure 1 Depiction of the identified ROIs for (A) striatum and (B) orbitofrontal cortex.
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energy intake (r 5 0.11), food commercial recall (r 5 0.18), recog-

nition (r 5 0.03), liking (r 5 20.10), and familiarity (r 5 0.13).

Exploratory whole-brain analyses identified positive associations between

activity in the caudate and regions outside of our hypothesized ROIs (e.g.,

cuneus, insula, and amygdala) with change in BMI (Table 3).

Discussion
Elevated striatal (i.e., caudate) responsivity to food commercials rel-

ative to control stimuli showed large correlations with weight gain

over 1-year follow-up. The magnitude of these effects sizes (M r 5

0.54) is much larger than the effects for established risk factors for

future weight gain, such as parental obesity, which has typically

shown only moderate predictive relations to future weight gain (r’s

0.18-0.21) (21,22). The caudate appears to encode incentive motiva-

tion (23) and reward valuation (24). Elevated caudate responsivity

has been linked to increased craving (25) and greater palatable-food

intake (26). The present findings extend prior evidence that elevated

striatum response to food images predicted weight gain (11), imply-

ing that a similar phenomenon occurs with food commercials.

One possible explanation for the current findings is that some indi-

viduals have an elevated reward region responsivity that is biologi-

cally based, which may render them more vulnerable to food cue

induced cravings for the types of foods shown in the commercials,

resulting in greater caloric intake and weight gain. Brain imaging

studies have found that a genetic propensity for elevated signaling

capacity of dopamine-based reward circuitry is associated with

greater reward region responsivity (27,28). Elevated striatum activa-

tion in response to palatable food images (relative to unpalatable

food images) predicted weight gain in individuals with a genetic

propensity for greater dopamine signaling, but not in those without

this genetic propensity (12). Therefore, it is possible that the positive

association between striatal responsivity to food commercials and

future weight gain is partially determined by genetic variability

related to dopamine signaling. A second possible explanation for the

current findings is that participants with a history of eating the

advertised foods undergo a conditioning process in which the brand

logos, food images, and even the restaurant settings shown in the

commercials become associated with subjective reward from con-

suming these foods, prompting cravings for and increase consump-

tions of these food, resulting in weight gain. For these individuals,

the food cues appearing in the commercials more readily activate

reward regions because of this conditioning history. This interpreta-

tion is suggested by animal experiments in which previously neutral

cues that are repeatedly paired with palatable food intake eventually

develop the capacity to activate brain reward regions via a learning

mechanism (29). In support, striatum activity in response to food

commercials relative to nonfood commercials was positively corre-

lated with food commercial recognition. This latter result also dove-

tails with studies that found that striatal activity is associated with

successful recognition and active evaluation of salient events,

e.g.(30). However, this effect did not occur for the contrast food

commercials versus television show, suggesting that this effect was

not robust and limits the confidence that can be placed in this

finding.

Baseline BMI did not moderate the prospective relations. However,

the positive interactions between baseline BMI and striatum activa-

tion in response to food commercials versus nonfood commercials

(r 5 0.42) and food commercials versus television show (r 5 0.35)

predicting BMI increases were medium effect sizes, implying that

the associations between striatal responsivity, and future weight gain

were stronger for heavier youth. The nonsignificance of these inter-

active effects is most likely due to the small sample size.

Change in energy intake was not significantly correlated with neural

activation and change in BMI over 1-year follow-up. However, these

null findings should be interpreted with caution because reported

energy intake on food frequency measures correlates only weakly

with doubly labeled water estimates of actual intake (31).

Stice et al. (11) found that OFC activity in response to food images was

positively correlated with change in BMI over 1-year follow-up in adoles-

cents with a genetic propensity for greater dopamine signaling. Further,

OFC activity in response to a cue signaling the impending presentation of

palatable food images is positively correlated with future weight gain

(32). A potential explanation for nonsignificant OFC effect in the present

Figure 2 Partial regression plots showing the positive associations between (A)
BOLD response in the caudate in response to food commercials > nonfood com-
mercials and (B) BOLD response in the caudate in response to food commercials
> television show and increases in BMI over 1-year follow-up, while controlling for
baseline BMI. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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study is that we had a smaller sample (N 5 30) relative to the previous

studies (N 5 44 and 35, respectively), reducing sensitivity.

Despite the lack of OFC effects, exploratory whole-brain analyses

identified positive correlations between regions implicated reward

(caudate, insula, and amygdala) (24, 33), motor (anterior cerebellum

and supplementary motor area) (34, 35), memory (middle temporal

gyrus, parahippocampal gyrus) (36), emotional- (temporal lobe) (37),

and cognitive (posterior cerebellum) (34) processing in response to

food commercials and change in BMI over 1-year follow-up. Thus,

individuals who potentially evaluate the food featured in the commer-

cials as more rewarding and access memories related to prior experien-

ces of consuming the advertised foods may be more susceptible to

weight gain in response to food marketing. Additionally, increased

activation in motor regions in response to food cues has been impli-

cated in planning to acquire or consume food (38). Thus, greater acti-

vation of the motor regions in response to food commercials may be

related to an increased tendency to seek out the calorie-dense foods

featured in the advertisements, which may contribute to weight gain.

Curiously, we observed that some peaks in visual regions (left middle

occipital gyrus, left cuneus) (39) and the cerebellum (right posterior

cerebellum) regions were positively related to weight gain, but other

peaks in visual regions (right middle occipital gyrus, right superior

occipital gyrus, and bilateral lingual gyrus) and cerebellum (left poste-

rior cerebellum) were negatively related to this outcome. This may

imply that these different regions of the visual cortex and cerebellum

encode somewhat different processes, or that some of these peaks are

chance findings, despite the correction for multiple testing.

Although past studies have found that obese versus lean individuals

show greater striatal activation in response to pictures of palatable

foods versus control pictures (13), baseline BMI did not significantly

correlate with striatal and OFC responsivity to food commercials

nor did BOLD response differ between obese and healthy-weight

adolescents at baseline (10). The lack of significant correlations

between BMI and striatal effects may be the result of the stimuli

used in the current study. Previous studies have used stationary

food- and nonfood pictures. Our study is the first to investigate neu-

ral response to unhealthy food commercials shown in the context of

a television show. The food commercial blocks included periods of

time during which no food was shown (e.g., food logos and people

dining). Thus, food commercials may show a weaker ability to acti-

vate striatal and OFC regions than food images in isolation because

of the greater heterogeneity of the former. To our knowledge, no

studies have compared neural response to food images with neural

response to food commercials. Future studies should determine the

differences in neural activation between the two types of food stim-

uli. Alternatively, the small number of obese (n 5 11) and lean

(n 5 10) individuals in the current sample, which is smaller than

the average sample size (N 5 28) from studies that found hyper-

responsivity of these reward regions to food images, may have lim-

ited sensitivity to detecting striatal activation differences.

TABLE 2 Summary of hierarchical regression analysis for variables predicting change in BMI

Variable B B (SE) b Partial r DR2

Food commercials > nonfood commercials
Step 1 0.94

Baseline BMI 1.0 0.1 0.97 0.97***

Sex 0.2 0.6 0.02 0.07

Pubertal development 0.5 0.5 0.06 0.22

Change in total energy intake 0.0 0.0 0.00 0.00

Step 2 0.02

Striatum 4.9 1.5 0.16 0.57**

Orbitofrontal cortex 22.0 1.5 20.07 20.28

Step 3 0.00

Striatum 3 baseline BMI 0.9 0.4 0.13 0.42

Orbitofrontal cortex 3 baseline BMI 20.3 0.3 20.06 20.23

Food commercials > television show
Step 1 0.94

Baseline BMI 1.0 0.1 0.97 0.97***

Sex 0.2 0.6 0.02 0.07

Pubertal development 0.5 0.5 0.06 0.22

Change in total energy intake 0.0 0.0 0.00 0.00

Step 2 0.02

Striatum 5.5 2.0 0.13 0.51**

Orbitofrontal cortex 1.2 1.1 0.05 0.22

Step 3 0.00

Striatum 3 baseline BMI 1.0 0.6 0.09 0.35

Orbitofrontal cortex 3 baseline BMI 20.2 0.3 20.04 20.17

**P � 0.01; ***P � 0.001.
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TABLE 3 Exploratory whole-brain analyses of correlations between BOLD activation to food commercials versus nonfood
commercials and food commercials versus television show and BMI over 1-year follow-up

Contrast and region BA k Z value MNI coordinates

Food > nonfood commercials
Positive correlation with change in BMI

Caudate 37 3.82 212, 27, 22

Caudate 3.45 26, 21, 10

Anterior cerebellum 40 3.61 23, 249, 214

Anterior cerebellum 3.08 23, 258, 211

Middle occipital gyrus 52 3.53 239, 276, 31

Middle temporal gyrus 39 3.35 245, 261, 22

Cuneus 31 35 3.36 23, 270, 16

Cuneus 3.01 26, 285, 22

Insula 27 3.25 245, 216, 10

Insula 3.17 251, 222, 10

Superior frontal gyrus 9 24 3.24 221, 41, 37

Middle temporal gyrus 24 3.07 51, 255, 16

Supplemental motor area 22 3.06 26, 210, 55

Negative correlation with change in BMI
Middle occipital gyrus* 186 4.35 27, 276, 31

Superior occipital gyrus 7 3.77 24, 273, 45

Superior parietal lobe 3.44 24, 264, 55

Lingual gyrus* 17 170 3.90 9, 291, 22

Lingual gyrus 3.31 23, 279, 28

Lingual gyrus 18 3.14 218, 279, 217

Middle occipital gyrus* 93 3.68 227, 279, 19

Superior occipital gyrus 3.45 224, 282, 31

Middle occipital gyrus 3.28 227, 288, 4

Food commercials > television show
Positive correlation with change in BMI

Parahippocampal gyrus* 67 4.45 230, 243, 25

Amygdala* 47 4.21 33, 27, 223

Thalamus 3.42 9, 228, 10

Temporal pole 23 4.04 45, 11, 226

Middle temporal gyrus 3.30 54, 5, 220

Posterior cerebellum 129 4.03 24, 249, 244

Anterior cerebellum 3.59 15, 255, 229

Posterior cerebellum 3.30 12, 246, 250

Supplemental motor area 36 3.96 215, 237, 52

Parahippocampal gyrus 34 3.74 30, 243, 28

Parahippocampal gyrus 3.52 36, 228, 214

Anterior cerebellum 35 3.63 212, 255, 229

Anterior cerebellum 3.58 23, 258, 211

Middle temporal gyrus* 50 3.49 45, 267, 22

Middle temporal gyrus 39 3.01 42, 261, 16

Middle temporal gyrus 34 3.40 242, 267, 16

Negative correlation with change in BMI
Superior parietal lobe 7 33 3.96 30, 270, 49

Posterior cerebellum 39 3.22 221, 279, 223

Analyses controlled for hunger and baseline BMI.
BA 5 Brodmann areas; k 5 cluster size.
*Significant at P < 0.005 with a cluster size (k) 5 22; P < 0.05, whole-brain corrected.
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It is important to consider the limitations of this study. First, the

small sample size may have resulted in false negative findings

regarding the nonsignificant association between follow-up BMI and

the OFC, as well as the lack of significant correlations between

baseline BMI and striatal and OFC responsivity. Second, 1-year fol-

low-up BMI data were missing for two subjects and for four sub-

jects, we used self-reported height and weight data to calculate

1-year follow-up BMI, which may have resulted in biased estimates

of weight gain. However, our results remained significant when

excluding these subjects from the analyses and reported BMI was

highly correlated with measured BMI (r 5 0.98), suggesting that the

missing and self-reported BMI data had limited impact. Nonetheless,

findings should be considered provisional until replicated in a larger

sample using objective measures for assessing BMI. Third, data on

energy expenditure might have facilitated the interpretation of our

results as individual differences in physical activity may contribute

to changes in weight over time (40), although self-reports of exer-

cise have low validity (31). Finally, we prioritized external validity

using food and nonfood commercials that are more frequently adver-

tised to adolescents; future studies should contrast the effects of

exposure to unhealthy versus healthy food commercials, to better

isolate the effects of exposure to unhealthy food commercials.

The finding that elevated reward region response to food commer-

cials is associated with greater weight gain is a unique contribution

to the literature, as it suggests that there are individual differences

in neural vulnerability to food commercials that appear to identify

youth at risk for excess weight gain. In combination with established

risk factors of weight gain during adolescence, such as sedentary

behavior (40) and parental obesity (21,22), elevated reward-related

response to commercials may be an important contributor and a

potential target for prevention and intervention programs. Future

studies should explore how individual differences (e.g., weight sta-

tus, genetic markers), and environmental factors (e.g., the proximity

to fast food restaurants) determine who will develop hyper-

responsivity of reward regions to food advertising that increases risk

for future weight gain.O
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